

Environmental Protection and Compliance Division

Los Alamos National Laboratory P.O. Box 1663, MS M969 Los Alamos, NM 87545 505-667-8160 National Nuclear Security Administration Los Alamos Field Office 3747 West Jemez Road, A316 Los Alamos, NM 87544

> Symbol: EPC-DO-23-086 Date: March 13, 2023 LA-UR -23-21636

505-667-5794/Fax 505-606-5948

Mr. Dave Cobrain, Acting Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6313

Subject: Request for Class 2 Permit Modification for the Addition of New Hazardous Waste Management Unit at Technical Area 60, Los Alamos National Laboratory Hazardous Waste Facility Permit, EPA ID #NM0890010515

Dear Mr. Cobrain:

The purpose of this letter is to submit to the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) a request for a Class 2 permit modification to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (the Permit). The Permit authorizes the U.S. Department of Energy (DOE) National Security Administration Los Alamos Field Office (NA-LA); DOE Environmental Management Los Alamos Field Office (EM-LA); Triad National Security, LLC (Triad); and Newport News Nuclear BWXT-Los Alamos, LLC (N3B) (collectively, Permittees) to manage, store, and treat hazardous waste at LANL.

This permit modification requests the addition of a new container storage unit at Technical Area (TA)-60. The unit consists of the southern portion of Building TA-60-0017. The changes to the Permit include minor text revisions to the following:

- Permit parts: Part 1, General Permit Conditions
- Part 3, Storage in Containers
- TA-specific unit description in Attachment A, TA-Unit Descriptions
- Attachment B, Part A Application
- Emergency equipment changes in Attachment D, Contingency Plan
- Addition of the unit in Attachment J, Hazardous Waste Management Units
- Addition of a closure plan for the unit in Attachment G, Closure Plans
- Updates and addition of figures in Attachment N, Figures

March 13, 2023 Page 2

Dave Cobrain, NMED EPC-DO: 23-086

The Permittees prepared this permit modification in accordance with 40 CFR §270.42(b). The changes made to the Permit as part of this modification are applicable to the conditions of Appendix I of 40 CFR §270.42, Item F.1.b, for Class 2 permit modification, and Item F.1.c, for a Class 1 requiring prior approval. A full description of the permit modification, rationale for the Class 2 modification, the required permit revisions, and a signed certification page are included in Enclosure 1.

Provided herein are three hard copies of the permit modification request package as well as an electronic version that will be delivered to the NMED-HWB. The hard-copy submittal contains specific pages or sections where text changes have been proposed rather than including entire copies of Permit attachments. The electronic copy will be provided only to NMED-HWB and contains a portable document format (PDF) version of the hard copy, along with all word processing and figure files used to create the hard copy.

In addition, the public notice (Enclosure 2) will be sent to the NMED-HWB-maintained LANL facility mailing list within 7 days of transmittal of this request. The notice contains the announcement of a 60-day comment period, location and date of a scheduled public meeting, points of contact, and location to view permit modification request supporting information. In accordance with 40 CFR §270.42(b)(2), the notice will also be published in several local newspapers within 7 days of transmittal of this request.

If you have questions or comments regarding this submittal, please contact Patrick Padilla (Triad) at (505) 412-0462 or by email at <a href="mailto:please:p

Sincerely,

STEVEN STORY (Affiliate) Digitally signed by STEVEN STORY (Affiliate) Digitally signed by STEVEN STORY (Affiliate) 14:16:29 -07'00'

Jennifer E. Payne Division Leader Environmental Protection and Compliance Division Triad National Security, LLC Los Alamos National Laboratory Sincerely,

Robert A. Gallegos Date: 2023

Digitally signed by Robert A.
Gallegos
Date: 2023.03.09 17:01:49 -07'00'

Karen Armijo
Permitting and Compliance Program Manager
National Nuclear Security Administration
Los Alamos Field Office
U.S. Department of Energy

JP/KEA/PLP

Enclosures: (1) Permit Modification Request, Technical Area 60, Hazardous Waste Storage Unit

(2) Public Notice of Class 2 Permit Modification Request and Public Meeting for Technical Area 60, New Container Storage Unit

Copy: Laurie King, USEPA/Region 6, Dallas TX, king.laurie@epa.gov
Rick Shean, NMED-HWB, Santa Fe, NM, rick.shean@env.nm.gov
Dave Cobrain, NMED-HWB, Santa Fe, NM, dave.cobrain@env.nm.gov
Neelam Dhawan, NMED-HWB, Santa Fe, NM, neelam.dhawan@env.nm.gov
Siona Briley, NMED-HWB, Santa Fe, NM, siona.briley@env.nm.gov
Mitchell Schatz, NMED-HWB, Santa Fe, NM, mitchell.schatz@env.nm.gov
Theodore A. Wyka, NA-LA, theodore.wyka@nnsa.doe.gov
Stephen Hoffman, NA-LA, stephen.hoffman@nnsa.doe.gov
Jason Saenz, NA-LA, jason.saenz@nnsa.doe.gov
Karen E. Armijo, NA-LA, karen.armijo@nnsa.doe.gov

Dave Cobrain, NMED March 13, 2023 EPC-DO: 23-086 Page 3

Adrienne L. Nash, NA-LA, adrienne.nash@nnsa.doe.gov Robert A. Gallegos, NA-LA, robert.gallegos@nnsa.doe.gov Michael Mikolanis, EM-LA, michael.mikolanis@em.doe.gov M. Lee Bishop, EM-LA, <u>lee.bishop@em.doe.gov</u> Steven A. Coleman, Triad, ALDESHQ, scoleman@lanl.gov James D. Coy, Triad, ALDESHQ, jcoy@lanl.gov Jeannette T. Hyatt, Triad, EWP, jhyatt@lanl.gov Sylvia Souza de la Sancha, Triad, EWP, sdelasancha@lanl.gov Jennifer E. Payne, Triad, EPC-DO, jpayne@lanl.gov Kristen A. Honig, Triad, EPC-DO, khonig@lanl.gov Andrea L. McLaughlin-Kysar, Triad, EPC-DO, andiek@lanl.gov Deepika Saikrishnan, Triad, EPC-DO, deepika@lanl.gov Jessica L. Moseley, Triad, EPC-WMP, jmoseley@lanl.gov Patrick L. Padilla, Triad, EPC-WMP, plpadilla@lanl.gov Cecilia Trujillo, Triad, EPC-WMP, ceciliat@lanl.gov Ronnie A. Garcia, Triad, WM-DO, ronnieg@lanl.gov Joseph B. Rodriguez, Triad, WM-WGS, jbrodriguez@lanl.gov Patrick S. Kennedy, Triad, WM-WMS, pskennedy@lanl.gov Paul N. Newberry, Triad, WM-WMS, pnn@lanl.gov Bradley Smith, N3B, bradley.smith@em-la.doe.gov Erik Loechell, N3B, erik.loechell@em-la.doe.gov Christian Maupin, N3B, christian.maupin@em-la.doe.gov Pamela Maestas, N3B, pamela.maestas@em-la.doe.gov William Alexander, N3B, william.alexander@em-la.doe.gov locatesteam@lanl.gov epccorrespondence@lanl.gov rcra-prr@lanl.gov eshq-dcrm@lanl.gov

[this page is intentionally blank.]

ENCLOSURE 1

Permit Modification Request, Technical Area 60

Hazardous Waste Storage Unit

Los Alamos National Laboratory, EPA ID# NM0890010515

> EPC-DO-23-086 LA-UR-23-21636

U.S. Department of Energy, National Nuclear Security Administration Los Alamos Field Office, and Triad National Security, LLC

[this page is intentionally blank.]

Permit Modification Request, Technical Area 60, Hazardous Waste Storage Unit

Revision 0.0

Prepared for: U.S. Department of Energy/National Nuclear Security Administration,

Los Alamos Field Office

Prepared by: Environmental Protection and Compliance – Waste Management Programs

Editing and Layout by: Tamara Hawman, Communications Specialist

Technical Editing and Communications (CEA-TEC)

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Contents

1	n				
2	Ove	Overview of Class 2 Permit Modification Request			
	2.1	Permi	it Modification Outline	9	
	2.2	Class	2 Permit Modification Requirements	10	
		2.2.1	Proposed Changes	10	
		2.2.2	Purpose of the Permit Modification	11	
			Justification for Classification		
3	Faci		quirements		
			ription of the Proposed Waste Management Unit		
			TA-60-0017		
		3.1.2			
			Treatment by Macroencapsulation		
	3.2		prized Wastes and Waste Acceptance		
	3.3		redness and Prevention.		
	3.4 Hazards Prevention				
			Preventing Hazards During Unloading		
			Preventing Run-on/Run-off		
			Mitigating Effects of Power Outages		
			Preventing Releases to the Atmosphere		
	3 5		ngency Plan		
	5.5		Fire Control Equipment		
		3.5.2	* *		
			Communication Equipment		
			Decontamination Equipment		
			Personal Protective Equipment		
			* *		
	2.0		Other		
	3.0		ty Requirements		
			Seismic Standard		
		3.6.2	1		
			Historic Cultural Sites		
		3.6.4			
			Other Federal Laws		
4			an		
5			e Management Units		
	5.1		of Concern (AOC) 60-001(c)		
	5.2		Waste Management Unit (SWMU) 60-006(a)		
	5.3		of Concern (AOC) C-60-002		
	5.4				
	5.5		of Concern (AOC) 60-001(d)		
	5.6		of Concern (AOC) C-00-007		
	5.7		of Concern (AOC) C-00-008		
6		-			
7			S	_	
8	Cert	iticatio	on	44	

Contents

Attachment 1 Part A Form and Other Part A Application Requirements	1-1
Attachment 2 Seismic Report for the TA-60 Facility	
Attachment 3 Proposed Modifications to the LANL Hazardous Waste Facility Permit – Red	
Line/Highlight	3-1
Attachment 4 TA-60-0017 Closure Plan, Indoor Container Storage Unit	4-1
Attachment 5 LANL Traffic Study and TA-60 Traffic Data	
Attachment 6 Design Drawings	6-1
Figures	
Figure 3-1. TA-60-0017 RCRA Storage Unit with Topographic Features	3-23
Figure 3-2. TA 60-0017 with Water Table Contours and Sampling Locations.	3-24
Figure 3-3. TA 60-0017 Container Storage Unit Configuration	3-25
Figure 3-4. Design Drawing Facility Floor Plan.	3-26
Figure 3-5. TA 60-0017 Surrounding Area.	3-27
Figure 3-6. TA 60-0017 Emergency Evacuation Plan.	3-28
Figure 3-7. TA-60-0017 and Solid Waste Management Units in Broader Area	3-29
Figure 3-8. TA 60-0017 Floodplains.	3-30
Figure 3-9. TA 60-0017 Security and Access.	3-31
Figure 3-10. TA 60-0017 Surrounding Buildings, Roads, and Traffic Signs.	3-32
Figure 3-11. Wind Roses for TA-60 (Day and Night).	3-33
Tables	
Table 1-1. Regulatory Crosswalk	

1 Introduction

This Class 2 permit modification requests the addition of a new hazardous waste management unit to the Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit (U.S. Environmental Protection Agency [EPA] Identification Number NM0890010515), hereinafter referred to as the Permit, issued by the New Mexico Environment Department (NMED) in November 2010. The Permit authorizes the U.S. Department of Energy (DOE); DOE Environmental Management Los Alamos Field Office (EM-LA); Triad National Security, LLC (Triad); and Newport News Nuclear BWXT-Los Alamos, LLC (N3B) (collectively, Permittees) to manage, store, and treat hazardous waste at LANL. This modification request was prepared in accordance with the requirements of Permit Section 1.6.2 (20.4.1.900 New Mexico Administrative Code [NMAC]) specific to Technical Area (TA) 60, the southern portion of Building 17 (TA-60-0017). With few exceptions, 20.4.1 NMAC adopts Title 40 Code of Federal Regulations (CFR) Parts 260 through 266, Part 268, Part 270, and Part 273; therefore, regulatory citations in this document reference the appropriate federal hazardous waste regulations. Table 1-1 provides a list of regulatory references and their corresponding locations in this permit modification request or previous applications.

The Permit contains the conditions that address the requirements of the New Mexico Hazardous Waste Act (NMHWA) and implementing regulations—specifically 40 CFR—that are common to all active LANL hazardous waste management units. The relevant sections of the Permit are referenced throughout this document as applicable for the addition of the proposed unit. Together, information provided in this document and in the Permit meet the applicable requirements specified in 40 CFR Parts 264 and 270 for the proposed unit.

Table 1-1. Regulatory Crosswalk

Regulatory Citation(s) 40 CFR	Description of Requirement	Location of Documentation	Revision or Supplementary Information
§ 270.13	Part A permit application	2020 LANL General Part A ¹ Updated form included as Attachment 1 of this permit modification request.	Yes
§ 270.14(b)(1)	General facility description	Revisions to Permit ² Attachment A, Section A.7 is included in Attachment 3 of this permit modification request, and Section 3.1 of this permit modification request.	Yes
§ 270.14(b)(2)	Chemical and physical analysis of hazardous waste	Permit ² Section 2.4 and Permit ² Attachment C	No
§ 270.14(b)(3)	Waste analysis plan	Permit ² Attachment C	No

Regulatory Citation(s) 40 CFR	Description of Requirement	Location of Documentation	Revision or Supplementary Information
§ 264.13(b)	Development and implementation of a written waste analysis plan	Permit ² Section 2.4 and Permit ² Attachment C	No
§ 264.13(c)	Off-site waste analysis requirements	Permit ² Section 2.2.1	No
§ 270.14(b)(4)	Security procedures and equipment	Permit ² Section 2.5 and Revisions to Permit ² Attachment A, Section A.7.2 is included in Attachment 3 of this permit request.	Yes
§ 264.14	Security procedures and equipment	Permit ² Section 2.5 and Revisions to Permit ² Attachment A, Section A.7.2 is included in Attachment 3 of this permit request.	Yes
§ 270.14(b)(5)	General inspection schedule	Permit ² Section 2.6 and Permit ² Attachment E	No
§ 264.15(b)	General inspection schedule	Permit ² Section 2.6 and Permit ² Attachment E	No
§ 264.174	Inspections/containers	Permit ² Section 2.6 and Permit ² Attachment E	No
§ 264.193(i)	Tank inspections	Not applicable	Not applicable
§ 264.195	Overfill control inspections	Not applicable	Not applicable
§ 264.226	Surface impoundment monitoring and inspection	Not applicable	Not applicable
§ 264.254	Waste pile monitoring and inspection	Not applicable	Not applicable
§ 264.273	Land treatment and operating requirements	Not applicable	Not applicable
§ 264.303	Landfill monitoring and inspection	Not applicable	Not applicable
§ 264.602	Monitoring, analysis, inspection, response, reporting, and corrective action	Not applicable	Not applicable
§ 264.1033	Process vent standards	Not applicable	Not applicable
§ 264.1052	Equipment leak air emissions standards	Not applicable	Not applicable
§ 264.1053	Compressor standards	Not applicable	Not applicable
§ 264.1058	Standards for pumps, valves, pressure relief devices, flanges, and connections	Not applicable	Not applicable

Regulatory Citation(s) 40 CFR	Description of Requirement	Location of Documentation	Revision or Supplementary Information
§ 264.1084	Air emissions standards: tanks	Not applicable	Not applicable
§ 264.1085	Air emissions standards: surface impoundments	Not applicable	Not applicable
§ 264.1086	Air emissions standards: containers	Permit ² Section 3.9 and Permit ² Attachment E, Section E.8	No
§ 264.1088	Inspection and monitoring requirements	Permit ² Section 3.9 and Permit ² Attachment E, Section E.8	No
§ 270.14(b)(6)	Request for waiver from preparedness and prevention requirements of 264 Subpart C	Not applicable	No
§ 264.30-34 & 37	Preparedness and prevention: applicability, design and operation, required equipment, testing and maintenance of equipment, access to communications or alarm systems, and arrangements with local authorities	Permit Section 2.10 Section 3 of this permit modification request	Yes
§ 264.35	Required aisle space	Permit ² Section 3.5.1(1)	No
§ 264.227	Surface impoundment emergency repairs	Not applicable	Not applicable
§ 264.200	Air emissions standards: Tank systems	Not applicable	Not applicable
§ 270.14(b)(7)	Contingency plan	Revisions to Permit ² Attachment D, TA-60, Table D-1 (TA-60-0017) are included in Attachment 3 of this permit request	Yes
§ 264.50-56	Contingency plan and emergency procedures: applicability, purpose/implementation of contingency plan, content of contingency plan, copies of contingency plan, amendment to contingency, emergency coordinator, and emergency procedures	Revisions to Permit ² Attachment D, TA-60, Table D-1 (TA-60-0017) are included in Attachment 3 of this permit request	Yes
§ 270.14(b)(8)	Description of preparedness and prevention	Permit ² Section 2.10 and Sections 3.3 and 3.4 of this permit modification request	Yes

Regulatory Citation(s) 40 CFR	Description of Requirement	Location of Documentation	Revision or Supplementary Information
§ 270.14(b)(8)(i)	Hazard prevention in unloading operations	Permit ² Section 3.15 and Section 3.4.1 of this permit modification request	Yes
§ 270.14(b)(8)(ii)	Runoff prevention	Permit ² Section 3.15 and Section 3.4.2 of this permit modification request	Yes
§ 270.14(b)(8)(iii)	Prevent contamination of water supplies	Permit ² Section 3.15 and Section 3.4.2 of this permit modification request	Yes
§ 270.14(b)(8)(iv)	Mitigation of equipment failure and power outages	Permit ² Section 3.15 and Section 3.4.3 of this permit modification request	Yes
§ 270.14(b)(8)(v)	Prevention of undue exposure of personnel to hazardous waste	Permit ² Section 3.15 and Section 3.5.5 of this permit modification request	Yes
§ 270.14(b)(8)(vi)	Prevention of releases to the atmosphere	Permit ² Section 3.15 and Section 3.4.4 of this permit modification request	Yes
270.14(b)(9)	Prevention of accidental ignition or reaction of ignitable, reactive, or incompatible wastes	Permit ² Section 2.8	No
§ 264.17	Procedures to prevent accidental ignition, reaction of ignitables, reaction of reactives, reaction of incompatibles, and documentation of compliance with 40 CFR § 264.17 (general requirements for ignitable, reactive, or incompatible wastes)	Permit ² Section 2.8	No
§ 270.14(b)(10)	Traffic pattern: volume, controls, and access	Attachment 2of this Permit Modification Request	Yes
§ 270.14(b)(11)	Facility/unit identification and location information	Section 3 of this permit modification request	Yes
§ 270.14(b)(11)(i)	Seismic standard applicability [40 CFR § 264.18(a)]	Section 3.6.1 and Attachment 2 of this permit modification request	Yes
§ 270.14(b)(11)(ii)	Seismic standard requirements	Section 3.6.1 and Attachment 2 of this permit modification request	Yes
§ 270.14(b)(11)(ii)(A)	No fault within 3,000 feet (ft) with displacement in Holocene time	Section 3.6.1 and Attachment 2 of this permit modification request	Yes

Regulatory Citation(s) 40 CFR	Description of Requirement	Location of Documentation	Revision or Supplementary Information
§ 270.14(b)(11)(ii)(B)	If faults that have displacement in Holocene time are present within 3,000 ft, no faults pass within 200 ft of portions of the facility where treatment, storage, or disposal will be conducted	Section 3.6.1 and Attachment 2 of this permit modification request	Yes
§ 264.18(a)	Seismic considerations	Attachment 2 of this permit modification request	Yes
§ 270.14(b)(11)(iii)	100-year floodplain standard	Figure 3-8 of this permit modification request	Yes
§ 270.14(b)(11)(iv)(A–C)	Facilities located within the 100-year floodplain	Not applicable	Not applicable
§ 270.14(b)(11)(v)	Compliance schedule for 40 CFR § 264.18(b)	Not applicable	Not applicable
§ 270.14(b)(12)	Personnel training program (40 CFR § § 264.13(a)(3) and 264.16)	Permit ² Section 2.7 and Permit ² Attachment F	No
§ 270.14(b)(13)	Closure and post-closure plans	Section 4 and Attachment 4 of this permit modification request	Yes
§ 264, Subpart G	Closure and post-closure	Attachment 4 of this permit modification request	Yes
§ 264.178	Closure/containers	Not applicable	Not applicable
§ 264.197	Closure and post-closure care/tanks	Not applicable	Not applicable
§ 264.228	Surface impoundments	Not applicable	Not applicable
§ 264.258	Waste piles	Not applicable	Not applicable
§ 264.280	Land treatment	Not applicable	Not applicable
§ 264.310	Landfills	Not applicable	Not applicable
§ 264.351	Incinerators	Not applicable	Not applicable
§ 264.603	Requirements by the Secretary	Not applicable	Not applicable
§ 270.14(b)(14)	Deed restrictions/post- closure notices (40 CFR § 264.119)	Not applicable	Not applicable
§ 270.14(b)(15)	Closure cost estimate (40 CFR § 264.142)	Not applicable	Not applicable
§ 270.14(b)(16)	Post-closure cost estimate (40 CFR § 264.144)	Not applicable	Not applicable

Regulatory Citation(s) 40 CFR	Description of Requirement	Location of Documentation	Revision or Supplementary Information
§ 270.14(b)(17)	Liability insurance (40 CFR § 264.147)	Not applicable	Not applicable
§ 270.14(b)(18)	Proof of financial coverage (40 CFR § 264.149-150)	Not applicable	Not applicable
§ 270.14(b)(19)	Topographic map requirements	2020 LANL General Permit Part A and TA-60 Figure 3-1 of this permit modification request	Yes
§ 270.14(b)(19)(i)	Map scale and date	TA-60 Figure 3-1 of this permit modification request	Yes
§ 270.14(b)(19)(ii)	100-year floodplain area	TA-60 Figure 3-8 of this permit modification request	Yes
§ 270.14(b)(19)(iii)	Surface waters	2020 LANL General Permit Part A and TA-60 Figure 3-1 of this permit modification request	Yes
§ 270.14(b)(19)(iv)	Surrounding land uses	Permit ² Attachment N, Figures 1, 2, and 3	Yes
		2020 LANL General Permit Part A and TA-60 Figure 3-1 of this permit modification request	
§ 270.14(b)(19)(v)	Wind rose	TA-60 Figure 3-11 of this permit modification request	Yes
§ 270.14(b)(19)(vi)	Map orientation	2020 LANL General Permit Part A and TA-60 Figure 3-1 of this permit modification request	Yes
§ 270.14(b)(19)(vii)	Legal boundaries	2020 LANL General Permit Part A and TA-60 Figure 3-1 of this permit modification request	Yes
§ 270.14(b)(19)(viii)	Access control	Permit ² Attachment N and TA-60 Figure 3-9 of this permit modification request	Yes
§ 270.14(b)(19)(ix)	Wells	TA-60 Figure 3-1 of this permit modification request	Yes
§ 270.14(b)(19)(x)	Buildings	2020 LANL General Permit Part A and TA-60 Figure 3-10 of this permit modification request	Yes
§ 270.14(b)(19)(xi)	Drainage barriers or flood control	TA-60 Figure 3-1 and Figure 3-8 of this permit modification request	Yes
§ 270.14(b)(19)(xii)	Location of operational units	TA-60 Figure 3-3 of this permit modification request	Yes
§ 270.14(b)(20)	Considerations under federal law	Section 3.6.3 of this permit modification request	Yes

Regulatory Citation(s) 40 CFR	Description of Requirement	Location of Documentation	Revision or Supplementary Information
§ 270.3(a)	Wild and Scenic Rivers Act	Section 3.6.3 of this permit modification request	Yes
§ 270.3(b)	National Historic Preservation Act	Section 3.6.3 of this permit modification request	Yes
§ 270.3(c)	Endangered Species Act	Section 3.6.3 of this permit modification request	Yes
§ 270.3(d)	Coastal Zone Management	Section 3.6.3 of this permit modification request	Yes
§ 270.3(e)	Fish and Wildlife Coordination Act	Section 3.6.3 of this permit modification request	Yes
§ 270.3(f)	Executive Orders	Section 3.6.3 of this permit modification request	Yes
§ 270.14(b)(21)	Notice of extension approval for land disposal facilities	Not applicable	Not applicable
§ 270.14(b)(22)	A summary of the preapplication meeting	Not applicable	Not applicable
§ 270.14(c)	Groundwater monitoring requirements for regulated units	Not applicable	Not applicable
§ 270.14(d)	Information requirements for SWMUs	Section 5 and TA-60 Figure 3-7 of this permit modification request	Yes
§ 270.14(d)(2)	Information on releases from SWMUs	Section 5 and TA-60 Figure 3-7 of this permit modification request	Yes
§ 270.14(d)(3)	RCRA ³ facility assessment sampling and analysis results	Not applicable	Not applicable
§ 270.15	Information requirements for containers	Revisions to Permit ² Section 3.15 in Attachment 3 of this permit modification request, and Section 3 of this permit modification request	Yes
§ 270.15(a)	Description of containment system	Permit ² Section 3.7	No
§ 270.15(b)	Storage areas holding wastes that do not contain free liquids	Permit ² Section 3.7, and Permit ² Attachment A, Section A.5	No
§ 264.171	Condition of containers	Permit ² Part 3	No
§ 264.172	Compatibility of waste with containers	Permit ² Part 3	No
§ 264.173	Management of containers	Permit ² Part 3	No

Regulatory Citation(s) 40 CFR	Description of Requirement	Location of Documentation	Revision or Supplementary Information
§ 264.175(a-c)	Containment	Units comply with containment requirements of Permit ² Section 3.7	Yes
		A general description of the unit is located at Permit ² Section 3.15 and Section 3 and Attachment 3 of this permit modification request	
§ 270.15(c)	Requirements for ignitable, reactive, and incompatible wastes	Permit ² Sections 2.8	No
§ 270.15(d)	Requirements for incompatible wastes	Permit ² Section 2.8	No
§ 264.176	15-meter storage buffer for ignitable or reactive wastes	Permit ² Section 2.8	No
§ 264.177(a)	Incompatible wastes in containers	Permit ² Section 2.8	No
§ 264.177(b)	Incompatible wastes in containers	Permit ² Section 2.8	No
§ 264.177 (c)	Incompatible wastes separation or segregation	Permit ² Section 2.8	No
§ 264.17 (b)	Prevention of reactions	Permit ² Section 2.8	No
§ 264.17(c)	Documentation of precautions for ignitable, reactive or incompatible waste	Permit ² Section 2.8	No
§ 270.15(e)	Information on air emissions control equipment	Permit ² Section 3.9 and Permit ² Attachment E, Section E.8	No
§ 270.27	Air emissions controls for containers	Permit ² Section 3.9, Permit ² Attachment C, Section C.5.4, and Permit ² Attachment E, Section E.8	No
§ 270.16	Information requirements for tank systems	Not applicable	Not applicable
§ 270.17	Information requirements for surface impoundments	Not applicable	Not applicable
§ 270.18	Information requirements for waste piles	Not applicable	Not applicable
§ 270.19	Information requirements for incinerators	Not applicable	Not applicable
§ 270.20	Information requirements for land treatment facilities	Not applicable	Not applicable
§ 270.21	Information requirements for landfills	Not applicable	Not applicable

Regulatory Citation(s) 40 CFR	Description of Requirement	Location of Documentation	Revision or Supplementary Information
§ 270.62	Hazardous waste incinerator permits	Not applicable	Not applicable
§ 270.63	Permits for land treatment demonstrations using field test or laboratory analysis	Not applicable	Not applicable

Transmittal of General Part A Permit Application (Revision 10.0) for the Los Alamos National Laboratory; EPA ID No. NM0890010515, June 2020 (ESHOSS-20-029, LA-UR-19-32403).

2 Overview of Class 2 Permit Modification Request

This Class 2 permit modification request is drafted to add a new hazardous waste management unit located at TA-60 to the Permit. The information within this document and its attachments addresses the relevant permit application requirements of 40 CFR Part 270, Subpart B. The unit to be permitted consists of the southern portion of TA-60-0017.

2.1 Permit Modification Outline

This permit modification request is organized as follows:

- Section 1: Includes an introduction to the permit modification request and a crosswalk of the regulatory requirements associated with the proposed units
- Section 2: Contains an overview of the Class 2 Permit Modification Request
- Section 3: Includes a description of TA-60-0017 and addresses waste-handling procedures, waste characterization, security, preparedness, hazards prevention, emergency equipment, inspection requirements, and recordkeeping requirements
- Section 4: Includes closure requirements
- Section 5: Contains a description of the seven solid waste management units (SWMUs) located within a 1,000-ft radius of the southern portion of TA-60-0017
- Section 6: Contains a list of references used throughout this document
- Section 7: Contains the certification statement and signatures for this permit modification request as required by 40 CFR § 270.11

Attachments included with this permit modification request provide detailed information to meet regulatory requirements. These attachments include the following:

- Attachment 1: Part A Form and Other Part A Application Requirements
- Attachment 2: Seismic Report for the TA-60 Facility

² Requirement of information is also addressed in the *Hazardous Waste Facility Permit Issued by the New Mexico Environment Department to Los Alamos National Laboratory*, EPA No. NM0890010515, November 2010.

³ RCRA = Resource Conservation and Recovery Act

- Attachment 3: Proposed Modifications to the LANL Hazardous Waste Facility Permit Red Line/Highlight
- Attachment 4: TA-60-0017 Closure Plan, Indoor Container Storage Unit
- Attachment 5: LANL Traffic Study and TA-60 Traffic Data
- Attachment 6: Design Drawings

2.2 Class 2 Permit Modification Requirements

The 40 CFR § 270.42(b) requirements state that the Permittees shall submit a modification request to the Department that contains all of the following information:

- describes the exact changes to be made to the permit conditions and supporting documents referenced by the Permit,
- identifies that the modification is a Class 2,
- explains why the modification is needed, and
- provides the applicable information required by 40 CFR § 270.13 and § 270.14.

Sections 2.2.1 through 2.2.3 provide the information required by the first three items above. The remainder of the document contains the application information that is required by the fourth item above. Table 1-1 outlines each of the regulatory references and the locations where the information can be found in existing documentation and/or within this permit modification request.

2.2.1 Proposed Changes

Attachment 3 contains proposed Permit changes that incorporate descriptions and site-specific equipment and procedures for this unit. Additional and revised text is proposed for both Permit Parts and Permit Attachments. The Permit sections proposed for revision include the following:

- Permit Part 1, General Permit Conditions
 - Permit Table 1.2.1, List of Hazardous Waste Management Units and Co-Operators, is revised to include TA-60.
 - Permit Section 1.5, Effect of Inaccuracies in Permit Application, is revised to include this permit modification request.
- Permit Part 3, Storage in Containers
 - Permit Section 3.15, TA-60 Container Storage Requirements, and subsection added to include a permitted unit at TA-60-0017.
- Permit Attachment A, Technical Area (TA) Unit Descriptions
 - Permit Attachment Section A.7, *TA-60*, and subsection added to include TA-60-0017.
- Permit Attachment B, Part A Application
 - Changes to Permit Attachment B are included within Attachment 1 of this permit modification request and are reproduced in Attachment 3 for completeness. Updates to the

Part A Application form include the use of the most current EPA form, updates to contact information for both owners and operators, updates to the list of other environmental permits, and the addition of the applicable information for TA-60-0017 in Item 6, *Process Codes and Design Capacities* and Item 7, *Description of Hazardous Wastes*.

- Permit Attachment D, General Contingency Plan
 - Inclusion of available emergency equipment as Permit Attachment Table D-1, TA-60
 Building 17, Container Storage Emergency Equipment, as well as reference to the table in applicable sections of Permit Attachment
- Permit Attachment G.31, Technical Area 60, Building 17 Container Storage Unit
 - Addition of a closure plan for a permitted unit at TA-16-0017.
- Permit Attachment J, Hazardous Waste Management Units
 - Inclusion of applicable information for TA-60-0017 in Table J-1, Active Portion of the Facility.
- Permit Attachment N, Figures
 - Revision of Figure 2, LANL Facility Boundary and Technical Area (TA)-Specific Map and Figure 3, LANL Facility Boundary with Detail of Non-LANL Areas to include TA-60.
 Addition of Figure 51, TA-60 Location Map; Figure 52, Security and Access to TA-60-0017; and Figure 53, TA-60-0017 Site Plan.

The TA-60 Rack Tower Complex, which includes Buildings 17 and 19, was constructed in 1986. Design drawings are discussed in Section 3 and included in Attachment 6 of this permit modification request to illustrate construction details for TA-60-0017. The relevant part of 40 CFR § 270.14(a) requires that design drawings are submitted with waste management unit applications for approval be certified by a qualified professional engineer. The drawings in this permit modification request have been certified by professional engineers registered in the State of New Mexico. These engineers were responsible for the preparation of the drawings in support of the design process for the unit.

2.2.2 Purpose of the Permit Modification

The intent of this Class 2 permit modification request is to add a new hazardous waste storage unit (TA-60-0017) to the Permit.

The Laboratory's strategy for hazardous waste is to first minimize both the volume and toxicity of any hazardous waste generated on site, based on the permit, policies, and procedures (including the 2019 Enduring Waste Mission Management Plan) in place. Nevertheless, the generation of hazardous waste occurs and requires waste management and storage. Implementation of the Laboratory strategy for hazardous waste is focused on waste-generator training, planning, and waste avoidance. Waste avoidance is accomplished by minimizing the volume and toxicity of waste generated to achieve source reduction and to reduce the overall volume and cost of hazardous waste disposal. Any waste that is generated is managed in controlled storage areas and shipped to off-site treatment, storage, and disposal facilities (TSDFs). Hazardous waste is currently either shipped offsite directly from generation sites or from the southern portion of TA-60-0017, which in its existing configuration is used as a Central

Accumulation Area (CAA) and is authorized for storage for less than 90 days as well as for consolidation of hazardous and mixed waste shipments from generator areas throughout the Laboratory. Other wastes, such as non-hazardous, New Mexico Special Waste, polychlorinated biphenyls (PCBs), universal, used oil, and low-level waste are also stored within the building. The area is used to effectively pre-package, label, group, and/or stage shipments from generator sites to ensure that shipments of waste are optimized to the extent practicable. However, there is a need for longer-term waste storage options as the use of TA-54 Area L—now managed by N3B—shifted and is no longer a viable option for routine longer-term storage needs.

Therefore, the addition of TA-60-0017 as a hazardous waste management unit to the LANL Hazardous Waste Facility Permit is critical to facility operations and mission success. Transitioning the facility from a CAA to a permitted unit, allowing for storage up to 1 year, is an important near-term option to facilitate overall storage and transportation efficiencies until a more permanent solution is identified. Incorporating an option for treatment by macroencapsulation is also included in the permit modification request. The long-term strategy is to continue direct off-site shipments and to design/build a new integrated modern facility suitable for an enduring mission consolidated storage area for hazardous waste, low-level waste, and mixed low-level waste requirements on the Pajarito corridor outside of TA-54.

Site review of this geospatial location for technical feasibility was completed as part of overall efforts to determine its viability as a permitted container storage unit under the Permit. This evaluation included considerations for traffic patterns within the area associated with waste management activities and compliance with seismic location standards. The area was also reviewed for complications associated with a temporary or permanent changes to the mission designation, because it is a portion of a historic building complex with military significance.

2.2.3 Justification for Classification

The addition of the proposed unit will result in up to and no greater than a 0.3 percent increase in the facility's storage capacity. This Class 2 permit modification request will be initiated pursuant to 40 CFR § 270.42, Appendix I, Item F.1.b. The capacity for the unit (TA-60-0017, southern portion) is approximately 17,600 gallons (gal.) (320 drums or drum equivalents). The total current capacity for existing, permitted hazardous waste storage units across the entire LANL campus, as listed in Table J-1, *Active Portion of the Facility* in Attachment J, *Hazardous Waste Management Units*, of the Permit, is 4,758,720 gallons (~86,522 drums or drum equivalents). This modification also adds a treatment process to the proposed unit that falls under 40 CFR § 270.42, Appendix I, Item F.1.c that requires a Class 1 permit modification with prior approval. The addition of the proposed unit falls under the more robust class 2 requirements, therefore this modification has been drafted in accordance with those requirements.

3 Facility Requirements

This section of the permit modification request addresses general requirements for TA-60-0017 that are not currently included the Permit. If the information is contained in the Permit, it is not

discussed in this request. Information provided that is specific to the unit to be permitted includes the following:

- the waste management unit description,
- preparedness and prevention,
- emergency equipment, and
- a listing and locations for required topographic maps.

3.1 Description of the Proposed Waste Management Unit

The waste management unit proposed in this application will provide additional storage for hazardous waste. The facility (Figure 3-1) is part of an existing structure and specifically consists of the southern portion of TA-60-0017. Table 3-1 identifies the unit requested to be permitted, including the location, storage, and treatment capacity. The unit will provide container storage for hazardous waste, including the hazardous component of mixed low-level waste streams. Treatment via macroencapsulation will be conducted for select waste streams as described in Section 3.1.3. This unit will manage hazardous waste streams generated throughout the LANL campus. The information provided in this section is submitted to address the applicable requirements of 40 CFR § 270.14(b)(1).

Table 3-1. TA-60 Proposed Unit to be Permitted

Waste Management Unit Name	Location	Capacity
TA-60-0017	Southern Portion of TA-60-0017	17,600 gallons Storage
		3,441 gallons/day Treatment

3.1.1 *TA-60-0017*

The TA-60-0017 facility, part of the historic Rack Tower Complex that includes TA-60-0017 (Rack Assembly Facility) and TA-60-0019 (Test Fabrication Facility), was constructed in 1986 to support atomic tests conducted at the Nevada Test Site. TA-60-0017 is located in the north central part of LANL approximately 0.8 miles east of the intersection of Diamond and Enewetak Drives adjacent to the LANL Roads and Grounds maintenance area.

It is a unique, pre-engineered, steel-frame structure that consists of two wings connected by a small control room and stairwell enclosure. The north wing was the harness fabrication and tensile test facility and the south wing—the focus of this proposed storage unit permit modification request—was the paint building. The building consists of substantial concrete footings, slabs, and stem walls. The south portion is 120 feet (ft) long by 29 ft wide and 23 ft high. The building exterior is in excellent condition. While showing some signs of weathering, no indication exists of any structural damage or water infiltration.

The permitted boundary will be the entire footprint of the southern portion of the building. Waste will be stored in accordance with Permit Section 3.5.1. The 2-ft emergency egress aisles will be

maintained appropriately in accordance with Permit Section 3.5.1(1). See Figure 3-2 for a plan view of TA-60-0017. The southern portion of the building will consist of one hazardous waste management unit. The maximum storage capacity in the facility was calculated based on the utilization of the designated area in Figure 3-3. As noted in previous sections, the maximum storage capacity is estimated to be approximately 17,600 gallons or the equivalent of 320 55-gallon drums. The waste may be stored in, but is not limited to storage in, the following types of Department of Transportation (DOT) compliant containers:

- 5-gallon through 85-gallon containers;
- standard waste boxes (SWBs);
- large waste boxes;
- · waste bags; and
- double-layered plastic wrap for solid, oversized items contaminated with hazardous wastes that cannot be effectively containerized within previously referenced options.

The approximate storage configuration is shown in Figure 3-3. The design drawing for the facility floor plan is included for TA-60-0017 as Figure 3-4 in this permit modification request to illustrate the construction details for the unit structure. Additional design drawings for TA-60-0017 are included as Attachment 6 of this permit modification request. These drawings have been certified by professional engineers registered in the State of New Mexico. These engineers were responsible for the preparation of the drawings in support of the design process for the facility.

3.1.2 Storage Activities

Waste containers will be stored in the designated permitted area of TA-60-0017. Raised pallets, wheeled drum dollies, and/or other appropriate approaches will be used to elevate containers off the floor. Most of the containers on pallets may be stacked two high; small containers such as 5-gallon buckets may be stacked three high. Not more than 17,600 gallons or the equivalent of 320 drums (55-gallons) of waste will be stored in the unit at any one time. This storage unit will increase the storage capacity at LANL by approximately 0.3 percent. Forklifts or hand trucks will be used to move the waste.

All storage activities will be managed according to all applicable requirements contained in the Permit, including the following:

- Part 1 General Permit Conditions
- Part 2 General Facility Conditions
- Part 3 Storage in Containers
- Attachment C Waste Analysis Plan
- Attachment D Contingency Plan
- Attachment E Inspection Plan

• Attachment F – Personnel Training Plan

3.1.3 Treatment by Macroencapsulation

Macroencapsulation is an EPA-approved immobilization technology that includes the application of surface-coating materials such as polymeric organics (e.g., resins and plastics) or use of a jacket of inert inorganic materials to substantially reduce surface exposure to potential leaching media. The encapsulating material must completely encapsulate debris and be resistant to degradation by the debris and its contaminants and materials with which it may contact after placement (leachate, other waste, microbes). This section outlines the macroencapsulation treatment processes conducted at TA-60-0017 in accordance with this permit modification request and the requirements of 40 CFR 264, Subpart I, *Use and Management of Containers*.

Treatment by macroencapsulation will treat only those wastes with the EPA Hazardous Waste Numbers listed in association with the "Other Treatment" (T04) activities in Attachment J, Table J-1, and in the LANL General Part A Permit Application updates and are included in this permit modification request, Attachment 1, *Part A Form and Other Part A Application Requirements*. Waste constituents and characterization details for the authorized wastes are included in Permit Attachment C, *Waste Analysis Plan*. Hazardous debris waste and radioactive lead solids waste will be treated within TA-60-0017. The treatment objective of macroencapsulation is to use an EPA-approved macroencapsulation treatment technology to meet the land disposal restriction (LDR) treatment standard for hazardous debris waste and radioactive lead solids specified in 40 CFR 268.42 and 40 CFR 268.45. Treatment of hazardous waste by macroencapsulation will use a polymer coating or a jacket of inert inorganic materials to immobilize wastes by completely surrounding the waste with a leach-resistant coating to meet the LDR treatment standard for hazardous debris waste and radioactive lead solids as specified above.

Containers will be managed in accordance with the requirements of Permit Part 3, *Storage in Containers*. Macroencapsulation containers will not be stacked after the treatment process and will not be moved using the straps or handles connected to the containers. Containers used for the macroencapsulation treatment process will be stored, managed, and transported according to manufacturers' requirements (including protection from the sun). The macroencapsulation containers will be inspected to ensure that no tears or damage occurs to the containers during the macroencapsulation treatment process. After treatment, the waste will meet LDR treatment standards for toxicity characteristic hazardous waste debris. The EPA hazardous waste numbers D004–D011 and D018–D043 will no longer apply to the waste.

No design, construction, or operational requirements are associated with this treatment technology. LANL will ensure that the macroencapsulation treatment technology used is approved by EPA and is accepted by the ultimate off-site disposal facility. Additionally, treatment by macroencapsulation will occur indoors to ensure that no moisture or precipitation comes in contact with the encapsulation/immobilization jacket.

3.2 Authorized Wastes and Waste Acceptance

The TA-60-0017 facility will store hazardous wastes identified by one or more of the EPA Hazardous Waste Numbers presented in LANL General Part A Permit Application updates and are included in this permit modification request, Attachment 1, *Part A Form and Other Part A Application Requirements*.

3.3 Preparedness and Prevention

The following sections define how operations at TA-60-0017 will comply with the preparedness and prevention requirements of 40 CFR Part 264, Subpart C, *Preparedness and Prevention*. Health and safety procedures, followed by site personnel during routine operations are described in Section 3.4, *Hazards Prevention* of this permit modification request.

Required Equipment

Decontamination equipment is available at TA-60-0017. This equipment includes a spill kit control station, a safety shower, and an eyewash station. If necessary, additional decontamination equipment may be provided by facility emergency response personnel during an emergency.

3.4 Hazards Prevention

A description of the preventive procedures, structures, and equipment at the TA-60-0017 facility is presented below. This information is provided in accordance with the requirements of 40 CFR Part 264, Subpart C; and 40 CFR § 270.14(b)(8).

3.4.1 Preventing Hazards During Unloading

Flatbed trucks, trailers, forklifts, and/or other appropriate vehicles may be used to transport waste containers to and from the hazardous waste management unit at TA-60-0017. If necessary, forklift operators may use a boom to improve handling capabilities. Small containers may be handled manually or with a dolly. To mitigate hazards while moving containers, operators are required to use handling equipment appropriate for a container's size and weight.

3.4.2 Preventing Run-on/Run-off

The TA-60-0017 waste storage unit is completely enclosed, which precludes precipitation runon. Run-off control of liquids that results from any fire-suppression activities will be accomplished using a vacuum truck, a portable pump, a high-efficiency particulate air vacuum, and/or sorbents, depending on the volume and location of accumulated liquid.

Site drainage allows rainwater to flow away from the structure (Figure 3-1, Figure 3-2, and Figure 3-5). Pursuant to the requirements of 40 CFR § 270.14(b)(19)(xi), topographic contours and surface drainage around TA-60-0017 are also shown in Figure 3-1 of this document. These features will prevent run-on to TA-60-0017.

3.4.3 Mitigating Effects of Power Outages

Electrical power is supplied to operate lights, equipment, various instruments, and other devices at TA-60-0017. Evacuation alarms located throughout TA-60 are equipped with a battery backup and will continue to operate for 8 hours during a power failure. Waste management operations would be discontinued temporarily if electrical power is not restored quickly or if container-handling equipment fails. Neither a power nor an equipment failure would affect containment at TA-60-0017.

3.4.4 Preventing Releases to the Atmosphere

Releases to the atmosphere are not anticipated from the waste stored in TA-60-0017. All waste containers meet DOT Class A shipping container standards and will be fully inspected before placement at the unit. All waste materials are packaged and sealed before entering the building and will remain in sealed containers during handling and storage until shipped offsite except when repackaging or sampling activities must be conducted. Waste is never left open and unattended to prevent exposure to workers, the building, or the environment in the storage area.

During storage, waste containers will be inspected in accordance with Permit Section 2.6 and Attachment E, *Inspection Plan*, requirements. In the event of an unexpected release, all personnel working within or near the area will be notified immediately to evacuate.

3.5 Contingency Plan

In accordance with 40 CFR Part 264, Subpart D, Contingency Plan and Emergency Procedures, and 40 CFR § 270.14(b)(7), emergency measures applicable to TA-60-0017 will be included in Permit Attachment D, Contingency Plan, (proposed language is shown in red line highlighted text in Attachment 3 of this permit modification request). A copy of the Contingency Plan in Attachment D of the Permit will be maintained at the permitted unit. Proposed contingency plan language for TA-60-0017 is presented in Sections 3.5.1 through 3.5.6 of this permit modification request.

Figure 3-6 shows an evacuation route and assembly/muster area that may be used at the facility in the event of an emergency. This plan is updated and accessible at all times. The evacuation route, assembly/muster area location, and emergency equipment are subject to change.

The following sections describe the equipment located at TA-60-0017 in case of an emergency.

3.5.1 Fire Control Equipment

The structure is equipped with a wet pipe sprinkler system, an alarm system (pull stations, horn, and strobe units), and a partial smoke detection system. The smoke detection is located over the fire alarm control panel (FACP) and is required for the FACP. Also, exit signage, emergency lights, and ABC- and/or BC-rated fire extinguishers are located and spaced accordingly in the structure. An ABC- and/or BC-rated fire extinguisher is located in each vehicle used to transport waste containers to the facility. In the event of a small fire, portable and manually operated fire extinguishers may be used by any qualified employee. For larger fires, the Emergency

Operations and Support Center (EOSC) and the Los Alamos Fire Department (LAFD) is alerted and requested to respond.

The EOSC and LAFD are also notified upon activation of the flame or smoke detectors.

A fire hydrant is located near TA-60-0017, that supplies water at an adequate volume and pressure to satisfy the requirements of 40 CFR 264.32(d).

3.5.2 Spill Control Equipment

Spill control stations and/or portable spill kits are located at TA-60-0017. Each spill kit generally includes bags of absorbent and an inventory of tools and supplies.

3.5.3 Communication Equipment

A telephone system is located at TA-60-0017. Facility personnel use cell phones for communications. A telephone and portable two-way radios for internal and external communication is available for use by any employee. Employees can be notified of an emergency situation and appropriate response action through the LANL Alert notification system.

A fire alarm pull station is located at TA-60-0017. In case of a fire, notification will be made via telephone. In the event of a fire, manually operated fire alarms may be activated by any employee to alert site personnel, EOSC, and the LAFD.

Fire and public address system alarms are located throughout the facility. The fire alarm system is activated or used to provide a sound signal to alert personnel of fires or the need to clear the area.

3.5.4 Decontamination Equipment

A safety shower, eyewash station, and applicable safety data sheets (SDSs) are available at TA-60-0017. The SDS information is maintained where appropriate for personnel accessibility and is used for chemicals that will be needed to support operations or emergency activities.

The emergency shower and eyewash may be used by personnel who are exposed to hazardous waste or chemicals or who receive a splash to the eyes. Specific SDSs should be reviewed before working with materials.

3.5.5 Personal Protective Equipment

Personnel at TA-60-0017 are required to use appropriate personal protective equipment (PPE) to protect themselves from hazards found under normal operating conditions. This PPE may include gloves, steel-toe footwear, and eye protection. Additional PPE may be required during unusual hazardous situations. First aid kits and hearing protection are also available.

To prevent undue exposure of personnel to hazardous waste, PPE appropriate for the waste containers being managed will be worn by all on-site personnel at TA-60-0017. First aid kits are

available and may be used by personnel who sustain minor injuries at the unit in the course of operations. Hearing protection may be used by operations personnel to mitigate noise impacts.

