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8.1 Problems Associated with Analytical Comparisons 145

One of the most complex and perhaps most confused topics in statistical
nlcrence concerns an unfortunate by-product of the conscientious and detailed
@=pnnlysis of an experiment, namely, an increased vulnerability to type 1 error. That
%. type 1 errors curnulate with each statistical test performed in a predictable and
“dnuvoidable fashion—unavoidable, unless steps are taken to correct this process.
eThis chapter examines this problem and solutions designed to solve it. My coverage
Wil be selective, focusing on particular recommendations rather than presenting a
Woprehensive description of the topic. If you wish to study the problem in more
gpth, you might read first two early discussions (Ryan, 1959; Wilson, 1962) and
#n three informative and useful papers by Games (1971b, 1978a, and 1978b).1

8] PROBLEMS ASSOCIATED WITH
. ANALYTICAL COMPARISONS

s Increase in Type | Error

“The major problem resulting from the performance of a series of analytical
jerisons on a set of data is the unpleasant fact that the more comparisons we
k1, the more type I errors we will make when the null hypothesis is true. In
“about this relationship, the distinction is often made between the type I
g:; comparison (PC) and the error rate familywise (FW).2 The PC error rate,
Bws will continue to call a, uses the comparison as the conceptual unit for the
Wle. 1f we evaluated several comparisons in an experiment, each at a = .05,
slld be using a PC error rate; our probability of making a type I error would
o1 each of the separate comparisons. In contrast, the type 1 FW error rate,
Bmiders the probability of making one or more type 1 errors in the set of
 under scrutiny.

Jelationship between the two error rates is expressed by the formula

oy = 1= (1 —af (8-1)

F Iproxcents the number of orthogonal comparisons that are conducted. With
¥ rute set at o = .05 and with ¢ = 3 comparisons contemplated, the FW
teis '

=1—(1—-.053=1-—(953=1—.857=.143.
ﬂdng at the 1 percent significance level,
=1—(1—-.01)°=1-(993=1-.970 = .030.

‘ ‘ ;jﬁould be read in conjunction with Games (1971a), which corrects a number
ji #7013 in the original article.

W Jecommendation of others, 1 have adopted the term familywise to replace the

W imenrwise. Both terms refer to the same concept in the context of the single-

[ dlstinction between the two terms becomes critical in factorial designs.

]
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The familywise error rate is approximated by
@ W = (,‘(C(), (8_2)

but the approximation &gy, will always overestimate oy, though less for small
values of o and for small numbers of comparisons. In the present example, with -
a =05, : 3

= 3(.05) = .15,

as compared with the agy, = 143 obtained with Eq. (8-1). For the smaller « Jevel,
p = .01, the two values are identical when carried to two decimal places.

When several comparisons are involved in the analysis of an experimen
researchers have different attitudes about which conceptual unit for the error rat
is most appropriate. The point to be emphasized now is that when we conduct
number of comparisons on a set of means, there is an FW error rate with which wes
must contend and this error rate increases directly with the number of comparisond§
tested. ;

The relationship between FW error rate and the number of analytical come#&
parisons is not an exclusive property of orthogonal comparisons, however, bul§
holds for nonorthogonal comparisons as well, While the calculation of FW ral§
when nonorthogonal comparisons are involved in an analysis plan is not simple, ¥
is still accurate to say that the FW error rate increases with the number of comi
parisons conducted regardless of orthogonality (see Harter, 1957, for a discuss
of the problem).

Planned Comparisons

Experiments are usually designed with specific hypotheses in mind, and moj
researchers conduct analyses relevant to these hypotheses directly without refereng
to the outcome of the omnibus F test. Although the omnibus test may be coll
puted, its significance or nonsignificance does not modify this particular courss il
action. Unplanned comparisons, in contrast, refer to the analysis of unexp
findings, outcomes that are revealed only after the data have been collected =
partially analyzed. These post hoc comparisons, as they are also called, can sof
times be critically important in the development of a field of research. ‘

While both planned and post hoc comparisons lead to an increase in FW @ y

normal way—at the usual PC, or a, rate—and to exercise control of the FI ral :
post hoc comparisons through specxa] evaluation procedures designed to cope ¥
the problem.3 !

3Not all commentators on the problem of FW error agree that planned comparisons shel
Jeft uncorrected, however. The correction they usually recommend for planned comp
the Bonferroni, or Dunn, test, which applies a less severe correction than those associated
tests developed for use with post hoc comparisons. The Bonferroni test is discussed in @#4
Kirk (1968, pp. 79~81) and Myers (1979, pp. 298-300).
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Planned comparisons are specified in the initial planning of an experiment.
Collectively, they represent the answers an investigator hopes to obtain to the
= 1esearch questions that generated the experiment in the first place. Although the
® definition of planned comparisons is clear, the restrictions suggested by various
. puthors are not. The two major areas of concern are the orthogonality of the set
~of planned comparisons and the number of comparisons to be included in the set. 1
& will consider both issues in some detail.

! The Issue of Orthogonality. 1 have already discussed this issue in Chapter 6
ipp. 121-123). Consensus seems to favor a set of meaningful comparisons which
“more often than not contains some nonorthogonal comparisons, i.e., a set of
~umparisons that are not mutually orthogonal. As you saw in Chapter 6, complete
fprthogonal sets do not necessarily contain comparispns that are all psychologically
'}cuningful, on the one hand, nor do they completely enumerate the total set of
meaningful comparisons associated with an experiment, on the other. The value

eclsion concerning the null hypothesis r'epresenting one comparison is uninfluenced
_the decision concerning the null hypothesis representing any other orthogonal
mpurison (see pp. 118-119).

