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A generalized Wilcoxon test for comparing
arbitrarily singly-censored samples*

By EDMUND A. GEHAN
" pirkbeck College, London and the National Institutes of Health, Bethesda

1. SUMMARY

distribution-free two-sample test is proposed that is an extension of the Wilcoxon test

smples with arbitrary censoring on the right. The test is conditional on the pattern

- ervations. The null hypothesis is

S Hy: Fy(t) = Fyt) (< T') against either

H,: Fiit) < Fat) (¢ < T) or
H,: F|(t) < Fy(t) or F(t)> Kt) (< ),

“"ghere Iy, F, are cumulative distributions (discrete or continuous) of the observations and
7'is their upper limit. The test is shown to be asymptotically normal and consistent against
ane-sided alternatives F(t) < Ft) (t < Ty and against two-sided alternatives where either

VRt < Fy(t) or Ft) > F) < T'). The asymptotic efficiency of the test relative to the

{ efficient parametric test when the distributions are exponential is at least 0-75 and increases

degree of censoring. When H, is true, the testis not seriously affected by real differences
he percentage censored in the two groups. Some comparisons are made for five cases of
ving degrees of censoring and tying between probabilities from the exact test and those

Tthe proposed test and these suggest the test is appropriate under certain conditions

en the sample size is five in each group. A worked example is presented and some

sion is given to further problems.

g 2. INTRODUCTION

.The statistical problem considered in this paper arises in clinical trials comparing two
idreatments, where the observation for each patient is often time to failure or censoring
b(sometimes referred to as loss). In fact, the results are relevant for distributions other than
failure times and in fields of application outside medicine. However, the discussion is in
terms of failure times since most applications are of this type and it is convenient to use
medical terminology. -
" A common problem in & clinical trial is to compare two treatments for their ability to
prolong life or maintain a patient in a well state. Patients enter study serially in time and
... srerandomly allocated to one of two treatments. At a time T after the start of the study,
< a0 observation is recorded of time to failure (death or relapse) or censoring from observation
. (patient still alive or in remission at T). In general, n;—r; individuals have failed and r; are
«g._OFnsored at time 7' (i = 1,2), but because patients have entered at different times, the
aZtimes to censoring will differ among patients.
ZEP9! A special case has been considered by Halperin (1960) in an industrial life-testing context.

“* This investigation was supported by a Public Health Service Research Grant from the National
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In his application, components could be started on test at the same time so that at tl;e g
of the experiment, times to censoring were the same for items not having failed. Howeves
times to censoring could differ in industrial life-testing experiments where items are stagd
at different times or where a policy of replacing failed items is followed. :
If it is known that time to failure is exponentially distributed in both treatment groyy,

the given pattern of failures and censored observations. G

Halperin (1960) and Rao, Savage & Sobel (1960) have considered two-sample tests :}
i:ensormg, though all assume that times to censoring are the same in both samples. Recentivy
"Alling (1963) has proposed a modified Wilcoxon test to be calculated sequentially so that
an early decision may possibly be reached. His test is valid when censored observations arg
present, the test being based on least upper and greatest lower bounds for subsequent
values of the ordinary Wilcoxon test statistic. The greatest saving in time of observanon
is when the sample sizes are small.

3. THE W STATISTIC AND RELATION TO OTHER STATISTICS

We assume that n,, n, individuals are allocated randomly to treatments 4, B, respectively
and we observe: Zy, ..., %y, 7y censored
. treatment 4,
Ty p1s -o-1 Tnyy My — 1y failures

’ 4
Y1»--sYpy Ty Cemsored

Yrgt1s -oo3Ynyy Mo —Ty failures .
where z;, y,; are times to failure and z;, y; are times to censoring (all measured from tlme ]
entry into study). It is emphasized again that the observations need not be failure times:

Such a pattern of observations could arise in a number of ways: in a clinical trial con;
ducted for fixed time 7' where patients enter study serially in the interval 0 to 7'; in an
industrial experiment where all components are started at time zero and an analysis is being}
done at time T later; in the same type of experiment, except that items that fail are replaced
randomly; in a medical or industrial experiment where studies are being conducted at
different centres, each study lasting a different length of time and an analysis is done by
pooling results from all- centres. Here T is the upper limit of time of observation among
centres. A further possibility is a study of tolerances to different drugs when for some:
reason large tolerances cannot be measured accurately. .;_

The test proposed is appropriate for these and possibly other cases with general types of
censoring. The essential requirement is that the average exposure to the risk of failure be
the same in the two groups. In other applications, the arbitrary censoring should be of the
same type in both groups. In the sequel, the test is discussed in terms of the clinical trial;
though it is clear that the other applications will also be relevant. b

The times to failure are from cumulative distribution functions (c.D.r.’s) Fi(z), Fg(y)l
which may be discrete or continuous. When considering the sample outcomes, we allow
the possibility of ties among failure and loss times.
The null hypothesis is

F ()= F,(t) (¢<T) (treatments 4 and B equally effective).

} treatment B, : --.--;;'J__‘.
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s0 that at the exi _

; failed. However§

e items are Starteé .

alternative hypotheses (H,) are either
H: F@¢) <K (€< T) (treatment 4 more effective than B),

) ;-the two-sided version H,: Fy(t) < Fft),
F)> F@) ¢<T) (treatment A or B more effective).

treatment groupg
two tail tests of the difference between the c.D.F.'s for

ie the exponentia]
ly applicable, wed
1 extension of the' ,
t is conditional on S

. Roughly, we are interested in one or
ents 4 and B.

.‘We define -1 z;<y, or Z<Yp

U;= 0 z,=y; or (zi,y;) or z; <y; or Y, < Ty, (3-1)
+1 z,>y, or T 2Y;

-sample tests W1th
where the sum is over all 7,7, comparisons. Hence,

amples. Recently;
quentially so that$
d observations are"

d calculate the statistic W = Z Uy
i
f the two samples where both patients

there will be a contribution to W for all comparisons o
tient censored from observa-

ot
have failed (except for ties) and in all comparisons where a pa

tion has survived longer than one who has failed.
The W statistic is related to the Wilcoxon (1945) statistic T, the Mann-Whitney (1947)

statistic U’ and Kendall's (1955) statistic S when there are no censored observations or ties.
It is easy to show that W = ng(ny +1,+1)— 27",
in the ordered combined sample. Also,

s for subsequen

me of observation WX
323

zs
A, B, respectively where T" is the sum of the ranks of the second sample
) W =20 —nyn,,

where U’ counts the number of times an observation in the seco
e first in the combined ranking of the two samples. Further, W =35, 8 statistic defined
by Kendall for use in rank correlation. The last is also true when ties are present.