3.5.6 Other

If transportation is needed for evacuation, vehicles may be obtained through the LANL Emergency Management and Response Group.

3.6 Facility Requirements

This section of the TA-60 permit modification request addresses facility information requirements including location information (i.e., seismic standard); provides a listing and location for required topographic maps; and includes an evaluation of other federal laws. Floodplain standards are also addressed.

3.6.1 Seismic Standard

The proposed TA-60-0017 facility is compliant with the seismic location standards of 40 CFR § 270.14(b)(11) and 264.18(a). These regulations require seismic studies for new facilities to demonstrate that evidence of Holocene faulting is not found within 200 feet of the waste management unit. The seismic investigation included in Attachment 2, *Seismic Report for the TA-60 Facility*, of this permit modification request demonstrates that there has been no direct evidence observed for Holocene faulting within the noted radius of the facility.

3.6.2 Floodplain Standard

TA-60-0017 is located on a mesa top. In accordance with 40 CFR § 270.14(b)(11)(iii through v), the facility is not located within the 100-year floodplain boundary.

Figure 3-1 of this permit modification request shows that the TA-60-0017 unit is not located within the 100-year floodplain.

3.6.3 Historic Cultural Sites

TA-60-0017 is part of the Rack Tower Complex (TA-60-0017 and TA-60-0019), which was declared eligible in 2006 for the National Register of Historic Places and part of a potential Cold War–period National Historic Landmark District. The building is in excellent condition according to LANL Heritage Assets reporting and is included in the LANL Cultural Resources Management Plan. Structure use, preservation, and maintenance activities have been coordinated internally with LANL subject matter experts and externally in consultation with the New Mexico State Historic Preservation Officer (SHPO); concurrence for waste management activities has been provided with conditions to protect the structure.

3.6.4 Topographic Maps

Topographic maps and figures are provided in this permit modification request or are referenced to meet the requirements of 40 CFR § 270.14(b)(19). The maps clearly show the map scale, the

date of preparation, and a north arrow. The maps and figures used to fulfill the regulatory requirements in this submittal include the following:

- The locations of structures, the hazardous waste management unit, surface water features, and terrain topography (1-mile radius) are included in Attachment 1: *Part A Form and Other Part A Application Requirements*, and Figure 3-1 of this permit modification request.
- A map showing the RCRA unit, water table contours, monitoring wells, springs, and drainage areas within 1 mile of TA-60-0017 is included as Figure 3-2 of this permit modification request.
- Configuration of the storage unit in the southern wing of TA-60-0017 is shown in Figure 3-3.
- A topographic map of the area surrounding TA-60-0017, within 1,000 ft, along with natural drainage, streams (perennial), and wetlands is shown as Figure 3-5 of this permit modification request.
- Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) in the vicinity of TA-60-0017 based on the LANL Potential Release Site (PRS) database are included as Figure 3-7 and are detailed in Section 5 of this permit modification request.
- A 100-year floodplain map showing the location of the TA-60 unit is included in Figure 3-8 of this permit modification request.
- Security access control features are identified in Figure 3-9 of this permit modification request.
- A map that displays structures, roads, and traffic signs near TA-60-0017 is included as Figure 3-10 of this permit modification request.
- Wind roses for TA-06—the location of the closest wind observation towers to TA-60 at LANL—are shown in Figure 3-11 (day and night) of this permit modification request.
- Maps showing the legal boundaries of LANL are located in Permit Attachment N, Figures 1 through 3 of the Permit. Updates to Figures 2 and 3 within Permit Attachment N are included in Attachment 3 of this permit modification request.
- A map showing National Pollutant Discharge Elimination System (NPDES) discharge structure locations is included as Map 2 in the LANL General Part A Permit Application, Revision 10.0 (LANL 2020).
- Fire stations that serve LANL and the County of Los Alamos are shown on Figure 49 of Permit Attachment N.

3.6.5 Other Federal Laws

Under 40 CFR § 270.3 and § 270.14(b)(20), the following additional federal laws are required to be given consideration when applying for a hazardous waste facility permit:

The Wild and Scenic Rivers Act (16 United States Code [USC] 1273 et seq.) provides for a national wild and scenic rivers system and prohibits construction of any waterway that would have a direct adverse effect on the values for which a wild and scenic river was established.

The National Historic Preservation Act of 1966 (16 USC 470 et seq.) establishes a program for the preservation of historic properties throughout the country. The act has provisions that require mitigation of adverse effects to registered properties.

The Endangered Species Act of 1973 (16 USC 1531) provides for the conservation of endangered and threatened species of fish, wildlife, and plants. The act prohibits any action that would jeopardize the continued existence of any endangered or threatened species or adversely affect its critical habitat.

The Coastal Zone Management Act of 1972 (16 USC 1451 et seq.) establishes national policy for the management, use, protection, and development of land and water resources of the nation's coastal zones. Section 307(c) of the act and implementing regulations prohibit the EPA from issuing a permit for activity affecting coastal zone land or water use without the certification from the applicant that the activity is in compliance with the state Coastal Zone Management Program.

The Fish and Wildlife Coordination Act of 1934, as amended (16 USC 661 et seq.) promotes the conservation of wildlife, fish, and game and integrates this conservation with water resource projects. Certain provisions of the act require that permits that propose or authorize the impoundment, diversion, or other control or modification of any body of water be considered by the appropriate state agency for impacts to wildlife resources.

Special consideration was given to the National Historic Preservation Act, the Endangered Species Act, and the Fish and Wildlife Coordination Act in particular because of ongoing programs at LANL.

The National Historic Preservation Act is administered by the Advisory Council on Historic Preservation, appointed by the President and the New Mexico State Historic Preservation Division of the New Mexico Department of Cultural Affairs. Section 106 of the Act requires DOE to consider the effects of its actions on historic properties and to provide the Council with a reasonable opportunity to comment on those actions and the manner in which DOE takes historic properties into account in their decisions. DOE meets this requirement through consultation with the SHPO whenever a project may potentially impact a historic property. LANL may prepare a Historic Building Survey Report that assesses the eligibility of a historic building that dates from the Manhattan Project and early Cold War periods (1943 to 1956) for the National Register of Historic Places and evaluates the impacts of the proposed actions. The consultation process was formalized in April 2000 through a Programmatic Agreement between DOE, the Advisory Council, and the State of New Mexico. As noted in Section 3.6.3, LANL has been collaborating with SHPO to develop effective solutions.

For any undertaking on DOE land that may directly or indirectly impact threatened and endangered (T&E) species or their habitat, DOE must consult with the U.S. Fish and Wildlife Service (USFWS) as provided under Section 7 of the Endangered Species Act. Similarly, DOE must consult with the USFWS for projects that would impound, divert, or otherwise control or modify a body of water as required by the *Fish and Wildlife Coordination Act*.

For *Endangered Species Act* compliance, LANL may prepare a biological assessment to document the presence of T&E species and to evaluate the impacts of a project on a listed species or its habitat. DOE will then request in writing that the USFWS concur with the DOE's findings in the biological assessment. In recent years, DOE and LANL have streamlined the consultation process by preparing a T&E Species Habitat Management Plan. This plan fulfills the provisions of the *Endangered Species Act* that require federal agencies to carry out programs for the conservation of T&E species and their habitat. The USFWS approved this plan originally in February 1999, and the plan is updated as needed.

Provisions in the *Wild and Scenic Rivers Act* and the *Coastal Zone Management Act* are not applicable to LANL's activities.

LANL also continues to actively review all proposed actions such as this permit modification request via the Integrated Review Tool (IRT) including the Permits and Requirements Identification (PRID) in accordance with the *National Environmental Policy Act* (NEPA). The DOE/NNSA NEPA Analysis determined that the proposed action meets the conditions for categorical exclusion. Additionally, consideration will be given to *Executive Orders*—issued by the President—that are relevant to waste management activities at LANL. When any of these Orders are applicable, its provisions will be followed. Requirements for Executive Orders are reserved in 40 CFR § 270.3(f).

Figure 3-1. TA-60-0017 RCRA Storage Unit with Topographic Features.

Figure 3-2. TA 60-0017 with Water Table Contours and Sampling Locations.

Figure 3-3. TA 60-0017 Container Storage Unit Configuration

Figure 3-4. Design Drawing Facility Floor Plan.

Figure 3-5. TA 60-0017 Surrounding Area.

Figure 3-6. TA 60-0017 Emergency Evacuation Plan.

Figure 3-7. TA-60-0017 and Solid Waste Management Units in Broader Area.

Figure 3-8. TA 60-0017 Floodplains.

Figure 3-9. TA 60-0017 Security and Access.

Figure 3-10. TA 60-0017 Surrounding Buildings, Roads, and Traffic Signs.

Figure 3-11. Wind Roses for TA-60 (Day and Night).

4 Closure Plan

The closure plan describes the activities necessary to close the TA-60-0017 Unit. The information provided in the closure plan address the closure requirements specified in Permit Part 9, 40 CFR Part 264, Subpart G, *Closure and Post-Closure*, for hazardous waste management units operated at LANL under RCRA and the NMHWA.

The proposed closure plan for the TA-60-0017 unit is included as Attachment 4 of this permit modification request and includes references to the requirements of Permit Part 9, *Closure*, and information regarding the procedures to meet them. The closure plan closely follows the format and content of the current closure plans included in Attachment G of the Permit. The closure plan includes descriptions of the closure performance standards, schedules, closure procedures (including waste equipment disposition, structure removal, decontamination, and verification), the sampling and analysis plan, the waste management plan, and the closure certification report.

Until closure is complete and has been certified in accordance with Permit Section 9.5, *Closure Certification Report*, a copy of the approved closure plan or the Permit that contains the plan, any approved revisions, and closure activity documentation associated with the closure will be on file with hazardous waste permitting and compliance personnel at LANL and at the DOE National Nuclear Security Administration Los Alamos Field Office. Before closure of the TA-60-0017 unit, the closure plan may be amended in accordance with Permit Section 9.4.8, as necessary and appropriate, to provide an updated sampling and analysis plan and to incorporate updated decontamination technologies. The amended closure plan will be submitted to the NMED for approval before implementing closure activities.

Closure Cost Estimate, Financial Assurance, and Liability Requirements

LANL is a federal facility owned by the DOE. In accordance with 40 CFR § 264.140(c), LANL is exempt from the 40 CFR § 264 Subpart H, *Financial Requirements*, requirements to provide a cost estimate, financial assurance mechanisms, and liability insurance for closure actions. Therefore, these provisions are not included in the closure plan included as Attachment 4 of this permit modification request.

5 Solid Waste Management Units

Based on the LANL potential release site (PRS) database, seven solid waste management units (SWMUs) are located within a 1,000-ft radius of the southern portion of TA-60-0017, including the following Areas of Concern (AOCs) and SWMUs:

- AOC 60-001(c) (two areas)
- SWMU 60-006(a)
- AOC C-60-002
- SWMU 60-002
- AOC 60-001(d)

- AOC C-00-007
- AOC C-00-008

The AOCs and SWMUs located beyond this immediate radius are described (summarized from the LANL PRS) in the following sections. Figure 3-7 provides the locations of these AOCs and SWMUs throughout the surrounding TAs.

5.1 Area of Concern (AOC) 60-001(c)

AOC 60-001(c) consists of two satellite accumulation areas that began operations in 1990. They were established at LANL inside buildings at the Nevada Test Site (NTS) Test Fabrication Facility located on Sigma Mesa approximately one-half mile east of TA-60-0002. No historical releases are known to have occurred at these areas.

AOC 60-001(c) is inactive and was proposed for no further action (NFA) in 1993, the NFA proposal was approved by EPA in 1994, and reaffirmed in 2005 in a letter to NMED. This site is listed in Permit Attachment K, Table K-3, SWMUs and AOCs Corrective Action Complete Without Controls.

5.2 Solid Waste Management Unit (SWMU) 60-006(a)

SWMU 60-006(a) is the former location of a decommissioned septic system located near the northeast corner of the fence that surrounds buildings TA-60-0017 and TA-60-0019 on Sigma Mesa. The septic system consisted of a 1,000-gal. septic tank, drainlines, and associated 4-ftwide × 50-ft-deep seepage pit. No outfall is associated with this septic system. This septic system formerly served TA-60-0017 (NTS test rack fabrication facility) and TA-60-0019 (NTS test tower). TA-60-0017 and TA-60-0019 were constructed in 1985 to fabricate equipment for testing activities carried out at NTS. From 1986 to 1989, wastewater generated from facility bathrooms and seven floor drains—including one in a paint booth—discharged to the septic system. In 1989, TA-60-0017 and TA-60-0019 were connected to the sanitary sewer and the TA-03 Wastewater Treatment Plant (WWTP). The area was investigated for metals; semi-volatile organic compounds (SVOCs); gross-alpha, -beta, and -gamma radiation; and tritium. During the 2009 Phase I Consent Order investigation, the SWMU 60-006(a) septic tank was removed, and inlet and outlet drainlines were plugged. Nine confirmation samples were collected from two locations beneath the tank inlet and outlet and one location beneath the bottom of the tank. Seven additional samples were collected from one borehole approximately 4 ft downgradient of the seepage pit. Because of site conditions, an associated seepage pit was not removed according to the approved investigation work plan.

Decision-level data collected at SWMU 60-006(a) consist of results from 16 samples collected from four locations in 2009 and 2010. The 2015 supplemental investigation report concluded that the nature and extent of contamination have been defined, and no further sampling for extent is warranted.

SWMU 60-006(a) is included in the September 2015 Supplemental Investigation Report for Upper Sandia Aggregate Area, Revision 1, submitted to NMED under the Consent Order. The site was found to have no complete exposure pathways to human and ecological receptors under all three human health risk scenarios, meets ecological risk levels, and was recommended for corrective action complete in that report. Upon approval of the supplemental investigation report by NMED, SWMU 60-006(a) will be eligible for a certificate of completion without controls.

5.3 Area of Concern (AOC) C-60-002

AOC C-60-002 is a 4,000-gal. decommissioned diesel fuel underground storage tank (UST), TA-03-0318. The tank was located on Sigma Mesa near the decommissioned communications bunker, TA-03-0219. The tank's installation date is unknown. In 1987, the tank was excavated and removed as part of a Laboratory-wide UST-removal program. After removal, the manufacturer's original chalk markings inside the tank showed that it never held product fuel. The tank was cut up, and the metal scrap was transported to the salvage yard.

AOC C-60-002 was proposed for NFA in 1995, the NFA proposal was approved by EPA in 1995, and reaffirmed in 2005 in a letter to NMED. This site is listed in Permit Attachment K, Table K-3, SWMUs and AOCs Corrective Action Complete Without Controls.

5.4 Solid Waste Management Unit (SWMU) 60-002

SWMU 60-002 consists of three former storage areas (designated as West, Central, and East) on Sigma Mesa at TA-60. The former western storage area measures approximately 150 ft × 300 ft and is located approximately 300 ft southeast of TA-60-0002, on the north side of the unimproved portion of Enewetak Drive that traverses the mesa. Historically, piles of concrete blocks, wooden poles, tuff, fill, and cables were stored at this location. A large mound of fill—with pieces of cured asphalt and concrete—was situated in the northern portion of the site. The central storage area was located approximately 50 ft north of the Roads and Grounds salt and sand storage facility (TA-60-0178) and consisted of a 50-ft-diameter mound of fill approximately 10 ft high that contained construction debris, including concrete fence post supports, pipe, metal strips, and wood. The eastern storage area is located on the south side of the unimproved portion of Enewetak Drive about 300 ft west of SWMU 60-007(a) near the east end of Sigma Mesa. This area was used to stage piles of broken cured asphalt removed from roadways and parking lots around the Laboratory for recycling. The eastern storage area location is currently the site of the Laboratory's asphalt batch plant.

The SWMU 60-002 central storage area debris pile was removed and disposed of offsite in 2002 to accommodate a new Roads and Grounds equipment storage yard. Six confirmation samples were collected from three locations beneath the former debris pile. This site is inactive and was investigated for metals, VOCs, SVOCs, PCBs, and TPH.

SWMU 60-002 is included in the September 2015 *Supplemental Investigation Report for Upper Sandia Aggregate Area*, Revision 1, submitted NMED under the Consent Order. The site meets residential and ecological risk levels and is recommended for corrective action complete without *LANL TA-60-0017 Permit Modification Request, Revision 0.0 Los Alamos National Laboratory*

controls in that report. SWMU 60-002 will be eligible for a certificate of completion upon approval of the investigation report by NMED.

5.5 Area of Concern (AOC) 60-001(d)

AOC 60-001(d) is the pesticide storage shed, TA-60-0029, located approximately 650 ft east of the NTS Test Fabrication Facility, TA-60-0002. TA-60-0029 is a corrugated metal structure constructed in 1988. A bermed concrete pad is attached to the north side of the structure to contain any spills that could occur during the mixing and/or filling of pesticide-spraying equipment. No wastes are stored in the shed, although the unit was listed as a RCRA satellite accumulation area.

AOC 60-001(d) was proposed for NFA in the 1993, the NFA proposal was approved by EPA in 1994, and reaffirmed in 2005 in a letter to NMED. This site is listed in Permit Attachment K, Table K-3, SWMUs and AOCs Corrective Action Complete Without Controls.

5.6 Area of Concern (AOC) C-00-007

AOC C-00-007 consists of the Sandia Canyon system. Sandia Canyon originates on LANL property within TA-03 at an elevation of approximately 7,300 ft and trends east-southeast across LANL. Sandia Canyon crosses the east LANL boundary and briefly crosses Bandelier National Monument property before entering San Ildefonso Pueblo land. The canyon continues eastsoutheast across San Ildefonso Pueblo land before joining the Rio Grande in White Rock Canyon at an elevation of approximately 5490 ft. Sandia Canyon has a watershed area of 5.5 square miles and a channel length of 9.6 miles. Streamflow in upper Sandia Canyon is continuous due to discharges from the TA-03 power plant. These discharges have created a wetland area in upper Sandia Canyon. Other contributions to flow in the canyon are surface runoff from rainfall and snowmelt. Also, a small reach with continuous flow in lower Sandia Canyon is fed by Sandia Spring. The width of the canyon on LANL property ranges from approximately 1,700 ft to 2,500 ft, and the canyon's maximum depth is 200 ft. Two municipal water supply wells (PM-1 and PM-3) are located within Sandia Canyon. Previous environmental investigations at AOC C-00-007 include regular environmental monitoring that has been conducted in Sandia Canyon since approximately 1970 as part of the LANL Environmental Surveillance Program. This program includes monitoring surface water and sediments in the canyon and groundwater at Sandia Spring. In addition, the alluvial and regional aquifers in Sandia Canyon are monitored as part of LANL's Groundwater Protection Management Program. Past investigations have detected trace amounts of PCBs in wetland sediments in upper Sandia Canyon. In addition, several inorganic chemicals (cadmium, lead, silver, and zinc) and radionuclides (plutonium-238, -239, and -240; and uranium) have been detected slightly above background values/fallout values in Sandia Canyon sediments at the eastern LANL boundary. Elevated chromium levels were detected in surface water in upper Sandia Canyon in the 1970s and were believed to be associated with historical use of chromates in cooling towers, which has been discontinued. Tritium was detected in regional groundwater in Sandia Canyon (wells PM-1 and PM-3) in 1981 but has not been

detected since. Parts of the Sandia Canyon watershed were burned during the Cerro Grande fire of May 2000.

Potential contamination sources for canyon systems include SWMUs/AOCs associated with TAs in or adjacent to the canyons. Sandia Canyon passes through or is adjacent to TA-03, former TA-20, -53, -60, -61, and -72. Historically, LANL has used Sandia Canyon for disposal of industrial and sanitary wastewaters. The largest discharges have been from the outfall at the TA-03 power plant (up to 300,000 gallons per day) and cooling towers at TA-53 (seasonally up to 200,000 gallons per day). The outfall receives effluent from the sanitary wastewater systems consolidation at TA-46, which is used as cooling water.

TA-03 is located on the mesa around the upper end of Sandia Canyon. TA-03 contains numerous contaminant sources. SWMUs/AOCs at TA-03 include outfalls that discharge into Sandia Canyon, material and equipment storage areas, electrical equipment that contains PCBs, fuel storage tanks, and releases to the ground surface from spills and stacks. These SWMUs/AOCs could have released contaminants to Sandia Canyon either by direct discharge or by contaminating surface runoff entering the canyon.

Former TA-20 is located within the middle portion of Sandia Canyon, south of current TA-53. TA-20 was used during the 1940s as a firing site. SWMUs/AOCs at TA-20 include the former firing sites—which used high explosives and radioactive materials—and associated facilities, including small landfills and septic tanks.

TA-53 is located on a mesa between Sandia Canyon and Los Alamos Canyon and is the site of a high-energy linear accelerator. SWMUs/AOCs at TA-53 include outfalls, material and equipment storage areas, electrical equipment that contains PCBs, radioactive waste storage tanks, and decommissioned surface impoundments that received sanitary, industrial, and radioactive liquid waste. These SWMUs/AOCs may have released contaminants to Sandia Canyon either by direct discharge or by contaminating surface runoff entering the canyon. The surface impoundments represent the most significant potential source of contamination at TA-53. Most discharges from the surface impoundments went to a tributary to Los Alamos Canyon, although historically some could have entered Sandia Canyon.

TA-60 is located on a narrow mesa between upper Sandia Canyon and Mortandad Canyon (AOC C-00-008) and houses LANL support and maintenance operations and contractor service facilities. Potential sources of contamination include spills from a fuel storage yard.

TA-61 is located on the north rim of upper Sandia Canyon and is the location of the Los Alamos County municipal solid waste landfill, a residential trailer park, a private concrete batch plant, a LANL-owned asphalt batch plant, and a former PCB equipment storage area (SWMU 61-007).

TA-72 is located within Sandia Canyon and is the location of the small arms firing range used by the LANL security force, which is the only AOC (72-001) in TA-72 currently under investigation.

The Los Alamos Legacy Cleanup Contractor has developed a work plan for investigating the Sandia Canyon system. For the sediment investigation, work will be focused on six reaches. The reach locations were selected to collect data needed to assess current and future risk associated with potentially contaminated sediments and to improve understanding of transport processes.

The Los Alamos Legacy Cleanup Contractor has implemented the investigation of two of the six reaches first because of the past detection of PCBs in wetland sediments and the presence of PCBs at many of the SWMUs/AOCs in the upper portion of the Sandia Canyon watershed. The sampling and analysis plan for this investigation included sediment investigations and quarterly surface water base flow and stormwater runoff sampling. These investigations began in 1998 and were reported on in 2000.

5.7 Area of Concern (AOC) C-00-008

AOC C-00-008 consists of the Mortandad Canyon system. Mortandad Canyon originates on LANL property within TA-03 at an elevation of approximately 7,410 ft and trends east-southeast across LANL. Mortandad Canyon then crosses the eastern LANL boundary and enters San Ildefonso Pueblo land. The canyon crosses San Ildefonso Pueblo land and is joined by Cañada del Buey (AOC C-00-009) before reaching the Rio Grande in White Rock Canyon at an elevation of approximately 5,450 ft. Mortandad Canyon has a watershed area of 4.7 square miles and a length of 10 miles. The Mortandad Canyon watershed was partly burned during the Cerro Grande fire of May 2000.

Tributaries to Mortandad Canyon on LANL property include Ten Site Canyon and Effluent Canyon. Ten Site Canyon heads at the south side of TA-50 at an elevation of approximately 7250 ft and includes a small tributary, locally referred to as Pratt Canyon, that originates in TA-35. Ten Site Canyon extends east approximately 1.5 miles and joins Mortandad Canyon in TA-05. Effluent Canyon heads at the east side of TA-48 at an elevation of approximately 7,300 ft and extends east approximately 0.6 mile before joining Mortandad Canyon. Streamflow in the canyon is entirely ephemeral, with no perennial springs or natural perennial reaches. Flow in the canyon is due to snowmelt and stormwater runoff as well as discharges from LANL outfalls. Discharges from TA-48 into Effluent Canyon support a small wetlands area, and discharges from TA-03 into the head of Mortandad Canyon support additional wetlands.

The primary contamination source in the Mortandad Canyon system has been the discharge of wastewaters from various LANL operations, which have occurred since at least 1951 and possibly as early as 1943. Beginning in 1963, wastewaters have been treated at the RLWTF and treated effluent discharged to an NPDES-permitted outfall. SWMUs located within Mortandad Canyon itself are the Mortandad Canyon sediment traps (SWMU 00-001) and the Mortandad Canyon garden plot (SWMU 00-005). The sediment traps consist of three basins excavated into the stream channel and are surrounded by U-shaped berms. They are located approximately 1.7 miles downstream of the Radioactive Liquid Wastewater Treatment Facility (RLWTF) outfall and were constructed in 1976 to capture streamflow and prevent downstream migration of

contaminated sediments. SWMU 00-005 is a former experimental garden plot that was used from 1976 to the early 1980s to study the transport of radionuclides to plants.

Regular environmental monitoring has been conducted in Mortandad Canyon since approximately 1970 as part of the LANL Environmental Surveillance Program. This program includes monitoring surface water and sediments in the canyon. In addition, the alluvial and regional aquifers in Mortandad Canyon are monitored as part of LANL's Groundwater Protection Management Program. Past sediment sampling has detected elevated levels of americium-241; cesium-137; plutonium-238, -239, and -240; and strontium-90, with the highest concentrations in or downstream of Effluent Canyon. Concentrations at the southeast LANL boundary are generally at or near background. Americium-241; plutonium-238, -239, and -240; and tritium have been detected in surface water and alluvial groundwater.

Potential contamination sources for canyon systems include SWMUs/AOCs associated with TAs in or adjacent to the canyons. Mortandad Canyon passes through Laboratory TA-03, -05, -35, -42, -48, and former TA-04. In addition, some TA-00 sites are adjacent to the canyon, and certain TA-50, -52, -54, -55, -60, and -63 sites are associated with the canyon.

TA-03, which is located on the mesa at the head of Mortandad Canyon, contains numerous potential contaminant sources. SWMUs/AOCs at TA-03 include outfalls that discharge into Mortandad Canyon, material and equipment storage areas, electrical equipment that contains PCBs, and releases to the ground surface from spills and stacks. These SWMUs/AOCs may have released contaminants to Mortandad Canyon either by direct discharge or by contaminating surface runoff entering the canyon.

Former TA-04 is located on a mesa within current TA-52 south of Ten Site Canyon and was used in the 1940s as a firing site. SWMUs/AOCs at TA-04 include the former firing site that used HE and radioactive materials and associated facilities, including a photo processing facility, surface disposal area, and outfalls.

TA-05 primarily serves as a LANL reserve area. The TA includes an inactive firing site located on the south rim of Mortandad Canyon that was used from 1944 to 1959. Potential contaminant sources include former firing sites, a septic tank, and a drain.

TA-35 is located on a mesa between Mortandad and Ten Site Canyons and was constructed in 1951 to house experimental reactor and hot-cell facilities. TheTA-35 WWTP [consolidated unit 35-003(a)-99] was used until 1963 to treat wastewater from radiochemistry laboratories in TA-35. Plant effluent discharged to Pratt Canyon is the most significant TA-35 contaminant source in the Mortandad Canyon system. More than 2,700,000 gallons of wastewater, which contained 20.7 Ci of gross beta activity, was discharged into Pratt Canyon. In addition to consolidated unit 35-003(a)-99, SWMUs/AOCs in TA-35 include surface impoundments, oil storage and treatment facilities, transformers, septic systems, and disposal areas. These SWMUs/AOCs may have released contaminants to Mortandad Canyon either by direct discharge or by contaminating surface runoff entering the canyon.

Former TA-42 is located within current TA-55 and was used from 1951 to 1952 to incinerate radioactive wastes and from 1957 to 1969 to decontaminate radioactive equipment. These facilities underwent D&D in 1977 and 1978. SWMUs/AOCs include the former incinerator and decontamination facility and associated equipment.

TA-48 is located on the south rim of Mortandad Canyon and houses radiochemistry laboratories. Potential contaminant sources include outfalls that discharge to Mortandad and Effluent Canyons, a septic system, container storage areas, and stack releases.

TA-50 is located at the head of Ten Site Canyon and is the location of the RLWTF, which became operational in 1963 and began discharging treated effluent into Effluent Canyon; sediment and groundwater monitoring began at that time. Plant effluent is the most significant TA-50 contaminant source in the Mortandad Canyon system. A total of 1,294,000,000 gal. of wastewater containing approximately 0.3 Ci plutonium was discharged from the plant outfall [SWMU 50-006(d)] from 1963 to 1995. Other sources at TA-50 include an outfall area at the head of Ten Site Canyon, where spills of untreated radioactive wastewater occurred [SWMU 50-006(a)].

TA-52 is located on a mesa at the head of Cañada del Buey and is the location of the former Ultra High Temperature and Reactor Experiment. SWMUs/AOCs at TA-52 include outfalls that could have discharged into Ten Site Canyon.

TA-55 is located on the south rim of Mortandad Canyon and is the location of plutonium processing facilities. SWMUs/AOCs at TA-55 include outfalls that discharge water into Mortandad Canyon.

TA-60 is located on Sigma Mesa between Mortandad and Sandia Canyons and houses LANL support and maintenance operations and contractor service facilities. Potential contamination sources include spills from a fuel storage yard.

TA-63 is located on the south rim of Ten Site Canyon and houses engineering offices and shops. SWMUs are limited to two inactive septic systems.

The Los Alamos Legacy Cleanup Contractor has developed a work plan for investigating the Mortandad Canyon system. For the sediment investigation, work has focused on six reaches in Mortandad Canyon, three reaches in Ten Site Canyon, one reach in Effluent Canyon, and two reaches in an unnamed tributary to Mortandad Canyon. Most of these reaches have additional subreaches that have been investigated. The work plan for Mortandad Canyon was approved by NMED in 2002.

6 Acronyms

Acronym	Definition
AOC	Area of Concern
CAA	Central Accumulation Area
CFR	Code of Federal Regulations
DOE	(U.S.) Department of Energy
DOT	New Mexico Department of Transportation
DRO	diesel range organics
EPA	Environmental Protection Agency
FACP	fire alarm control panel
GRO	gasoline range organics
LAFD	Los Alamos Fire Department
LANL	Los Alamos National Laboratory
LDR	land disposal restriction
N3B	Newport News Nuclear BWXT-Los Alamos, LLC
NFA	no further action
NMAC	New Mexico Administrative Code
NMED	New Mexico Environment Department
NMHWA	New Mexico Hazardous Waste Act
NPDES	National Pollutant Discharge Elimination System
NTS	Nevada Test Site
PCB	polychlorinated biphenyl
PPE	personal protective equipment
PRS	Potential Release Site
RCRA	Resource Conservation and Recovery Act
RFI	RCRA Facility Investigation
SDS	safety data sheet
SHPO	(New Mexico) State Historic Preservation Officer
SVOC	semi-volatile organic compound
SWB	standard waste box
SWMU	Solid Waste Management Unit
T&E	threatened and endangered
TA	Technical Area
TAL	target analyte list
TPH	total petroleum hydrocarbons
USC	United States Code
USFWS	U.S. Fish and Wildlife Service
UST	underground storage tank
VOC	volatile organic compound
WWTP	Wastewater Treatment Plant

7 References

- Allen, D. L., J. S. Clemmons, V. P. Worland, J. C. Del Signore, L. E. Gallegos, A. R. Pistone,
 K. B. Boorman, M. A. Baker, R. F. Reddick, L. R. Vigil-Holterman, V. R. Baca, and
 D. L. Hall, 2019. Enduring Mission Waste Management Plan for Los Alamos National Laboratory, LA-CP-19-20221. Official Use Only (OUO).
- Garcia, K. L. M., 2018, *Heritage Assets Reporting for Financial Statements*, Los Alamos National Laboratory.
- LANL, 2018. Los Alamos National Laboratory General Part A Permit Application, Revision 9.0, Los Alamos National Laboratory, Los Alamos, New Mexico (EPC-DO-18-288, LA-UR-18-27504).
- McGehee, E. D., K. L. M. Garcia, J. Machen, 2007. *Decommissioning the Los Alamos Rack Tower Complex: Buildings TA-60-17 and TA-60-19*, Los Alamos National Laboratory report LA-UR-07-3638.
- McLin, S. G., M. E. van Eeckhout, and A. Earles. 2001. *Mapping 100-Year Floodplain Boundaries Following the Cerro Grande Wildfire*. LA-UR-01-5218, Los Alamos National Laboratory, Los Alamos, New Mexico.
- McLin, S. G. 1992. Determination of 100-Year Floodplain Elevations at Los Alamos National Laboratory. LA-12195-MS, Los Alamos National Laboratory, Los Alamos, New Mexico.
- Meyer, L., 2007, L. Meyer to D. Winchell, personal communication (letter), August 1, 2007.
- NMED 2010. Los Alamos National Laboratory Hazardous Waste Facility Permit, New Mexico Environment Department, Santa Fe, New Mexico (as amended).
- LANL, 2015. Supplemental Investigation Report for Upper Sandia Canyon Aggregate Area, Revision 1, Los Alamos National Laboratory, Los Alamos, New Mexico (LA-UR-15-26598, ESHID-600912-05).
- Purtzer, L. C., E. D. McGehee, K. D. Plimpton Sivley, 2019. *A Plan for the Management of the Cultural Heritage at Los Alamos National Laboratory*, New Mexico report LA-UR-19-21590.
- U.S. Department of Energy/National Nuclear Security Administration, 2020. National Environmental Policy Act (NEPA) Determination Form. NEPA TA-60-0017 CX-270534. Categorical Exclusion for Hazardous Waste Permit Modification to Create a Treatment and Storage Facility, DOE/NNSA Los Alamos Field Office.

8 Certification

Los Alamos Field Office U.S. Department of Energy

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

STEVEN STORY (Affiliate) Digitally signed by STEVEN STORY (Affiliate) Date: 2023.03.09 14:46:06 -07'00'	3/9/23
Jennifer E. Payne	Date Signed
Division Leader	_
Environmental Protection and Compliance Division	
Triad National Security, LLC	
Los Alamos National Laboratory	
Robert A. Gallegos Digitally signed by Robert A. Gallegos Date: 2023.03.09 17:02:03 -07'00'	Acting for
Karen E. Armijo	Date Signed
•	Date Signed
Permitting and Compliance Program Manager	
National Nuclear Security Administration	

Attachment 1 Part A Form and Other Part A Application Requirements

United States Environmental Protection Agency RCRA SUBTITLE C SITE IDENTIFICATION FORM

Reason fo	r Subr	nittal	(Sele	ct or	nly on	e.)																
		btaini or a pe	_	-	_	an EP <i>A</i>	\ ID nu	mber	for	on-go	ing	regula	ated ac	ctivitie	es (It	ems	10-17	7 be	elow) th	nat w	/ill cor	itinue
	Sı	ubmitt	ting a	as a c	ompo	onent o	f the H	lazaro	dous	s Wast	te R	eport	for			(Rep	ortin	g Y	ear)			
			wa	ste, >	> 1 kg		te haza	ardou	ıs wa	aste, o	r>	100 k	g of ac	ute ha	azard	ous v	waste		on-acu ill cleai			
] N	otifyir	ng th	at re	gulate	ed activ	vity is r	o lon	iger	occurr	ring	at thi	s Site									
] 0	btaini	ng oı	r upd	lating	an EPA	\ ID nu	mber	for	condu	ıctir	ng Eleo	ctronic	Mani	ifest	Broke	er act	tivit	ies			
\checkmark	Sı	ubmitt	ting a	a new	v or re	evised I	Part A	(pern	nit) l	orm												
Site EPA II	М	Т	8	9	0	0	1 0	5		1 5												
Los	Alan	nos N	atio	nal l	Labo	ratory	,															
Site Locati	ion Ad	dress																				
Stree	et Add	ress		В	Bikini	Atoll	Road	, SM	-30													
City,	Town	, or Vi	llage	L	os A	lamos	3								Cou	nty	Lo	s A	Alamo	s		
State	9	Nev	v Me	exico)		Cou	ıntry	ι	JSA					Zip (Code	87	54	5			
Latit	ude	35.8	8740)74N			Lon	gitud	le -	106.3	293	37				Jse La	at/Lo	ng	as Prim	ary /	Addres	SS
Site Mailir	ng Add	lress														S	ame	as	Locatio	n Stı	eet A	ddress
Stree	et Add	ress		PC) Во	x 1663	B, MS	A316	5													
-						amos									1							
State	5	Ne	w M	lexic	0		Cou	ntry	US	SA					Zip (Code	87	545	5			
Site Land [·]	Туре																					
Pı	rivate		_C₀	unty		Dist	rict	✓	Fed	deral		Tr	ibal		Mun	icipa	l		State		Ot	her
North Am	erican	Indus	stry C	Classi	ficati	on Syst	tem (N	AICS)) Co	de(s) f	or t	he Sit	e (at l	east 5	-digi	t cod	es)					
A. (Prima	ry)		928 [,]	110						С			5622	211							
В.				541	71						D	٠.		5629	910							

EPA ID N	lumber	N	M	0	8	9	0	0	1	0	5	1	5]	OMB# 20	050-0024; Expire	s 04/30/2024			
8. Site C	Contact I	nform	nation	n												Same as Lo	cation Address			
	First Na	me	Thec	odc	ore				MI	Α					Last Nan	ne Wyka				
	Title	City, Town, or Village Los Ala Chame of Site's Legal Owner City, Town, or Village Los Ala Chame of Site's Legal Owner County City, Town, or Village Los Ala Chame of Site's Legal Owner County City, Town, or Village Chamil theodore.wyka@nnsa Chame of Site's Legal Operator Comments C							curity	Adn	ninist	ratio	on, Lo	os Alam	os Field Of	s Field Office, U.S. Department of Energy				
	Street A	ddres	SS		3	747 W	/est	Jem	ez Ro	oad,	MS A	A31	6							
	City, To	wn, oi	r Villa	age	L	os Al	amo	S												
	State	New	v Me	xic	0				Cour	ntry	USA	\			Zip Code	87544				
	Email	thec	odore	e.w	vyka@	nns	a.doe	e.gov	/											
	Phone	(505	5) 66	7-5	105				Ext						Fax	(505) 606-5948				
_	A. Name	of Si	-												Date E	Same as Lo	cation Address			
	U. S. I	Depa	rtme	nt	of En	ergy									1/1/19	-	7 1 1 1 1 1 1			
	Owner	Гуре																		
	Privat	e		Cou	inty		Distri	ct	\checkmark	ede	ral		Trik	oal	Municip	al State	Other			
	Street A	ddres	SS		3	747 W	/est	Jem	ez Ro	oad,	MS A	A31	6							
	City, To	wn, oi	r Villa	ige	L	os Al	amo	s												
	State	Nev	v Me	xic	o				Cour	ntry	US	A			Zip Code	87544				
	Email	the	odor	e.v	vyka(@nns	a.do	e.go	V											
	Phone	(505	5) 667	7-5	105				Ext						Fax	(505) 606-5948	3			
	Comme	Na Th	tional S e DOE E	Secur Envir	rity, LLC ronmenta	(Triad) co al Manage	o-operat ement, L	e speci .os Alar	fied haz nos Fiel	ardous	waste n	nanage	ement u	nits located	at Technical Are	eas (TA) 3, 14, 16, 36, 39, 50,	55, 63, and 54 West.			
Ī	B. Name	e of Si	ite's L	Lega	al Ope	erator										Same as Lo	ocation Address			
			onal (Sed	curity	, LLC	;								Date E	Became Operator (2018	mm/dd/yyyy)			
	Operato Privat			Cou	ınty		Distri	ct		ede	ral	[Trik	oal	Municip	al State	Other			
	Street A	ddres	SS		В	ikini <i>i</i>	Atoll	Roa	d, Bl	dg S	M-30	0, M	S A1	02						
	City, To	wn, oı	r Villa	age	L	os Al	amos	S												
	State	Nev	v Me	xic	ю				Cou	ntry	US	SA			Zip Code	87545				
	Email	sc	olem	nan	n@lar	ıl.gov	,													
	Phone	(50	5) 60	6-0)154				Ext						Fax					
	Comme	nts S	ee Ito	em	18, C	Comm	nents	, for	add	ition	al Ov	wne	r/Op	erator i	nformatio	n				

N	M	0	8	9	0	0	1	0	5	1	5
---	---	---	---	---	---	---	---	---	---	---	---

10. Type of Regulated Waste Activity (at your site)

Mark "Yes" or "No" for all current activities (as of the date submitting the form); complete any additional boxes as instructed.

Α. Ι	Hazard	lous	Waste	Activities
------	--------	------	-------	-------------------

√ Y	N	1. Gen	erator of H	azardous Waste—If "Yes", mark only one of the following—a, b, c					
		√	a. LQG	-Generates, in any calendar month, 1,000 kg/mo (2,200 lb/mo) or more of non-acute hazardous waste (includes quantities imported by importer site); or - Generates, in any calendar month, or accumulates at any time, more than 1 kg/mo (2.2 lb/mo) of acute hazardous waste; or - Generates, in any calendar month or accumulates at any time, more than 100 kg/mo (220 lb/mo) of acute hazardous spill cleanup material.					
			b. SQG	100 to 1,000 kg/mo (220-2,200 lb/mo) of non-acute hazardous waste and no more than 1 kg (2.2 lb) of acute hazardous waste and no more than 100 kg (220 lb) of any acute hazardous spill cleanup material.					
			c. VSQG	Less than or equal to 100 kg/mo (220 lb/mo) of non-acute hazardous waste.					
Y	2. Short-Term Generator (generates from a short-term or one-time event and not from on-going processes). If "Yes", provide an explanation in the Comments section. Note: If "Yes", you MUST indicate that you are a Generator of Hazardous Waste in Item 10.A.1 above.								
√ Y	N	3. Trea	ater, Storer se activities	or Disposer of Hazardous Waste—Note: Part B of a hazardous waste permit is required is.					
√ Y	N	4. Rece	eives Hazaro	dous Waste from Off-site					
Y	√N	5 Recy	cler of Haza	rdous Waste					
			a. Recycle	r who stores prior to recycling					
			b. Recycle	r who does not store prior to recycling					
Y	VΝ	6. Exer	npt Boiler a	nd/or Industrial Furnace—If "Yes", mark all that apply.					
			a. Small Q	uantity On-site Burner Exemption					
			b. Smeltin	g, Melting, and Refining Furnace Exemption					

B. Waste Codes for Federally Regulated Hazardous Wastes. Please list the waste codes of the Federal hazardous wastes handled at your site. List them in the order they are presented in the regulations (e.g. D001, D003, F007, U112). Use an additional page if more spaces are needed.

See 3a and 3b			

C. Waste Codes for State Regulated (non-Federal) Hazardous Wastes. Please list the waste codes of the State hazardous wastes handled at your site. List them in the order they are presented in the regulations. Use an additional page if more spaces are needed.

None			

10. Type of Regulated Waste Activity (at your site)

B. Waste Codes for Federally Regulated Hazardous Wastes.

D001	D002	D003	D004	D005	D006	D007
D008	D009	D010	D011	D012	D013	D014
D015	D016	D017	D018	D019	D020	D021
D022	D023	D024	D025	D026	D027	D028
D029	D030	D031	D032	D033	D034	D035
D036	D037	D038	D039	D040	D041	D042
D043	F001	F002	F003	F004	F005	F006
F007	F008	F009	F010	F011	F012	F019
F020	F021	F022	F023	F024	F025	F026
F027	F028	F032	F034	F035	F037	F038
F039	K044	K045	K046	K047	K084	K101
K102	P001	P002	P003	P004	P005	P006
P007	P008	P009	P010	P011	P012	P013
P014	P015	P016	P017	P018	P020	P021
P022	P023	P024	P026	P027	P028	P029
P030	P031	P033	P034	P036	P037	P038
P039	P040	P041	P042	P043	P044	P045
P046	P047	P048	P049	P050	P051	P054
P056	P057	P058	P059	P060	P062	P063
P064	P065	P066	P067	P068	P069	P070
P071	P072	P073	P074	P075	P076	P077
P078	P081	P082	P084	P085	P087	P088
P089	P092	P093	P094	P095	P096	P097
P098	P099	P101	P102	P103	P104	P105
P106	P108	P109	P110	P111	P112	P113
P114	P115	P116	P118	P119	P120	P121
P122	P123	P127	P128	P185	P188	P189
P190	P191	P192	P194	P196	P197	P198
P199	P201	P202	P203	P204	P205	U001
U002	U003	U004	U005	U006	U007	U008
U009	U010	U011	U012	U014	U015	U016
U017	U018	U019	U020	U021	U022	U023
U024	U025	U026	U027	U028	U029	U030
U031	U032	U033	U034	U035	U036	U037
U038	U039	U041	U042	U043	U044	U045
U046	U047	U048	U049	U050	U051	U052
U053	U055	U056	U057	U058	U059	U060
U061	U062	U063	U064	U066	U067	U068
U069	U070	U071	U072	U073	U074	U075

10. Type of Regulated Waste Activity (at your site)B. Waste Codes for Federally Regulated Hazardous Wastes. (Continued)

D. Waste Coat	o lot i cactally	Regulateu naza	i adas viastos.	Continueu)		
U076	U077	U078	U079	U080	U081	U082
U083	U084	U085	U086	U087	U088	U089
U090	U091	U092	U093	U094	U095	U096
U097	U098	U099	U101	U102	U103	U105
U106	U107	U108	U109	U110	U111	U112
U113	U114	U115	U116	U117	U118	U119
U120	U121	U122	U123	U124	U125	U126
U127	U128	U129	U130	U131	U132	U133
U134	U135	U136	U137	U138	U140	U141
U142	U143	U144	U145	U146	U147	U148
U149	U150	U151	U152	U153	U154	U155
U156	U157	U158	U159	U160	U161	U162
U163	U164	U165	U166	U167	U168	U169
U170	U171	U172	U173	U174	U176	U177
U178	U179	U180	U181	U182	U183	U184
U185	U186	U187	U188	U189	U190	U191
U192	U193	U194	U196	U197	U200	U201
U202	U203	U204	U205	U206	U207	U208
U209	U210	U211	U213	U214	U215	U216
U217	U218	U219	U220	U221	U222	U223
U225	U226	U227	U228	U234	U235	U236
U237	U238	U239	U240	U243	U244	U246
U247	U248	U249	U271	U278	U279	U280
U328	U353	U359	U364	U367	U372	U373
U387	U389	U394	U395	U404	U409	U410
U411						
· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·

EPA ID Number

	N	M	0	8	9	0	0	1	0	5	1	5
--	---	---	---	---	---	---	---	---	---	---	---	---

1.	Additional Regulated Waste Activities (NOTE: Refer to your State regulations to determine if a separate permit is required.
	A. Other Waste Activities

A. O	tner wa	ste Ac	πνιπες
Y	N	1. Tr	ansporter of Hazardous Waste—If "Yes", mark all that apply.
		✓	a. Transporter
		√	b. Transfer Facility (at your site)
Y	√N	2. U	nderground Injection Control
Y	N	3. U	nited States Importer of Hazardous Waste
Υ	√ N	4. R	ecognized Trader—If "Yes", mark all that apply.
			a. Importer
			b. Exporter
ПΥ	V N	5. Ir that	nporter/Exporter of Spent Lead-Acid Batteries (SLABs) under 40 CFR 266 Subpart G—If "Yes", mark all apply.
			a. Importer
			b. Exporter
B. Ur	niversal '	Waste	Activities
VΥ	N	1. Lar apply.	ge Quantity Handler of Universal Waste (you accumulate 5,000 kg or more) - If "Yes" mark all that Note: Refer to your State regulations to determine what is regulated.
		\checkmark	a. Batteries
		V	b. Pesticides
		<u> </u>	c. Mercury containing equipment
		V	d. Lamps
		<u>√</u>	e. Aerosol Cans
			f. Other (specify)
			g. Other (specify)
Υ	V N	2. D	estination Facility for Universal Waste Note: A hazardous waste permit may be required for this y.
CUs	sed Oil A	ctivitie	
Пү	√ N		ed Oil Transporter—If "Yes", mark all that apply.
			a. Transporter
		一	b. Transfer Facility (at your site)
Υ	√ N	2. Use	ed Oil Processor and/or Re-refiner—If "Yes", mark all that apply.
			a. Processor
			b. Re-refiner
Υ	√ N	3. Off-	Specification Used Oil Burner
ПΥ	V _N	4. Use	d Oil Fuel Marketer—If "Yes", mark all that apply.
			a. Marketer Who Directs Shipment of Off-Specification Used Oil to Off-Specification Used Oil Burner
		П	b. Marketer Who First Claims the Used Oil Meets the Specifications

A ID Numbe	r	N	M	0	8	9	0		0	1	0	5	1	5	5	OMB# 2050-0024; Expires 04/30/2024
D. Pharn	nace	utica	al Ac	tiviti	es											
_Y	.	cals-	—if "	'Yes"		k only					-					agement of hazardous waste pharmaceuti- nstructions for definitions of healthcare facility
			a.	Heal	thcar	e Fac	ility									
			b.	Reve	erse D	Distrib	utor									
Y/	'	phar	rmac	eutic	als. I	Note:	You	m	ay oı	ıly	with	draw	if yo	ı ar	e a	part P for the management of hazardous waston healthcare facility that is a VSQG for all of euticals.
Eligible Acad tes pursuan								—N	Notifi	cat	tion f	or op	ting i	nto	or	withdrawing from managing laboratory hazar
□ Y	'	wast	tes ir	n labo	orato		If "Y	'es	", ma	ırk	all th					Subpart K for the management of hazardous See the item-by-item instructions for defini-
			1.	Colle	ege o	r Univ	ersit/	У								
			2.	Tead	hing	Hosp	ital t	hat	t is o	٧n	ed b	y or h	as a f	orm	nal	written affiliation with a college or university
			3.	Non	-profi	it Inst	itute	th	at is	ow	ned	by or	has a	for	m	al written affiliation with a college or universit
_Y _	N	B. W	Vitho	Irawi	ng fro	om 40) CFR	Pa	art 26	52,	Subp	art K	for t	he n	naı	nagement of hazardous wastes in laboratories
Episodic G	iene	ratio	n													
Y V	N /	Are y	ou a	than	60 da		nat m	ov	es y							planned or unplanned episodic event, lasting category. If "Yes", you must fill out the
LQG Conso	olida	tion	of V	sqg	Haza	rdous	Was	ste	!							
□ ∤	'	purs	uant		0 CFF											Waste Under the Control of the Same Person Addendum for LQG Consolidation of VSQG
Notificatio	n of	LQG	Site	Clos	ure f	or a C	entr	al A	Accu	mu	ılatio	n Are	ea (C <i>i</i>	AA)	(op	ptional) OR Entire Facility (required)
Y ✓	N	LQG	Site	Closu	ire of	a Ce	ntral	Ac	ccum	ula	tion	Area	(CAA	or	En	tire Facility.
		Α.	Ce	entral	Accu	ımula	tion	Ar	ea (C	AΑ) or	Enti	re Fa	cilit	У	
		B. E	хрес	cted o	closur	e dat	e:				m	ım/do	І/ууу	У		
		C. R	Requ	estin	g new	/ clos	ure d	late	e:				mm/	/bb	ууу	у
	 []	1	L. In o	comp	lianc		the	clo	osure	ре	erfor	manc				s 40 CFR 262.17(a)(8) lards 40 CFR 262.17(a)(8)

jpayne@lanl.gov

Email

M

0

8

9

0

0

1 0 5

1

ADDENDUM TO THE SITE IDENTIFICATION FORM: NOTIFICATION OF HAZARDOUS SECONDARY MATERIAL ACTIVITY

ONLY fill out this form if:

- You are located in a State that allows you to manage excluded hazardous secondary material (HSM) under 40 CFR 260.30, 261.4(a)(23), (24), (25), or (27) (or state equivalent; See https://www.epa.gov/hw/where-2018-definition-solid-waste-rule-effect for a list of eligible states; AND
- You are or will be managing excluded HSM in compliance with 40 CFR 260.30, 261.4(a)(23), (24), (25), or (27) (or state equivalent) or have stopped managing excluded HSM in compliance with the exclusion(s) and do not expect to manage any amount of excluded HSM under the exclusion(s) for at least one year. <u>Do not include any information regarding your hazardous waste activities in this section.</u> Note: If your facility was granted a solid waste variance under 40 CFR 260.30 prior to July 13, 2015, your management of HSM under 40 CFR 260.30 is grandfathered under the previous regulations and you are not required to notify for the HSM management activity excluded under 40 CFR 260.30.