. The potential difficulty with nonorthogona] comparisons, then, is in inter-
¥ rlg the different outcomes. If we reject the null hypotheses for two non-
onal comparisons, whrch comparison represents the “true” reason for the

moke of the results? I do not mean to say that such ambiguities always arise
‘nonorthogonal comparisons are involved or that they are unresolvable when
y, but simply to suggest that nonorthogonal comparisons be interpreted with

{ c0mparrsons should be limited in number there is no agreement on what
¥ 1 mbcr should be. One obvious possibility is to restrict the number of com-
¥ 1o the number of degrees of freedom associated with the treatment source

ly that many researchers do limit the number of planned comparisons and,
on the research hypotheses and on the complexity of the experiment, the
planned comparisons will range slightly above or below df,,. A conscien-
rcher will realize that the number of comparisons affects the FW rate,
‘and will reach a threshold of concern for this fact somewhere near the
mit set by the number of degrees of freedom.

Maodified Bonferroni Test. One possible solution to this problem is to
| most researchers are willing to test up to a — 1 planned comparisons
recting for FW error. Suppose we use this number—the df associated
piween-groups mean square—to set the F'W standard for planned compari-
b introduce corrections only when the number of comparisons exceeds
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df,. This can be accomplished easily by calculating the apy, associated witha — |
orthogonal comparisons and then dividing this probability by the actual number of
planned comparisons included in the analysis plan.® The resulting probability is a
new PC rate to be used in assessing these comparisons that maintains apy, at this
presumably acceptable standard. In symbols, we use Eq. (8-2) to calculate the
maximum FW error for planned comparisons,

S5 yommed = (@A), (8-3)

and divide this value by the number of comparisons actually planned (c):

- O‘Fw planned

planned c (8_4)

This method of adjusting the PC rate is related to a procedure known as the
Bonferroni test, which I mentioned in footnote 3 (p. 146). In the Bonferroni tes
the numerator in Eq. (8-4) is the overall FW rate adopted by a researcher for '._ ;
experiment—not the OFwp1anned | have suggested as a method for controlling F
error with planned comparisons. ] will refer to the present technique as the modi
Bonferroni test. - :

As an example, consider an experiment witha = 5 conditions. Assuming tha
the maximum number of planned comparisons that will be conducted withouf
correction is equal to df, = 4, and adopting the standard significance level o =
we obtain an approximate probability for t}us “acceptable” F'W rate by substituting
in Eq. (8-3). That is,

FW pyanmea = 4(05) = 20.

willing to take when planned comparisons are at stake.
Suppose we wanted to conduct ¢ = 5 planned comparisons. We find f ol
Eq. (8-4) that :

. .20
& =—= .04

planned 5
is the adjusted significance level that will be used to evaluate the significunes
all five planned comparisons. A quick calculation will indicate that this ncw nij
tion probability results in an FW rate of ¢(&p,,neq) = 5(.04) = .20, which
FW rate we adopted in this example for the entire set of planned comparisons, &

Table 8-1 summarizes the calculations of &, .q fOr several values @
using @ = 5. You will note that when ¢ < df}, no correction is applied and ¥
varies with the number of comparisons. On the other hand, when ¢ > dfj; 88
FW rate remains constant at &gy p1unnea = -20 and the significance Jevel
evaluate the comparisons is systematically lowered as a consequence.

4These calculations are based on orthogonal comparisons, which will tend to causc ov
tion of the FW error when nonorthogonal comparisons are involved, but this “overcofig
makes little practical difference in an actual research application.



Nable 8-1  The Modified Bonferroni Test for Planned Comparisons

i NUMBER OF REJECTION APPROXIMATE
i OMPARISONS PROBABILITY FAMILYWISE ERROR

(c) ) (dplanned) (&rw)

1 .05 .05
2 .05 .10
3 .05 . .15
4 05 .20
5 040 20
6 033 20
g 029 20
8 025 20
9 022 20
10 020 20

* One difficulty with the Bonferroni test is the need to determine the critical
of F when O annea falls between the probabilitites provided in the standard
Wbles. Since the F’s associated with most planned comparisons will involve 1 df
b numerator, it is possible to use the unit normal distribution and approximate
Walue of 7, which, when squared, will give us the corresponding critical value of
wvalue of 7 at an « level of significance is found by the formula

) =7+ (5-5)
S/A 4(df:S'/A — 2)

E erresents the point on the unit normal distribution above which [" () X

percent of the curve falls.S

#n example, I will work with a calculation we can verify in the F table.

[8ble 8-1, you can see that ¢ = 8 planned comparisons offers such a choice

e 025). From a table of the unit normal curve, available in most intro-
exts, the value of z above which % (.025) X 100 = 1.25 percent of the

dbe curve falls is 2.24. Substituting in Eq. (8-5) and assuming df,, = 40,

(2.24)® + 2.24

1(40) = 2.24 +
(40) 4(40 — 2)
1124 + 224
=224+ 7" _ 933,
152

goodness of the approximation, we square this value to give us

, F(1,40) = [1(40)]% = (2.33)% = 5.43.

