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145 8.7 Problems Associated with Analytical Comparisons 

One of the most complex and perhaps most confused topics in statistical 
rence concerns an unfortunate by·product of the conscientious and detailed 
ysis of an experiment, namely, an increased vulnerability to type I error. That 

. type I errors cumulate with each statistical test performed in a predictable and 
fashion-unavoidable, unless steps are taken to correct this process. 

chapter examines this problem and solutions desisned to solve it. My coverage 
be selective, focusing on particular recommendations rather than presenting a 

... ,,,'''PI,pn·sive description of the topic. If you wish to study the problem in mOre 
Ih, you might read first two early discussions (Ryan, 1959; Wilson, 1962) and 

three informative and useful papers by Games (1971 b, 1978a, and 1978b).J 

PROBLEMS ASSOCIATED WITH 

A~ALYTICAL COMPARISONS 


major problem resulting from the performance of a series of analytical 
ns on a set of data is the unpleasant fact that the more comparisons we 

Ihe more type I errors we will make when the null hypothesiz is true. In 
this relationship, the distinction is often made between the type I 

wmparison (PC) and the error rate familywise (FW).2 The PC error rate, 
will continue to call 0', uses the comparison as the conceptual unit for the 

. If we evaluated several comparisons in an experiment, each at 0' :: .05, 
be using a PC error rate; our probability of making a type I error would 
fach ofthe separate comparisons. In contrast, the type I FW error rate, 

the probability of making one or more type I errors in the set of 
de! scru tiny. 

nship between the two error rates is expressed by the formula 

0' == I - (1 - O')C 	 (8-1)
FW ' 

....	'."'nt~ the number of orthogonal comparisons that are conducted. With 
rate set at 0' = .05 and with c = 3 comparisons contemplated, the FW 

= I - (I - .05)3 = I - (.95)3 = 1 - .857 == .143. 

at the I percent significance level, 

-= 1 - (1 - .01)3 == 1 - (.99)3 = I - .970 == .030. 

lliouldbe read in conjunction with Games (1971a), which corrects a number 
In the original article . 

.....'ftI~nendation of others, I have adopted the term familywise to replace the 
Both terms refer to the same concept in the context of the single­

. '.ruunCllOn between the two terms becomes critical in factorial designs. 



146 Ch. 8 Corree/ion for Multiple Comparisons 

The familywise error rate is approximated by P] 
ColJecti

QFW = C(Q) , 
tesearch 

but the approximation aFW will always overestimate QFW' though less for small dcfiniti( 
values of 0' and for small numbers of comparisons. In the present example, with 
0' == .05, 

(XFW = 3(.05) = .15, 

as compared with the O'FW = .143 obtained with Eq. (8-1). For the smaller Q level; 
p = .01, the two values are identical when carried to two decimal places. 

When several comparisons are involved in the analysis of an experimen 
researchers have different attitudes about which conceptual unit for the error rail 
is most appropriate. The point to be emphasized now is that when we conduct 
number of comparisons on a set of means, there is an FW error rate with which 
must contend and this error rate increases directly with the number of compa 
tested. 

The relationship between FW error rate and the number of analytical 
parisons is not an exclusive property of orthogonal comparisons, however, 
holds for nonorthogonal comparisons as well. While the calculation of FW 
when nonorthogonal comparisons are involved in an analysis plan is not simple · 
is still accurate to say that the FW error rate increases with the number of 
parisons conducted regardless of orthogonality (see Harter, 1957, for a discu 
of the problem). 

Planned Comparisons 

Experiments are usually designed with specific hypotheses in mind, and 
researchers conduct analyses relevant to these hypotheses directly without 
to the outcome of the omrtibus F test. Although the omnibus test may be 
puted, its sigrtificance or nonsignificance does not modify this particular 
action. Unplanned comparisons, in contrast, refer to the analysis of uTlo~rr.'ft"II 

findings, outcomes that are revealed only after the data have been collected 
partially analyzed. These post hoc comparisons, as they are also called, can 
times be critically important in the development of a field of research. 

While both planned and post hoc comparisons lead to an increase in FW 
they are usually treated differently in any attempt to reduce or to control 
error rate. The most widely used strategy is to evaluate planned comparison. 
normal way-at the usual PC, or 0', rate-and to exercise control of the FW,. 
post hoc comparisons through special evaluation procedures designed to c( 
the problem. 3 

3Not all commentators on the problem of FW error agree that planned comparisom 
left. uncorrected, however. The correction they usually recommend for planned cornn ...... 
the Bonferroni, or Dunn, test, which applies a less severe correction than those 0«,,,..11,_ 
tests developed for use with post hoc comparisons. The Bonferroni test is discussed in 
Kirk (1968, pp. 79-81) and Myers (1979, pp. 298-300). 
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Planned comparisons are specified in the initial pianning of an experiment. 
Collectively, they represent the answers an investigator hopes to obtain to the 
research questions that generated the experiment in the first place. Although the 
'definition of planned comparisons is clear, the restrictions suggested by various 
~lIthors are not. The two major areas of concern are the orthogonality of the set 
IJf planned comparisons and the number of comparisons to be included in the set. I 
'will consider both issues in some detail. 

The Issue of OrthogolUility. I have already discussed this issue in Chapter 6 
pp. 121-123). Consensus seems to favor a set of meaningful comparisons whieh 
,c) rc often than not contains some nonorthogonal comparisons, i.e., a set of 

risons that are not mutually orthogonal. As you saw in Chapter 6, complete 
ogonal sets do not necessarily contain comparisons that are all psychologically 

. on the one hand, nor do they completely enumerate the total set of 
ningful comparisons associated with an experiment, on the other. The value 

I)rlhogonal comparisons lies in the independence of inferences, which, of course, 
desirable quality to achieve. That is, orthogonal comparisons are such that any 

n concerning the null hypothesis representing one comparison is uninfluenced 
decision concerning the nuJJ hypothesis representing any other orthogonal 

rison (see pp. 118-119). 
The potential difficulty with non orthogonal comparisons, then, is in inter· 

the different outcomes. If we reject the null hypotheses for two non· 
o' al comparisons, which comparison represents the "true" reason for the 

differences? If we reject one null hypothesis and not the other, what can 
of the results? I do not mean to say that such ambiguities always arise 

l1onorthogonal comparisons are involved or that they are unresolvable when 
, but simply to suggest that nonorthogonal comparisons be interpreted with 
r care in order to avoid this sort of problem. 