1. Reason for	Notification (Include dates where req	uested)									
Facility will begin managing excluded HSM as of (mm/dd/yyyy).											
Facility is still managing excluded HSM/re-notifying as required by March 1 of each even-numbered year.											
Facility has <u>stopped</u> managing excluded HSM as of (mm/dd/yyyy) and is notifying as required.											
2. Description of Excluded HSM Activity. Please list the appropriate codes (see Code List section of the instructions) and quantities, in short tons, to describe your excluded HSM activity ONLY (do not include any information regarding your hazardous wastes). Use additional pages if more space is needed.											
A. Facility	B. Waste Code(s) for HSM		D. Actual Short Tons of	E. Land-							
Code		of excluded HSM to	excluded HSM that was	based Unit							
		be managed annually	managed during the most recent odd-numbered year	Code							
01	D001, D002, D003, F003	1	LT 1	NA							

N M 0 8 9 0 0 1 0 5 ⁻
--

ADDENDUM TO THE SITE IDENTIFICATION FORM: EPISODIC GENERATOR

ONLY fill out this form if:

You are an SQG or VSQG generating hazardous waste from a planned or unplanned episodic event, lasting no
more then 60 days, that moves the generator to a higher generator category pursuant to 40 CFR 262 Subpart L.
Note: Only one planned and one unplanned episodic event are allowed within one year; otherwise, you must
follow the requirements of the higher generator category. Use additional pages if more space is needed.

Episodic Event									
1. Planned			2. Unplanned						
Excess chemical i	nventory removal		☐Accidental spills						
☐Tank cleanouts			□ Production process upsets						
☐Short-term const	ruction or demolitior	ı	Product recalls	·					
☐Equipment maint	enance during plant	shutdowns		Tornado, hurricane, f	flood, etc.)				
Other									
3. Emergency Conta	act Phone	4. Emergency Conta	4. Emergency Contact Name						
5. Beginning Date		(mm/dd/yyyy)	6. End Date	(mm/dd/yyyy)					
Waste 1									
7. Waste Description	n			8. Estimated Quanti	ty (in pounds)				
9. Federal and/or S	State Hazardous Was	te Codes							
Waste 2	l.	I.	l						
7. Waste Descriptio	n			8. Estimated Quanti	ty (in pounds)				
9. Federal and/or S	State Hazardous Was	te Codes							
Waste 3									
7. Waste Descriptio	n			8. Estimated Quanti	ty (in pounds)				
9. Federal and/or S	State Hazardous Was	te Codes		ı					

Ν	M	0	8	9	0	0	1	0	5	1	5
---	---	---	---	---	---	---	---	---	---	---	---

ADDENDUM TO THE SITE IDENTIFICATION FORM: LQG CONSOLIDATION OF VSQG HAZARDOUS WASTE

ONLY fill out this form if:

• You are an LQG receiving hazardous waste from VSQGs under the control of the same person. Use additional pages if more space is needed.

VSQG 1						
1. EPA ID Number (if assigned) 2. Name						
3. Street Address						
4. City, Town, or Village	5. State	6. Zip Code				
7. Contact Phone Number	8. Contact Name	1				
9. Email						
VSQG 2						
1. EPA ID Number (if assigned)	2. Name					
3. Street Address						
4. City, Town, or Village	5. State	6. Zip Code				
7. Contact Phone Number	8. Contact Name	8. Contact Name				
9. Email	•					
VSQG 3						
1. EPA ID Number (if assigned)	2. Name					
3. Street Address	I					
4. City, Town, or Village	5. State	6. Zip Code				
7. Contact Phone Number	8. Contact Name	8. Contact Name				
9. Email						

Ν	M	0	8	9	0	0	1	0	5	1	5
---	---	---	---	---	---	---	---	---	---	---	---

United States Environmental Protection Agency HAZARDOUS WASTE PERMIT PART A FORM

1. Facility Permit Contact

First Name	Theodore	MI A	Last Name Wyka								
Title	Manager, National Nuclear Security Administration, Los Alamos Field Office, U.S. Department of Energy										
Email	theodore.wyka@nnsa.do	theodore.wyka@nnsa.doe.gov									
Phone	(505) 667-5105	Ext	Fax (505) 667-5948								

2. Facility Permit Contact Mailing Address

Street Address 3747 West Jemez Road, MS A316								
City, Town, or Village Los Alamos								
State NM	Country USA	Zip Code 87544						

3. Facility Existence Date (mm/dd/yyyy)

1/1/1943	
----------	--

4. Other Environmental Permits

A. Permit Type	B. Permit Number										C. Description				
See Page 10a															

5. Nature of Business

The central mission of Los Alamos National Laboratory is the reduction of global nuclear danger supported by research that also contributes to conventional defense, civilian, and industrial needs. This includes programs in nuclear, medium energy, and space physics; hydrodynamics; conventional explosives; chemistry; metallurgy; radiochemistry; space nuclear systems; controlled thermonuclear fusion; laser research; environmental technology; geothermal, solar, and fossil energy research; nuclear safeguards; biomedicine; health and biotechnology; and industrial partnerships.

4. Other Environmental Permits (continued)

Environmental P	erm	its (cont	inue	d)									1
A. Permit Type	B. Permit Number					C. Description								
N	N	М	R	1	0	0	-	-	-					NPDES Construction General Permit coverage for various individual construction projects: NMR100xxx
N	N	М	0	0	2	8	3	5	5					NPDES Industrial and Sanitary Point Source Discharges
N	N	М	R	0	5	0	0	1	1					NPDES Storm Water Multi-Sector General Permit (MSGP)
N	N	М	R	0	5	0	0	1	2					NPDES MSGP
N	N	М	R	0	5	0	0	1	3					NPDES MSGP
N	N	М	0	0	3	0	7	5	9					NPDES LANL Storm Water Individual Permit
N	N	М	G	8	7	0	0	0	2					NPDES Pesticides General Permit (PGP) for discharges from the application of pesticides
R	N	М	0	8	9	0	0	1	0	5	1	5		RCRA Hazardous Waste Facility Permit
E	D	Р	-	8	5	7								TA-46 SWWS Plant and TA-3 Sanitary Effluent Reclamation Facility (SERF) Discharge Permit
E	D	Р	1	1	1	3	2							TA-50 Radioactive Liquid Waste Treatment Facility, Discharge Permit
E	D	Р	-	1	5	8	9							Six (6) Domestic Septic Tank/Leachfield Systems, Discharge Permit
E	D	Р	-	1	7	9	3							On-Site Treatment and Land Application of Groundwater, Discharge Permit
E	D	Р	-	1	8	3	5							Injection of Treated Groundwater into Class V Underground Injection Control (UIC) Wells, Discharge
F	N	w	Р	-	4	3								Water Canyon West Jemez road Storm Drain Controls
F	N	w	Р	-	3	8								Sandia Canyon TA-72 Storm Water Controls
F	N	W	Р	-	2	7								Habitat Restoration- Mortandad Wetland Enhancement
F	N	w	P	-	4	3								Sandia Canyon (Lower) Area 1 Storm Water Controls
F	N	w	Р	-	4	3								Sandia Canyon (Lower) Area 2 Storm Water Controls
F	N	W	Р	-	4	3								Upper Ancho Canyon Structure Storm Water Controls
F	N	W	Р	-	4	3								North Ancho Canyon Lower Structure Storm Water Controls
F	N	W	Р	-	1	8								North Ancho Canyon Aggregate Area Phase II Project
F	N	W	Р	-	5									Lower LA Canyon Gaging Station E110.7 Installation and E109.9 Gage Structure Removal
E	Р	1	0	0	-	R	2	-	М	4				LANL Air Emissions Title V Operating Permit
E	2	1	9	5	-	R	1	-	R	9	0			Various 20 NMAC 2.72.202 Exemptions
E	2	1	9	5	В	-	М	3	R	1				TA-3 Power Plant
E	2	1	9	5	F	-	R	4						TA-33 Large Generator
E	G	С	Р	3	-	2	1	9	5	G	-	R	1	TA-60 Asphalt Plant
E	2	1	9	5	Н	-	R	1						Data disintegrator
E	2	1	9	5	N	-	R	2						Chemistry and Metallurgy Research Replacement Facility
E	2	1	9	5	Р	-	R	1						TA-33 Small Generators
E	6	3	4	-	M	2	-	R	1					TA-3-141 Beryllium Operations
E	6	3	2	-	R	1								TA-35-213 Beryllium Operations
E	1	0	8	1	M	1	-	R	7					TA-55-4 Beryllium Operations

6. Process Codes and Design Capacities

Line		Α. Ι	Process	Code	B. Process De	esign Capacity	C. Process Total	D. Hait Name		
Nun	nber				(1) Amount	(2) Unit of Measure	Number of Units	D. Unit Name		
								See Page 11a		

7. Description of Hazardous Wastes (Enter codes for Items 7.A, 7.C and 7.D(1))

		A. EPA Hazardous				B. Estimated	C. Unit of	D. Processes									
Line	ne No. Waste No.					Annual Qty of Waste	Measure			(1	.) Pro	ocess	Code		(2) Process Description (if code is not entered in 7.D1))		
																	See Pages 11b-11pppp

8. Map

Attach to this application a topographical map, or other equivalent map, of the area extending to at least one mile beyond property boundaries. The map must show the outline of the facility, the location of each of its existing intake and discharge structures, each of its hazardous waste treatment, storage, or disposal facilities, and each well where it injects fluids underground. Include all spring, rivers, and other surface water bodies in this map area. See instructions for precise requirements.

9. Facility Drawing

All existing facilities must include a scale drawing of the facility. See instructions for more detail.

10. Photographs

All existing facilities must include photographs (aerial or ground-level) that clearly delineate all existing structures; existing storage, treatment, and disposal areas; and sites of future storage, treatment, or disposal areas. See instructions for more detail.

11. Comments

Items 4, 6, and 7 have supplemental pages added in this document as referenced at each applicable item. All documentation is arranged by individual Technical Areas (TAs) at the Los Alamos National Laboratory.

N M 0 8 9 0 0 1 0 5 1 5

6. Process Codes and Design Capacities (continued)

Lir	ne	ΔΙ	Process	Code	B. Process De	sign Capacity	C. Process Total		
Num		7	100033	couc	(1) Amount	(2) Unit of Measure	Number of Units	D. Unit Name	
Х	1	S	0	1	18,500	G	001	Technical Area 3	
Х	2	Т	0	4	3,441	U	001	Technical Area 3	
Х	3	X	0	1	20 or 50	J*	002	Technical Area 14 *Total indicates per day not per hour	
Х	4	X	0	1	1,200 or 50	J* or U	002	Technical Area 16 *Total indicates per day not per hour	
Х	5	X	0	1	2,000	J*	001	Technical Area 36 *Total indicates per day not per hour	
Х	6	X	0	1	2,000	J*	002	Technical Area 39 *Total indicates per day not per hour	
X	7	S	0	1	31,500	G	002	Technical Area 50	
X	8	Т	0	4	3,716	U	002	Technical Area 50	
Х	9	S	0	1	407,880	G	001	Technical Area 54, Area L	
1	0	Т	0	4	23,160	U	001	Technical Area 54, Area L	
1	1	D	8	0	1,200	Υ	001	Technical Area 54, Area L	
1	2	S	9	9	600	G	001	Technical Area 54, Area L	
1	3	S	0	1	4,346,590	G	009	Technical Area 54, Area G	
1	4	Т	0	4	185,280	U	008	Technical Area 54, Area G	
1	5	S	9	9	4,950	G	001	Technical Area 54, Area G	
1	6	D	8	0	14	Y	001	Technical Area 54, Area G	
1	7	S	0	1	34,110 + 13,410 ⁺	G	002	Technical Area 54, West *Total includes excess storage capacity	
1	8	Т	0	4	3,441	U	001	Technical Area 54, West	
1	9	D	8	0	63	Υ	001	Technical Area 54, Area H	
2	0	S	0	1	272,145	G	009	Technical Area 55	
2	1	S	0	2	137	G	001	Technical Area 55	
2	2	Т	0	4	13,914	U	005	Technical Area 55	
2	3	S	0	1	105,875	G	001	Technical Area 63	
2	4	Т	0	4	23,160	U	001	Technical Area 63	
2	5	S	0	1	17,600	G	001	Technical Area 60	
2	6	Т	0	4	3,441	U	001	Technical Area 60	

N M 0 8 9 0 0 1 0 5 1 5

7. Description of Hazardous Wastes (Enter codes for Items 7.A, 7.C and 7.D(1)) (continued)

Inne	A. EPA Hazardous						B. Estimated	D. Processes										
	Line							C. Unit of Measure				(1)	Pro	ess (Code	s		
1							Waste		(ii code is not entered iii 7.D1))									
2		l _	I _		l .	l .	1		т —			3						
3							,		-									
4			D	0			,		<u> </u>		1							
S		3					-		<u> </u>									
6 D 0 6 2,500 P S 0 1 T 0 4 Image: color of the col		4	D	0		4	,		 					4				
7		5	D	0			-		-					_				
8 D 0 0 8 27,000 P S 0 1 T 0 4 0 1 0 0 9 4,000 P S 0 1 T 0 4 0 0 1 0 2,500 P S 0 1 T 0 4 0 0 1 1 0 0 1 1 3,000 P S 0 1 T 0 4 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0		6	D	0	0	6	2,500		<u> </u>	0								
9 D O O O 9 4,000 P S O 1 T O 4 1 O D O 1 O 2,500 P S O 1 T O 4 1 1 D O O 1 I O 2,500 P S O 1 T O 4 1 1 D O O I I O 3,000 P S O I T O 4 1 2 D O I I Z I,000 P S O I T O 4 1 3 D O I S I S I,500 P S O I T O 4 1 4 D O I S I S I,500 P S O I T O 4 1 5 D O Z I Z 2,000 P S O I T O 4 1 6 D O Z Z 2,000 P S O I T O 4 1 7 D O Z 3 Z,000 P S O I T O 4 1 8 D O Z 4 Z,000 P S O I T O 4 1 8 D O Z 4 Z,000 P S O I T O 4 1 9 D O Z 5 Z,000 P S O I T O 4 1 9 D O Z 5 Z,000 P S O I T O 4 1 9 D O Z 5 Z,000 P S O I T O 4 2 0 D O Z 6 Z,000 P S O I T O 4 2 1 D O Z 7 I,500 P S O I T O 4 2 2 D O Z 8 Z,000 P S O I T O 4 2 2 D O Z 8 Z,000 P S O I T O 4 2 3 D O Z 9 I,000 P S O I T O 4 2 4 D O Z 3 Z 1,500 P S O I T O 4 2 5 D O Z 3 Z 1,500 P S O I T O 4 2 6 D O Z 3 Z 1,500 P S O I T O 4 2 7 D O Z 3 Z 1,500 P S O I T O 4 3 0 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 2 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O 4 3 1 D O Z 3 R 1,500 P S O I T O A 3 1 D O Z 3 R 1,500 P S O I T O A 3 1 D O Z 3 R 1,500 P S O I T O A 3 1 D O Z 3 R 1,500 P S O I T O A 4 D D O Z 5		7	D	0	0	7	7,000	Р	-	0	1	Т	0	4				
1 0 D 0 1 1 0 2,500 P S 0 1 T 0 4		8	D	0	0	8	27,000	Р	S	0	1		0	4				
1 1 1 D 0 1 1 1 3,000 P S 0 1 T 0 4		9	D	0	0	9	4,000	Р	S	0	1		0	4				
1 2 D 0 1 2 1,000 P S 0 1 T 0 4 1 3 D 0 1 8 1,500 P S 0 1 T 0 4 1 4 D 0 1 9 2,000 P S 0 1 T 0 4 1 5 D 0 2 1 2,000 P S 0 1 T 0 4 1 6 D 0 2 2 2 2,000 P S 0 1 T 0 4 1 7 D 0 2 3 2,000 P S 0 1 T 0 4 1 8 D 0 2 4 2,000 P S 0 1 T 0 4 1 9 D 0 2 5 2,000 P S 0 1 T 0 4 1 9 D 0 2 5 2,000 P S 0 1 T 0 4 1 9 D 0 2 6 2,000 P S 0 1 T 0 4 2 0 D 0 2 6 2,000 P S 0 1 T 0 4 2 1 D 0 2 7 1,500 P S 0 1 T 0 4 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 2 3 D 0 2 9 1,000 P S 0 1 T 0 4 2 4 D 0 3 0 1,500 P S 0 1 T 0 4 2 5 D 0 3 2 1,500 P S 0 1 T 0 4 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 2 8 D 0 3 6 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4	1	0	D	0	1	0	2,500	Р	<u> </u>	0	1		0	4				
1 3 D 0 1 8 1,500 P S 0 1 T 0 4 1 1 1 5 D 0 1 9 2,000 P S 0 1 T 0 4 1 1 5 D 0 2 1 2,000 P S 0 1 T 0 4 1 1 5 D 0 2 1 2,000 P S 0 1 T 0 4 1 1 7 D 4 1 1 7 D 0 2 2 2 2,000 P S 0 1 T 0 4 1 1 7 D 0 2 3 2,000 P S 0 1 T 0 4 1 1 7 D 4 1 1 8 D 0 2 4 2,000 P S 0 1 T 0 4 1 1 9 D 0 2 5 2,000 P S 0 1 T 0 4 1 1 9 D 0 2 5 2,000 P S 0 1 T 0 4 1 1 9 D 0 2 6 2,000 P S 0 1 T 0 4 1 1 1 0 4 1 1 1 0 1 1 1 1 1 1 1 1 1	1	1	D	0	1	1	3,000	Р	S	0	1	Т	0	4				
1	1	2	D	0	1	2	1,000	Р	S	0	1							
1 5 D 0 2 1 2,000 P S 0 1 T 0 4 1 7 D 0 2 3 2,000 P S 0 1 T 0 4 1 8 D 0 2 4 2,000 P S 0 1 T 0 4 1 9 D 0 2 5 2,000 P S 0 1 T 0 4 2 0 D 0 2 6 2,000 P S 0 1 T 0 4 2 1 D 0 2 7 1,500 P S 0 1 T 0 4 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 2 3 D 0 2 9 1,000 P S 0 1 T 0 4 2 4 D 0 3 0 1,500 P S 0 1 T 0 4 2 5 D 0 3 2 1,500 P S 0 1 T 0 4 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 2 7 D 0 3 4 1,500 P S 0 1 T 0 4 2 8 D 0 3 5 3,500 P S 0 1 T 0 4 2 9 D 0 3 6 1,500 P S 0 1 T 0 4 2 9 D 0 3 8 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	1	3	D	0	1	8	1,500	Р	S	0	1	Т	0	4				
1 6 D 0 2 2 2 2,000 P S 0 1 T 0 4 1 1 8 D 0 2 4 2,000 P S 0 1 T 0 4 1 1 9 D 0 2 5 2,000 P S 0 1 T 0 4 1 1 9 D 0 2 5 2,000 P S 0 1 T 0 4 1 1 0 4 1 1 0 1 0 1 0 1 0 1 1 0 1 0	1	4	D	0	1	9	2,000	Р	S	0	1	Т	0	4				
1 7 D 0 2 3 2,000 P S 0 1 T 0 4 1 8 D 0 2 4 2,000 P S 0 1 T 0 4 1 9 D 0 2 5 2,000 P S 0 1 T 0 4 2 0 D 0 2 6 2,000 P S 0 1 T 0 4 2 1 D 0 2 7 1,500 P S 0 1 T 0 4 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 2 3 D 0 2 9 1,000 P S 0 1 T 0 4 2 4 D 0 3 0 1,500 P S 0 1 T 0 4 2 5 D 0 3 2 1,500 P S 0 1 T 0 4 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 2 7 D 0 3 4 1,500 P S 0 1 T 0 4 2 8 D 0 3 5 3,500 P S 0 1 T 0 4 2 8 D 0 3 6 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	1	5	D	0	2	1	2,000	Р	S	0	1	Т	0	4				
1 8 D 0 2 4 2,000 P S 0 1 T 0 4 1 9 D 0 2 5 2,000 P S 0 1 T 0 4 2 0 D 0 2 6 2,000 P S 0 1 T 0 4 2 1 D 0 2 7 1,500 P S 0 1 T 0 4 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 2 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 2 3 D 0 2 9 1,000 P S 0 1 T 0 4 2 4 D 0 3 0 1,500 P S 0 1 T 0 4 2 5 D 0 3 2 1,500 P S 0 1 T 0 4 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 2 7 D 0 3 4 1,500 P S 0 1 T 0 4 2 8 D 0 3 5 3,500 P S 0 1 T 0 4 2 8 D 0 3 6 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	1	6	D	0	2	2	2,000	Р	S	0	1	Т	0	4				
1 9 D 0 2 5 2,000 P S 0 1 T 0 4 2 0 D 0 2 6 2,000 P S 0 1 T 0 4 2 1 D 0 2 7 1,500 P S 0 1 T 0 4 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 2 3 D 0 2 9 1,000 P S 0 1 T 0 4 2 4 D 0 3 0 1,500 P S 0 1 T 0 4 2 5 D 0 3 2 1,500 P S 0 1 T 0 4 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 2 7 D 0 3 4 1,500 P S 0 1 T 0 4 2 8 D 0 3 5 3,500 P S 0 1 T 0 4 2 8 D 0 3 6 1,500 P S 0 1 T 0 4 3 0 D 0 3 7 1,000 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 3 0 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	1	7	D	0	2	3	2,000	Р	S	0	1	Т	0	4				
2 0 D 0 2 6 2,000 P S 0 1 T 0 4 1 2 1 D 0 2 7 1,500 P S 0 1 T 0 4 1 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 4 2 3 D 0 2 9 1,000 P S 0 1 T 0 4 4 2 4 D 0 3 0 1,500 P S 0 1 T 0 4 4 4 2 5 D 0 3 3 1,500 P S 0 1 T 0 4	1	8	D	0	2	4	2,000	Р	S	0	1	Т	0	4				
2 1 D 0 2 7 1,500 P S 0 1 T 0 4 1 2 2 D 0 2 8 2,000 P S 0 1 T 0 4 1 2 3 D 0 2 9 1,000 P S 0 1 T 0 4 4 2 4 D 0 3 0 1,500 P S 0 1 T 0 4 4 2 5 D 0 3 2 1,500 P S 0 1 T 0 4 4 1 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 4 1 2 8 D 0 3 5 3,500 P S 0 1 T 0 4 4 1 3 1 0 4 <td>1</td> <td>9</td> <td>D</td> <td>0</td> <td>2</td> <td>5</td> <td>2,000</td> <td>Р</td> <td>S</td> <td>0</td> <td>1</td> <td>Т</td> <td>0</td> <td>4</td> <td></td> <td></td> <td></td> <td></td>	1	9	D	0	2	5	2,000	Р	S	0	1	Т	0	4				
2 2 D 0 2 8 2,000 P S 0 1 T 0 4 1 2 3 D 0 2 9 1,000 P S 0 1 T 0 4 1 2 4 D 0 3 0 1,500 P S 0 1 T 0 4 4 2 5 D 0 3 2 1,500 P S 0 1 T 0 4 4 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 <t< td=""><td>2</td><td>0</td><td>D</td><td>0</td><td>2</td><td>6</td><td>2,000</td><td>Р</td><td>S</td><td>0</td><td>1</td><td>Т</td><td>0</td><td>4</td><td></td><td></td><td></td><td></td></t<>	2	0	D	0	2	6	2,000	Р	S	0	1	Т	0	4				
2 3 D 0 2 9 1,000 P S 0 1 T 0 4 1 2 4 D 0 3 0 1,500 P S 0 1 T 0 4 4 2 5 D 0 3 2 1,500 P S 0 1 T 0 4 4 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 4 2 7 D 0 3 4 1,500 P S 0 1 T 0 4 4 2 8 D 0 3 6 1,500 P S 0 1 T 0 4 4 2 9 D 0 3 7 1,000 P S 0 1 T 0 4 4 3 1 D 0 3	2	1	D	0	2	7	1,500	Р	S	0	1	Т	0	4				
2 4 D 0 3 0 1,500 P S 0 1 T 0 4 1 2 5 D 0 3 2 1,500 P S 0 1 T 0 4 4 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 4 2 7 D 0 3 4 1,500 P S 0 1 T 0 4 4 2 8 D 0 3 5 3,500 P S 0 1 T 0 4 4 2 9 D 0 3 6 1,500 P S 0 1 T 0 4 4 3 0 D 0 3 7 1,000 P S 0 1 T 0 4 4 3 2 D 0 3	2	2	D	0	2	8	2,000	Р	S	0	1	Т	0	4				
2 5 D 0 3 2 1,500 P S 0 1 T 0 4 2 6 D 0 3 3 1,500 P S 0 1 T 0 4 2 7 D 0 3 4 1,500 P S 0 1 T 0 4 2 8 D 0 3 5 3,500 P S 0 1 T 0 4 2 9 D 0 3 6 1,500 P S 0 1 T 0 4 3 0 D 0 3 7 1,000 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	2	3	D	0	2	9	1,000	Р	S	0	1	Т	0	4				
2 6 D 0 3 3 1,500 P S 0 1 T 0 4 2 7 D 0 3 4 1,500 P S 0 1 T 0 4 2 8 D 0 3 5 3,500 P S 0 1 T 0 4 2 9 D 0 3 6 1,500 P S 0 1 T 0 4 3 0 D 0 3 7 1,000 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	2	4	D	0	3	0	1,500	Р	s	0	1	Т	0	4				
2 7 D 0 3 4 1,500 P S 0 1 T 0 4 1 2 8 D 0 3 5 3,500 P S 0 1 T 0 4 4 2 9 D 0 3 6 1,500 P S 0 1 T 0 4 3 0 D 0 3 7 1,000 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	2	5	D	0	3	2	1,500	Р	s	0	1	Т	0	4				
2 8 D 0 3 5 3,500 P S 0 1 T 0 4 1 0 0 0 0 1,500 P S 0 1 T 0 4 0 0 0 1 T 0 4 0 0 0 1 T 0 4 0 0 0 1 T 0 4 0 0 1 T 0 4 0 0 0 1 T 0 4 0 0 0 1 T 0 4 0 0 0 0 1 T 0 4 0	2	6	D	0	3	3	1,500	Р	s	0	1	Т	0	4				
2 9 D 0 3 6 1,500 P S 0 1 T 0 4 1 3 0 D 0 3 7 1,000 P S 0 1 T 0 4 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	2	7	D	0	3	4	1,500	Р	s	0	1	Т	0	4				
3 0 D 0 3 7 1,000 P S 0 1 T 0 4 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	2	8	D	0	3	5	3,500	Р	S	0	1	Т	0	4				
3 0 D 0 3 7 1,000 P S 0 1 T 0 4 1 3 1 D 0 3 8 1,500 P S 0 1 T 0 4 1 3 2 D 0 3 9 2,500 P S 0 1 T 0 4 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4 4	2	9	D	0	3	6	1,500	Р	s	0	1	Т	0	4				
3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	3	0	D	0	3	7		Р	s	0	1	Т	0	4				
3 2 D 0 3 9 2,500 P S 0 1 T 0 4 3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	3	1	D	0	3	8	1,500	Р	s	0	1	Т	0	4				
3 3 D 0 4 0 2,500 P S 0 1 T 0 4 3 4 D 0 4 2 1,500 P S 0 1 T 0 4	3	2	D	0	3	9	2,500	Р	s	0	1	Т	0	4				
3 4 D 0 4 2 1,500 P S 0 1 T 0 4		3	D	0	4	0		Р	s	0	1	Т	0	4				
		4	D	0	4	2			-	0	1	Т	0	4				
	3	5	D	0	4	3	1,500	Р	S	0	1	Т	0	4				

	e No.		EPA Ha			B. Estimated	C. Unit of				•	. , ,				ocesses
Line	. 140.	'	Waste	No.		Annual Qty of	Measure				(1)	Proc	ess (Code	!S	(2) Process Description (if code is not entered in 7.D1))
						Waste	Technical A	ea	3 (c	on	tin	uec	d)			
3	6	F	0	0	1	21,000	Р	s	0	1	Т	0	4			
3	7	F	0	0	2	21,000	P	S	0	1	Т	0	4			
3	8	F	0	0	3	21,000	P	S	0	1						
3	9	F	0	0	4	2,500	P	S	0	1	Т	0	4			
4	0	F	0	0	5	21,000	Р	S	0	1						
4	1	F	0	0	6	500	Р	S	0	1						
4	2	F	0	0	7	500	Р	S	0	1						
4	3	F	0	0	9	500	Р	s	0	1						
4	4	Р	0	0	3	1,000	Р	S	0	1						
4	5	Р	0	1	2	1,000	Р	S	0	1						
4	6	Р	0	1	5	1,000	Р	S	0	1						
4	7	Р	0	2	9	1,000	Р	S	0	1						
4	8	Р	0	3	0	1,000	Р	S	0	1						
4	9	Р	0	3	1	1,000	Р	S	0	1						
5	0	Р	0	3	8	1,000	Р	S	0	1						
5	1	Р	0	5	6	1,000	Р	S	0	1						
5	2	Р	0	6	3	1,000	Р	S	0	1						
5	3	Р	0	6	8	1,000	Р	S	0	1						
5	4	Р	0	7	3	1,000	Р	s	0	1						
5	5	Р	0	7	6	1,000	Р	S	0	1						
5	6	Р	0	7	8	1,000	Р	S	0	1						
5	7	Р	0	9	5	1,000	Р	S	0	1						
5	8	Р	0	9	6	1,000	Р	S	0	1						
5	9	Р	0	9	8	1,000	Р	S	0	1						
6	0	Р	0	9	9	500	Р	S	0	1						
6	1	Р	1	0	6	1,000	Р	S	0	1						
6	2	Р	1	1	3	1,000	Р	S	0	1						
6	3	Р	1	2	0	1,000	Р	S	0	1						
6	4	U	0	0	1	1,000	Р	s	0	1						
6	5	U	0	0	2	1,000	Р	s	0	1						
6	6	U	0	0	3	1,000	Р	s	0	1						
6	7	U	0	1	2	1,000	Р	S	0	1						
6	8	U	0	1	9	1,000	Р	S	0	1						
6	9	U	0	2	2	1,000	Р	S	0	1						
7	0	U	0	2	9	1,000	Р	S	0	1						

	No.		EPA Ha			B. Estimated	C. Unit of				`	. , .				ocesses
Line	i NO.	,	Waste	No.		Annual Qty of	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
						Waste	Technical Ar	<u></u>	3 (6	on	tin		1/			(ii code is not entered iii 7.51))
7	1	U	0	3	1	1,000	P	S	0	1	(1111	uec	''			
7	2	U	0	3	7	1,000	<u>Р</u> Р	S	0	1						
7	3	U	0	4	4	1,000	<u>Р</u>	S	0	1						
7	4	U	0	4	5	1,000	<u>Р</u>	S	0	1						
7	5	U	0	5	2	1,000	<u>Р</u>	S	0	1						
7	6	U	0	5	6	1,000	<u>Р</u>	S	0	1						
7	7	U	0	5	7	1,000	<u>'</u> Р	S	0	1						
7	8	U	0	7	5	1,000	<u>'</u> Р	S	0	1						
7	9	U	0	7	7	1,000	<u>.</u> Р	S	0	1						
8	0	U	0	8	0	1,000	P	S	0	1						
8	1	U	1	0	3	500	Р	S	0	1						
8	2	U	1	0	8	1,000	Р	S	0	1						
8	3	U	1	1	2	1,000	Р	S	0	1						
8	4	U	1	1	5	1,000	Р	S	0	1						
8	5	U	1	1	7	1,000	Р	S	0	1						
8	6	U	1	2	1	1,000	Р	S	0	1						
8	7	U	1	2	2	1,000	Р	S	0	1						
8	8	U	1	2	3	1,000	Р	S	0	1						
8	9	U	1	3	1	1,000	Р	S	0	1						
9	0	U	1	3	3	1,000	Р	S	0	1						
9	1	U	1	3	4	1,000	Р	S	0	1						
9	2	U	1	3	5	1,000	Р	S	0	1						
9	3	U	1	4	0	1,000	Р	S	0	1						
9	4	U	1	4	4	1,000	Р	s	0	1						
9	5	J	1	5	1	1,000	Р	S	0	1						
9	6	J	1	5	4	1,000	Р	S	0	1						
9	7	U	1	5	9	1,000	Р	S	0	1						
9	8	J	1	6	0	1,000	Р	S	0	1						
9	9	U	1	6	1	1,000	Р	S	0	1						
1 0	0	U	1	6	5	1,000	Р	S	0	1						
1 0	1	U	1	6	9	1,000	Р	S	0	1						
1 0	2	U	1	8	8	1,000	Р	S	0	1						
1 0	3	U	1	9	0	1,000	Р	S	0	1						
1 0	4	U	1	9	6	1,000	Р	S	0	1						
1 0	5	U	2	0	4	1,000	Р	S	0	1						

7. Description of Hazardous Wastes (Enter codes for Items 7.A, 7.C and 7.D(1)) (continued)

Line	No.		ЕРА На		ous	B. Estimated Annual	C. Unit of								D	. Pr	ocesses
		,	Waste	No.		Qty of Waste	Measure				(1)	Prod	ess (Code	!S		(2) Process Description (if code is not entered in 7.D1))
1 0	6	U	2	1	0	1,000	Р	S	0	1							
1 0	7	U	2	1	1	1,000	Р	S	0	1							
							Technical Ar	ea	3 (0	con	tin	uec	1)				
1 0	8	U	2	1	3	1,000	Р	s	0	1							
1 0	9	U	2	1	6	1,000	Р	S	0	1							
11	0	U	2	1	8	1,000	Р	S	0	1							
11	1	U	2	1	9	1,000	Р	S	0	1							
11	2	U	2	2	0	1,000	Р	s	0	1							
11	3	U	2	2	5	500	Р	s	0	1							
11	4	U	2	2	6	1,000	Р	s	0	1							
11	5	U	2	2	7	500	Р	s	0	1							
1 1	6	U	2	2	8	1,000	Р	s	0	1							
11	7	U	2	3	9	500	Р	S	0	1							
11	8	U	2	4	6	500	Р	S	0	1							

0 5 1

5

		Α.	EPA H	azard	ous	B. Estimated	C. Unit of		ocesses							
Line	e No.		Waste			Annual Qty of Waste	Measure				(1)	Proc	ess (Codes		(2) Process Description (if code is not entered in 7.D1))
							Techni	ical	Are	ea '	14					
	1	D	0	0	1	2,000	Р	X	0	1						
	2	D	0	0	3											Included with above.
	3	D	0	0	5											Included with above.
	4	D	0	0	6											Included with above.
	5	D	0	0	7											Included with above.
	6	D	0	0	8											Included with above.
	7	D	0	0	9											Included with above.
	8	D	0	1	1											Included with above.
	9	D	0	1	8											Included with above.
1	0	D	0	2	2											Included with above.
1	1	D	0	2	8											Included with above.
1	2	D	0	2	9											Included with above.
1	3	D	0	3	0											Included with above.
1	4	D	0	3	5											Included with above.
1	5	D	0	3	6											Included with above.
1	6	D	0	3	8											Included with above.
1	7	D	0	4	0											Included with above.
1	8	F	0	0	1											Included with above.
1	9	F	0	0	2											Included with above.
2	0	F	0	0	3											Included with above.
2	1	F	0	0	4											Included with above.
2	2	F	0	0	5											Included with above.

Line	a Na	Α.	EPA H	azard	ous	B. Estimated	C. Unit of								D. Processes
Line	e No.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proce	ss C	odes	(2) Process Description (if code is not entered in 7.D1))
							Techn	ical	Are	ea 1	16				
	1	D	0	0	1	20,000	Р	X	0	1					
	2	D	0	0	2										Included with above.
	3	D	0	0	3										Included with above.
	4	D	0	0	5										Included with above.
	5	D	0	0	6										Included with above.
	6	D	0	0	7										Included with above.
	7	D	0	0	8										Included with above.
	8	D	0	0	9										Included with above.
	9	D	0	1	0										Included with above.
1	0	D	0	1	1										Included with above.
1	1	D	0	1	8										Included with above.
1	2	D	0	2	2										Included with above.
1	3	D	0	2	8										Included with above.
1	4	D	0	2	9										Included with above.
1	5	D	0	3	0										Included with above.
1	6	D	0	3	5										Included with above.
1	7	D	0	3	6										Included with above.
1	8	D	0	3	8										Included with above.
1	9	D	0	4	0										Included with above.
2	0	F	0	0	1										Included with above.
2	1	F	0	0	2								1		Included with above.
2	2	F	0	0	3										Included with above.
2	3	F	0	0	4										Included with above.
2	4	F	0	0	5										Included with above.
2	5	K	0	4	4										Included with above.
2	6	K	0	4	5										Included with above.

		Α.	ЕРА Н	azard	ous	B. Estimated	C. Unit of								D.	Processes
Line	No.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	5	(2) Process Description (if code is not entered in 7.D1))
							Techni	cal	Are	ea 3	36					
	1	D	0	0	1	15,000	Р	X	0	1						
	2	D	0	0	3											Included with above.
	3	D	0	0	5											Included with above.
	4	D	0	0	6											Included with above.
	5	D	0	0	7											Included with above.
	6	D	0	0	8											Included with above.
	7	D	0	0	9											Included with above.
	8	D	0	1	0											Included with above.
	9	D	0	1	1											Included with above.
1	0	D	0	1	8											Included with above.
1	1	D	0	2	2											Included with above.
1	2	D	0	2	8											Included with above.
1	3	D	0	2	9											Included with above.
1	4	D	0	3	0											Included with above.
1	5	D	0	3	5											Included with above.
1	6	D	0	3	6											Included with above.
1	7	D	0	3	8											Included with above.
1	8	D	0	4	0											Included with above.
1	9	F	0	0	1											Included with above.
2	0	F	0	0	2											Included with above.
2	1	F	0	0	3											Included with above.
2	2	F	0	0	4											Included with above.
2	3	F	0	0	5											Included with above.

		A.	ЕРА Н	azard	ous	B. Estimated	C. Unit of								D.	Processes
Line	No.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	5	(2) Process Description (if code is not entered in 7.D1))
							Techni	cal	Are	ea 3	39					
	1	D	0	0	1	15,000	Р	X	0	1						
	2	D	0	0	3											Included with above.
	3	D	0	0	5											Included with above.
	4	D	0	0	6											Included with above.
	5	D	0	0	7											Included with above.
	6	D	0	0	8											Included with above.
	7	D	0	0	9											Included with above.
	8	D	0	1	0											Included with above.
	9	D	0	1	1											Included with above.
1	0	D	0	1	8											Included with above.
1	1	D	0	2	2											Included with above.
1	2	D	0	2	8											Included with above.
1	3	D	0	2	9											Included with above.
1	4	D	0	3	0											Included with above.
1	5	D	0	3	5											Included with above.
1	6	D	0	3	6											Included with above.
1	7	D	0	3	8											Included with above.
1	8	D	0	4	0											Included with above.
1	9	F	0	0	1											Included with above.
2	0	F	0	0	2											Included with above.
2	1	F	0	0	3											Included with above.
2	2	F	0	0	4											Included with above.
2	3	F	0	0	5											Included with above.

