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A generalized Wilcoxon test for comparing 
arbitrarily singly-censored samples* 

By EDMUND A. GEHAN 

Birkbeck College, London and tk National In.stitute.s of Health, Betke.sda 

1. SUMMAB.Y 

ution-free two-sample test is proposed that is a.n extension of the Wilcoxon test 
with arbitrary censoring on the right. The test is conditional on the pattern 

The null hypothesis is 

Eo: FI (t) = Fz(t) (t ~ T) against either 

HI: FI(t) < F 2(t) (t ~ T) or 

H2 : ~(t) < F2(t) or FI(t) > F:(t) (t ~ T), 

'.'~ :~here ~,F2 are cumulative distributions (discrete or continuous) of the observations and 
'!' is their upper limit. The test is shown to be asymptotically normal and consistent against 
one-sided alternatives FI(t) < Fz(t) (t ~ T) and against two-sided alternatives where either 
"J~(l) < F2(t) or ~(t) > F2(t) (t ~ T). The asymptotic efficiency of the test relative to the 
:.II!ItlClellto parametric test when the distributions are exponential is at least 0·75 and increases 

degree of censoring. When 110 is true, the test is not seriously a.ffected by real differences 
percentage censored in the two groups. Some comparisons a.re made for 'five cases of 

degrees of censoring and tying between probabilities from the exact test and those 
proposed test and these suggeSt the test is appropriate under certain conditions 

. the sample size is five in each group. A worked example is presented and some 
SJ,8Cnss:ion is given to further problems. 

2. INTRODUCTION 

statistical problem considered in this paper arises in clinica.l trials comparing two 
l1IIIII~latIneIlt.s, where the observation for each patient is often time to fa.ilure or censoring 
~1I'fe(jmEltirnesreferred to as loss)_ In fact, the results are relevant for distributions other than 

1'a.ilure times and in fields of application outside medicine. However, the discussion is in 
terms of failure times since most applica.tions are of this type and it is convenient to use 
medical terminology. - ' 
'.. A common problem in a clinica.l trial is to compare two treatments for their ability to 
prolong life or maintain a patient in a well state. Patients enter study serially in time and 

.. '.,. are randomly allocated to one of two treatments. At a time T after the start of the study, 
. an observation is recorded of time to failure (death or relapse) or censoring from 0 bservation 

t still alive or in remission at T). In general, n, - T, individuals have failed and " are 
at time T (i = 1,2), but because patients have entered a.t different times, the 

,....,.>i.--~ to censoring will differ among patients. 
. .A. special Case has been considered by Halperin (1960) in an industrial life-testing context_ 

' . This investigation was supported by a Public Health Service Resea.rch Grant from the National 
iI/i.c--"'.... Institute. 
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In his application, components could be started on test 3;:t the same time so that at the 
of the experiment, times to censoring were the same for items not havingfailed. 
times to censoring could differ in industrial life-testing experiments where items are 
at different times or where a policy of replacing failed items is followed_ 

If it is known that time to failure is exponentially distributed in both treatment 
an F test can be used to test for treatment differences (see §8)_ Since the eX"JpOtlen1t;ia'ft 
assumption is often not warranted and no other approach seems generally applicable 
consider a distribution-free two-sample test. The W test proposed is an extension of' 
Wilcoxon test to samples with arbitrary censoring on the right. The test is conditional . 
the given pattern of failures and censored observations. 

Halperin (1960) and Rao, Savage & Sobel (1960) have considered two-sample testa 
~ensoring, though all assume that times to censoring are the same in both samples . .t\.elceIltJvll 
"Alling (1963) has proposed a modified Wilcoxon test to be calculated sequentially so 
an early decision may possibly be reached. His test is valid when censored observations 
present, the test being based on least upper and greatest lower bounds for SUOS€lqu_mtl 
values of the ordinary Wilcoxon test statistic. The greatest saving in time of on""MT!>ti"M 
is when the sample sizes are small. 

3. THE W STATISTIC AND RELATION TO OTHER STATISTICS 

We assume that nIl n 2 individ uals are allocated randomly to treatments A, B I respectively 

and we observe: ~, ... , X;11 r l censored } 
treatment Al 

X r1+1' ""X"1' 'ni-ri failures 
yi, ... , Y;" r z censored } 

Yr,+I' ···,Y....' ~-r2 failures 
treatment B, 

where Xi' Yt are times to failure and x;, YI are times to censoring (all measured from time. -' 
entry into study). It is emphasized again that the observations need not be failure tim~ 

Such a pattern of observations could arise in a. number of ways: in a clinical trial coIi~ 
ducted for fixed time T where patients enter study serially in the interval 0 to T; in an 
industrial experiment where all components are started at time zero and an analysis is bemg 
done at time T later; in the same type ofexperiment, except that items that fail are repla.ce4 
randomly; in a medical or industrial experiment where studies are being conducted at 
different centres, each study lasting a different length of time and an analysis is done by" 
pooling results from all- centres. Here T is the upper limit of time of observation a.mong. 
centres. A further possibility is a study of tolerances to different diugs when for some ~ 
reason large tolerances cannot be measured accurately. , ·4 

The test proposed is appropriate for these and possibly other cases with general types of 
censoring. The essential requirement is that the average exposure to the risk of failure be 
the same in the two groups. In other applications, the arbitrary censoring should be of the 
same type in both groups. In the sequel, the test is discussed in terms of the clinical trial; 
though it is clear that the other applications will a.lso be relevant. 

The times to failure are from cumulative distribution functions (C.D.F.'S) F1(x);Fz(y), 
which may be cliscrete or continuous. When considering the sample outcomes, we al1o~ 
the possibility of ties among failure a.nd lOBS times. 

The null hypothesis is 

Ho: F1(t) = F2(t) (t ~ T) (treatments A and B equally effective). 
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sltemative hypotheses (Ho) are either 

HI: F,.(t) < .F;(l) (l ~ T) (treatment A more effective than B). 

the two-sided version H,,: Fl(l) < Fz(l), 
.. F1(t) > F:(t) (t ~ T) (treatment A or B more effective) . treatment groupe, . 
~ . 

or 
e the exponential·. .. Roughly. we are interested in one or two tail tests of the difference between the C.D.F.'S for 
By applicable, f:re8,tIn(:nUl A andB. 
I extension of 

.-1 Xi < Yj or Xi ~ yj. }; is conditional 
U;j = 0 Xi = Yj or (X;, yj) or x~ < Y; or Y; < Xi. (3,1) 

·sampIe testa + 1 x( > Yj or xi ~ Y; 

.mples. ~cen.tl~ 


ca.lculate the statistic W = L U;j where the sum is over all n 1 ~ comparisons. Hence.
iuentially so _ i.i 


:i observations ~here will be a contribution to W for all comparisons of the two samples where both patients 

Is for subsequ have failed (except for ties) and in all comparisons where a patient censored from observa

De of observation tion has survived longer than one who has failed. 


The W statistic is related to the Wilcoxon (1945) statistic T'. the Mann-Whitney (1947) 

statistic U' and Kendall's (1955) statistic S when there are no censored observations or ties. 
;s 

It is easy to show that W = n (n +n + 1) - 2T',
2 1 2 

where T' is the sum of the ranks of the second sample in the ordered combined sample. Also. 

W = 2U'-~nz' 
U' counts the number of times an observation in the second sample precedes one in 

first in the combined ranking of the two samples. Further, W = S, a statistic defined 
Kenda.ll for use in rank correlation. The last is also true when ties are present. 

