

Monthly Composite Procedure for Raw Influent

The monthly composite is a flow-weighted composite compiled on a daily basis.

- I. Weekly composites
 - A. Plant personnel bring a daily sample from influent stream to the analytical laboratory.
 - B. Plant personnel bring influent and effluent flow amounts.
 - C. For every 1000 liters of influent flow, analytical personnel combine 7, 4, or 2 milliliters of daily sample in weekly composite, depending on type of composite.
 - 1. Analytical personnel combine 7 milliliters in a weekly composite for influent refrigerated.
 - 2. Analytical personnel combine 4 milliliters in a weekly composite for influent nitric acid cut of sample.
 - 3. Analytical personnel combine 2 milliliters in a weekly composite for influent sulfuric acid cuts of sample.
 - D. At the end of the week, analytical personnel have 3 flow-weighted composites of influent samples preserved by refrigeration, nitric acid and sulfuric acid.

II. Monthly composites

- A. Analytical personnel save weekly composites until the end of the month.
- B. Analytical personnel calculate total weekly flow amounts and total monthly flow amount.
- C. Analytical personnel calculate proportion of weekly flow amounts as compared to monthly flow amount.
- D. Using the proportion of weekly flow to monthly flow, analytical personnel create monthly composites of each preserved cut of sample.
 - 1. Analytical personnel combine refrigerated influent weekly composites into 3600-milliliter monthly composites.
 - 2. Analytical personnel combine sulfuric acid influent weekly composites into 900-milliliter monthly composites.
 - 3. Analytical personnel combine ritric acid influent weekly composites into 1800- and 3600-milliliter monthly composites respectively.

E. At the end of the month, analytical personnel have 3 flow-weighted composites of influent samples preserved by refrigeration, nitric acid, and sulfuric acid.

Continuous Metals Process Monitoring

.

In order to demonstrate that TA-50 does not receive any metals beyond RCRA limits, an Optical Emission Spectrometer (OES) will do continuous monitoring of RCRA metals.

- I. Primary requirement for continuous metals monitoring: Detection levels must be at least 10 times below action levels.
- II. Detection and action levels for RCRA metals

		Detection levels	Action levels
Α.	Arsenic:	0.014 ppm	5.0 ppm
Β.	Barium:	0.004 ppm	100 ppm
C.	Cadmium:	0.002 ppm	1.0 ppm
D.	Chromium:	0.001 ppm	5.0 ppm
E.	Lead:	0.024 ppm	5.0 ppm
F.	Mercury:	0.002 ppm	0.2 ppm
G.	Selenium:	0.024 ppm	1.0 ppm
Н.	Silver:	0.001 ppm	5.0 ppm

III. Data from IRIS OES instrument

- A. Figures 1-8 show all levels of RCRA metals are well below action levels.
- B. Preliminary data shows that RCRA metals are not present to any significant degree in TA-50 influent flow.

Purgeable Organic Carbons and Volatile Organic Carbons Equivalency Testing

An instrument that detects purgeable organic carbons (POCs) may be used to identify if TA-50 facility's waste stream contains less than 1 ppm of any volatile, toxic organic. This procedure could be used to screen influent flows for volatile organic carbons (VOCs). If the concentration were greater than 1 ppm, a VOC analysis would be done to identify what VOC compound is in the waste stream.

- I. POC and VOC sampling equivalency
 - A. Plant personnel obtained VOC and POC samples with as little loss of volatile components as possible.
 - B. Analytical personnel purged VOC and POC samples with pure, carbonfree gases for 10-12 minutes.
 - 1. Paragon personnel inject purged sample directly into a Gas Chromatography instrument for analysis.
 - 2. Plant analytical personnel inject sample directly into a TOC5000 instrument.
 - C. VOC and POC sampling and injection are identical.
- II. POC measurement on TOC5000
 - A. The TOC5000 instrument detection limit of POCs is 20ppb. The method detection limit of the TOC5000 is 100ppb.
 - B. Analytical personnel calibrated the TOC5000 with the following standard concentrations: 100, 400, 800, 1000ppb. This calibration enables the detection of POCs up to 1000ppb.
 - C. Figure 1 shows POC detection in influent waste stream.
 - D. Figure 2 shows POC detection in raw feed waste stream.