When all censored observations have the value T, Halperin’s (1960) statistic U, is
defined by W = 2U,+ 11—~ M s

where U, is related to the Mann-Whitney statistic by U, = U’ (1, — 1y, Teg—T3) + 11(T0a —T2)-
Here U'(n, —r;,ny—1,) is the Mann-Whitney statistic based on the ny +ny — ry — 1y failures.

nd sample precedes one in

ured from time of;
t be failure times;
clinical trial con-3
~val 0 to T; in an}
n analysis is being 3
1t fail are replaced
ing conducted at
aalysis is done by
Jservation among
7s when for some

4. THE CONDITIONAL MEAN AND VARIANCE OF w
ons which can be arranged in the following general pattern:

m‘ﬁl

1

my §

L] lz
L

We have n,,n, observati

h general types of (&)
. risk of failure be
g should be of t.he"w -
“the clinical trial; 1§

G)8
5.5) F(z) B
tcomes, we allow,

° L ]
mg h Is
_where

m; = number of uncensored observations at rapk ¢ in rank orderin

bservations with distinct values;
I, = number of right-censored observations with values greater

renk ¢ but less than observations at rank (i+1).

g of uncensored

than observations at
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The points on the vertical line correspond to a rank ordering of the distinct va.lueg of 1}
failure observations and these occur at s distinet failure points. Any set of failed and Oenso
observations can be represented according to this diagram. If there are censored obgep, 8
tions prior to the first failure, these could be included by counting them as l; with m < --
Ordinarily, such observations would be excluded since they provide no information Onth; 3
differences between 4 and B. The calculation of mean and variance is not affected, since the v
calculation is conditional on the given pattern of observations. As an example, if a,
represents a censored observation and we have the following sample of survival tlm
(weeks): 8, 8+, 10, 10, 11+, 14 +, the pattern is

1
1

g |
. BRAY

Suppose H, is true and the average exposure to the risk of failing is the same in the twp3

Pl ¢
groups. If the n, +n, individuals in the pattern are labelled differently, there are (n1 +"‘)
. nl . K

possible allocations of the individuals to two samples with n,, 7, observations. We consid
the conditional mean and variance of W under H, These are denoted by E(W|P, H)
and var (W|P, H,), where P is the pattern of observations. The expectations are over
the (n, +n,)!/{n,!n,!} equally likely samples leading to the same observed pattern P.

It is easy to see E(W|P, Hy) = 0,
by symmetry. _
The derivation of the variance is given in Appendix A. The formula is
™Ry
P 1 l
vor (F|P, B = o | S mdla # )+ S LMD
+ '21 myny+ng—M;~Ly ) (ny+n, =38, —my—L;, — 1)} )
f
where M = ‘Z my, My =0,
E Z{, Lo = 0-
il
When there are no ties or losses, i.e.m; = ...=m,=1,, = ... =], =0,and s = n, +na,

the formula becomes wi_ra.r (W|P, Hy) = 4nymg(ny +7g+ 1)
which is the form expected from the variance of the Mann-Whitney (1947) statistic. Here,
P is simply the ranking of the n; +n, observations. )

If there are no ties and all censored observations occur after the (n, +mn,—r, —rs)th %
failure,ie.my = ... =m, =1, =...=1_, = 0,1, =r +r,,ands = n, +n, —r, —r, we have .

My (e — r.,) 2
ar (W|P, H,) = (g +70g) (n1+n2 {(7H+nz) (ri+72) +3[(ny+np—1 —15)2 1]},
which is that expected from the relation between W and the U, of Halperin (1960). 2
Hemelrijk (1952) has given a formula for the variance of the Mann—Whitney statistic, U's% -}
allowing for ties. His formula gives the same result as (4-3) when there are tied and fa.llure
observations only. SEyo- i
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Whenm, =m b =lLm=l=0@%+ 1) (or equivalently my = my, my = my, Iy = Oforalls,

t values Qfém :

d and censoreq : 20 (i > 2)), the observations form a 2 x 2 contingency table with margins fixed and
sored obsery 4 constitute an outcome in hypergeometric sampling. If two treatments are being compared
"y with m, =" in ny,ny patients, the m individuals may be considered as the ‘responders’ having tied
rmation on the "va.lues on a response scale and the ! individuals as ‘non-responders’, i.e. as being censored
:cted, since the . snd requiring a greater stimulus to respond. The W statistic reduces to the difference in the
ample, if a, %product's of the diagonals in the 2 x 2 table and
survival tim o (W|P, Hy) Imn,ny B
var , = —
¥ (g —1)
 hich is exactly the same as that obtained by assuming the W statistic to be an outcome
) hypergeometric sampling.
‘me in the tw : 5. THE CALCULATION OF W aND var(W|P, H,) IN LARGE SAMPLES
e are (n‘ +"" This section can be conveniently skipped by those not concerned with the calculation of
. W in reasonably large samples (say 7,7, both 25 or more); suffice to say that W and
. We consider e . .
y E(W|P, B, var (W|P, Hy) can be calculated quite easily by grouping the failure and censored observa-
jons are :)ver ; tions. The W statistic and its variance are simple to calculate when n,,n, are small. How-
attern P ever if n,, 7, are large, then both the mean and variance calculation are lengthy.
’ . Of course, it would not be difficult to program both calculations for an electronic
(4.2)., computer. Alternatively, the failure and censored observations could be grouped in
intervals in a way similar to that of the life table:
\‘W 'I‘rejiment A
+1) No. of Cum. no. No. of
) Interval failures of failures censored
o 1)} ) 1 fra Fra 14
1 b «:.4 F :(A 64:4
$ fua Fu Ct

fi4 = number of failures in interval ¢,
¢;4 = number of censored observations in interval 1,

d s =ny+ny
i -
Fy= 'ZlfjA
J-
atistic. Here, . . . :
and there is another table with entries f;g, ¢;5 and Fip defined in the same way for treat-

ment B.
. The intervals should be chosen the same as for ordinary frequency distributions and
‘Deed not be of equal length. The failures in the ith interval are considered ‘tied’ at rank 1
. in the rank ordering of intervals. The censored observations are also considered as ‘tied’ in
the sth interval and are counted as occurring after intervalt—1 but before ¢. Thus, informa-
on is lost concerning the ordering of failed and censored observations within each interval.

The formula for W then becomes

fy— 1, —3)th

1960). i
statistic, k:
W= §1{U¢4 +¢ ) Fiy p—fin+cinl Fiyuh (6-1)

cmres
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where it is assumed that the same intervals are used in both samples. This statistic is quite}
simple to evaluate if each term is calculated successively by interval in the 2PPropriate]

table.
The conditional variance of W is found by using the general formula (4-3) with

my = foa+fip U= G a1 me

Both E(W|P, H,) (in absolute value) and var (W|P, Hy) will tend to be smaller on the -
average for the grouped case than for the ungrouped case. This results from the loss qf
a proportion of the n, n, comparisons because of grouping. If this proportion is not
the test of W should not be seriously affected. In any doubtful case, the test on the’
ungrouped data could be carried out.

