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A New Model for Predicting the Hydraulic Conductivity 

of Unsaturated Porous Media 

YECHEZKEL MUALEM 

Faculty of Civil Engineering, Technion-Israel Institute of Technology, Haifa, Israel 

A simple analytic model is proposed which predicts the unsaturated hydraulic conductivity curves by 
using the moisture content-capillary head curve and the measured value of the hydraulic conductivity at 
saturation. It is similar to the Childs and Collis-George (1950) model but uses a modified assumption 
concerning the hydraulic conductivity of the pore sequence in order to take into account the effect of the 
larger pore section. A computational method is derived for the determination of the residual water 
content and for the extrapolation of the water content-capillary head curve as measured in a limited 
range. The proposed model is compared with the existing practical models of Averjanov ( 1950), Wyllie 
and Gardner (1958), and Millington and Quirk ( 1961) on the basis of the measured data of 45 soils. It 
seems that the new model is in better agreement with observations. 

INTRODUCTION 

The various models used for predicting the hydraulic con
ductivity of unsaturated soils were reviewed by Brutsaert 
[1967]. We may distinguish between two main groups. The 
first is based on a generalization of Kozeny's approach for 
saturated and unsaturated porous media, according to which 
the relative hydraulic conductivity K, is a power function of 
the effective saturation s., i.e., 

K, = KIK .. , = S." ( 1) 

where 

s. = (9 - 9,)/(9 .. , - 9,) (2) 

' where 9 and 9, are the actual and the residual water content, 
respectively. Following this approach, Averjanov [1950] pro
posed the value a = 3.5, whereas lrmay [1954] derived (I) 
theoretically with a = 3.0. It seems that for a wide variety of 
soils, a = 3.5 leads to a better agreement with observations 
[Brooks and Corey, 1964; Boreli and Vachaud, 1966]. 

The second group includes the models of Burdine [1953], 
Wyllie and Gardner [1958] (WG in this paper), Farrell and 
Larson [1972], and Childs and Col/is-George [1950] (CCG in 
this paper) and the modifications to the CCG model proposed 
by Marshall [1958], Millington and Quirk [1961] (MQ in this 
paper), and Kunze eta/. [1968). The models of this group make 
use of the measured capillary head-water content 1f(9) curve 
to derive the hydraulic conductivity in the unsaturated state. 
While in petroleum engineering the 'Burdine equation' 

K,(B) = s.2 1' dB/IIl/1''"' d8/1f2 (3) 
1-o •-o 

s = e- e. 
is commonly used, soil scientists refer generally to a modified 
form of the CCG equation, 

K,(81) 

0, i. and I, respectively. Jackson eta/. [1965], Kunze et al. 
[ 1968], Green and Corey [ 1971 ], and Bruce [ 1972) have checked 
the reliability of (4). It seems that the MQ formula is in 
somewhat better agreement with measured data than the other 
formulae. 

The three main models represented by (I), (3 ), and (4) do 
not seem to have been tested together against measured data 
before. 

The purpose of the present study is to propose a new sim
plified model which minimizes the deviations between pre
dicted and measured K(9) curves. 

THEORY 

We consider a homogeneous porous medium, having inter
connected pores defined by their radius r. The contribution of 
full pores of radii r - r + dr to (J is 

f(r) dr = d(J (5) 

where f(r) is the pore water distribution function. We have 

JR f(r) dr = 8(R) 
Rmin 

(6) 

and in particular, 

!
Rmn 

f(r) dr = e •• , 
Rmin 

(7) 

The areal porosity is equal here to the volumetric porosity, so 
f(r) dr represents the ratio between the pore area of radii r- r 
+ dr and the total area. Consider a porous slab of thickness ~x 
(x- x + ~x along the axis). The pore area distribution at the 
two slab sides is identical. For ~x >> Rm.., complete random
ness of the relative positions of the two slab faces is assumed. 
The probability of pores of radii r- r + drat x encountering 
pores of radii p - p + dp at x + ~x is 

a(r, p) = f(r)f(p) dr dp (8) 

= s/ ± [2(1- i~ + 1]/ f. [2(m- i
2
) + 1] (4) 

i•l "'· i•l "'' 

Here no direct connection between the pores rand p does exist 
along the x axis. The other extreme case occurs when .lx- 0. 
Then the correlation between the two slab faces is complete. 
Since we are concerned with the effect of pore changes on the 
hydraulic conductivity, it is more relevant to consider ~x to be 
of the same order of magnitude as the pore radii. Then the 
probability of the connection of a pore r- r + dr to a pore p -
p + dp is 

Herem represents the total number of intervals into which the 
··"" 8 domain is divided, and I is the number of intervals up to a 

prescribed value of8. CCG, MQ, and Kunzeet al. suggest{j = 
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a(r, p) = G(R, r, p )f(r)f(p) dr dp (9) 
G(R. r, p) is a correction accounting for partial correlation 
between the pores rand p at a given water content O(R). 