When aJI censored observations have the value T, Halperin's (1960) statistic lIe is 

;tleJme:C1. by W = 2llc+TITZ -~nz, 

where v;, is related to the Mann-Whitney statistic by llc = U'(n1- T1• nz-Tz) +Tl(~ - T2) ' 
ral 0 to T; in 

Here U' (~ - T l' nz - Tz) is the Mann-Whitney statistic based on the ~+ ~..:.. Tl - T Z failures.
analysis is 

; fail are rel)la.c~ . 
4. THE CONDITIONAL MEAN AND V AB.I.ANCE OF W19 conducted 

L1ysis is done by · . We have n1, nz observations which can be arranged in the following general pattern: 
:ervation among 
when for some 

(4'1) 

m( = number of uncensored observations at rank i in rank ordering of uncensored 

observa.tions with distinct values; 

l( = number of right-censored observations with values greater than observations at 
rank i but less than observations at rank (i+ 1). 

http:Kenda.ll
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The points on the vertical line correspond to a rank ordering ?f the distinct values ' 
fail ure 0 bservations and these occur at $ distinct failure points. Any set offailed and cenSOr;;;f 
observations can be represented according to this diagram. If there are censored --~=~v..~ 
tions prior to the first failure, these could be included by counting them as ~ with ~ 
Ordinarily, such observations would be excluded since they provide no information on 
differences between A and B. The calculation of mean and variance is not affected, since 
calculation is conditional on the given pattern of observations. .Ai; an example, if a 
represents a censored observation and we have the following sample of survival 
(weeks): 8, 8+,10,10,11+,14+, the pattern is 

:t:. 

Suppose So is true and the average exposure to the risk of failing is the same in the 

groups. If the n l +n2 individuals in the pattern are labelled differently, there are (~~~ . 

possible allocations of the individuals to two samples with n l , n 2 observations. We consider 
the conditional mean and variance of Wunder Ho. These are denoted by E( WIP,~) 
and var (WIP, Ho), where P is the pattern of observations. The expectations are Over 
t.he (nl +n::)!/{n1!n::!} equally likely samples leading to the sa.me observed pattern P. 

It is easy to see 	 E(WIP,~) = 0, . 

by symmetry. 
The derivation of the variance is given in Appendix A. The formula is 

on,.n {' 	 •var(WIP,~)=( + )( 2 1) kmi~_l(~_l+l)+kIi~(~+I)
on,. ~ on,.+n2- i-I 	 i-I ',I 

+ ±mi(on,.+n2-~-Li_l)(nl+n2-3~_I-mi-Li_l-l)}, (i
i-I 

i 
where ~ = 	 1: mi , Mo = 0, 

i-I 

When there are no ties or losses, i.e. m l = .. , = m3 = 1, Il = ... = Is = 0, and s = ~+n:, 

the formula becomes 


which is the form expected from the variance of the Mann-Whitney (1947) statistic. Here, 
P is simply the ranking of the on,. +n 2 observations. 

If there are no ties and all censored observations occur after the (nl +n2 - r:)thr1 

failure, I.e. m1 = ... = ma = 1, II = .. , = I&_l = 0, Ia = r1 +r2, ands = n l +n2-r1 -r2 we have 

1var (WIP, Eo) = '(n2 (n,.~n2 -r -;::; {(on,. +n2}(rl +r2 ) + H(nl +n2-r1-1"2)2 -In, ... . 
n 1 +nz 1"t+n 2 -	 ;~ . 

which is that expected from the relation between Wand the ~ of Halperin (1960). 
Hemelrijk (1952) has given a formula for the variance of the Mann-Whitney statistic, 

allowing for ties. His formula gives the same result as (4·3) when there are tied and 
observations only. 
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m" = m, ~ = l, m, = li = 0 (i *1) (or equivalently m" = m", m, = m:, l( = 0 for all i, 
::= 0 (i > 2)), the observations form a 2 x 2 contingency table with margins fixed and 

constituw an outcome in hypergeometric sampling. If two treatments are being compared 
'::jn n.,., ~ patients, the m individuals may be considered as the 'responders' having tied 
- values on a response scale and the l individuals as 'non-responders', i.e. as being censored 

and requiring a greater stimulus to respond. The W statistic reduces to the difference in the 
,iProducts of the diagonals in the 2 x 2 table and 

lmn.rnt 
var (WIP, Eo) = ( 1)'n.r +nz-

Wch is exactly the same as that obtained by assuming the W statistic to be an outcome 
JD hypergeometric ~pling. 

';S~. 5. Tm: -CALCULATION OF W .AND var(W/P, Ho) IN LARGE SA.Ml'LES 

," This section can be conveniently skipped by those not concerned with the calculation of 
Win reasonably large samples (say n I ,n2 both 25 or more); suffice to say that Wand 
var(WIP, Eo) can be calculated quite easily by grouping the failure and censored observa
tions. The W statistic and its variance are simple to calculate when n1,n2 are small. How
ever if n I , n2 are large, then both the mean and variance calculation are lengthy. 

Of course, it would not be difficult to program both calculations for an electronic 
. computer. Alternatively, the failure and censored observations could be grouped in 
. intervals in a way similar to that of the life table: 

Treatment A 

Interval 

t 

No. of 
failures 

Cum.no. 
of failures 

\ 

No. of 
ceDSOred 

11..4. Fu. Cu 

oj 1y F(Ji C(.4 

.. 1 • .4 F..t C • .4 

fu = number of failures in interval i, 


Cu. = number of censored observations in interval i, 


and there is another table with entries f'B' CiB and F';,B defined in the same way for treat
ment B. 

,_~ The intervals should be chosen the same as for ordinary frequency distributions and 
" need not be of equal length. The failures in the ith inwrval are considered 'tied' at rank i 
,...·in the rank ordering of intervals. The censored observations are also considered as 'tied' in 
.• . ith interval and are counwd as occurring after interval i-I but before i. Thus, informa

."~,;!.:::"~ is lost concerning the ordering of failed and censored obrervations within each interval. 
The formula. for W then becomes 

• 
W = L {[Ju. +c,...t]Fi-l. B - [J,B+CiB] F';,-1.,.J, (5·1) 

i-I 

t. : 
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where it is assumed that the same intervals are used in both ~mples. This statistic is 
simple to evaluate if each term is calculated successively by interval in the ap·prcroriiM... 

.~.•.... table. 
The conditional variance of W is found by using the general formula (4·3) with 

~ 

Both E( WIP, Ha) (in absolute value) and var (WIP, Ho) will tend to be smaller on 
average for the grouped case than for the ungrouped case. This results from the 1058 

a proportion of the n1 n: comparisons because of grouping. If this proportion is not 
the test of W should not be seriously affected. In any doubtful case, the test on 
ungr~uped data could be carried out. 

6. ASYMPTOTIC NORMALITY OF W 

In Appendix B, it is shown that W is asymptotically normal with mean and varian~ 
under the null hypothesis given by (4·2) and (4·3). The result follows because (nlnJ-lW~' 
the form of a two-sample U statistic, defined by Lehmann (1951), and a convergence ' 
theorem of Cramer (1946) may be applied to prove asymptotic normality. It is assumed 
that unconditionally the pattern of observations has arisen in a random way from 8. 

probability distribution of times to entry into study (in a special case, all patients enter a.t' 
time zero) and two probability distributions of times to failure. 

Consequently, to test 110 against either HI or H2, a value of 

z- W 
- 4}{var (WIP, 11o)} 

is taken as asymptotically normal with zero mean and unit variance. 
The normal approximation is somewhat better if a continuity correction 

especially if the sample sizes are not large. In an appucation where there are no or 
few tied and censored obsef'Vations, a continuity correction of ± 1 should be made. 
the possible W scores will usually be two units apart. Otherwise, the continuity r.01Te(~ti(lln 
should be ± ,. ' 

The adequacy of the normal approximation is investigated in § 10. The results ll.IU~""""" 
that the W test can be applied when sample sizes are as small as n l = nz = 5, as long as not"' 
more than six of the ten observations are involved in ties Or censoring and there are at least ' 
five distinct failure points. In the special case m l = m, II = l, mi = li = 0 (i =1= 1) where the" 
observations form a 2 x 2 contingency table, the W test is equivalent to the test based on, 
the normal approximation to the hypergeometric distribution. Pearson (1947) has shown 
that even for moderate sample sizes the normal apprOximation gives probabilities in 
agreement with those from the hypergeometric distribution. 

' :.' 

