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MULTIPLE COMPARISONS 

and y - yare orthogonal and consequently Pythagoras' theory applies. The degrees of 
freedom indicate the number of dimensions in which the vectors are free to move. Thus 
before the data are collected the vector y is unconstrained and has n = 3 degrees of 
freedom; the vector y, which has elements (y, y, y) and is constrained to lie on the equi­
angular line, has only I degree of freedom; the vector y - y, which is cunstrained to lie 
on a plane perpendicular to y, has n - I = 2 degrees offreedom. The analysis of variance 
of Table 68.2 conveniently summarizes these facts. 

In general, each statistical model discussed in this book determines a certain line, 
plane or space on which if there were no error the data would have to lie. For the example 
of this section, for instance, the model is y = q + c. Thus, without the errors c, the 
data would have 10 lie on the equiangular line at some point [q, q, q]. The t and F 
criteria measure the angle that the actual data vector, which is subject to error, makes 
with the appropriate line, plane and space dictated by the model. The corresponding 
tables indicate probabilities that angles as small or smaller will occur by chance. These 
probabilities are dependent on the dimensions of the model and of the data through the 
degrees of freedom in the table. 

Generalization 

The vector breakdown of Table 6.6 for the general one-way analysis of variance is a 
direct extension of that of Table 6B.2. The analysis of variance of Table 6.3 is a direct 
extension of that of Table 68.1. The geometry and resulting distribution theory for the 
general case is essentially an elaboration of that given above. 

APPENDIX 6C. MULTIPLE COMPARISONS 

Formal procedures for allowing for the effect of selection in making comparisons have 
been the subject of considerable research (see, e.g., O'Neill and Wetherill, 1971, and 
Miller, 1977, also the references listed therein). 

Confidence Intervalfor a Particular Difference in Means 

A confidence interval for the true difference between the means of, say, the pth and qth 
treatments may be obtained as follows. The observed difference yp - y. has va~iance 
a2(1/np + I/nq), and q2 is estimated by the within-treatment mean square S2. Thus 
the estimated variance of yp - y. is s2(1/np + l/n.), and a confidence interval for this 
single preselected difference is provided by , 

(6.CI) 

where I' = I'R' the degrees of freedom associated with S2 . 

For the example discussed in this chapter, a confidence interval for the true difference 
between the means of treatments A and B can be established as follows. We have 
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YB - YA = 66 - 61 = 5, s~ = 5.6 with \' = 20 degrees of freedom, nB = 6 and nA = 4, 
and the estimated variance for YB - YA is 5.6 (* + i) = 2.33. Thus the 95 %confidence 

limits for the mean difference ~B - ~A are 5 ± 2.09)2.33, that is, 5 ± 3.2, where 2.09 is 
the value of I appropriate for 20 degrees of freedom, which is exceeded, positively or 
negatively, a total of 5%of the time. 

The 1 - Ct. confidence limits calculated in this way will be valid for any single chosen 
difference; the chance that the specific interval given above includes the true difference 
'18 - ~A on the stated assumptions will be equal to I - Ct.. For k treatments, however, 
there are k(k - I )/2 treatment pairs, and the differences between each one of these pairs 
can be used to construct a confidence interval. Whereas for each interval individually 
the chance of including the true value is exactly equal to 1 - IX, the chance that all the 
intervals will simultaneously include their true values is less than I - Ct.. 

Tukey's Paired Comparison Procedure 

In comparingk aver'ages, suppose that we wish to state the confidence interval for 'II - ~j' 
taking account of the fact that all possible comparisons may be made. It has been shown 
by Tukey (1949) that the confidence limits for ~I - ~) are then given by 

- ) + Ff+1qk. , .• /2(jiI-Y) _--s - - (6C.2)../2 nj nj 

where qk.,. is the appropriate upper significance level of the studentized range for k 
means, and v the number of degrees of freedom in the estimate 52 of variance 0'2. This 
formula is exact if the numbers of observations in all the averages are equal, and ap­
proximate if the averages are based on unequal numbers of observations. 

The size of the confidence interval for any given level of probability is larger when the 
range statistic q •.• is used rather than the t statistic, since the range statistic allows for 
the possibility that anyone of the k(k - I )/2 possible pairs of averages might have been 

selected for the test. Critical values of q•. ,./../2 have been tabulated; see, for instance, 
Pearson and Hartley (1966), Table 29. As an example, in an experimental program on the 
bursting strengths of diaphragms the treatments consisted of k = 7 different types of 
rubber, and n = 4 observations were run with each type. The data were as follows: 

treatment t A B C D E F G 
average y, 63 62 67 65 65 _70 60 
estimates of 
variance 5~ 9.2 8.7 8.8 9.8 10.2 8.3 8.0 

For this example, k = 7, S2 = 9.0, v = 21, Ct. = 0.05, and qk., .• /2/../2 = 3.26; these 
values give for the 95 %limits 

± q··'it J(~ + ~)52 = ±3.26j(* + *)9.0 = ±6.91 (6C.3)
y2 nj n) 
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Thus any observed difference greater in absolute value than 6.91 could be considered 
statistically significant; hence we could say that the corresponding true difference is not 
likely to be zero. The 7 x 6/2 = 21 differences are listed in the following table. Those 
that are statistically significant are circled. The total error rate is (X = 0.05. 