Number of Planned Comparisons. While everyone seems to agree that. 
omparisons should be limited in number, there is no agreement on what 
. r should be. One obvious possibility is to restrict the number of com· 

t ~ the number of degrees of freedom associa ted with the treatment source 
(at. = a - 1). But this suggestion, or any other recommendation for 

el, is an arbitrary restriction. On the other hand, the point I wish to make 
Ihut many researchers do limit the number of planned comparisons and, 

the research hypotheses and on the complexity of the experiment, the 
planned comparisons will range slightly above or below dJ;.. A conscien· 

her will realize that the number of comparisons affects the FW rate, 
will reach a threshold of concern for this fact somewhere near the 
set by the number of degrees of freedom. 

Bonferroni Test. One possible solution to this problem is to 
most researchers are willing to test up to a - 1 planned comparisons 

for FW error. Suppose we use this number-the df associated 
mean square-to set the FW standard for planned compari· 

corrections only when the number of comparisons exceeds 
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d~. This can be accomplished easily by calculating the aFW associated with a-I 

orthogonal comparisons and then dividing this probability by the actual number of 

planned comparisons included in the analysis plan.4 The resulting probability is 8 


new PC rate to be used in assessing these comparisons that maintains aFW at this 

presumably acceptable standard. In symbols, we use Eq. (8-2) to calculate the 

maximum FW error for planned comparisons, 


) 

2CtFW Planne~ = (dfA)(a), 
3 

and rnvide this value by the number of comparisons actually planned (c): 	 4 
5 
60. 	 = aFW planned, 

planned c 7 
8 

This method of adjusting the PC rate is related to a procedure known as 
Bonferroni test, which I mentioned in footnote 3 (p. 146). In the Bonferroni t 
the numerator in Eq. (8-4) is the overall FW rate adopted by a researcher for t 

experiment-not the aFWplanned I have suggested as a method for controlling 
error with planned comparisons. I will refer to the present technique as the 
Bonferroni test. . 

As an example, consider an experiment with a = 5 conditions. Assuming 
the maximum number of planned comparisons that will be conducted wi 
correction is equal to d~ = 4, and adopting the standard significance level a = 
we obtain an approximate probability for this "acceptable" FW rate by substitu 

in Eq. (8-3). That is, 


aFWplanned = 4(.05) = .20. 

This FW rate of .20, then, represents the assumed risk that researchers are gc 
willing to take when planned comparisons are at stake. 

Suppose we wanted to conduct c = 5 planned comparisons. We 
Eq. (8-4) that 

.20 
Ct =-=04planned 5 . 

is the adjusted significance level that will be used to evaluate the significu 
all five planned comparisons. A quick calculation will indicllte that this new 
tion probability results in an FW rate of c(ii'Planned) = 5(.04) = .20, which 
FW rate we adopted in this example for the entire set of planned compari 

Table 8-1 summarizes the calculations of aplanned for several value. 
using a = 5. You will note that when c < d~, no correction is applied and 
varies with the number of comparisons. On the other hand, when c > 
FW rate remains constant at aFWplanned = .20 and the significance level 
evaluate the comparisons is systematically lowered as a consequence. 

4These calculations are based on orthogonal comparisons, which will tend to cause 
tion of the FW error when nonorthogonal comparisons are involved, but this "ovcrc •.•r,. 
makes little practical difference in an actual research application. 



The Modified Bonferroni Test for Planned Comparisons 

REJECTION APPROXIMATE 
IJMPARISONS PROBABILITY FAMIL YWISE ERROR 

(c) (~Ianned) (c'i FW ) 

I 
2 
3 
4 
5 
6 
I 
' 8 

'.- 9 
10 

.05 

.05 

.05 

.05 

.040 

.033 

.029 

.025 

.022 

.020 

.05 

.10 

.15 

.20 

.20 

.20 

.20 

.20 

.20 

.20 

difficulty with the Bonferroni test is the need to detennine the critical 
of F when aplanned falls between the probabilitites proyjdedin the standard 

Since the F's associated with most planned comparisons will involve 1 df 
/lumerator, it is possible to use the unit nonnal distribution and approximate 

of t, which, when squared, will give us the corresponding critical value of 
Vlllue of t at an 0:' level of significance is found by the fonnula 

z3 + z 
(8-5)t(dfs/A ) = z + 4(dfs/A - 2)' 

r,"presents the point on the unit nonnal distribution ab'ove which [% (0:') X 
of the curve falls. s 

lin 	 example, I will work with a calculation we can verify in the F table. 
8-1, you can see that c = 8 planned comparisons offers such a choice 
,025). From a table of the unit normal curve, available in most intro­

\5, 	the value of z above which 1/2 (.025) X 100 =1.25 percent of the 
curVe falls is 2.24. Substituting in Eq. (8-5) and assuming dfs = 40,/A 

, (2.24)3 + 2.24 
t(40) = 2.24 + ---- ­

4(40 - 2) 

11.24 + 2.24 
= 	2.24 + = 2.33. 

152 

"lIlrIO(tne~~ of the approximation, we square this value to give us 

F(l,40) = [t(40)] 2 = (2.33)2 = 5.43. 

, .40) from Table A-I in Appendix A at 0:' = .025 is 5.42. 

;"""YIU'~' a' critical value of z tha t locates one half of the rejection region in the 
.... 'nlner one half of the rejection region in the negative tail of the unit normal 

149 
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Summery. The decision to restrict the number of planned comparisons 
to introduce some correction in the decision process depends on our attitude 
cerning type I and type II errors and the sort of balancing that we want to 
between them . You must work this problem out for yourself and then deal 
the additional problem of convincing others that your findings will hold up 
replication. In short, part of your planning should include a concern for pI 
comparisons and your attitude toward them, as weD as a concern for the logic 
the experimental design, and a realistic estimate of power for the exper 
in general and for the planned comparisons in particular. The implicit stan 
adopted by most researchers of conducting up to a-I planned 
without special correction seems reasonable except, perhaps, when the number 
treatment conditions is particularly large and the FW error for planned rnr"""rl",rIIII 

becomes sizable as a consequence. Planned comparisons are special and shoul 
evaluated with a sensitive statistical test. The modified Bonferroni test de 
the preceding paragraphs offers a way of maintaining this standard 
where the number of comparisons exceeds this assumed limit. 