7. THE CONSISTENCY OF THE W TEST 

We now consider the behaviour of the W test. when the null hypothesis is not 
this, we need E(WIP, Ha) and a bound for var (WIP, Ha). The alternative hypothesis 
is fued, that is it does not depend on the sample size in each group. Just as in 
~e assume that considered unconditionally Xl' ... , X"I are independent random 
variables taking values (x, 0) or (x', 1) if the sample ouwome is a failure, censored "'h....r1'fH' 



I 

209 

(4'3) with 

be smaller On 
ts from the 1088 .. 
lortion is not 
Ie, the test on. 

nean and variance 
luse (11.1 11.2 )-1 W baa 
md a convergence 
ity. It is assumed 
ndom 'vay from a 
II patients enter at · 

~ 5, as long as not 
there are at least .... 
(i * 1) where the 
~he test based on . . 

:1947) has shown 
JabiIities in close .. 

is not true. 

hypothesis 


J in Appendix 

dom 

,do 

A generalized W ila;xon test for singly-censored samples 

respectively. There is a similar assumption for J;, ... ,Y.... For th~ sake of simplicity 

also assume n-x = ~ = n. 
'~·We have 
#! 

Pr(Xi > lj)-Pr(Xi < Yf) * o. (7·1) 

For the variance, we write 

. n-4va.r(WIP,Ha) = n-4E(W2\P, Ha)-n-4[E(WIP, Ha)]2 

=n-4E{IDt1+ 1: Uii~'1+ 1: ~;u.r+ 1: ~1~'fIP,HJ
i+i' i+1' i+,· 

i+f 
-n-4[E{I~1IP, Ha}]z. 

four terms' comprising E(W!!IP, Ba) have 11.2, n!!(n -1), 11.2(11. -1) and 11.2(11. _1)2 individual 
":: terms in the summations, each with expectation at most one. Therefore, the first three terms 

in the above expression are at most 0(1/11.). But 

E {L Uij Un,/P, Ha} = 1: E( UiilP, Ha) E( Un,/P, Ha)
,.,.,' ,.... ,. 
j"'j' j+j' 

= nZ(n-l)2[E(u,.jIP, Ha)]2 

[E{:z::u,.j/P,HalJ2 = [IE(u,.iIP, Ba)]2 

= n4 [E( u,.;IP, Ha)J2 

11.-4 var (WIP, Ha) is at most 0(1/11.). 


lim n-4 var(WIP,H..) = O. 

n-ZE(WIP, Ha) -n-2E(WIP, ~) 
.j{n-4 va.r (WIP, HaH 

.. becomes indefinitely large as n~co and the probability that the W test rejects the null 
is 1. 

Thus, the W test is consistent for alternatives where (7·1) is true. In particular, the one
tisided W test is consistent against alternatives F1(t) < F2(t) (t ~ T) and the two-sided test 
~,a.gainst alternatives where either F1 (t) > F2(t) or .F;.(t) < Fz(t) (t ~ T). 

8. THE ASYMPTOTIC RELATIVE EFFICIENCY OF W TO F ASSUMING 

EXPONENTIAL FAILURE DISTRIBUTIONS 

Suppose the probability density function of time to failure for a patient receiving treat
ment A is 

fl(X) = ¢ exp ( - ¢x) 

and that for a patient receiving treatment B is 

• We wish to test the hypothesis 

H: F1(t) = F:(8t) (t ~ T,O < 8 ~ 1), 

under ~: 8 = 1 and under HI: 0 < 8 < 1. Such a test would be appropriate if we 
interested in whether failure times on treatment B were a constant proportion (8) of 
on treatment A. For example, if 8 = 0'75, the failure times for the patients on 

Blom. S2 
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treatment A would be 25 %longer than those on treatment.B. A test of the above 
thesis is equivalent to one for differences in location, F1(t) ~ F2(t +8), when logs of 
times are analysed. 

An efficient parametric test for the hypothesis is to take lJlz as having an F ......, ... 11lIn...._ 

with (2(nl - r1), 2(n2 - r2)) degrees of freedom, where 

The F distribution is exact when the time of observation in each group is a random 

and n 1 - rl' nz - r2 are fixed, and a good approximation (Cox, 1953) when the time 

observation is fixed and the number of patients failing prior to that is .random. 


We wish to calculate the asymptotic efficiency of the generalized Wilcoxon test <CJJ"r.n". 

to the F test in two situations: 
(a) all individuals enter study at time zero, observation stops at T (the case where. 


individuals fail is covered by letting T -+00), 


(b) individuals enter study at a constant rate, A, in the interval 0 to T and fail according .• 
tofI(X) or fz(y). 

For both cases, it is assumed that the number of patients in each group is n. Case (b) is 
a model of a clinical trial, also suggested by Armitage (1959), where it is reasonable to assume ' 
there is a fi."ted probability, A(t.t), of a patient entering a study in any small interval of . 
time (D.t). unconditionally both the number of patients entering study and the total 
of exposure to the risk of failing are random variables. Conditional on 2n patients . 
entered in 0 to T, the times of entry will be distributed independently and uniformly" 
the interval (0, T). 

For case (a), the chance of an individual being censored at time T is e-T~, e-T8~ for 

receiving treatments A,B, respectively. For case (b), the same chances are (l 

and (1-e-T8~)/(T8¢). Further details are given in Appendix C. 


In the calculation, it is convenient to transform the F statistic to z = ! log F so that 

asjmptotically normal with 


1(1 1)va.r(z)~2 2(~-rJ+2(~-rz) , 

where 2(n,. -rI ), 2(n2 - rz) are the number of degrees of freedom inFo Also, we arrange thai' 
the variance of each test statistic is of order n-l by considering n-zW rather than W. 

To obtain an asymptotic measure of test efficiency, we consider a sequence of a.lternative. 
hypotheses in which 8 approaches the value tested, e = 1, as n increases. In this case, the, 
asymptotic efficiency of W relative to F is 

oE(n-ZW)/ }2
{

A.R.E. 	= lim 08 8-1 X {n var (zl Ho)} 
. n_..,{nvar(n-2W IHo)} {O~(Z)I }2 

ae 8-1 

and the calculation of the terms required is given in Appendix C. A good exposition of 
concept of asymptotic relative efficiency (A.R.E.) is given by Kendall &; Stuart (196 
pp.265-76). 

Values of A.R.E. for case (a) and (b) are given in Table 1 for various values ofT¢. 
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>OlV Trj> = . total study time
f; average failure time on treatment.A' 

'7J '.,,~_ '. that if an estimate of Trj> is available, some idea. of the A.R.E. can be obtained. Note that 
: rn,inirnmn value of A.R.E. is 0·75 for both cases (a) and (b) and that A.R.E. increases a.s 
r6decreases. As Trj>-40, A..R.E. approaches one for case (a) and 8/9 for case (b). Clinica.l 
~ a.re often conduered with T¢ o.bout. 2 or 3 a.nd here A.R.E. is close to 0·80. 

Table 1. Asymptotic efficiency of W relative to F a.ssuming 
L random Variable exponential failure in two groups 
when the time 

Treatment A: ¢exp(-¢x); treatment B : 8¢erp(-8¢;Y) 
.ndom. ..~~I 

Case (a). All individuals enter study at time zero, observation stops at T. 

T¢ .... ao T¢ = 3 T¢ = 2 T¢ = 1 T¢ .... O 

A.R.E. 0·750 0·785 0·838 0·934 1 

Case (b). Individuals enter study according to uniform distribution over (0, T) and 
study stops at T. 

T¢ .... ao T¢ = 3 T¢ = 2 T¢ = 1 T¢ .... O 

A.R.E . 0·750 0·781 0·802 0·836 8/9 

. A rationale for these results is as follows: consider the patterns of observations for a 
':Be (a) situation with a high degree of censoring. The patterns might appear as 

The ratio of the means in the F test will dHfer from one when there is a difference in the 
lIumheroffailures and times to fai/un: uetween. A :lnd B. The value of W depends mainly on 

. the difference in the number of failures between groups. The A.R.E . result means that as T¢ 
becomes small and there is more censoring, the times to failure are not much more important 
than the number of failures. The same type of result was found by Armitage (1959) for 

.. p&irocl data, when he compa.red the A.R.E. of the sign method to pa.rametric maximum 
likelihood for exponential distributions. 