The contribution of the actual flow configuration in the slab 
to the hydraulic conductivity cannot be accurately assessed. 
We use, therefore, two simplifying assumptions: (I) there is no 
bypass flow between the slab pores. and (2) the pore configura
tion may be replaced by a pair of capillary elements (Figure I) 
whose lengths are proportional to their radii: 

1,11. = r/ p (10) 

The hydraulic conductivity is then found to vary as rp (see 
Appendix I). If we use a correction factor T(R, r, p) < I to 
account for eccentricity of the flow path (tortuosity factor), the 
contribution of the r ~ p element to the relative conductivity 
becomes 

d K,(r, p) 

T(R, r, p)G(R, r, p)rpf(r)f(p) dr dp 

!Rm .. !Rm., T(Rm••• r, p)G(Rm.., r, p)rpf(r)f(p) dr dp 
Rmin Rmin 

(II) 
For a given O(R) the corresponding K,(O) is 

JR JR T(R, r, p)G(R, r, p)rpf(r)f(p) dr dp 
Kr((J) = Rmin Rmin 

!Rm .. !Rm., T(R, r, p)G(R, r, p)rpf(r)f(p) dr dp 
Rmin RrniD 

(12) 

Since there exists no procedure for an independent determi
nation of T(R, r, p) and G(R, r, p), we assume with Burdine 
[1953] and MQ that the tortuosity and correlation factors are 
power functions of 8, thus depending solely on R. Hence 

K,(O) = 
J.R rf(r) dr JR pf(p) d p 

S n Rmin Rmin 

' !Rmu rf(r) dr !Rmu pf(p) dp 
Rmia Rmia 

[
JR. rf(r) dr J2 

S" Rmu 

• 1Rmu rf(r) dr 
Rm in 

(13) 

Applying the capillary law r 
obtains 

CN and (5) to (13), one 

Fig. I. A combination of cylindrical tubes used to evaluate the 
hydraulic conductivity of a pair of capillary elemehts. 

[1B I 1'''' ]2 K,(8) = S." 
0 
d8/~ 

0 
d8/~ (14) 

where n may be positive or negative. Equation (14) is 
simple and easy to apply. For 1/;(0) given in analytical form, 
K,(O) can be derived explicitly. For example, introducing in 
( 14) the expression used by Brooks and Corey [1964], 

yields 

( 15) 

( 16) 

( 17) 
With n = 0, (16) and (17) reduce to the equations obtained by 
Brutsaert [ 1967), using the CCG model. However, the in
clusion of n (which accounts for the correlation between pores 
and for the flow path tortuosity) in ( 16) and ( 17) contributes to 
a more flexible formula of K,(S,) and therefore to a greater 
cha'lce of agreement between theoretical and experimental 
curves. Another example is Farrell and Larson's [ 1972) for
mula 

1/; = 1/lc..e""-S.l ( 18) 

which when it is substituted into ( 14) leads to 

K,(S,) = S.''(e2DS. - 2e"s. + I )/(r'" - 2e" + I) ( 19) 

It is not clear whether (16) or (19) is in better agreement with 
measured data. Equation (16), however, is easier to use in the 
derivation of analytical solutions of complicated unsaturated 
flows. 

COMPUTED RESULTS 

Before agreement of theory with measurements and com
parison with other methods can be e-xamined, the residual 
water content e, and the power n of S, (( 14 )) must be deter
mined. The influence of using partial and complete ~-0 curves 
on the computed hydraulic conductivity was checked by Kunze 
eta/. (1968]. It seems that complete ~-e information improves 
the quality of the prediction mainly as a result of a better 
fulfillment of the requirement that K = 0 for 0 = 0,. They 
recommend, therefore, extrapolation of the measured portion 
of the 1/;-0 curve. During the present study we realized that 
because of the strong sensitivity of the computed K(0) curve 
to the value of e., the decision about which model compares 
more favorably with experimental data of a given soil is, in 
fact, governed by e,. For this reason, we think that it is 
necessary to use a standard analytical procedure to fix a value 
of e, and to extrapolate a partially given ~-9 curve. We 
propose herein a convenient procedure, based on the assump
tion that the soil characteristic curve in the extrapolation range 
can be analytically represented by ( 15), which fulfils the con
dition 1/; _, ex> for e ~ e,. Parameters 9, and ). are computed 
with the aid of a minimum square deviation procedure for 
regression of measured ~.;e points to (15) in the range e < ep. 
where eP is the value at which the measured curve shows an 
inflection point (Appendix 2). 