Post Hoc Comparisons 

Post hoc comparisons often take the form of an intensive "milking" 
of reSUlts-e.g., the comparison of all possible pairs of treatment means. TIle, 
vation, of course, is to extract the maximum amount of information from a 
study. Another reason for conducting post hoc comparisons is that the re 
such tests often lead to future experiments. An interesting comparison, si 
or not, may form the basis for a new experiment. In the next study, for 
we might choose to manipulate more extensively the different trea 
tributing to the comparison we have isolated. 

The total number of possible single-df comparisons, which includes di 
between pairs of means and complex comparisons between means, is 
even for a "modest" experimental design. For a = 3, there are 6 such 
possible; for a = 4, there are 25; for a = 5, there are 90; and for a = 6, 
301.6 You can appreciate the concern for the FW rate when the pool of 
comparisons is as large as these! 

There are several approaches designed to deal directly with this p 
such techniques employ the same basic solution, namely, to reduce thc 
critical region-i.e ., to lower the significance level. In fact, Games (1971 . 
points out that the different procedures all involve the same .underlying 
and differ only in the ways by which this reduction in the PC rate is 
logic is straightforward : If we make it more difficult to reject the null 
for each comparison tested, which must happen when the size of Ih. 
region is reduced, fewer type I errors will be committed and the FW Cl 

thus be lowered. Just how much of an "adjustment" is made depends on 

6The total number of oomparisons is 1 + (3D - 1)/2 - 2°. 
,
-', 
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8.2 Familywise Corr ections for all Comparisons: The 5cheffe Test 

of factors, such as our willingness to make type I errors in general, the number of 
post hoc comparisons actually conducted, and the pool of comparisons from which 
rumparisons are specifically chosen. As you wiU see when you enter the research 
~Irna, there is no general agreement among researchers or even among authors of 
WI t istical texts and art icles concerning these points. 

In the next two sections, I will consider a number of procedures that have 
II developed to cope with the increased FW error rate associated with post hoc 
n~T;<r"'<. Section 8.2 describes a technique that can be used to control the FW 

~ It for any type of comparison between means. Section 8.3 focuses on techniques 
have been designed specifically for comparisons between pairs of treatment 

liS. I will not cover all of the tests that have been proposed or are even currently 
tiM: but will concentrate on those that for various reasons seem best suited to our 

.1 have been assisted in this selection of tests by the analysis and recommend a­
of Games (I978b).7 

fAMILYWISE CORRECTIONS FOR ALL COMPARISONS: 
lHE SCHEFFE TEST 

test is a technique that alJows a researcher to maintain the FW rate at a 
value regardless of the number of comparisons actually conducted. For 

then, the Scheffe test is flexible in its application to the analysis of an 

Scheffe test requires no special tables, since it is based on the values of 
.llstie appearing in standard F tables. The procedure is simple. We calculate 

Ihe usual fashion but evaluate the significance of the obtamed F with a 
llieul value, Fs. This quantity is defined as follows: 

(8-6) 

,dfsjA ) is the critical value of F for the omnibus analysis of variance 
in Table A-I under the desired 0' level. (Be sure to note that the value 
equal to a-I and not to dfcomp.-a common mistake made by stu­

classes.) The choice of significance level at this point sets the maximum 
error O'FW may take regardless of the number of comparisons 

an F chosen from Table A-I at the .05 level of significance and 
r:.q. (8-6) will create a cricital value of F (Fs) that sets a maximum 

at .05. Using critical values of F at other 0' levels sets the limit 
"",1I1I1I"~ correspondingly. 

pie, suppose we performed an experiment with a = 5 treatment 
-, Ji:; 9 subjects assigned randomly to each group. We will assume 
whICh js based on a(s - 1) = 5(9 - 1) = 40 degrees of freedom, is 

lummary and comparison of these and other techniques, see Kirk (1968, 
(1971, pp. 185-204). 
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13.22. The sums and the means for the treatment groups are presented in Table 
8-2. Suppose we decided to compare the average of two of the groups (a) and a5) 
with the average of the other three (a 2 , a3 , lind a4 ). The first average is (12.78 + 
11.44)/2 == 12.11, and the second average is (7.89 + 7.11 + 8.78)/3 == 7.93, 
indicating a siza ble difference between the two means (12.11 - 7.93 = 4.18). A 
convenient set of coefficients with which to calculate the comparison sum of 
squares is (3, -2, -2, -2, 3). Substituting the necessary values in Eq. (6-5), we have 

s(~)2 
SSA compo ::: L (C )2


I


9 [(3)(12.78) + (-2)(7.89) + (-2)(7.11) + (-2)(8.78) + (3)(11.44)] 2 

(3? + (-2)2 + (-2)2 + (-2)2 + (3)2 

= 189.00. 

The next operation is to form an F ratio. Since we are still contrasting only 

means in this comparison, the number of dlfor the SSAcomp. is] and the MSAcom 
= ]89.00/1 = ]89.00. The F ratio is specified in Eq. (6-7) and consists simply 
dividing the MSA compo by the MSS /A . In this case, 

189.00 

~omp. = -- = 14.30.


]3.22 

Normally this F would be compared with the critical value of F(l, 40), 
at Q = .05 is 4.08. For the Scheffe test, however, we determine the critical value 
by substituting in Eq. (8-6), for which we wiU need the critical value for the 
bus F, which in this case is F(4, 40) = 2.6] at Q = .05. Substituting in Eq. (8 
we find 

FS = (a - l)F(d~, dis/A) 

= (5 - ])(2.61) = ]0.44. 

Since the obtained Fcomp. of ] 4.30 exceeds this critical value demanded by 
Scheffe test (10.44), we can reject the null hypothesis. 

Perhaps you noticed the severity of the Scheffe correction , which is 
in the difference between the two critical values, 4.08 versus J0.44. Translated 
PC rate, the Scheffe correction is equivalent to a significance level of about 

Table 8-2 Numerical Example: Treatment Sums and Means 

LEVELS 

Sums 115 71 64 79 )03 

Means 12.78 7.89 7.11 8.78 ) ).44 
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j in Table 

71 and as) 
; (12.78 + 
13 == 7 
=4.18) .. 

.0025. This marked reduction in the PC rate (from Q= .05 to Q = .0025) is neces­

).lI[Y to set the FW error at a value no greater than QFW = .05. When the frame of 


: rdcrence consists of all possible comparisons, however, which in this case is 90, the 

needs to be severe. 