6. ASYMPTOTIC NORMALITY OF W

In Appendix B, it is shown that W is asymptotically normal with mean and variance
under the null hypothesis given by (4-2) and (4-3). The result follows because (n,n,)=1W has
the form of a two-sample U statistic, defined by Lehmann (1951), and a convergenee
theorem of Cramér (1946) may be applied to prove asymptotic normality. It is assumed =3
that unconditionally the pattern of observations has arisen in a random way from a .
probability distribution of times to entry into study (in a special case, all patients enter at
time zero) and two probability distributions of times to failure.

Consequently, to test H, against either H, or H,, a value of

P -
J{var (WP, Hy)}

is taken as asymptotically normal with zero mean and unit variance.

The normal approximation is somewhat better if a continuity correction is made§
especially if the sample sizes are not large. In an application where there are no or relatlvely
few tied and censored observations, a continuity correction of +1 should be made. Here 3
the possible W scores will usually be two units apart. Otherwise, the contmuxty correcti
should be 3.

The adequacy of the normal approximation is investigated in §10. The results indi
that the W test can be applied when sample sizes are as small as n, = n, = 5, as long as 10
more than six of the ten observations are involved in ties or censoring and there are at lesst
five distinct failure points. In the special case m, = m,l; =, m; = I; = 0(i + 1) where th
observations form a 2 x 2 contingency table, the W test is equivalent to the test based 0
the normal approximation to the hypergeometric distribution. Pearson (1947) has shown
that even for moderate sample sizes the normal approximation gives probabilities in d08°
agreement with those from the hypergeometric distribution.

7. THE CONSISTENCY OF THE W TEST

We now consider the behaviour of the W test when the null hypothesis is not true ""
this, we need E(W|P, H,) and a bound for var (W|P, H,). The alternative hypothesis & h
is fixed, that is it does not depend on the sample size in each group. Justasin Appendlx
we assume that considered unconditionally X, ..., X, are independent random veC
variables taking values (z, 0) or (2, 1) if the sample outcome is a failure, censored obse

054
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Chis statistic is q:i spectively. There is a similar assumption for Ty, ..., ¥,,. For the sake of simplicity

lin the approprigted

on, I
o als0 assuIe 7y = Mg = n.
L (43) with ‘Websve  p(w|P, H,) = n¥Pr (X, > H|P, H)—Pr(X: < HiP, Ha)

“ nd this is non-zero when
! -

(5:9) Pr(X, > ¥)-Pr(X, < ¥) +0.
0 be smaller on " .
iIts from the loss of gl .
portion is not "
1se, the test on. the
st \

or the variance, we write
" p=4var (W|P, H,) = n—E(W?|P, H,) —n—[E(W|P, H,)]?
= n~E {TU%+ I Uy U+ X U; Uy + T Uy Uer|Ps Hyj
e ey -

i
AN

- n—‘[E{z UHIP’ Ha}]z'
en?, n3(n—1),n%n —1)and n%(n —1)?individual

The four terms comprising E(W3|P, H,) hav
at most one. Therefore, the first three terms

7
> terms in the summations, each with expectation
in the above expression are at most O(1/n). But

E{Z Ui Ui 5| Ps Hp} = _}_,‘_'E(Ui,-]P, H,) E(U5|P, H,)

mean and variance
cause (7, 7n,)" W hag
and a convergence
ility. It is assume
andom way from s
all patients enter a

[C 24

j®i bAoN

= n2(n— 12 [B(U,| P, H)P?
[E{ZQJIP’ Ha}]2 = [ZE(qulPr Ha)]2
= n*[E(Uy|P, Ha)J*

and

that n—4 var (W|P, H,) is at most o(1/n).
Therefore lim n—4var (W|P, H,) = 0.

n—2E(W|P, H;) —-n-2E(W|P, H,)
J{n—var (W|P, H,)}

becomes indefinitely large as n—>co and the probability that the W test rejects

sorrection is made bo mull
the n

» are no or relativel
uld be made. Here
»ntinuity correctio

hypothesis is 1.
Thus, the W test is consistent for alternatives where (7-1) is true. In particular, the one-

gaded W test is consistent against alternatives F(t) < Flt) ¢ < T) and the two-sided test
* against alternatives where either F(¢) > Fyt) or F(t) < B(t) (¢ < T).

The results indicate
. = 5, as long as not
nd there are at least
. 0( & 1) where the .-y
to the test based on :
m (1947) has shown
rrobabilities in close

8. THE ASYMPTOTIC RELATIVE EFFICIENCY oF W 10 F ASSUMING
EXPONENTIAL FAILURE DISTRIBUTIOXS

Suppose the probability density function of time to failure for a patient receiving treat-

ment 4 is
fi(z) = pexp(—92)
and that for a patient receiving treatment Bis

foly) = 69 exp (—69Y)-

-+ We wish to test the hypothesis
H: Fy(t) = F,(6t) (t< T,0<6<1)
1. Such a test would be appropriate if we

+ment B were & constant proportion (6) of
the failure times for the patients on

Biom. 52

[ .

:sis is not true. Forg
ive hypothesis here 38
i as in Appendix B, 38 here under H,: 6 = 1 and under Hy: 0 <6 <
en dom vecwf. B 3 Yere interested in whether failure times on trea
red observa- g #those on treatment A. For example, if § = 075,

,
‘s
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treatment 4 would be 25 9, longer than those on treatment B. A test of the above s
thesis is equivalent to one for differences in location, F(f) = Fy(t+6), when logs of faﬂm
times are analysed.