Line	e No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	e NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
						waste	Techni	cal	Are	ea (50					
	1	D	0	0	1	69,696	Р	S	0	1	Т	0	4			
	2	D	0	0	2	52,734	Р	S	0	1	Т	0	4			
	3	D	0	0	3	3,444	Р	s	0	1						
	4	D	0	0	4	7,531	Р	s	0	1	Т	0	4			
	5	D	0	0	5	7,740	Р	S	0	1	Т	0	4			
	6	D	0	0	6	535, 451	Р	s	0	1	Т	0	4			
	7	D	0	0	7	567, 226	Р	S	0	1	Т	0	4			
	8	D	0	0	8	1,405,439	Р	S	0	1	Т	0	4			
	9	D	0	0	9	75,666	Р	S	0	1	Т	0	4			
1	0	D	0	1	0	8,922	Р	S	0	1	Т	0	4			
1	1	D	0	1	1	31,255	Р	S	0	1	Т	0	4			
1	2	D	0	1	2	100	Р	s	0	1						
1	3	D	0	1	3	100	Р	S	0	1						
1	4	D	0	1	4	100	Р	s	0	1						
1	5	D	0	1	5	100	Р	s	0	1						
1	6	D	0	1	6	44	Р	S	0	1						
1	7	D	0	1	7	66	Р	S	0	1						
1	8	D	0	1	8	5,535	Р	s	0	1	Т	0	4			
1	9	D	0	1	9	4,261	Р	s	0	1	Т	0	4			
2	0	D	0	2	0	100	Р	S	0	1	Т	0	4			
2	1	D	0	2	1	100	Р	S	0	1	Т	0	4			
2	2	D	0	2	2	100	Р	s	0	1	Т	0	4			
2	3	D	0	2	3	100	Р	s	0	1	Т	0	4			
2	4	D	0	2	4	100	Р	S	0	1	Т	0	4			
2	5	D	0	2	5	100	Р	S	0	1	Т	0	4			
2	6	D	0	2	6	518	Р	s	0	1	Т	0	4			
2	7	D	0	2	7	972	Р	S	0	1	Т	0	4			
2	8	D	0	2	8	216,783	Р	S	0	1	Т	0	4			
2	9	D	0	2	9	215,184	Р	s	0	1	Т	0	4			
3	0	D	0	3	0	5,491	Р	s	0	1	Т	0	4			
3	1	D	0	3	1	293	Р	S	0	1	Т	0	4			
3	2	D	0	3	2	3,135	Р	s	0	1	Т	0	4			
3	3	D	0	3	3	2,222	Р	s	0	1	Т	0	4			
3	4	D	0	3	4	1,228	Р	s	0	1	Т	0	4			
3	5	D	0	3	5	1,792	Р	s	0	1	Т	0	4			
3	6	D	0	3	6	549	Р	S	0	1	Т	0	4			

	e No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
LIIIE	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea :	50 (CO	ntir	nue	d)			
3	7	D	0	3	7	761	Р	s	0	1	Т	0	4			
3	8	D	0	3	8	1,549	Р	S	0	1	Т	0	4			
3	9	D	0	3	9	1,675	Р	s	0	1	Т	0	4			
4	0	D	0	4	0	3,942	Р	s	0	1	Т	0	4			
4	1	D	0	4	1	293	Р	S	0	1	Т	0	4			
4	2	D	0	4	2	1,182	Р	S	0	1	Т	0	4			
4	3	D	0	4	3	655	Р	S	0	1	Т	0	4			
4	4	F	0	0	1	442,263	Р	s	0	1	Т	0	4			
4	5	F	0	0	2	147,347	Р	S	0	1	Т	0	4			
4	6	F	0	0	3	50,980	Р	s	0	1	Т	0	4			
4	7	F	0	0	4	2,817	Р	s	0	1	Т	0	4			
4	8	F	0	0	5	334,821	Р	S	0	1	Т	0	4			
4	9	F	0	0	6	100	Р	S	0	1	Т	0	4			
5	0	F	0	0	7	100	Р	S	0	1	Т	0	4			
5	1	F	0	0	8	100	Р	S	0	1						
5	2	F	0	0	9	165	Р	S	0	1	Т	0	4			
5	3	F	0	1	0	100	Р	S	0	1						
5	4	F	0	1	1	100	Р	S	0	1						
5	5	F	0	1	2	100	Р	S	0	1						
5	6	F	0	1	9	100	Р	S	0	1						
5	7	F	0	2	0	100	Р	S	0	1						
5	8	F	0	2	1	100	Р	s	0	1						
5	9	F	0	2	2	100	Р	s	0	1						
6	0	F	0	2	3	100	Р	S	0	1						
6	1	F	0	2	4	100	Р	s	0	1						
6	2	F	0	2	5	100	Р	S	0	1						
6	3	F	0	2	6	100	Р	S	0	1						
6	4	F	0	2	7	165	Р	S	0	1						
6	5	F	0	2	8	100	Р	s	0	1						
6	6	F	0	3	2	100	Р	s	0	1						
6	7	F	0	3	4	100	Р	S	0	1						
6	8	F	0	3	5	100	Р	s	0	1						
6	9	F	0	3	7	100	Р	s	0	1						
7	0	F	0	3	8	100	Р	s	0	1						
7	1	F	0	3	9	100	Р	S	0	1						
7	2	K	0	4	4	100	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess	Code	!S	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	ue	d)			
7	3	K	0	4	5	100	Р	s	0	1						
7	4	K	0	4	6	100	Р	S	0	1						
7	5	K	0	4	7	100	Р	s	0	1						
7	6	K	0	8	4	100	Р	s	0	1						
7	7	K	1	0	1	100	Р	S	0	1						
7	8	K	1	0	2	100	Р	S	0	1						
7	9	Р	0	0	1	100	Р	S	0	1						
8	0	Р	0	0	2	100	Р	s	0	1						
8	1	Р	0	0	3	293	Р	S	0	1						
8	2	Р	0	0	4	100	Р	s	0	1						
8	3	Р	0	0	5	100	Р	s	0	1						
8	4	Р	0	0	6	143	Р	S	0	1						
8	5	Р	0	0	7	100	Р	S	0	1						
8	6	Р	0	0	8	100	Р	s	0	1						
8	7	Р	0	0	9	100	Р	S	0	1						
8	8	Р	0	1	0	100	Р	S	0	1						
8	9	Р	0	1	1	143	Р	S	0	1						
9	0	Р	0	1	2	293	Р	S	0	1						
9	1	Р	0	1	3	100	Р	S	0	1						
9	2	Р	0	1	4	100	Р	S	0	1						
9	3	Р	0	1	5	293	Р	S	0	1						
9	4	Р	0	1	6	100	Р	S	0	1						
9	5	Р	0	1	7	100	Р	S	0	1						
9	6	Р	0	1	8	100	Р	S	0	1						
9	7	Р	0	2	0	100	Р	s	0	1						
9	8	Р	0	2	1	100	Р	s	0	1						
9	9	Р	0	2	2	100	Р	s	0	1						
1 0	0	Р	0	2	3	100	Р	S	0	1						
1 0	1	Р	0	2	4	100	Р	s	0	1						
1 0	2	Р	0	2	6	100	Р	s	0	1						
1 0	3	Р	0	2	7	100	Р	s	0	1						
1 0	4	Р	0	2	8	100	Р	s	0	1						
1 0	5	Р	0	2	9	293	Р	s	0	1						
1 0	6	Р	0	3	0	485	Р	s	0	1						
1 0	7	Р	0	3	1	485	Р	S	0	1						
1 0	8	Р	0	3	3	143	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					(-)	/ (ocesses
2			Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	nue	d)			
1 0	9	Р	0	3	4	100	Р	S	0	1						
11	0	Р	0	3	6	100	Р	S	0	1						
11	1	Р	0	3	7	100	Р	s	0	1						
11	2	Р	0	3	8	227	Р	s	0	1						
11	3	Р	0	3	9	100	Р	s	0	1						
11	4	Р	0	4	0	100	Р	S	0	1						
11	5	Р	0	4	1	100	Р	s	0	1						
11	6	Р	0	4	2	100	Р	s	0	1						
11	7	Р	0	4	3	143	Р	S	0	1						
11	8	Р	0	4	4	100	Р	s	0	1						
11	9	Р	0	4	5	100	Р	s	0	1						
1 2	0	Р	0	4	6	100	Р	S	0	1						
1 2	1	Р	0	4	7	100	Р	s	0	1						
1 2	2	Р	0	4	8	143	Р	S	0	1						
1 2	3	Р	0	4	9	100	Р	S	0	1						
1 2	4	Р	0	5	0	100	Р	S	0	1						
1 2	5	Р	0	5	1	100	Р	S	0	1						
1 2	6	Р	0	5	4	100	Р	s	0	1						
1 2	7	Р	0	5	6	2,624	Р	S	0	1						
1 2	8	Р	0	5	7	100	Р	S	0	1						
1 2	9	Р	0	5	8	100	Р	S	0	1						
1 3	0	Р	0	5	9	100	Р	S	0	1						
1 3	1	Р	0	6	0	100	Р	S	0	1						
1 3	2	Р	0	6	2	100	Р	S	0	1						
1 3	3	Р	0	6	3	293	Р	s	0	1						
1 3	4	Р	0	6	4	100	Р	s	0	1						
1 3	5	Р	0	6	5	100	Р	s	0	1						
1 3	6	Р	0	6	6	100	Р	s	0	1						
1 3	7	Р	0	6	7	100	Р	S	0	1						
1 3	8	Р	0	6	8	293	Р	S	0	1						
1 3	9	Р	0	6	9	100	Р	s	0	1						
14	0	Р	0	7	0	100	Р	s	0	1						
14	1	Р	0	7	1	100	Р	S	0	1						
14	2	Р	0	7	2	100	Р	s	0	1						
14	3	Р	0	7	3	293	Р	s	0	1						
14	4	Р	0	7	4	100	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	ue	d)			
14	5	Р	0	7	5	100	Р	s	0	1						
1 4	6	Р	0	7	6	403	Р	S	0	1						
1 4	7	Р	0	7	7	100	Р	s	0	1						
1 4	8	Р	0	7	8	425	Р	s	0	1						
1 4	9	Р	0	8	1	100	Р	S	0	1						
1 5	0	Р	0	8	2	100	Р	s	0	1						
1 5	1	Р	0	8	4	100	Р	s	0	1						
1 5	2	Р	0	8	5	100	Р	s	0	1						
1 5	3	Р	0	8	7	100	Р	S	0	1						
1 5	4	Р	0	8	8	100	Р	s	0	1						
1 5	5	Р	0	8	9	100	Р	s	0	1						
1 5	6	Р	0	9	2	143	Р	s	0	1						
1 5	7	Р	0	9	3	100	Р	S	0	1						
1 5	8	Р	0	9	4	100	Р	s	0	1						
1 5	9	Р	0	9	5	293	Р	s	0	1						
1 6	0	Р	0	9	6	293	Р	S	0	1						
1 6	1	Р	0	9	7	100	Р	S	0	1						
1 6	2	Р	0	9	8	293	Р	s	0	1						
1 6	3	Р	0	9	9	100	Р	s	0	1						
1 6	4	Р	1	0	1	100	Р	S	0	1						
1 6	5	Р	1	0	2	100	Р	S	0	1						
1 6	6	Р	1	0	3	100	Р	s	0	1						
1 6	7	Р	1	0	4	143	Р	s	0	1						
1 6	8	Р	1	0	5	143	Р	S	0	1						
1 6	9	Р	1	0	6	293	Р	S	0	1						
1 7	0	Р	1	0	8	100	Р	S	0	1						
17	1	Р	1	0	9	100	Р	S	0	1						
17	2	Р	1	1	0	100	Р	S	0	1						
17	3	Р	1	1	1	100	Р	S	0	1						
17	4	Р	1	1	2	143	Р	S	0	1						
17	5	Р	1	1	3	293	Р	S	0	1						
17	6	Р	1	1	4	100	Р	s	0	1						
1 7	7	Р	1	1	5	100	Р	S	0	1						
17	8	Р	1	1	6	100	Р	S	0	1						
17	9	Р	1	1	8	100	Р	s	0	1						
18	0	Р	1	1	9	143	Р	S	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					(-)				ocesses
Line			Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	ue	d)			
18	1	Р	1	2	0	293	Р	s	0	1						
18	2	Р	1	2	1	100	Р	S	0	1						
18	3	Р	1	2	2	100	Р	S	0	1						
18	4	Р	1	2	3	100	Р	s	0	1						
18	5	Р	1	2	7	100	Р	S	0	1						
18	6	Р	1	2	8	100	Р	S	0	1						
18	7	Р	1	8	5	100	Р	s	0	1						
18	8	Р	1	8	8	100	Р	S	0	1						
18	9	Р	1	8	9	100	Р	S	0	1						
19	0	Р	1	9	0	100	Р	S	0	1						
19	1	Р	1	9	1	100	Р	s	0	1						
19	2	Р	1	9	2	100	Р	s	0	1						
19	3	Р	1	9	4	100	Р	S	0	1						
19	4	Р	1	9	6	100	Р	s	0	1						
19	5	Р	1	9	7	100	Р	s	0	1						
19	6	Р	1	9	8	100	Р	S	0	1						
19	7	Р	1	9	9	100	Р	S	0	1						
19	8	Р	2	0	1	100	Р	s	0	1						
19	9	Р	2	0	2	100	Р	s	0	1						
2 0	0	Р	2	0	3	100	Р	S	0	1						
2 0	1	Р	2	0	4	100	Р	S	0	1						
2 0	2	Р	2	0	5	100	Р	S	0	1						
2 0	3	U	0	0	1	293	Р	S	0	1						
2 0	4	U	0	0	2	954	Р	S	0	1						
2 0	5	U	0	0	3	485	Р	s	0	1						
2 0	6	U	0	0	4	100	Р	s	0	1						
2 0	7	U	0	0	5	100	Р	S	0	1						
2 0	8	U	0	0	6	100	Р	s	0	1						
2 0	9	U	0	0	7	143	Р	s	0	1						
2 1	0	U	0	0	8	143	Р	S	0	1						
2 1	1	U	0	0	9	143	Р	s	0	1						
2 1	2	U	0	1	0	100	Р	s	0	1						
2 1	3	U	0	1	1	100	Р	s	0	1						
2 1	4	U	0	1	2	293	Р	s	0	1						
2 1	5	U	0	1	4	100	Р	S	0	1						
2 1	6	U	0	1	5	100	Р	s	0	1						

Line	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	: INO.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						Waste T	echnical Ar	ea (50 (COI	ntir	nue	d)			
2 1	7	U	0	1	6	100		S	0	1			Ĺ			
2 1	8	U	0	1	7	100	Р	s	0	1						
2 1	9	U	0	1	8	143	Р	S	0	1						
2 2	0	U	0	1	9	470	Р	S	0	1						
2 2	1	U	0	2	0	100	Р	S	0	1						
2 2	2	U	0	2	1	100	Р	S	0	1						
2 2	3	U	0	2	2	293	Р	S	0	1						
2 2	4	U	0	2	3	100	Р	S	0	1						
2 2	5	U	0	2	4	100	Р	S	0	1						
2 2	6	U	0	2	5	100	Р	S	0	1						
2 2	7	U	0	2	6	100	Р	S	0	1						
2 2	8	U	0	2	7	100	Р	S	0	1						
2 2	9	U	0	2	8	100	Р	S	0	1						
2 3	0	U	0	2	9	293	Р	S	0	1						
2 3	1	U	0	3	0	100	Р	S	0	1						
2 3	2	U	0	3	1	293	Р	S	0	1						
2 3	3	U	0	3	2	100	Р	S	0	1						
2 3	4	U	0	3	3	143	Р	S	0	1						
2 3	5	U	0	3	4	100	Р	S	0	1						
2 3	6	U	0	3	5	100	Р	S	0	1						
2 3	7	U	0	3	6	100	Р	S	0	1						
2 3	8	U	0	3	7	143	Р	S	0	1						
2 3	9	U	0	3	8	100	Р	S	0	1						
2 4	0	U	0	3	9	100	Р	S	0	1						
2 4	1	U	0	4	1	143	Р	S	0	1						
2 4	2	U	0	4	2	100	Р	S	0	1						
2 4	3	U	0	4	3	100	Р	S	0	1						
2 4	4	U	0	4	4	293	Р	S	0	1						
2 4	5	U	0	4	5	293	Р	S	0	1						
2 4	6	U	0	4	6	100	Р	S	0	1						
2 4	7	U	0	4	7	100	Р	S	0	1						
2 4	8	U	0	4	8	100	Р	S	0	1						
2 4	9	U	0	4	9	100	Р	s	0	1						
2 5	0	U	0	5	0	100	Р	S	0	1						
2 5	1	U	0	5	1	100	Р	S	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					(-/	, (5.5			 ocesses
2			Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	nue	d)			
2 5	2	U	0	5	2	293	Р	S	0	1						
2 5	3	U	0	5	3	100	Р	s	0	1						
2 5	4	U	0	5	5	143	Р	s	0	1						
2 5	5	U	0	5	6	293	Р	S	0	1						
2 5	6	U	0	5	7	293	Р	S	0	1						
2 5	7	U	0	5	8	100	Р	S	0	1						
2 5	8	U	0	5	9	100	Р	S	0	1						
2 5	9	U	0	6	0	100	Р	S	0	1						
2 6	0	U	0	6	1	100	Р	s	0	1						
2 6	1	U	0	6	2	100	Р	S	0	1						
2 6	2	U	0	6	3	100	Р	s	0	1						
2 6	3	U	0	6	4	100	Р	s	0	1						
2 6	4	U	0	6	6	100	Р	S	0	1						
2 6	5	U	0	6	7	143	Р	S	0	1						
2 6	6	U	0	6	8	143	Р	s	0	1						
2 6	7	U	0	6	9	100	Р	s	0	1						
2 6	8	U	0	7	0	165	Р	S	0	1						
2 6	9	U	0	7	1	100	Р	S	0	1						
2 7	0	U	0	7	2	100	Р	s	0	1						
2 7	1	U	0	7	3	100	Р	s	0	1						
2 7	2	U	0	7	4	100	Р	S	0	1						
2 7	3	U	0	7	5	381	Р	S	0	1						
2 7	4	U	0	7	6	100	Р	S	0	1						
2 7	5	U	0	7	7	293	Р	S	0	1						
2 7	6	U	0	7	8	100	Р	s	0	1						
2 7	7	U	0	7	9	100	Р	S	0	1						
2 7	8	U	0	8	0	4,129	Р	S	0	1	Т	0	4			
2 7	9	U	0	8	1	100	Р	s	0	1						
28	0	U	0	8	2	100	Р	S	0	1						
28	1	U	0	8	3	100	Р	s	0	1						
28	2	U	0	8	4	100	Р	S	0	1						
28	3	U	0	8	5	143	Р	s	0	1						
28	4	U	0	8	6	100	Р	s	0	1						
28	5	U	0	8	7	100	Р	s	0	1						
28	6	U	0	8	8	100	Р	s	0	1						
28	7	U	0	8	9	100	Р	s	0	1						

Line	No.		EPA H			B. Estimated	C. Unit of						•			ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	ue	d)			
28	8	U	0	9	0	100	Р	s	0	1						
28	9	U	0	9	1	518	Р	S	0	1						
2 9	0	U	0	9	2	143	Р	S	0	1						
2 9	1	U	0	9	3	100	Р	S	0	1						
2 9	2	U	0	9	4	100	Р	S	0	1						
2 9	3	U	0	9	5	100	Р	S	0	1						
2 9	4	U	0	9	6	100	Р	S	0	1						
2 9	5	U	0	9	7	100	Р	S	0	1						
2 9	6	U	0	9	8	100	Р	S	0	1						
2 9	7	U	0	9	9	100	Р	S	0	1						
2 9	8	U	1	0	1	100	Р	S	0	1						
2 9	9	U	1	0	2	100	Р	S	0	1						
3 0	0	U	1	0	3	143	Р	S	0	1						
3 0	1	U	1	0	5	100	Р	S	0	1						
3 0	2	U	1	0	6	100	Р	S	0	1						
3 0	3	U	1	0	7	100	Р	S	0	1						
3 0	4	U	1	0	8	293	Р	S	0	1						
3 0	5	U	1	0	9	143	Р	S	0	1						
3 0	6	U	1	1	0	100	Р	S	0	1						
3 0	7	U	1	1	1	100	Р	S	0	1						
3 0	8	U	1	1	2	293	Р	S	0	1						
3 0	9	U	1	1	3	100	Р	S	0	1						
3 1	0	U	1	1	4	100	Р	S	0	1						
3 1	1	U	1	1	5	293	Р	S	0	1						
3 1	2	U	1	1	6	100	Р	S	0	1						
3 1	3	U	1	1	7	293	Р	S	0	1						
3 1	4	U	1	1	8	100	Р	S	0	1						
3 1	5	U	1	1	9	100	Р	s	0	1						
3 1	6	U	1	2	0	100	Р	S	0	1						
3 1	7	U	1	2	1	293	Р	S	0	1						
3 1	8	U	1	2	2	778	Р	s	0	1						
3 1	9	U	1	2	3	293	Р	s	0	1						
3 2	0	U	1	2	4	143	Р	s	0	1						
3 2	1	U	1	2	5	100	Р	s	0	1						
3 2	2	U	1	2	6	100	Р	S	0	1						
3 2	3	U	1	2	7	100	Р	s	0	1						

			EPA H			B. Estimated	C. Unit of						•			ocesses
Line	No.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	ue	d)			
3 2	4	U	1	2	8	100	Р	S	0	1						
3 2	5	U	1	2	9	100	Р	s	0	1						
3 2	6	U	1	3	0	100	Р	s	0	1						
3 2	7	U	1	3	1	293	Р	s	0	1						
3 2	8	U	1	3	2	100	Р	s	0	1						
3 2	9	U	1	3	3	293	Р	s	0	1						
3 3	0	U	1	3	4	667	Р	s	0	1						
3 3	1	U	1	3	5	447	Р	s	0	1						
3 3	2	U	1	3	6	143	Р	S	0	1						
3 3	3	U	1	3	7	100	Р	s	0	1						
3 3	4	U	1	3	8	100	Р	s	0	1						
3 3	5	U	1	4	0	293	Р	s	0	1						
3 3	6	U	1	4	1	100	Р	S	0	1						
3 3	7	U	1	4	2	100	Р	s	0	1						
3 3	8	U	1	4	3	100	Р	s	0	1						
3 3	9	U	1	4	4	293	Р	S	0	1						
3 4	0	U	1	4	5	293	Р	S	0	1						
3 4	1	U	1	4	6	100	Р	S	0	1						
3 4	2	U	1	4	7	100	Р	S	0	1						
3 4	3	U	1	4	8	100	Р	S	0	1						
3 4	4	U	1	4	9	100	Р	S	0	1						
3 4	5	U	1	5	0	100	Р	S	0	1						
3 4	6	U	1	5	1	884	Р	S	0	1						
3 4	7	U	1	5	2	100	Р	S	0	1						
3 4	8	U	1	5	3	143	Р	S	0	1						
3 4	9	U	1	5	4	359	Р	S	0	1						
3 5	0	U	1	5	5	100	Р	S	0	1						
3 5	1	U	1	5	6	100	Р	S	0	1						
3 5	2	U	1	5	7	100	Р	S	0	1						
3 5	3	U	1	5	8	100	Р	S	0	1						
3 5	4	U	1	5	9	315	Р	s	0	1						
3 5	5	U	1	6	0	293	Р	s	0	1						
3 5	6	U	1	6	1	470	Р	S	0	1						
3 5	7	U	1	6	2	143	Р	S	0	1						
3 5	8	U	1	6	3	143	Р	s	0	1						
3 5	9	U	1	6	4	100	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					(-)				ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea :	50 (COI	ntir	iue	d)			
3 6	0	U	1	6	5	293	Р	S	0	1						
3 6	1	U	1	6	6	100	Р	S	0	1						
3 6	2	U	1	6	7	143	Р	s	0	1						
3 6	3	U	1	6	8	143	Р	s	0	1						
3 6	4	U	1	6	9	293	Р	S	0	1						
3 6	5	U	1	7	0	143	Р	s	0	1						
3 6	6	U	1	7	1	100	Р	s	0	1						
3 6	7	U	1	7	2	100	Р	s	0	1						
3 6	8	U	1	7	3	100	Р	S	0	1						
3 6	9	U	1	7	4	100	Р	S	0	1						
3 7	0	U	1	7	6	100	Р	S	0	1						
3 7	1	U	1	7	7	100	Р	S	0	1						
3 7	2	U	1	7	8	100	Р	S	0	1						
3 7	3	U	1	7	9	100	Р	S	0	1						
3 7	4	U	1	8	0	100	Р	S	0	1						
3 7	5	U	1	8	1	100	Р	S	0	1						
3 7	6	U	1	8	2	100	Р	S	0	1						
3 7	7	U	1	8	3	100	Р	S	0	1						
3 7	8	U	1	8	4	100	Р	S	0	1						
3 7	9	U	1	8	5	100	Р	S	0	1						
3 8	0	U	1	8	6	100	Р	S	0	1						
3 8	1	U	1	8	7	100	Р	S	0	1						
3 8	2	U	1	8	8	293	Р	s	0	1						
3 8	3	U	1	8	9	100	Р	S	0	1						
3 8	4	U	1	9	0	293	Р	s	0	1						
3 8	5	U	1	9	1	100	Р	s	0	1						
3 8	6	U	1	9	2	100	Р	s	0	1						
3 8	7	U	1	9	3	100	Р	S	0	1						
3 8	8	U	1	9	4	100	Р	S	0	1						
3 8	9	U	1	9	6	293	Р	s	0	1						
3 9	0	U	1	9	7	100	Р	s	0	1						
3 9	1	U	2	0	0	100	Р	s	0	1						
3 9	2	U	2	0	1	100	Р	s	0	1						
3 9	3	U	2	0	2	100	Р	s	0	1						
3 9	4	U	2	0	3	100	Р	S	0	1						
3 9	5	U	2	0	4	293	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	nue	d)			
3 9	6	U	2	0	5	100	Р	S	0	1						
3 9	7	U	2	0	6	100	Р	s	0	1						
3 9	8	U	2	0	7	100	Р	s	0	1						
3 9	9	U	2	0	8	100	Р	s	0	1						
4 0	0	U	2	0	9	100	Р	s	0	1						
4 0	1	U	2	1	0	513	Р	s	0	1						
4 0	2	U	2	1	1	359	Р	s	0	1						
4 0	3	U	2	1	3	293	Р	s	0	1						
4 0	4	U	2	1	4	100	Р	S	0	1						
4 0	5	U	2	1	5	100	Р	S	0	1						
4 0	6	U	2	1	6	293	Р	s	0	1						
4 0	7	U	2	1	7	100	Р	S	0	1						
4 0	8	U	2	1	8	293	Р	S	0	1						
4 0	9	U	2	1	9	293	Р	s	0	1						
4 1	0	U	2	2	0	491	Р	s	0	1						
4 1	1	U	2	2	1	100	Р	s	0	1						
4 1	2	U	2	2	2	100	Р	s	0	1						
4 1	3	U	2	2	3	143	Р	s	0	1						
4 1	4	U	2	2	5	293	Р	s	0	1						
4 1	5	U	2	2	6	6,594	Р	S	0	1						
4 1	6	U	2	2	7	293	Р	S	0	1						
4 1	7	U	2	2	8	1,219	Р	S	0	1						
4 1	8	U	2	3	4	100	Р	s	0	1						
4 1	9	U	2	3	5	100	Р	S	0	1						
4 2	0	U	2	3	6	100	Р	S	0	1						
4 2	1	U	2	3	7	100	Р	S	0	1						
4 2	2	U	2	3	8	100	Р	s	0	1						
4 2	3	U	2	3	9	646	Р	S	0	1						
4 2	4	U	2	4	0	143	Р	s	0	1						
4 2	5	U	2	4	3	100	Р	s	0	1						
4 2	6	U	2	4	4	100	Р	S	0	1						
4 2	7	U	2	4	6	231	Р	s	0	1						
4 2	8	U	2	4	7	100	Р	s	0	1						
4 2	9	U	2	4	8	100	Р	s	0	1						
4 3	0	U	2	4	9	100	Р	S	0	1						
4 3	1	U	2	7	1	100	Р	s	0	1						

		A.	ЕРА Н	azard	ous	B. Estimated	C. Unit of								D	. Pr	ocesses
Line	No.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s		(2) Process Description (if code is not entered in 7.D1))
						Т	echnical Ar	ea (50 (CO	ntir	nue	d)				
4 3	2	U	2	7	8	100	Р	S	0	1							
4 3	3	U	2	7	9	100	Р	S	0	1							
4 3	4	U	2	8	0	100	Р	S	0	1							
4 3	5	U	3	2	8	100	Р	s	0	1							
4 3	6	U	3	5	3	100	Р	S	0	1							
4 3	7	U	3	5	9	100	Р	s	0	1							
4 3	8	U	3	6	4	100	Р	s	0	1							
4 3	9	U	3	6	7	100	Р	s	0	1							
4 4	0	U	3	7	2	100	Р	S	0	1							
4 4	1	U	3	7	3	100	Р	s	0	1							
4 4	2	U	3	8	7	100	Р	s	0	1							
4 4	3	U	3	8	9	100	Р	s	0	1							
4 4	4	U	3	9	4	100	Р	S	0	1							
4 4	5	U	3	9	5	100	Р	S	0	1							
4 4	6	U	4	0	4	100	Р	S	0	1							
4 4	7	U	4	0	9	100	Р	S	0	1							
4 4	8	U	4	1	0	100	Р	S	0	1							
4 4	9	U	4	1	1	100	Р	S	0	1							

Line	e No.		ЕРА Н			B. Estimated	C. Unit of										ocesses
LIII	: NO.	,	Waste	No.		Annual Qty of	Measure				(1)	Proc	ess	Code	es		(2) Process Description (if code is not entered in 7.D1))
						Waste	Technical A	L ∆re	a 5	4 4	\rea	— а I					, , , , , , , , , , , , , , , , , , , ,
	1	D	0	0	1	220,000	Р	S	0	1							
	2	D	0	0	2	365,000	Р	S	0	1							
	3	D	0	0	3	100,000	Р	s	0	1							
	4	D	0	0	4	25,000	Р	s	0	1	Т	0	4				
	5	D	0	0	5	80,000	Р	s	0	1	Т	0	4				
	6	D	0	0	6	65,000	Р	s	0	1	Т	0	4				
	7	D	0	0	7	75,000	Р	S	0	1	Т	0	4				
	8	D	0	0	8	800,000	Р	S	0	1	Т	0	4	S	9	9	
	9	D	0	0	9	65,000	Р	S	0	1	Т	0	4				
1	0	D	0	1	0	30,000	Р	s	0	1	Т	0	4				
1	1	D	0	1	1	40,000	Р	S	0	1	Т	0	4				
1	2	D	0	1	2	12,000	Р	s	0	1							
1	3	D	0	1	3	4,000	Р	S	0	1							
1	4	D	0	1	4	4,000	Р	S	0	1							
1	5	D	0	1	5	7,000	Р	S	0	1							
1	6	D	0	1	6	4,000	Р	S	0	1							
1	7	D	0	1	7	4,000	Р	S	0	1							
1	8	D	0	1	8	20,000	Р	s	0	1	Т	0	4				
1	9	D	0	1	9	20,000	Р	s	0	1	Т	0	4				
2	0	D	0	2	0	30,000	Р	S	0	1	Т	0	4				
2	1	D	0	2	1	10,000	Р	S	0	1	Т	0	4				
2	2	D	0	2	2	23,000	Р	S	0	1	Т	0	4				
2	3	D	0	2	3	4,000	Р	S	0	1	Т	0	4				
2	4	D	0	2	4	4,000	Р	S	0	1	Т	0	4				
2	5	D	0	2	5	4,000	Р	s	0	1	Т	0	4				
2	6	D	0	2	6	4,000	Р	s	0	1	Т	0	4				
2	7	D	0	2	7	12,000	Р	s	0	1	Т	0	4				
2	8	D	0	2	8	30,000	Р	s	0	1	Т	0	4				
2	9	D	0	2	9	7,000	Р	s	0	1	Т	0	4				
3	0	D	0	3	0	20,000	Р	S	0	1	Т	0	4				
3	1	D	0	3	1	12,000	Р	s	0	1	Т	0	4				
3	2	D	0	3	2	19,000	Р	s	0	1	Т	0	4				
3	3	D	0	3	3	19,000	Р	s	0	1	Т	0	4				
3	4	D	0	3	4	19,000	Р	s	0	1	Т	0	4				
3	5	D	0	3	5	20,000	Р	s	0	1	Т	0	4				
3	6	D	0	3	6	9,000	Р	S	0	1	Т	0	4				

Line	e No.		ЕРА Н			B. Estimated	C. Unit of					. , ,				 ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4. /	\rea	a L	(cc	nti	nue	ed)		
3	7	D	0	3	7	7,000	Р	s	0	1	Т	0	4			
3	8	D	0	3	8	4,000	Р	S	0	1	Т	0	4			
3	9	D	0	3	9	10,000	Р	s	0	1	Т	0	4			
4	0	D	0	4	0	15,000	Р	S	0	1	Т	0	4			
4	1	D	0	4	1	7,000	Р	s	0	1	Т	0	4			
4	2	D	0	4	2	12,000	Р	S	0	1	Т	0	4			
4	3	D	0	4	3	15,000	Р	S	0	1	Т	0	4			
4	4	F	0	0	1	660,000	Р	S	0	1	Т	0	4			
4	5	F	0	0	2	350,000	Р	S	0	1	Т	0	4			
4	6	F	0	0	3	250,000	Р	s	0	1						
4	7	F	0	0	4	30,000	Р	S	0	1	Т	0	4			
4	8	F	0	0	5	250,000	Р	s	0	1						
4	9	F	0	0	6	7,000	Р	S	0	1						
5	0	F	0	0	7	28,000	Р	S	0	1						
5	1	F	0	0	8	7,000	Р	s	0	1						
5	2	F	0	0	9	8,000	Р	S	0	1						
5	3	F	0	1	0	4,000	Р	S	0	1						
5	4	F	0	1	1	4,000	Р	s	0	1						
5	5	F	0	1	2	4,000	Р	s	0	1						
5	6	F	0	1	9	500	Р	S	0	1						
5	7	F	0	2	0	500	Р	S	0	1						
5	8	F	0	2	1	500	Р	S	0	1						
5	9	F	0	2	2	500	Р	S	0	1						
6	0	F	0	2	3	500	Р	S	0	1						
6	1	F	0	2	4	500	Р	S	0	1						
6	2	F	0	2	5	500	Р	S	0	1						
6	3	F	0	2	6	500	Р	S	0	1						
6	4	F	0	2	7	4,000	Р	s	0	1						
6	5	F	0	2	8	4,000	Р	S	0	1						
6	6	F	0	3	2	500	Р	S	0	1						
6	7	F	0	3	4	500	Р	s	0	1						
6	8	F	0	3	5	500	Р	s	0	1						
6	9	F	0	3	7	500	Р	s	0	1						
7	0	F	0	3	8	500	Р	s	0	1						
7	1	F	0	3	9	4,000	Р	S	0	1						
7	2	K	0	4	4	22,000	Р	S	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, 4	۱re	a L	(cc	nti	nu	ed)		
7	3	K	0	4	5	4,000	Р	S	0	1	Ì					
7	4	K	0	4	6	4,000	Р	S	0	1						
7	5	K	0	4	7	4,000	Р	s	0	1						
7	6	K	0	8	4	500	Р	S	0	1						
7	7	K	1	0	1	500	Р	S	0	1						
7	8	K	1	0	2	500	Р	S	0	1						
7	9	Р	0	0	1	4,000	Р	S	0	1						
8	0	Р	0	0	2	4,000	Р	S	0	1						
8	1	Р	0	0	3	4,000	Р	S	0	1						
8	2	Р	0	0	4	4,000	Р	S	0	1						
8	3	Р	0	0	5	4,000	Р	S	0	1						
8	4	Р	0	0	6	4,000	Р	S	0	1						
8	5	Р	0	0	7	4,000	Р	S	0	1						
8	6	Р	0	0	8	4,000	Р	s	0	1						
8	7	Р	0	0	9	4,000	Р	s	0	1						
8	8	Р	0	1	0	4,000	Р	s	0	1						
8	9	Р	0	1	1	4,000	Р	S	0	1						
9	0	Р	0	1	2	4,000	Р	s	0	1						
9	1	Р	0	1	3	4,000	Р	s	0	1						
9	2	Р	0	1	4	4,000	Р	S	0	1						
9	3	Р	0	1	5	4,000	Р	S	0	1						
9	4	Р	0	1	6	4,000	Р	S	0	1						
9	5	Р	0	1	7	4,000	Р	S	0	1						
9	6	Р	0	1	8	4,000	Р	S	0	1						
9	7	Р	0	2	0	4,000	Р	S	0	1						
9	8	Р	0	2	1	4,000	Р	S	0	1						
9	9	Р	0	2	2	4,000	Р	S	0	1						
1 0	0	Р	0	2	3	4,000	Р	s	0	1						
1 0	1	Р	0	2	4	4,000	Р	S	0	1						
1 0	2	Р	0	2	6	4,000	Р	S	0	1						
1 0	3	Р	0	2	7	4,000	Р	s	0	1						
1 0	4	Р	0	2	8	4,000	Р	s	0	1						
1 0	5	Р	0	2	9	4,000	Р	s	0	1						
1 0	6	Р	0	3	0	4,000	Р	s	0	1						
1 0	7	Р	0	3	1	4,000	Р	S	0	1						
1 0	8	Р	0	3	3	4,000	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						Waste Tech	nical Area 5	4. <i>F</i>	\rea	a L	(cc	nti	nu	ed)		
1 0	9	Р	0	3	4	4,000	Р	S	0	1						
11	0	Р	0	3	6	4,000	Р	S	0	1						
11	1	Р	0	3	7	4,000	Р	S	0	1						
11	2	Р	0	3	8	4,000	Р	s	0	1						
11	3	Р	0	3	9	4,000	Р	S	0	1						
11	4	Р	0	4	0	4,000	Р	s	0	1						
11	5	Р	0	4	1	4,000	Р	s	0	1						
11	6	Р	0	4	2	4,000	Р	s	0	1						
11	7	Р	0	4	3	4,000	Р	S	0	1						
11	8	Р	0	4	4	4,000	Р	S	0	1						
11	9	Р	0	4	5	4,000	Р	S	0	1						
1 2	0	Р	0	4	6	4,000	Р	S	0	1						
1 2	1	Р	0	4	7	4,000	Р	S	0	1						
1 2	2	Р	0	4	8	4,000	Р	S	0	1						
1 2	3	Р	0	4	9	4,000	Р	S	0	1						
1 2	4	Р	0	5	0	4,000	Р	S	0	1						
1 2	5	Р	0	5	1	4,000	Р	S	0	1						
1 2	6	Р	0	5	4	4,000	Р	S	0	1						
1 2	7	Р	0	5	6	4,000	Р	S	0	1						
1 2	8	Р	0	5	7	4,000	Р	S	0	1						
1 2	9	Р	0	5	8	4,000	Р	S	0	1						
1 3	0	Р	0	5	9	4,000	Р	s	0	1						
1 3	1	Р	0	6	0	4,000	Р	S	0	1						
1 3	2	Р	0	6	2	4,000	Р	S	0	1						
1 3	3	Р	0	6	3	4,000	Р	S	0	1						
1 3	4	Р	0	6	4	4,000	Р	S	0	1						
1 3	5	Р	0	6	5	4,000	Р	S	0	1						
1 3	6	Р	0	6	6	4,000	Р	S	0	1						
1 3	7	Р	0	6	7	4,000	Р	S	0	1						
1 3	8	Р	0	6	8	4,000	Р	S	0	1						
1 3	9	Р	0	6	9	4,000	Р	s	0	1						
1 4	0	Р	0	7	0	4,000	Р	s	0	1						
1 4	1	Р	0	7	1	4,000	Р	s	0	1						
1 4	2	Р	0	7	2	4,000	Р	s	0	1						
1 4	3	Р	0	7	3	4,000	Р	S	0	1						
1 4	4	Р	0	7	4	4,000	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4. <i>F</i>	rea	a L	(cc	nti	nu	ed)		
1 4	5	Р	0	7	5	4,000	Р	s	0	1						
1 4	6	Р	0	7	6	4,000	Р	S	0	1						
14	7	Р	0	7	7	4,000	Р	S	0	1						
14	8	Р	0	7	8	4,000	Р	s	0	1						
14	9	Р	0	8	1	4,000	Р	S	0	1						
1 5	0	Р	0	8	2	4,000	Р	S	0	1						
1 5	1	Р	0	8	4	4,000	Р	S	0	1						
1 5	2	Р	0	8	5	4,000	Р	S	0	1						
1 5	3	Р	0	8	7	4,000	Р	S	0	1						
1 5	4	Р	0	8	8	4,000	Р	S	0	1						
1 5	5	Р	0	8	9	4,000	Р	s	0	1						
1 5	6	Р	0	9	2	4,000	Р	s	0	1						
1 5	7	Р	0	9	3	4,000	Р	S	0	1						
1 5	8	Р	0	9	4	4,000	Р	s	0	1						
1 5	9	Р	0	9	5	4,000	Р	s	0	1						
1 6	0	Р	0	9	6	4,000	Р	S	0	1						
1 6	1	Р	0	9	7	4,000	Р	S	0	1						
1 6	2	Р	0	9	8	4,000	Р	s	0	1						
1 6	3	Р	0	9	9	4,000	Р	s	0	1						
1 6	4	Р	1	0	1	4,000	Р	S	0	1						
1 6	5	Р	1	0	2	4,000	Р	S	0	1						
1 6	6	Р	1	0	3	4,000	Р	S	0	1						
1 6	7	Р	1	0	4	4,000	Р	S	0	1						
1 6	8	Р	1	0	5	4,000	Р	S	0	1						
1 6	9	Р	1	0	6	4,000	Р	s	0	1						
17	0	Р	1	0	8	4,000	Р	s	0	1						
17	1	Р	1	0	9	4,000	Р	s	0	1						
17	2	Р	1	1	0	4,000	Р	s	0	1						
17	3	Р	1	1	1	4,000	Р	S	0	1						
17	4	Р	1	1	2	4,000	Р	S	0	1						
17	5	Р	1	1	3	4,000	Р	S	0	1						
17	6	Р	1	1	4	4,000	Р	S	0	1						
17	7	Р	1	1	5	4,000	Р	S	0	1						
17	8	Р	1	1	6	4,000	Р	S	0	1						
17	9	Р	1	1	8	4,000	Р	S	0	1						
18	0	Р	1	1	9	4,000	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	ivo.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, <i>F</i>	\rea	a L	(cc	nti	nu	ed)		
18	1	Р	1	2	0	4,000	Р	S	0	1	Ì			Ĺ		
18	2	Р	1	2	1	4,000	Р	S	0	1						
18	3	Р	1	2	2	4,000	Р	s	0	1						
18	4	Р	1	2	3	4,000	Р	s	0	1						
18	5	Р	1	2	7	4,000	Р	S	0	1						
18	6	Р	1	2	8	4,000	Р	S	0	1						
18	7	Р	1	8	5	4,000	Р	S	0	1						
18	8	Р	1	8	8	4,000	Р	S	0	1						
18	9	Р	1	8	9	4,000	Р	s	0	1						
19	0	Р	1	9	0	4,000	Р	S	0	1						
19	1	Р	1	9	1	4,000	Р	S	0	1						
19	2	Р	1	9	2	4,000	Р	s	0	1						
19	3	Р	1	9	4	4,000	Р	S	0	1						
19	4	Р	1	9	6	4,000	Р	s	0	1						
19	5	Р	1	9	7	4,000	Р	s	0	1						
19	6	Р	1	9	8	4,000	Р	S	0	1						
19	7	Р	1	9	9	4,000	Р	S	0	1						
19	8	Р	2	0	1	4,000	Р	S	0	1						
19	9	Р	2	0	2	4,000	Р	S	0	1						
2 0	0	Р	2	0	3	4,000	Р	S	0	1						
2 0	1	Р	2	0	4	4,000	Р	S	0	1						
2 0	2	Р	2	0	5	4,000	Р	S	0	1						
2 0	3	U	0	0	1	4,000	Р	S	0	1						
2 0	4	U	0	0	2	4,000	Р	S	0	1						
2 0	5	U	0	0	3	4,000	Р	S	0	1						
2 0	6	U	0	0	4	4,000	Р	S	0	1						
2 0	7	U	0	0	5	4,000	Р	s	0	1						
2 0	8	U	0	0	6	4,000	Р	S	0	1						
2 0	9	U	0	0	7	4,000	Р	S	0	1						
2 1	0	U	0	0	8	4,000	Р	S	0	1						
2 1	1	U	0	0	9	4,000	Р	s	0	1						
2 1	2	U	0	1	0	4,000	Р	s	0	1						
2 1	3	U	0	1	1	4,000	Р	s	0	1						
2 1	4	U	0	1	2	4,000	Р	s	0	1						
2 1	5	U	0	1	4	4,000	Р	S	0	1						
2 1	6	U	0	1	5	4,000	Р	S	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, /	\rea	a L	(cc	nti	nu	ed)		
2 1	7	U	0	1	6	4,000	Р	S	0	1	Ì					
2 1	8	U	0	1	7	4,000	Р	S	0	1						
2 1	9	U	0	1	8	4,000	Р	s	0	1						
2 2	0	U	0	1	9	4,000	Р	s	0	1						
2 2	1	U	0	2	0	4,000	Р	S	0	1						
2 2	2	U	0	2	1	4,000	Р	S	0	1						
2 2	3	U	0	2	2	4,000	Р	S	0	1						
2 2	4	U	0	2	3	4,000	Р	S	0	1						
2 2	5	U	0	2	4	4,000	Р	S	0	1						
2 2	6	U	0	2	5	4,000	Р	s	0	1						
2 2	7	U	0	2	6	4,000	Р	s	0	1						
2 2	8	U	0	2	7	4,000	Р	s	0	1						
2 2	9	U	0	2	8	4,000	Р	S	0	1						
2 3	0	U	0	2	9	4,000	Р	S	0	1						
2 3	1	U	0	3	0	4,000	Р	S	0	1						
2 3	2	U	0	3	1	4,000	Р	S	0	1						
2 3	3	U	0	3	2	4,000	Р	S	0	1						
2 3	4	U	0	3	3	4,000	Р	S	0	1						
2 3	5	U	0	3	4	4,000	Р	S	0	1						
2 3	6	U	0	3	5	4,000	Р	S	0	1						
2 3	7	U	0	3	6	4,000	Р	S	0	1						
2 3	8	U	0	3	7	4,000	Р	S	0	1						
2 3	9	U	0	3	8	4,000	Р	s	0	1						
2 4	0	U	0	3	9	4,000	Р	S	0	1						
2 4	1	U	0	4	1	4,000	Р	s	0	1						
2 4	2	U	0	4	2	4,000	Р	s	0	1						
2 4	3	U	0	4	3	4,000	Р	s	0	1						
2 4	4	U	0	4	4	4,000	Р	S	0	1						
2 4	5	U	0	4	5	4,000	Р	s	0	1						
2 4	6	U	0	4	6	4,000	Р	s	0	1						
2 4	7	U	0	4	7	4,000	Р	S	0	1						
2 4	8	U	0	4	8	4,000	Р	S	0	1						
2 4	9	U	0	4	9	4,000	Р	s	0	1						
2 5	0	U	0	5	0	4,000	Р	s	0	1						
2 5	1	U	0	5	1	4,000	Р	S	0	1						
2 5	2	U	0	5	2	4,000	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	ivo.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, <i>F</i>	rea	a L	(cc	nti	nue	ed)		
2 5	3	U	0	5	3	4,000	Р	S	0	1	Ì					
2 5	4	U	0	5	5	4,000	Р	S	0	1						
2 5	5	U	0	5	6	4,000	Р	s	0	1						
2 5	6	U	0	5	7	4,000	Р	S	0	1						
2 5	7	U	0	5	8	4,000	Р	S	0	1						
2 5	8	U	0	5	9	4,000	Р	S	0	1						
2 5	9	U	0	6	0	4,000	Р	S	0	1						
2 6	0	U	0	6	1	4,000	Р	S	0	1						
2 6	1	U	0	6	2	4,000	Р	S	0	1						
2 6	2	U	0	6	3	4,000	Р	s	0	1						
2 6	3	U	0	6	4	4,000	Р	s	0	1						
2 6	4	U	0	6	6	4,000	Р	s	0	1						
2 6	5	U	0	6	7	4,000	Р	S	0	1						
2 6	6	U	0	6	8	4,000	Р	S	0	1						
2 6	7	U	0	6	9	4,000	Р	S	0	1						
2 6	8	U	0	7	0	4,000	Р	S	0	1						
2 6	9	U	0	7	1	4,000	Р	S	0	1						
2 7	0	U	0	7	2	4,000	Р	S	0	1						
2 7	1	U	0	7	3	4,000	Р	S	0	1						
2 7	2	U	0	7	4	4,000	Р	S	0	1						
2 7	3	U	0	7	5	4,000	Р	S	0	1						
2 7	4	U	0	7	6	4,000	Р	S	0	1						
2 7	5	U	0	7	7	4,000	Р	S	0	1						
2 7	6	U	0	7	8	4,000	Р	S	0	1						
2 7	7	U	0	7	9	4,000	Р	s	0	1						
2 7	8	U	0	8	0	4,000	Р	s	0	1						
2 7	9	U	0	8	1	4,000	Р	s	0	1						
28	0	U	0	8	2	4,000	Р	s	0	1						
28	1	U	0	8	3	4,000	Р	S	0	1						
28	2	U	0	8	4	4,000	Р	S	0	1						
28	3	U	0	8	5	4,000	Р	S	0	1						
28	4	U	0	8	6	4,000	Р	S	0	1						
28	5	U	0	8	7	4,000	Р	S	0	1						
28	6	U	0	8	8	4,000	Р	S	0	1						
28	7	U	0	8	9	4,000	Р	S	0	1						
28	8	U	0	9	0	4,000	Р	S	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	ivo.		Waste	No.		Annual Qty of	Measure				(1)	Prod	cess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						Waste Tech	nical Area 5	4, /	\rea	a L	(cc	nti	nu	ed)		
28	9	U	0	9	1	4,000	Р	S	0	1						
2 9	0	U	0	9	2	4,000	Р	s	0	1						
2 9	1	U	0	9	3	4,000	Р	S	0	1						
2 9	2	U	0	9	4	4,000	Р	s	0	1						
2 9	3	U	0	9	5	4,000	Р	S	0	1						
2 9	4	U	0	9	6	4,000	Р	S	0	1						
2 9	5	U	0	9	7	4,000	Р	S	0	1						
2 9	6	U	0	9	8	4,000	Р	S	0	1						
2 9	7	U	0	9	9	4,000	Р	s	0	1						
2 9	8	U	1	0	1	4,000	Р	s	0	1						
2 9	9	U	1	0	2	4,000	Р	s	0	1						
3 0	0	U	1	0	3	4,000	Р	s	0	1						
3 0	1	U	1	0	5	4,000	Р	S	0	1						
3 0	2	U	1	0	6	4,000	Р	S	0	1						
3 0	3	U	1	0	7	4,000	Р	S	0	1						
3 0	4	U	1	0	8	4,000	Р	S	0	1						
3 0	5	U	1	0	9	4,000	Р	S	0	1						
3 0	6	U	1	1	0	4,000	Р	S	0	1						
3 0	7	U	1	1	1	4,000	Р	S	0	1						
3 0	8	U	1	1	2	4,000	Р	S	0	1						
3 0	9	U	1	1	3	4,000	Р	S	0	1						
3 1	0	U	1	1	4	4,000	Р	s	0	1						
3 1	1	U	1	1	5	4,000	Р	S	0	1						
3 1	2	U	1	1	6	4,000	Р	S	0	1						
3 1	3	U	1	1	7	4,000	Р	S	0	1						
3 1	4	U	1	1	8	4,000	Р	S	0	1						
3 1	5	U	1	1	9	4,000	Р	S	0	1						
3 1	6	U	1	2	0	4,000	Р	S	0	1						
3 1	7	U	1	2	1	4,000	Р	S	0	1						
3 1	8	U	1	2	2	4,000	Р	S	0	1						
3 1	9	U	1	2	3	4,000	Р	S	0	1						
3 2	0	U	1	2	4	4,000	Р	S	0	1						
3 2	1	U	1	2	5	4,000	Р	s	0	1						
3 2	2	U	1	2	6	4,000	Р	s	0	1						
3 2	3	U	1	2	7	4,000	Р	s	0	1						
3 2	4	U	1	2	8	4,000	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4. <i>F</i>	\rea	a L	(cc	nti	nu	ed)		
3 2	5	U	1	2	9	4,000	Р	S	0	1						
3 2	6	U	1	3	0	4,000	Р	s	0	1						
3 2	7	U	1	3	1	4,000	Р	s	0	1						
3 2	8	U	1	3	2	4,000	Р	s	0	1						
3 2	9	U	1	3	3	4,000	Р	S	0	1						
3 3	0	U	1	3	4	4,000	Р	S	0	1						
3 3	1	U	1	3	5	4,000	Р	S	0	1						
3 3	2	U	1	3	6	4,000	Р	S	0	1						
3 3	3	U	1	3	7	4,000	Р	s	0	1						
3 3	4	U	1	3	8	4,000	Р	S	0	1						
3 3	5	U	1	4	0	4,000	Р	s	0	1						
3 3	6	U	1	4	1	4,000	Р	s	0	1						
3 3	7	U	1	4	2	4,000	Р	S	0	1						
3 3	8	U	1	4	3	4,000	Р	s	0	1						
3 3	9	U	1	4	4	4,000	Р	s	0	1						
3 4	0	U	1	4	5	4,000	Р	S	0	1						
3 4	1	U	1	4	6	4,000	Р	S	0	1						
3 4	2	U	1	4	7	4,000	Р	S	0	1						
3 4	3	U	1	4	8	4,000	Р	S	0	1						
3 4	4	U	1	4	9	4,000	Р	S	0	1						
3 4	5	U	1	5	0	4,000	Р	S	0	1						
3 4	6	U	1	5	1	4,000	Р	S	0	1						
3 4	7	U	1	5	2	4,000	Р	S	0	1						
3 4	8	U	1	5	3	4,000	Р	S	0	1						
3 4	9	U	1	5	4	4,000	Р	S	0	1						
3 5	0	U	1	5	5	4,000	Р	S	0	1						
3 5	1	U	1	5	6	4,000	Р	S	0	1						
3 5	2	U	1	5	7	4,000	Р	S	0	1						
3 5	3	U	1	5	8	4,000	Р	S	0	1						
3 5	4	U	1	5	9	4,000	Р	S	0	1						
3 5	5	U	1	6	0	4,000	Р	s	0	1						
3 5	6	U	1	6	1	4,000	Р	s	0	1						
3 5	7	U	1	6	2	4,000	Р	S	0	1						
3 5	8	U	1	6	3	4,000	Р	S	0	1						
3 5	9	U	1	6	4	4,000	Р	s	0	1						
3 6	0	U	1	6	5	4,000	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	ivo.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, /	\rea	a L	(cc	nti	nu	ed)		
3 6	1	U	1	6	6	4,000	Р	S	0	1	Ì					
3 6	2	U	1	6	7	4,000	Р	S	0	1						
3 6	3	U	1	6	8	4,000	Р	s	0	1						
3 6	4	U	1	6	9	4,000	Р	s	0	1						
3 6	5	U	1	7	0	4,000	Р	S	0	1						
3 6	6	U	1	7	1	4,000	Р	S	0	1						
3 6	7	U	1	7	2	4,000	Р	S	0	1						
3 6	8	U	1	7	3	4,000	Р	S	0	1						
3 6	9	U	1	7	4	4,000	Р	S	0	1						
3 7	0	U	1	7	6	4,000	Р	s	0	1						
3 7	1	U	1	7	7	4,000	Р	s	0	1						
3 7	2	U	1	7	8	4,000	Р	s	0	1						
3 7	3	U	1	7	9	4,000	Р	S	0	1						
3 7	4	U	1	8	0	4,000	Р	S	0	1						
3 7	5	U	1	8	1	4,000	Р	S	0	1						
3 7	6	U	1	8	2	4,000	Р	S	0	1						
3 7	7	U	1	8	3	4,000	Р	S	0	1						
3 7	8	U	1	8	4	4,000	Р	S	0	1						
3 7	9	U	1	8	5	4,000	Р	S	0	1						
3 8	0	U	1	8	6	4,000	Р	S	0	1						
3 8	1	U	1	8	7	4,000	Р	S	0	1						
3 8	2	U	1	8	8	4,000	Р	S	0	1						
3 8	3	U	1	8	9	4,000	Р	s	0	1						
3 8	4	U	1	9	0	4,000	Р	S	0	1						
3 8	5	U	1	9	1	4,000	Р	s	0	1						
3 8	6	U	1	9	2	4,000	Р	s	0	1						
3 8	7	U	1	9	3	4,000	Р	s	0	1						
3 8	8	U	1	9	4	4,000	Р	s	0	1						
3 8	9	U	1	9	6	4,000	Р	s	0	1						
3 9	0	U	1	9	7	4,000	Р	s	0	1						
3 9	1	U	2	0	0	4,000	Р	S	0	1						
3 9	2	U	2	0	1	4,000	Р	S	0	1						
3 9	3	U	2	0	2	4,000	Р	S	0	1						
3 9	4	U	2	0	3	4,000	Р	S	0	1						
3 9	5	U	2	0	4	4,000	Р	s	0	1						
3 9	6	U	2	0	5	4,000	Р	s	0	1						