.3 COMPARISONS BETWEEN PAIRS OF MEANS 

re are times when a researcher may be interested in evaluating the significance 
~11 possible differences between pairs of treatment means. The number of such 

~I~.,'~~ comparisons, as they are frequently called, may be determined by solving 
f(illowing simple formula: a(a - 1)/2. Applied research is often of this type­

books are compared in a classroom setting to determine which book is 
~ D consumer testing agency evaluates a number of similar products and attempts 
"rdu and to group the products in terms of effectiveness; and so on. In these 

the intent is clearly to compare each treatment condition-each book or 
for example-with all other treatment conditions . Presumably there would 

or no interest in more complex comparisons unless there were good reasons 
,mbiiling certain conditions, e.g., products from the same manufacturer or 
by the same author. Theoretically motivated research, on the other hand, 

experimental designs that generate a limited number of meaningful 
I~ons that generally will not include all possible pairwise comparisons, but 

:II srnalJer number of pairwise comparisons combined with a couple of more 
comparisons. 

alternative tests have been developed to control FW error under the 
nces where a researcher wishes to conduct pairwise comparisons. The 

Itstis not recommended for this situation, since it is less powerful than 
specialized techniques I consider in this section. I will cover three such 

detail: the Dunnett test, which is used when the pairwise comparisons 
differences between one condition (usually a control or baseline condi­
J(:veral others (usualJy experimental conditions); the Tukey test, which 

control when all of the pairwise comparisons are to be conducted; and 
Icst, which offers FW control by means of an initial criterion that must 

the comparisons can be conducted. 

we: include a control condition in an experiment, we are often inter-
umber of different comparisons. As a first step in the analysis, we might 

c(lrytrol group with the average score for the experimental groups com­
. of overall control-€xperimental contrast. Additionally, we might 
al¥nificance of any differences observed among the experimental 

iort of omnibus F for the experimental groups. Finally, we would 



154 Ch. 8 Correction for Multiple Comparisons 

probably consider multiple comparisons involving a contrast of each of the experl; 
mental groups with the single control group . Because of the necessary increase 
the number of comparisons when a single control group is compared with 
experimental groups, we might want to exercis'e some control over the FW 
rate. 

The Dunnett test is a specialized FW correction technique that com 
for the increased number of type I errors but is not as "corrective" as are 01 

post hoc tests, because it takes into consideration only a limited number of 
parisons-the control-experimental contrasts. The simplest way to conduct 
Dunnett test is to calculate the control-experimental mean differences and to 
pare them against a critical mean difference (dD) that must be exceeded to 
significant at the chosen FW level. The formula for calculating this critical d 
ence is 

d == qD .J2(MSs/A ) 
D ..jS 

where qD refers to an entry in Table A-5 of Appendix A,MSS/A is the error 
from the overall analysis of variance, and s is the sample size for each group, 
value of qD is determined by the total number of conditions k involved In 
analysis, the degrees of freedom associated with the error term (dfs/ ), andA 
value chosen for FW error (O'FW) ' If you choose to work with the F test, you 
use 

as the critical value with which to evaluate F .'comp
As an example, I will use the data from Table 8-2 . To set the example 

text, let's assume that these data were drawn from an experiment compu 
amounts of memory loss for several different experimental conditions. 
four experimental groups (a 2 , a 3 , a4 , and as)' each differing in the types of 
fering activities they received between learning and recall. A control 
received a neutral task during the period in which the experimental 
experiencing interference. 

While other questions might be asked of the data (e.g., questions about 
ingful comparisons among the experimental groups), it is of interest to de 
whether each of the experimental groups showed a significant loss 
control group. In order to calculate the critical C-E difference, we need 
qo' AJthough the argument could be made that only differences in f 
control group make any sense, most researchers would prefer to chouse 
termed a nondirectional alternative hypothesis. What this means is that 
be alert to positive as well as negative differences in the experiment. If 
significance level at qFW == .05, we will set aside half of the rejection 
positive deviations and the other half for negative deviations. Such a 
often called a two-tailed test. 

To find the value of qD' we locate the part of Table A-5 labeled' 
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, ' IJ.11l parisons" and look for the entry at k = 5, dferror = dfs = 40, and (\'FW =/A 
, (A directional test would be conducted with the values given in the part of 

~ble A-5 labeled "one-tailed comparisons_") For this combination, qD = 2.54. 
·tituting in Eq. (8-7) gives as the critical difference between the control and an 
rimental mean 

_ (2.54) v'2(13.22) 
dD = V9 = 435. 

is the difference that must be exceeded in order to allow the rejection of the 
hypothesis that the control group and a particular experimental group are 
I. From Table 8-2 (p. 152), the observed differences are 

1; ,42 = 12.78 - 7.89 = 4.89; A} - A3 = 12.78 - 7.11 = 5.67; 

i -,44 = 12.78 - 8.78 = 4.00; A} -As = 12.78 - 11.44 = 1.34. 

the first two differences (involving 02 and 03) exceed the critical value of 
we can conclude that the specific interfering activities represented by these 

t(lllditions produced a significant memory deficit. The other two experimental 
ts (04 and 05) did not result in a significant loss of memory. 

Tukey test is designed to maintain the FW rate at the chosen value of 
the entire set of pairwise comparisons.s The test is performed easily by 
the treatment means in ascending order of magnitude on the dependent 

,II~ illustrated in Table 8-3. Entries within the body of this table represent 
ces between any two treatment means. In the first row, for example, 

-. 

As = 7.89 - 7.11 = .78;A4 - A3 = 8.78 -7.11 = 1.67; and so on . 


. ore not entered for comparisons below the main diagonal of the table, 
JjJting would be an exact mirror image of the differences appearing above 

t step is to calculate the minimum pairwise difference between means 
c ,x~eeded to be significant with the Tukey test. This value «(iT) is given 

(8-8) 

n to an entry in the table of the studentized range statistic (Table 
dix A),MSs/A is the error term from the overall analysis of variance, 

Scheff!! test, was designed to cover all comparisons, but it is more powerful 
pairwise tests and less powerful than the Scheff!! for complex contrasts. 

http:v'2(13.22


Table 8-3 An Example of Pairwise Comparisons lind b 
conch! 

LEVELS 
(ORDERED BY SIZE OF TREATMENT MEANS) 

°3 °2 °4 Os °1 
MEANS 7.11 7.89 8.78 11.44 12.78 

~;l = 7.11 

A 2 = 7.89 
.78 1.67 

.89 
4.33 
3.55 

5.67 
4.89 

A4 ::: 8.78 2.66 4.00 

A5 ::: 11.44 1.34 

A1 = 12.78 

and s is the sample size for each group. )f you look at Table A-6, you will see t 
three quantities enter into the determination of qT: df (the df associatederror 

the MSS1A )' r (the number of treatment means-a in this design), and CiFW 

FW error rate chosen for the Tukey test).9 For this example,df ::: dfSjA = 
error 
r = a ::: 5, and CiFW ::: .05; the value of q T is 4.04. Substituting in Eq. (8-8), 
find 

_ (4.04) v'IT.22 
d T ::: V9 4.90. 