An efficient parametric test for the hypothesis is to take i,/Z, as having an F dmtnbuhon
with (2(n; —r,), 2(n, —,)) degrees of freedom, where

f{=1 fmr41 im] imry+1

Zx=(§ z;+ ,i zi)/("q"’&): {z=(£ yit+ § yi)/(nz—’z)-

The F distribution is exact when the time of observation in each group is a random Va_rjabk
and n,—r,, ny—r, are fixed, and a good approximation (Cox, 1953) when the time
observation is fixed and the number of patients failing prior to that is random.
We wish to calculate the asymptotic efficiency of the generalized Wilcoxon test re
to the F test in two situations:
(a) all individuals enter study at time zero, observation stops at 7' (the case where
individuals fail is covered by letting T'—0),
(b) individuals enter study at a constant rate, A, in the interval 0 to T and fail according
to fy(z) or fa(y)
For both cases, it is assumed that the number of patients in each group is n. Case (b) is
a model of a clinical trial, also suggested by Armitage (1959), where it is reasonable to assume ¥
there is a fixed probability, A(At), of a patient entering a study in any small interval of ;3§
time (At). Unconditionally both the number of patients entering study and the total tum
of exposure to the risk of failing are random variables. Conditional on 2 patients bexny
entered in 0 to 7', the times of entry will be distributed independently and uniformly o
the interval (0, 7).
For case (a), the chance of an individual being censored at time 7' is e~7%, e~T% for those
receiving treatments 4, B, respectively. For case (b), the same chances are ( —e'T¢)/(T¢ '
and (1 —e~79)/(T'6¢). Further details are given in Appendix C.
In the calculation, it is convenient to transform the F statistic to z = }log ¥ so th&t
asymptotically normal with

T8

1 1
var(e) =3 (2<nq—r1)+2(nz—rz))

where 2(n, —r,), 2(n, —r,) are the number of degrees of freedom in F. Also, we arrange the
the variance of each test statistic is of order n-1 by considering n—2W rather than W. »

To obtain an asymptotic measure of test efficiency, we consider a sequence of alternative &
hypotheses in which § approaches the value tested, § = 1, as n increases. In this case, the g
asymptotic efficiency of W relative to F is .

{BE(n“2W) }2
26 61 {n var (z| H,)}
4-R-B ,llf,l,, {nvar (n2W|H,) }>< 0E(z)| |®
{——w 0-1}

Pp. 265-76).
Values of A.Rr.E. for case (a) and (b) are given in Table 1 for various values of T'¢.
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of the above ky: total study time
7hen logs of ; . Té = average failure time oD treatment 4’
’ he A.R.E. can be obtained. Note that

available, some idea of t
and (b) and that A.B.E. increases as

8/9 for case (b)- Clinical
close to 0-80.

2 a0 F distet giilie: - pit + if an estimate of T¢ is

ibutiog - Mmininmm value of A.R.E. is 0-75 for both cases (a)

'Y rg decreases. As T¢—0, AR.E. approaches one for case (a) and

gals 8x® often conducted with T'¢ about 2 or 3 and here A.R.E. is

= Table 1. Asymptotic efficiency of W relative to F assuming
exponential failure in two groups

;a random variable .::
¢ B: 6 exp(—09y)

n:gz;?he time of. Treatment A: gexp(— ¢z} trestmen
coxon test relgf?;i o Case (a). All individuals enter study at time zero, observation stops &t T,
RS20 T¢ - © ,T¢=3 T =2 T$ =1 T¢ >0
0-750 0-785 0-838 0-934 1

AR

A.R.E.

(the case where. 2
. . '* 1’: Case (b)- Individuals enter study according to uniform distribution over 0, and
and fail a.coo i" study stops at T
R . T¢ -+ © T¢ = 3 T¢ = 2 T¢ =1 T¢ > 0
»up is n. Case (b):' | AR.E. 0-750 0-781 0-802 0-836 8/9
:asonable to assume
v small i .4 A rationale for these results is as follows: consider the patterns of observations for &
S all interval " Y i . . . . :
- and the total time i “ase (o) situation with a high degree of censoring. The patterns might appear as

<t

1 2{1 tients being e y- -
ar ormly over Y
By - i, A 8

=T, e~ for those S
;are (1 —e~T9) /(Tqif g2
1 differ from one when there is & difference in the
aumber of failures and fvmes to failure between 4 and B. The value of W depends mainly on

*the difference in the number of failures between groups. The A.R.E. result means that as T¢
becomes small and there is more censoring, the times to failure are not much more important
than the number of failures. The same type of result was found by Armitage (1959) for
paired data, when he compared the A.R.E. of the sign method to parametric maximum

Hkelihood for exponential distributions.
The increase in A.R.E. i3 slower for case (b) 8s T¢-0. In this situation, it would be

“axpected that those individuals censored would be amon:
10 would tend to occur near the beginning of the pattern.
would then be relatively more important.

++ These results suggest that the W test would be reasonable to

. failure time distributions, especially when some censoring is expec
tions are not exponential, two-parameter distribution such as the
needed. If X has a Weibull distribution, it is well k
‘_ﬁstribution. But any such power transformation wo
x1‘1‘73-1‘ia.nt. Hence, the calculations of A.R.E. given would
tions were assumed to be Weibull with known index. It is reasona

ABE. values would be at least as great if the distri

_":?hde!, 80 that the stated values are lower bounds for A.R.E.
1472

The ratio of the means in the F test wil

: $log F so that zis

s0, we arrange thst’
rather than W. .
1ence of alternstive e
5. In this case, the

1
"

»d exposition of the
1l & Stuart (1981."'*4

g the later entrants to study and
Knowledge of the times to failure

apply when comparing
ted. When the distribu-
Weibull might be
nown that XU bas an exponential
uld not affect W since W is rank
be exactly the same if the distribu-
ble to suppose that the
butions were Weibull with unknown
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9. Lo0SS RATE DIFFERENT IN THE TWO GROUPS

Suppose that in an application there is in fact no difference in the C.D.F.’s of tm_les
failure, but that for some reason there is a difference in the percentage censored in the'ty
groups. In an extreme case, all individuals are observed to failure in one group and stygy
stops at time 7} in the other group. This could happen in 2 clinical trial if the drug yive, o
to patients in one group had deteriorated by time T, or it was not possible to inisie
treatment after time T,. In such cases, it would only be appropriate to consider fajlypy
and censored observations up to time 7} in the affected group. We assume that the samply,
size is » in each group and all individuals have entered study at time zero, so T,is the leng&a
of study for all individuals in the affected group. '

Table 2., Ratio of \J{var (W|H,)} to J{varg (W|H,)} for various 1 -r/n

l-r/n
— — ™
Ratio 1 0-95 0-9 0-8 0-7 0-6 0-1

J{var (W[H,)}

J{varg(W|H,)}

What happens to the mean and variance of W if an analysis is performed without con-®
sidering all censored observations restricted to one group? We are concerned with th
average effect of censoring one group at T; and so we calculate E(W|H,) and var (W|H,),
that is we average over the possible patterns that could occur. When there are n patie \
per group and H, is true, the number failing in each prior to T, is binomially distribuw._g
with expected value n — r and variance '

()05

The means and variances for the two cases are as follows (taking terms to O(1/n) for the

variances):

1-035 1-065 1-115 1-152 1-180 1-357

Losses restricted to one group
Eg(W|Hy) =0,
31 2¢(r r

n—4varg (W|H,) = % (1—%) —+= (ﬁ) (1—;‘ .