E. Figures show all results are lower than 1 ppm. POC analysis is more cost-effective and efficient because it can be done at TA-50.

	Operational							Regulatory
Sample	TA-55	ISCO	Raw Influent	Raw Daily	Plant	Gravity Filter	Vacuum	NPDES
	Industrial	Volatiles		Feed	Volatiles	Effluent	Filter Solids	
ID Tag	TA55	Immyy.dd	RDI, RWC, RMC	RDF	Pmmyy.dd	FDI, FWC, FMC	50Smmyy.dd	NPDESmmyy.dd
Location	WM-201	pН	pН	discharge side	discharge	discharge side of	discharge side	final effluent
		Neutralization	Neutralization	of pumps 3 and	side of pumps	gravity filter	of vacuum	discharge to
		Chamber	Chamber	4	3 and 4		filter	Mortendad
								Canyon
Analysis	weekly:	weekly:	daily:	daily:	weekly:	daily:	per batch	weekly grab:
Formats and	gross Alpha	VOC	pН	рН	VOC	рН	treated:	рН
Parameters	⁴⁴¹ Am	SVOC	gross Alpha,	gross Alpha,	svoc	gross Alpha,	gross Alpha	TSS
	pН		Beta,Gamma	Beta,Gamma		Beta,Gamma	234, 239	COD
			Ή	'H		'H	241 A	(T) Cd, Pb, Cu,
							***Am	Fe, Zn, Hg, Cr,
			weekly composite:			weekly composite:	% Solids	Ni
			рн			рн	TCLP:	
			gross Alpha,			gross Alpha,	Ag, As,	monthly grab:
			Beta, Gamma			Beta, Gamma	Ba, Cd,	Total N
			Cs, Am			Cs, Am	Cr, Hg, Ni,	Nitrate-Nitrite
			radioisotopic			radioisotopic	Pb, Se, Tl	(as N)
			COD, NH ₃ -N			COD, NH_3-N		Ammonia (as N)
			monthly composite:			monthly composite:		I otal I oxic
			nH			nH		Organics
			gross Alpha			gross Alpha		Ka
			Beta Gamma			Beta Gamma		
						³ H		
			234, 235			234, 235 _{1 1}	,	
			238, 239 p11			238, 239P11		
\ \			89, 90 Sr			19, 90 Sr		
			²⁴¹ Am, ¹³⁷ Cs			²⁴¹ Am, ¹³⁷ Cs		
			Alkalinity-Mo			Alkalinity-Mo		
			Alkalinity-P	•		Alkalinity-P		
			Aluminum			Aluminum		

Sampling at TA-50 Radioactive Liquid Waste Treatment Facility Main Plant Operations (Routine)

		Ammonia-N		Ammonia-N		T	٦
		Arsenic		Arsenic		-	
		Barium		Barium			
		Beryllium		Beryllium			
		Boron		Boron			
		Cadmium		Cadmium			
		Calcium		Calcium			
		Cations (T)		Cations (T)			
	1	Chloride		Chloride			
		Chromium (T)		Chromium (T)			ļ
		Cobalt		Cobalt			
		COD		COD			
		Conductivity		Conductivity			
	τ.	Copper		Copper			
		Cyanide		Fluoride			
		Fluoride		Hardness			
		Hardness		Iron			
		Iron		Lead			
		Lead		Magnesium			
		Magnesium		Mercury			
		Mercury		Nickel			
		Nickel		Nitrate-N			
,		Nitrate-N		Nitrite-N			
		Nitrite-N		Phosphorus			
		Phosphorus		Plutonium (T)			1
		Plutonium (T)		Potassium			
		Potassium		Selenium			
		Selenium		Silica Dioxide			
		Silica Dioxide		Silver			1
		Silver		Sodium	ł		
		Sodium		Sulfate	,		
		Sulfate		TDS			
		TDS		Thallium			
		TSS		Uranium			
		Thallium		Vanadium			
		Uranium		Zinc			
		Vanadium					
		Zinc					1