An inspection of the differences in Table 8-3 reveals that only the largest diff 
(A 1 - A;l ::: 12.78 - 7.11 ::: 5.67) exceeds the critical value for the Tukey 
and would be declared significant. 

The Tukey test can be used in conjunction with the F test, although 
lating Fcomp. for each pair is not as convenient as calculating mean diffe 
any case, the critical value of F (FT ) against which Fcomp. is compared is 
the following formula: 

Sequentiallests. Two popular alternatives to the Tukey test are the 
and the Newman-Keuls tests. These tests are distinguished by the fact thlll 
cance testing follows a series of sequential tests, each with a different crit 
to establish the significance between pairs of means. The computational 
these tests may be found in Kirk (1968, pp. 91-94) and Winer (1971, 
201). All three tests have been compared in Monte Carlo experiments 
reveal how well they control FW error and what their power character 
i.e., how well they detect treatment differences when they are present. 
most well known to psychologists was conducted by Petrinovich and 
(1969); other relevant studies have been reported by Carmer and Swa 

9Table A-6 is also used with the Newman-Keuls test, described briefly in the next 
which case r takes on different values depending on the particular pairwise di . . 
consideration. 
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157 8.3 Comparisons Between Pairs of Means 

nnd by Einotand Gabriel (1975). The collective evidence seems to support the 
conclusion that the Tukey test is preferred over the other two tests. 10 

The Fisher Test 

A different sort of correction procedure is the protected least significant dif­
Im'nce test, which J will calJ the Fisher test. The test consists of two steps: the test 
'c., the omnibus F, followed by the unrestricted testing of all pairwise differences if 
IJu: overall F is significant. If the omnibus F is not significant, no additional tests 

conducted. A formula for the critical value of the Fisher test (dF) is 

- _ t .J2(MS )
.dF - S/A , (8-9)

v'S 
1 is found in Table .A-3 of Appendix A under the chosen value of 0' and the 
of freedom associated with MSS1A ' (The F table can be used by taking the 

Ie lOot of the critical value of F under dfnum. =.1 and dfdenom. = dfslA .) This 
value is equivalent to the criterion for an uncorrected planned comparison 

55cd in terms of the difference between two means. Transformed to an F, 

FF = F(I,dfs/A )' (8-9a) 

the calculations, I will again use the data from Table 8-2. The 
evaluate the overall F. From the treatment totals in Table 8-2 (p. 

LA2 
[A] = - = 4,356.89; 

s 

T2 
[T] = --= 4 147.20' 

(a)(s)' , 

SSA = [A] - [T] = 209.69; 

SSA 209.69 
MSA =-=-- = 52.42. 

d~ 5-1 

MSA 52.42 
F=-- =-- = 3.97, 

MSS/A 13.22 

riel rejected the standard Newman-Keuls test because of its inadequate control 
atudied instead a modified Newman-Keuls test that is too complicated for 

,,,,.,:u,.:n"I·•. They recommend the Tukey test for its simplicity when compared 
Newman-Keuls test, and its favorable power characteristics relative to the 

roccdures compared in their study. 

http:4,356.89
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is significant, exceeding the critical value of F(4, 40) = 2.61 at 0' = .05. With this result, the 
outcome, the Fisher test permits us to evaluate all pairwise differences against the tests. For 
following critical difference: either plar. 

differences
d 	 = t .../2 (MSS1A ) cxperimen'

F ..jS 
Two 

was design(2.02) .../2(13.22) 
= v'9 = 3.46. this partiel 

"works" e' 
Using this value to assess the differences presented in Table 8-3, we find five of the holds the 
comparisons 	to be significant. (In contrast, the Tukey test, with a critieal value of does later. 

= 4.90, declared only one diffe rence, Al - A3 = 5.67, to be significant.) equal vari, dT 
You should note that the Fisher test involves no special corrections once the Carnes, ani 

overall F is found to be significant. Familywise error is controlled in effect by con· In Sl 
ditionalizing one's 'de'cision to conduct pairwise comparisons on the significance of before it ! 
the omnibus F test. That is, type I errors can be committed only when this F is unalysis of 
significant; and when the overall nulJ hypothesis is true, this will happen only a test is corr 
small proportion of the time, namely, the proportion specified by 0:. Thus, FW difference~ 

error is kept under control on the average by reducing greatly the proportion of 
times when a researcher conducts pairwise comparisons and the overall null hy· 
pothesis is true . 8.4 PRt 

.' . Carmer and Swanson (1973) compared 10 post hoc correction techniques 
using Monte Carlo procedures and concluded that the Fisher test offers the sort of You can n 
balance between type I error and power that most researchers would find attractive hund, you 
and acceptable. Cohen and Cohen (1975), for example, recommend the Fisher test number of 
as a general strategy for analyzing the outcome of a complex study (see pp. 162- realize tha' 
165 of that text). What is captured by the Fisher test is the attitude that a signifi­ are perfon 
cant ombibus F usually means that population treatment effects are probably luke the p. 
present and that additional tests are used to identify them; a certain number of the numb( 
type I errors will occur in this second stage, but they are far outweighed by a need Ihe increas 
to detect the true differences. fIndings aJ 

A serious problem with the Fisher test is its apparent incompatibility with a 
planned-comparison approach. The primary function of post hoc test procedures 
is to protect against reporting too many "accidents," i.e., type I errors. The Fisher 
lest performs this function by stopping the researcher 95 percent of the time when 
the null hypothesis is completely true, i.e., when there are no differences in the 
population. But consider a case in which a single "deviant" mean is added to a set 
of equal means. The Fisher test no longer offers the same sort of protection for 
these e qual means that it provided originally. This is because the omnibus F will 
now be significant more than 5 percent of the time-on account of the presence of .. 
this single deviant mean-and there will be an increased "opportunity" to make 
type I errors on comparisons involving the original set of treatments. Since experi­
ments with planned comparisons are designed to detect at least one difference that 
will be significant, a researcher is generally assured a Significant omnibus F and, as a 

, I 
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ii.ot ~~~~ •. plllvilinJ by the Fi~her test to conduct uncorrected post hoc 
.I,#..k'". theil, it secms inappropriate to use the Fisher test when 
~lfnl';lH'\III~ Hrc involved in the design or "dependable" treatment 
. "~IIIIIlI·<"Xpnilllclltal Effects, have been incorporated into the 

. '111!',lr"l~ with the Fisher test ~hould be mentioned. First, the test 
r~ll.·hr (Illllp~risons, but not all interesting research questions fit 

.,......;.., .. "'.. . It I'. I'IUhilbly safe to as~ume, however, that the Fisher test 
"t....IIIJll'lcx comparisons are included in the analysis since the test 

'J ~"tfl"l til the chosen level of significance regardless of what one 
:i,b~~fi:~'r.rr~W!~~· 1111' "Ishl'! test seems to run into serious difficulties when un­

"flllrd wilh unequal sample sizes in an experiment (Keselman, 

.......,.'.'T.--.FO J1)7"). 