Losses not restricted
E(W|H,) =0,

1 11/r r 7 r\? ’
wetvar (W o) % 735+ () (15 e (-5) 4

Thus, if the mean and variance of W are calculated in the usual way, there is no bias ¥
in the estimate of the mean but the estimate of variance will be an over-estimate. To !
examine the extent of the over-estimate, Table 2 gives the ratio of the two standard §
errors for various values of 1 —r/n.

The ratio of the standard errors is less than 1-2 even when 40 %, of the observations ar®
censored at 7. in the affected group. There will be some loss in sensitivity in detect-’
ing departures from the null hypothesis when the ordinary W test is applied; howeven g
this is unlikely to be serious when the proportion of censored observations is under 8" “ﬁ
20 %. A

9

i

N
“ﬂ‘&‘ P )






Table 3. Observation patlerns and probabilities of scores by exact calculation and the generalized Wilcoxon lest

Ties

(corrected for continuily) for b cases of censoring and tying in samples of size ny = b, ny = )
Case |

Case Il

! 1
24
2

1
2
A1 4 6(3) 2
Censored 2(2)* 2 3(2) 2
1 1
1
Cum. Prob. Prob. Cum. Prob. Prob.
Score  freq. (exact) (W) freq. (exact) (V)
23 2 0-0079 0-0064
0o
21 . . . 1 0-0040 0-0055
20 4 0159 01564 . . .
19 1] ‘0198 -0202 3 -0119 -0110
18 . . .
17 7 -0278 -0338
18 13 0516  -0427 . . .
15 13 05186 0369
14 . . . . . .
13 27 -1071 -0838 117 -06876 -0808
12 . . .
11 . . . 26 -1032  -0968
10 46 1786  -1469 . . .
9 49 -1944 1730 48 -1005 1469
8 . . . . . .
7 63 -2500 -2358 52 -2083  -2090
6 71 -3056 2709 . . .
5 . . . 88  -3492 -2878
4 83  -3203 3483 . . .
3 i1l 4404 -3808 100 -3068 -3783
9 - . . . : . .
1 112 4444 4801 196, -5000 -4761
0 126 -65000  -5199 ) .
[N _— \ f'_'-—__l
Jvnr(‘V\P,Ho) 0-04 8-08

+ Numbor in () is number oftdixtin

Case Il Case IV
-1 1 T—
1 2 1
0o 1 ) 0 1 ip==2
64 14—, 4 1
1 1
1
Cum. Prob. Prob. Cum. Prob. Prob.
freq. (exact) (W) freq. (exact) (W)
. 1 0-0040 0-0104
2  .0079 --0146
. 5 -0198 -0202
. . . 7 0278 -0274
3 00119 0-0239 11 -0436 -0376
8 03117 -0338 14 <0566 0495
16 0696 -0466 17 0876 -0643
19 <0764 -0619 23 -0913 0823
24 0952 -0824 28 1032 1038
31 1230 -1076 34 1349 1314
41 -1627  -1367 30 1548 -1611
49 <1044 1712 52 +2063 -1949
68 -2301 -2120 81 <2420 -23217
66 2619 -2546 75  -2976  -2743
16 -3016 -3060 87 -3462 -3228
817 +34562 -3667 08 -3889 3707
101 -4008  -4129 113 4484 4207
118 -4682 4721 121 <4801 4721
134 -6317 -5279 131 51988 6279
—ee—————~ -—
683

-t

.irt_; f»olnic.' o

7-606

Case V

- 1

2

21) 1

403) 1

1
Cum. Y'rob.
freq. (exact)
2 0-0079
4 .0169
0 0357
16 0595
22 -0873
40 1587
64 2143
1) 2222
79 3136
81 1214
101 41008
126 3000

Prob.
(W)

NVEEY) 'Y ONORaH




-3746

101 4008
126 6000 4761

:3707
4207
4721

-3889
4484
4801

08
113

3667
4129
4721 121

-3462
i82
-63117

10 #7908
Ny b

87
134

3783
1761

3968
-5000

100
126

3808
4801

1404
‘4444

111
112

A~

6279

| TR jssb
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% A + sign indicates a censored observation. Because the upper limit of observation time
2 out 35 weeks, T' = 35 weeks. In this case, it is clear that 6-MPis the superior treatment,

~ there being 12 censored observations at long remission times on 6-MP and none on placebo.
" “he data will be analysed to illustrate the calculations.

To calculate W directly, a 21 x 21 table is formed with the failures and censored observa-
tions in each group ordered separately alow asof +1, —lorOarcmade

g the wargins. Tntries o
in accordance with the scoring scheme (3:1) for the 441 comparisons. The result is
W = 335—64 = 271. Since 7, x n, is rather large, it is natural to consider the result
obtained by grouping observa

tions. Then W is obtained from the formula for grouped data
given by (

5-1) and can be calculated conveniently in the format:
6-MP Placebo

Interval ~ —_— \ —A
(weeks) fia Fua Ga &

0~ 4
5~ 9
10-14

W

Fig ¢ b;

7
13
17
19
21
21

o=
o

42
52
51
57
105
307

Y
766

20-24
25~

W1 O
DO
(=20 LI SRR RS
O OO0
—
OB OO

[

[ -2
-

1

© OO

6
W = ¥ {a,—bg} = 307—42 = 265,
i=1

6-83

Thus

where a; = [fu + C,;A] Fi-—LB' bi = [fiB + CiB} EZ—LA'

The var (W|P, H,) for the grouped data is obtained from (4-3) with

m; = fia+fipy U= Cirr,4tCirrm

' } The pattern is

-6000

126

- |
bty )
3 ;
4 5

and the format for calculating the variance is

¢ ‘o" 4 m; M, d; myxd, I, Li; Uxd; €y Ji e X fi mixexf;

@ 1 7 7 56 o 2 0 112 35 34 1190 8330
_ 2 10 17 306 560 2 2 612 23 8 184 1840
= 3 6 93 552 183 2 4 1104 15 —20 —300 1800
- 4 3 26 702 1636 1 6 702 10 —37 —370 -—1110
= 5 4 30 930 2808 5 7 4650 5 —48 —240 —960
Ta’ 30 sacn 12 7180 6300
Z,.

d; = MM +1), dy =0,
€= ny+ny—M;—Lyy,
fi=ng+ng =3 —m—Li,— 1.




-
I
{

216 Epmunp A. GEBAN
Then, i

var (W|P, Hy) = (ny +7ng) (g + 71y, — 1) :

_ (2nn

T 42) (&)

J{var (W|P, Hy)} = 71-2.