Now if we perform a similar fitting procedure for the K,(8) 
curve to ( 14 ), we can expect to get different values of n for · 
different soils. As was already mentioned, the value of n m< ) 
be negative too. Of course, this poses a great difficulty if one is 
interested in a universal K,(B) representation, valid for all soils. 
As a sort of compromise between both representations, it is 
suggested that an expression be adopted for which the squ,are 
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deviation, averaged over a great number of soils, is minimum. 
In essence, n becomes an experimentally determined parame
ter. 

0.5 may indeed hold as the best value. Hence the suggested 
formula for K,(S,) becomes 

( 
Forty-five soils for which measured Y,-8 and K-8 (or K-Y,) 

.dta on drainage are available in the literature were used for 
computation. In Table I a list of the soils, their measured 

K,(s.) = s:12(1s, d~,N / { dS,/1/t Y (21) 

In practice, we distinguish between the extrapolated region 0 
:::;; s. < s. min (8, < 8 < 8mln). for which an analytical 
expression (( 15)) is used to represent the Y,-S. curve, and the 
measured region s. min :S: s. :S: I, where the computation is 
carried out numerically. Continuity requires that the extrapo
lated curve meet the measured one at (Ytmln• S, min). Thus (21) 
becomes 

8mln• Ytmln._and Smas• the computed 8, obtained by using the 
procedure suggested in Appendix 2, and the power>.. of s. are 
given. For each soil the mean square deviation D between the 
measured hydraulic conductivities K,,. and the computed ones 

Krc• 

{1
1 

3 dS, }'
12 

D= s •••• [ln(K .. )-In(K,,..)] (l- Som,.) (20) K,(S,) 

I s. '" is computed. Eight different values of n were used (substituted 
jn (14)): n = -I + 0.5j,j = 0, I, · · · , 7. In order to maintain 
consistency in the numerical computation of D for all soils we 
have used a constant increment AS, = 0.02. In Table 2 the 
mean value lJ, the standard deviation u, and the coefficient of 
variance E for the 45 soils are given as a function ·of n. The 
continuous graph of D(n) as plotted in Figure 2 shows that n = 

I S, min/(1 + 1/A)Ytmin + f dS,/1/t I 
s.'/2

1 

_ s1. min I <22> 

L S, min/(1 + 1/.\)1/tmin + f dS,/Yt J 
S • min 

while the WG model ((3)) yields 

TABLE I. Computed e, and ~ for the 45 Soils 

Soil l/lmln• 
No. Index References 0mu: em in em H20 e. ~ 

I 1006 Beit Netofa clay [Rawitz. 1965] 0.446 0.241 1.51 X 10' 0.010 0.19 
2 1101 Shluhot silty clay [Rawitz, 1965] 0.385 0.163 1.51 X 10' 0.010 0.20 
3 2002 Silt Mont Cenis [Vachaud, 1966] 0.447 0.042 1.70 X 10' 0.010 0.36 
4 2004 Slate dust [Childs and Col/is-George. 1950] 0.482 0.110 1.44 X 102 0.090 5.69 
5 3001 Weld silty clay loam [Jensen and Hanks, 1967) 0.470 0.140 2.12 X 10' 0.090 1.52 
6 3002 Amarillo silty clay loam [Brooks and Corey, 1966) 0.455 0.140 2.25 X 10' 0.110 2.35 
7 3101 Rideau clay loam [Topp, 1971] 0.416 0.286 4.19 X 10' 0.280 1.62 
8 3301 Caribou silt loam [Topp, 1971] 0.441 0.313 4.25 X 102 0.280 0.91 
9 3302 Grenville silt loam [Staple. 1965) 0.475 0.037 1.00 X 10' 0.010 0.34 