:i.! !1!II~J!,lttlh .• ~ ""cd to know more about the properties of the Fisher test 

\lildl')IIIClid use advocated by Cohen and Cohen (1975). Jf my 
\1.~!lhllity of the planned-comparison approach and the Fisher 

',il "·,1I1 hI' H'cOIl1mended only for situations in which no specific 
.,11 hy the researcher. 

. rOINTS TO CONSIDER 

I~I' Ih(' ~l'Ijous dilemma faced by all researchers. On the one 
, t1")I~1I experiments that are analytically rich and lead to a 

.lJ~.~' ~\I/IlPllIlM)IlS and anaJyses, while on the other hand, you fully 
I),pr I ('[ror is present whenever two or more statistical te~ts 

illlll)'~i~ of a single experiment. At one extreme you could 
. • 11 pO\~ible findings are important and resist either restricting 

j~"II) IIlldcrtaken or employing some procedure to control 
.>ru.. ~•.~C" . :. ' ,ill, At the other extreme, you could maintain that accidental 

.~'hl~IJ Plld adopt strong corrective methods to prevent the 
j""", ,olllting from the assessment of two or more compari­
. )'1111 w\,uld evaluate all comparisons at the same PC rate 

"1111 (liSe, you would subject all comparisons to the Scheff!! 
.O~). The extreme positions are clear, but few individuals 
"I vicw. What most of us do is to strike some balance be­

lli 1111 ilttempt to detect the presence of the most impor­
tll~llIthillillg a reasonable control of FW error. 

']",:111 di5cllss a number of ways to resolve the unavoidable 
.tIIl type 11 errors. I will begin by considering a way to re­

. . '\!IlIIber of planned comparisons to a smaller and more 
1hc (lutcome of certain key comparisons to guide the rest 

, \tl'ill mention a different sort of strategy that allows a 
I,hl control over FW error and avoids loss of power as 
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well. Finally, 1 will offer some general recommendations for dealing with the evalu· 
ation of mUltiple comparisons. 

Conditionalized Planned Comparisons 

An important stage in the design of any experiment is to consider the nature 

and quality of the information obtainable from the study as planned. At Hils point, 

we can verify that the study will permit answers to our original research questions. 

This listing also provides a form of early warning that the number of planned com· 

parisons approaches or exceeds the number beyond which a researcher will begin 

become concerned about familywise type 1 error. If this number is not exceeded 

we will assume that the researcher will test these comparisons directly once the 

are collected and make no adjustment for the theoretical size of the FW error. 

what if the number of planned comparisons exceeds this value? One might de 

to do nothing and to live with the estimated FW error. Alternatively, one 
reduce the length of the list to include only comparisons of primary concern, 

which case the "secondary" comparisons might be subjected to some form of 

control while the more important comparisons are not. 
There is another way of dealing with this problem, which is best described 

a concrete example. Suppose an experiment is conducted that compares the 
formance of subjects folJowing the administration of two drugs, A and B. Supp 
further that two different control conditions were deemed necessary and that 
batches of drug A were available to the experimenter. The experiment can 
viewed as a single·factor design with a = 5 treatment conditions. The design and 

single-df comparisons that ask potentially meaningful questions of this expe 
are presented in Table 8-4. 

AJthough this set of meaningful comparisons falJs far short of including 

90 single-df comparisons possible when a = 5, the number of comparisons p 
bly exceeds the threshold beyond which most experimenters become 

with FW error. Suppose, however, we test comparison 1 first and 

the remaining 19 comparisons on the outcome of this single test . This pa 

comparison assesses the equivalence of the two control conditions. If the com 
son is not significant, we will probably consider combining the two groups in 

further comparisons and omit from consideration comparisons that involve 

two control conditions separately. On the other hand, if the comparison is 
nificant, we will be forced to evaluate drug effects with each control separately 

probably omit from consideration comparisons where the two control condl 

are combined . 

This conditionaJizing of subsequent comparisons on the outcome of c 

son 1 is summarized in the upper portion of Table 8-5. Comparisons listed 
left are the ones conducted if the observed difference between the two 

means is not significant, while comparisons listed on the right are the on 

ducted if the difference is significant. In the first case, the total number of 

parisons tested is 10, including the initial comparison; in the second case, 

" 

Table 8-4 A ~ 

MEANINGFUL 

COMPA R ISON5 


I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
IS 
16 
17 
18 
19 
20 

, fhe comI 
chug A. If t 

fhe two I 
'\lIlder the: 
If fhe t, 

I fested 



1able 8-4 A Set of Meaningful Comparisons 

MEANINGFUL 
(OMPARISONS CONTROll CONTROl2 DRUG Al DRUG A2 DRUG B 

1 +1 -1 0 0 0 
2 +3 +3 -2 -2 -2 
3 +1 +1 0 0 -2 
4 +1 +1 -1 -1 0 
5 +3 0 -1 -1 -1 
6 +1 0 0 d -1 
7 +2 0 -1 -I 0 
8 0 +3 -1 -1 -1 
9 0 +1 0 0 -1 

10 0 +2 -1 -1 0 
II +1 +1 -2 0 0 
12 +1 +1 0 -2 0 
13 + 1 . 0 -1 0 0 
14 +1 0 0 -I 0 
15 0 +1 -1 0 0 
16 0 +1 0 -I 0 
17 0 0 +1 -I 0 
III 0 0 +1 +1 -2 
) 9 0 0 +1 0 -1 
.20 0 0 0 +1 -1 

Is 15 . In either case, however, the total number of comparisons tested has 
"'~,nll"pn from the original number of 20. 