The increase in A.R.E. is slower for case (b) as Trj> -+ O. In this situation, it would be 
ttpected that those individuals censored would be among the later entrants to study and 
!O would tend to occur near the beginning of the pattern. Knowledge of the times to failure 
would then be relatively more imporlant. 

'4' These results suggest that the W test would be reasonable to apply when comparing 
. failure time distribution.s, especially when some censoring is expected. When the distribu
tions are not exponential, a two-parameter distribution such as the Weibull might be 

.Deeded. If X has a. Weibull distribution, it is well known tha.t XII« has an exponential 
distribution. But any such power transformation would not affect W since W is rank 
in'alisllt. Hence, the ca.lculat.ion!' of A.R.E. given woulJ be exactly the same if the distribu
tions were assumed to be Weibull with known index. It is reasonable to suppose that the 

, -.-~... 	values would be a.t least as great if the distributions were Weibull with unknown. 
80 that the stated values are lower bounds for A.R.E.rj>. 
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9. Loss RATE DIF.FEREN'r IN TKE TWO GROUPS 

Suppose that in an application there is in fact no difference in the C.D.:r.'s of ' 
failure, but that for some reason there is a difference in the percentage censored in 
groups. In an extreme case, all individuals are observed to failure in one group and 
stops :It timc Tl !r! the othe:: group. This could happen in :l dir.ical tri:J.I if thc chug giv 
to patients in one group ha.d deteriorated by time Tl or it was not possible to §.-
treatment after time Tr In such cases, it would only be appropriate to consider fa.il~ 
and censored observations up to time Tl in the affected group. We assume that the sample 
size is n in each group and all individuals have entered study at time zero, so Tl is the lengQ.~ 
of study for all individuals in the a.ffected group. I 

Table 2., Ratio of .J(var (WI Ho)} to .J(varR (WI Eo)} for various 1 - rln 
l-r/n 

Ratio 

.J{v&r(WIHo)} 

.J{varB (WIHo)} 

1 0·95 0·9 

1·035 1·065 

0·8 0·; 0'6 0'1 

1·115 1·152 1-180 1·357 

What happens to the mean and variance of W if an analysis is performed without COD-W 
sidering all censored observations restricted to one group? We are concerned with 
average effect of censoring one group at Tl and so we calculate E(WI~) and var(WI 
that is we average over the possib~e patterns that could occur. When there are n pati 
per group and Eo is true, the number failing in each prior to Tl is binomially distribu 
with c~ected value n  r and variance 

n (~) (1-~). 
1 

~he means anu v::l.l·iances for the two easel> are as f6lio,,":3 (taking terms to O(lin) for t.bc.4 
vanances): ,. 

Losses restricted to one group J!! ..ER(WIHo) = 0, =t 
2 ( r)31 2 (r) ( r) I~n-'varR(WIHo) ~ '3 I-n n+n n 1-;. ~ 

Losses not restricted I 
E(WIHo) = 0, 

n-'var (WIHo) ~ l~n+ 141(~) (1-~) + l~n (1-~r· 
Thus, if the mean and variance of Ware calculated in the usual way, there is no bias' 

in the estimate of the mean but the estimate of variance will be an over-estimate. To· 
examine the extent of the over-estimate, Table 2 gives the ratio of the two standard I 
errors for various v::Llues of 1 -rln. 

The ratio of the standard errors is less than 1·2 even when 40 % of the observations are 
censored at Tl in the affected group. There will be some loss in sensitivity in detect- ·~ 
ing departures from the null hypothesis when the ordinary W test is applied.; however, .. 
this is unlikely to be serious when the proportion of censored observations is under E ... 

20%. 
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10. SOME EXACT C.ALCULATIONS ! 

Table 3 presents a comparison of tail probabilities using the generalized Wilcoxon ~st 

erected for continuity) and exact calculation for five eases ofvarying degrees of censonng r.' 

I ' :d tying. The sample size in each group is n,. = n: = 5 and the pattern of observations for .,; ".:.: :- :: . ~: . :' . ~ ." 

.. .... ,.....'8ch case is given. The cases were selected arbitrarily to represent various degrees of '.,' 
.. >: .. ...~nsoring and tying. The t.ota.1 nuwoe1' of observa.tiou:! illvolvt::u ill Lit:::; V1' ct:1Uivri.ug ra.ugt:::' 

.... .. •. '.
from four for case IV to nine for ca.<Je II. 

' 

'. .... 
. For each case, the first column gives the cumulative frequency of a given score or larger 

from the exact distribution. It was necessary to evaluate scores from only te~) = 126 

possible samples, since the distribution of W is symmetric. The second column gives the 


; exact probo.bility of a given score or larger and the last column gives the estimated prob

., .,., ability using the W test, corrected for continuity by subtracting i from each score. 

. The probabilities from the W test' are remarkably close to the exact probabilities con

. " 


.:::'-:sidering the small sample sizes and heavy tying and censoring. This is especially so in the 

.. , . . ·"' tail of the distribution where most interest lies. The approximation is poorest when a large 

.' . ,'..· ~·number of samples have the same score, but tws happens more often near the centre of the 

' ~':if:'~dietribution. If it is decided arbitrarily that the normal approximation is adequate when 


:" the absolute difference between approximate and exact is 0'01 or less up to a cumulative 

ta.iI probability of 0' 10, then only cases II and III fail to satisfy this criterion. In both of 


ese cases, the number of different failure points is only four and the total number of 

eervations involved in ties or censoring is nine and six, respectively. 

It is difficult to make a general statement on the sizes of sample necessary before the 


asymptotic theory holds because of the varying degrees of censoring and tying that are 

possible. Halperin (1960), for his case, has stated that when n,. = n: = 8 the asymptotic 

Dormal theory is adequate for all practical purposes up to about 75 % censoring (no tying) 

at both the 5 and 1%significance levels. Lehman (1961) considered the exact and approxi 

mnte dist.ributions of the Wilcoxon 8tatiRtic when =1t:! = 5 for five cases of varying
n 1 

degrees of tying. Using the arbitrary criterion above at significance levels of 0'01, 0'05, and 

0·10, the normal approximation was adequate when the number of observations involved 

in ties was six or less. Taking the results here with the others, the normal approximation 

with continuity correction seems adequate when on,. = nz = 5, as long as the total number 

ofobservations tied or censored is six or less and there are at least five distinct failure points. 


Of course, if the application of the W test is doubtful in a particular case, the following 

rule seems reasonable: calculate W (corrected for continuity) and if the result is borderline 

(88.y 0'03 to 0·10), calculate the exact test. Otherwise accept the verdict of the W test. 

11. A WORKED EX.A!11PLE 

In trus section, we apply the W test to an example from a clinical trial. In the trial, 

reported by Freireich et ai. (1963), 6-mercaptopurine (6-MP) was compared to a. placebo in 

the maintena.nce of remissions in acute leukemia. The trial was actually conducted sequenti

ally, but will be here analysed as a fixed sample size trial. One year after the start of the 

study, the following lengths of remission were l'E'i'orded: 


Length of remission (wee~) 

{ 6,6,~7, 10, 13, 16,22, 23 .
6-MP (21) 

6+,9+,10+.11 +,17 +, 19+, 2~+, 25+, 32+, 32+, 34+,35+ 

Placebo (21) 1,1,2,2,3,4,4,5,5,8, 8, 8, 8, 11, 11, 12, 12, 15,17,22,23 


I 

http:6+,9+,10+.11
http:ct:1Uivri.ug


;;ft; ~fb~;~~"::~.'-' _...... -

~ ...... 
If>.. 