10 3304 Touchet silt loam [Jensen and Hanks. 1967) 0.480 0.170 2.35 X 102 0.120 1.71 
II 3305 Ida silt loam (> 15 em) [Green et al .. 1964) 0.530 0.175 2.00 X 10' 0.060 0.38 
12 3306 Ida silt loam (0-15 em) [Green et al., 1964) 0.554 0.219 2.00 X 10' . 0.010 0.27 
13 3307 Touchet silt loam (General Electric 3) [Brooks and Corey 1964) 0.469 0.180 4.14 X 10' 0.130 1.89 
14 3403 Pachappa loam [Jackson et ill., 1965] 0.456 0.007 3.19XIO' 0.002 0.42 
15 3404 Adelanto loam [Jackson et al .. 1965] 0.426 0.012 4.65 X 10' 0.007 0.50 
16 3405 Indio loam [Gardner, 1959] 0.450 0.021 1.50 X 10' 0.010 0.81 
17 3407 Guelph loam [Elrick and Bowman, 1964] 0.520 0.236 1.00 X (()3 0.130 0.41 
18 3501 Rubicon sandy loam [Topp, 1969] 0.381 0.166 2.40 X 102 0.150 2.08 
19 3503 Pachappa fine sandy clay [Elrick and Bowman, 1964] 0.334 0.049 1.50 X 10' 0.030 0.44 
20 3504 Gilat sandy loam [Hadas, 1967] 0.440 0.130 1.02 X (()3 0.010 0.44 
21 4106 Sand [Poulovassilis, 1970] 0.272 0.090 3.60 X 101 0.010 1.83 
22 4107 Sand [Poulovassilis. 1970] 0.258 0.084 3.80 X 101 0.010 2.87 
23 4109 Botany sand fraction (150-300 1-1m) [Watson. 1967) 0.350 0.055 5.70 X 10' 0.040 8.35 
24 4111 River sand (screened) [Jensen and Hanks, 1967] 0.400 0.060 1.50 X 102 0.050 1.57 
25 4114 Volcanic sand [Jensen and Hanks, 1967] 0.350 0.050 i.85 X 102 0.040 1.30 
26 4116 Sand fraction (150-300 1-1m) [Kasttlanek. 1971] 0.372 0.045 8.00 X 10' 0.040 4.94 
27 4118 Sable de rivicre [Vachaud, 1966] 0.342 0.075 1.90 X 10' 0.060 0.92 
28 4120 Gilat fine sand [Rawitz, 1965] 0.179 0.070 1.51 X 10' 0.010 0.27 
29 4121 Rchovot sand [Hadas. 1967] 0.400 0.020 2.50 X (()3 0.015 0.83 
30 4123 Pouder River sand [Brooks and Corey, 1966] 0.364 0.044 8.20 X 101 0.030 2.92 
31 4126 Molonglo River sand [Talsma, 1970] 0.277 0.098 3.00 X 101 0.010 0.96 
32 4129 Beit Dagan sand [Rawitz, 1965] 0.161 0.052 1.49 X 10' 0.040 0.37 
33 4130 Hygiene sandstone [Brooks and Corey, 1964] 0.250 0.151 2.01 X 102 0.140 3.78 
34 4131 Berea sandstone [Brooks and Corey, 1964] 0.206 0.064 2.34 X 10' 0.050 2.13 
35 4132 Fragmented Fox Hill sandstone [Brooks and Corey, 1964) 0.503 0.166 1.16 X 102 0.160 2.61 
36 4133 Fine sand (General Electric 13) [Brooks and Corey, 1964] 0.356 0.063 3.02 X 10' 0.050 1.98 
37 4134 Volcanic sand [Brooks and Corey, 1964] 0.365 0.058 2.73 X 102 0.050 1.65 
38 4137 Sand fraction (150-3001-'m) [Watson. 1967] 0.350 0.056 5.70 X 10' 0.050 11.67 
39 4141 Sand fraction ( 1.0-0.5 mm) [Childs and Col/is-George. 1950] 0.357 0.034 3.64 X 10' 0.020 2.80 
40 4142 Sand fraction (0.5-0.25 mm) [Childs and Col/is-George. 1950] 0.364 0.040 4.40 X 10' 0.030 5.69 
41 4143 Fragmented mixture [Brooks and Corey, 1964] 0.437 0.134 1.07 X 102 0.120 2.65 
42 4147 riainfield sand (25-60 em) [Black et al .. 1969] 0.307 0.060 2.05 X 102 0.050 1.45 
43 5002 Glass beads [Brooks and Corey, 1964) 0.383 0.037 3.01 X 102 0.030 1.90 
44 5003 Aggregated glass beads [Topp and Miller, 1966] 0.548 0.080 8.26 X 10' 0.060 3.57 
45 5004 Monodispersed glass beads [Topp and Miller, 1966] 0.326 0.033 6.82 X 101 0.020 6.24 