7. Description of Hazardous Wastes (Enter codes for Items 7.A, 7.C and 7.D(1)) (continued)

	No.		ЕРА Н			B. Estimated	C. Unit of					(-)				ocesses
Line			Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, /	۱re	a L	(cc	nti	nue	ed)		
3 9	7	U	2	0	6	4,000	Р	s	0	1						
3 9	8	U	2	0	7	4,000	Р	S	0	1						
3 9	9	U	2	0	8	4,000	Р	S	0	1						
4 0	0	U	2	0	9	4,000	Р	s	0	1						
4 0	1	U	2	1	0	4,000	Р	s	0	1						
4 0	2	U	2	1	1	4,000	Р	s	0	1						
4 0	3	U	2	1	3	4,000	Р	s	0	1						
4 0	4	U	2	1	4	4,000	Р	s	0	1						
4 0	5	U	2	1	5	4,000	Р	S	0	1						
4 0	6	U	2	1	6	4,000	Р	s	0	1						
4 0	7	U	2	1	7	4,000	Р	S	0	1						
4 0	8	U	2	1	8	4,000	Р	S	0	1						
4 0	9	U	2	1	9	4,000	Р	s	0	1						
4 1	0	U	2	2	0	7,000	Р	S	0	1						
4 1	1	U	2	2	1	4,000	Р	S	0	1						
4 1	2	U	2	2	2	4,000	Р	s	0	1						
4 1	3	U	2	2	3	4,000	Р	S	0	1						
4 1	4	U	2	2	5	4,000	Р	S	0	1						
41	5	U	2	2	6	7,000	Р	s	0	1						
4 1	6	U	2	2	7	4,000	Р	S	0	1						
41	7	U	2	2	8	7,000	Р	S	0	1						
4 1	8	U	2	3	4	4,000	Р	S	0	1						
4 1	9	U	2	3	5	4,000	Р	S	0	1						
4 2	0	U	2	3	6	4,000	Р	S	0	1						
4 2	1	U	2	3	7	4,000	Р	S	0	1						
4 2	2	U	2	3	8	4,000	Р	S	0	1						
4 2	3	U	2	3	9	7,000	Р	S	0	1						
4 2	4	U	2	4	0	4,000	Р	S	0	1						
4 2	5	U	2	4	3	4,000	Р	s	0	1						
4 2	6	U	2	4	4	4,000	Р	s	0	1						
4 2	7	U	2	4	6	4,000	Р	S	0	1						
4 2	8	U	2	4	7	4,000	Р	S	0	1						
4 2	9	U	2	4	8	4,000	Р	s	0	1						
4 3	0	U	2	4	9	4,000	Р	s	0	1						
4 3	1	U	2	7	1	4,000	Р	S	0	1						
4 3	2	U	2	7	8	4,000	Р	s	0	1						

Line	No.	A.	ЕРА Н	azard	ous	B. Estimated	C. Unit of								D). Pr	ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	es		(2) Process Description (if code is not entered in 7.D1))
						Tech	nical Area 5	4, /	۱re	a L	(cc	nti	nue	ed)			
4 3	3	U	2	7	9	4,000	Р	S	0	1							
4 3	4	U	2	8	0	4,000	Р	S	0	1							
4 3	5	U	3	2	8	4,000	Р	S	0	1							
4 3	6	U	3	5	3	4,000	Р	S	0	1							
4 3	7	U	3	5	9	4,000	Р	S	0	1							
4 3	8	U	3	6	4	4,000	Р	S	0	1							
4 3	9	U	3	6	7	4,000	Р	S	0	1							
4 4	0	U	3	7	2	4,000	Р	S	0	1							
4 4	1	U	3	7	3	4,000	Р	S	0	1							
4 4	2	U	3	8	7	4,000	Р	S	0	1							
4 4	3	U	3	8	9	4,000	Р	S	0	1							
4 4	4	U	3	9	4	4,000	Р	S	0	1							
4 4	5	U	3	9	5	4,000	Р	S	0	1							
4 4	6	U	4	0	4	4,000	Р	S	0	1							
4 4	7	U	4	0	9	4,000	Р	S	0	1							
4 4	8	U	4	1	0	4,000	Р	S	0	1							
44	9	U	4	1	1	4,000	Р	S	0	1							

Line	e No.	Α.	EPA H	azard	ous	B. Estimated	C. Unit of). Pr	ocesses
Liii			Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	es		(2) Process Description (if code is not entered in 7.D1))
	Tec	hnic	al A	rea	54, M	laterial Dispos	sal Area L (lı	npo	oun	dm	en	ts I	3 a	nd l	D/ \$	Sha	ifts 1, 13-17, and 19-34)
	1	D	0	0	1	82,000	Р	D	8	0							
	2	D	0	0	2	17,200	Р	D	8	0							
	3	D	0	0	3	750	Р	D	8	0							
	4	D	0	0	4	1,700	Р	D	8	0							
	5	D	0	0	6	650	Р	D	8	0							
	6	D	0	0	7	1,000	Р	D	8	0							
	7	D	0	0	8	1,250	Р	D	8	0							
	8	D	0	0	9	2,200	Р	D	8	0							
	9	D	0	1	1	100	Р	D	8	0							
1	0	D	0	1	6	600	Р	D	8	0							
1	1	F	0	0	2	1,400	Р	D	8	0							
1	2	Р	0	1	5	4,000	Р	D	8	0							
1	3	Р	0	8	7	15	Р	D	8	0							
1	4	U	0	0	2	5,000	Р	D	8	0							
1	5	U	0	1	9	200	Р	D	8	0							
1	6	U	0	6	9	500	Р	D	8	0							
1	7	U	0	8	0	2,000	Р	D	8	0							
1	8	U	1	2	2	550	Р	D	8	0							
1	9	U	1	5	1	35	Р	D	8	0							
2	0	U	1	5	4	550	Р	D	8	0							
2	1	U	1	5	9	300	Р	D	8	0							
2	2	U	1	6	1	500	P	D	8	0							
2	3	U	1	6	5	140	Р	D	8	0							
2	4	U	2	2	0	620	<u>.</u> Р	D	8	0							
2	5	U	2	2	6	10,000	<u>.</u> Р	D	8	0							
2	6	U	2	2	8	4,400	Р	D	8	0							
	7		2	3	9	345		D		0							
2	/	U		3	9	345	r	ט	8	U		<u> </u>					

	No.		ЕРА Н			B. Estimated	C. Unit of					. , ,	``				rocesses
LINE	. IVU.	,	Waste	No.		Annual Qty of	Measure				(1)	Proc	ess	Code	es		(2) Process Description (if code is not entered in 7.D1))
						Waste	Technical A	Are	a 54	1. <i>P</i>	rea	a G					
	1	D	0	0	1	330,000	Р	S	0	1							
	2	D	0	0	2	395,000	Р	S	0	1							
	3	D	0	0	3	185,000	Р	S	0	1							
	4	D	0	0	4	2,525,000	Р	S	0	1	Т	0	4	S	9	9	
	5	D	0	0	5	82,000	Р	S	0	1	Т	0	4	S	9	9	
	6	D	0	0	6	515,000	Р	s	0	1	Т	0	4	S	9	9	
	7	D	0	0	7	3,775,000	Р	s	0	1	Т	0	4	S	9	9	
	8	D	0	0	8	5,400,000	Р	s	0	1	Т	0	4	S	9	9	
	9	D	0	0	9	100,000	Р	S	0	1	Т	0	4	S	9	9	
1	0	D	0	1	0	45,000	Р	s	0	1	Т	0	4	S	9	9	
1	1	D	0	1	1	2,540,000	Р	s	0	1	Т	0	4	S	9	9	
1	2	D	0	1	2	18,000	Р	s	0	1							
1	3	D	0	1	3	4,000	Р	S	0	1							
1	4	D	0	1	4	4,000	Р	S	0	1							
1	5	D	0	1	5	7,000	Р	S	0	1							
1	6	D	0	1	6	4,000	Р	S	0	1							
1	7	D	0	1	7	4,000	Р	S	0	1							
1	8	D	0	1	8	30,000	Р	S	0	1	Т	0	4				
1	9	D	0	1	9	25,000	Р	S	0	1	Т	0	4				
2	0	D	0	2	0	30,000	Р	S	0	1	Т	0	4				
2	1	D	0	2	1	15,000	Р	S	0	1	Т	0	4				
2	2	D	0	2	2	33,000	Р	S	0	1	Т	0	4				
2	3	D	0	2	3	4,000	Р	S	0	1	Т	0	4				
2	4	D	0	2	4	4,000	Р	S	0	1	Т	0	4				
2	5	D	0	2	5	4,000	Р	S	0	1	Т	0	4				
2	6	D	0	2	6	4,000	Р	S	0	1	Т	0	4				
2	7	D	0	2	7	22,000	Р	s	0	1	Т	0	4				
2	8	D	0	2	8	40,000	Р	S	0	1	Т	0	4				
2	9	D	0	2	9	7,000	Р	s	0	1	Т	0	4				
3	0	D	0	3	0	30,000	Р	S	0	1	Т	0	4	S	9	9	
3	1	D	0	3	1	22,000	Р	s	0	1	Т	0	4				
3	2	D	0	3	2	29,000	Р	s	0	1	Т	0	4				
3	3	D	0	3	3	29,000	Р	S	0	1	Т	0	4				
3	4	D	0	3	4	29,000	Р	s	0	1	Т	0	4				
3	5	D	0	3	5	30,000	Р	s	0	1	Т	0	4				
3	6	D	0	3	6	19,000	Р	S	0	1	Т	0	4	S	9	9	

	e No.		ЕРА Н			B. Estimated	C. Unit of					(-)	/ (-				ocesses
Line	: NO.		Waste	No.		Annual Qty of	Measure				(1)	Proc	ess	Code	es		(2) Process Description (if code is not entered in 7.D1))
						Waste Tech	nical Area 5	4. A	rea	G	(cc	nti	inu	ed)			(, , , , , , , , , , , , , , , , ,
3	7	D	0	3	7	7,000	Р	S	0	1	Т	0	4				
3	8	D	0	3	8	14,000	Р	S	0	1	Т	0	4				
3	9	D	0	3	9	20,000	P	S	0	1	Т	0	4				
4	0	D	0	4	0	25,000	Р	S	0	1	Т	0	4				
4	1	D	0	4	1	17,000	Р	S	0	1	Т	0	4				
4	2	D	0	4	2	22,000	Р	S	0	1	Т	0	4				
4	3	D	0	4	3	25,000	Р	S	0	1	Т	0	4				
4	4	F	0	0	1	6,410,000	Р	S	0	1	Т	0	4				
4	5	F	0	0	2	3,450,000	Р	S	0	1	Т	0	4	S	9	9	
4	6	F	0	0	3	2,850,000	Р	S	0	1				S	9	9	
4	7	F	0	0	4	35,000	Р	s	0	1	Т	0	4	S	9	9	
4	8	F	0	0	5	3,250,000	Р	S	0	1				S	9	9	
4	9	F	0	0	6	7,000	Р	S	0	1							
5	0	F	0	0	7	18,000	Р	s	0	1							
5	1	F	0	0	8	7,000	Р	s	0	1							
5	2	F	0	0	9	8,000	Р	S	0	1							
5	3	F	0	1	0	4,000	Р	S	0	1							
5	4	F	0	1	1	4,000	Р	S	0	1							
5	5	F	0	1	2	4,000	Р	s	0	1							
5	6	F	0	1	9	4,000	Р	S	0	1							
5	7	F	0	2	0	4,000	Р	S	0	1							
5	8	F	0	2	1	4,000	Р	S	0	1							
5	9	F	0	2	2	4,000	Р	S	0	1							
6	0	F	0	2	3	4,000	Р	S	0	1							
6	1	F	0	2	4	4,000	Р	s	0	1							
6	2	F	0	2	5	4,000	Р	S	0	1							
6	3	F	0	2	6	4,000	Р	S	0	1							
6	4	F	0	2	7	4,000	Р	s	0	1							
6	5	F	0	2	8	4,000	Р	s	0	1							
6	6	F	0	3	2	4,000	Р	s	0	1							
6	7	F	0	3	4	4,000	Р	S	0	1							
6	8	F	0	3	5	4,000	Р	s	0	1							
6	9	F	0	3	7	4,000	Р	s	0	1							
7	0	F	0	3	8	4,000	Р	s	0	1							
7	1	F	0	3	9	4,000	Р	S	0	1							
7	2	K	0	4	4	22,000	Р	S	0	1							

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: IVO.	,	Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, A	rea	ı G	(cc	nti	inu	ed)		
7	3	K	0	4	5	4,000	Р	S	0	1	Ì					
7	4	K	0	4	6	4,000	Р	S	0	1						
7	5	K	0	4	7	4,000	Р	S	0	1						
7	6	Κ	0	8	4	500	Р	S	0	1						
7	7	K	1	0	1	500	Р	S	0	1						
7	8	K	1	0	2	500	Р	s	0	1						
7	9	Р	0	0	1	4,000	Р	s	0	1						
8	0	Р	0	0	2	4,000	Р	s	0	1						
8	1	Р	0	0	3	4,100	Р	S	0	1						
8	2	Р	0	0	4	4,000	Р	s	0	1						
8	3	Р	0	0	5	4,000	Р	s	0	1						
8	4	Р	0	0	6	4,000	Р	s	0	1						
8	5	Р	0	0	7	4,000	Р	S	0	1						
8	6	Р	0	0	8	4,000	Р	s	0	1						
8	7	Р	0	0	9	4,000	Р	s	0	1						
8	8	Р	0	1	0	4,000	Р	S	0	1						
8	9	Р	0	1	1	4,000	Р	S	0	1						
9	0	Р	0	1	2	4,100	Р	S	0	1						
9	1	Р	0	1	3	4,000	Р	S	0	1						
9	2	Р	0	1	4	4,000	Р	S	0	1						
9	3	Р	0	1	5	4,100	Р	S	0	1						
9	4	Р	0	1	6	4,000	Р	S	0	1						
9	5	Р	0	1	7	4,000	Р	S	0	1						
9	6	Р	0	1	8	4,000	Р	S	0	1						
9	7	Р	0	2	0	4,000	Р	s	0	1						
9	8	Р	0	2	1	4,000	Р	s	0	1						
9	9	Р	0	2	2	4,000	Р	s	0	1						
1 0	0	Р	0	2	3	4,000	Р	S	0	1						
1 0	1	Р	0	2	4	4,000	Р	S	0	1						
1 0	2	Р	0	2	6	4,000	Р	S	0	1						
1 0	3	Р	0	2	7	4,000	Р	S	0	1						
1 0	4	Р	0	2	8	4,000	Р	S	0	1						
1 0	5	Р	0	2	9	4,100	Р	S	0	1						
1 0	6	Р	0	3	0	4,100	Р	S	0	1						
1 0	7	Р	0	3	1	4,100	Р	S	0	1						
1 0	8	Р	0	3	3	4,000	Р	S	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						Waste Tech	nical Area 5	<u></u> 4, A	rea	ı G	(cc	nti	nu	ed)		
1 0	9	Р	0	3	4	4,000	Р	s	0	1	Ì					
11	0	Р	0	3	6	4,000	Р	S	0	1						
11	1	Р	0	3	7	4,000	Р	S	0	1						
11	2	Р	0	3	8	4,100	Р	S	0	1						
11	3	Р	0	3	9	4,000	Р	S	0	1						
11	4	Р	0	4	0	4,000	Р	s	0	1						
11	5	Р	0	4	1	4,000	Р	S	0	1						
11	6	Р	0	4	2	4,000	Р	S	0	1						
11	7	Р	0	4	3	4,000	Р	s	0	1						
11	8	Р	0	4	4	4,000	Р	S	0	1						
11	9	Р	0	4	5	4,000	Р	s	0	1						
1 2	0	Р	0	4	6	4,000	Р	s	0	1						
1 2	1	Р	0	4	7	4,000	Р	S	0	1						
1 2	2	Р	0	4	8	4,000	Р	S	0	1						
1 2	3	Р	0	4	9	4,000	Р	S	0	1						
1 2	4	Р	0	5	0	4,000	Р	S	0	1						
1 2	5	Р	0	5	1	4,000	Р	S	0	1						
1 2	6	Р	0	5	4	4,000	Р	S	0	1						
1 2	7	Р	0	5	6	4,100	Р	S	0	1						
1 2	8	Р	0	5	7	4,000	Р	S	0	1						
1 2	9	Р	0	5	8	4,000	Р	S	0	1						
1 3	0	Р	0	5	9	4,000	Р	s	0	1						
1 3	1	Р	0	6	0	4,000	Р	s	0	1						
1 3	2	Р	0	6	2	4,000	Р	S	0	1						
1 3	3	Р	0	6	3	4,100	Р	S	0	1						
1 3	4	Р	0	6	4	4,000	Р	S	0	1						
1 3	5	Р	0	6	5	4,000	Р	s	0	1						
1 3	6	Р	0	6	6	4,000	Р	s	0	1						
1 3	7	Р	0	6	7	4,000	Р	S	0	1						
1 3	8	Р	0	6	8	4,100	Р	S	0	1						
1 3	9	Р	0	6	9	4,000	Р	S	0	1						
14	0	Р	0	7	0	4,000	Р	S	0	1						
1 4	1	Р	0	7	1	4,000	Р	S	0	1						
1 4	2	Р	0	7	2	4,000	Р	S	0	1						
14	3	Р	0	7	3	4,100	Р	s	0	1						
1 4	4	Р	0	7	4	4,000	Р	S	0	1						

Line	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	ivo.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						Waste Tech	nical Area 5	4. A	rea	ı G	(cc	onti	inu	ed)		
1 4	5	Р	0	7	5	4,000	Р	s	0	1						
14	6	Р	0	7	6	4,000	Р	S	0	1						
14	7	Р	0	7	7	4,000	Р	S	0	1						
14	8	Р	0	7	8	4,000	Р	S	0	1						
14	9	Р	0	8	1	4,000	Р	S	0	1						
1 5	0	Р	0	8	2	4,000	Р	S	0	1						
1 5	1	Р	0	8	4	4,000	Р	s	0	1						
1 5	2	Р	0	8	5	4,000	Р	s	0	1						
1 5	3	Р	0	8	7	4,000	Р	S	0	1						
1 5	4	Р	0	8	8	4,000	Р	S	0	1						
1 5	5	Р	0	8	9	4,000	Р	S	0	1						
1 5	6	Р	0	9	2	4,000	Р	s	0	1						
1 5	7	Р	0	9	3	4,000	Р	S	0	1						
1 5	8	Р	0	9	4	4,000	Р	S	0	1						
1 5	9	Р	0	9	5	4,100	Р	S	0	1						
1 6	0	Р	0	9	6	4,100	Р	S	0	1						
1 6	1	Р	0	9	7	4,000	Р	S	0	1						
1 6	2	Р	0	9	8	4,100	Р	S	0	1						
1 6	3	Р	0	9	9	4,000	Р	S	0	1						
1 6	4	Р	1	0	1	4,000	Р	S	0	1						
1 6	5	Р	1	0	2	4,000	Р	S	0	1						
1 6	6	Р	1	0	3	4,000	Р	S	0	1						
1 6	7	Р	1	0	4	4,000	Р	S	0	1						
1 6	8	Р	1	0	5	4,000	Р	S	0	1						
1 6	9	Р	1	0	6	4,100	Р	S	0	1						
17	0	Р	1	0	8	4,000	Р	S	0	1						
17	1	Р	1	0	9	4,000	Р	s	0	1						
17	2	Р	1	1	0	4,000	Р	s	0	1						
17	3	Р	1	1	1	4,000	Р	s	0	1						
17	4	Р	1	1	2	4,000	Р	s	0	1						
17	5	Р	1	1	3	4,000	Р	S	0	1						
17	6	Р	1	1	4	4,000	Р	S	0	1						
17	7	Р	1	1	5	4,000	Р	s	0	1						
17	8	Р	1	1	6	4,000	Р	s	0	1						
17	9	Р	1	1	8	4,000	Р	S	0	1						
18	0	Р	1	1	9	4,000	Р	s	0	1						

EPA ID Number N M 0 8 9 0 0 1 0 5 1 5

Lina	NI-	Α.	EPA H	azard	ous	B. Estimated	C. Unit of								0). Pr	ocesses
Line	No.		Waste	No.		Annual Qty of	Measure				(1)	Dro	cess (Code			(2) Process Description
						Waste									:5		(if code is not entered in 7.D1))
		_					nical Area 5	r i			(CC	ont	inu	ed)			
18	1	Р	1	2	0	4,100	P	S	0	1							
18	2	P	1	2	1	4,000	P	S	0	1							
18	3	P	1	2	2	4,000	P	S	0	1							
18	4	Р	1	2	3	4,000	P	S	0	1							
18	5	P	1	2	7	4,000	P	S	0	1							
18	6	Р	1	2	8	4,000	P	S	0	1							
18	7	P	1	8	5	4,000	P	S	0	1							
18	8	P	1	8	8	4,000	P	S	0	1							
18	9	P	1	8	9	4,000	P	S	0	1							
19	0	Р	1	9	0	4,000	Р	S	0	1							
19	1	Р	1	9	1	4,000	Р	S	0	1							
19	2	Р	1	9	2	4,000	Р	S	0	1							
19	3	Р	1	9	4	4,000	Р	S	0	1							
19	4	Р	1	9	6	4,000	Р	S	0	1							
19	5	Р	1	9	7	4,000	Р	S	0	1							
19	6	Р	1	9	8	4,000	Р	S	0	1							
19	7	Р	1	9	9	4,000	Р	S	0	1							
19	8	Р	2	0	1	4,000	Р	S	0	1							
19	9	Р	2	0	2	4,000	Р	S	0	1							
2 0	0	Р	2	0	3	4,000	P	S	0	1							
2 0	1	Р	2	0	4	4,000	Р	S	0	1							
2 0	2	Р	2	0	5	4,000	Р	S	0	1							
2 0	3	U	0	0	1	4,100		S	0	1							
2 0	4	U	0	0	2	7,100	Р	S	0	1							
2 0	5	U	0	0	3	4,100	Р	S	0	1							
2 0	6	U	0	0	4	4,000	Р	S	0	1							
2 0	7	U	0	0	5	4,000	Р	S	0	1							
2 0	8	U	0	0	6	4,000	Р	S	0	1							
2 0	9	U	0	0	7	4,000	Р	S	0	1							
2 1	0	U	0	0	8	4,000	Р	S	0	1							
2 1	1	U	0	0	9	4,000	Р	S	0	1							
2 1	2	U	0	1	0	4,000	Р	S	0	1							
2 1	3	U	0	1	1	4,000	Р	S	0	1							
2 1	4	U	0	1	2	4,100	Р	S	0	1							
2 1	5	U	0	1	4	4,000	Р	S	0	1							
2 1	6	U	0	1	5	4,000	Р	s	0	1							

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						Waste Tech	nical Area 5	4, <i>P</i>	rea	ı G	(cc	nti	nu	ed)		
2 1	7	U	0	1	6	4,000	Р	S	0	1	Ì					
2 1	8	U	0	1	7	4,000	Р	S	0	1						
2 1	9	U	0	1	8	4,000	Р	s	0	1						
2 2	0	U	0	1	9	4,100	Р	s	0	1						
2 2	1	U	0	2	0	4,000	Р	S	0	1						
2 2	2	U	0	2	1	4,000	Р	S	0	1						
2 2	3	U	0	2	2	4,100	Р	S	0	1						
2 2	4	U	0	2	3	4,000	Р	S	0	1						
2 2	5	U	0	2	4	4,000	Р	S	0	1						
2 2	6	U	0	2	5	4,000	Р	S	0	1						
2 2	7	U	0	2	6	4,000	Р	s	0	1						
2 2	8	U	0	2	7	4,000	Р	S	0	1						
2 2	9	U	0	2	8	4,000	Р	S	0	1						
2 3	0	U	0	2	9	4,100	Р	s	0	1						
2 3	1	U	0	3	0	4,000	Р	s	0	1						
2 3	2	U	0	3	1	4,100	Р	S	0	1						
2 3	3	U	0	3	2	4,000	Р	S	0	1						
2 3	4	U	0	3	3	4,000	Р	s	0	1						
2 3	5	U	0	3	4	4,000	Р	s	0	1						
2 3	6	U	0	3	5	4,000	Р	S	0	1						
2 3	7	U	0	3	6	4,000	Р	S	0	1						
2 3	8	U	0	3	7	4,100	Р	S	0	1						
2 3	9	U	0	3	8	4,000	Р	S	0	1						
2 4	0	U	0	3	9	4,000	Р	S	0	1						
2 4	1	U	0	4	1	4,000	Р	s	0	1						
2 4	2	U	0	4	2	4,000	Р	s	0	1						
2 4	3	U	0	4	3	4,000	Р	s	0	1						
2 4	4	U	0	4	4	4,100	Р	s	0	1						
2 4	5	U	0	4	5	4,100	Р	s	0	1						
2 4	6	U	0	4	6	4,000	Р	s	0	1						
2 4	7	U	0	4	7	4,000	Р	s	0	1						
2 4	8	U	0	4	8	4,000	Р	s	0	1						
2 4	9	U	0	4	9	4,000	Р	s	0	1						
2 5	0	U	0	5	0	4,000	Р	s	0	1						
2 5	1	U	0	5	1	4,000	Р	s	0	1						
2 5	2	U	0	5	2	4,100	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	ivo.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						Waste Tech	nical Area 5	4, A	rea	ı G	(cc	nti	nu	ed)		
2 5	3	U	0	5	3	4,000	Р	S	0	1	Ì					
2 5	4	U	0	5	5	4,000	Р	S	0	1						
2 5	5	U	0	5	6	4,100	Р	S	0	1						
2 5	6	U	0	5	7	4,100	Р	S	0	1						
2 5	7	U	0	5	8	4,000	Р	S	0	1						
2 5	8	U	0	5	9	4,000	Р	S	0	1						
2 5	9	U	0	6	0	4,000	Р	S	0	1						
2 6	0	U	0	6	1	4,000	Р	S	0	1						
2 6	1	U	0	6	2	4,000	Р	S	0	1						
2 6	2	U	0	6	3	4,000	Р	s	0	1						
2 6	3	U	0	6	4	4,000	Р	s	0	1						
2 6	4	U	0	6	6	4,000	Р	s	0	1						
2 6	5	U	0	6	7	4,000	Р	S	0	1						
2 6	6	U	0	6	8	4,000	Р	S	0	1						
2 6	7	U	0	6	9	4,000	Р	S	0	1						
2 6	8	U	0	7	0	4,000	Р	S	0	1						
2 6	9	U	0	7	1	4,000	Р	S	0	1						
2 7	0	U	0	7	2	4,000	Р	S	0	1						
2 7	1	U	0	7	3	4,000	Р	S	0	1						
2 7	2	U	0	7	4	4,000	Р	S	0	1						
2 7	3	U	0	7	5	4,100	Р	S	0	1						
2 7	4	U	0	7	6	4,000	Р	S	0	1						
2 7	5	U	0	7	7	4,100	Р	S	0	1						
2 7	6	U	0	7	8	4,000	Р	S	0	1						
2 7	7	U	0	7	9	4,000	Р	S	0	1						
2 7	8	U	0	8	0	12,000	Р	S	0	1						
2 7	9	U	0	8	1	4,000	Р	S	0	1						
28	0	U	0	8	2	4,000	Р	S	0	1						
28	1	U	0	8	3	4,000	Р	S	0	1						
28	2	U	0	8	4	4,000	Р	S	0	1						
28	3	U	0	8	5	4,000	Р	S	0	1						
28	4	U	0	8	6	4,000	Р	S	0	1						
28	5	U	0	8	7	4,000	Р	S	0	1						
28	6	U	0	8	8	4,000	Р	S	0	1						
28	7	U	0	8	9	4,000	Р	S	0	1						
28	8	U	0	9	0	4,000	Р	S	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	ivo.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						Waste Tech	nical Area 5	4, A	rea	ı G	(cc	nti	nu	ed)		
28	9	U	0	9	1	4,000	Р	S	0	1						
2 9	0	U	0	9	2	4,000	Р	S	0	1						
2 9	1	U	0	9	3	4,000	Р	s	0	1						
2 9	2	U	0	9	4	4,000	Р	s	0	1						
2 9	3	U	0	9	5	4,000	Р	S	0	1						
2 9	4	U	0	9	6	4,000	Р	S	0	1						
2 9	5	U	0	9	7	4,000	Р	S	0	1						
2 9	6	U	0	9	8	4,000	Р	S	0	1						
2 9	7	U	0	9	9	4,000	Р	S	0	1						
2 9	8	U	1	0	1	4,000	Р	S	0	1						
2 9	9	U	1	0	2	4,000	Р	S	0	1						
3 0	0	U	1	0	3	4,000	Р	S	0	1						
3 0	1	U	1	0	5	4,000	Р	S	0	1						
3 0	2	U	1	0	6	4,000	Р	s	0	1						
3 0	3	U	1	0	7	4,000	Р	s	0	1						
3 0	4	U	1	0	8	4,100	Р	S	0	1						
3 0	5	U	1	0	9	4,000	Р	S	0	1						
3 0	6	U	1	1	0	4,000	Р	s	0	1						
3 0	7	U	1	1	1	4,000	Р	s	0	1						
3 0	8	U	1	1	2	4,100	Р	S	0	1						
3 0	9	U	1	1	3	4,000	Р	S	0	1						
3 1	0	U	1	1	4	4,000	Р	S	0	1						
3 1	1	U	1	1	5	4,100	Р	S	0	1						
3 1	2	U	1	1	6	4,000	Р	S	0	1						
3 1	3	U	1	1	7	4,100	Р	S	0	1						
3 1	4	U	1	1	8	4,000	Р	S	0	1						
3 1	5	U	1	1	9	4,000	Р	S	0	1						
3 1	6	U	1	2	0	4,000	Р	S	0	1						
3 1	7	U	1	2	1	4,100	Р	S	0	1						
3 1	8	U	1	2	2	7,100	Р	S	0	1						
3 1	9	U	1	2	3	4,100	Р	s	0	1						
3 2	0	U	1	2	4	4,000	Р	s	0	1						
3 2	1	U	1	2	5	4,000	Р	s	0	1						
3 2	2	U	1	2	6	4,000	Р	s	0	1						
3 2	3	U	1	2	7	4,000	Р	S	0	1						
3 2	4	U	1	2	8	4,000	Р	S	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, <i>P</i>	rea	ı G	(cc	nti	nu	ed)		
3 2	5	U	1	2	9	4,000	Р	S	0	1	Ì					
3 2	6	U	1	3	0	4,000	Р	S	0	1						
3 2	7	U	1	3	1	4,100	Р	s	0	1						
3 2	8	U	1	3	2	4,000	Р	S	0	1						
3 2	9	U	1	3	3	4,100	Р	S	0	1						
3 3	0	U	1	3	4	12,100	Р	s	0	1						
3 3	1	U	1	3	5	4,100	Р	s	0	1						
3 3	2	U	1	3	6	4,000	Р	s	0	1						
3 3	3	U	1	3	7	4,000	Р	s	0	1						
3 3	4	U	1	3	8	4,000	Р	s	0	1						
3 3	5	U	1	4	0	4,100	Р	s	0	1						
3 3	6	U	1	4	1	4,000	Р	s	0	1						
3 3	7	U	1	4	2	4,000	Р	S	0	1						
3 3	8	U	1	4	3	4,000	Р	s	0	1						
3 3	9	U	1	4	4	4,100	Р	s	0	1						
3 4	0	U	1	4	5	4,000	Р	s	0	1						
3 4	1	U	1	4	6	4,000	Р	S	0	1						
3 4	2	U	1	4	7	4,000	Р	S	0	1						
3 4	3	U	1	4	8	4,000	Р	S	0	1						
3 4	4	U	1	4	9	4,000	Р	S	0	1						
3 4	5	U	1	5	0	4,000	Р	S	0	1						
3 4	6	U	1	5	1	7,100	Р	S	0	1						
3 4	7	U	1	5	2	4,000	Р	S	0	1						
3 4	8	U	1	5	3	4,000	Р	S	0	1						
3 4	9	U	1	5	4	4,100	Р	S	0	1						
3 5	0	U	1	5	5	4,000	Р	S	0	1						
3 5	1	U	1	5	6	4,000	Р	S	0	1						
3 5	2	U	1	5	7	4,000	Р	S	0	1						
3 5	3	U	1	5	8	4,000	Р	S	0	1						
3 5	4	U	1	5	9	4,100	Р	S	0	1						
3 5	5	U	1	6	0	4,100	Р	S	0	1						
3 5	6	U	1	6	1	4,100	Р	s	0	1						
3 5	7	U	1	6	2	4,000	Р	S	0	1						
3 5	8	U	1	6	3	4,000	Р	S	0	1						
3 5	9	U	1	6	4	4,000	Р	s	0	1						
3 6	0	U	1	6	5	4,100	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					\- /.				_	ocesses
Line			Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	s		(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, A	rea	G	(cc	onti	nu	ed)			
3 6	1	U	1	6	6	4,000	Р	s	0	1							
3 6	2	U	1	6	7	4,000	Р	S	0	1							
3 6	3	U	1	6	8	4,000	Р	s	0	1							
3 6	4	U	1	6	9	4,100	Р	s	0	1							
3 6	5	U	1	7	0	4,000	Р	S	0	1							
3 6	6	U	1	7	1	4,000	Р	S	0	1							
3 6	7	U	1	7	2	4,000	Р	S	0	1							
3 6	8	U	1	7	3	4,000	Р	s	0	1							
3 6	9	U	1	7	4	4,000	Р	S	0	1							
3 7	0	U	1	7	6	4,000	Р	S	0	1							
3 7	1	U	1	7	7	4,000	Р	S	0	1							
3 7	2	U	1	7	8	4,000	Р	S	0	1							
3 7	3	U	1	7	9	4,000	Р	S	0	1							
3 7	4	U	1	8	0	4,000	Р	S	0	1							
3 7	5	U	1	8	1	4,000	Р	S	0	1							
3 7	6	U	1	8	2	4,000	Р	S	0	1							
3 7	7	U	1	8	3	4,000	Р	S	0	1							
3 7	8	U	1	8	4	4,000	Р	S	0	1							
3 7	9	U	1	8	5	4,000	Р	S	0	1							
3 8	0	U	1	8	6	4,000	Р	s	0	1							
3 8	1	U	1	8	7	4,000	Р	S	0	1							
3 8	2	U	1	8	8	4,100	Р	s	0	1							
3 8	3	U	1	8	9	4,000	Р	s	0	1							
3 8	4	U	1	9	0	4,100	Р	s	0	1							
3 8	5	U	1	9	1	4,000	Р	S	0	1							
3 8	6	U	1	9	2	4,000	Р	s	0	1							
3 8	7	U	1	9	3	4,000	Р	s	0	1							
3 8	8	U	1	9	4	4,000	Р	S	0	1							
3 8	9	U	1	9	6	4,100	Р	s	0	1							
3 9	0	U	1	9	7	4,000	Р	s	0	1							
3 9	1	U	2	0	0	4,000	Р	S	0	1							
3 9	2	U	2	0	1	4,000	Р	S	0	1							
3 9	3	U	2	0	2	4,000	Р	S	0	1							
3 9	4	U	2	0	3	4,000	Р	S	0	1							
3 9	5	U	2	0	4	4,100	Р	s	0	1							
3 9	6	U	2	0	5	4,000	Р	S	0	1							

	No.		ЕРА Н			B. Estimated	C. Unit of					(-)				 ocesses
Line			Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							nical Area 5	4, A	rea	G	(cc	onti	nu	ed)		
3 9	7	U	2	0	6	4,000	Р	S	0	1						
3 9	8	U	2	0	7	4,000	Р	S	0	1						
3 9	9	U	2	0	8	4,000	Р	s	0	1						
4 0	0	U	2	0	9	4,000	Р	s	0	1						
4 0	1	U	2	1	0	4,100	Р	S	0	1						
4 0	2	U	2	1	1	4,100	Р	S	0	1						
4 0	3	U	2	1	3	4,100	Р	S	0	1						
4 0	4	U	2	1	4	4,000	Р	S	0	1						
4 0	5	U	2	1	5	4,000	Р	S	0	1						
4 0	6	U	2	1	6	4,100	Р	S	0	1						
4 0	7	U	2	1	7	4,000	Р	S	0	1						
4 0	8	U	2	1	8	4,100	Р	S	0	1						
4 0	9	U	2	1	9	4,100	Р	S	0	1						
4 1	0	U	2	2	0	7,100	Р	S	0	1						
4 1	1	U	2	2	1	4,000	Р	S	0	1						
4 1	2	U	2	2	2	4,000	Р	S	0	1						
4 1	3	U	2	2	3	4,000	Р	S	0	1						
4 1	4	U	2	2	5	4,100	Р	S	0	1						
4 1	5	U	2	2	6	7,100	Р	S	0	1						
4 1	6	U	2	2	7	4,100	Р	S	0	1						
4 1	7	U	2	2	8	7,100	Р	S	0	1						
4 1	8	U	2	3	4	4,000	Р	s	0	1						
4 1	9	U	2	3	5	4,000	Р	s	0	1						
4 2	0	U	2	3	6	4,000	Р	S	0	1						
4 2	1	U	2	3	7	4,000	Р	s	0	1						
4 2	2	U	2	3	8	4,000	Р	s	0	1						
4 2	3	U	2	3	9	7,100	Р	s	0	1						
4 2	4	U	2	4	0	4,000	Р	S	0	1						
4 2	5	U	2	4	3	4,000	Р	S	0	1						
4 2	6	U	2	4	4	4,000	Р	s	0	1						
4 2	7	U	2	4	6	4,100	Р	S	0	1						
4 2	8	U	2	4	7	4,000	Р	S	0	1						
4 2	9	U	2	4	8	4,000	Р	S	0	1						
4 3	0	U	2	4	9	4,000	Р	s	0	1						
4 3	1	U	2	7	1	4,000	Р	S	0	1						
4 3	2	U	2	7	8	4,000	Р	S	0	1						

13	No.	A.	EPA H	azard	ous	B. Estimated	C. Unit of								D	. Pr	ocesses
Line	e NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s		(2) Process Description (if code is not entered in 7.D1))
						Techi	nical Area 5	4, <i>F</i>	rea	a G	(cc	onti	inu	ed)			
4 3	3	U	2	7	9	4,000	Р	S	0	1							
4 3	4	U	2	8	0	4,000	Р	S	0	1							
4 3	5	U	3	2	8	4,000	Р	S	0	1							
4 3	6	U	3	5	3	4,000	Р	S	0	1							
4 3	7	U	3	5	9	4,000	Р	S	0	1							
4 3	8	U	3	6	4	4,000	Р	S	0	1							
4 3	9	U	3	6	7	4,000	Р	S	0	1							
4 4	0	U	3	7	2	4,000	Р	S	0	1							
4 4	1	U	3	7	3	4,000	Р	S	0	1							
4 4	2	U	3	8	7	4,000	Р	S	0	1							
4 4	3	U	3	8	9	4,000	Р	S	0	1							
4 4	4	U	3	9	4	4,000	Р	S	0	1							
4 4	5	U	3	9	5	4,000	Р	S	0	1							
4 4	6	U	4	0	4	4,000	Р	S	0	1							
4 4	7	U	4	0	9	4,000	Р	S	0	1							
4 4	8	U	4	1	0	4,000	Р	s	0	1							
4 4	9	U	4	1	1	4,000	Р	S	0	1							

Line	e No.	A.	EPA H	azard	ous	B. Estimated	C. Unit of). Pr	ocesses
LITTE	e NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	cess	Code	es		(2) Process Description (if code is not entered in 7.D1))
				٦	Гесhі	nical Area 54,	Material Dis	pos	sal	Are	ea (G (S	Sha	ft 1	24	and	d Pit 29)
	1	D	0	0	4	850	Р	D	8	0							
	2	D	0	0	5	2,100	Р	D	8	0							
	3	D	0	0	6	4,250	Р	D	8	0							
	4	D	0	0	7	4,450	Р	D	8	0							
	5	D	0	0	8	507,100	Р	D	8	0							
	6	D	0	0	9	850	Р	D	8	0							
	7	D	0	1	0	15	Р	D	8	0							
	8	D	0	1	1	530	Р	D	8	0							

	No.		EPA H			B. Estimated	C. Unit of	Ĺ				. , ,	``			_	ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s		(2) Process Description (if code is not entered in 7.D1))
						waste	Technical	Are		54,	We	st					
	1	D	0	0	1	74,252	Р	s	0	1							
	2	D	0	0	2	38,448	Р	S	0	1							
	3	D	0	0	3	3,528	Р	S	0	1							
	4	D	0	0	4	24,692	Р	S	0	1	Т	0	4				
	5	D	0	0	5	22,576	Р	S	0	1	Т	0	4				
	6	D	0	0	6	3,627,220	Р	s	0	1	Т	0	4				
	7	D	0	0	7	3,784,544	Р	S	0	1	Т	0	4				
	8	D	0	0	8	8,589,208	Р	s	0	1	Т	0	4				
	9	D	0	0	9	261,732	Р	S	0	1	Т	0	4				
1	0	D	0	1	0	27,160	Р	s	0	1	Т	0	4				
1	1	D	0	1	1	30,336	Р	s	0	1	Т	0	4				
1	2	D	0	1	2	36,000	Р	s	0	1							
1	3	D	0	1	3	8,000	Р	S	0	1							
1	4	D	0	1	4	8,000	Р	s	0	1							
1	5	D	0	1	5	14,000	Р	s	0	1							
1	6	D	0	1	6	8,000	Р	s	0	1							
1	7	D	0	1	7	8,000	Р	s	0	1							
1	8	D	0	1	8	1,412	Р	S	0	1	Т	0	4				
1	9	D	0	1	9	28,220	Р	s	0	1	Т	0	4				
2	0	D	0	2	0	60,000	Р	S	0	1	Т	0	4				
2	1	D	0	2	1	4,880	Р	S	0	1	Т	0	4				
2	2	D	0	2	2	6,704	Р	S	0	1	Т	0	4				
2	3	D	0	2	3	8,000	Р	S	0	1	Т	0	4				
2	4	D	0	2	4	8,000	Р	S	0	1	Т	0	4				
2	5	D	0	2	5	8,000	Р	s	0	1	Т	0	4				
2	6	D	0	2	6	8,000	Р	s	0	1	Т	0	4				
2	7	D	0	2	7	4,056	Р	S	0	1	Т	0	4				
2	8	D	0	2	8	1,158,400	Р	s	0	1	Т	0	4				
2	9	D	0	2	9	1,152,576	Р	S	0	1	Т	0	4				
3	0	D	0	3	0	26,100	Р	S	0	1	Т	0	4				
3	1	D	0	3	1	352	Р	s	0	1	Т	0	4				
3	2	D	0	3	2	16,580	Р	s	0	1	Т	0	4				
3	3	D	0	3	3	11,112	Р	s	0	1	Т	0	4				
3	4	D	0	3	4	5,820	Р	s	0	1	Т	0	4				
3	5	D	0	3	5	528	Р	S	0	1	Т	0	4				
3	6	D	0	3	6	1,764	Р	s	0	1	Т	0	4				

	e No.		ЕРА Н			B. Estimated	C. Unit of					(-)	, (5.5			ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							nnical Area	54,	We	st (CO	ntir	nue	d)		
3	7	D	0	3	7	2,820	Р	s	0	1	Т	0	4			
3	8	D	0	3	8	352	Р	S	0	1	Т	0	4			
3	9	D	0	3	9	7,760	Р	s	0	1	Т	0	4			
4	0	D	0	4	0	17,460	Р	S	0	1	Т	0	4			
4	1	D	0	4	1	352	Р	S	0	1	Т	0	4			
4	2	D	0	4	2	5,644	Р	S	0	1	Т	0	4			
4	3	D	0	4	3	2,116	Р	S	0	1	Т	0	4			
4	4	F	0	0	1	2,225,608	Р	s	0	1	Т	0	4			
4	5	F	0	0	2	288,012	Р	S	0	1	Т	0	4			
4	6	F	0	0	3	137,856	Р	S	0	1						
4	7	F	0	0	4	8,640	Р	s	0	1	Т	0	4			
4	8	F	0	0	5	1,296,844	Р	s	0	1						
4	9	F	0	0	6	14,000	Р	S	0	1						
5	0	F	0	0	7	36,000	Р	s	0	1						
5	1	F	0	0	8	14,000	Р	s	0	1						
5	2	F	0	0	9	8,000	Р	S	0	1						
5	3	F	0	1	0	8,000	Р	S	0	1						
5	4	F	0	1	1	8,000	Р	s	0	1						
5	5	F	0	1	2	8,000	Р	S	0	1						
5	6	F	0	1	9	8,000	Р	S	0	1						
5	7	F	0	2	0	8,000	Р	S	0	1						
5	8	F	0	2	1	8,000	Р	S	0	1						
5	9	F	0	2	2	8,000	Р	s	0	1						
6	0	F	0	2	3	8,000	Р	S	0	1						
6	1	F	0	2	4	8,000	Р	s	0	1						
6	2	F	0	2	5	8,000	Р	s	0	1						
6	3	F	0	2	6	8,000	Р	S	0	1						
6	4	F	0	2	7	8,000	Р	S	0	1						
6	5	F	0	2	8	8,000	Р	S	0	1						
6	6	F	0	3	2	8,000	Р	S	0	1						
6	7	F	0	3	4	8,000	Р	s	0	1						
6	8	F	0	3	5	8,000	Р	s	0	1						
6	9	F	0	3	7	8,000	Р	s	0	1						
7	0	F	0	3	8	8,000	Р	s	0	1						
7	1	F	0	3	9	8,000	Р	S	0	1						
7	2	K	0	4	4	4,000	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					\-/ ·	, (ocesses
			Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							nnical Area	54,	We	st (CO	ntir	nue	d)		
7	3	K	0	4	5	8,000	Р	S	0	1						
7	4	K	0	4	6	8,000	Р	S	0	1						
7	5	K	0	4	7	8,000	Р	S	0	1						
7	6	K	0	8	4	1,000	Р	S	0	1						
7	7	K	1	0	1	1,000	Р	S	0	1						
7	8	K	1	0	2	1,000	Р	s	0	1						
7	9	Р	0	0	1	176	Р	S	0	1						
8	0	Р	0	0	2	176	Р	S	0	1						
8	1	Р	0	0	3	176	Р	S	0	1						
8	2	Р	0	0	4	176	Р	s	0	1						
8	3	Р	0	0	5	176	Р	S	0	1						
8	4	Р	0	0	6	176	Р	S	0	1						
8	5	Р	0	0	7	176	Р	S	0	1						
8	6	Р	0	0	8	176	Р	S	0	1						
8	7	Р	0	0	9	176	Р	s	0	1						
8	8	Р	0	1	0	176	Р	S	0	1						
8	9	Р	0	1	1	176	Р	S	0	1						
9	0	Р	0	1	2	176	Р	s	0	1						
9	1	Р	0	1	3	176	Р	S	0	1						
9	2	Р	0	1	4	176	Р	S	0	1						
9	3	Р	0	1	5	176	Р	S	0	1						
9	4	Р	0	1	6	176	Р	S	0	1						
9	5	Р	0	1	7	176	Р	S	0	1						
9	6	Р	0	1	8	176	Р	S	0	1						
9	7	Р	0	2	0	176	Р	s	0	1						
9	8	Р	0	2	1	176	Р	s	0	1						
9	9	Р	0	2	2	176	Р	S	0	1						
1 0	0	Р	0	2	3	176	Р	S	0	1						
1 0	1	Р	0	2	4	176	Р	S	0	1						
1 0	2	Р	0	2	6	176	Р	s	0	1						
1 0	3	Р	0	2	7	176	Р	s	0	1						
1 0	4	Р	0	2	8	176	Р	s	0	1						
1 0	5	Р	0	2	9	176	Р	s	0	1						
1 0	6	Р	0	3	0	176	Р	s	0	1						
1 0	7	Р	0	3	1	176	Р	S	0	1						
1 0	8	Р	0	3	3	176	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: INO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nnical Area	54.	We	st (CO	ntir	nue	d)		
1 0	9	Р	0	3	4	176	Р	S	0	1						
11	0	Р	0	3	6	176	Р	S	0	1						
11	1	Р	0	3	7	176	Р	S	0	1						
11	2	Р	0	3	8	176	Р	S	0	1						
11	3	Р	0	3	9	176	Р	S	0	1						
11	4	Р	0	4	0	176	Р	S	0	1						
11	5	Р	0	4	1	176	Р	S	0	1						
11	6	Р	0	4	2	176	Р	S	0	1						
11	7	Р	0	4	3	176	Р	S	0	1						
11	8	Р	0	4	4	176	Р	s	0	1						
11	9	Р	0	4	5	176	Р	S	0	1						
1 2	0	Р	0	4	6	176	Р	S	0	1						
1 2	1	Р	0	4	7	176	Р	S	0	1						
1 2	2	Р	0	4	8	176	Р	S	0	1						
1 2	3	Р	0	4	9	176	Р	S	0	1						
1 2	4	Р	0	5	0	176	Р	S	0	1						
1 2	5	Р	0	5	1	176	Р	S	0	1						
1 2	6	Р	0	5	4	176	Р	S	0	1						
1 2	7	Р	0	5	6	176	Р	S	0	1						
1 2	8	Р	0	5	7	176	Р	S	0	1						
1 2	9	Р	0	5	8	176	Р	S	0	1						
1 3	0	Р	0	5	9	176	Р	S	0	1						
1 3	1	Р	0	6	0	176	Р	S	0	1						
1 3	2	Р	0	6	2	176	Р	S	0	1						
1 3	3	Р	0	6	3	176	Р	S	0	1						
1 3	4	Р	0	6	4	176	Р	S	0	1						
1 3	5	Р	0	6	5	176	Р	S	0	1						
1 3	6	Р	0	6	6	176	Р	S	0	1						
1 3	7	Р	0	6	7	176	Р	S	0	1						
1 3	8	Р	0	6	8	176	Р	S	0	1						
1 3	9	Р	0	6	9	176	Р	S	0	1						
1 4	0	Р	0	7	0	176	Р	S	0	1						
1 4	1	Р	0	7	1	176	Р	S	0	1						
1 4	2	Р	0	7	2	176	Р	S	0	1						
1 4	3	Р	0	7	3	176	Р	S	0	1						
1 4	4	Р	0	7	4	176	Р	S	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							nnical Area	54,	We	st (CO	ntir	nue	d)		
14	5	Р	0	7	5	176	Р	S	0	1						
14	6	Р	0	7	6	176	Р	S	0	1						
1 4	7	Р	0	7	7	176	Р	S	0	1						
1 4	8	Р	0	7	8	176	Р	S	0	1						
1 4	9	Р	0	8	1	176	Р	S	0	1						
1 5	0	Р	0	8	2	176	Р	s	0	1						
1 5	1	Р	0	8	4	176	Р	s	0	1						
1 5	2	Р	0	8	5	176	Р	s	0	1						
1 5	3	Р	0	8	7	176	Р	S	0	1						
1 5	4	Р	0	8	8	176	Р	s	0	1						
1 5	5	Р	0	8	9	176	Р	s	0	1						
1 5	6	Р	0	9	2	176	Р	s	0	1						
1 5	7	Р	0	9	3	176	Р	S	0	1						
1 5	8	Р	0	9	4	176	Р	s	0	1						
1 5	9	Р	0	9	5	176	Р	s	0	1						
1 6	0	Р	0	9	6	176	Р	S	0	1						
1 6	1	Р	0	9	7	176	Р	S	0	1						
1 6	2	Р	0	9	8	176	Р	s	0	1						
1 6	3	Р	0	9	9	176	Р	s	0	1						
1 6	4	Р	1	0	1	176	Р	S	0	1						
1 6	5	Р	1	0	2	176	Р	S	0	1						
1 6	6	Р	1	0	3	176	Р	S	0	1						
1 6	7	Р	1	0	4	176	Р	S	0	1						
1 6	8	Р	1	0	5	176	Р	S	0	1						
1 6	9	Р	1	0	6	176	Р	s	0	1						
17	0	Р	1	0	8	176	Р	s	0	1						
17	1	Р	1	0	9	176	Р	s	0	1						
17	2	Р	1	1	0	176	Р	s	0	1						
17	3	Р	1	1	1	176	Р	S	0	1						
17	4	Р	1	1	2	176	Р	S	0	1						
17	5	Р	1	1	3	176	Р	s	0	1						
17	6	Р	1	1	4	176	Р	s	0	1						
17	7	Р	1	1	5	176	Р	s	0	1						
17	8	Р	1	1	6	176	Р	s	0	1						
17	9	Р	1	1	8	176	Р	S	0	1						
18	0	Р	1	1	9	176	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					\- /.	, (3.			_	ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	s		(2) Process Description (if code is not entered in 7.D1))
							nical Area	54,	We	st (CO	ntir	nue	d)			
18	1	Р	1	2	0	176	Р	S	0	1							
18	2	Р	1	2	1	176	Р	S	0	1							
18	3	Р	1	2	2	176	Р	s	0	1							
18	4	Р	1	2	3	176	Р	s	0	1							
18	5	Р	1	2	7	176	Р	s	0	1							
18	6	Р	1	2	8	176	Р	s	0	1							
18	7	Р	1	8	5	176	Р	s	0	1							
18	8	Р	1	8	8	176	Р	s	0	1							
18	9	Р	1	8	9	176	Р	S	0	1							
19	0	Р	1	9	0	176	Р	S	0	1							
19	1	Р	1	9	1	176	Р	s	0	1							
19	2	Р	1	9	2	176	Р	s	0	1							
19	3	Р	1	9	4	176	Р	S	0	1							
19	4	Р	1	9	6	176	Р	s	0	1							
19	5	Р	1	9	7	176	Р	s	0	1							
19	6	Р	1	9	8	176	Р	S	0	1							
19	7	Р	1	9	9	176	Р	S	0	1							
19	8	Р	2	0	1	176	Р	S	0	1							
19	9	Р	2	0	2	176	Р	s	0	1							
2 0	0	Р	2	0	3	176	Р	S	0	1							
2 0	1	Р	2	0	4	176	Р	S	0	1							
2 0	2	Р	2	0	5	176	Р	s	0	1							
2 0	3	U	0	0	1	176	Р	s	0	1							
2 0	4	U	0	0	2	176	Р	S	0	1							
2 0	5	U	0	0	3	176	Р	s	0	1							
2 0	6	U	0	0	4	176	Р	s	0	1							
2 0	7	U	0	0	5	176	Р	S	0	1							
2 0	8	U	0	0	6	176	Р	S	0	1							
2 0	9	U	0	0	7	176	Р	S	0	1							
2 1	0	U	0	0	8	176	Р	S	0	1							
2 1	1	U	0	0	9	176	Р	S	0	1							
2 1	2	U	0	1	0	176	Р	s	0	1							
2 1	3	U	0	1	1	176	Р	S	0	1							
2 1	4	U	0	1	2	176	Р	S	0	1							
2 1	5	U	0	1	4	176	Р	s	0	1							
2 1	6	U	0	1	5	176	Р	s	0	1							