١,

TA-3 South Mesa Site

memorandum

Chemical Science and Technology Responsible Chemistry for America CST-9, Analytical Chemistry, E518 Los Alamos, New Mexico 87545 To/MS: Dave Moss, E518 From/MS: Eva R. Birnbaum, CST-9, E518 Phone/FAX: 7-7538/5-6561 Date: 5/13/98

Subject: Case Narrative for Submission #100027422

Samples 98.72203 and 98.72303 were received by CST-9 personnel at TA-50 on 3/31/98. These samples were digested via method 200.2 on 3/31/98. ICP-OES analysis for Ag, Al, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Na, Ni, Pb, V, and Zn was performed on 4/3/98. ICP-MS for Tl, and U was performed on 4/8/98. ETVAA analysis for As and Se was performed on 4/6/98. Samples were digested for Hg analysis on 3.31/98 (holding times were met) and analysed by CVAA on 4/3/98. TSS was performed on 3/31/98, TDS on 4/8/98, COD on 4/1/98, CN on 4/9/98, Cl and SO4 on 4/8/98, P on 4/7/98, TALK on 4/13/98, TCATS on 4/7/98, SiO2 on 4/16/98, and F, NO3, NO2, and NH3 on 3/31/98.

QC Summary

Reagent Blank

OES: Results were all at or below our detection limits for all analytes. MS: Results were all at or below our detection limits for all analytes. ETVAA: Less than detection limit. CVAA: 0.03 ug/L: reported as D.L. WET: Results were all at or below our detection limits for all analytes.

WET: Results were all at or below our detection limits for all analytes.

Laboratory Control Samples (LCS):

OES: Within 15% for all analytes except B (136% recovery), Co (84%), and Ni (84%). Results are all in control.
MS: 102% recovery on Tl.
ETVAA: Within 10% of expected results for As and Se.
CVAA: Within 10% of expected results.
WET: All results in control.

Duplicates:

OES: RPD of +/-20% for all analytes (except for those at or below detection limits). **MS:** RPD of +/-20% for all analytes.

ETVAA: Results below detection limit for both sample and duplicate.

CVAA: RPD of 21%.

WET: RPD of +/- 20% for all analytes (except for those at or below detection limits). TDS had a high RPD (58%) due to a very heterogeneous sample.

Matrix Spike:

OES: Spike recoveries within 15% of expected for all analytes except Ca and Na, due to high concentrations of sample relative to spike (LCS results, however, were in control). **MS:** Spike recoveries within 28% of expected for all analytes.

ETVAA: Spike recoveries within 20% of expected for all analytes.

CVAA: 85% recovery of spike.

WET: Spike recoveries within 20% of expected for all analytes except P (recovery of 77%). LCS in control at 90% recovery, however; reported results should be acceptable.

Runtime QCs:

OES: Continuing calibration verification standards were all within 10% of expected values, except for Ca (112%). Blank checks were all below detection limits. Interference check standard was within 15% of expected value for all analytes.

MS: Continuing calibration verification standards were all within 10% of expected values . Blank checks were all below detection limits.

ETVAA: Continuing calibration verification standards were all within 10% of expected values. Blank checks were all below detection limits.

CVAA: Continuing calibration verification standards were all within 15% of expected values. Blank checks were all below detection limits.

WET: Continuing calibration verification standards were all within 15% of expected values. Blank checks were all below detection limits.

Blind QCs:

WET: All results under control.