Case V 

'~'1 

"2 

l'mb. Prob. 
(W.> 

txJ 
t:I 

i0,0079 0·0043 

·0\50 ·0170 
~ 

·0357 ·0314 Q 

E·0,,95 ·0537 

0 12/\ 
~~ ~~ ~ 

v----....-.I 

"vl\r (lVIP,H.) D· Oof. Q,.nR 0·83 7 ·60 

":~" 	 .:' ". J .~~ ~. : '" " ::,-::
' 0.-- -- ~~~ " ~~-- -~~1~--;7'1i' ~I ~r ' 

Tn.ble 3. 	Obsermtion patterns and probrtbilities oj scores by exact calculation and the generalized Wilcoxon test 
(corrected Jor continuity) Jor 5 cases oj censoring and tying in samples oj size n 1 = 6, n 2 = 5 

Case I Case II 	 Case III Case IV 

2 	 1- 1'~'2 	 2'~'6(1) ~ ' . 	 2~(2)· '~ 	 'F 2(1) 1Tics 1 o 1 2 o 1 2 
Censored 2 (2). 2 1 3(2) 2 6(4) 1 -1 ~(l) 1 4(J): 

Cum. Prob. Prob. Cum. Prob. Prob. Cum. Prob. Prob. Cum. Prob. Prob. Cum. 


Score freq. (exa.ct) (W.) freq. (exaot) (TV.) freq. (exact) (We) freq. (exact) (We) freq . (exact> 


!!3 	 2 0·0079 0·0064 
~2 

0·0040 /) ·0055 21 
~O 4 ·0150 ·0164 

10 6 ·0108 ·0202 3 ·0119 ·0110 2 
I 0·0040 0·0104 

18 
2 ·0070 ..0146 4 

17 	 7 ·0278 ·0336 
6 ·0198 '·0202 

16 13 ·0516 ·0427 
7 ·0278 ·0274 013 ·0516 ·0350Iii 

3 0·0119 0·0230 11 ·0436 ·0375 
14 ·0336 14 ·0556 ·0495 16·0675 ·0606 8 ·0317 

16 ·0696 ·0465 17 ·0875 ·064313 27 ·1071 ·0838 17 

12 22 ·0873 ·0885
26 ·1032 ·0968 19 ·0764 ·0019 23 ·0913 ·0823 

11 
24 ·0962 ·0824 20 '1032 ·1038 

10 46 ·1786 ·1469 40 .\ 587 ·1379·\076 34 ·1349 ·1314 
9 49 '1944 ·1730 48 ·1005 ·1469 31 ·1230 

41 ·1827 ·1357 39 ·1548 ·1611 
8 	 62 ·2063 ·104{) 54 ·2143 ·2004·2000 40 · 1044 · 1712
7 1i3 ·2500 ·2358 62 ·2003 

56 ·2222 ·238958 ·2301 ·2120 81 ·2420 ·2327 
6 77 ·3055 ·2709 

·2546 75 ·29711 ·2743 79 ·3136 ·2810 
88 ·3492 ·2878 66 ·2619

Ii 	 ·3228 81 ':1214 ·326476 ·3010 ·301i0 87 ·3452 
83 ·3293 ·3483 ·3889 ·3707 101 ·4008 ·3746

100 ·31l08 ';1783 87 ·3462 ·3067 D8 
111 ·-1404 ·38DK "3 

101 ·4008 ·4120 113 ·4484 ·4207 
!! 	 ·4721 126 ·.iOOO ·4761·4721 	 121 ·4801·4761 118 ·4682 
I 112 ·4444 ·4801 126. '5000 

134 ' 5317 ·5279 131 ·6198 '5279 
·5000 '5199 
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~ .~ .I " ~AlI'-111 - '' there being 12 censored observations at long remission times on 6·MP and none on placebo. 

<:"''The data. will be analysed to illustrate the calculations. 


Q') <:> To calculate W directly, a 21 x 21 table is formed with the failurE'.5 and censored observa·
<Xl 

~ .~ .J :: '~!' tions in each group ordered separatdy aloug !.ilt: wal'giw;. Eutries of + !, . 1 Gr 0 :J.rc ::n:l.d~ 
-0 • a:>. "i( in accordance with the scoring scheme (3'1) for the 441 comparisons. The result is 

"" 
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~~~' .A. + sign indicates a censored observation. Because the upper limit of observation time 
o;~ is about 35 weeks, T = 35 weeks. In this case, it is clear that 6·MP is the superior treatment, 

<:> 
<:> 

.0 
~ 

• <:> 

"" 

-e> 
<:> e> 

• <Xl 
"!'~ 

",,"0 
.... 0 

• ... 0 
'! ~ 

c::: _ <N• c-l 

c-l-C 

... .-; W = 335 - 64 = 271. Since ~ x n~ is rather large, it is natural to consider the result 
".,. obtained by grouping observations. Then W is obta.ined from the formula for grouped data. 
,:q~ given by (5·1) and ca.n be calculated conveniently in the format: 

• 6·MP Placebo 
AInterval 


(weeks) f,.J. F,.J. C'..J. a, f'B FiB b,
C'B 

0-4 0 0 0 7 7 0 

6-9 4 4 2 42 6 13 0 0 


10-14 2 6 2 52 4 17 0 16 

16-19 I 7 2 51 2 19 0 12 

20-24 2 9 57 2 21 0 14 

26- 0 9 5 105 0 21 0 0 


9 12 307 21 0 42 


6 


ThU8 W = L {at-b,} = 307 -42 = 265, 

i-1 

where at = [Ju + ci..tJJii-l.B' bi = [J,B+ciBJJii-l...t· 

The var (WIP, Ho) for the grouped da.ta is obtained from (4·3) with 

. 1 .. 
9 The pattern is 
:I ' 7
E~ 2
c::'" : ,'4!" .c 10 


2 
...' 
6, 

2 

'. 

'..3 


.. 5 


and the format for calculating the variance is 
.,. i mi M, d, m, xd;_1 li L;_I 1. x d; e. f. e. Xfi m. x e. Xfi0 
~ I 7 7 56 0 2 0 1I2 35 34 1190 8330 


2 10 17 306 560 2 2 612 23 8 IS4 IS40 

'J::.0 
 3 6 23 552 1836 2 4 1104 15 -20 -300 -lS00 

c..,. 
 4. 3 26 702 16:j(J 1 6 702 10 -37 -370 -llIO 


5 4 30 930 280S 5 7 4650 5 -48 -240 -960 


= 30 Illlr.O J2 7180 6300
~ 
;;- : 
"'7' 

" ~i where d{ = MiU'!,. + 1), do = 0, 

e, = n1 + nz - M;. - L i- 1 , 

Ii = n1 +nz - 3M;._1 -mi -Li _ l -1. 
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n~ {5 55}VlU"(WIP,Ho) = ( )(1 1) L m,dH + ~ l,d.+ L m,eJ. 
~+~ ~+n2- i-1 i-I .-1 

Then, 

= (21)(21) {6860+7180+6300} = 5065'6,
(42)(41) . 

.j{var(WIP, Ho}} = 71·2 . 

The result obtained from the ungrouped data is .j{var (WIP, Bo)} = 75·l. 
flllppose we \vi~h t.o t-E'~t, Ho: P1(/) = F~(l) (t :( T) :lga~nst t~c alternative II'!.: Fill) < F:(t) 

or ~(t) > 1;(t) (t ~ T). We are interested in whether 6-MP lengthens or shortens remissions 
relative to placebo. We calculate 

W 265
Z = = - = 3·i2

.j{var(W/P, Hon 71·2 

and the probability of such a value of Z or a. larger one in absolute value is about 0'0002 . .. 
from tables of the normal distribution. Consequently there is very strong evidence that 
patients receiving 6-MP have longer remissions than those receiving placebo. 

H the test is done with the ungrouped data, we find Z = 3·61 and Pr (Z) :::: 0·0004. The 
result is quite close to that for the grouped data considering the moderate sample sizes in. ' 
each group. 