7. Description of Hazardous Wastes (Enter codes for Items 7.A, 7.C and 7.D(1)) (continued)

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: INO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	cess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						•	nnical Area	54,	We	st ((co	ntir	nue	d)		
2 1	7	U	0	1	6	176	Р	S	0	1						
2 1	8	U	0	1	7	176	Р	S	0	1						
2 1	9	U	0	1	8	176	Р	S	0	1						
2 2	0	U	0	1	9	176	Р	S	0	1						
2 2	1	U	0	2	0	176	Р	S	0	1						
2 2	2	U	0	2	1	176	Р	S	0	1						
2 2	3	U	0	2	2	176	Р	S	0	1						
2 2	4	U	0	2	3	176	Р	S	0	1						
2 2	5	U	0	2	4	176	Р	S	0	1						
2 2	6	U	0	2	5	176	Р	S	0	1						
2 2	7	U	0	2	6	176	Р	S	0	1						
2 2	8	U	0	2	7	176	Р	S	0	1						
2 2	9	U	0	2	8	176	Р	S	0	1						
2 3	0	U	0	2	9	176	Р	S	0	1						
2 3	1	U	0	3	0	176	Р	S	0	1						
2 3	2	U	0	3	1	176	Р	S	0	1						
2 3	3	U	0	3	2	176	Р	S	0	1						
2 3	4	U	0	3	3	176	Р	S	0	1						
2 3	5	U	0	3	4	176	Р	S	0	1						
2 3	6	U	0	3	5	176	Р	S	0	1						
2 3	7	U	0	3	6	176	Р	S	0	1						
2 3	8	U	0	3	7	176	Р	S	0	1						
2 3	9	U	0	3	8	176	Р	S	0	1						
2 4	0	U	0	3	9	176	Р	S	0	1						
2 4	1	U	0	4	1	176	Р	S	0	1						
2 4	2	U	0	4	2	176	Р	s	0	1						
2 4	3	U	0	4	3	176	Р	s	0	1						
2 4	4	U	0	4	4	176	Р	s	0	1						
2 4	5	U	0	4	5	176	Р	s	0	1						
2 4	6	U	0	4	6	176	Р	s	0	1						
2 4	7	U	0	4	7	176	Р	s	0	1						
2 4	8	U	0	4	8	176	Р	s	0	1						
2 4	9	U	0	4	9	176	Р	s	0	1						
2 5	0	U	0	5	0	176	Р	s	0	1						
2 5	1	U	0	5	1	176	Р	s	0	1						
2 5	2	U	0	5	2	176	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	ivo.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							nnical Area	54,	We	st (CO	ntir	nue	d)		
2 5	3	U	0	5	3	176	Р	S	0	1						
2 5	4	U	0	5	5	176	Р	S	0	1						
2 5	5	U	0	5	6	176	Р	S	0	1						
2 5	6	U	0	5	7	176	Р	s	0	1						
2 5	7	U	0	5	8	176	Р	S	0	1						
2 5	8	U	0	5	9	176	Р	S	0	1						
2 5	9	U	0	6	0	176	Р	S	0	1						
2 6	0	U	0	6	1	176	Р	S	0	1						
2 6	1	U	0	6	2	176	Р	S	0	1						
2 6	2	U	0	6	3	176	Р	S	0	1						
2 6	3	U	0	6	4	176	Р	s	0	1						
2 6	4	U	0	6	6	176	Р	s	0	1						
2 6	5	U	0	6	7	176	Р	S	0	1						
2 6	6	U	0	6	8	176	Р	s	0	1						
2 6	7	U	0	6	9	176	Р	s	0	1						
2 6	8	U	0	7	0	176	Р	S	0	1						
2 6	9	U	0	7	1	176	Р	S	0	1						
2 7	0	U	0	7	2	176	Р	s	0	1						
2 7	1	U	0	7	3	176	Р	s	0	1						
2 7	2	U	0	7	4	176	Р	S	0	1						
2 7	3	U	0	7	5	176	Р	S	0	1						
2 7	4	U	0	7	6	176	Р	S	0	1						
2 7	5	U	0	7	7	176	Р	s	0	1						
2 7	6	U	0	7	8	176	Р	S	0	1						
2 7	7	U	0	7	9	176	Р	s	0	1						
2 7	8	U	0	8	0	528	Р	s	0	1						
2 7	9	U	0	8	1	176	Р	s	0	1						
28	0	U	0	8	2	176	Р	s	0	1						
28	1	U	0	8	3	176	Р	s	0	1						
28	2	U	0	8	4	176	Р	s	0	1						
28	3	U	0	8	5	176	Р	S	0	1						
28	4	U	0	8	6	176	Р	S	0	1						
28	5	U	0	8	7	176	Р	S	0	1						
28	6	U	0	8	8	176	Р	S	0	1						
28	7	U	0	8	9	176	Р	s	0	1						
28	8	U	0	9	0	176	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	ivo.	,	Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							nnical Area	54,	We	st (CO	ntir	nue	d)		
28	9	U	0	9	1	176	Р	S	0	1						
2 9	0	U	0	9	2	176	Р	S	0	1						
2 9	1	U	0	9	3	176	Р	S	0	1						
2 9	2	U	0	9	4	176	Р	s	0	1						
2 9	3	U	0	9	5	176	Р	S	0	1						
2 9	4	U	0	9	6	176	Р	S	0	1						
2 9	5	U	0	9	7	176	Р	S	0	1						
2 9	6	U	0	9	8	176	Р	S	0	1						
2 9	7	U	0	9	9	176	Р	S	0	1						
2 9	8	U	1	0	1	176	Р	s	0	1						
2 9	9	U	1	0	2	176	Р	s	0	1						
3 0	0	U	1	0	3	176	Р	s	0	1						
3 0	1	U	1	0	5	176	Р	S	0	1						
3 0	2	U	1	0	6	176	Р	S	0	1						
3 0	3	U	1	0	7	176	Р	S	0	1						
3 0	4	U	1	0	8	176	Р	S	0	1						
3 0	5	U	1	0	9	176	Р	S	0	1						
3 0	6	U	1	1	0	176	Р	S	0	1						
3 0	7	U	1	1	1	176	Р	S	0	1						
3 0	8	U	1	1	2	176	Р	S	0	1						
3 0	9	U	1	1	3	176	Р	S	0	1						
3 1	0	U	1	1	4	176	Р	s	0	1						
3 1	1	U	1	1	5	176	Р	S	0	1						
3 1	2	U	1	1	6	176	Р	S	0	1						
3 1	3	U	1	1	7	176	Р	S	0	1						
3 1	4	U	1	1	8	176	Р	S	0	1						
3 1	5	U	1	1	9	176	Р	S	0	1						
3 1	6	U	1	2	0	176	Р	s	0	1						
3 1	7	U	1	2	1	176	Р	S	0	1						
3 1	8	U	1	2	2	176	Р	S	0	1						
3 1	9	U	1	2	3	176	Р	s	0	1						
3 2	0	U	1	2	4	176	Р	s	0	1						
3 2	1	U	1	2	5	176	Р	s	0	1						
3 2	2	U	1	2	6	176	Р	s	0	1						
3 2	3	U	1	2	7	176	Р	S	0	1						
3 2	4	U	1	2	8	176	Р	s	0	1						

7. Description of Hazardous Wastes (Enter codes for Items 7.A, 7.C and 7.D(1)) (continued)

	No.		ЕРА Н			B. Estimated	C. Unit of					(-)	(3.			ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	es	(2) Process Description (if code is not entered in 7.D1))
							nnical Area	54,	We	st (CO	ntir	nue	d)		
3 2	5	U	1	2	9	176	Р	s	0	1						
3 2	6	U	1	3	0	176	Р	S	0	1						
3 2	7	U	1	3	1	176	Р	S	0	1						
3 2	8	U	1	3	2	176	Р	S	0	1						
3 2	9	U	1	3	3	176	Р	S	0	1						
3 3	0	U	1	3	4	176	Р	S	0	1						
3 3	1	U	1	3	5	176	Р	S	0	1						
3 3	2	U	1	3	6	176	Р	S	0	1						
3 3	3	U	1	3	7	176	Р	S	0	1						
3 3	4	U	1	3	8	176	Р	S	0	1						
3 3	5	U	1	4	0	176	Р	S	0	1						
3 3	6	U	1	4	1	176	Р	S	0	1						
3 3	7	U	1	4	2	176	Р	S	0	1						
3 3	8	U	1	4	3	176	Р	S	0	1						
3 3	9	U	1	4	4	176	Р	S	0	1						
3 4	0	U	1	4	5	176	Р	S	0	1						
3 4	1	U	1	4	6	176	Р	S	0	1						
3 4	2	U	1	4	7	176	Р	S	0	1						
3 4	3	U	1	4	8	176	Р	s	0	1						
3 4	4	U	1	4	9	176	Р	S	0	1						
3 4	5	U	1	5	0	176	Р	s	0	1						
3 4	6	U	1	5	1	1,060	Р	s	0	1						
3 4	7	U	1	5	2	176	Р	s	0	1						
3 4	8	U	1	5	3	176	Р	S	0	1						
3 4	9	U	1	5	4	176	Р	S	0	1						
3 5	0	U	1	5	5	176	Р	s	0	1						
3 5	1	U	1	5	6	176	Р	S	0	1						
3 5	2	U	1	5	7	176	Р	s	0	1						
3 5	3	U	1	5	8	176	Р	s	0	1						
3 5	4	U	1	5	9	528	Р	S	0	1						
3 5	5	U	1	6	0	176	Р	s	0	1						
3 5	6	U	1	6	1	176	Р	s	0	1						
3 5	7	U	1	6	2	176	Р	s	0	1						
3 5	8	U	1	6	3	176	Р	s	0	1						
3 5	9	U	1	6	4	176	Р	S	0	1						
3 6	0	U	1	6	5	176	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							nnical Area	54,	We	st (CO	ntir	nue	d)		
3 6	1	U	1	6	6	176	Р	S	0	1						
3 6	2	U	1	6	7	176	Р	S	0	1						
3 6	3	U	1	6	8	176	Р	S	0	1						
3 6	4	U	1	6	9	176	Р	S	0	1						
3 6	5	U	1	7	0	176	Р	S	0	1						
3 6	6	U	1	7	1	176	Р	S	0	1						
3 6	7	U	1	7	2	176	Р	S	0	1						
3 6	8	U	1	7	3	176	Р	S	0	1						
3 6	9	U	1	7	4	176	Р	S	0	1						
3 7	0	U	1	7	6	176	Р	S	0	1						
3 7	1	U	1	7	7	176	Р	S	0	1						
3 7	2	U	1	7	8	176	Р	S	0	1						
3 7	3	U	1	7	9	176	Р	S	0	1						
3 7	4	U	1	8	0	176	Р	S	0	1						
3 7	5	U	1	8	1	176	Р	S	0	1						
3 7	6	U	1	8	2	176	Р	S	0	1						
3 7	7	U	1	8	3	176	Р	S	0	1						
3 7	8	U	1	8	4	176	Р	S	0	1						
3 7	9	U	1	8	5	176	Р	S	0	1						
3 8	0	U	1	8	6	176	Р	S	0	1						
3 8	1	U	1	8	7	176	Р	S	0	1						
3 8	2	U	1	8	8	176	Р	S	0	1						
3 8	3	U	1	8	9	176	Р	S	0	1						
3 8	4	U	1	9	0	176	Р	S	0	1						
3 8	5	U	1	9	1	176	Р	S	0	1						
3 8	6	U	1	9	2	176	Р	S	0	1						
3 8	7	U	1	9	3	176	Р	s	0	1						
3 8	8	U	1	9	4	176	Р	S	0	1						
3 8	9	U	1	9	6	176	Р	S	0	1						
3 9	0	U	1	9	7	176	Р	S	0	1						
3 9	1	U	2	0	0	176	Р	S	0	1						
3 9	2	U	2	0	1	176	Р	S	0	1						
3 9	3	U	2	0	2	176	Р	S	0	1						
3 9	4	U	2	0	3	176	Р	S	0	1						
3 9	5	U	2	0	4	176	Р	S	0	1						
3 9	6	U	2	0	5	176	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	ivo.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							nnical Area	54,	We	st (CO	ntir	nue	d)		
3 9	7	U	2	0	6	176	Р	S	0	1						
3 9	8	U	2	0	7	176	Р	S	0	1						
3 9	9	U	2	0	8	176	Р	S	0	1						
4 0	0	U	2	0	9	176	Р	S	0	1						
4 0	1	U	2	1	0	176	Р	S	0	1						
4 0	2	U	2	1	1	176	Р	S	0	1						
4 0	3	U	2	1	3	176	Р	s	0	1						
4 0	4	U	2	1	4	176	Р	s	0	1						
4 0	5	U	2	1	5	176	Р	S	0	1						
4 0	6	U	2	1	6	176	Р	S	0	1						
4 0	7	U	2	1	7	176	Р	S	0	1						
4 0	8	U	2	1	8	176	Р	S	0	1						
4 0	9	U	2	1	9	176	Р	S	0	1						
4 1	0	U	2	2	0	176	Р	S	0	1						
4 1	1	U	2	2	1	176	Р	S	0	1						
4 1	2	U	2	2	2	176	Р	S	0	1						
4 1	3	U	2	2	3	176	Р	S	0	1						
4 1	4	U	2	2	5	176	Р	S	0	1						
4 1	5	U	2	2	6	4,584	Р	S	0	1						
4 1	6	U	2	2	7	176	Р	S	0	1						
4 1	7	U	2	2	8	176	Р	S	0	1						
4 1	8	U	2	3	4	176	Р	S	0	1						
4 1	9	U	2	3	5	176	Р	S	0	1						
4 2	0	U	2	3	6	176	Р	S	0	1						
4 2	1	U	2	3	7	176	Р	S	0	1						
4 2	2	U	2	3	8	176	Р	S	0	1						
4 2	3	U	2	3	9	352	Р	S	0	1						
4 2	4	U	2	4	0	176	Р	S	0	1						
4 2	5	U	2	4	3	176	Р	S	0	1						
4 2	6	U	2	4	4	176	Р	S	0	1						
4 2	7	U	2	4	6	176	Р	S	0	1						
4 2	8	U	2	4	7	176	Р	S	0	1						
4 2	9	U	2	4	8	176	Р	S	0	1						
4 3	0	U	2	4	9	176	Р	S	0	1						
4 3	1	U	2	7	1	176	Р	S	0	1						
4 3	2	U	2	7	8	176	Р	S	0	1						

13	NI-	A.	EPA H	azard	ous	B. Estimated	C. Unit of								D	. Pr	ocesses
Line	No.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s		(2) Process Description (if code is not entered in 7.D1))
						Tech	nnical Area	54,	We	st (CO	ntir	nue	d)			
4 3	3	U	2	7	9	176	Р	S	0	1							
4 3	4	U	2	8	0	176	Р	S	0	1							
4 3	5	U	3	2	8	176	Р	s	0	1							
4 3	6	U	3	5	3	176	Р	S	0	1							
4 3	7	U	3	5	9	176	Р	S	0	1							
4 3	8	U	3	6	4	176	Р	s	0	1							
4 3	9	U	3	6	7	176	Р	s	0	1							
4 4	0	U	3	7	2	176	Р	s	0	1							
4 4	1	U	3	7	3	176	Р	S	0	1							
4 4	2	U	3	8	7	176	Р	s	0	1							
4 4	3	U	3	8	9	176	Р	S	0	1							
4 4	4	U	3	9	4	176	Р	S	0	1							
4 4	5	U	3	9	5	176	Р	S	0	1							
4 4	6	U	4	0	4	176	Р	S	0	1							
4 4	7	U	4	0	9	176	Р	S	0	1							
4 4	8	U	4	1	0	176	Р	S	0	1							
4 4	9	U	4	1	1	176	Р	S	0	1							

	-					· ·							-			-					
Line	No.	A.	ЕРА Н	azard	ous	B. Estimated	C. Unit of									D. P	rocesses	s			
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure		(1) Process Codes					(i	(2) if code		scripti ed in 7				
						Technical A	rea 54, Mater	rial	Dis	ро	sal	Ar	ea	H (Sh	aft	9)				
	1	D	0	0	3	15	Р	D	8	0											

Line	e No.		EPA H			B. Estimated	C. Unit of										ocesses
LIII	e NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s		(2) Process Description (if code is not entered in 7.D1))
						waste	Techni	cal	Ar	ea (55						
	1	D	0	0	1	75,000	Р	S	0	1							
	2	D	0	0	2	150,000	Р	s	0	1	s	0	2	Т	0	4	
	3	D	0	0	3	42,000	Р	S	0	1							
	4	D	0	0	4	5,000	Р	S	0	1	S	0	2	Т	0	4	
	5	D	0	0	5	11,000	Р	S	0	1	S	0	2	Т	0	4	
	6	D	0	0	6	400,500	Р	S	0	1	S	0	2	Т	0	4	
	7	D	0	0	7	605,000	Р	S	0	1	S	0	2	Т	0	4	
	8	D	0	0	8	900,000	Р	S	0	1	S	0	2	Т	0	4	
	9	D	0	0	9	26,000	Р	S	0	1	S	0	2	Т	0	4	
1	0	D	0	1	0	2,500	Р	S	0	1	S	0	2	Т	0	4	
1	1	D	0	1	1	11,000	Р	S	0	1	S	0	2	Т	0	4	
1	2	D	0	1	2	1,000	Р	S	0	1				Т	0	4	
1	3	D	0	1	8	4,500	Р	S	0	1				Т	0	4	
1	4	D	0	1	9	4,500	Р	S	0	1				Т	0	4	
1	5	D	0	2	1	4,500	Р	S	0	1				Т	0	4	
1	6	D	0	2	2	1,500	Р	S	0	1				Т	0	4	
1	7	D	0	2	7	1,500	Р	S	0	1				Т	0	4	
1	8	D	0	2	8	2,500	Р	S	0	1				Т	0	4	
1	9	D	0	3	0	1,500	Р	S	0	1				Т	0	4	
2	0	D	0	3	2	1,500	Р	S	0	1				Т	0	4	
2	1	D	0	3	3	1,500	Р	S	0	1				Т	0	4	
2	2	D	0	3	4	1,500	Р	S	0	1				Т	0	4	
2	3	D	0	3	5	12,000	Р	S	0	1				Т	0	4	
2	4	D	0	3	6	1,500	Р	S	0	1				Т	0	4	
2	5	D	0	3	7	1,500	Р	S	0	1				Т	0	4	
2	6	D	0	3	8	1,500	Р	s	0	1				Т	0	4	
2	7	D	0	3	9	11,000	Р	s	0	1				Т	0	4	
2	8	D	0	4	0	11,000	Р	s	0	1				Т	0	4	
2	9	D	0	4	2	1,500	Р	S	0	1				Т	0	4	
3	0	D	0	4	3	1,500	Р	S	0	1				Т	0	4	
3	1	F	0	0	1	110,000	Р	s	0	1				Т	0	4	
3	2	F	0	0	2	110,000	Р	s	0	1				Т	0	4	
3	3	F	0	0	3	110,000	Р	S	0	1							
3	4	F	0	0	5	110,000	Р	S	0	1							
3	5	F	0	0	6	500	Р	s	0	1							
3	6	F	0	0	7	500	Р	S	0	1							

	No.		ЕРА Н			B. Estimated	C. Unit of						•			ocesses
LIIIE	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (55 (COI	ntir	ıue	d)			
3	7	F	0	0	9	500	Р	s	0	1						
3	8	Р	0	0	3	1,500	Р	s	0	1						
3	9	Р	0	1	2	1,500	Р	s	0	1						
4	0	Р	0	1	5	6,000	Р	s	0	1						
4	1	Р	0	2	9	1,500	Р	S	0	1						
4	2	Р	0	3	0	1,500	Р	S	0	1						
4	3	Р	0	3	1	1,500	Р	S	0	1						
4	4	Р	0	3	8	1,500	Р	s	0	1						
4	5	Р	0	5	6	3,000	Р	S	0	1						
4	6	Р	0	6	3	1,500	Р	S	0	1						
4	7	Р	0	6	8	1,500	Р	S	0	1						
4	8	Р	0	7	3	1,500	Р	s	0	1						
4	9	Р	0	7	6	1,500	Р	S	0	1						
5	0	Р	0	7	8	1,500	Р	s	0	1						
5	1	Р	0	9	5	1,500	Р	s	0	1						
5	2	Р	0	9	6	1,500	Р	S	0	1						
5	3	Р	0	9	8	1,500	Р	S	0	1						
5	4	Р	0	9	9	500	Р	s	0	1						
5	5	Р	1	0	6	1,500	Р	s	0	1						
5	6	Р	1	1	3	1,500	Р	S	0	1						
5	7	Р	1	2	0	1,500	Р	S	0	1						
5	8	U	0	0	1	3,000	Р	S	0	1						
5	9	U	0	0	2	1,500	Р	S	0	1						
6	0	U	0	0	3	1,500	Р	S	0	1						
6	1	U	0	1	2	1,500	Р	S	0	1						
6	2	U	0	1	9	3,000	Р	S	0	1						
6	3	U	0	2	2	1,500	Р	S	0	1						
6	4	U	0	2	9	1,500	Р	S	0	1						
6	5	U	0	3	1	1,500	Р	S	0	1						
6	6	U	0	3	7	1,500	Р	S	0	1						
6	7	U	0	4	4	1,500	Р	S	0	1						
6	8	U	0	4	5	1,500	Р	s	0	1						
6	9	U	0	5	2	1,500	Р	S	0	1						
7	0	U	0	5	6	1,500	Р	S	0	1						
7	1	U	0	5	7	1,500	Р	S	0	1						
7	2	U	0	7	5	1,500	Р	S	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	: INO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (55 (COI	ntir	ue	d)			
7	3	U	0	7	7	1,500	Р	s	0	1						
7	4	U	0	8	0	6,000	Р	S	0	1						
7	5	U	1	0	3	500	Р	S	0	1						
7	6	U	1	0	8	1,500	Р	S	0	1						
7	7	U	1	1	2	1,500	Р	S	0	1						
7	8	U	1	1	5	1,500	Р	s	0	1						
7	9	U	1	1	7	1,500	Р	S	0	1						
8	0	U	1	2	1	1,500	Р	s	0	1						
8	1	U	1	2	2	1,500	Р	S	0	1						
8	2	U	1	2	3	1,500	Р	s	0	1						
8	3	U	1	3	1	1,500	Р	s	0	1						
8	4	U	1	3	3	1,500	Р	s	0	1						
8	5	U	1	3	4	6,000	Р	S	0	1						
8	6	U	1	3	5	1,500	Р	s	0	1						
8	7	U	1	4	0	1,500	Р	s	0	1						
8	8	U	1	4	4	1,500	Р	s	0	1						
8	9	U	1	5	1	6,000	Р	S	0	1						
9	0	U	1	5	4	6,000	Р	s	0	1						
9	1	U	1	5	9	6,000	Р	s	0	1						
9	2	U	1	6	0	1,500	Р	S	0	1						
9	3	U	1	6	1	1,500	Р	S	0	1						
9	4	U	1	6	5	1,500	Р	S	0	1						
9	5	U	1	6	9	1,500	Р	S	0	1						
9	6	U	1	8	8	1,500	Р	S	0	1						
9	7	U	1	9	0	1,500	Р	S	0	1						
9	8	U	1	9	6	1,500	Р	S	0	1						
9	9	U	2	0	4	1,500	Р	S	0	1						
1 0	0	U	2	1	0	6,000	Р	s	0	1						
1 0	1	U	2	1	1	6,000	Р	S	0	1						
1 0	2	U	2	1	3	1,500	Р	S	0	1						
1 0	3	U	2	1	6	1,500	Р	s	0	1						
1 0	4	U	2	1	8	1,500	Р	s	0	1						
1 0	5	U	2	1	9	1,500	Р	s	0	1						
1 0	6	U	2	2	0	6,000	Р	s	0	1						
1 0	7	U	2	2	5	1,500	Р	s	0	1						
1 0	8	U	2	2	6	6,000	Р	s	0	1						

Line	No.	A.	ЕРА Н	azard	ous	B. Estimated	C. Unit of								0). Pr	ocesses
LITTE	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	es		(2) Process Description (if code is not entered in 7.D1))
						Т	echnical Ar	ea 5	55 (COI	ntir	nue	d)				
1 0	9	U	2	2	7	1,500	Р	S	0	1							
11	0	U	2	2	8	1,500	Р	S	0	1							
11	1	U	2	3	9	1,500	Р	S	0	1							
11	2	U	2	4	6	1,500	Р	S	0	1							

	e No.		EPA H			B. Estimated	C. Unit of									ocesses
LIII	: NO.	,	Waste	No.		Annual Qty of	Measure				(1)	Proc	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
						Waste	Techni	ical	Ar	ea (63					
	1	D	0	0	1	3,300	Р	S	0	1						
	2	D	0	0	2	3,950	Р	S	0	1						
	3	D	0	0	3	1,850	Р	S	0	1						
	4	D	0	0	4	25,250	Р	S	0	1	Т	0	4			
	5	D	0	0	5	820	Р	S	0	1	Т	0	4			
	6	D	0	0	6	5,150	Р	S	0	1	Т	0	4			
	7	D	0	0	7	37,750	Р	S	0	1	Т	0	4			
	8	D	0	0	8	54,000	Р	S	0	1	Т	0	4			
	9	D	0	0	9	1,000	Р	s	0	1	Т	0	4			
1	0	D	0	1	0	450	Р	S	0	1	Т	0	4			
1	1	D	0	1	1	25,400	Р	s	0	1	Т	0	4			
1	2	D	0	1	2	180	Р	s	0	1						
1	3	D	0	1	3	40	Р	S	0	1						
1	4	D	0	1	4	40	Р	S	0	1						
1	5	D	0	1	5	70	Р	S	0	1						
1	6	D	0	1	6	40	Р	S	0	1						
1	7	D	0	1	7	40	Р	S	0	1						
1	8	D	0	1	8	300	Р	S	0	1	Т	0	4			
1	9	D	0	1	9	250	Р	S	0	1	Т	0	4			
2	0	D	0	2	0	300	Р	S	0	1	Т	0	4			
2	1	D	0	2	1	150	Р	S	0	1	Т	0	4			
2	2	D	0	2	2	330	Р	S	0	1	Т	0	4			
2	3	D	0	2	3	40	Р	S	0	1	Т	0	4			
2	4	D	0	2	4	40	Р	S	0	1	Т	0	4			
2	5	D	0	2	5	40	Р	S	0	1	Т	0	4			
2	6	D	0	2	6	40	Р	S	0	1	Т	0	4			
2	7	D	0	2	7	220	Р	S	0	1	Т	0	4			
2	8	D	0	2	8	400	Р	S	0	1	Т	0	4			
2	9	D	0	2	9	70	Р	S	0	1	Т	0	4			
3	0	D	0	3	0	300	Р	S	0	1	Т	0	4			
3	1	D	0	3	1	220	Р	S	0	1	Т	0	4			
3	2	D	0	3	2	290	Р	S	0	1	Т	0	4			
3	3	D	0	3	3	290	Р	S	0	1	Т	0	4			
3	4	D	0	3	4	290	Р	S	0	1	Т	0	4			
3	5	D	0	3	5	300	Р	S	0	1	Т	0	4			
3	6	D	0	3	6	190	Р	S	0	1	Т	0	4			

	e No.		ЕРА Н			B. Estimated	C. Unit of					. , ,	•			ocesses
Line	. NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (63 (COI	ntir	nue	d)			
3	7	D	0	3	7	70	Р	S	0	1	Т	0	4			
3	8	D	0	3	8	140	Р	S	0	1	Т	0	4			
3	9	D	0	3	9	200	Р	S	0	1	Т	0	4			
4	0	D	0	4	0	250	Р	s	0	1	Т	0	4			
4	1	D	0	4	1	170	Р	s	0	1	Т	0	4			
4	2	D	0	4	2	220	Р	s	0	1	Т	0	4			
4	3	D	0	4	3	250	Р	s	0	1	Т	0	4			
4	4	F	0	0	1	64,100	Р	s	0	1	Т	0	4			
4	5	F	0	0	2	34,500	Р	S	0	1	Т	0	4			
4	6	F	0	0	3	28,500	Р	s	0	1						
4	7	F	0	0	4	350	Р	s	0	1	Т	0	4			
4	8	F	0	0	5	32,500	Р	S	0	1						
4	9	F	0	0	6	70	Р	S	0	1						
5	0	F	0	0	7	180	Р	s	0	1						
5	1	F	0	0	8	70	Р	S	0	1						
5	2	F	0	0	9	80	Р	S	0	1						
5	3	F	0	1	0	40	Р	S	0	1						
5	4	F	0	1	1	40	Р	S	0	1						
5	5	F	0	1	2	40	Р	S	0	1						
5	6	F	0	1	9	40	Р	S	0	1						
5	7	F	0	2	0	40	Р	S	0	1						
5	8	F	0	2	1	40	Р	s	0	1						
5	9	F	0	2	2	40	Р	s	0	1						
6	0	F	0	2	3	40	Р	S	0	1						
6	1	F	0	2	4	40	Р	s	0	1						
6	2	F	0	2	5	40	Р	s	0	1						
6	3	F	0	2	6	40	Р	s	0	1						
6	4	F	0	2	7	40	Р	S	0	1						
6	5	F	0	2	8	40	Р	s	0	1						
6	6	F	0	3	2	40	Р	s	0	1						
6	7	F	0	3	4	40	Р	S	0	1						
6	8	F	0	3	5	40	Р	s	0	1						
6	9	F	0	3	7	40	Р	s	0	1						
7	0	F	0	3	8	40	Р	s	0	1						
7	1	F	0	3	9	40	Р	S	0	1						
7	2	K	0	4	4	220	Р	s	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (63 (CO	ntir	ıue	d)			
7	3	K	0	4	5	40	Р	S	0	1						
7	4	K	0	4	6	40	Р	S	0	1						
7	5	K	0	4	7	40	Р	s	0	1						
7	6	K	0	8	4	50	Р	s	0	1						
7	7	K	1	0	1	50	Р	S	0	1						
7	8	K	1	0	2	50	Р	S	0	1						
7	9	Р	0	0	1	40	Р	s	0	1						
8	0	Р	0	0	2	40	Р	s	0	1						
8	1	Р	0	0	3	40	Р	S	0	1						
8	2	Р	0	0	4	40	Р	s	0	1						
8	3	Р	0	0	5	40	Р	s	0	1						
8	4	Р	0	0	6	40	Р	S	0	1						
8	5	Р	0	0	7	40	Р	S	0	1						
8	6	Р	0	0	8	40	Р	s	0	1						
8	7	Р	0	0	9	40	Р	S	0	1						
8	8	Р	0	1	0	40	Р	S	0	1						
8	9	Р	0	1	1	40	Р	S	0	1						
9	0	Р	0	1	2	40	Р	S	0	1						
9	1	Р	0	1	3	40	Р	S	0	1						
9	2	Р	0	1	4	40	Р	S	0	1						
9	3	Р	0	1	5	40	Р	S	0	1						
9	4	Р	0	1	6	40	Р	S	0	1						
9	5	Р	0	1	7	40	Р	S	0	1						
9	6	Р	0	1	8	40	Р	S	0	1						
9	7	Р	0	2	0	40	Р	s	0	1						
9	8	Р	0	2	1	40	Р	s	0	1						
9	9	Р	0	2	2	40	Р	s	0	1						
1 0	0	Р	0	2	3	40	Р	s	0	1						
1 0	1	Р	0	2	4	40	Р	S	0	1						
10	2	Р	0	2	6	40	Р	s	0	1						
1 0	3	Р	0	2	7	40	Р	s	0	1						
1 0	4	Р	0	2	8	40	Р	s	0	1						
1 0	5	Р	0	2	9	40	Р	s	0	1						
1 0	6	Р	0	3	0	40	Р	s	0	1						
1 0	7	Р	0	3	1	40	Р	s	0	1						
1 0	8	Р	0	3	3	40	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of					(-)	/ (ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (33 (COI	ntir	ue	d)			
1 0	9	Р	0	3	4	40	Р	S	0	1						
11	0	Р	0	3	6	40	Р	S	0	1						
11	1	Р	0	3	7	40	Р	s	0	1						
11	2	Р	0	3	8	40	Р	s	0	1						
11	3	Р	0	3	9	40	Р	S	0	1						
11	4	Р	0	4	0	40	Р	s	0	1						
11	5	Р	0	4	1	40	Р	s	0	1						
11	6	Р	0	4	2	40	Р	s	0	1						
11	7	Р	0	4	3	40	Р	S	0	1						
11	8	Р	0	4	4	40	Р	s	0	1						
11	9	Р	0	4	5	40	Р	S	0	1						
1 2	0	Р	0	4	6	40	Р	S	0	1						
1 2	1	Р	0	4	7	40	Р	S	0	1						
1 2	2	Р	0	4	8	40	Р	S	0	1						
1 2	3	Р	0	4	9	40	Р	S	0	1						
1 2	4	Р	0	5	0	40	Р	S	0	1						
1 2	5	Р	0	5	1	40	Р	S	0	1						
1 2	6	Р	0	5	4	40	Р	S	0	1						
1 2	7	Р	0	5	6	40	Р	S	0	1						
1 2	8	Р	0	5	7	40	Р	S	0	1						
1 2	9	Р	0	5	8	40	Р	S	0	1						
1 3	0	Р	0	5	9	40	Р	S	0	1						
1 3	1	Р	0	6	0	40	Р	S	0	1						
1 3	2	Р	0	6	2	40	Р	S	0	1						
1 3	3	Р	0	6	3	40	Р	s	0	1						
1 3	4	Р	0	6	4	40	Р	s	0	1						
1 3	5	Р	0	6	5	40	Р	s	0	1						
1 3	6	Р	0	6	6	40	Р	S	0	1						
1 3	7	Р	0	6	7	40	Р	S	0	1						
13	8	Р	0	6	8	40	Р	s	0	1						
1 3	9	Р	0	6	9	40	Р	S	0	1						
1 4	0	Р	0	7	0	40	Р	S	0	1						
1 4	1	Р	0	7	1	40	Р	S	0	1						
14	2	Р	0	7	2	40	Р	S	0	1						
1 4	3	Р	0	7	3	40	Р	s	0	1						
14	4	Р	0	7	4	40	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: IVO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (63 (COI	ntir	ue	d)			
1 4	5	Р	0	7	5	40	Р	S	0	1						
1 4	6	Р	0	7	6	40	Р	S	0	1						
14	7	Р	0	7	7	40	Р	s	0	1						
1 4	8	Р	0	7	8	40	Р	s	0	1						
14	9	Р	0	8	1	40	Р	S	0	1						
1 5	0	Р	0	8	2	40	Р	S	0	1						
1 5	1	Р	0	8	4	40	Р	S	0	1						
1 5	2	Р	0	8	5	40	Р	S	0	1						
1 5	3	Р	0	8	7	40	Р	S	0	1						
1 5	4	Р	0	8	8	40	Р	S	0	1						
1 5	5	Р	0	8	9	40	Р	S	0	1						
1 5	6	Р	0	9	2	40	Р	s	0	1						
1 5	7	Р	0	9	3	40	Р	S	0	1						
1 5	8	Р	0	9	4	40	Р	S	0	1						
1 5	9	Р	0	9	5	40	Р	S	0	1						
1 6	0	Р	0	9	6	40	Р	S	0	1						
1 6	1	Р	0	9	7	40	Р	S	0	1						
1 6	2	Р	0	9	8	40	Р	S	0	1						
1 6	3	Р	0	9	9	40	Р	S	0	1						
1 6	4	Р	1	0	1	40	Р	S	0	1						
1 6	5	Р	1	0	2	40	Р	S	0	1						
1 6	6	Р	1	0	3	40	Р	S	0	1						
1 6	7	Р	1	0	4	40	Р	s	0	1						
1 6	8	Р	1	0	5	40	Р	S	0	1						
1 6	9	Р	1	0	6	40	Р	s	0	1						
17	0	Р	1	0	8	40	Р	s	0	1						
17	1	Р	1	0	9	40	Р	s	0	1						
17	2	Р	1	1	0	40	Р	s	0	1						
17	3	Р	1	1	1	40	Р	S	0	1						
17	4	Р	1	1	2	40	Р	S	0	1						
17	5	Р	1	1	3	40	Р	s	0	1						
17	6	Р	1	1	4	40	Р	s	0	1						
1 7	7	Р	1	1	5	40	Р	S	0	1						
17	8	Р	1	1	6	40	Р	S	0	1						
17	9	Р	1	1	8	40	Р	s	0	1						
18	0	Р	1	1	9	40	Р	S	0	1						

Line			ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	IVO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (63 (COI	ntir	ue	d)			
18	1	Р	1	2	0	40	Р	S	0	1						
18	2	Р	1	2	1	40	Р	S	0	1						
18	3	Р	1	2	2	40	Р	s	0	1						
18	4	Р	1	2	3	40	Р	s	0	1						
18	5	Р	1	2	7	40	Р	S	0	1						
18	6	Р	1	2	8	40	Р	S	0	1						
18	7	Р	1	8	5	40	Р	S	0	1						
18	8	Р	1	8	8	40	Р	s	0	1						
18	9	Р	1	8	9	40	Р	S	0	1						
19	0	Р	1	9	0	40	Р	S	0	1						
19	1	Р	1	9	1	40	Р	S	0	1						
19	2	Р	1	9	2	40	Р	s	0	1						
19	3	Р	1	9	4	40	Р	S	0	1						
19	4	Р	1	9	6	40	Р	s	0	1						
19	5	Р	1	9	7	40	Р	s	0	1						
19	6	Р	1	9	8	40	Р	S	0	1						
19	7	Р	1	9	9	40	Р	S	0	1						
19	8	Р	2	0	1	40	Р	s	0	1						
19	9	Р	2	0	2	40	Р	s	0	1						
2 0	0	Р	2	0	3	40	Р	S	0	1						
2 0	1	Р	2	0	4	40	Р	S	0	1						
2 0	2	Р	2	0	5	40	Р	S	0	1						
2 0	3	U	0	0	1	40	Р	S	0	1						
2 0	4	U	0	0	2	70	Р	S	0	1						
2 0	5	U	0	0	3	40	Р	S	0	1						
2 0	6	U	0	0	4	40	Р	S	0	1						
2 0	7	U	0	0	5	40	Р	S	0	1						
2 0	8	U	0	0	6	40	Р	S	0	1						
2 0	9	U	0	0	7	40	Р	S	0	1						
2 1	0	U	0	0	8	40	Р	S	0	1						
2 1	1	U	0	0	9	40	Р	s	0	1						
2 1	2	U	0	1	0	40	Р	s	0	1						
2 1	3	U	0	1	1	40	Р	S	0	1						
2 1	4	U	0	1	2	40	Р	S	0	1						
2 1	5	U	0	1	4	40	Р	s	0	1						
2 1	6	U	0	1	5	40	Р	S	0	1						

Line I	NO.			azard	ous	B. Estimated	C. Unit of								C). Pr	ocesses
		,	Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	cess (Code	:S		(2) Process Description (if code is not entered in 7.D1))
						Т	echnical Ar	ea 6	63 (COI	ntir	ıue	d)				
2 1	7	U	0	1	6	40	Р	S	0	1							
2 1	8	U	0	1	7	40	Р	S	0	1							
2 1	9	U	0	1	8	40	Р	S	0	1							
2 2	0	U	0	1	9	40	Р	S	0	1							
2 2	1	U	0	2	0	40	Р	S	0	1							
2 2	2	U	0	2	1	40	Р	S	0	1							
2 2	3	U	0	2	2	40	Р	S	0	1							
2 2	4	U	0	2	3	40	Р	S	0	1							
2 2	5	U	0	2	4	40	Р	S	0	1							
2 2	6	U	0	2	5	40	Р	s	0	1							
2 2	7	U	0	2	6	40	Р	S	0	1							
2 2	8	U	0	2	7	40	Р	S	0	1							
2 2	9	U	0	2	8	40	Р	S	0	1							
2 3	0	U	0	2	9	40	Р	S	0	1							
2 3	1	U	0	3	0	40	Р	s	0	1							
2 3	2	U	0	3	1	40	Р	S	0	1							
2 3	3	U	0	3	2	40	Р	S	0	1							
2 3	4	U	0	3	3	40	Р	S	0	1							
2 3	5	U	0	3	4	40	Р	s	0	1							
2 3	6	U	0	3	5	40	Р	S	0	1							
2 3	7	U	0	3	6	40	Р	S	0	1							
2 3	8	U	0	3	7	40	Р	S	0	1							
2 3	9	U	0	3	8	40	Р	s	0	1							
2 4	0	U	0	3	9	40	Р	S	0	1							
2 4	1	U	0	4	1	40	Р	S	0	1							
2 4	2	U	0	4	2	40	Р	s	0	1							
2 4	3	U	0	4	3	40	Р	S	0	1							
2 4	4	U	0	4	4	40	Р	S	0	1							
2 4	5	U	0	4	5	40	Р	s	0	1							
2 4	6	U	0	4	6	40	Р	s	0	1							
2 4	7	U	0	4	7	40	Р	s	0	1							
2 4	8	U	0	4	8	40	Р	s	0	1							
2 4	9	U	0	4	9	40	Р	S	0	1							
2 5	0	U	0	5	0	40	Р	S	0	1							
2 5	1	U	0	5	1	40	Р	S	0	1							
2 5	2	U	0	5	2	40	Р	S	0	1							