B F(), 40) from Table A-1 in Appendix A at a = .025 is 5.42.

n;vldes a critical value of z that Jocates one half of the rejection region in the
ho:0ther one half of the rejection region in the negative tail of the unit normal

149
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Summary. The decision to restrict the number of planned comparisons of
to introduce some correction in the decision process depends on our attitude cone
cerning type 1 and type II errors and the sort of balancing that we want to achiew
between them. You must work this problem out for yourself and then deal with
the additional problem of convincing others that your findings will hold up
replication. In short, part of your planning should include a concern for plann
comparisons and your attitude toward them, as well as a concern for the logic
the experimental design, and a realistic estimate of power for the experimemfs
in general and for the planned comparisons in particular. The implicit standapgde
adopted by most researchers of conducting up to @ — 1 planned comparison
without special correction seems reasonable except, perhaps, when the number @
treatment conditions is particularly large and the FW error for planned compari
becomes sizable as a consequence. Planned comparisons are special and should
evaluated with a sensitive statistical test. The modified Bonferroni test described
the preceding paragraphs offers a way of maintaining this standard in situatigil :
where the number of comparisons exceeds this assumed limit.

Post Hoc Comparisons

Post hoc comparisons often take the form of an intensive “milking” of #%
of results—e.g., the comparison of all possible pairs of treatment means. The '7
vation, of course, is to extract the maximum amount of information from any. @
study. Another reason for conducting post hoc comparisons is that the resullf
such tests often lead to future experiments. An interesting comparison, signi/Ni#t
or not, may form the basis for a new experiment. In the next study, for cxsm
we might choose to manipulate more extensively the different treatments§ ;

ributing to the comparison we have isolated.

There are several approaches designed to deal directly with this probk
such techniques employ the same basic solution, namely, to reduce the sizg #]

points out that the different procedures all involve the same underlying tes
and differ only in the ways by which this reduction in the PC rate is ach
logic is straightforward: If we make it more difficult to reject the null h
for each comparison tested, which must happen when the size of the

$The total number of comparisons is 1 + (39 — 1)/2 — 29,
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of factors, such as our willingness to make type I errors in general, the number of

post hoc comparisons actually conducted, and the pool of comparisons from which
~comparisons are specifically chosen. As you will see when you enter the research
3 arena, there is no general agreement among researchers or even among authors of
~ alatistical texts and articles concerning these points,

In the next two sections, I will consider a number of procédures that have
been developed to cope with the increased FW error rate associated with post hoc
“romparisons. Section 8.2 describes a technique that can be used to control the FW
Syete for any type of comparison between means. Section 8.3 focuses on techniques
hnt have been designed specifically for comparisons between pairs of treatment
imeuns. I will not cover all of the tests that have been proposed or are even currently
% usc but will concentrate on those that for various reasons seem best suited 1o our
ihecds, 1 have been assisted in this selection of tests by the analysis and recommenda-
8o of Games (1978b).”

3 K] FAMILYWISE CORRECTIONS FOR ALL COMPARISONS:
¢ THE SCHEFFE TEST

I Mcheffé test is a technique that allows a researcher to maintain the FW rate at a
Bhular value regardless of the number of comparisons actually conducted. For
Cfssron, then, the Scheffé test is flexible in its application to the analysis of an
fiment. ’

"The Scheffé test requires no special tables, since it is based on the values of
"5t & Matistic appearing in standard F tables. The procedure is simple. We calculate
& In the usual fashion but evaluate the significance of the obtained F with a
gl gritical value, Fg. This quantity is defined as follows:

Fy = (@ = DF(@f,, dfg,,), (8-6)

f1» dfs,4) is the critical value of F for the omnibus analysis of variance
1Zab1e A-1 under the desired « level. (Be sure to note that the value
‘b cqual to @ — 1 and not to df,,,, —a common mistake made by stu-
(WY classes.) The choice of significance level at this point sets the maximum
I Tamilywise error oy, may take regardless of the number of comparisons
“Thus, an F chosen from Table A-1 at the .05 level of significance and
Eq. (8-6) will create a cricital value of F' (Fg) that sets a maximum
’ rate at .05. Using critical values of F at other « levels sets the limit
babllities correspondingly.
“#xnmple, suppose we performed an experiment with @ = 5 treatment
[¥nd s = 9 subjects assigned randomly to each group. We will assume
, Which is based on a(s — 1) = 5(9 — 1) = 40 degrees of freedom, is

honaive summary and comparison of these and other techniques, see Kirk (1968,
Mines (1971, pp. 185-204).
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13.22. The sums and the means for the treatment groups are presented in Table
8-2. Suppose we decided to compare the average of two of the groups (a, and ag)
with the average of the other three (a,, a5, and a,). The first average is (12.78 + _
11.44)/2 = 12,11, and the second average is (7.89 + 7.11 + 8.78)/3 = 7.93,. .
indicating a sizable difference between the two means (12.11 — 7.93 = 4.18). A =
convenient set of coefficients with which to calculate the comparison sum of =
squares is (3, —2,—2, —2, 3). Substituting the necessary values in Eq. (6-5), we have
s(¥)?

‘A comp. = b (01)2

_9[(3)(12.78) + (—2)(7.89) + (—2)(7.11) + (—2)(8.78) + (3)(11 44)]?
B () + (=22 +(—2)* + (2> + (3)°

189.00.

The next operation is to form an F'ratio. Since we are still contrasting only twe
means in this comparison, the number of df for the SSAcomp. is 1 and the MS, comB
= 189.00/1 = 189.00. The F ratio is specified in Eq. (6-7) and consists simply of
dividing the MSy . mp. by the MSg, 4. In this case,

_189.00
comp. 1399

= 14.30.