The result obtained from the ungrouped data is J/{var (W|P, H,)} = 75-1.
Suppose we wish to test Hy: Fi(t) = F,(t) (¢ < T') against the alternative IL,: Fi{l) < Fz(t)

-2\

> m; ;—1+ l d;+ Z m{eif‘}

=1

{6860 + 7180 + 6300} = 5065-6,

or Fi(t) > Fy(t) (¢t < T'). We are interested in Whether 6-MP lengthens or shortens remlssmng m&.

relative to placebo. We calculate

and the probability of such a value of Z or a larger one in absolute value is about 0-0002

from tables of the normal distribution. Consequently there is very strong evidence that

patients receiving 6-MP have longer remissions than those receiving placebo.

If the test is done with the ungrouped data, we find Z = 3-61 and Pr(Z) = 0-0004. The‘
result is quite close to that for the grouped data considering the moderate sample sizes in , s

each group.

12. DiscussioN

Some further problems connected with the generalized Wilcoxon test are: the ext/ensmn .
of the test to the case of double censoring (i.e. in the upper and lower tails of the va.na.ble),‘ 48
the extension of the test to more than two samples,* the development of a sequential W test o

and the use of the W test to find confidence limits.

In principle, there is no difficulty in extending the W test to the case of double censormg 2
The pattern of observations given by (4-1) could be generalized by considering I, individuals - =

(¢t =1, ...,8) to be censored on the left at a point immediately prior to the failure of the m, - "‘

individuals at rank 7 in the ordering of distinct failures. The change in the scoring of W
given by (3-1) would be simple using the ordering relationships in the generalized pattern,
the assumption being made that individuals censored on the left or right cannot be ordered
among themselves. The proofs of asymptotic normality and consistency of the test based
on W follow directly from those given here.

The extension of the W test to the k-sample case could be made in a way analogous to .

that suggested by Terpstra (1952) and Jonckheere (1954) for the extension of the ordinary
Wilcoxon test. The null hypothesis is that all samples come from the same population and
this is to be tested against the ordered alternative hypothesis: F(t) < Fy(t) < ... < Ft)-
Suppose the statistic W is calculated for all 3%(k — 1) pairs of samples. If we write W, for
the value obtained from the pth and gth samples (p,¢ = 1,2,...,k; p % ¢), then we can
consider
ko k
W= T 3 W
p=lg=p+1

From the results of Terpstra and Jonckheere, the limiting distribution of W should be
normal.

* I am indebted to Professor J. Hemeclrijk and a referee for helpful comments concerning thesé
extensions.
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are at least two ways to consider a sequential W test. TFirst, suppose an experiment
_ failure times is set up and =,,n, items are placed on test in each group. The

' lem is to devise a test to stop the experiment at the earliest time possible (no saving in
_ber of observations). One solution for this problem has been proposed by Alling (1963)
J on least upper and greatest lower bounds for subsequent values of the ordinary
_ ~coxon test statistic. The W test could be applied sequentially in time but the conditions
L. for this require investigation. Alternatively, it would often be desirable to con-

; d;ct a sequential experiment that may result in a saving of time and observations. For
ple, suppose & clinical trial is being conducted and the hypothesis being tested is of
F(@) = F,(6t) with different values of @ specified for alternative hypotheses. Indi-
'&'viduals are entered sequentially in each group and some form of W test is carried out

sequentially in time. Under what conditions could such a sequential experiment be

‘There
Grenparing

arried out?
8§ - Approximate confidence limits for the scale parameter 6 can be found using the W statistic

“’i’.:hen the model is F,(t) = Fy(6¢). The idea is to obtain an estimate of the confidence limits
@ for 6 assuming an underlying exponential distribution and then use the W test to find the
i Zspproximate level of confidence for the limits. Thus the confidence limits are distribution
free; the exponential assumption is introduced merely to get convenient starting values.
.1f the failure time distributions in the two groups are exponential, then 7, /i, as defined in § 8
s jan estimate of 6 and confidence limits can be derived from the F distribution. All observa-
4  tions in the second sample are multiplied by the upper and lower confidence limits for § and
two W tests are carried out using the new values for the second sample. Two normal deviates
__will be obtained, say Zy, Zq, and the approximate level of confidence that & lies between
" these limits can be calculated from tables of the normal distribution. For example, using
W&7  the data of § 11 with those receiving placebo as group 2, we find #/f, = 39-9/8-7 = 46 and
" "= g59 confidence limits for : 1-9 < 6 < 10. After two W tests, we estimate that the level
‘:of confidence for these limits is about 92%. Generally, the distribution-free confidence

intervals will be wider than the corresponding intervals when the exponential assumption

ia made.

I wish to thank Professor D.R.Cox for very helpful suggestions and encouragement
throughout the course of this work. Also, I want to thank my wife, Brenda, for doing the

calculations in § 10.
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heory of rank order statistics: the'
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APPENDIX A

tions is var(W|P,H,) = E(X Uy~ E(TUNP, Ho}*.
1,7 1)

3
The expectation is over the (1 +n.)!/(n;!n,]) equally likely samples from the same pattern (genersl.
form is given by (4:1)). This may be written i 2
ver(W|P,Hy) = E{X U+ X UyUs+ T UyUp+ 2 UuUwlP,Has
47 i i*y i
LS
since E {3, Uy|P,Hg = 0, by symmetry.
1,5
‘We now proceed to evaluate each term in (A 1). We have

(mr:i’; 2) £ 1™ () o (5 (270,
e ey R

where the term outside the brackets is the proportion of times & particular pair (i,7) will occur in opposite
samples. The first term in the brackets is the number of ways of pairing & failed observation at rank i
with one of lower rank and the second term is the number of ways of pairing an observation censored

just after rank ¢ with one having failed earlier. ot

E{Z U}|P,H} =
1,2

Also, 0 (1;1 + Ay - 3)
B(Z UsUnlP. 23 = (nl”‘;f) &), R @y
nl .

) o
() (52 (7)) ().

i=]
ar pair of observations (4, 1) will occur in
one sample and a particular observation (j) in the other sample. The first term in K gives the number.
of ways of finding a meaningful pair (4,1") below and above j when § is a failure observation. The second .

term gives the number of ways of finding a peir of failure observations (%,1’) of lower rank than j when "™
§ is & censored observation. The last term is the number of ways of finding one observation above an

one failure observation below j when 7 is a failure.