9muo emln• and e, are given in percent of total volume. 
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TABLE 2. Computed D, a, and E for Eight Values of n Obtained by Using (14) 

- 1.0 -0.5 0.0 

!5 = L:D,/45 1.40 1.18 1.0 I 
a= [(D, - /5)'/45]'' 0.73 0.70 0.75 
' =a/ !5 0.52 0.60 0.74 

K,(S,) 

n 

0.5 1.0 1.5 2.0 2.5 

0.97 1.09 1.32 1.62 1.94 
0.82 0.89 0.96 1.04 1.58 
0.84 0.81 0.72 0.64 1.13 

effective water content and the effective saturation, respec
tively. 

The numerical procedure used in this study is based on the 
(23) assumption that the measured t/1-S. curve can be very closely 

approximated by a continuous polygon, i. e., that t/1 can be 
expressed by 

Instead of presenting the MQ formula based on the CCG 
model in the form of finite sums, as is usually done in the 
literature, we believe that it is worthwhile to present the K,(S.) 
relationship in terms of integrals for several reasons: (I) we 
can compare different formulae in an easier way, (2) if analyti
cal relationships between t/1 and s. are available, the K-S. 
relationship may also be obtained in a closed form, and (3) the 
computer permits use of a variety of procedures for replacing 
integrals by finite sums. This latter argument is of extreme 
importance, as will be shown later. For this reason, we have 
elaborated the CCG model (see Appendix 3) to obtain a final 
compact integral form of the K-8 relationship: 

K,(8) = S, a 

. { (8 - t?) dt'J/y/ 1 t··· (B ••• - t'J) dt'J/V/ (24) 

Using a = 4/3 and ( 15) to express the t/1-S. dependence on the 
extrapolated portion, we have 

K,(S,) = S,"{!/t .. ~inJ (~'!' ;;~ - 2 S-t'";;J 
+ }~·~ · ... '" (S, - s) ds/ 1/t

2 J 
[ 

1 ( S, min S, min 
2 

) 

. Vtmin'j 1 + 2/A - 2 + 2/A 

+ f . .,.;., (1 - s) ds/1/t
2J1 

(25) 

which is the equivalent formula for the MQ model. Parameters 
11 and s (in (24) and (25)) are demivariables representing the 

5 
2.0 ;· 
:~ I 
1,2 "" / 

1.8 

'l ....._,/ 
:c. I I I I I I I , 

-•.o -o.s o.o o.s 1.0 •.s 2.0 2.s n 

Fig. 2. Computed D based on 45 soils as a function of the power n 
(see ( 14 )). 

s,,) (26) 

s., ~ s. < s .• +, 
In this case we are not limited to using constant intervals, the 
node points are conveniently chosen with regard to the curva
ture of the given graph, and the computation of K,(S.) is 
accurately performed. When (26) is used, (22) becomes 

K,(S.) = S.'12{[ S, min/(1 + 1/}..)tf.,ln 

+ ±: (s·,+~- s.,) In (_ii_)J 
l tf, '{1,+1 "'i+l 

' [ S, min/(1 + 1/}..)tf,.ia 

+ f: (s .. +~- s.,) 1n (_ii._)]-'}2 (27) 
l "'· Vti+l '{1;+1 

while the WG and the modified MQ modcl-{(23) and "(25)) 
yield 

K,(S.) = s.z{[ S. min/(l + 2/}..)tf..,ln2 

+ ±: S,;~~"'- S,;J[s.min/(1 + 2/}..)tfmia2 

1 ' i+l 

+ f: s,,+, - s··]}-• 
l "'"''i+l 

(28) 

and 

4/3{[ 1 (s.s. min s •.. in )
2 

K,(S,) = S, Vtmin2 l + 2/'A. - 2 + 2/'A. 

+ ±: [s. s,+, - s; _ ( .s,+, - s, )(s'+' _ ~) 
l "''"'"' Vti - '{!... tfi+l . tf, 

+ ( Si+l - S; )
2 

I ( '{!; )]] I [ 1 ( S, min 
Vti - "'i+l O tfi+l Vtmia2 1 + 2/'A. 