17 can be used in a similar fashion to narrow down the number 
comparisons actually tested in the analysis of this experiment. In this 

comparison involves an assessment of the equivalency of the two batches 
,A.. Jf the two batches produce equivalent results, we would probably com­

two groups in all further analyses involving drug A. The comparisons we 
t these circumstances are listed on the left in the middle section of Table 

tlat two batches are nor equivalent, we are forced to conduct separate 
for tlle two batches and omit comparisons where they are combined. These 

are listed on the right in the table. The total number of compari50ns 
""',III1I1lL' the initial one is 12 when comparison 17 is not significant and 13 

ison 17 is significant. Again, there is a reduction in the number of 
lested when we use this conditionalized, or branching, technique. 

c.onditionalize on borh of these initial comparisons, we can reduce the 
stiJ] further, as is illustrated in the fourfold table presented in the 
of Table 8-5. The largest number of comparisons tested in this ar­

. Wt include the first two -is 10, when both comparisons are significant, 
· Ilumber is 6, when neither comparison is significant. 
for reducing the number of planned comparisons would probably 

con1roversy. Most researchers would agree that oneshould combine 
conditions or the two batch conditions, since there is no com­
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Table 8-5 An Example of Conditionalizing Planned Comparisons 	 ih:cision category to " 
Ihe problem-FW and 

TEST OF COMPARISON' rver F "" "fi . compo lS slgm 1 

lrvcl of significance, t 
y.·isc IYpe I error. Inst 

Not Significant Significant 

Test: compo 2,3,4, Test: compo5,6 , 7, .lIch ambiguous case: 
11,12,17,18,19, 8,9,10,13,14,15, 'II~Jl("Jld judgment COl
and 20. 	 16,17,18,19, and 20. 

Irtion in this situatio 
i<lll~e<]uence, the dec 
I),po[hesis has not be 

TEST OF COMPARISON 17 pO[rntial true diffe · 

Not Significant Significant 

Test: comp.l,2,3, Test: comp.l,3,6, 
4,5,6,7,8,9, 9,11,12,13,14, 
10, and 18 . 15,16, 19,and 20. 

TEST OF COMPARISON' 

TEST OF COMPARISON ·'7 Not Significant Significant 

Test : comp.2, Test: comp.5,6,7,8,
Not Significant 3,4, and 18. 9,10,andI8. 

ITclence that is lal 
ncw, but was su 

m in the evalu 
lise of a third de 
cillrity into a Sitl 

rule. 

How might trus 
the critical v: 

111is value, wrucl 

Oil region for p: 
lion for rejection 
. which I will ca 

Test: comp.3,11, Test: compo 6, 9,13,
Significant 12,19, and 20. 14, 1 5, 16, 19, and 

peUing theoretical reason for not doing so. That is, the question is in essence 
pirical, rather than theoretical. Thus, the decision to combine or not to comb 
conditions can be reasonably decided by the outcome of the two statistical te 
The only question that might be raised concerns the presumed acceptance of 
null hypothesis when the nonsignificant conditions are combined. One way to 
with this difficulty is to test the significance of these branching comparisons a\ 
higher than normal probability level (e.g., Q = .1 0 or .25) in order to increase 
and one's confidence in "accepting" the null hypothesis by combining rJ(lIrr~"ITI'" 

cant conditions. 

A Decision to Suspend Judgment 

The major obstacle in the way of recommending a genera] plan for d 
with multiple comparisons that will satisfy most researchers is the differen 
attitudes toward type I and type Il errors held by different investigators. 
stumbling block can be circumvented rather than removed simply by adding a 
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decision category to the evaluation process when the two concerns responsible for 
the problem-FW and power-are in conflict. This conflict occurs, of course, when­

rver F om is significant as a planned comparison evaluated at an uncorrected ex c ~ , 
Irvc\ of significance, but it is not significant when the 0' level is corrected for family­
wi~c type I error. Instead of deciding to reject or not to reject the null hypothesis in 

ambiguous cases, I propose that we recognize this ambiguity by deciding to 
judgment concerning the status of the nulJ hypothesis. By taking no formal 

ion iri this situation, we avoid committing either a type I or a type II error. As a 
IIIsequence, the decision contributes nothing to familywise error, since the null 

thesis has not been formally rejected. Suspending judgment calls attention to 
ential true difference and avoids creating the obscurity often associated with a 
renee that is labeled "nonsignificant." The idea of suspending judgment is 
nt'w, but was suggested by Hays (J 973, pp. 350-353) to deal with a similar 

in the evaluation of the overall F test. Applied to multiple comparisons, 
' uae of a third decision category of suspending judgment introduces flexibility 

tiurity into a situation in which arbitrariness and ambiguity instead have been 

Bow might this new procedure work out in practice? The first step is to de­
the critical value of the test statistic at the uncorrected level of significance 
value, which I will calJ CV0:' is used to define the lower boundary of the 
region for planned comparisons. The second step is to set a more stringent 
for rejection that reflects one's concern for familywise type I error. This 

which I will cill CVFW' refers to the rejection region for the correction tech­
-c-onsidered most appropriate for the analysis. 1 can now state the decision 

follows: 

tht test statistic equals or exceeds C VFW' reject H o ' 

.lIt test statistic falls between CV
Q 

,and CVFW' suspend judgment. 

co tts't statistic is less than CV
Q 

, do not reject Ho­

:1In i1fustration, let's return to the experiment used as a numerical example 
hdfe test (pp. 151-152). For that particular experiment, the critical value 

leffe! test was Fs = 10.44, while the critical value for planned compari­
/'0 = 4.08. The test statistic calculated from the data was an F ratio 
It decision rules for this ca-se become: 

> 10.44,rejectBo · 


falls between 4.08 and] 0.44, suspend judgment. 


'<4.08, do not reject Bo . 

. in this example was 14.30 and Ho is rejected. 
iF!ustration, consider the example presented in conjunction with 

(pp. 155-156). In this case, the test statistic is expressed as the 
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difference between two means, symbolized as $. For the Tukey test, the critical you. I wiI: 
value is dr = 4.90. The corresponding value for planned comparisons, calculated (kciding h 
from Eq. (8-9) on p. 158, is 3.46. The decision rules are: Plan 

b"hind an Jf l/I ~ 4.90, rejeci Ho. 


lf $ falls between 3.46 and 4.90, suspend judgment. 