10

The outside term in (A 3) is the proportion of times a particul

Now, o (M1t~ 3
BT UgUsl? Ho = =5 (5 SR
L, Yu bl el = a
"y
by symmetry. Finally, E{3 UyUe|P,He} =0

i1
i



ccur in opposite '
vation 8t ranki
~ation censo
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1 =1,.

e TUXL T Q B 1)

w8 f,wo.sample U statistic. ‘Lehmann (1951) chowed U ¥ be asympt,ohically pormsl when 1y ~ % such

Jistribution of Whas

peeD oonsidered conditionally for & given petters of failed and censo observation® and 80 We do not
i condit

1ne ‘mdependent random variables- However: we can show that, conside un onally,
W is & two-aa.mple U gtatistic and then apply & convergence theorem %W prove asympbotic

Suppose there i8 & probability distribution of times ¥ entry of them+™ patients entering study 0
the intervel ot T- This distribution may be of a very general type: & discrete lomP of probab'\lity with
ntering 8Y time 0, & upiform distribution, or variou# d'mtributions with & punching of

pedent.s pear Hime 0. The only assumption is that the distribution of patient entries 18 such that the
pumber of failures at time T becomes 1678° as Ny e ecorne 18T€S:

Now defin® T = (zg),zf’) (@=1 T
where o = To ) (time o failure, censoring) is from F K-y and 2 isen indicstor taking 8 <alue 0,188
s 8 : e to failure ring. & similar set-uP s detined for ¥ Then, Xppeeer Ema Yy Im are
4n, ind pendent random VeC s
If we DOV define _q if @< Th and (x?‘.yg’ 18 (0,00

, then the n)tWis me 88 U-
Now Bt X o Yayie well defined and EUXa T < 1under aull and alternative hypothesee- Hence
ag nq >0 with Lmng/ne fxed snd non-zero: the distributios of Uis asymptot'\cally normal. e have

Toer W1 78) is uympbobicany N0, 1)
. w o .
snd we wish to show 7 /{vu R FHM is ASymp*oot.mauy N(0,1)- B2

-3 yar (W\AP,H‘,) 1
n;‘vm‘(W\Ho)
a8 1y > © and lim /™ exists We obtain (B 9) from & convergence theorem of Cremér (1946, P- 254).
But war(W\Ho = PV (W\P, Ho)+ Ve (E(W\P Ho:
where the expect,ation is over all possmle patterns that could arise.
Under the null hypothes'xs, the number of individusals failing and being censored 8t the 238 points in
the general pette can be considered as an outcomme in multinorma\ sampling The sample 8128 s, T2
and the surm of proba.b\htxes over the 28 points ig one-

B3
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i m the multinomisal. The denominater is the aversge of the numerstor overs A
onstant (t0 o(1/m))- Hence, We obtain (B 3) snd ('Bi) .

possible patterns and approachee the same ¢ ]
Cramér. The result bolds for patterns that arise randomly ing

Appespx C
of W relative to F i8 given by (81) and we NOW proceed ol

Qe - .

The definition of asymptotic efficiency

o ovaluste the various terms for case (a) and (b)- "
Case (a) R
For the F test, we have 2= }log A .
&Dd we Wish to ﬁnd E(Z) - E,E(le),

var(z{Ha) = E,var (z\Ho,s)-q—var,E(z\Ho,s).
Here the pattern of observations is defined by the total sample size (2n) and the pumber of failure 2
observauions (g} prior 0 T.We cons i in the conditionsl universe where }
g = on—r,— T3 18 The calculationswﬂlbe esyIDptOticasn,g_,m:' .
e Under Ho, 8 hes 8 binomisl distri ) *
Because E(h) = 1/¢ end Ei,) = 1/(¢0), 7e fin

E(

il e 3E(2) 1
i~ —_— ==
"'.' 80 =1 2
- e et = B )
b ° 2\Ho) = Feg \3(3e)  230)
L} 1
2 Sal-eT9)
- For the W test, W€ have W = T Uy s defined by (3-1). Now
: i
k'i‘ E(W) = n"'{'Pr(Xi > Y,)+Pr (XI‘ 2 Y,)
\3. , (X< Y -Pr(&es )b '
. where X X, are random varisbles of times 0 failure, censoring determined by f12) and similarly
y gcensored at T i8 78

r:
\" Y, Y, are determined by faly)- Here, X; = Y, = T and the probability of bein:

T, e T, respectively- The

7

pr(X, > TN ERT > Y= j -
1]

3

probabilitiw are obtained 8s follows:

= —(1- —T$g+1Y
6+1( ¢ )

T
Pr(X:i< Y,)+Pr(X¢ <Y)= j ¢e’¢“e"’¢"du
0

and
" - ,_1—- (1 - e—T¢‘0+D)_
t g+1
I -
Hence, E('n"ZW) = (,9_.—1)- - e—r¢(0+n)
| e+1
. sy
and AE@ M| o y1-eT) ©4
80 gl
Now var (n~tW{Hd = a—EZ Uy—E s UNHS
%1 .7
“ =nE{Z Uyt Z UyUest 3 Uyl
1.7 {wt i’
+ Z Uy UerlHabs
11
! j*i
since B(X U \Ho =0 To evaluate the four terms necessary for the variance note that there are only
s (]

i
n? termas of the type E(U3) so that the total contribution of the first term is O(n~%)- Then

E(% Uy UetHo) = E(gqU‘,Uu»\H.,),
j*i

sl
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+ of the numerator ovﬁr Ry gymmetry and there are ni(n— 1) terms in each surnmation. Also E(UUp|H,) = 0 since U,, is
wew"’\q.m .(B 3) and (B - bdependent of U, and each has expectation zero. Thus
X, 87156 randomly, o var (n=3W|H,) = 2n-1E(Uyy U p{Hy).
; . ‘ ;g{: Uesing the conditions in (3-1), we have
1) and . X, <Y, X, > Y ), (X > Y X< Yy)s
) and we now Proceed . ﬁ" (<Y, X > Y (X > Y X < Yo,
p UyUy =0 otherwise,
+UX > Y, Y (X< Y, Yy
(X; <V, V0, (X, <V, Y,
(Xi> Y, Yp)h (X1 < ¥}, Yp)e
We now wish to caleulate the probabilities of the various events on the right-hand side. Let ps be
the probability of failure under H, and p, be the probability of a censored observation. Also, let f4(x),
14z be conditional probability density functions of time to failure, censoring, respectively. For case (a),
these are all simple to writc down.

ind the number of failyrg
>onditional universe whers -sar
be asymptotic 88 n,8 > g,

Thus, Py = 1—eT¢, (C5)
p,=eTe (C 6)
‘ . ped
sod Sfalz} = - (0<z<T),
d

fz) 1 (=1
S(Z) = P =T).

For case (), f,(z’) is a discrete probability, but the notation is retained to be analogous with case (b).