	No.		ЕРА Н			B. Estimated	C. Unit of									ocesses
Line	: INO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess	Code	s	(2) Process Description (if code is not entered in 7.D1))
		•					echnical Ar	ea (63 (COI	ntir	iue	d)			
2 5	3	U	0	5	3	40	Р	S	0	1						
2 5	4	U	0	5	5	40	Р	S	0	1						
2 5	5	U	0	5	6	40	Р	s	0	1						
2 5	6	U	0	5	7	40	Р	S	0	1						
2 5	7	U	0	5	8	40	Р	S	0	1						
2 5	8	U	0	5	9	40	Р	s	0	1						
2 5	9	U	0	6	0	40	Р	s	0	1						
2 6	0	U	0	6	1	40	Р	s	0	1						
2 6	1	U	0	6	2	40	Р	S	0	1						
2 6	2	U	0	6	3	40	Р	s	0	1						
2 6	3	U	0	6	4	40	Р	s	0	1						
2 6	4	U	0	6	6	40	Р	S	0	1						
2 6	5	U	0	6	7	40	Р	S	0	1						
2 6	6	U	0	6	8	40	Р	s	0	1						
2 6	7	U	0	6	9	40	Р	S	0	1						
2 6	8	U	0	7	0	40	Р	S	0	1						
2 6	9	U	0	7	1	40	Р	S	0	1						
2 7	0	U	0	7	2	40	Р	S	0	1						
2 7	1	U	0	7	3	40	Р	S	0	1						
2 7	2	U	0	7	4	40	Р	S	0	1						
2 7	3	U	0	7	5	40	Р	S	0	1						
2 7	4	U	0	7	6	40	Р	S	0	1						
2 7	5	U	0	7	7	40	Р	S	0	1						
2 7	6	U	0	7	8	40	Р	S	0	1						
2 7	7	U	0	7	9	40	Р	s	0	1						
2 7	8	U	0	8	0	120	Р	s	0	1						
2 7	9	U	0	8	1	40	Р	s	0	1						
28	0	U	0	8	2	40	Р	s	0	1						
28	1	U	0	8	3	40	Р	S	0	1						
28	2	U	0	8	4	40	Р	s	0	1						
28	3	U	0	8	5	40	Р	s	0	1						
28	4	U	0	8	6	40	Р	s	0	1						
28	5	U	0	8	7	40	Р	S	0	1						
28	6	U	0	8	8	40	Р	S	0	1						
28	7	U	0	8	9	40	Р	s	0	1						
28	8	U	0	9	0	40	Р	S	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					(-)				ocesses
Line			Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	:S	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (63 (CO	ntir	iue	d)			
28	9	U	0	9	1	40	Р	s	0	1						
2 9	0	U	0	9	2	40	Р	s	0	1						
2 9	1	U	0	9	3	40	Р	s	0	1						
2 9	2	U	0	9	4	40	Р	s	0	1						
2 9	3	U	0	9	5	40	Р	s	0	1						
2 9	4	U	0	9	6	40	Р	s	0	1						
2 9	5	U	0	9	7	40	Р	s	0	1						
2 9	6	U	0	9	8	40	Р	s	0	1						
2 9	7	U	0	9	9	40	Р	S	0	1						
2 9	8	U	1	0	1	40	Р	s	0	1						
2 9	9	U	1	0	2	40	Р	s	0	1						
3 0	0	U	1	0	3	40	Р	s	0	1						
3 0	1	U	1	0	5	40	Р	S	0	1						
3 0	2	U	1	0	6	40	Р	s	0	1						
3 0	3	U	1	0	7	40	Р	s	0	1						
3 0	4	U	1	0	8	40	Р	s	0	1						
3 0	5	U	1	0	9	40	Р	S	0	1						
3 0	6	U	1	1	0	40	Р	s	0	1						
3 0	7	U	1	1	1	40	Р	s	0	1						
3 0	8	U	1	1	2	40	Р	s	0	1						
3 0	9	U	1	1	3	40	Р	s	0	1						
3 1	0	U	1	1	4	40	Р	s	0	1						
3 1	1	U	1	1	5	40	Р	s	0	1						
3 1	2	U	1	1	6	40	Р	S	0	1						
3 1	3	U	1	1	7	40	Р	s	0	1						
3 1	4	U	1	1	8	40	Р	s	0	1						
3 1	5	U	1	1	9	40	Р	s	0	1						
3 1	6	U	1	2	0	40	Р	s	0	1						
3 1	7	U	1	2	1	40	Р	s	0	1						
3 1	8	U	1	2	2	70	Р	s	0	1						
3 1	9	U	1	2	3	40	Р	s	0	1						
3 2	0	U	1	2	4	40	Р	s	0	1						
3 2	1	U	1	2	5	40	Р	s	0	1						
3 2	2	U	1	2	6	40	Р	s	0	1						
3 2	3	U	1	2	7	40	Р	S	0	1						
3 2	4	U	1	2	8	40	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of						•			ocesses
Line	: INO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
		•					echnical Ar	ea (63 (COI	ntir	ue	d)			
3 2	5	U	1	2	9	40	Р	S	0	1						
3 2	6	U	1	3	0	40	Р	S	0	1						
3 2	7	U	1	3	1	40	Р	s	0	1						
3 2	8	U	1	3	2	40	Р	s	0	1						
3 2	9	U	1	3	3	40	Р	S	0	1						
3 3	0	U	1	3	4	120	Р	S	0	1						
3 3	1	U	1	3	5	40	Р	S	0	1						
3 3	2	U	1	3	6	40	Р	s	0	1						
3 3	3	U	1	3	7	40	Р	S	0	1						
3 3	4	U	1	3	8	40	Р	S	0	1						
3 3	5	U	1	4	0	40	Р	S	0	1						
3 3	6	U	1	4	1	40	Р	s	0	1						
3 3	7	U	1	4	2	40	Р	S	0	1						
3 3	8	U	1	4	3	40	Р	s	0	1						
3 3	9	U	1	4	4	40	Р	s	0	1						
3 4	0	U	1	4	5	40	Р	S	0	1						
3 4	1	U	1	4	6	40	Р	S	0	1						
3 4	2	U	1	4	7	40	Р	s	0	1						
3 4	3	U	1	4	8	40	Р	s	0	1						
3 4	4	U	1	4	9	40	Р	S	0	1						
3 4	5	U	1	5	0	40	Р	S	0	1						
3 4	6	U	1	5	1	70	Р	s	0	1						
3 4	7	U	1	5	2	40	Р	s	0	1						
3 4	8	U	1	5	3	40	Р	S	0	1						
3 4	9	U	1	5	4	40	Р	s	0	1						
3 5	0	U	1	5	5	40	Р	S	0	1						
3 5	1	U	1	5	6	40	Р	S	0	1						
3 5	2	U	1	5	7	40	Р	S	0	1						
3 5	3	U	1	5	8	40	Р	s	0	1						
3 5	4	U	1	5	9	40	Р	s	0	1						
3 5	5	U	1	6	0	40	Р	S	0	1						
3 5	6	U	1	6	1	40	Р	s	0	1						
3 5	7	U	1	6	2	40	Р	s	0	1						
3 5	8	U	1	6	3	40	Р	s	0	1						
3 5	9	U	1	6	4	40	Р	s	0	1						
3 6	0	U	1	6	5	40	Р	s	0	1						

N M 0 8 9 0 0 1	0 5 1 5
-----------------	---------

Line	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	e NO.		Waste			Annual Qty of Waste	Measure				(1)	Prod	cess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea 6	63 (CO	ntir	nue	d)			
3 6	1	U	1	6	6	40	Р	S	0	1						
3 6	2	U	1	6	7	40	Р	S	0	1						
3 6	3	U	1	6	8	40	Р	S	0	1						
3 6	4	U	1	6	9	40	Р	s	0	1						
3 6	5	U	1	7	0	40	Р	S	0	1						
3 6	6	U	1	7	1	40	Р	S	0	1						
3 6	7	U	1	7	2	40	Р	s	0	1						
3 6	8	U	1	7	3	40	Р	s	0	1						
3 6	9	U	1	7	4	40	Р	S	0	1						
3 7	0	U	1	7	6	40	Р	s	0	1						
3 7	1	U	1	7	7	40	Р	S	0	1						
3 7	2	U	1	7	8	40	Р	S	0	1						
3 7	3	U	1	7	9	40	Р	S	0	1						
3 7	4	U	1	8	0	40	Р	S	0	1						
3 7	5	U	1	8	1	40	Р	S	0	1						
3 7	6	U	1	8	2	40	Р	S	0	1						
3 7	7	U	1	8	3	40	Р	S	0	1						
3 7	8	U	1	8	4	40	Р	S	0	1						
3 7	9	U	1	8	5	40	Р	S	0	1						
3 8	0	U	1	8	6	40	Р	S	0	1						
3 8	1	U	1	8	7	40	Р	S	0	1						
3 8	2	U	1	8	8	40	Р	S	0	1						
3 8	3	U	1	8	9	40	Р	S	0	1						
3 8	4	U	1	9	0	40	Р	S	0	1						
3 8	5	U	1	9	1	40	Р	s	0	1						
3 8	6	U	1	9	2	40	Р	s	0	1						
3 8	7	U	1	9	3	40	Р	s	0	1						
3 8	8	U	1	9	4	40	Р	s	0	1						
3 8	9	U	1	9	6	40	Р	S	0	1						
3 9	0	U	1	9	7	40	Р	s	0	1						
3 9	1	U	2	0	0	40	Р	s	0	1						
3 9	2	U	2	0	1	40	Р	s	0	1						
3 9	3	U	2	0	2	40	Р	s	0	1						
3 9	4	U	2	0	3	40	Р	s	0	1						
3 9	5	U	2	0	4	40	Р	s	0	1						
3 9	6	U	2	0	5	40	Р	S	0	1						

Line	No	A.	EPA H	azard	ous	B. Estimated	C. Unit of								С). Pr	ocesses
Line	NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess (Code	:S		(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea 6	63 (COI	ntir	ıue	d)				
3 9	7	U	2	0	6	40	Р	S	0	1							
3 9	8	U	2	0	7	40	Р	S	0	1							
3 9	9	J	2	0	8	40	Р	S	0	1							
4 0	0	כ	2	0	9	40	Р	S	0	1							
4 0	1	U	2	1	0	40	Р	S	0	1							
4 0	2	U	2	1	1	40	Р	S	0	1							
4 0	3	U	2	1	3	40	Р	S	0	1							
4 0	4	U	2	1	4	40	Р	s	0	1							
4 0	5	U	2	1	5	40	Р	S	0	1							
4 0	6	U	2	1	6	40	Р	s	0	1							
4 0	7	U	2	1	7	40	Р	S	0	1							
4 0	8	U	2	1	8	40	Р	S	0	1							
4 0	9	U	2	1	9	40	Р	S	0	1							
41	0	U	2	2	0	70	Р	S	0	1							
41	1	U	2	2	1	40	Р	s	0	1							
41	2	U	2	2	2	40	Р	S	0	1							
41	3	U	2	2	3	40	Р	S	0	1							
41	4	U	2	2	5	40	Р	S	0	1							
41	5	U	2	2	6	70	Р	s	0	1							
41	6	U	2	2	7	40	Р	S	0	1							
41	7	U	2	2	8	70	Р	S	0	1							
41	8	U	2	3	4	40	Р	s	0	1							
41	9	U	2	3	5	40	Р	s	0	1							
4 2	0	U	2	3	6	40	Р	S	0	1							
4 2	1	U	2	3	7	40	Р	S	0	1							
4 2	2	U	2	3	8	40	Р	s	0	1							
4 2	3	U	2	3	9	70	Р	s	0	1							
4 2	4	U	2	4	0	40	Р	S	0	1							
4 2	5	U	2	4	3	40	Р	s	0	1							
4 2	6	U	2	4	4	40	Р	s	0	1							
4 2	7	U	2	4	6	40	Р	s	0	1							
4 2	8	U	2	4	7	40	Р	s	0	1							
4 2	9	U	2	4	8	40	Р	S	0	1							
4 3	0	U	2	4	9	40	Р	S	0	1							
4 3	1	U	2	7	1	40	Р	S	0	1							
4 3	2	U	2	7	8	40	Р	S	0	1							

Line	No.	A.	ЕРА Н	azard	ous	B. Estimated	C. Unit of								D	. Pr	ocesses
Line	· NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s		(2) Process Description (if code is not entered in 7.D1))
						Т	echnical Ar	ea (63 (CO	ntir	nue	d)				
4 3	3	U	2	7	9	40	Р	S	0	1							
4 3	4	U	2	8	0	40	Р	S	0	1							
4 3	5	U	3	2	8	40	Р	S	0	1							
4 3	6	U	3	5	3	40	Р	S	0	1							
4 3	7	U	3	5	9	40	Р	S	0	1							
4 3	8	U	3	6	4	40	Р	S	0	1							
4 3	9	U	3	6	7	40	Р	S	0	1							
4 4	0	U	3	7	2	40	Р	S	0	1							
4 4	1	U	3	7	3	40	Р	S	0	1							
4 4	2	U	3	8	7	40	Р	s	0	1							
4 4	3	U	3	8	9	40	Р	s	0	1							
4 4	4	U	3	9	4	40	Р	S	0	1							
4 4	5	U	3	9	5	40	Р	S	0	1							
4 4	6	U	4	0	4	40	Р	S	0	1							
4 4	7	U	4	0	9	40	Р	S	0	1							
4 4	8	U	4	1	0	40	Р	S	0	1							
4 4	9	U	4	1	1	40	Р	S	0	1							

N M 0 8 9 0 0 1	0 5 1 5
-----------------	---------

	e No.		EPA H			B. Estimated	C. Unit of									ocesses
LIII	e NO.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
						Waste	Techni	cal	Ar	ea (60					
	1	D	0	0	1	21,727	Р	S	0	1						
	2	D	0	0	2	13,931	Р	S	0	1						
	3	D	0	0	3	2,903	Р	S	0	1						
	4	D	0	0	4	6,508	Р	S	0	1	Т	0	4			
	5	D	0	0	5	2,382	Р	S	0	1	Т	0	4			
	6	D	0	0	6	5, 751	Р	S	0	1	Т	0	4			
	7	D	0	0	7	9, 060	Р	S	0	1	Т	0	4			
	8	D	0	0	8	15,914	Р	S	0	1	Т	0	4			
	9	D	0	0	9	2,433	Р	S	0	1	Т	0	4			
1	0	D	0	1	0	4,850	Р	S	0	1	Т	0	4			
1	1	D	0	1	1	8,799	Р	S	0	1	Т	0	4			
1	2	D	0	1	2	100	Р	S	0	1						
1	3	D	0	1	3	100	Р	S	0	1						
1	4	D	0	1	4	100	Р	S	0	1						
1	5	D	0	1	5	100	Р	S	0	1						
1	6	D	0	1	6	44	Р	S	0	1						
1	7	D	0	1	7	66	Р	S	0	1						
1	8	D	0	1	8	1,283	Р	S	0	1	Т	0	4			
1	9	D	0	1	9	2,949	Р	S	0	1	Т	0	4			
2	0	D	0	2	0	100	Р	S	0	1	Т	0	4			
2	1	D	0	2	1	1,909	Р	S	0	1	Т	0	4			
2	2	D	0	2	2	6,156	Р	S	0	1	Т	0	4			
2	3	D	0	2	3	100	Р	S	0	1	Т	0	4			
2	4	D	0	2	4	100	Р	S	0	1	Т	0	4			
2	5	D	0	2	5	100	Р	S	0	1	Т	0	4			
2	6	D	0	2	6	518	Р	S	0	1	Т	0	4			
2	7	D	0	2	7	55	Р	S	0	1	Т	0	4			
2	8	D	0	2	8	3,053	Р	S	0	1	Т	0	4			
2	9	D	0	2	9	293	Р	S	0	1	Т	0	4			
3	0	D	0	3	0	5,491	Р	S	0	1	Т	0	4			
3	1	D	0	3	1	293	Р	S	0	1	Т	0	4			
3	2	D	0	3	2	3,135	Р	S	0	1	Т	0	4			
3	3	D	0	3	3	48	Р	S	0	1	Т	0	4			
3	4	D	0	3	4	1,228	Р	S	0	1	Т	0	4			
3	5	D	0	3	5	1,979	Р	s	0	1	Т	0	4			
3	6	D	0	3	6	549	Р	S	0	1	Т	0	4			

N M 0 8 9 0 0 1 0 5 1	5
-----------------------	---

Line	No.		EPA H			B. Estimated	C. Unit of						•			ocesses
LIII	e NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	ue	d)			
3	7	D	0	3	7	761	Р	s	0	1	Т	0	4			
3	8	D	0	3	8	2,629	Р	s	0	1	Т	0	4			
3	9	D	0	3	9	1,658	Р	S	0	1	Т	0	4			
4	0	D	0	4	0	1,662	Р	s	0	1	Т	0	4			
4	1	D	0	4	1	293	Р	S	0	1	Т	0	4			
4	2	D	0	4	2	1,182	Р	S	0	1	Т	0	4			
4	3	D	0	4	3	655	Р	S	0	1	Т	0	4			
4	4	F	0	0	1	442,263	Р	S	0	1	Т	0	4			
4	5	F	0	0	2	16,083	Р	S	0	1	Т	0	4			
4	6	F	0	0	3	36,170	Р	S	0	1						
4	7	F	0	0	4	925	Р	S	0	1	Т	0	4			
4	8	F	0	0	5	27,196	Р	S	0	1						
4	9	F	0	0	6	100	Р	S	0	1						
5	0	F	0	0	7	74	Р	s	0	1						
5	1	F	0	0	8	100	Р	S	0	1						
5	2	F	0	0	9	165	Р	S	0	1						
5	3	F	0	1	0	100	Р	S	0	1						
5	4	F	0	1	1	100	Р	S	0	1						
5	5	F	0	1	2	100	Р	S	0	1						
5	6	F	0	1	9	100	Р	S	0	1						
5	7	F	0	2	0	100	Р	S	0	1						
5	8	F	0	2	1	100	Р	S	0	1						
5	9	F	0	2	2	100	Р	S	0	1						
6	0	F	0	2	3	100	Р	S	0	1						
6	1	F	0	2	4	100	Р	s	0	1						
6	2	F	0	2	5	100	Р	s	0	1						
6	3	F	0	2	6	100	Р	s	0	1						
6	4	F	0	2	7	165	Р	s	0	1						
6	5	F	0	2	8	100	Р	S	0	1						
6	6	F	0	3	2	100	Р	S	0	1						
6	7	F	0	3	4	100	Р	S	0	1						
6	8	F	0	3	5	100	Р	S	0	1						
6	9	F	0	3	7	100	Р	S	0	1						
7	0	F	0	3	8	100	Р	S	0	1						
7	1	F	0	3	9	100	Р	S	0	1						
7	2	K	0	4	4	100	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of										ocesses
Line	: NO.	,	Waste	No.		Annual Qty of Waste	Measure	(1) Process Codes									(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (COI	ntir	iue	d)				
7	3	K	0	4	5	100	Р	s	0	1							
7	4	K	0	4	6	100	Р	S	0	1							
7	5	K	0	4	7	100	Р	s	0	1							
7	6	K	0	8	4	100	Р	s	0	1							
7	7	K	1	0	1	100	Р	S	0	1							
7	8	K	1	0	2	100	Р	S	0	1							
7	9	Р	0	0	1	100	Р	S	0	1							
8	0	Р	0	0	2	100	Р	s	0	1							
8	1	Р	0	0	3	293	Р	S	0	1							
8	2	Р	0	0	4	100	Р	S	0	1							
8	3	Р	0	0	5	100	Р	S	0	1							
8	4	Р	0	0	6	143	Р	s	0	1							
8	5	Р	0	0	7	100	Р	S	0	1							
8	6	Р	0	0	8	100	Р	s	0	1							
8	7	Р	0	0	9	100	Р	s	0	1							
8	8	Р	0	1	0	100	Р	S	0	1							
8	9	Р	0	1	1	143	Р	S	0	1							
9	0	Р	0	1	2	293	Р	s	0	1							
9	1	Р	0	1	3	100	Р	s	0	1							
9	2	Р	0	1	4	100	Р	S	0	1							
9	3	Р	0	1	5	293	Р	S	0	1							
9	4	Р	0	1	6	100	Р	S	0	1							
9	5	Р	0	1	7	100	Р	S	0	1							
9	6	Р	0	1	8	100	Р	S	0	1							
9	7	Р	0	2	0	100	Р	S	0	1							
9	8	Р	0	2	1	100	Р	S	0	1							
9	9	Р	0	2	2	17	Р	S	0	1							
1 0	0	Р	0	2	3	100	Р	s	0	1							
1 0	1	Р	0	2	4	100	Р	S	0	1							
1 0	2	Р	0	2	6	100	Р	S	0	1							
1 0	3	Р	0	2	7	100	Р	s	0	1							
1 0	4	Р	0	2	8	100	Р	s	0	1							
1 0	5	Р	0	2	9	293	Р	s	0	1							
1 0	6	Р	0	3	0	28	Р	s	0	1							
1 0	7	Р	0	3	1	485	Р	S	0	1							
1 0	8	Р	0	3	3	143	Р	s	0	1							

Line	No	Α.	EPA H	azard	ous	B. Estimated	C. Unit of							C		ocesses
Line	: INO.		Waste	No.		Annual Qty of Waste	Measure				(2) Process Description (if code is not entered in 7.D1))					
							echnical Ar	ea (60 (CO	ntir	nue	d)			
10	9	Р	0	3	4	100	Р	S	0	1						
11	0	Р	0	3	6	100	Р	S	0	1						
11	1	Р	0	3	7	100	Р	S	0	1						
11	2	Р	0	3	8	227	Р	s	0	1						
11	3	Р	0	3	9	100	Р	S	0	1						
11	4	Р	0	4	0	100	Р	S	0	1						
11	5	Р	0	4	1	100	Р	s	0	1						
11	6	Р	0	4	2	100	Р	S	0	1						
11	7	Р	0	4	3	143	Р	S	0	1						
11	8	Р	0	4	4	100	Р	S	0	1						
11	9	Р	0	4	5	100	Р	S	0	1						
1 2	0	Р	0	4	6	100	Р	s	0	1						
1 2	1	Р	0	4	7	100	Р	S	0	1						
1 2	2	Р	0	4	8	143	Р	S	0	1						
1 2	3	Р	0	4	9	100	Р	S	0	1						
12	4	Р	0	5	0	100	Р	S	0	1						
12	5	Р	0	5	1	100	Р	S	0	1						
1 2	6	Р	0	5	4	100	Р	S	0	1						
1 2	7	Р	0	5	6	2,624	Р	S	0	1						
1 2	8	Р	0	5	7	100	Р	S	0	1						
12	9	Р	0	5	8	100	Р	S	0	1						
13	0	Р	0	5	9	100	Р	S	0	1						
13	1	Р	0	6	0	100	Р	S	0	1						
13	2	Р	0	6	2	100	Р	S	0	1						
13	3	Р	0	6	3	293	Р	S	0	1						
13	4	Р	0	6	4	100	Р	S	0	1						
13	5	Р	0	6	5	100	Р	S	0	1						
13	6	Р	0	6	6	100	Р	s	0	1						
13	7	Р	0	6	7	100	Р	S	0	1						
13	8	Р	0	6	8	293	Р	S	0	1						
1 3	9	Р	0	6	9	100	Р	S	0	1						
14	0	Р	0	7	0	100	Р	S	0	1						
14	1	Р	0	7	1	100	Р	S	0	1						
14	2	Р	0	7	2	100	Р	S	0	1						
14	3	Р	0	7	3	293	Р	S	0	1						
14	4	Р	0	7	4	100	Р	S	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess ((2) Process Description (if code is not entered in 7.D1))		
		•					echnical Ar	ea (60 (CO	ntir	nue	d)			
14	5	Р	0	7	5	100	Р	S	0	1						
14	6	Р	0	7	6	403	Р	S	0	1						
14	7	Р	0	7	7	100	Р	S	0	1						
14	8	Р	0	7	8	425	Р	S	0	1						
14	9	Р	0	8	1	100	Р	S	0	1						
1 5	0	Р	0	8	2	100	Р	S	0	1						
1 5	1	Р	0	8	4	100	Р	S	0	1						
1 5	2	Р	0	8	5	100	Р	S	0	1						
1 5	3	Р	0	8	7	5	Р	S	0	1						
1 5	4	Р	0	8	8	100	Р	s	0	1						
1 5	5	Р	0	8	9	100	Р	s	0	1						
1 5	6	Р	0	9	2	143	Р	S	0	1						
1 5	7	Р	0	9	3	100	Р	S	0	1						
1 5	8	Р	0	9	4	100	Р	S	0	1						
1 5	9	Р	0	9	5	293	Р	S	0	1						
1 6	0	Р	0	9	6	293	Р	S	0	1						
1 6	1	Р	0	9	7	100	Р	S	0	1						
16	2	Р	0	9	8	293	Р	S	0	1						
16	3	Р	0	9	9	100	Р	S	0	1						
1 6	4	Р	1	0	1	100	Р	S	0	1						
16	5	Р	1	0	2	100	Р	S	0	1						
16	6	Р	1	0	3	100	Р	S	0	1						
16	7	Р	1	0	4	143	Р	S	0	1						
16	8	Р	1	0	5	5	Р	S	0	1						
16	9	Р	1	0	6	293	Р	S	0	1						
17	0	Р	1	0	8	100	Р	S	0	1						
17	1	Р	1	0	9	100	Р	S	0	1						
17	2	Р	1	1	0	100	Р	S	0	1						
17	3	Р	1	1	1	100	Р	S	0	1						
17	4	Р	1	1	2	143	Р	S	0	1						
17	5	Р	1	1	3	293	Р	s	0	1						
17	6	Р	1	1	4	100	Р	s	0	1						
17	7	Р	1	1	5	100	Р	S	0	1						
17	8	Р	1	1	6	100	Р	s	0	1						
17	9	Р	1	1	8	100	Р	S	0	1						
18	0	Р	1	1	9	143	Р	S	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					\- /.	, (3.			 ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	nue	d)			
18	1	Р	1	2	0	293	Р	s	0	1						
18	2	Р	1	2	1	100	Р	S	0	1						
18	3	Р	1	2	2	100	Р	S	0	1						
18	4	Р	1	2	3	100	Р	s	0	1						
18	5	Р	1	2	7	100	Р	S	0	1						
18	6	Р	1	2	8	100	Р	S	0	1						
18	7	Р	1	8	5	100	Р	s	0	1						
18	8	Р	1	8	8	100	Р	S	0	1						
18	9	Р	1	8	9	100	Р	S	0	1						
19	0	Р	1	9	0	100	Р	S	0	1						
19	1	Р	1	9	1	100	Р	s	0	1						
19	2	Р	1	9	2	100	Р	s	0	1						
19	3	Р	1	9	4	100	Р	S	0	1						
19	4	Р	1	9	6	100	Р	s	0	1						
19	5	Р	1	9	7	100	Р	s	0	1						
19	6	Р	1	9	8	100	Р	S	0	1						
19	7	Р	1	9	9	100	Р	s	0	1						
19	8	Р	2	0	1	100	Р	s	0	1						
19	9	Р	2	0	2	100	Р	s	0	1						
2 0	0	Р	2	0	3	100	Р	S	0	1						
2 0	1	Р	2	0	4	100	Р	S	0	1						
2 0	2	Р	2	0	5	100	Р	S	0	1						
2 0	3	U	0	0	1	15	Р	S	0	1						
2 0	4	U	0	0	2	45	Р	S	0	1						
2 0	5	U	0	0	3	485	Р	S	0	1						
2 0	6	U	0	0	4	100	Р	S	0	1						
2 0	7	U	0	0	5	100	Р	S	0	1						
2 0	8	U	0	0	6	7	Р	S	0	1						
2 0	9	U	0	0	7	143	Р	s	0	1						
2 1	0	U	0	0	8	8	Р	S	0	1						
2 1	1	U	0	0	9	143	Р	s	0	1						
2 1	2	U	0	1	0	100	Р	s	0	1						
2 1	3	U	0	1	1	100	Р	s	0	1						
2 1	4	U	0	1	2	293	Р	s	0	1						
2 1	5	U	0	1	4	100	Р	S	0	1						
2 1	6	U	0	1	5	100	Р	s	0	1						

Line	No.		EPA H			B. Estimated	C. Unit of						-			ocesses
Line	e NO.		Waste	No.		Annual Qty of	Measure	(1) Process Code								(2) Process Description (if code is not entered in 7.D1))
						Waste T	echnical Ar	ea (60 (COI	ntir	nue	d)			
2 1	7	U	0	1	6	100	Р	S	0	1			Ĺ			
2 1	8	U	0	1	7	100	Р	S	0	1						
2 1	9	U	0	1	8	143	Р	s	0	1						
2 2	0	U	0	1	9	20	Р	s	0	1						
2 2	1	U	0	2	0	100	Р	S	0	1						
2 2	2	U	0	2	1	100	Р	s	0	1						
2 2	3	U	0	2	2	293	Р	s	0	1						
2 2	4	U	0	2	3	100	Р	s	0	1						
2 2	5	U	0	2	4	100	Р	S	0	1						
2 2	6	U	0	2	5	3	Р	S	0	1						
2 2	7	U	0	2	6	100	Р	S	0	1						
2 2	8	U	0	2	7	100	Р	S	0	1						
2 2	9	U	0	2	8	100	Р	S	0	1						
2 3	0	U	0	2	9	293	Р	S	0	1						
2 3	1	U	0	3	0	100	Р	S	0	1						
2 3	2	U	0	3	1	26	Р	S	0	1						
2 3	3	U	0	3	2	100	Р	S	0	1						
2 3	4	U	0	3	3	143	Р	S	0	1						
2 3	5	U	0	3	4	100	Р	S	0	1						
2 3	6	U	0	3	5	100	Р	S	0	1						
2 3	7	U	0	3	6	100	Р	S	0	1						
2 3	8	U	0	3	7	143	Р	S	0	1						
2 3	9	U	0	3	8	100	Р	S	0	1						
2 4	0	U	0	3	9	100	Р	S	0	1						
2 4	1	U	0	4	1	143	Р	S	0	1						
2 4	2	U	0	4	2	100	Р	S	0	1						
2 4	3	U	0	4	3	100	Р	S	0	1						
2 4	4	U	0	4	4	152	Р	S	0	1						
2 4	5	U	0	4	5	293	Р	S	0	1						
2 4	6	U	0	4	6	100	Р	S	0	1						
2 4	7	U	0	4	7	100	Р	S	0	1						
2 4	8	U	0	4	8	100	Р	S	0	1						
2 4	9	U	0	4	9	100	Р	s	0	1						
2 5	0	U	0	5	0	100	Р	S	0	1						
2 5	1	U	0	5	1	100	Р	S	0	1						

	No.		EPA H			B. Estimated	C. Unit of					(-)	/ (ocesses
Line	. 140.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (COI	ntir	ue	d)			
2 5	2	U	0	5	2	18	Р	S	0	1						
2 5	3	U	0	5	3	3	Р	s	0	1						
2 5	4	U	0	5	5	143	Р	s	0	1						
2 5	5	U	0	5	6	61	Р	s	0	1						
2 5	6	U	0	5	7	293	Р	S	0	1						
2 5	7	U	0	5	8	100	Р	S	0	1						
2 5	8	U	0	5	9	100	Р	S	0	1						
2 5	9	U	0	6	0	100	Р	S	0	1						
2 6	0	U	0	6	1	100	Р	S	0	1						
2 6	1	U	0	6	2	100	Р	S	0	1						
2 6	2	U	0	6	3	100	Р	S	0	1						
2 6	3	U	0	6	4	100	Р	s	0	1						
2 6	4	U	0	6	6	100	Р	S	0	1						
2 6	5	U	0	6	7	3	Р	S	0	1						
2 6	6	U	0	6	8	12	Р	S	0	1						
2 6	7	U	0	6	9	100	Р	s	0	1						
2 6	8	U	0	7	0	165	Р	S	0	1						
2 6	9	U	0	7	1	100	Р	S	0	1						
2 7	0	U	0	7	2	100	Р	S	0	1						
2 7	1	U	0	7	3	100	Р	S	0	1						
2 7	2	U	0	7	4	100	Р	S	0	1						
2 7	3	U	0	7	5	381	Р	S	0	1						
2 7	4	U	0	7	6	100	Р	S	0	1						
2 7	5	U	0	7	7	27	Р	S	0	1						
2 7	6	U	0	7	8	100	Р	S	0	1						
2 7	7	U	0	7	9	100	Р	S	0	1						
2 7	8	U	0	8	0	4,129	Р	S	0	1						
2 7	9	U	0	8	1	100	Р	S	0	1						
28	0	U	0	8	2	100	Р	S	0	1						
28	1	U	0	8	3	9	Р	s	0	1						
28	2	U	0	8	4	100	Р	S	0	1						
28	3	U	0	8	5	143	Р	s	0	1						
28	4	U	0	8	6	100	Р	s	0	1						
28	5	U	0	8	7	100	Р	s	0	1						
28	6	U	0	8	8	100	Р	s	0	1						
28	7	U	0	8	9	100	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of						•				ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure	(1) Process Codes									(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (COI	ntir	ue	d)				
28	8	U	0	9	0	100	Р	s	0	1							
28	9	U	0	9	1	518	Р	S	0	1							
2 9	0	U	0	9	2	143	Р	s	0	1							
2 9	1	U	0	9	3	100	Р	s	0	1							
2 9	2	U	0	9	4	100	Р	S	0	1							
2 9	3	U	0	9	5	100	Р	s	0	1							
2 9	4	U	0	9	6	100	Р	s	0	1							
2 9	5	U	0	9	7	100	Р	s	0	1							
2 9	6	U	0	9	8	100	Р	S	0	1							
2 9	7	U	0	9	9	100	Р	s	0	1							
2 9	8	U	1	0	1	100	Р	s	0	1							
2 9	9	U	1	0	2	100	Р	S	0	1							
3 0	0	U	1	0	3	9	Р	S	0	1							
3 0	1	U	1	0	5	100	Р	s	0	1							
3 0	2	U	1	0	6	100	Р	S	0	1							
3 0	3	U	1	0	7	100	Р	S	0	1							
3 0	4	U	1	0	8	104	Р	S	0	1							
3 0	5	U	1	0	9	143	Р	S	0	1							
3 0	6	U	1	1	0	100	Р	S	0	1							
3 0	7	U	1	1	1	100	Р	S	0	1							
3 0	8	U	1	1	2	5	Р	S	0	1							
3 0	9	U	1	1	3	100	Р	S	0	1							
3 1	0	U	1	1	4	100	Р	S	0	1							
3 1	1	U	1	1	5	3	Р	S	0	1							
3 1	2	U	1	1	6	100	Р	s	0	1							
3 1	3	U	1	1	7	18	Р	s	0	1							
3 1	4	U	1	1	8	100	Р	s	0	1							
3 1	5	U	1	1	9	100	Р	s	0	1							
3 1	6	U	1	2	0	100	Р	S	0	1							
3 1	7	U	1	2	1	293	Р	s	0	1							
3 1	8	U	1	2	2	778	Р	s	0	1							
3 1	9	U	1	2	3	8	Р	s	0	1							
3 2	0	U	1	2	4	143	Р	s	0	1							
3 2	1	U	1	2	5	3	Р	s	0	1							
3 2	2	U	1	2	6	100	Р	s	0	1							
3 2	3	U	1	2	7	100	Р	s	0	1							

	No.		EPA H			B. Estimated	C. Unit of						•				ocesses
Line	e NO.		Waste	No.		Annual Qty of Waste	Measure	(1) Process Codes									(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (COI	ntir	ue	d)				
3 2	4	U	1	2	8	100	Р	s	0	1							
3 2	5	U	1	2	9	100	Р	S	0	1							
3 2	6	U	1	3	0	100	Р	s	0	1							
3 2	7	U	1	3	1	293	Р	S	0	1							
3 2	8	U	1	3	2	100	Р	S	0	1							
3 2	9	U	1	3	3	5	Р	S	0	1							
3 3	0	U	1	3	4	38	Р	S	0	1							
3 3	1	U	1	3	5	8	Р	S	0	1							
3 3	2	U	1	3	6	143	Р	S	0	1							
3 3	3	U	1	3	7	100	Р	S	0	1							
3 3	4	U	1	3	8	100	Р	S	0	1							
3 3	5	U	1	4	0	293	Р	s	0	1							
3 3	6	U	1	4	1	100	Р	S	0	1							
3 3	7	U	1	4	2	100	Р	S	0	1							
3 3	8	U	1	4	3	100	Р	s	0	1							
3 3	9	U	1	4	4	293	Р	S	0	1							
3 4	0	U	1	4	5	293	Р	S	0	1							
3 4	1	U	1	4	6	100	Р	s	0	1							
3 4	2	U	1	4	7	100	Р	s	0	1							
3 4	3	U	1	4	8	100	Р	S	0	1							
3 4	4	U	1	4	9	100	Р	S	0	1							
3 4	5	U	1	5	0	100	Р	S	0	1							
3 4	6	U	1	5	1	13	Р	S	0	1							
3 4	7	U	1	5	2	100	Р	S	0	1							
3 4	8	U	1	5	3	143	Р	S	0	1							
3 4	9	U	1	5	4	83	Р	S	0	1							
3 5	0	U	1	5	5	100	Р	S	0	1							
3 5	1	U	1	5	6	100	Р	s	0	1							
3 5	2	U	1	5	7	100	Р	S	0	1							
3 5	3	U	1	5	8	100	Р	S	0	1							
3 5	4	U	1	5	9	10	Р	s	0	1							
3 5	5	U	1	6	0	293	Р	s	0	1							
3 5	6	U	1	6	1	15	Р	S	0	1							
3 5	7	U	1	6	2	49	Р	S	0	1							
3 5	8	U	1	6	3	143	Р	s	0	1							
3 5	9	U	1	6	4	100	Р	s	0	1							

	No.		EPA H			B. Estimated	C. Unit of										ocesses
Line	NO.		Waste	No.		Annual Qty of Waste	Measure	(2) Process Description (if code is not entered in 7.D1))									
							echnical Ar	ea (60 (COI	ntir	nue	d)				
3 6	0	U	1	6	5	293	Р	s	0	1							
3 6	1	U	1	6	6	100	Р	S	0	1							
3 6	2	U	1	6	7	143	Р	S	0	1							
3 6	3	U	1	6	8	143	Р	S	0	1							
3 6	4	U	1	6	9	12	Р	S	0	1							
3 6	5	U	1	7	0	12	Р	s	0	1							
3 6	6	U	1	7	1	100	Р	s	0	1							
3 6	7	U	1	7	2	100	Р	s	0	1							
3 6	8	U	1	7	3	100	Р	S	0	1							
3 6	9	U	1	7	4	100	Р	s	0	1							
3 7	0	U	1	7	6	100	Р	s	0	1							
3 7	1	U	1	7	7	100	Р	s	0	1							
3 7	2	U	1	7	8	100	Р	S	0	1							
3 7	3	U	1	7	9	100	Р	s	0	1							
3 7	4	U	1	8	0	100	Р	s	0	1							
3 7	5	U	1	8	1	100	Р	s	0	1							
3 7	6	U	1	8	2	100	Р	S	0	1							
3 7	7	U	1	8	3	100	Р	s	0	1							
3 7	8	U	1	8	4	100	Р	s	0	1							
3 7	9	U	1	8	5	100	Р	S	0	1							
3 8	0	U	1	8	6	100	Р	S	0	1							
3 8	1	U	1	8	7	100	Р	s	0	1							
3 8	2	U	1	8	8	293	Р	s	0	1							
3 8	3	U	1	8	9	100	Р	S	0	1							
3 8	4	U	1	9	0	293	Р	S	0	1							
3 8	5	U	1	9	1	100	Р	S	0	1							
3 8	6	U	1	9	2	100	Р	S	0	1							
3 8	7	U	1	9	3	100	Р	S	0	1							
3 8	8	U	1	9	4	100	Р	S	0	1							
3 8	9	U	1	9	6	293	Р	S	0	1							
3 9	0	U	1	9	7	100	Р	S	0	1							
3 9	1	U	2	0	0	100	Р	s	0	1							
3 9	2	U	2	0	1	100	Р	S	0	1							
3 9	3	U	2	0	2	100	Р	S	0	1							
3 9	4	U	2	0	3	100	Р	s	0	1							
3 9	5	U	2	0	4	293	Р	S	0	1							

Lina	No.		EPA H			B. Estimated	C. Unit of					` '					ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure	(1) Process Codes (if code is not entered in 7.D1									
						Т	echnical Ar	ea (60 (COI	ntir	nue	d)				
3 9	6	U	2	0	5	100	Р	S	0	1							
3 9	7	U	2	0	6	100	Р	S	0	1							
3 9	8	U	2	0	7	100	Р	S	0	1							
3 9	9	U	2	0	8	100	Р	S	0	1							
4 0	0	U	2	0	9	100	Р	S	0	1							
4 0	1	U	2	1	0	513	Р	S	0	1							
4 0	2	U	2	1	1	30	Р	S	0	1							
4 0	3	U	2	1	3	33	Р	s	0	1							
4 0	4	U	2	1	4	100	Р	S	0	1							
4 0	5	U	2	1	5	100	Р	s	0	1							
4 0	6	U	2	1	6	293	Р	S	0	1							
4 0	7	U	2	1	7	100	Р	S	0	1							
4 0	8	U	2	1	8	293	Р	S	0	1							
4 0	9	U	2	1	9	293	Р	S	0	1							
41	0	U	2	2	0	20	Р	s	0	1							
4 1	1	U	2	2	1	100	Р	S	0	1							
41	2	U	2	2	2	100	Р	S	0	1							
41	3	U	2	2	3	21	Р	S	0	1							
41	4	U	2	2	5	12	Р	s	0	1							
41	5	U	2	2	6	6,594	Р	S	0	1							
41	6	U	2	2	7	293	Р	S	0	1							
41	7	U	2	2	8	1,219	Р	s	0	1							
41	8	U	2	3	4	100	Р	s	0	1							
4 1	9	U	2	3	5	100	Р	S	0	1							
4 2	0	U	2	3	6	100	Р	s	0	1							
4 2	1	U	2	3	7	100	Р	s	0	1							
4 2	2	U	2	3	8	100	Р	S	0	1							
4 2	3	U	2	3	9	61	Р	s	0	1							
4 2	4	U	2	4	0	143	Р	s	0	1							
4 2	5	U	2	4	3	100	Р	s	0	1							
4 2	6	U	2	4	4	100	Р	S	0	1							
4 2	7	U	2	4	6	231	Р	s	0	1							
4 2	8	U	2	4	7	100	Р	S	0	1							
4 2	9	U	2	4	8	100	Р	S	0	1							
4 3	0	U	2	4	9	100	Р	S	0	1							
4 3	1	U	2	7	1	100	Р	S	0	1							

		A.	ЕРА Н	azard	ous	B. Estimated	C. Unit of								D	. Pr	ocesses
Line	No.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s		(2) Process Description (if code is not entered in 7.D1))
						Т	echnical Ar	ea (60 (CO	ntir	nue	d)				
4 3	2	U	2	7	8	100	Р	S	0	1							
4 3	3	U	2	7	9	100	Р	S	0	1							
4 3	4	U	2	8	0	100	Р	S	0	1							
4 3	5	U	3	2	8	100	Р	s	0	1							
4 3	6	U	3	5	3	100	Р	S	0	1							
4 3	7	U	3	5	9	100	Р	s	0	1							
4 3	8	U	3	6	4	100	Р	s	0	1							
4 3	9	U	3	6	7	100	Р	s	0	1							
4 4	0	U	3	7	2	100	Р	S	0	1							
4 4	1	U	3	7	3	100	Р	s	0	1							
4 4	2	U	3	8	7	100	Р	s	0	1							
4 4	3	U	3	8	9	100	Р	s	0	1							
4 4	4	U	3	9	4	100	Р	S	0	1							
4 4	5	U	3	9	5	100	Р	S	0	1							
4 4	6	U	4	0	4	100	Р	S	0	1							
4 4	7	U	4	0	9	100	Р	s	0	1							
4 4	8	U	4	1	0	100	Р	S	0	1							
4 4	9	U	4	1	1	100	Р	S	0	1							

Technical Area (TA) 60

Document: Class 2 Permit Modification Add TA-60-0017

Date: February 2023

EXPLANATION OF PROCESS CODE LISTINGS AND DESIGN CAPACITIES AT TECHNICAL AREA (TA) 60, BUILDING 0017

Description	Capacity (gallons)	Associated Structure No./Area	Co-Operator
Item 6, Line 25 S01 Container Storage Unit Container storage unit for RCRA¹ - regulated waste	17,600	TA-60-0017, Southern Portion of Building	DOE/Triad

17,600

¹ RCRA is the Resource Conservation and Recovery Act.

TOTAL S01

Document:Class 2 Permit Modification Add TA-60-0017Date:February 2023

EXPLANATION OF PROCESS CODE LISTINGS AND DESIGN CAPACITIES AT TECHNICAL AREA (TA) 60, BUILDING 0017

Description	Capacity (gallons)	Associated Structure No./Area	Co-Operator
Item 6, Line 26 T04 Other Treatment (Macroencapsulation) Other Treatment for RCRA¹ - regulated waste	3,441	TA-60-0017, Southern Portion of Building	DOE/Triad
TOTAL T04	3,441		

¹ RCRA is the Resource Conservation and Recovery Act.

Document:Class 2 Permit Modification Add TA-60-0017Date:February 2023

Tigule 00-1 Technical Area (TA) 60, Building 0017, Site Plan

Document:Class 2 Permit Modification Add TA-60-0017Date:February 2023

TA-60-0017 Process Code S01 and T04, Container Storage and Other Treatment

TA-60-0017
Process Code S01 and T04, Container Storage and Other Treatment

Attachment 2 Seismic Report for the TA-60 Facility

memorandum

Earth and Environmental Sciences Division

To: Oral Saulters, EPC-WMP

Luciana Vigil-Holterman, EPC-WMP

Patrick Padilla, EPC-WMP

From: Elizabeth Miller, EES-14

Emily Schultz-Fellenz, EES-14 Anita Lavadie-Bulnes, EES-14

Date: August 27, 2019

EVALUATION OF POTENTIAL SEISMIC HAZARDS FROM HOLOCENE-AGE SURFACE-RUPTURING FAULTS AT AND AROUND BUILDING 17, TECHNICAL AREA 60, LOS ALAMOS NATIONAL LABORATORY

1 Introduction

For purposes of addressing requirements within the forthcoming Resource Conservation and Recovery Act (RCRA) permit modification request, this memorandum summarizes geologic investigations at and around Building 17 at Technical Area 60 (TA-60-0017) of the Los Alamos National Laboratory (LANL or "the Laboratory") in Los Alamos County, New Mexico. TA-60-0017 (Figure 1) is the proposed location of a new permitted hazardous waste management unit. When selecting a site for a hazardous waste treatment, storage, and/or disposal facility, the owner/operator (in this case, Triad National Security, LLC and the National Nuclear Security Administration [NNSA]) must adhere to certain seismic location standards, as identified in the Code of Federal Regulations, Title 40 (40 CFR), Part 264.18, which requires that portions of new facilities where treatment, storage, or disposal of hazardous (including mixed) waste occur will not be located within 200 ft (61 m) of a fault that has experienced displacement in the Holocene epoch, i.e., within the last 11,700 years. The guidelines used to demonstrate compliance with the aforementioned location standard are presented in 40 CFR, Part 270.14(b)(11).

Previously operated as a support facility for underground testing activities (McGehee et al., 2007), TA-60 currently serves as a pesticide, topsoil, and material storage area. Historically, Building 17 was used as a paint shop, but since October 2018, the southern portion has been operated as a central accumulation area for temporary storage and consolidation of hazardous and mixed waste shipments from generators around the Laboratory. Site review is underway to determine the feasibility of including the location as a one-year permitted container storage unit under the LANL Hazardous Waste Facility Permit.

The building's association with Cold War-era Laboratory mission work prompted TA-60-0017 to be eligible for the National Register of Historic Places in 2006 (McGehee et al., 2007; Purtzer et al., 2019), and the building is currently listed on the Laboratory's internal *Candidates for Preservation* registry. As of the drafting of this memorandum, the building is considered "...a candidate for long-term preservation...and has

been listed as one of a handful of 'signature' Cold War facilities at Los Alamos" and part of a potential Cold War period National Historic Landmark (NHL) District (L. Meyer, personal communication, August 1, 2007; Garcia, 2018). This historical information is provided as context only. Contact the LANL Cultural Resources Program Historic Buildings Technical Lead regarding compliance requirements for this building.

In this memorandum, we address whether TA-60-0017 adheres to the seismic location standard through presentation and summarization of published geologic data. We begin with a brief overview of the general geologic setting of the Laboratory and TA-60, including a Pajarito Plateau-scale map of faults and lineaments to provide context for TA-60's structural setting. Next, we summarize pertinent regional-scale geologic studies and lineament mapping from the mid-1980s to the early 1990s; these studies provided important control on the known extent of possible faults in the TA-60 area. Then we present regional- and local-scale geologic studies near TA-60 from the early 1990s to the present for purposes of evaluating Holocene seismic surface rupture at or near the facility; these studies leveraged earlier studies to confirm whether previously mapped lineaments were faults or fractures. We also include analyses of aerial photography covering a 5-mile (8 km), 3000 ft (915 m), and 200 ft (61 m) radius of the facility and conclude with a brief discussion of field reconnaissance at TA-60 and a summary of observations and geologic site characteristics.

1.1 Definitions

The following technical terms are used frequently throughout this document, and merit consistency in their definition and use. Definitions are taken from The Dictionary of Geological Terms (Bates and Jackson, eds., 1984).

Displacement: a general term for the relative movement of the two sides of a fault, measured in any chosen direction; also, the specific amount of such movement. Within this report, "displacement" and "offset" are interchangeable terms.

Holocene: an epoch of the Quaternary period, from the end of the Pleistocene, approximately 8 thousand years ago (*sic*; Ogg et al. (2008) have updated the beginning of the Holocene to 11.7 ka) to the present time.

Fracture: a crack, joint, fault, or other break in rocks.

Fault: a fracture or fracture zone along which there has been displacement of the sides relative to one another parallel to the fracture.

Lineament: a linear topographic feature of regional extent that is believed to reflect crustal structure. Examples are fault lines, aligned volcanoes, and straight stream courses.

Note that the definition of "lineament" does not imply that such an identified feature is actually a surficial manifestation of crustal structure with recent tectonic activity (e.g., a fault) until the local geology is carefully considered. Additionally, unless otherwise clarified through detailed field examination or other means, the definition of "fault" does not imply a tectonic mechanism for genesis and/or growth; the definition also does not imply that each "fault" is independently seismogenic.

Features defined as faults through geologic mapping must be considered in the context of the surrounding geology before their mechanism of formation is determined.

