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11 Continuous Tnverse Theory :ndTanngrﬁ..,,

114 Tomography and Coatinuous Inverse Theory

The term “tomography” has come to be used in geophysics almost
synonymously with the term “inverse theory.” Tomography is derived
from the Greek word tomos, that is, slice, and denotes forming an

image of an object from measurements made from shices (or rays)

through it. We consider tomography a subsct of inverse theory, dstin-
‘gaished by a special form of the data kernel that involves measure-
ments made along rays. The model function in tomography is a func-
tion of two or more variables and is related 1o the data by

;= L mx{(s), }(s)] ds (11.16)

Here the model function isintegrated alongaray C;havingarcJength s.
Thisintegrat isequivalest to the one in a standard continuons problem
[Eq. (1 1.2)] when the data kernel is G;(x,3) = 8{x{s) — x { ()]} ds/dy,
where 3(x) is the Dirac deita function:

ds
dy

=f mix(s)1s)] ds (1117
G

Here x is supposed to vary with yalong the curve Ciand yissupposed to
vary with arc length s,

While the tomography problem is a special case of a continnous
tnverse problem, several factors limit the applicability of the formulas
of the previous sections. Fest, the Dirac delta fuactions in the data
kernel are not square integrable, so that the S, “overlap™ integrals; sec
Eq. {( 1.6)] have nonintegrable singularitics at points where rays inter-
sect. Furthermore, in three-dimensional cascs the rays may not inter-
sect at all, so that all the S, may be identically zero. Neither of these
problems is insurmountable, and they can be overcome by replacing
the rays with tubes of finite cross-scctional width. (Rays are often an
idealization of a finite-width process anyway, as in acoustic wave prop-
agition, where they are an infimitesimal wavelength approximation.)
Since this approximation is equivalent o some statement about the
smoothness of the model function 1(x,)), it ofien suffices 10 discretize
the continuous problem by dividing it into constant m subregions,
where the subregions are Jarge enough 1o guarautee a reasonable num-

d;= [ f m(x )Hx(s) ~ xA ()]} —dx dy

]
115 Tomography and the Radon Transform 177

ber containing more than onc ray. The discrete inverse problem isthen |

7o B length
fthe formd,= 2 . where the data kernel G gives the arc

2(’ the ith n;r in tfe&;’:ljl subregion. The concepts of resolution and
variance, now interpreted in the discrete fashion of Chapter 4, are still
applicable and of considerable importance.

115 Tomography and the Raden Transform

1 i ipht-ine rays and a
The simplest tomography problem mvolves.strmghl d
two-dimensional model function m(x.y) and 18 m!led Radon’s prob-
lem. By historical convention, the straight-line rays C;in Eq _(l 1.6)are
mertiznd by their perpendicular distance u fram the origin and the

i akes with the x axis. Posi-
ogle & (Fig. II.Z)thattheperpendlcdﬂInf
?io‘nl{x,;) and ray coordinates (:,5), where s is arc length, are related by

x\ foos8 —m‘nﬂ)(u)
(y)—(sina cos# J\s
u\_ [ cos® sine)(x) (11.18)
s —sin® cosO/\y
The tomography problem is then

d(u.0) = J"m(xsuonsa-—ssin 8,y=usin8+scnsﬂ)ds
- (11.19)

i i jon of {x,y} along
Rﬂhﬁﬂmmﬁmnupuﬁnmﬂbgmmyumgaﬁydwnu
ifv::(ﬂ::boﬂ] parameterized by their arc ength 5, perpendiculsr distance ¥, and

angle 8.
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