Jf $ < 3.46, do nol reject Ho' 


If you refer to Table 8-3 (p. 156), where all possible pairwise 

enumerated, you can see that one of the comparisons exceeds 4.90 and leads to 

rejection of H~ (5.67), four fall between 3.46 and 4.90 and lead to the suspens 

of judgment (4.89, 4.33, 4.00, and 3.55), and the remaining .five are less t 


3.46 and lead to the nonrejection of H0 (2.66, 1.67, 1.34, .89, and .78). 
The three-decision system recognizes the ambiguity that exists when a 


parison is significant under one criterion (as a planned comparison) but not 

nificant under a more severe criterion (as a corrected post hoc comparison). 

suspending judgment, we · avoid committing either type of error, and simply 

elude that the evidence is not sufficiently strong to justify either one of the 

conclusions. Since we have not rejected the null hypothesis, no type I error is 

mitted, and the FW error is left unaffected by this decision. Since we have 

pended judgment, no type 11 error is committed, and intere~ting and unex 

findings, often overlooked when a Scheffe test or other correction techn 

used, can be assimilated into the interpretation of the experiment and 

earmarked for future replication and study. 


Recommendations and Guidelines 

You are now in a position to make up your own mind concerning the e 
tion of analytical comparisons. The fact that there is little agreement amonll 
mentators writing in statistical books and articles concerning specific cou 
action to be followed with multiple comparisons simply means that the is~ 
complex, and that no single solution can be offered to meet adequately the 
needs of researchers. Consequently, you should view the situation not with 
and frustration, but rather with a realization that you can and must work thf 
lem out for yourself. The first step is to understand the basic issue-which is 
really-that analytical comparisons, which are conducted in virtually every 
ment we will consider in psychology, increase type I eIror in a p 
inevitable fashion. Does this bother you? Your degree of concern, which is 
your attitude toward the relative importance of type I and type II erron 
and for your research field, will contribute greatly to your decision. Whllt 
you may adopt, however, you should make some attempt to estimate the 
power under which you will be operating for comparisons of primary i 
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you. I wiIl now offer some recommendations and guidelines that may assist you in 

deciding how to evaluate the analytical comparisons derived from your research . 
Planned Comparisons. Planned comparisons are usuaJly the motivating force 

hehind an experiment. These comparisons are targeted from the start of the investi­

~lItion and represent an interest in particular combinations of conditions-not in the 
overall experiment. Planned comparisons are examples of what Tukey (1977) calls 
("()nfirmatory ~tatistical analysis, where specific questions that can be confirmed or 
dlsconfirmed are tested in an experiment. In keeping with the special status ac· 
unded planned comparisons, I recommend using the uncorrected PC rate, 0", to 
rY~luate the relevant test statistics. If the number of planned comparisons ex­
tc"t,ds the number of degrees of freedom associated with the overall treatment 
IIIrun square, I suggest the use of the modified Bonferroni test (pp. 147-149) 

maintain the FW error for planned comparisons at the level dictated by d~ , 
Ill>rncly, (a - I)(o) Planned comparisons need not be orthogonal, although or­

comparisons do provide an unambiguous allocation of the treatment 

tion. 
Post Hoc Comparisons. In post hoc data analysis, the type of question asked 
from "Is this difference significant?" which characterizes planned compari­

, to "Which differences are significant?" which characterizes post hoc com­
The concern is with the whole set of treatments, rather than particular 

binatlons of conditions . The probability of finding significant differences by 
depends on the number of treatment conditions; hence, it makes sense to 

0' ubout the FW rate under these circumstances. 
11 is my opinion that post hoc comparisons should be subjected to a more 
. nt standard to guard against corrunitting an unacceptably large number of 
J errors. Just which correction technique you choose depends on the nature 

comparisons examined in the post hoc analysis. If the comparisons consist 

"r differences between a control condition and severaJ experimental condi­


the Dunnett test (pp . 153-155) is appropriate. If various simple pairwise 

are considered, the Tukey test (pp. 155-156) is recommended. Finally, 


complex comparisons are involved, the Scheff!! test (pp. 151-153) is the 


counteract any loss of power when post hoc corrections are applied, I 

the use of the decision category to suspend judgment (pp . 162- 164). 


ndlng judgment on post hoc differences that would be significant as 

comparisons but are not sufficiently large to be significant with a post hoc 

eun minimize the danger of missing smaJl but interesting findings dis­


the course of systematically combing through the data. The ques­

, can then be dealt with later-by conducting future experiments that 


Ily designed to study these post hoc findings for which judgment was 

In short, what Tukey (I977) calls ex pIoratory data analysis, the un­

Interesting and unexpected findings,often generates the planned com­


and examined in subsequent experiments. 
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8.5 .EXERCISESll 

1. Table 8-4 (p. 161) lists 20 potentially meaningfu] singJe-d[ comparisons for a 
particular experiment. Translate the sets of coefficients defining these compari­
sons into a verbal statement describing the question asked by each comparison. 

2. 	 The bottom portion of Table 8-5 (p. 162) summarizes an analysis plan that 
depends on the joint outcome of two preliminary statistical tests. 
(a) 	Using the modified Bonferroni test, determine the values of 0phlnned to be 

used in each of the four alternative plans. Use 0 = .05 as your starting point. 
(Be sure to include the two preliminary comparisons in your calculations.) 

(b) 	What is the critical value of F in each of these situ ationsi Assume s = 10. 
3. 	Assume that we have a control group and seven experimental groups, with s = 16 

su bjects for each group. The MSS/A 28.75. The totals for each group are given 
below: 

C 

289 270 279 191 213 205 198 

(a) 	Is the overall F significant? 
(b) 	Use Dunnett's test to determine which of the treatment means is signifi­

cantly different from the mean of the control group. Use a two-tailed test 
ato=.05. 

(c) 	Make the same set of comparisons with the Scheffe procedure, ex == .05. Do 
your conclusions change? 

4. 	Suppose we have an experiment with independent groups of s == 7 subjects 
randomly assigned !o each oL8 treatment conditions. The error term MSS /A == 
58.65. The treatment sums are given below: 

aS 

316 333 307 373 398 227 123 436 

(a) 	Conduct the Fisher test on all pairwise differences, using ex == .05. 
(b) 	Evaluate the same pairwise differences with the Tukey test,ex == .05. 
(c) 	How would you modify your conclusions in part (b) if you adopted the 

three-decision procedure described in Section 8.4 (pp. 162- 164)? 

JIThe answers to these problems are found in Appendix B, beginning on p. 56S. 
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