Normally this " would be compared with the critical value of F(1, 40), which® :
at a = ,05 is 4.08. For the Scheffé test, however, we determine the critical value F
by substituting in Eq. (8-6), for which we will need the critical value for the omnS§

bus F, which in this case is F(4, 40) = 2.61 at a = .05. Substituting in Eq. (8-6)
we find
Fy = (@ = DFf,, dfy,,)
= (5 — 1)(2.61) = 10.44, :
Since the obtained Fcomp_ of 14.30 exceeds this critical value demanded by _z ; :
Scheffé test (10.44), we can reject the null hypothesis. g
Perhaps you noticed the severity of the Scheffé correction, which is reflectofz

in the difference between the two critical values, 4.08 versus 10.44. Translated 108
PC rate, the Scheffé correction is equivalent to a significance level of about @i

o

Table 8-2  Numerical Example: Treatment Sums and Means

LEVELS
aq as as a4 as
Sums 115 71 64 79 103

Means 12.78 7.89 7.11 8.78 11.44
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- 0025. This marked reduction in the PC rate (from « = .05 10 a = .0025) is neces-
e aary to set the FW error at a value no greater than ag,,, = .05. When the frame of
¢ - icference consists of all possible comparisons, however, which in this case is 90, the
_.voirection needs to be severe. ‘

Pelrwise comparisons, as they are frequently called, may be determined by solving
e following simple formula: a(a — 1)/2. Applied research is often of this type—
rent books are compared in a classroom setting to determine which book is
1,0 consumer testing agency evaluates a number of similar products and attempts
W vider and to group the products in terms of effectiveness; and so on. In these
Bes, the intent is clearly to compare each treatment condition—each book or
uct, for example—with all other treatment conditions. Presumably there would
B little or no interest in more complex comparisons unless there were good reasons
“pombining certain conditions, e.g., products from the same manufacturer or
32 by the same author. Theoretically motivated research, on the other hand,
e uccs experimental designs that generate a limited number of meaningful
iparisons that generally will not include all possible pairwise comparisons, but
1 » smaller number of pairwise comparisons combined with a couple of more
Plo X corhparis'ons.

several others (usually experimental conditions); the Tukey test, which
W control when all of the pairwise comparisons are to be conducted; and

bt test, which offers FW control by means of an initial criterion that must
tfore the comparisons can be conducted.

control group with the average score for the experimental groups com-
of overall control-experimental contrast. Additionally, we might
significance of any differences observed among the experimental
#-3 sort of omnibus F for the experimental groups. Finally, we would

e

i o s -
L o
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probably consider multiple comparisons involving a contrast of each of the experk =
mental groups with the single control group. Because of the necessary increase in -
the number of comparisons when a single control group is compared with several
experimental groups, we might want to exercise some control over the FW error
rate.
The Dunnett test is a specialized FW correction technique that compensatef;

for the increased number of type 1 errors but is not as ‘‘corrective’ as are otl
post hoc tests, because it takes into consideration only a limited number of co
parisons—the controlexperimental contrasts. The simplest way to conduct lhl
Dunnett test is to calculate the controlexperimental mean differences and to¢
pare them against a critical mean difference (JD) that must be exceeded to b
significant at the chosen FW level. The formula for calculating this critical diff
ence is ;
a = a5 \/2(MSS:A) ,

Vs

from the overall analysis of variance, and s is the sample size for each group.
value of q,, is determined by the total number of conditions k involved in i
analysis, the degrees of freedom associated with the error term (de/A ), andf .
value chosen for FW error (g, ). If you choose to work with the F test, you #8
use ,

FD = (‘h))z
as the critical value with which to evaluate F .

As an example, ] will use the data from Table 8-2.To set the examplc in®

amounts of memory loss for several different experimental conditions. The
four experimental groups (a,, a3, a,, and a;), each differing in the types of ¥

received a neutral task during the period in which the experimental subjec
experiencing interference.
While other questions might be asked of the data (e.g., questions aboul
ingful comparisons among the experimental groups), it is of interest to de
whether each of the experimental groups showed a significant loss relative
control group. In order to calculate the critical C-E difference, we need 10
qp. Although the argument could be made that only d)fferences in favof
control group make any sense, most researchers would prefer to choose Wi
termed a nondirectional alternative hypothesis. What this means is that we

significance level at g, = .05, we will set aside half of the rejection rog
positive deviations and the other half for negative deviations. Such a proci
often called a two-tailed test.
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Ewomparisons” and look for the entry at k = 5, Af eror = de/A =40, and o), =
L5, (A directional test would be conducted with the values given in the part of
“Tuble A-5 labeled “‘one-tailed comparisons.”) For this combination, qp = 2.54.
dubstituting in Eq. (8-7) gives as the critical difference between the control and an

aperimental mean

- (254)v2(13.22)

dp =———=——"=14
V9

Bull hypothesis that the contro] group and a particular experimental group are
sl From Table 8-2 (p. 152), the observed differences are

12.78 — 7.89 = 4.89; A, —A4A,=1278—-111=567;
= 12.78 — 8.78 = 4.00; A, —Ay=1278—1144 = 1.34,

R
Ay
b

ge the first two differences (involving a, and a,) exceed the critical value of

p conditions produced a significant memory deficit. The other two experimental
Biments (a, and a ) did not result in a significant Joss of memory.

hoes are not entered for comparisons below the main diagonal of the table,
e listing would be an exact mirror image of the differences appearing above

ponal.