12. DISCUSSION 

Some further problems connected with the generalized Wilcoxon test are: the extension 
of the test to the case of double censoring (i.e. in the upper and lower tails of the variable),· ~: , 
the extension of the test to more than two samples, * the development ofa sequential W test , ':-
and the use of the W test to find confidence limits. . 

In principle, there is no difficulty in extending the W test to the case of double censoring::' 
The pattern ofobservations given by (4·1) could be generalized by considering l, individuals':,~ 
(i = 1, ... ,8) to be censored on the left at a point immediately prior to the fa.ilure of the m, ' 
individuals at rank i in the ordering of distinct failures. The change in the scoring of W 
given by (3,1) would be simple using the ordering rE'll'\.t.ion~hips in the generalized pattern, 
the assumption being made that individuals censored on the left or right cannot be ordered 
among themselves. The proofs of asymptotic normality and consistency of the test based 
on W follow directly from those given here. 

~-.The extension of the W test to the k-sample case could be made in a wa.y a.nalogous to 
tho.t suggested by Terpstra (1952) and Jonckheere (1954) for the extension of the ordinary 
Wilcoxon test. The null hypothesis is that all samples come from the same population and 
this is to be tested against the ordered alternative hypothesis: F1(t) < F!(t) < .,. < F,,(t). 
Suppose the statistic W is calculated for all ik(k  1) pairs of samples. If we write lli,q for 
the value obtained from the pth and qth samples (p, q = 1,2, ... , k; p :f: q), then we can 
consider 

.~ 

k k 

~ = 1: ~ w"q.
p-l q-p+l 

From the results of Terpstra and Jonckheere, the limiting distribution of ~ should be 
normal. 

• I am indebted to Professor J. Hemclrijk and a refel'ee fol' helpful comments concerning these 
exteIlBioIlB. 
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~ays to consider a. seq~ential W test. First, sup~se an exp~riment 

failure tunes IS set up and nv n2 Items are placed on test In each group. The 


is to devise a test to stop the experiment at the earliest time possible (no saving in 

of observations). One solution for this problem has been proposed by Alling (1963) 


:JI~,.,a on least upper and greatest lower bounds for subsequent values of the ordinary 

•...".,~..'nT1 test statistic. The W te!';t could be applied sequentially in time but the conditions 

! 
for this reqw.r:e investigation. Altern.atively, .it wouI~ often be desirab.le to con

dl1('t a. sequential expenment that may result In a savmg of tIme and observatIOns. For 

e.J&Dlple, suppose a. clinica.! tria.l is being couducted. li.lld the hypothc.:;is ueiu.g t,QwJ is of 

~ F (t) = F2(8t) with different values of 8 specified for alternative hypotheses. Indi


1
··~TidUal5 are entered sequentially in each group and some form of W test is carried out 

. .equentially in time. Under ·what conditions could such a sequential experiment be 

carried out ~ 

.. ", . .Approximate confidence limits for the scale parameter 8 can be found using the W statistic 

"~en the model is lS(t) = F2(8t). The idea is to obtain an estimate of the confidence limits 


for 8 assuming an underlying exponential distribution and then use the W test to find the 

.~approximate level of confidence for the limits. Thus the confidence limits are distribution 

,:~. free; the exponential assumption is introduced merely to get convenient starting values. 

,~_ lUbe failure time distributions in the two groups are exponential, then t1/t2 M defined in §8 

.:,iBAIl estimate of8 and confidence limits can be derived from the F distribution. All observa

.tioDB in the second sample are multiplied by the upper and lower confidence limits for 8 and 

two W tests are carried out using the new values for the second sample. Two normal deviates 


. Yill be obtained, say Zl' Z:!, and the approximate level of confidence that 8 lies between 

':~'these limits can be calculated from tables of the normal distribution. For example, using 


:he data. of §11 with those receiving placebo as group 2, we find IJt2 == 39'9/8·7 = 4·6 arid 

. S5 %confidence limits for 8: 1·9 < e< 10. After two W tests, we estimate that the level 

~:or confidence for these limits is about 92 %. <knerally, the distribution-free confidence 


intervals will be wider than the corresponding interva.ls when the exponential assumption 

i. made. 

I \rish to tha.nk Professor D. R. Cox for very helpful suggestions and encouragement 
throughout the course of this work. Also, I want to thank my wife, Brenda, for doing the 1·~1 
calculations in § 10. . 
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MPENDIX A 

The varis.nce of Wunder Eo and conditional on a given pattern (P) of failed and censored 

tions is va.r(WIP,Eo) == E~Ui/-E( I: Uu)IP,HoP. 
i,i i.i 

The expectation is over the ("-1 + n:)!/("-1! nl!) equally likely samples from the same pattern 
form is given by (4·1)). This may be written 

var(WIP,Ho) == E {L; u:;+ I: U,/U i·/+ I: UI/U w + I: UuU,,/·IP,Eo}, 
i.,; i ... i' j.;.j" i.;.·r 

since E {L; UuIP,EJ == 0, by symmetry. 
id 

We now proceed to evaluate each term in (A 1). We have 

j..,.j' 

E {I: U:/IP,HJ == 2(~~:;2){±[(m,) (M'_I) + (Ii) (M,)]} , 
i.i (nl+n2) .-1 1 1 1 1 

~ , I~ 
where the term outside the brackets is the proportion of times a particular pair (i,j) will occur in opposite .., 
sAmples. The first tt>rm in t.hp brl\ckets is th., nllmn('!r of wa~'S of pairing a failed observation at rank i 
~th one of low~r ~ and th.e sec~nd te~ is the nwnber of ways of pairing an observation censored ~ 
Just after rank • WIth one havmg fa.iled earlier. ,i 

Also, 2(~+ n: - 3) " 
",-2

E{~ U'JU.-/IP,HJ = {K}, 
i+,' (~~nz) 

where K ==i~l (~i) [(M~_I) + (~+nz-~'-L'_l)] 

+.± (Z;) (Mi)I_.± (m.) (MI_l) (n1+nz-Mi-Li_I) . 
• -1 1 2 .-1 1 1 1 

The outside term in (A 3) is the proportion of times a pa.rticula.r pair of observations (i, i') will occur in 
one sample and a particula.r observation (j) in the other sample. The first term in K givee the number 
of ways of finding a mea.n.ingful pair (i, i') below and abovej whenj is a failure observation. The second 
term gives the number of ways of finding a pair of failure observa.tions (i, i') of lower rank than'; whel1 
,; is a censored observation. The last term is the number of ways of finding one observation above and 
one failure observation below j when'; is a failure. 

Now, ~ (111+71-:-3) 
!t. -:2 

l:!J (I: Ui/UwIJ',H o} =------)- (1~},
i+j" (nl + H% 

n l 

by symmetry. Finally, E {~ UjJ Ui'rIP,Ho} =0 
i+i
i+i' 



. 

219 

CQllecting terms in (AI) 

&··;~~IIiI--.""'<·..·' To show that W is asymptotica.lly no!'l'Ilal. we note .tm:t' that (~",)-IW: has the form of ~ two-sample 

.A generalized Wilcoxon test fOT singly-censored samplu 
~.: 

~~'L118e U'I is independent of Uf'1' and E(UIIIP.Ho} = E(Uf'I'IP.Ho) = O. 
a;;;<A 2}. (A 3) and (A 4) and simplifying. we have var(WIP.Ho) as given by (4-3). 

APPENDIX B 

;ion censored 

.,..,I 
(A 3) 

-. . 

.,~ 

vilJ occur in 
~he number 
The second ""' .hanjwhen 

. , Of t. 

above and 

(A 4) 

...,. 