Srmin ) 2 + t [si+l- S; _ (.Si+l- S;) 
2 + 2/'Jt.. 1 t/1;1/t;+l 1/t; - "'i+l 

. (~;~. - ~) + (;:+~ -t/I::J ln ("'~~) ]]} ·(29) 

I 
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. respectively. In the following the suggested model ((27)), as The presentation of the CCG model is modified to derive a 

well as the models of Averjanov, WG, and MQ ((I), (28), and compact integral formula instead of its usual form in finite 

,, ''"l9), respectively), will be compared with the experimentally sum. This improvement enables us to use the same modified 

( 1sured data. procedures in applying the various models and therefore to 

· In Table 3 the deviation D between the measured K,(S.) perform a more reliable comparison among the models. 

curves and the computed ones (using the proposed method For computational benefit the measured .J;-0 curve is re-

and the three methods mentioned above) is given for each one garded as a continuous polygon connecting the given (1/;, 0) 

of the 45 soils. The italicized values indicate the model which points. This approximation ensures an accurate computation 

yields the minimum deviation between the measured curves of K,(S.) without truncation errors (which are quite significant 

and the forecasted ones. The average value D for all 45 soils, for values of if; near zero). 

the standard deviation u, and the coefficient of variance t are The proposed model, as well as the three main existing 

given in the last three lines of the table. It may be seen that for models of Averjanov, MQ, and WG, is compared with mea-

various soils, best results are achieved by different methods. sured data of various soils. Since this test is carried out against 

This can also be concluded from Figures 3a-3p, in which the data the accuracy of which is undetermined, 45 soils of differ-

computed results are shown for a sample of 16 soils. On the ent types are considered to ensure solid conclusions. It is 

other hand, comparison between the different models on an TABLE 3. Deviation D Between the Measured and Computed 
overall basis shows that best results are achieved by the pro- K,(S,) Obtained by Using the Models of Averjanov, WG, and MQ 

posed model. This is reflected by the number of soils for which and the Proposed Model 

D is minimum (see Table 3 and Figures 3/, 3g, 3j, and 3m-3p) 
D 

and by the computed average value D for the 45 soils. 

Very often the agreement of Averjanov's model with the Soil Proposed 

experimental data is quite poor (as it is in soils 1006, 3302, 
No. Index Averjanov WG MQ Model 

3305, 3306, 3403, 3404, 3405, and 3407; see also Figures 3a and 
I 1006 1.94 0.20 0.24 0.29 

3c-3f), while in some cases (soils 2002, 4121, and 4126; see 2 1101 1.26 0.74 0.76 0.64 
Figures 3b and 3/) a definite improvement in results is achieved 3 2002 1.72 6.01 4.38 4.17 

by this method as compared with the other three. It seems, 4 2004 0.22 0.14 0.19 0.40 

! 
therefore, that the 1/;-IJ curve includes some inherent character- 5 3001 1.08 0.37 0.23 0.76 

istic properties of the soil, which the generalized Kozeny-
6 3002 0.51 0.36 0.25 0.46 
7 3101 0.59 1.01 1.18 0.58 

Averjanov-lrmay approach ignores. One may conclude, how- 8 3301 0.59 2.44 1.48 1.22 
ever, that Averjanov's model fits sands well, while it fails to 9 3302 5.67 1.07 1.69 1.72 

<iescribe the K,-e relationship accurately for heavier soils. Yet 10 3304 0.63 0.49 0.58 0.42 

. : Aver]anov-lrmay type of equation, with adjustable power, II 3305 5.12 1.13 1.28 1.34 

'' .s an expression that has been proved to be very convenient in 
12 3306 6.11 2.36 1.26 1.34 
13 3307 0.46 0.33 0.44 0.38 

the analytical solution of partly saturated flow problems. It 14 3403 4.38 1.38 1.15 0.94 

might be possible to improve prediction of K(0) by adjusting 15 3404 4.87 2.82 1.59 1.33 

the power for tortuosity and for>. (as was done by Brooks and 16 3405 5.46 1.00 2.23 2.18 

Corey [1964] or as shown here in (16)). 
17 3407 1.96 0.82 0.44 0.25 
18 3501 0.42 0.86 1.04 0.40 