- VMS
3 =% 5/A (8-8)

: # the Scheffé test, was designed to cover all comparisons, but it is more powerful
for pairwise tests and less powerful than the Scheffé for complex contrasts.

e
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Table 8-3 An Example of Pairwise Comparisons

LEVELS

(ORDERED BY SIZE OF TREATMENT MEANS)

a3 02 04 a5 0]
MEANS 7.1 7.89 8.78 11.44 12.78
Ay = 711 - 78 1.67 433 5.67
A, = 7.89 - 89 3.55 4.89
A,= 878 - 2.66 4.00
Ag=1144 - 1.34
A, =1278 =

and s is the sample size for each group. If you look at Table A-6, you will see thaf
three quantities enter into the determination of G7+ Af oop (the df associated
the MSSA) r (the number of treatment means—a in this design), and oz,_-w ( _
FW error rate chosen for the Tukey test).? For this example, dfmor dfs.4 e
r=a=35,and agy = .05; the value of g, is 4.04. Substituting in Eq. (8 8),

find
- 4.04)\/13.22
dp = -(—)—-———= 4.90.
NE)
An inspection of the differences in Table 8-3 reveals that only the largest differ
(A, — A4 = 1278 — 7.11 = 5.67) exceeds the critical value for the Tukey

and wou]d be declared significant.

The Tukey test can be used in conjunction with the F test, although
lating F ..o for each pair is not as convenijent as calculating mean differenced
any case, the critical value of F (F;) against which F is compared is given i
the following formula: E

comp.

(a@r)?
s

Fp=

~ Sequential 1ests. Two popular alternatives to the Tukey test are the
and the Newman-Keuls tests. These tests are distinguished by the fact that sig
cance testing follows a series of sequential tests, each with a different criticn)
to establish the significance between pairs of means. The computational deid
these tests may be found in Kirk (1968, pp. 91-94) and Winer (1971, p,
201). All three tests have been compared in Monte Carlo experiments desi
reveal how well they control FW error and what their power characteristhf
i.e., how well they detect treatment differences when they are present. Tha
most well known to psychologists was conducted by Petrinovich and Hia
(1969); other relevant studies have been reported by Carmer and Swanson (4l

9Table A-6 is also used with the Newman-Keuls test, described briefly in the ncxl se
which case r takes on different values depending on the particular pairwise diffcresi]
consideration. 5

156
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und by Einot and Gabriel (1975). The collective evidence seems to support the
. conclusion that the Tukey test is preferred over the other two tests.!0

The Fisher Test !

A different sort of correction procedure is the protected least significant dif-
" ference test, which I will call the Fisher test. The test consists of two steps: the test
& 0! the omnibus F, followed by the unrestricted testing of all pairwise differences if
L the overall F is significant. If the omnibus F is not significant, no additional tests |
L -»1c conducted. A formula for the critical value of the Fisher test (5’,_-) is

dp =Y sl '23?5 2, (8-9) ?%

®here 1 is found in Table A-3 of Appendix A under the chosen value of & and the
Bejrecs of freedom associated with MSg , . (The F table can be used by taking the
Rurre root of the critical value of Funder df,,,, = 1 and dfyenopm, = df;, ) This
d8illica] value is equivalent to the criterion for an uncorrected planned comparison
Bipiessed in terms of the difference between two means. Transformed to an F,

F = F(1,dfg,4)- (8-92)

" To Jl]ustrate the calculations, I will again use the data from Table 8-2. The

T A2
[4] = = 4,356.89;
T2
(1] = = 4,147.20;
@)
= [4] — [T] = 209.69;
SS, 209.69
MS, =—2= = 5242
df, 5-—1
MS, 5242
MSg,, 1322 ’

;.lnd studied instead a modified Newman Keuls test that is too complicated for
tescurchers. They recommend the Tukey test for its simplicity when compared
idifled Newman-Keuls test, and its favorable power characteristics relative to the
lial procedures compared in their study.
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is significant, exceeding the critical value of F(4,40) = 2.61 at « = .05. With this
outcome, the Fisher test permits us to evaluate all pairwise differences against the
following critical difference:

2 tV2WMS,, )

— S/A

F Vs
_(202)V2(1322) _
o —=

Using this value to assess the differences presented in Table 8-3, we find five of the
comparisons to be significant. (In contrast, the Tukey test, with a critical value of
ET = 4.90, declared only one djfference,}fl —/T3 = 5.67, to be significant.)

You should note that the Fisher test involves no special corrections once the
overall F is found to be significant. Familywise error is controlled in effect by con-
ditionalizing one’s decision to conduct pairwise comparisons on the significance of
the omnibus F test. That is, type I errors can be committed only when this F is
significant; and when the overall null hypothesis is true, this will happen only a
small proportion of the time, namely, the proportion specified by «. Thus, FW
error is kept under control on the average by reducing greatly the proportion of
times when a researcher conducts pairwise comparisons and the overall null hy-
pothesis is true.

Carmer and Swanson (1973) compared 10 post hoc correction techniques
using Monte Carlo procedures and concluded that the Fisher test offers the sort of
balance between type I error and power that most researchers would find attractive
and acceptable. Cohen and Cohen (1975), for example, recommend the Fisher test
as a general strategy for analyzing the outcome of a complex study (see pp. 162-
165 of that text). What is captured by the Fisher test is the attitude that a signifi-
cant ombibus F usually means that population treatment effects are probably

3.46.

present and that additional tests are used to identify them; a certain number of : 4

type I errors will occur in this second stage, but they are far outweighed by a need
to detect the true differences.