; . ........ ; . 
. (J statistic. Lehmann (1951) proved that such statIStiCS are e.symptotice.lly normal us~ a general 

. ; . ,". 
1 rem ofHoeffding (1948). We give a definition of a two-sample U statistic sufficient for our purposes: 


I ':~ XI' ...• X _ ; Y1'"'" Y. h" n.: + 11.: inciepencient. random vcct.ors X,. = (~'. X~). Y/I = (~. Y]r) • 
 . ", . . 
.tb cumulativ~ distributio~ functions (C.D..l".) FI(x),F.(y) where x,. = (~'.X~.:lJ and !I/I = (Y~',lIJn· 

....... .
;;'r "I' n, '" 1 and e. real valued function defined by e(X.., Y/I)' a statistic . . 
U =_1_ L e(X... Y/I) fa. = 1•...• ,,1\ (B 1) 

nln:a../I \iJ = 1• .• ••11..) 

. a two-sample U statistic. Lehmann (1951) showed U t.o be asymptotically normal when 11.1 -<Xl such 

~t lim n-,./n" exists and under conditions that E{t(X,.. Y /I)} = 1J and E{e(X,., Y,t)}' = M < a:J. 


The difficulty with applying these results directly to the W statistic is that the distribution of W has 

been considered coruluicnally for a given pattern of failed and censored observations and so we do not 

have nl +n" independent random variables. However. we can show that, considered unconditione.1ly. 

(I't n,)-1W is a two-sample U statistic and then apply e. convergence theorem to prove asymptotic 


lIormality. 

Suppose there is a probability distribution of times to entry of the n-,. +no patients entering study in 


the interval 0 to T. This distribution may be of a very genera.! type: a discrete lump of probability with 

aD patients entering at time 0, a uniform distribution. or various distributions with a bunching of 

peotients near time O. The only assumption is that the distribution of patient entries is such that the 

number of failures at time T becomes large as nl.n! become large. 


Now define x.. = (X~lI.X:;') (a. = 1•...• n,). 


where~' == x,. x; (time to failure. censoring) is from F l(x:'lI) and x~" is an indicator taking a va.!ue 0, 1 as 

~ is a time to failure, censoring. A simila.:r set-up is detined for 111' Then, XV""X..,; Y 1..... Y.., are 

'"+n, independent random vectors. 


If we now define - 1 if r.1I <!IJ' and (x~. yr) is (0.0). 

or x!f 40 yf' and (X~.Y/J") is (0,1). 


e(X.., YI} = 0 otherwise, 


+ 1 if x::l > y~' and (x~'. y~") is (0.0). 

01" .<n;;. y1" :mel (,"~~' , !I~) i~ ( 1. 0) 

and U by (B I). then the statistic (11.1",)-1 W is the same as U. 
Now E{t(X,., Y I)} is well defined and E{t(X... 1'/}}' :E:; 1 under null and alternative hypotheses. Hence 


as "t .... <Xl with lirnnJn. fixed and non-zero, the distribution of U is asymptotically normal. We have 

shown W 


is asymptotically N(O, 1)
.j{var ( W IBoj) 


W

and we wish to show is asymptotically N(O.I}. (B 2) 

· n"... ·var(WIP.Ho) 1
Now if p - I1m ._-.... (B 3)


n;3 vnr ( WIHo) 


as 11.1 -+- <Xl and lim ndn, exists we obtain (B 2) from a convergence theorem of Cramer (1946. p. 254). 

But vn.r(WIHo) = Epvar(WIP,Ho}+va.:r pE(WIP.H o)' 

Where the expectation is over all possible patterns that could arise. 
Under the null hypothesis, the number of individua.ls failing and being censored at the 23 points in 

the genera.! pattern can be considered as an outcome in multinomial sampling. The sample size is n, + n. 
and the sum of probabilities over the 2" points is one. 

Xow E( lVIP. IIo} =O. so wc need to con~i(!('r 

{n,,-' var (WIP, H olU{r.i'E p vtl.r (WiP.Ii oj} "';"1"';" co. 

The numerator is 0. polynomial funct.ion of (m" M .. Z" L,) and, by a proposition quoted by Cramer 
(1946. p.255). convergee in probability to the constant obtained by replacing the above variables by 

http:individua.ls
http:var(WIP.Ho
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their expectations from the multinomial. The denominator is the average of the numerator 


•"'....._----

. 
• 

' 

(e 4) 

' ", . 

.. " .. 

. ,' .-' 

. . 
." ".' . ... .... 

' . 

possible pattel"IlB s.nd approaches the B&IIle constant (to O( 1{~)). Hence. we obtain. (B 3) and (B 

follows from the convergence theorem of Cramer. The result holdll for patterns that arise randoxuly 

the manner described. 


APPENDIX C 

The defin.ition of asymptotic efficiency of W relative to F is given by (8,1) and we now prOCeed 


evaluate the various terms for case (a) and (b). 


C/Ue(a) 


For the F test. we have 

% :::: ! log (ZIJi:) 


s.nd we wish to find 
 E(z) = E,E(zla). 

var(z!Ho):::: E,var(z!Ho,s)+var,E(z!Bo.a). 

Here the pattern of observations is defined by the total sample size (2n) s.nd the number of failur" 

observations (a) prior to T. We consider expectations s.nd variances in the conditional universe where 

a :::: 2n- r 1 - r, is fixed, s.nd then allow variations in s. The calculations will be asymptotic as 

Under H o, a has a binomial distribution with E(a) =2n(I-e-N ). 


Because E(~) = I{rp and E(l.) :::: 1/(rpO). we find 

E(z) :::: E,E(::la) ~ i logO, 


8E(::) I =~. 
88 6-1 2

1 (I 1)Also, var(zIHo);;; E'2 2(ia) + 2(ia) 

I 
= 2n( I - e-T~) . 

For the W test. we have W =L Uu as defined by (3'1). Now 
. i,j 

E(W):::: n!{Pr(X, > Y/)+Pr(~ ~ Y/) 

-PrIX, < Y/)-Pr(X, oS; Y;)}, 

where X,. X; are random variables of times to failure. censoring determined by il(z) s.nd similarly 

Y J• Y; are determined by i.(y). Here. X; :: Y; :: T and the probability of being censored at Tis
 
e-T~,e-T~O. respectively. The proba.bilities are obtained as follows: 

PriX, > YJ)+Pr(X; ~ y/):::: JoT Orpe-Q~"e-<P"d'U 
o 

:::: 0+1 (I_e-T .w1+ll) 

and PrIX, < Y/)+Pr(X, oS; Y;):::: JoT rpe~"e-Q~"d'U 
1 

:::: -- (1 - e-T';<6+1l)
0+1 . 

(0-1)
Hence. E(n-'W) =-- (I-e-T¢</I+ll)

(0+ 1) 

8E(n-'W) Iand . :::: !(l-e-·T~). 
80 6-1 

Now var(n-q.fIHo) :::: n-'EQ: U/I-E a: U,/)IB,.}' 
; . j i.i 

::::n-'E{1: U:/+:2: U,/U•. /+:2: UIIU/I' 
i , j i+i' i+i' 

+ :2: U,/ U,'rI B ,.},
i+;' 
j+j' 

since E(1: U 01 H 0) = O. To evalua.te the four tenns necessary for the varia.nce. note tha.t there are only 
i.j 

n= terms of the type J!:( U:
j 

) so that the tot<ll contribution of the first term is O(n-·) . Then 

E(:2: Uil Ui'j!H~) =E(!: Uil UwIHo).
i+i' i+j' 

http:evalua.te
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~metry and there are nl(n-l) terms in each summation. Also E(UIIUi·rIHo) =0 since Un is:;,. 111 01 - . w 

.~ Jpdependent of U1'1' and each has expectation zero. Thus 


~.:. var(n-1WIHo) ~ 2n-1E(U'IU,rIH o)' 


~ Using the conditions in (3,1). we have 


.. -I(X,< YI.X,> Yr).(X,> YI.X,< Yr ). 

(X. ~ y;. X, > Yr ). (X, > Y I • X, ~ Y;'). 

U'I U II' =0 otherwise. 

+ I(X, > YI• Yr ), (X, < YJr Yr ). 

(Xi < Vi' y;.). (Xi ..-:: Y;. Yt ). 