Among the other three models the WG model yields the 19 3503 2.18 4.33 2.01 2.25 

poorest results. For soils in which d8/d.J; i' 0 as if;- 0, there is 20 3504 2.66 2.93 1.61 1.67 

an abrupt fall of the computed hydraulic conductivity near 21 4106 0.50 1.00 1.03 0.65 

saturation (Figures 3b, 3d, 3e, 3h-3/, and 3n). For some soils 22 4107 0.38 0.62 0.71 0.30 
23 4109 1.12 0.88 1.18 0.56 

these computed results are justified by the experimental data 24 4111 1.13 2.03 1.82 1.01 
(Figure 3e), but in most cases the contrary is sustained, since 25 4114 1.18 0.92 0.59 0.77 

the observed drop is milder. 26 4116 0.55 0.54 0.60 0.97 

Finaily, we believe that there is a good chance of improving 27 4118 0.52 1.19 1.73 0.86 
28 4120 0.66 0.80 1.02 0.79 

the prediction of K,(9) by developing procedures which cir- 29 4121 0.27 3.53 2.77 2.41 
cumvent some of the existing limitations. One might neglect 30 4123 0.80 0.70 0.53 0.97 

the measured data of .J;-9 near saturation and fix a clear air 31 4126 0.28 2.15 1.21 1.22 

entry value. Another modification is the derivation and use of 32 4129 0.88 2.65 2.65 2.26 

an experimental correlation between the value of n in the 33 4130 0.14 0.24 0.26 0.27 
34 4131 0.56 0.43 0.34 0.62 

power function ((I)) and some physical parameters of the 35 4132 2.85 3.53 3.66 2.91 
soils. 36 4133 0.37 0.41 0.36 0.44 

SUMMARY AND CONCLUSIONS 37 4134 0.31 0.35 0.56 0.30 

The new model for prediction of K,(0), proposed herein, is 38 4137 0.53 0.28 0.53 0./6 
39 4141 1.38 1.60 1.71 0.93 

based on a reasonable approximate evaluation of the hydraulic 40 4142 0.65 0.99 0.62 0.91 
conductivity of a pore domain with varying shape. The K,(0) 41 4143 0.52 0.73 0.92 0.41 

expression is derived in a simple integral form. Thus in cases 42 4147 0.71 0.50 0.70 0.37 

where the 1/1-0 dependence is given by analytical formulae, 43 5002 0.91 0.98 1.12 0.43 

~'.(9) can be reduced to a closed form. Very rarely is the 1/;-0 44 5003 0.61 0.69 1.04 0.2/ 
45 5004 0.90 0.80 1.04 0.30 

Jrve measured in the whole range. Hence in order to make [j 1.49 1.32 1.17 0.97 

the various models more practical tools an analytical pro- u 1.64 1.22 0.88 0.82 

cedure is suggested for the determination of the residual water f = u/D 1.10 0.93 0.75 0.84 

content and the extrapolation of the 1/;-0 curve into the range The italicized values indicate the model which • :elds the: minimum 
for which no measured data are available. deviation between the measured curves and the i:.Jrecasted ones. 
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shown that the proposed model is more reliable than the 
existing models and clearly improves the prediction of unsatu
rated hydraulic conductivities. 

APPENDIX 1: HYDRAULIC CONDUCTIVITY 
OF THE CAPILLARY ELEMENT 

In most of the rational models for predicting K one consid
ers the conductivity of a pair (or a series) of capillary elements. 
Relying on Poiseuille's equation, Childs and Col/is-George 
[ 19SO] assumed that the conductivity is determined by the 
radius of the narrower element, whereas Wyllie and Gardner 
[19S8] used a reduced pore radius. Here a different relation
ship is adopted, based on the pore configuration shown in 
Figure I. 

To simplify matters, we disregard special effects and assume 
that each capillary in Figure I obeys the Poiseuille equation, 
I.e., 

_ 1rr
4
g dtj> 

Q1 = 811 dx (AI) 

where c/J = t/; + z is the head, 11 is the liquid kinematic viscosity, 
and Q is the discharge. For this combination in series, the total 
head loss is 

(A2) 

while the discharge is 

(A3) 

If the element of Figure I is replaced by an equivalent tube 
of radius R and length L, then the discharge relationship yields 

R• tlc/J/L = r' tlt/> 1//1 = p• tlc/Jzllz (A4) 

while equivalency of volumes gives 

R 2L = r/1 + p21. (AS) 

Assuming moreover that the lengths are proportional to the 
radii [Fatt, 1956], 

(A6) 

we obtain 

(A 7) 

This means that the 'large pore' has a more important influ
ence than is generally assumed. The reason is, of course, that 
we have taken into account its length and not only its cross 
section. 

APPENDIX 2: PROCEDURE FOR DETERMINATION OF 0, 
AND THE EXTRAPOLATED t/;-0 CURVE 

The determination of 0, is a prerequisite for using any of 
the methods suggested for predicting the K-0 relationship. We 
define 0, as the residual water content for d0/dl/; _. 0 for 0 _. 
0, because it fulfils the other basic requirement that K(0,) = 
0. Very often, only part of the 1/;-0 curve is measured, 0, is an 
unknown parameter, and it is no] clear how to extrapolate the 
measured curve. This problem becomes embarrassing when 
comparisons of various models with measurements are stud
ied, because just by choosing 0, we may improve or worsen 
one method in relation to the others. There is an intense need 
for an objective analytic procedure for extrapolating the mea
sured 1/;-0 curve. 