A serious problem with the Fisher test is its apparent incompatibility witha
planned-comparison approach. The primary function of post hoc test procedures
is to protect against reporting too many ‘‘accidents,” i.e., type 1 errors. The Fisher
lest performs this function by stopping the researcher 95 percent of the time when
the null hypothesis is completely true, i.e., when there are no differences in the
population. But consider a case in which a single *‘deviant” mean is added to a set
of equal means. The Fisher test no longer offers the same sort of protection for
these equal means that it provided originally. This is because the omnibus F will
now be significant more than S percent of the time—on account of the presence of ..
this single deviant mean—and there will be an increased ‘“‘opportunity’’ to make
type 1 errors on comparisons involving the original set of treatments. Since experi- =
ments with planned comparisons are designed to detect at least one difference that 3

will be significant, a researcher is generally assured a significant omnibus F and,asa &
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" provided by the Fisher test to conduct uncorrected post hoc
o im»n. then, il seems inappropriale to use the Fisher test when

pavblemy with the Fisher test should be mentioned. First, the test
paliwhe comparisons, but not all interesting research questions fit
gobf 1t 1 probably safe to assume, however, that the Fisher test
#b#n complex comparisons are included in the analysis since the test
Tag# § #reons 10 the chosen level of significance regardless of what one

,%,9,9_, the b |shu test seems 10 run mto senous dlfﬁculnes when un-

ilh,mv the serious dilemma faced by all researchers. On the one
4@ design experiments that are analytically rich and lead to a

gpink, At the other extreme, you could maintain that accidental
#volded ond adopt strong corrective methods to prevent the
§ eten 1esulting from the assessment of two or more compari-
% ##s, you would evaluate all comparisons at the same PC rate
b muml case, you would SUbJCCl all comparisons to the Qcheffe

b w;um In an uuempt to detect the presence of the most impor-
ﬂﬂf mulntuining a reasonable control of FW error.

J will discuss a number of ways to resolve the unavojdable
and type 11 errors. I will begin by considering a way 1o re-
¢ number of planned comparisons to a smaller and more
Jng the outcome of certain key comparisons to guide the rest
l!‘will mention a different sort of strategy that allows a
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well. Finally, 1 will offer some general recommendations for dealing with the evalu-
ation of multiple comparisons. g

Conditionalized Planned Comparisons

An important stage in the design of any experiment is to consider the nature
and quality of the information obtainable from the study as planned. At this point,
we can verify that the study will permit answers to our original research questions.
This listing also provides a form of early warning that the number of planned com-
parisons approaches or exceeds the number beyond which a researcher will begin to
become concerned about familywise type 1 error. If this number is not exceeded,
we will assume that the researcher will test these comparisons directly once the data:
are collected and make no adjustment for the theoretical size of the F'W error. But
what if the number of planned comparisons exceeds this value? One might decide
to do nothing and to live with the estimated FW error. Alternatively, one could:
reduce the length of the list to include only comparisons of primary concem, in
which case the “secondary” comparisons might be subjected to some form of FI
control while the more important comparisons are not. '

There is another way of dealing with this problem, which is best described b
a concrete example. Suppose an experiment is conducted that compares the pel
formance of subjects following the administration of two drugs, A and B. Suppostis
further that two different control conditions were deemed necessary and that twd,
batches of drug A were available to the experimenter. The experiment can b
viewed as a single-factor design with @ = 5 treatment conditions. The design and 208
single-df comparisons that ask potentially meaningful questions of this experimen§
are presented in Table 8-4.

Although this set of meaningful comparisons falls far short of including th
90 single-df comparisons possible when @ = 5, the number of comparisons prob 1=
bly exceeds the threshold beyond which most experimenters become concerntd
with FW error. Suppose, however, we test comparison 1 first and conditionalis
the remaining 19 comparisons on the outcome of this single test. This partic
comparison assesses the equivalence of the two control conditions. If the compi
son is not significant, we will probably consider combining the two groups in
further comparisons and omit from consideration comparisons that involve (il
two control conditions separately. On the other hand, if the comparison is S
nificant, we will be forced to evaluate drug effects with each control separately sl
probably omit from consideration comparisons where the two control condit
are combined.

This conditionalizing of subsequent comparisons on the outcome of com
son 1 is summarized in the upper portion of Table 8-5. Comparisons listed on}
left are the ones conducted if the observed difference between the two contil
means is not significant, while comparisons listed on the right are the ones @
ducted if the difference is significant. In the first case, the total number of cOMlS
parisons tested is 10, including the initial comparison;in the second case, the {88




Table 8-4 A Set of Meaningful Comparisons

i - MEANINGFUL
= COMPARISONS CONTROL 1 CONTROL 2 DRUG A, DRUG A, DRUG B

+1 —1 0
+3 +3 —2
+1 : +1 0
+1 +1 =]
+3 —1
+1 0
+2 —1
=]