treatment A B C D E F G 

average Y, 63 62 67 65 65 70 60 
difference Y; - Yj • -4 -2 -2 @ 3 

* -~ -3 -3 @2 
2 -3.'. 2 0) 

0 	 -5 5 
-5 5 

* 
* 

* 	 @ 
* 

Dunnett's Procedure/or Multiple Comparisons with a Standard 

Experimenters often use a control or standard treatment as a benchmark against which 
to compare the specific treatments. The question then arises whether any of the treat­
ment means may be considered to be different from the mean of the control. In the 
above example suppose that A was the control. The statistics of interest now are the 
k - I differences Y, - Y... where Y.. is the observed average response for the control 
treatment. The 1 - 0: confidence intervals for all k - I differences from the control are 

as given by Equation 6C.2, except that the value of q~ .•.•d.j2 is replaced with 
Dunnett's I. For tabulated values of this quantity, t~,.,.'2' see Dunnett (1964). Thus in 
the above example we have t~ . "",2 = 2.80, giving for the 95 % limits 

I 
±lb.•i2S . - + - = ±2.80 x 3.00J! + t = ±5.94 (6C.4) 

n.. 	 n, ~
 
Therefore any observed difference from the control greater than 5.94 in absolute value 
can be considered statistically significant. The k - I = 6 differences are as follows: 

treatment A B C D E F G 
(control) 

average 63 62 67 65 65 70 60 

difference • -4 -2 -2 8) 3 

Only the difference YF - Y.. is indicative of a real difference between the means of six 
treatments and the control treatment. 

For the special case of comparisons against a standard or a control it is good practice 
to allot more observations n.. to the control treatment than to each of the other treat­
ments n,. The ratio n.. /n, should be approximately equal to the square root of the 

number of treatments, that is, n.. /n, = ft. 
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Other Procedures 

Other techniques are also available for making multiple comparisons between treatment 
averages. One method, 10 be used only if the F test has shown evidence of statistically 
.significant differences, is the Newman-Keuls (Newman, 1939, and Keuls, 1952). An 
alternative has been suggested by Duncan (1955). A met hod for constructing an interval 
statement appropriate for all possible comparisons among the k treatments, not merely 
their differences, has been proposed by Scheffe (1953). The Scheffe method is the most 
conservative, that is, it produces the widest interval statements. 

Use of Formal Testsfor Multiple Comparisons 

In practice it is questionable how far we should go with such formal tests. The difficulties 
are as follows: 

I. 	How exact should we be about uncertainty? We may ask, for example, "How much 
difference does it make to know whether a particular probability is exactly 0.04, 
exactly 0.06, or about 0.05?" 

2. 	Significance levels and confidence coefficients are arbitrarily chosen. 
3. 	 In addition to the procedures we have mentioned, others employ still other bases for 

making mUltiple comparisons. The subtleties involved are not easy to understand, 
and the experimenter may find himself provided with an exact measure of the un­
certainty of a proposition he does not fully comprehend. 

For many practical situations a satisfactory alternative is careful inspection of the 
treatment averages in relation to a sliding reference distribution, as described in this 
chapter. The procedure is admittedly approximate, but, we believe, not misleadingly so. 

REFERENCES AND FURTHER READINGS 

An authoritative text on analysis of variance is: 

Scheffe. H. (1953). Analysis of Variance. Wiley. 

For further information on multiple comparisons, see these articles and the references 
listed therein: 

O·Neili. R .. and G. B. Wetherill. (1971). The present state of multiple comparison methods. 
J. Roy. Sial. Soc .• Ser. B. 33. 218. 

Miller, R. G., Jr., (1977). Developments in multiple.comparisons, 1966-1976,}.Am.Slal.Assoc., 
72,779. 
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The following ~re the references mentioned in Appendix 6C on multiple comp~risons: 

Tukey. J. W. (1949). Comparing individual me~ns in the analysis ofv~riance. Biomrlrics. 5. 99. 
Pearson. E. S.. and H. O. Hartley . (1966). Biometriko Tahlesfor Statisticians. Vol. I. 3rd ed .. 

C~mbridgt; University Press. 
Dunnett. C. W. (1964). New tables for multiple comparisons with a control. BiomNrics. 20. 482 .n 
Newman. D. (1939). The distribution of the r~nge in samples from a normal population ex­al 

pressed in terms of an independent estimate of the standard deviation. Bionietrika. 31. 20. Iy 
Keuls . M. (1952). The use of the Studentized range in connection with an analysis of variance. 

sl 
Eup/'.I·tica.I.112 . 

Duncan. D. B. (1955). Multiple range and multiple Ftests. Biol/1e1rics.ll. I. 
Schetfe. H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika. 

40.87. 

QUESTJONS FOR CHAPTER 6 

I. 	 What are the basic ideas of the analysis of variance? 
2. 	 Invent some data for three treatments with four replications each. How 

can the data vector be decomposed into three separate parts? What are 
these parts? Construct an analysis of variance table. 
What is the usual model for a one-way analysis of variance? What are its 
possible shortcomings? 
Why is the assumption of normality made in analysis of variance? If the 
experiment is properly randomized, is this assumption necessary? 
How is Pythagoras' theorem related to the analysis of variance? 
What are residuals? How can they be calculated? How can they be 
plotted? Why should they be plotted? 
How can a reference distribution diagram be constructed for the com­
parison of k means? What can one tell from such a diagram but not from 
an analysis of variance table? 
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