In this work, (IS) is adopted to represent the extrapolated 
part of the t/;-0 curve. Demanding that the extrapolated CUr' 
should pass through the measured last point (t/lmtn• 0mtn) lea 
to 

~= 8-8, 
S, min 8min - 8, 

(A8) 

or 

In (t/lm1nN) =>.-'In (S.IS. mtn) (A9) 

On a log scale, (9) describes a straight line. As a matter of 
convenience we define 

Y = In (1/lmln/t/;) X = In (S/Smtn) (AIO) 

Since the extrapolated curve should match the measured one, 
we demand that the dispersion of the measured points, up to 
the inflection 0p point (0m1n < 0 < 0p). around the analytic 
curve (A9) should be minimum. The sum of the square devia
tion of the measured data from the analytic curve is 

N 

d = L [y, - y(x,)]• 

(All) 

and requiring d to be minimum (ad/ a>. = 0), one obtains 

>. = ±[In (~)]
2

/ ±In (1/lmi.n) In(~) (Al2) 
1 Sman 1 1/t, Smin 

and 

d= 
N 

:L 
I 

[ In ("'mi_•)]
2 

-;- ~ £ In ("'"'i_n) ~~-(~) 1/1, A 1 1/;, Sman 

1 N [ ( S; '] + x• f: In Sm1:J 
(A13) 

If we assume a series value 9,1 = 0.0 lj, j = I, 2, · · ·, up to 
0m1n. the corresponding X1 and d1 are obtained by using (A 12) 
and (A 13). The residual water content 9, is chosen as the 
value of 0,1 which yields the minimum value of d1• 

APPENDIX 3: MODIFIED FORMULATION 
OF THE CCG MODEL 

The basic equation suggested by Childs and Col/is-George 
[1950] as set forth by Brutsaert (1967] is 

K(R) = M J,~~R••• r~~ ,.,.lf(p)f(r) dr dp 

+ M J,~~Rmi• r.~R p'f(r)f(p) dp dr (Al4) 

It is obvious that the integration is carried over the square 
domain OABC in the (r, p) plane (Figure 4). The first integral 
(left-hand side) of (AI4) is carried over the triangle OBC, and 
the second integral over the complementary triangle OAB. By 
a change in the order of integration, 

J,~~R,.;. J.~: .... r2/(p)f(r) dr dp 

(Al.S) 
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Fig. 4. Description of the integration domain of(Al4). 

and a change of variables, 

[~~R•'• J,:~R r2/(r)f(p) dp dr 

(Al6) 

it follows that the two integrals of(A 14) are identical. Hence 

K(R) 2M .J,:~R'"'" f~~R /f(p)f(r) dr dp 

( = 2M r·R /f(p) r·R j(r) dr dp 
P•B mla f'•P 

(Al7) 

By definition, we have 

JR f(r) dr 
R •I• 

8(R) (Al8) 

and substituting in (A 17) we obtain 

1
, 1 

K(8) = 2M' 
0 

(8 - !1) 1/12 dtJ (Al9) 

By matching at saturation, the CCG formula can be written as 

1' eM/ 1'··· dtJ K,(8) = 
0 

(6 - !1) 1/12 0 
(8 •• , - !1) 1/12 (A20) 

The formulae of Millington and Quirk (1961] and KUIIze eta/. 
[1968] may be written similarly by multiplying the right-hand 
side of (A 19) by s. ~, with n = t and n = I, respectively. 

a 
f(r) 

G 
K 

K,, Krc 

I 
L, I 

m 
n 

R, r 
S., S. min 

NOTATION 

probability. 
pore water distribution function. 
correlation factor. 
hydraulic conductivity. 
relative hydraulic conductivity and computed 
value of K,. 
index. 
length. 
index. 
constant power. 
radius. 
effective saturation and minimum effective sat
uration. 

T 
a,{J 

e. e, 

tortuosity factor. 
constant power. 
actual and residual water content. 

E>max. E>mln measured maximum and minimum values of 
E>. 

8 = E> - E>,, effective water content. 
p radius. 
Y, capillary head. 

'/lcr capillary head at which d8/dljl > 0. 
'/lm1n minimum measured value of 1/1. 
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