0

—1

—2

0

—1

O 0 ~JN D B R

==

Miber is 15. In either case, however, the total number of comparisons tested has
b 5 duced from the original number of 20.
‘omparison 17 can be used in a -similar fashion to narrow down the number
ned coniparisons actually tested in the analysis of this experiment. In this
w comparison involves an assessment of the equivalency of the two batches
A. If the two batches prodice equivalent results, we would probably com-
two groups in all further analyses involving drug A. The comparisons we
Mer these circumstances are listed on the left in the middle section of Table
I the two batches are not equivalent, we are forced to conduct separate
B for the two batches and omit comparisons where they are combined. These
SMons are listed on the right in the table. The total number of comparisons
k "'luding the initial one is 12 when comparison 17 is not significant and 13
)pmison 17 is significant. Again, there is a reduction in the number of
1 1ested when we use this conditionalized, or branching, technique.
conditionalize on both of these initial comparisons, we can reduce the
ted still further, as is illustrated in the fourfold table presented in the
fion of Table 8-5. The largest number of comparisons tested in this ar-
we include the first two.ds 10, when both comparisons are significant,
llest number is 6, when neither comparison is significant.
Bn for reducing the number of planned comparisons would probably
y controversy. Most researchers would agree that one should combine
lml conditions or the two batch conditions, since there is no com-
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Table 8-5 An Example of Conditionalizing Planned Comparisons =

TEST OF COMPARISON 1

Not Significant Significant

Test: comp. 2, 3, 4, Test: comp.5,6,7,
11,12,17,18,19, 8,9,10,13,14,15,
and 20. 16,17,18, 19, and 20.

TEST OF COMPARISON 17

Not Significant Significant
Test: comp. },2,3, Test: comp.1,3,6,
4,5,6,7,8,9, 9,11,12,13,14,

10, and 18. 15,16, 19, and 20.

TEST OF COMPARISON 1

TEST OF COMPARISON 17 Not Significant Significant
G Test: comp, 2, Test: comp.5,6,7,8,
Net Significant 3,4, and 18. 9,10, and 18. :
Sianificant Test: comp.3,11, Test: comp.6,9,13, &8
gnicas 12, 19, and 20. 14,15,16,19, and 20,8

The only question that might be raised concerns the presumed acceptance of thi
null hypothesis when the nonsignificant conditions are combined. One way to deal
with this difficulty is to test the significance of these branching comparisons at i
higher than normal probability level (e.g., « = .10 or .25) in order to increase po ol
and one’s confidence in “accepting” the null hypothesis by combining nonsignifig
cant conditions. '

A Decision to Suspend Judgment

The major obstacle in the way of recommending a general plan for deall
with multiple comparisons that will satisfy most researchers is the differencel
attitudes toward type I and type Il errors held by different investigators. Tid
stumbling block can be circumvenred rather than removed simply by adding a thing

162
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decision category to the evaluation process when the two concerns responsible for
the problem—FW and power—are in conflict. This conflict occurs, of course, when-
3 cver F comp. 1§ significant as a planned comparison evaluated at an uncorrected
- evel of significance, but it is not significant when the o level is corrected for family-
~ wisc type ] error. Instead of deciding to reject or not to reject the null hypothesis in
= Huch ambjguous cases, ] propose that we recognize this ambiguity by deciding to
suspend judgment concerning the status of the null hypothesis. By taking no formal
“sction in this situation, we avoid committing either a type 1 or a type Hl error. As a
msequence, the decision contributes nothing to familywise error, since the null
Chypothesis has not been formally rejected. Suspending judgment calls attention to
# potential true difference and avoids creatmg the obscurity often associated with a
{ Iﬂncnce that is labeled ‘“nonsignificant.” The idea of suspending judgment is
bt new, but was suggested by Hays (1973, pp. 350-353) to deal with a similar
- ,'ublem in the evaluation of the overall F test. Applied to multiple comparisons,
w use of a third decision category of suspending judgment introduces flexibility
Wi clurity into a situation in which arbitrariness and ambiguity instead have been
rule.
*  How might this new procedure work out in practice? The first step is to de-
wine the critical value of the test statistic at the uncorrected level of significance
I This value, which 1 will call CV,, is used to define the lower boundary of the
#etion region for planned comparisons. The second step is to set a more stringent
'on for rejection that reflects one’s concern for familywise type 1 error. This
W, which I will call CV .y, refers to the rejection region for the correction tech-
vonsidered most appropriate for the analysis. I can now state the decision
follows:

S F‘!. the test statistic equals or exceeds CVieyy, reject Hy.

2 an illustration, let’s return to the experiment used as a numerical example
wafé test (pp. 151-152). For that particular experiment, the critical value
[Beheflfé test was Fg = 10.44, while the critical value for planned compari-
w0 Fo=4 08 The test statlstlc ca]culated from the data was an F ratio

mp. # 10.44, reject H,.

omp. falls between 4.08 and 10.44, suspend judgment.
’< 4.08, do not reject H,.

;IF in this example was 14.30 and H, is rejected.

'_lhcl 1rustrauon consider the example presented in conjunction with
Mest (pp. 155- ]56). In this case, the test statistic-is expressed as the

s
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difference between two means, symbolized as J/ For the Tukey test, the critical
value is ‘77‘ = 4.90. The corresponding value for planned comparisons, calculated
from Eq. (8-9) on p. 158, is 3.46. The decision rules are:

1 > 4.90, reject H,.

if \E falls between 3.46 and 4.90, suspend judgment.

If Y < 3.46, do not reject Hy.

If you refer to Table 8-3 (p. 156), where all possible pairwise differences ar .
enumerated, you can see that one of the comparisons exceeds 4.90 and leads 1o th
rejection of Hy (5.67), four fall between 3.46 and 4.90 and lead to the suspension
of judgment (4.89, 4.33, 4.00, and 3.55), and the remaining five are less tha
3.46 and lead to the nonrejection of H, (2.66,1.67,1.34, .89, and .78).