March, 1998

. 1

12-Jun-1998 04:43 PM			,	Page 1		
	RAW (16579	61 liters)		FINAL (15	81166 1	 iters)
Item C	oncentration(mg/	L) Num	Total(KG)	Concentration(mg/L)	Num	Total(KG)
	0 2 105:01	1	2 498:01	2 508.02	1	E E38:03
ALKALINITI-M		1	3.40ETUI	3.306+02	1	3.336404
	7 208-01	1	1 198+00	5 90F-02	1 1	1 098-01
ADOMINOM AMMONITA-N	2 198-01	1 1	3 632400	2.478+00	1	3 912+00
ARGENIC	141	1	J.034+00	141	1	3.919+00
BARTIM	3.50E-02	1	5.80E-02	1.308-02	1	2.06E-02
BERYLLTIM	181	1		141	1	
BORON	2.00E-01	1	3.32E-01	1.76E-01	1	2.78E-01
CADMIUM	141	1	•••	1d1	1	
CALCIUM	1.30E+01	1	2.16E+01	1.48E+02	1	2.34E+02
CHLORIDE	2.04E+01	1	3.38E+01	2.30E+01	1	3.64E+01
COBALT	5.00E-03	1	8.29E-03	141	1	
COD	5.50E+01	1	9.12E+01	3.00E+01	1	4.74E+01
CONDUCTIVITY	2.80E+02	1		8.89E+02	1	
COPPER	1.50E-01	1	2.49E-01	5.40E-02	1	8.54E-02
CYANIDE	141	1		1d1	1	
FLUORIDE	6.80E-01	1	1.13E+00	1.08E+00	1	1.71E+00
HARDNESS	4.48E+01	1	7.43E+01	3.71E+02	1	5.87E+02
IRON	1.50E+00	1	2.49E+00	7.60E-02	1	1.20E-01
LEAD	5.10E-02	1	8.46E-02	141	1	
MAGNESIUM	3.00E+00	1	4.97E+00	3.60E-01	1	5.69E-01
MERCURY	4.46E-03	1	7.39E-03	3.60E-05	1	5.69E-05
NICKEL	1.40E-01	1	2.32E-01	3.50E-02	1	5.53E-02
NITRATE-N	1.44E+01	1	2.39E+01	1.80E+01	1	2.85E+01
NITRITE-N	2.00E-02	1	3.32E-02	8.50E-01	1	1.34E+00
рH	6.5	1		7.2	1	
PHOSPHORUS	2.00E+00	1	3.32E+00	2.20E-01	1	3.48E-01
POTASSIUM	3.40E+00	1	5.64E+00	3.30E+00	1	5.22E+00
SELENIUM	141	1		1d1	1	
SILICA_DIOXI	DE 8.16E+01	1	1.35E+02	3.96E+01	1	6.26E+01
SILVER	1.30E-02	1	2.16E-02	1d1	1	
SODIUM	2.90E+01	1	4.81E+01	4.90E+01	1	7.75E+01
SULFATE	1.30E+01	1	2.16E+01	2.40E+01	1	3.79E+01

March, 1998

,

а,

.

12-Jun-1998 04:43 PM								
	RAW (165796	1 liters)		FINAL (15	81166	liters)		
Item (Concentration(mg/L)) Num	Total(KG)	Concentration(mg/L)	Num	Total(KG)		
TDS	2.58E+02	1	4.28E+02	1.80E+02	1	2.85E+02		
THALLIUM	1 d 1	1		1d1	1			
TOTAL_CATION	NS 2.34E+00	1		9.04E+00	1			
TOTAL_CHROM	IUM 1.10E-01	1	1.82E-01	3.00E-03	1	4.74E-03		
TSS	8.00E+00	1	1.33E+01	1 d 1	1			
URANIUM	1.34E-01	1	2.22E-01	6.00E-03	1	9.49E-03		
VANADIUM	8.00E-03	1	1.33E-02	4.00E-03	1	6.32E-03		
ZINC	9.50E-02	1	1.58E-01	1d1	1			