(X; > YI• Yr ). (X, < Y;. Y;'). 
We noW wish to calculate the probabilities of the various events on the right-hand side. Let P4 be 

_ the probability of failure under H 0 and P. be the proba.bility of a censored observation. Also, let !d(X), 

//.:&') be conditional probability density functions oftime to failure. censoring. respectively. For case (a), 
these are all simple to write down. 

Thus, P4 = I-e-T ¢ . (C5) 

P. =e-T~ (C 6) 

, rp e-Pz 
and fd(X) =-- (0 ~ x < T),

P4 
e-T~ 

!.(x') = - = I (x' =T).
P. 

For C8B6 (a).f.(x' ) is a discrete probability. but the notation is retained to be analogous with case (b). 

Now under Ho. Pr (XI> YI• YI') =Pr (X, < YI' Yr ) = t 
Pr(X, < Y I • XI> YI') =Pr(X, > Y I • X, < YI') = i· 

Thus E(UiIU;rIHo) = p~(t 'H)+2~p:Pr{X, < min (YI• y;.)} 

+~P.Pr{X; > ma.x(YI • Y r )} 

+r.P4 Pr {X, < min (Y;. y;.)} 


-~(i+i)-2~p.Pr{X, < Y;, X, > Y r }, 

wbere the time to failure variables follow f,,(x} and the time to censoring variables follow f.(x'). 

Now Pr{X; > ma.x(YI , Yr )} = 2Pr{X, < Y;.X, > YI .}. Hence 

E(UII UwlHo) =~ + 2~p.Pr{X, < min (YI • y;.)} +2r.PdPr{X, < min (Y;. y;.)}. (C 7) 

and the probabilities can be written down immediately: 


Pr ~Xi < min (Y j • y;.)} =!. Pr {XI < min (r;. y;.)} = 1. 


Thus E(UIIUIrIHo) =i<1-e-T9)~+e-T~(I-e-T~) 

and var(n-I WIHo) =n-I{i(1-e-N }3+ 2e-T~(1-e-T9)}. (C 8) 

Finally, the A.R..E. of W to F is obtained by substituting (C 1). (C 2). (C 4) and (C 8) in~ (8,1) to get 

(1 - e-1T<P)1 
A.R.E. =i(l-e T9)4+4e-T9(1-e T9)1' 

Values of A.R.E. for case (a) are given in Table I for various Trp. 
CatS (6) 

In this .situation. 2n patients are entered into study according ton uniform distribution in the fixed 
interval 0 to T and fail according to an exponential distribution. In the group receiving treatment A. 
the probability of a patient entering in any intcn'al of timo (t.t) is (t.t)/T and failure is aecm'ding to !l(X). 
We have 

Pr (patient fails at' age' x) fT-:r rp= - e~e dx dv 
o T 

(T-x)=-  rpe-9"'dx
T 

(0 ~ x ~ T). (C 9) 

Pr (pRt.ient. censored at' a;;~' x') = 
1 
Tc-~r dx' (0 ~ x' ~ T) (CIO) 

where' age' is measured from tUne of entry into st.udy. 
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Now T(T-U) 1 

p, = -- </Je~·du = 1--:;;; (l-e-T<Pl.

oTT.,.J
rT 1 1 

P,= Jo Te~·du= T</J(I-e-T<P) 

and!~x),!.(r') are the probability density pa.rta of(C 9), (C 10) divided by Pd'P" respectively. SiInilarly . 
!d(Y) and!.('!!) are defined by replacing ¢ by (}I/> in Pd,P.. !d(X) and!.(x'). • 

For the F test. we transfonn i...fl: to z M ~fQre IUld 'IT':: h~,,'c 

aE(z) 1 aE(l,) 
---ai["" = - 2E(l,) ----aiJ. 

Now E(lsln-rs) =_I_{(n-r.)E(Y)+,-,E(Y')}, 
n-r, 


where Y, Y' follow !d(Y),!.(Y'), respectively. Then. E(Y) and E(Y') are easily evaluated and 

substituted in (C 13) we'find E(lsln-,-s) = I/({}I/» and 80 


aE(Z)/ =!. 

at} 8-1 2 


Under Eo. the expected number of individuals failing in the two groups before T is 2npd, 80 that 


1 

var(zIHo) ~ 2n{I-i/TI/>(I-e-T III»)" 


For the W test, E(W) is defined by (C 3) and the probabilities needed are found using (C 9) and (C 

V
Pr(X i > Y 

j
) =Jf (T-u) ¢e~u (TT- ) {}¢e~lII·du.dv (0 ~ U,v < T) 


u>" T 


={}+ 
{} 

1 - TI/>({} 
1 
+ 1)1 {{}({} + 3) - e-TIII({}+ I)I} 

1 
+ {OS({}+3)-e-TIII({}.4.I)I+e-N<8+ll(3{}+ In 

Jf 
[T¢({}+ 1)]I{}({}+ 1) , • 

1 (T-l1)
Pr(X; > Y J) = - e~" --{}l/>e-Q<P'dud" (0 EO u. v EO T)

u>"T T 
{} e-T<P 1 {e-T<p({} + I )Z (2{) + I) 1

T=T¢(O+I)- T¢ -[T¢>(O+l)]' 8- fj +-U- e- <!><II+ll/. (C 1;) .., 

The Pr(X, < YJ) and Pr(X, < Y;) are obtained by replacing {} by I/{} and I/> by {}I/> in (C 16), (C 17), -, 

respectively. Substituting these results in (C 3). we have 


aE(n-IW)I 1 { 1 1 . } . = - 1--+-- (1-e-1TIII ) . (C 18) '.., 
a{} 8-1 2 TI/> 2(T¢)1 .. . ;-.:lJI); 

..,-. 
The value of var(n-IWIHo) is found in exactly the same way as before, with Pd and P, of (C 11) and 

~ 

;" 
(C 12) replacing (C 5) and (C 6) in the equation for E(U'J UwlHo) given by (C 7). We now need toevalua.te 
Pr{X, < min (YI • Y;.)} and Pr{X, < min(r;. Y;')} . .>9Ir:' 

Now under Ho. (T-l1) I/>fU 
Prey; < u) = T e-'·dv 

. 0 Pd 

=2. {(I-e~..) -.2...(I-e~"(l +¢UJl}
PI T¢ 

"~ 

and PreY; < u) = fU fe~.dv 
o P. 
1 :.

, ,' 
'. =-- (1- e~").

TI/>p. 

11lOrefore Pr {Xi < min (Y j , Y;.)} =f: (~~:) ¢ e.~.. {1-T~, (1- e-.;U)} 

x {1-;1£ [(1- e~") - ;</J (I-e~"[l +if>uD]} du 

http:toevalua.te
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f,T(T-U) {I }S
Pr{X/ < min (Y;. Yr)} = --¢ l----:i::"(l-e-f") du; 

o Tp4 T'n'. . 

if.,tegrals are simple. though somewhat laborious, to evaluate. The reeults are 

Pr{X/ < m.in(YI' Y:.)} =-1{I- (t-te-TQl)+--1 (_i+le-N-e-sT<i» 
lCtively. UUJ'llJa,tl,r.1•• iiIIa'- ' I p!P. T¢> (T¢)S 

+ _1_ (IT _ i rTf + e-sTQl-M e-.1Tf)} 
(T¢»S 

IDd 
n..(X/ < m.in(Y', Y'.)} == _1_ {_1_(t_e-N+e-IT¢)+_l- (_1.+*e-N-e-ITf+He-3TQl)} . 

.;' . A. I I P4r. (T¢)S (T¢»~ • - . 1 

With these probabilities, we can now evaluate E(UilUwIHoJ and va.r(n-IWIH.). Wet have 

2 2 4 4 STQl }
va.r(n-IWIH.);;;;n-1 S-3(T¢»+9(T¢):-27(T¢)3(1-e- ). (C19){ 

::; . Substituting (C 14). (C 15). (C 18) and (C 19) into (8,1) we can calculate the asymptotic efficiency 
of W relative to F. This U! done for va.rioW! values of T¢> in Table 1. 
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