The three-decision system recognizes the ambiguity that exists when a co
parison is sig.niﬁcahl under one criterion (as a planned comparison) but not
nificant under a more severe criterion (as a corrected post hoc comparison).
suspending judgment, we-avoid committing either type of error, and simply co s ;

conclusions. Since we have not rejected the null hypothesis, no type 1 error is com
mitted, and the FW error is left unaffected by this decision. Since we have
pended judgment, no type 1l error is committed, and interesting and unexpec
findings, often overlooked when a Scheffé test or other correction technique @
used, can be assimilated into the interpretation of the experiment and perhajd
earmarked for future replication and study.

Recommendations and Guidelines

You are now in a position to make up your own mind concerning the cvalg
tion of analytical comparisons. The fact that there is little agreement among oS
mentators writing in statistical books and articles concerning specific cour
action to be followed with multiple comparisons simply means that the issuoh#§
complex, and that no single solution can be offered 1o meet adequately the vl
needs of researchers. Consequently, you should view the situation not with da
and frustration, but rather with a realization that you can and musr work the pii
lem out for yourself. The first step is to understand the basic issue—which is sl
really—that analytical comparisons, which are conducted in virtually every o}
ment we will consider in psychology, increase type 1 error in a predictubl
inevitable fashion. Does this bother you? Your degree of concern, which is bas
your attitude toward the relative importance of type 1 and type 11 errors
and for your research field, will contribute greatly to your decision. Whate
you may adopt, however, you should make some attempt to estimate the d
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you. I will now offer some recommendations and guidelines that may assist you in
deciding how to evaluate the analytical comparisons derived from your research.
Planned Comparisons. Planned comparisons are usually the motivating force
~ behind an experiment. These comparisons are targeted from the start of the investi-
£ jution and represent an interest in particular combinations of conditions—not in the
overall experiment. Planned comparisons are examples of what Tukey (1977) calls
confirmatory statistical analysis, where specific questions that can be confinmed or
" disconfirmed are tested in an experiment. In keeping with the special status ac-
gorded planned comparisons, 1 recommend using the uncorrected PC rate, «, to
“rvuluate the relevant test statistics. If the number of planned comparisons ex-
- veeds the number of degrees of freedom associated with the overall treatment
mcan square, ] suggest the use of the modified Bonferroni test (pp. 147-149)
A0 maintain the FW error for planned comparisons at the level dictated by df},
‘namely, (@ — 1)(a). Planned comparisons need not be orthogonal, although or-
Whogonal comparisons do provide an unambiguous allocation of the treatment
Wwriution.
" Post Hoc Comparisons. In post hoc data analysis, the type of question asked
_\Ifls from ““Is this difference mgmfcant"” which characterizes planned compari-
join, to ““Which differences are significant?”” which characterizes post hoc com-
sthhons. The concern is with the whole set of treatments, rather than particular
pmbinations of conditions. The probability of finding significant differences by
¥hance depends on the number of treatment conditions; hence, it makes sense to
W1y sbout the FW rate under these circumstances.
~ It is my opinion that post hoc comparisons should be subjected to a more
Mingent standard to guard against committing an unacceptably large number of
1 crrors. Just which correction technique you choose depends on the nature
the’ comparisons examined in the post hoc analysis. If the comparisons consist
iy of differences between a control condition and several experimental condi-

complex comparisons are involved, the Scheffé test (pp. 151-153) is the

($hoice.

Wr cun minimize the danger of missing small but interesting findings dis-
' during the course of systematlcal]y combing through the data The ques-
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8.5 EXERCISES'Y

1. Table 8-4 (p. 161) lists 20 potentially meaningful single-df comparisons for a
particular experiment. Translate the sets of coefficients defining these compari-
sons into a verbal statement describing the question asked by each comparison,
2. The bottom portion of Table 8-5 (p. 162) summarizes an analysis plan that
depends on the joint outcome of two preliminary statistical tests.
(a) Using the modified Bonferroni test, determine the values of @ nned 10 be
used in each of the four alternative plans. Use a = .05 as your starting point,
(Be sure to include the two preliminary comparisons in your calculations.) ;
(b) What is the critical value of F in each of these situations? Assumes = ]0. ;

3. Assumethat we have a contro] group and seven experimental groups, withs = 16 4
subjects for each group. The MSS/A = 28.75. The totals for each group are given
below:

| g £, Eq Eq Es Eg £
289 ’ 270 241 279 191 213 205 198 i

(a) Is the overall F significant?

(b) Use Dunnett’s test to determine which of the treatment means is signifi-
cantly different from the mean of the control group. Use a two-tailed test
ata = .05,

(c¢) Make the same set of comparisons with the Scheffé procedure, @ = .05. Do
your conclusions change?

4. Suppose we have an experiment with independent groups of s = 7 subjects
randomly assigned to each of 8 treatment conditions. The error term MSS/A =
58.65. The treatment sums are given below:

aq ag a3 ay ag ag ay ag
31€ 333 307 373 398 227 123 436

(a) Conduct the Fisher test on all pairwise differences, using & = .05.

(b) Evaluate the same pairwise differences with the Tukey test,a = .05,

(¢) How would you modify your conclusions in part (b) if you adopted the
three-decision procedure described in Section 8.4 (pp. 162-164)?

!1The answers to these problems are found in Appendix B, beginning on p. 568.