,

January, 1998

12-Jun-1998	04:43	PM	

4

– D	100	\sim	1
- P	ay	e	<u> </u>
	~		

	RAW (1777609 liters)			FINAL (1823422 liters)		
Item (Concentration(mg/L)	Num	Total(KG)	Concentration(mg/L)	Num	Total(KG)
ALKALINITY-N	40 1.10E+01	1	1.96E+01	2.17E+02	1	3.96E+02
ALKALINITY-	? 1d1	1		1 d 1	1	
ALUMINUM	2.40E-01	1	4.27E-01	1.20E-01	1	2.19E-01
AMMONIA-N	3.14E+00	1	5.58E+00	3.26E+00	1	5.94E+00
ARSENIC		0			0	
BARIUM	4.10E-02	1	7.29E-02	1.10E-02	1	2.01E-02
BERYLLIUM	141	1		1 d 1	1	
BORON	1.40E-01	1	2.49E-01	9.90E-02	1	1.81E-01
CADMIUM	141	1		1 d 1	1	
CALCIUM	1.30E+01	1	2.31E+01	1.10E+02	1	2.01E+02
CHLORIDE	1.09E+01	1	1.94E+01	1.83E+01	1	3.34E+01
COBALT	141	1		1 d 1	1	
COD	7.80E+01	1	1.39E+02	4.10E+01	1	7.48E+01
CONDUCTIVITY	4.09E+03	1		7.24E+02	1	
COPPER	1.30E-01	1	2.31E-01	5.90E-02	1	1.08E-01
CYANIDE	8.00E-02	1	1.42E-01	1.00E-02	1	1.82E-02
FLUORIDE	7.70E-01	1	1.37E+00	1.60E+00	1	2.92E+00
HARDNESS	4.44E+01	1	7.89E+01	2.77E+02	1	5.05E+02
IRON	5.00E-01	1	8.89E-01	5.50E-02	1	1.00E-01
LEAD	4.90E-02	1	8.71E-02	1 d 1	1	
MAGNESIUM	2.90E+00	1	5.16E+00	4.90E-01	1	8.93E-01
MERCURY	4.00E-03	1	7.11E-03	6.40E-04	1	1.17E-03
NICKEL	2.10E-01	1	3.73E-01	7.60E-02	1	1.39E-01
NITRATE-N	1.12E+01	1	1.99E+01	1.46E+01	1	2.66E+01
NITRITE-N	2.60E-01	1	4.62E-01	2.81E+00	1	5.12E+00
Hq	6.8	1		7.6	1	
PHOSPHORUS	2.15E+00	1	3.82E+00	9.10E-01	1	1.66E+00
POTASSIUM	4.20E+00	1	7.47E+00	5.30E+00	1	9.66E+00
SELENIUM		0			0	
SILICA DIOXI	DE 8.33E+01	1	1.48E+02	5.19E+01	1	9.46E+01
SILVER	3.30E-02	1	5.87E-02	4.00E-03	1	7.29E-03
SODIUM	3.00E+01	1	5.33E+01	5.70E+01	1	1.04E+02
SULFATE	9.00E+00	1	1.60E+01	1.73E+01	1	3.15E+01

1

.

January, 1998

12-Jun-1998 04:43 PM Page								
	RAW (1777609) liters)		FINAL (18	23422	liters)		
Item (Concentration(mg/L)	Num	Total(KG)	Concentration(mg/L)	Num	Total(KG)		
TDS	2.51E+03	1	4.46E+03	4.46E+02	1	8.13E+02		
THALLIUM	1 ð 1	1		141	1			
TOTAL_CATION	NS 1 81	1		6.42E+00	1			
TOTAL CHROM	IUM 2.70E-02	1	4.80E-02	1.70E-02	1	3.10E-02		
TSS	5.00E+00	1	8.89E+00	2.00E+00	1	3.65E+00		
URANIUM	2.40E-02	1	4.27E-02	6.00E-03	1	1.09E-02		
VANADIUM	9.00E-03	1	1.60E-02	1.20E-02	1	2.19E-02		
ZINC	7.30E-02	1	1.30E-01	141	1			

.