Now under H,, Pr(Xi> Y, Y)=Pr(X, <Y, T)=}
PriX,<Y,X>Y)=Pr(X,>Y,X;< Y;) =1}
Thus EWU; U |Hy) =p3d+H+ 2173?;?" {(X: < min(Y, Y:)}

+p3p, Pr{X| > max (¥, Y,)}
+ P pg Pr{X, < min (¥}, Y;)}
-7+ -20p, PriX, < ¥, X > Yy,
where the time to failure variables follow fy{z) and the time to censoring variables follow f,(z").
Now Pr{X; > max (Y, Y,;)} = 2Pr{X,< Y, X, > Y,}. Hence
E(U,U|Hy) = 305+ 203p,Pr{X < min (¥, Y, )} + 2P pa Pr{Z; < min (¥}, ¥;)}, (CT
and the probabilities can be written down immaediately:
PriX¥,<min(¥,Y)} =4 Pr{¥,<min(¥,T})}=1L

ed ¥ *.(z) and similarly e

»f’%& wcensored at T' is K

,,,,f Thus B(U UylHo) = H1-e-T¢) + o1~ %)
and var (n=2W|H,) = n-{3(1 —e~T9)*+ 2e~T¢(1 — e~T¢)}. (C 8)
Finally, the A.R.E. of W to F is obtained by substituting (C 1), (C 2), (C 4) and (C 8) into (8:1) to get
. (1—e1T9)2
e SR e a e TR — e T

Values of A.R.E. for case (a) are given in Table 1 for various T'$.

(C4) ,1 Case (b)

In this situation, 2n patients are entered into study according to & uniform distribution in the fixed
interval 0 to T and fail according to an exponential distribution. In the group receiving treatment A,
the probability of a patient entering in any interval of time (A¢) is (A¢)/T and failure is according to Si(z)-

‘wq We have T-z 4
. Pr(patient fails at‘ age’ z) = f ie“"dzdv
0
(T-z), _,.
note that there are only =—g— pe?dz (0<z<T), (C9)
- 1
O(n~?). Then Pr{patient censored at‘age'z') = T—wc"ﬁ"dz' O<z'<T) (C10)

where ‘ age’ is measured from time of entry into study.
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Now . T (T —u) 1
= —pu =]1——a(l—e-T¢
Ps jo T detrdu=1 73 (1—e-T9),

= Tle*“du— 1 (1—c~T9)
b= o T —T¢

and f4(z), f,(z") are the probability density parts of (C 9), (C 10) divided by p,, p,, respectively, S }F : ’

Jaly) and f,(y’) are defined by replacing ¢ by 64 in pq, p,, fs(z) and f,(="). v
For the F' test, we transform I./I. to z as hefore and w2 have

9E(z) _ 1 2EQG,) e

6~ 2E(,) %0 CiTe

{(ﬂ —r) E(Y)+r (X)),

Now E@i,n—r,) ==

whero ¥, ¥ follow fg), 4", respecively. Then, E(Z) aad B(Y") sre sasily ovaluated and -}
substituted in (C 13) we find E(f;[n—r) = 1/(6¢) and so

0E(z) 1 .y 38
0 |gy 2 1y ‘
Under H,, the expected number of individuals failing in the two groups before 7' is 2np,, 8o that ;
1 o
ver el g T — ey (€ 10)

For the W test, E(W) is defined by (C 3) and the probabilities needed are found using (C 9) and (C 10)} e
Pr(X, > Y;)-‘—J.J‘ (T_u)gée"‘ﬁ“(—g—’:ﬂ@gée‘“'dudv 0O<u,v<T
wo T T o -

0 1 _ A
= o1 fger I (O HHmTEY fisa N
-

1
—e-Té | o= T8
P TRErIraET ) O IO e OREIL 1), (Cla)s
Pr(X;>7Y,)= ff %e*“ __(T;v) fpet¢rdudy (0<u, v T)
u>v
= __0__ _ﬂ_ ! { —C_T¢(0+1)2+(26+l)e-wwm‘_ (C13)
THC+1) Tg (TH0+ 1)1 |

g
The Pr(X, < Y,) and Pr(X, < Y,) are obtained by replacing & by 1/¢ and ¢ by 6¢ in (C 16}, (C17), “ ’
respectively. Substituting these results in (C 3), we have

aE(r"W)’ { 1 - } :
—_ —— b (1= e=2T¥)} | C18)
o 2\ T TR ’ 9 -

The value of var (n—*W|H,) is found in exactly the same way as before, with p; and p, of (C 11) and e
(C 12) replacing (C 5) and (C 6) in the equatxon for (U, Uy H,) given by (C 7). We now need to evaluate

Pr{X, < min (Y}, ¥,)} and Pr{X; < min( ¥}, ¥;)}. - 324
Now under H,, (T v)é
Pr(Y;<u)= | ———e~¥°dv
o Tpa

1 1
=E[(1—e'¢ )—-1—15(1—-43‘45"[1+¢u])}

v 1
and Pr(Y;<u)=J‘ —e“¢'dv

- —{(1 —¢u.
¢p.( <

. , T(T —-u) { 1
Therefore  Pr{X, Y, V)= “dull e (1
werefore r{X; < min ( ) J‘o oy de T¢p,( e ))

1 1
x {1 ~ e [:(1 —e? )_T—gé(l —e9v[1 +¢u])]} du
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. ’ ’ - (T u) 1 _—¢u}’d.
Pr{X,<min(Y, Y.} = ] Tp ¢{ __T¢P(1 e~¥v) u,.

integrals are simple, though somewhat laborious, to evaluate. The results are

) M 1
; o~ X, <min(Y, Y} = ‘ (-3 T8 + = (—§+}eT—e'T9)
iectively, S"mﬂa;] g - - PriX (Tn X, Té (T ¢),
ey (T¢)‘ 2_1__.}6-1'¢+e—:r¢ ﬁe-sré)]
(C 1) sad o o U reosme 1y e gmiTo 4 130T
B . B pr{X;<min(¥, ¥} = PP’{(TQIS)’“ e-Té +¢~1T¢) + ¢):( 1+ie =376 414 }

with these probabilities, we can now evaluate E(U U,.,.|H°) and var (n—2W|H,). We have

R 2 2 4 4
raluated : —1 PO 1 (e S L e l—e"T¢}. (C19)
ndvhenod vas (7159 & 77 (3 5757+ g~ TR )
=3 . Substituting (C 14), (C 15), (C 18) and (C 19) into (8-1) we can calculate the asymptotic efficiency
(Clg of W relative to F. This is done for various values of T'¢ in Table 1.
nPs 80 that AR
(C 1)

(302", (C16) a4

i,

¢(0+1)} . (c1m 52

in (C 16), (C17), "4

(C 18)

»
d p, of (C11) and .oy
rneed to evaluate -