1

SODIUM

SULFATE

3.12E+01

1.15E+01

1

1

February, 1998

12-Jun-1998	04:43 PM		rebruary, 1	Page 1		
	RAW (1867006	Jiters)		FINAL (18	97399 1	iters)
Item	Concentration(mg/L)	Num	Total(KG)	Concentration(mg/L)	Num	Total(KG)
ALKALTNTTY-	MO 4.00E+01	1	7. 47 E+01	2,88医+02	1	5.46E+02
ALKALINTTY-	P 1d1	1	,	141	1	51102.02
ALUMINUM	4.16E-01	ī	7.77E-01	5,00E-02	1	9.49E-02
AMMONIA-N	2,92E+00	1	5.45E+00	5.75E+00	1	1.09E+01
ARSENIC	141	1		1d1	1	
BARIUM	3.70E-02	1	6.91E-02	1.70E-02	1	3.23E-02
BERYLLIUM	1d1	1		1d1	1	
BORON	1.96E-01	1	3.66E-01	1.30E-01	1	2.47E-01
CADMIUM	1d1	1		141	1	
CALCIUM	1.23E+01	1	2.30E+01	1.30E+02	1	2.47E+02
CHLORIDE	1.85E+01	1	3.45E+01	1.88E+01	1	3.57E+01
COBALT	1d1	1		1d1	1	
COD	5.50E+01	1	1.03E+02	4.00E+01	1	7.59E+01
CONDUCTIVIT	Y 2.74E+02	1		8.00E+02	1	
COPPER	1.59E-01	1	2.97E-01	6.00E-02	1	1.14E-01
CYANIDE	1d1	1		1d1	1	
FLUORIDE	4.80E-01	1	8.96E-01	8.30E-01	1	1.57E+00
HARDNESS	4.29E+01	1	8.00E+01	3.26E+02	1	6.19E+02
IRON	7.65E-01	1	1.43E+00	141	1	
LEAD	4.70E-02	1	8.77E-02	1d1	1	
MAGNESIUM	2.95E+00	1	5.51E+00	3.50E-01	1	6.64E-01
MERCURY	2.10E-03	1	3.92E-03	1.04E-04	1	1.97E-04
NICKEL	2.03E-01	1	3.79E-01	3.60E-02	1	6.83E-02
NITRATE-N	4.72E+01	1	8.81E+01	1.66E+01	1	3.15E+01
NITRITE-N	5.00E-02	1	9.34E-02	4.80E-01	1	9.11E-01
pH	7.1	1		6.9	1	
PHOSPHORUS	2.30E+00	1	4.29E+00	5.60E-01	1	1.06E+00
POTASSIUM	2.48E+00	1	4.63E+00	3.20E+00	1	6.07E+00
SELENIUM	141	1		1d1	1	
SILICA_DIOX	IDE 8.38E+01	1	1.56E+02	5.09E+01	1	9.66E+01
SILVER	3.40E-02	1	6.35E-02	1d1	1	

5.83E+01

2.15E+01

5.10E+01

2.67E+01

9.68E+01

5.07E+01

1

1

*

1

February, 1998

12-Jun-1998 04:43 PM Page 2									
	RAW (1867006	5 liters)		FINAL (18	97399	liters)			
Item (Concentration(mg/L)	Num	Total(KG)	Concentration(mg/L)	Num	Total(KG)			
					_				
TDS	2.44E+02	1	4.56E+02	5.08E+02	1	9.64E+02			
THALLIUM	1d1	1		1.00E-03	1	1.90E-03			
TOTAL CATION	NS 2.44E+00	1		8.24E+00	1				
TOTAL CHROM	IUM 5.10E-02	1	9.52E-02	4.00E-03	1	7.59E-03			
TSS	5.00E+00	1	9.34E+00	1d1	1				
URANIUM	5.70E-02	1	1.06E-01	4.00E-03	1	7.59E-03			
VANADIUM	8.00E-03	1	1.49E-02	6.00E-03	1	1.14E-02			
ZINC	1.80E-01	1	3.36E-01	141	1				

1