Figure 1. (a) Overview of the Pajarito Fault System in the vicinity of LANL (gray outline). TA-60 (yellow polygon), Building 0017 (red polygon) is highlighted. PF = Pajarito fault; RCF = Rendija Canyon fault; GMF = Guaje Mountain fault; SCF = Sawyer Canyon fault. Structural mapping (bold purple lines) from Lewis et al. (2009). (b) Detailed view of TA-60 (yellow polygon), Building 0017 (red

polygon), and nearby fault structures (bold purple lines, Lewis et al., 2009). (c) Detailed view of the Rendija Canyon fault zone near TA-60-0017. (d) Exterior of TA-60-0017 and (e) interior of TA-60-0017 from McGehee et al., 2007.

2 General Geologic Setting of the Laboratory & TA-60

The Pajarito Plateau is a high volcanic tableland bounded on its western edge by the Pajarito fault system (PFS). The PFS is a 30-mile-long (50-km-long) system of normal faults locally comprised of the down-to-the-east Pajarito fault (the master fault) and subsidiary down-to-the-west Rendija Canyon, Guaje Mountain, and Sawyer Canyon faults (Figure 1). This fault system forms the local active western margin of the Rio Grande rift near Los Alamos. Each of the three major faults of the PFS exhibit evidence of at least one earthquake (or probable movement) during the Holocene (Gardner et al., 1990; Wong et al. 1995; Kelson et al. 1996; McCalpin 1998, Wong et al., 2007; Lewis et al., 2009).

TA-60 sits atop Sigma Mesa between Sandia and Mortandad Canyons in the north-central part of LANL (Figure 1). The local bedrock is the Bandelier Tuff, which formed in two eruptive pulses from the Valles caldera, located approximately 10 miles (16 km) west of TA-60. The older member of the Bandelier Tuff, the Otowi Member (Qbo), has been dated at 1.61 million years (Ma) (age from Izett and Obradovich 1994). The younger member of the Bandelier Tuff, the Tshirege Member (Qbt), has been dated at 1.256 Ma (age from Phillips et al. 2007) and is widely exposed as the mesa-forming unit around Los Alamos. Tephras and volcaniclastic sediments of the Cerro Toledo interval (Qct) separate the two members of the Bandelier Tuff. Several discrete subunits comprise the Tshirege Member of the Bandelier Tuff (Figure 2); Broxton and Reneau (1995) and Lewis et al. (2009) describe in detail the commonly accepted stratigraphic nomenclature of the Bandelier Tuff. The subunits exposed in the TA-60 area are predominantly Qbt2, Qbt3, and Qbt4.

Figure 2. Cross section of the Bandelier Tuff (modified from Broxton and Reneau 1995).

3 Regional-Scale Geologic Studies, mid-1980s to early 1990s

This section reviews pertinent regional-scale geologic studies and lineament mapping that have been conducted on the Pajarito Plateau in order to provide context for the detailed site-specific studies discussed in the next section.

3.1 Geologic Quadrangle Mapping

Goff et al. (2001) completed geologic and structural mapping of the Frijoles quadrangle at 1:24,000 scale. This study identified one surficial geologic fault 800 ft (243 m) NNE of TA-60-0017 that disrupts the Bandelier Tuff units and displays down-to-the-west displacement. This fault was also identified by Gardner et al. (1999), which estimated approximately 2 ft (0.6 m) of offset.

3.2 Lineament Mapping via Aerial Photographs

Early geologic studies, performed before the fine detail of the Bandelier Tuff subunits were well-understood, inferred surface traces of the Rendija Canyon and Guaje Mountain faults to continue southward through TA-60 and TA-55 (Dransfield and Gardner, 1985; Vaniman and Wohletz 1990; Wong et al. 1995; Olig et al. 1996; Rogers et al. 1996). Additionally, Dransfield and Gardner (1985) noted prominent aerial photographic lineaments projecting southward from Pueblo Canyon; since both the Rendija Canyon and Guaje Mountain faults appear in seismic reflection transects south of their mapped surface traces, these lineaments were correlated with subsurface projections of the Rendija Canyon and

Guaje Mountain faults as far south as Water Canyon. The Dransfield and Gardner (1985) study attributes the lineaments to surficial manifestations of eroded fracture zones propagating upward from the subsurface trace of the faults. At the time of Dransfield and Gardner's publication, LANL had not yet undertaken a detailed surficial mapping campaign to verify the surface traces of these antithetic components of the Pajarito fault system.

While early geologic and lineament mapping was completed at a regional scale across much of the Pajarito Plateau, we emphasize that for determining the presence of Holocene faults, conventional field geologic mapping must be employed or consulted to confirm (1) that a lineament is truly a fault, and (2) that it displaces young geologic units. This validation of regionally-mapped or remotely-observed lineaments in finer scale mapping products is a writ large objective of field-based fault investigations, and is underscored locally by Olig et al. (1998) when discussing lineament mapping done by Wong et al. (1995): "The lineaments were identified on aerial photographs or observed during an aerial reconnaissance and field-checked at a reconnaissance level. However, this generalized map [by Wong et al, 1995] ...should be considered preliminary in nature until a more comprehensive and detailed surficial mapping of LANL is completed."

4 Regional- and Local-Scale Geologic Studies, early 1990s to present

Site-specific geologic studies provide important constraint on the location, size, distribution, and implications of known faults located proximal to TA-60. However, with the change in Laboratory mission in 1992 and subsequent repurposing of TA-60 for low-level hazard storage and activities, the ongoing work performed at this location is not operationally sensitive and no mission-critical facilities are known to exist at the current time. As such, geologic investigations focused specifically at TA-60 are minimal; however, this technical area is within the envelope of a number of previous studies focused elsewhere, so geologic characterization of the site has been performed previously. This section summarizes key results from local geologic studies that are pertinent to TA-60. Given TA-60's proximal location to the southern-most mapped extent of the Rendija Canyon fault, the following summaries focus on rupture potential within this zone.

4.1 Kolbe et al. (1994): Evaluation of the Potential for Surface Faulting at the Proposed Mixed Waste Disposal Facility, TA-67

This study excavated numerous trenches on Pajarito Mesa across the southern extent of the Rendija Canyon fault near TA-67, 1.2 miles (1.9 km) south of TA-60. These trenches show evidence for several near vertical faults within a zone 100 ft (30 m) wide roughly coincident with an aerial photographic lineament along the strike of the easternmost trace of the southern Rendija Canyon fault; displacement is less than 2 ft (0.6 m) down-to-the-west and does not offset the most recent Valles caldera eruptive deposits (e.g. El Cajete pumice). Kolbe et al. (1994) concluded that active faulting on Pajarito Mesa near TA-67 has been absent for at least the last 50-60 ka.

4.2 Reneau et al. (1995): Surficial Materials and Structure at Pajarito Mesa

A proposed mixed waste disposal facility at Pajarito Mesa prompted geologic surface mapping, high-precision total station mapping, and exploratory trenching around TA-67. At the time of this study, it was postulated that young surface faulting associated with the Rendija Canyon fault might trend southward from the Los Alamos townsite, directly through TA-60, TA-48, and TA-64. Previous

studies (including Dransfield and Gardner, 1985) had shown southern projections of the Rendija Canyon and Guaje Mountain faults through Pajarito Mesa. The geological mapping and trenching of Reneau et al. (1995) showed that faulting had affected Pajarito Mesa in the past, but the faulting is more complicated than previously inferred by Dransfield and Gardner (1985). Both down-to-the-east and down-to-the-west faulting is seen at Pajarito Mesa. These small faults were identified through conventional geologic mapping and mesa-edge investigations. Their lateral continuity could not be constrained, so these small faults are identified on maps as point-locations of offset on Tshirege Member subunits (cf. Plate 1). A full paleoseismic history was not determined through the trenching investigations of this study, but it was determined that faults did not affect geologic units younger than 50-60 ka. No increase in fracture density across the projections of the Rendija Canyon or Guaje Mountain faults was seen, and a detailed geodetic survey of pyroclastic surge beds showed no displacement of the Bandelier Tuff subunits along the Rendija Canyon fault projection.

4.3 Gardner et al. (1999): Structural Geology of the Northwestern Portion of Los Alamos National Laboratory, Rio Grande Rift, New Mexico: Implications for Seismic Surface Rupture Potential from TA-3 to TA-55

Gardner et al. (1999) gathered structural geologic data for a region of LANL stretching from TA-3 to TA-55 using high-precision geologic mapping, conventional geologic mapping, stratigraphic studies, drilling, petrologic studies, and stereographic aerial photograph analysis. This study found that in the northern part of the Los Alamos townsite, the Rendija Canyon fault is a fairly simple normal fault that may include several subparallel strands and exhibits evidence for approximately 120 ft (36 m) of displacement in the last 1.256 million years (Kelson et al. 1996).

South along strike of the Rendija Canyon fault and approximately 3500 ft (1066 m) northeast of TA-60-0017, the surface trace of the Rendija Canyon fault bends southwesterly into a broad zone of smaller faults and splays into TA-3 and the western edge of TA-60. This zone exhibits evidence of approximately 40 to 50 ft (12 to 15 m) of total structural displacement across all structures. Further south, at Twomile Canyon, there is less than 30 ft (9 m) of net down-to-the-west displacement; as such, this study concluded that the Rendija Canyon fault likely dies out just south of Twomile Canyon.

This study also examined exposures at the Los Alamos County landfill and found that the landfill is the last locality north of TA-60-0017 that displays displacements of greater than 10 ft (3 m) on individual faults.

4.4 Microseismic Monitoring and Analyses

The Los Alamos Seismic Network (LASN) maintains 14 seismic stations around Los Alamos County, covering roughly 9 miles (15 km) N-S by 9 miles (15 km) E-W (Figure 3). Most of the earthquakes identified in the LANL area via the LASN have magnitudes of 3 or less and appear to cluster in two zones: (1) the northern part of the Pajarito fault system and (2) east of Los Alamos through the Rio Grande Basin, likely associated with the Rio Grande Rift. No earthquake epicenters are mapped within 3000 ft (914 m) of the facility suite.

Figure 3. Overview of the Los Alamos Seismic Network (green triangles) and local earthquakes (1973-2013). The vicinity of Los Alamos National Laboratory is represented by the gray outline. TA-60 (yellow polygon), Building 0017 (red polygon) is highlighted. PF = Pajarito fault; RCF = Rendija Canyon fault; GMF = Guaje Mountain fault; SCF = Sawyer Canyon fault. Structural mapping (bold purple lines) from Lewis et al. (2009).

5 Local Field Reconnaissance at TA-60

Plate 1 shows TA-60-0017 with a 5-mile (8 km) and 3000 ft (914 m) buffer around the facility (as mandated by 40 CFR 270.14(b)(11)(A)(2)), mapped surficial faults (Lewis et al. 2009), mapped lineaments (Vaniman and Wohletz 1990; Wong et al. 1995), and identified offsets. The surficial faults shown on Plate 1 and mapped by Lewis et al. (2009) represent the most recent and detailed state of knowledge of the surficial expression of the Pajarito fault system near LANL. Mapping of the Pajarito fault system was done at 1:1,200 scale by personnel with a detailed knowledge of structural geology and Tshirege Member subunits, and represents a culmination of many years of work by the LANL Seismic Hazards Geology Team. Numerous faults and mapped lineaments fall within the 5-mile buffer shown on Plate 1, with many faults and lineaments mapped within 3000 ft (914 m) of TA-60-0017.

Plate 2 presents a local lineament map of the 3000 ft (914 m) and 200 ft (61 m) buffer area surrounding TA-60-0017 (as mandated by 40 CFR 270.14(b)(11)(A)(2)), mapped surficial faults (Lewis et al. 2009), mapped lineaments (Vaniman and Wohletz 1990; Wong et al. 1995), and identified offsets. Numerous faults, mapped lineaments, and offsets fall within the 3000 ft (914 m) buffer; no lineaments, faults, or offsets are mapped within the 200 ft (61 m) buffer.

For verification purposes, we performed a brief field reconnaissance for this report. The reconnaissance consisted of a site walk around the southern perimeter of TA-60-0017, outside of the security fence along Eniwetok Road (the northern perimeter was not accessible). A narrow outcrop (2-3 ft [0.6-1 m]) of Bandelier Tuff is present, but significant surficial modification and modern-day fill has stripped the location of post-Bandelier Tuff sediments that would be required to directly assess Holocene-age surface rupture. While fractures are present in the Bandelier Tuff, surface fill makes it impossible to trace these fractures to determine the lateral extent.

6 Discussion

Geologic investigations show numerous faults and lineaments within the 5-mile (8 km) and 3000 ft (914 m) buffer around TA-60-0017 (Reneau et al., 1995; Gardner et al., 1999; Lavine et al., 2003), and much of the southwestern splay zone of the Rendija Canyon fault is captured within the 3000 ft (914 m) buffer around TA-60-0017. While total displacement across all structures within this Rendija Canyon fault zone is approximately 40 - 50 ft (12 - 15 m), the maximum observed displacement at a discrete point-location within the 3000 ft (914 m) buffer is 20 ft (6 m) down-to-the-west at a point of offset 2480 ft (756 m) north of TA-60-0017. Displacements mapped as discrete point-locations are represented as such because they cannot be traced down or up through the stratigraphic section, the features are not visible as surficial offset, they cannot be traced across mesa-tops through conventional geologic mapping, and are not found to displace geologic units younger than the Bandelier Tuff. Additional mapped offsets within the 3000 ft buffer include (1) five locations in Sandia Canyon, 1000 ft (300 m) north of TA-60-0017, which show evidence for 1 - 7 ft displacement (0.3 - 2.1 m; Gardner et al., 1999), and (2) three locations 2000 ft (594 m) southwest of TA-60-0017, along the north side of Twomile Canyon, which exhibit displacements on the order of 1 - 4 ft (0.3 - 1.2 m; Gardner et al., 1999).

The closest mapped lineament (from Vaniman and Wohletz, 1990) is located to the east of the TA-60-0017 facility outside the 200 ft (61 m) buffer. This lineament was investigated through conventional geologic mapping and high-precision surveying by Gardner et al. (1999) and Lavine et al (2002) and was not found to exist as a discrete surface-rupturing fault. It is associated with only one point of offset, observed on the north side of Twomile Canyon.

No faults or offsets have been mapped within the 200 ft buffer; however, a walking reconnaissance of exposures reveals significant anthropogenic disturbance within the 200 ft buffer of the site. Most post-Bandelier Tuff sediments have been stripped from the mesa-top within the technical area. The absence of undisturbed post-Bandelier Tuff sediments makes it difficult to assess Holocene surface rupture at this location.

7 Conclusion

Geologic structures, including the main trace of the Rendija Canyon fault, have been identified near TA-60-0017 by previous geologic studies of the LANL site. Within the 3000 ft (914 m) buffer and northwest of the facility, the Rendija Canyon fault exhibits evidence of approximately 40 - 50 ft (12 - 15 m) of total down-to-the-west displacement; however, displacement decreases and the surface expression of the fault appears to terminate southwest of TA-60-0017 near Twomile Canyon.

North of the facility and within the 3000 ft (914 m) buffer, subunit offsets of 1-7 ft (0.3 – 2.4 m) were measured in Sandia Canyon by Gardner et al. (1999); at least one mapped offset in Sandia Canyon corresponds to the trace of the Rendija Canyon fault. Southwest of the facility, offsets in Twomile Canyon exhibit evidence of 1-4 ft (0.3 – 1.2 m) of down-to-the-west displacement (Gardner et al., 1999). This decrease in displacement in a southwesterly direction across individual fault traces indicates that TA-60-0017 is likely near the southern terminus of the Rendija Canyon fault zone.

Around Los Alamos where Holocene faulting has occurred and paleoearthquakes have been documented, individual faults are often several thousand feet long and often show tens to hundreds of feet of displacement. Additionally, detailed geologic mapping of the LANL campus, and paleoseismic trenching investigations show that the focus of potential Holocene faulting is concentrated along the main Pajarito fault, over 2.5 miles (4 km) west of the facility. While the Rendija Canyon fault zone is located proximal to TA-60-0017, Koning et al. (2013) conclude that the lack of gravity gradient across the Guaje Mountain and Rendija Canyon faults suggest only minor long-term offset compared to the Pajarito fault; as such, the faults near TA-60-0017 are likely not to be individually seismogenic and thus the seismic hazard to the location addressed in this report is low.

In conclusion, while evidence for Holocene faulting is difficult to determine at the TA-60-0017 facility due to infrastructure development and significant surficial disturbance, a detailed review of local and regional geologic studies as well as local field investigations indicate that no surface-rupturing faults exist near the proposed facility.

8 Plate Captions

Plate 1. Color orthophotography, mapped fault, and mapped lineaments within a 5-mile (8 km) and 3000 ft (914 m) buffer of the TA-60-0017 facility. Structural mapping (purple lines) from Lewis et al. (2009). Mapped lineaments from Vaniman and Wohletz (1990; pink lines) and Wong et al. (1995; blue lines). TA-60 is east of the main trace of the Pajarito fault system. See text for further discussion.

Plate 2. Orthophotography, mapped faults, and mapped lineaments in the area surrounding TA-60-0017 as well as a 3000 ft (914 m) and 200 ft (61 m) buffer. Lineaments from Vaniman and Wohletz (1990; pink lines) and Wong et al. (1995; blue lines). Three separate lineaments project into the 3000 ft (914 m) buffer around TA-60-0017. None project within 200 ft (61 m) of the facility suite. A portion of numerous fault segments fall within the 3000 ft (914 m) buffer, including the southern-most mapped extent of the Rendija Canyon fault. 19 locations of offset fall within the 3000 ft (914 m) buffer and were mapped by high-precision geodetic studies (Reneau et al. 1995; Gardner et al. 1998; Lavine et al., 2003). Three offset locations fall along mapped lineaments. See text for further discussion.

9 References

- Bates, RL and JA Jackson, eds., 1984, *Dictionary of Geological Terms*; American Geological Institute, 571 pp. Broxton, DE and SL Reneau, 1995, Stratigraphic nomenclature of the Bandelier Tuff for the Environmental Restoration Project at Los Alamos National Laboratory; Los Alamos National Laboratory report LA-13010-MS, 21 pp.
- Dransfield, BJ, and JN Gardner, 1985, Subsurface geology of the Pajarito Plateau, Española Basin, New Mexico; Los Alamos National Laboratory report LA-10455-MS, 15 pp.
- Garcia, KLM, 2018, Heritage Assets Reporting for Financial Statements, Los Alamos National Laboratory.
- Gardner, JN, Baldridge, WS, Gribble, R, Manley, K, Tanaka, K, Geissman, JW, Gonzalez, M, and Baron, G, 1990, Results from Seismic Hazards Trench #1 (SHT-1), Los Alamos Seismic Hazards Investigations; Los Alamos National Laboratory unpublished report EES1-SH90-19, 57 pp.
- Gardner, JN, Lavine, A, Vaniman, D, and WoldeGabriel, G, 1998, High-precision geologic mapping to evaluate the potential for seismic surface rupture at TA-55, Los Alamos National Laboratory; Los Alamos National Laboratory report LA-13456-MS, 13 pp.
- Gardner, JN, Lavine, A, WoldeGabriel, G, Krier, D, Vaniman, D, Caporuscio, FA, Lewis, CJ, Reneau, SL, Kluk, E, and Snow, MJ, 1999, Structural geology of the northwestern portion of Los Alamos National Laboratory, Rio Grande rift, New Mexico: Implications for seismic surface rupture potential from TA-3 to TA-55; Los Alamos National Laboratory report LA-13589-MS, 112 pp.
- Goff, F, Gardner, JN, and Reneau, SL, 2001, Geologic map and structure of the Frijoles Quadrangle, Los Alamos and Sandoval Counties, New Mexico; New Mexico Bureau of Geology and Mineral Resources, Geologic Open-File Map OF-GM 42, scale 1:24,000.
- Izett, GA, and Obradovich, JD, 1994, ⁴⁰Ar/³⁹Ar age constraints for the Jaramillo normal subchron and the Matuyama-Brunhes geomagnetic boundary; *J Geophys Res* **99** (B2), pp. 2925-2934.
- Kelson, KI, Hemphill-Haley, MA, Olig, SS, Simpson, GD, Gardner, JN, Reneau, SL, Kolbe, TR, Forman, SL, and Wong, IG, 1996, Late-Pleistocene and possibly Holocene displacement along the Rendija Canyon fault, Los Alamos County, New Mexico; New Mexico Geological Society Guidebook 47, 153–160.
- Kolbe, T, Sawyer, J, Gorton, A, Olig, S, Simpson, D, Fenton, C, Reneau, SL, Carney, J, Bott, J, and Wong, IG, 1994, Evaluation of the potential for surface faulting at the proposed Mixed Waste Disposal Facility, TA-67; unpublished consulting report prepared for the Los Alamos National Laboratory by Woodward-Clyde Federal Services, Oakland, California.
- Kolbe, T, Sawyer, J, Gorton, A, Olig, SS, Simpson, D, Fenton, C, Reneau, SL, Carney, J, Bott, J, and Wong, IG, 1994, Evaluation of the potential for surface faulting at the proposed Mixed Waste Disposal Facility, TA-67; unpublished consulting report prepared for the Los Alamos National Laboratory by Woodward-Clyde Federal Services, Oakland, California.
- Lavine, A, Lewis, CJ, Katcher, DK, and Wilson, J, 2003, Geology of the north-central to northeastern portion of Los Alamos National Laboratory, New Mexico; Los Alamos National Laboratory report LA-14043-MS, 44 pp.
- Lewis, CJ, Lavine, A, Reneau, SL, Gardner, JN, Channell, R, and Criswell, CW, 2002, Geology of the western part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande rift, New Mexico; Los Alamos National Laboratory report LA-13960-MS, 98 pp.

- Lewis, CJ, Gardner, JN, Schultz-Fellenz, ES, Lavine, A, Olig, SS, and Reneau, SL, 2009, Along-strike variation in throw and fault interaction in the Pajarito fault system, north-central New Mexico; *Geosphere* **5**, pp. 252-269.
- McCalpin, J.P, 1998, Late Quaternary faulting on the Pajarito fault, west of Los Alamos National Laboratory, north-central New Mexico: Results from the seven-trench transect excavated in summer of 1997; unpublished consulting report prepared for Los Alamos National Laboratory by GEO-HAZ Consulting Inc., Estes Park, Colorado.
- McGehee, ED, Garcia, KLM, Machen, J, 2007, Decommissioning the Los Alamos Rack Tower Complex: Buildings TA-60-17 and TA-60-19, Los Alamos National Laboratory report LA-UR-07-3638.
- Meyer, L, 2007, L Meyer to D Winchell, personal communication (letter), August 1, 2007.
- Olig, SS, Youngs, R, Wong, I.G 1998, Probabilistic seismic hazard analyses for surface fault displacement at TA-3, Los Alamos National Laboratory; unpublished consulting report prepared for Los Alamos National Laboratory by Woodward-Clyde Federal Services, Oakland, California.
- Ogg, JG, Ogg, G, and Grandstein, FM, eds., 2008, *The Concise Geologic Time Scale*; Cambridge University Press, 184 pp.
- Phillips, EH, Goff, F, Kyle, PR, McIntosh, WC, Dunbar, NW, and Gardner, JN, 2007, The ⁴⁰Ar/³⁹Ar age constraints on the duration of resurgence at the Valles caldera, New Mexico; *J Geophys Res* **112** (B09201), DOI: 10.1029/2006JB004511.
- Purtzer, LC, McGehee, ED, Plimpton Sivley, KD, 2019, A Plan for the Management of the Cultural Heritage at Los Alamos National Laboratory, New Mexico, Los Alamos National Laboratory report LA-UR-19-21590.
- Reneau, SL, Kolbe, TR, Simpson, DT, Carney, JS, Gardner, JN, Olig, SS, and Vaniman, DT, 1995, Surficial materials and structure at Pajarito Mesa; in *Geological Site Characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory*, SL Reneau and R Raymond, eds.; Los Alamos National Laboratory report LA-13089-MS, 31-69.
- Rogers, MA, Budding, K, and Christie, C, 1996, Distinguishing tectonic joints from cooling joints in the Bandelier Tuff (Pleistocene), Pajarito Plateau, Los Alamos COuny, New Mexico; *New Mexico Geological Society Guidebook*, **47**, pp. 293-302.
- Vaniman, D and Wohletz, K, 1990, Results of geological mapping/fracture studies, TA-55 area: Los Alamos; Los Alamos National Laboratory Seismic Hazards Memo EES1-SH-90-17, 25 p.
- Wohletz, K, 1995, Measurement and analysis of rock fractures in the Tshirege Member of the Bandelier Tuff along Los Alamos Canyon adjacent to TA-21; in *Earth Science Investigations for Environmental Restoration—Los Alamos National Laboratory Technical Area 21*, DE Broxton and PG Eller, eds.; Los Alamos National Laboratory report LA-12934-MS, 19-31.
- Wong, IG, Kelson, K, Olig, SS, Kolbe, T, Hemphill-Haley, M, Bott, J, Green, R, Kanakari, H, Sawyer, J, Silva, W, Stark, C, Haraden, C, Fenton, C, Unruh, J, Gardner, JN, Reneau, SL, and House, L, 1995, Seismic hazards evaluation of the Los Alamos National Laboratory; unpublished consulting report prepared for Los Alamos National Laboratory by Woodward-Clyde Federal Services, Oakland, California.
- Wong, IG, Silva, W, Olig, SS, Dober, M, Gregor, N, Gardner, JN, Lewis, CJ, Terra, F, Zachariasen, J, Stokoe, K, Thomas, P, and Upadhyaya, S, 2007, Update of the probabilistic seismic hazard analysis and development of seismic design ground motions at the Los Alamos National Laboratory, unpublished consulting report prepared for Los Alamos National Laboratory by URS Corporation's Seismic Hazards Group, Oakland, California.

Attachments

Plate 1

Plate 2

Attachment 3 Proposed Modifications to the LANL Hazardous Waste Facility Permit – Red Line/Highlight

TABLE OF CONTENTS

PART 1: GENERAL PERMIT CONDITIONS	<u>21</u>
1.1 AUTHORITY	21
1.2 PERMITTEES AND PERMITTED ACTIVITY	
1.3 CITATIONS	
1.4 EFFECT OF PERMIT	22
1.4.1 Effect of this Permit on Interim Status Units	23
1.5 EFFECT OF INACCURACIES IN PERMIT APPLICATION	
1.6 PERMIT ACTIONS	
1.6.1 Duration of Permit	
1.6.2 Permit Modification	
1.6.3 Reserved	
<u>Issuance</u>	
1.6.5 Permit Re-Application	25
1.6.6 Continuation of Expiring Permit	25
1.6.7 Permit Review by the Department	25
1.7 PERMIT CONSTRUCTION	25
1.7.1 Severability	25
1.8 DEFINITIONS.	25
1.9 DUTIES AND REQUIREMENTS	29
1.9.1 Duty to Comply	29
1.9.2 Enforcement	30
1.9.3 Transfer of Permit	30
1.9.4 Need to Halt or Reduce Activity Not a Defense	30
1.9.5 Duty to Mitigate	30
1.9.6 Proper Operation and Maintenance	31
1.9.7 Duty to Provide Information	31
1.9.8 Inspection and Entry	
1.9.9 Sampling and Records	
1.9.9.1 Representative Sampling	
1.9.10 Reporting Planned Changes	
1.9.11 Reporting Anticipated Noncompliance	
1.9.12 24 Hour and Subsequent Reporting	
1.9.12.1 24 Hour Oral Report	
1.9.12.2 Five Day Written Report	33
1.9.13 Written Reporting of a Non-threatening Release	34
1.9.14 Other Noncompliance	
1.9.15 Omissions or Misstatements in Applications or Other Reports	
1.9.16 Signatory requirement	35
1.9.17 Submissions to the New Mexico Environment Department	35

<u>1.9.18</u>	Approval of Submittals	35
1.9.19	Extensions of Time	35
1.9.20	Confidential Information	36
1.9.21	New or Modified Permitted Units	36
1.10 INF	ORMATION REPOSITORY	36
1.10.1	PUBLIC ENVIRONMENTAL DATABASE	37
1.11 GE	NERAL DOCUMENTS AND INFORMATION TO BE MAINTAIN	<u>VED</u>
AT	THE FACILITY	38
1.12 CO	MMUNITY RELATIONS PLAN	38
1.13 PUI	BLIC NOTIFICATION VIA ELECTRONIC MAIL (E-MAIL)	39
1.14 DIS	PUTE RESOLUTION	40
1.14.1	Notice to the Department	40
1.14.2	Agreement or Disagreement between Parties	40
1.14.3	Final Decision of the Department	40
1.14.4		40
1.14.5	Available Remedies Reserved	
1.15 CO	MPLIANCE SCHEDULE	41
1.16 TRA	ANSFER OF LAND OWNERSHIP	41
<u>1.16.1</u>	Determination of Need for Further Action	42
<u>1.16.2</u>	Restricted Use.	
1.16.3	• •	
<u>1.16.4</u>		43
1.16.5		43
	TICE OF DEMOLITION ACTIVITIES	
1.17.1		
1.17.2	<u> </u>	
1.17.3		
<u> PART 2: G</u>	ENERAL FACILITY CONDITIONS	<u> 46</u>
2.1 DE	CION CONCEDITOTION MAINTENANCE AND OPENATION (S.F.
•	SIGN, CONSTRUCTION, MAINTENANCE, AND OPERATION (
	E FACILITY	
2.2 AU' 2.2.1	THORIZED WASTES	
$\frac{2.2.1}{2.2.2}$	Hazardous Waste from Off-Site Sources	
$\frac{2.2.2}{2.2.3}$	PCB -Contaminated Waste	
	ND DISPOSAL RESTRICTIONS	
2.3.1	Hazardous Waste Storage	
$\frac{2.3.1}{2.3.2}$	Prohibition on Dilution	
2.3.3	Documentation of Exclusion or Exemption	
	STE ANALYSIS	
$\frac{2.4 \text{ WA}}{2.4.1}$	General Waste Characterization Requirements	
2.4.2	Sampling and Analysis for Hazardous Wastes	
2.4.3	Acceptable Knowledge	
$\frac{2.1.5}{2.4.4}$	Waste Received from Off-Site	52
2.4.5	Treatment-Derived Waste	
<u></u>		<u> </u>

2.4.6	Reserved	52
2.4.7	Waste Characterization Review	
2.4.8	Waste Characterization for Compliance with RCRA Air	
	Emission Requirements	53
2.4.9	Waste Characterization for Compliance with Land Disposal	
	Restrictions	54
2.5 SE	CURITY	55
2.5.1	Warning Signs	55
2.6 GI	Warning SignsENERAL INSPECTION REQUIREMENTS	56
2.6.1		56
2.6.2		
2.6.3		
2.7 PE	RSONNEL TRAINING	57
2.8 SP	PECIAL REQUIREMENTS FOR IGNITABLE, REACTIVE, OR	
IN	COMPATIBLE WASTE	58
2.8.1		
2.8.2		
2.9 W	ASTE MINIMIZATION PROGRAM	60
	REPAREDNESS AND PREVENTION	
2.10.1	Required Equipment	
2.10.2	Testing and Maintenance of Equipment	
2.10.3	Access to Communications or Alarm System	
2.10.4	Spill Response.	62
2.10.5		63
	ONTINGENCY PLAN	63
2.11.1	Implementation of Contingency Plan	
2.11.2	Content of the Contingency Plan	
2.11.3	Distribution	65
2.11.4	Amendments to Plan	65
2.11.5		
2.11.6		
2.11	.6.1 Immediate Actions	66
${2.11}$.6.2 Release, Fire, or Explosion	67
${2.11}$		
2.11		
2.11		
2.11.7	Post-Emergency Procedures	
2.11.8	Need for Further Corrective Action	68
2.11.9	Notification and Record Keeping	
	ECORDKEEPING AND REPORTING	
2.12.1	Manifest Systems	
$\frac{2.12.1}{2.12.2}$	Facility Operating Record	69
$\frac{2.12.2}{2.12.3}$	Availability of Facility Operating Record	71
2.12.4	Record Retention	

2.12.5 Biennial Report	72
PART 3: STORAGE IN CONTAINERS	74
A.A. CENTER IX CONTENTS IX	
3.1 GENERAL CONDITIONS	
3.2 CONDITION OF CONTAINERS	
3.3 ACCEPTABLE STORAGE CONTAINERS	<u>75</u>
3.4 COMPATIBILITY OF WASTE WITH CONTAINERS	<u>75</u>
3.5 MANAGEMENT OF CONTAINERS	<u>75</u>
3.5.1 Storage Configuration and Minimum Aisle Space	<u>76</u>
3.6 WASTE CONTAINER LABELING	
3.7 CONTAINMENT SYSTEMS	
3.7.1 Containers with Free Liquids	<u>77</u>
3.7.2 Containers without Free Liquids	<u>78</u>
3.8 INSPECTION SCHEDULES AND PROCEDURES	<u>78</u>
3.9 VOLATILE ORGANIC AIR EMISSIONS	<u>79</u>
3.10 TA-3 CONTAINER STORAGE REQUIREMENTS	<u>80</u>
3.10.1 General Operating Conditions	
3.10.2 Secondary Containment	<u>80</u>
3.11 TA-50 CONTAINER STORAGE REQUIREMENTS	<u>80</u>
3.11.1 General Operating Conditions	80
3.11.2 Preventing Hazards in Loading/Unloading	
3.11.3 Preventing Run-on	
3.12 TA-54 CONTAINER STORAGE REQUIREMENTS	81
3.12.1 General Operating Conditions	81
3.12.2 Preventing Run-on and Run-off	
3.12.2.1 Domes 153 & 283	
3.12.2.2 Storage Shed 8	
3.12.2.3 TA-54-33	82
3.12.3 Secondary Containment	82
3.12.3.1 TA-54-32	82
3.12.3.2 TA-54-35	83
3.12.3.3 TA-54-36	83
3.12.3.4 TA-54-58	83
3.12.3.5 TA-54-39 and Containment Pad	83
3.12.3.6 Storage Sheds 144, 145, 146, and 177	83
3.12.3.7 Dome 224	
3.13 TA-55 CONTAINER STORAGE REQUIREMENTS	84
3.13.1 General Operating Conditions	84
3.13.1 General Operating Conditions	84
3.14.1 General Operating Conditions	
3.14.2 Retention Basin	86
3.14.3 Subsurface Vapor Monitoring.	88
3.15 TA-60 CONTAINER STORAGE REQUIREMENTS	94
3.15.1 General Operating Conditions	94

PART	4: TA-55 STORAGE IN TANKS AND TREATMENT BY STABILIZA	ATION
4.1	GENERAL CONDITIONS	95
4.2	EXISTING TANK SYSTEM INTEGRITY	95
4.3	REPLACEMENT TANK SYSTEM AND STABILIZATION UNIT	<u></u>
7.5	COMPONENTS	96
4.4	TANK SYSTEMS AND STABILIZATION UNIT CONTAINMENT	96
4.5	IGNITABLE, REACTIVE, OR INCOMPATIBLE WASTES	
4.6	TA-50 RADIOACTIVE LIQUID WASTE TREATMENT FACILITY	
	5: (RESERVED)	
PART	6: (RESERVED)	101
DADT	7. TIDE ATMENIT IN CONTAINEDC	102
PARI	7: TREATMENT IN CONTAINERS	103
7.1	GENERAL CONDITIONS	103
$\frac{7.1}{7.2}$	GLOVE BAG/GLOVEBOX INTEGRITY AND CONTAINMENT	103
$\frac{7.2}{7.3}$	TREATMENT REQUIREMENTS	
$\frac{7.5}{7.4}$	RELEASES WITHIN THE PERMITTED UNIT	104
$\frac{7.5}{7.5}$	INCOMPATIBLE WASTES	104
$\frac{7.6}{7.6}$	CONFIRMATION ANALYSIS	105
	8: Treatment by Macroencapsulation	107
8.1	GENERAL CONDITIONS	107
8.2	MACROENCAPSULATION REQUIREMENTS	107
8.3	RELEASES WITHIN THE PERMITTED UNIT	108
8.4	INCOMPATIBLE WASTES	108
PART	9: CLOSURE	<u> 110</u>
0.1	INTRODUCTION	110
	INTRODUCTION	
<u>9.</u>	1.2 Indoor Units	110 111
9.2	CLOSURE PERFORMANCE STANDARDS	
	2.1 Clean Closure	
	2.2 Inability to Achieve Clean Closure Performance Standards	
<u>9.</u>	•	
	9.2.2.1Indoor Units9.2.2.2Outdoor Units Co-located with Regulated Units	11 <u>2</u> 112
	9.2.2.3 Other Outdoor Units	
9.3		<u>112</u> 113
9.3 9.4	CLOSURE REQUIREMENTS FOR INDOOR AND OUTDOOR UNITS	
	4.1 Closure Schedule	
<u> </u>	9.4.1.1 Time Allowed for Closure	114
9.	4.2 Removal of Hazardous Waste	
<u> </u>		1

9.4.3 Decontamination and Removal	<u>.114</u>
9.4.3.1 Decontamination of Surfaces, Structures, and Related Equipment	114
9.4.3.2 Removal of Structures, Related Equipment, and Pads	
9.4.4 Decontamination Verification and Soil Sampling	.115
9.4.4.1 Decontamination Verification and Soil Sampling Activities	115
9.4.5 Management and Disposal Procedures for Waste Generated	
During Closure	.115
9.4.6 Records Review and Structural Assessment	.116
9.4.6.1 Records Review	116
9.4.6.2 Structural Assessment	116
9.4.7 Closure Plans	.117
9.4.7.1 Sampling and Analysis Plan	117
9.4.8 Amendment of the Closure Plan	.119
9.4.9 Variance to Decontamination Verification Standards	.119
9.5 CLOSURE CERTIFICATION REPORT TO THE DEPARTMENT	.120
PART 10: POST-CLOSURE CARE	122
10.1 POST-CLOSURE CARE	.122
10.1.1 Post-Closure Care Plan	<u>.123</u>
10.1.2 Amendment of the Post-Closure Care Plan	
10.2 NOTICES AND CERTIFICATIONS	
10.2.1 Notification Requirements	
10.2.2 Record Requirements	<u>.124</u>
10.2.3 Completion of Post-Closure Requirements	
PART 11: CORRECTIVE ACTION	<u>126</u>
11.1 CORRECTIVE ACTION REQUIREMENTS UNDER THE CONSENT	
ORDER	<u>.126</u>
11.2 CORRECTIVE ACTION REQUIREMENTS UNDER THE PERMIT	<u>.126</u>
11.2.1 Identification of SWMUs and AOCs Requiring Corrective	
Action	
11.3 GENERAL CONDITIONS	
11.3.1 Groundwater Monitoring	
11.3.1.1 Notification of Detections	128
11.3.1.2 Source Identification and Corrective Action	
11.3.2 Groundwater Monitoring Reporting	<u>.129</u>
11.3.3 Corrective Action Beyond the Facility Boundary	
11.3.4 Off-Site Access	
11.3.5 Newly Discovered Releases	
11.3.6 Field Activities	
11.3.7 Health and Safety Plan.	
11.3.8 Recordkeeping	
11.4 CLEANUP LEVELS	.131
11.4.1 Groundwater Cleanup Levels	.131
11.4.1.1 Groundwater Cleanup Level for Perchlorate	132

11.5 ECOLOGICAL RISK EVALUATION. 13 11.6 VARIANCE FROM CLEAN-UP LEVELS. 33 11.6.1 Water Quality Standards. 134 11.6.2 Other Cleanup Levels 34 11.7 PERMIT MODIFICATION FOR CORRECTIVE ACTION COMPLETE. 134 11.7.1 Long-term Monitoring and Maintenance of SWMUs and AOCs. 135 11.8.1 Release Assessment. 135 11.8.1.1 Release Assessment Report. 135 11.8.1.2 Requirement to Proceed. 136 11.8.2.1 Interim Measures. 136 11.8.2.2 Permittees-Initiated Interim Measures. 136 11.8.3 Emergency Interim Measures. 136 11.8.4 IM Work Plan Requirements. 137 11.8.5 Corrective Action Investigations. 138 11.8.5.1 Investigation Work Plan. 138 11.8.5.2 Corrective Action Investigation Reports. 139 11.8.5.3 Risk Assessment. 140 11.8.6.1 General. 140 11.8.6.2 Corrective Measures Evaluation Report. 140 11.8.6.3	11.4.2 Soil an	d Sediment	132
11.4.3 Surface Water Cleanup Levels. 13 11.5 ECOLOGICAL RISK EVALUATION 33 11.6 VARIANCE FROM CLEAN-UP LEVELS. 13 11.6.1 Water Quality Standards. 134 11.6.2 Other Cleanup Levels 134 11.7 PERMIT MODIFICATION FOR CORRECTIVE ACTION COMPLETE. 134 11.7.1 Long-term Monitoring and Maintenance of SWMUs and AOCS. 135 11.8.1 Release Assessment 135 11.8.1.1 Release Assessment Report 135 11.8.1.2 Requirement to Proceed. 135 11.8.2.1 Department-Initiated Interim Measures. 136 11.8.2.2 Interim Measures 136 11.8.2.1 Department-Initiated Interim Measures. 136 11.8.2.2 Permittees-Initiated Interim Measures. 136 11.8.4 IM Work Plan Requirements. 137 11.8.4.1 Interim Measures Implementation. 137 11.8.5.5 Corrective Action Investigations. 138 11.8.5.1 Investigation Work Plan. 138	11.4.2.1 So	oil Cleanup Levels	132
11.5 ECOLOGICAL RISK EVALUATION. 13 11.6 VARIANCE FROM CLEAN-UP LEVELS. 33 11.6.1 Water Quality Standards. 134 11.6.2 Other Cleanup Levels 34 11.7 PERMIT MODIFICATION FOR CORRECTIVE ACTION COMPLETE. 134 11.7.1 Long-term Monitoring and Maintenance of SWMUs and AOCs. 135 11.8.1 Release Assessment. 135 11.8.1.1 Release Assessment Report. 135 11.8.1.2 Requirement to Proceed. 136 11.8.2.1 Interim Measures. 136 11.8.2.2 Permittees-Initiated Interim Measures. 136 11.8.3 Emergency Interim Measures. 136 11.8.4 IM Work Plan Requirements. 137 11.8.5 Corrective Action Investigations. 138 11.8.5.1 Investigation Work Plan. 138 11.8.5.2 Corrective Action Investigation Reports. 139 11.8.5.3 Risk Assessment. 140 11.8.6.1 General. 140 11.8.6.2 Corrective Measures Evaluation Report. 140 11.8.6.3	11.4.2.2 Sc	oil Cleanup Levels for Polychlorinated Biphenyls	133
11.6. VARIANCE FROM CLEAN-UP LEVELS. 133 11.6.1 Water Quality Standards. 134 11.6.2 Other Cleanup Levels 134 11.7 PERMIT MODIFICATION FOR CORRECTIVE ACTION COMPLETE 134 11.7.1 Long-term Monitoring and Maintenance of SWMUs and AOCs. 135 11.8 CORRECTIVE ACTION PROCEDURES 135 11.8.1.1 Release Assessment 135 11.8.1.2 Requirement to Proceed 136 11.8.2.1 Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 136 11.8.4 IM Work Plan Requirements 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 <	11.4.3 Surface	Water Cleanup Levels	133
11.6.1 Water Quality Standards 134 11.6.2 Other Cleanup Levels 134 11.7 PERMIT MODIFICATION FOR CORRECTIVE ACTION COMPLETE 134 11.7.1 Long-term Monitoring and Maintenance of SWMUs and AOCs 135 11.8 CORRECTIVE ACTION PROCEDURES 135 11.8.1 Release Assessment 135 11.8.1.1 Release Assessment Report 135 11.8.1.2 Requirement to Proceed 136 11.8.2.1 Department-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 136 11.8.4 IM Work Plan Requirements 137 11.8.4.1 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.6.3 Risk Assessment 140 11.8.6.1 General 140 11.8.6.2	11.5 ECOLOGIC	AL RISK EVALUATION	133
11.6.2 Other Cleanup Levels 134 11.7 PERMIT MODIFICATION FOR CORRECTIVE ACTION COMPLETE 134 11.7.1 Long-term Monitoring and Maintenance of SWMUs and AOCs 135 11.8 CORRECTIVE ACTION PROCEDURES 135 11.8.1.1 Release Assessment 135 11.8.1.2 Requirement to Proceed 136 11.8.1.2 Interim Measures 136 11.8.2.1 Department-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 136 11.8.4 IM Work Plan Requirements 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.7 Statement of Basis 143 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan	11.6 VARIANCE	FROM CLEAN-UP LEVELS	133
11.6.2 Other Cleanup Levels 134 11.7 PERMIT MODIFICATION FOR CORRECTIVE ACTION COMPLETE 134 11.7.1 Long-term Monitoring and Maintenance of SWMUs and AOCs 135 11.8 CORRECTIVE ACTION PROCEDURES 135 11.8.1.1 Release Assessment 135 11.8.1.2 Requirement to Proceed 136 11.8.1.2 Interim Measures 136 11.8.2.1 Department-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 136 11.8.4 IM Work Plan Requirements 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.7 Statement of Basis 143 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan	11.6.1 Water	Quality Standards	134
11.7.1 Long-term Monitoring and Maintenance of SWMUs and AOCs. 135 11.8 CORRECTIVE ACTION PROCEDURES. 135 11.8.1 Release Assessment. 135 11.8.1.1 Release Assessment Report. 135 11.8.1.2 Requirement to Proceed. 136 11.8.2 Interim Measures. 136 11.8.2.1 Department-Initiated Interim Measures. 136 11.8.2.2 Permittees-Initiated Interim Measures. 136 11.8.3 Emergency Interim Measures. 136 11.8.4 IM Work Plan Requirements. 137 11.8.4.1 Interim Measures Implementation. 137 11.8.5 Corrective Action Investigations. 138 11.8.5.1 Investigation Work Plan. 138 11.8.5.2 Corrective Action Investigation Reports. 139 11.8.5.3 Risk Assessment. 140 11.8.6.6 Corrective Measures Evaluation Reports. 140 11.8.6.1 General. 140 11.8.6.2 Corrective Measures Evaluation Report. 140 <td< td=""><td>11.6.2 Other (</td><td>Cleanup Levels</td><td>134</td></td<>	11.6.2 Other (Cleanup Levels	134
11.8. CORRECTIVE ACTION PROCEDURES 135 11.8.1 Release Assessment 135 11.8.1.1 Release Assessment Report 136 11.8.1.2 Requirement to Proceed 136 11.8.2.1 Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 136 11.8.4 IM Work Plan Requirements 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.6.3 Risk Assessment 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation 143 11.8.7.3 Health and Safety Plan 144 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Clean-up Pro	11.7 PERMIT MO	DDIFICATION FOR CORRECTIVE ACTION COMPLET	E134
11.8.1.1 Release Assessment Report 135 11.8.1.2 Requirement to Proceed 136 11.8.2.1 Interim Measures 136 11.8.2.1 Department-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 136 11.8.4 IM Work Plan Requirements 137 11.8.4.1 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Reports 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.7	11.7.1 Long-to	erm Monitoring and Maintenance of SWMUs and AOCs	135
11.8.1.1 Release Assessment Report 136 11.8.2 Interim Measures 136 11.8.2.1 Department-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.2 Image: Interim Measures 136 11.8.3 Emergency Interim Measures 137 11.8.4 IM Work Plan Requirements 137 11.8.4 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5 Investigation Work Plan 138 11.8.5 Corrective Action Investigation Reports 139 11.8.5 Risk Assessment 140 11.8.6 Corrective Measures Evaluation Reports 140 11.8.6 Corrective Measures Evaluation Report 140 11.8.6.1 General 141 11.8.6.2 Corrective Measures Evaluation Report 143 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 App	11.8 CORRECTI	VE ACTION PROCEDURES	135
11.8.1.1 Release Assessment Report 136 11.8.2 Interim Measures 136 11.8.2.1 Department-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.2 Image: Interim Measures 136 11.8.3 Emergency Interim Measures 137 11.8.4 IM Work Plan Requirements 137 11.8.4 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5 Investigation Work Plan 138 11.8.5 Corrective Action Investigation Reports 139 11.8.5 Risk Assessment 140 11.8.6 Corrective Measures Evaluation Reports 140 11.8.6 Corrective Measures Evaluation Report 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 141 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 App	11.8.1 Release	e Assessment	135
11.8.2 Interim Measures 136 11.8.2.1 Department-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 137 11.8.4 IM Work Plan Requirements 137 11.8.4.1 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.6 Corrective Measures Evaluation 140 11.8.6 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.7 Statement of Basis 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.8 Remedy Completion Report 145	11.8.1.1 Re	elease Assessment Report	135
11.8.2 Interim Measures 136 11.8.2.1 Department-Initiated Interim Measures 136 11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 137 11.8.4 IM Work Plan Requirements 137 11.8.4.1 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.6 Corrective Measures Evaluation 140 11.8.6 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.7 Statement of Basis 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.8 Remedy Completion Report 145			
11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 137 11.8.4 IM Work Plan Requirements 137 11.8.4.1 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.			
11.8.2.2 Permittees-Initiated Interim Measures 136 11.8.3 Emergency Interim Measures 137 11.8.4 IM Work Plan Requirements 137 11.8.4.1 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.	11.8.2.1 De	epartment-Initiated Interim Measures	136
11.8.3 Emergency Interim Measures 137 11.8.4 IM Work Plan Requirements 137 11.8.4.1 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.4 Progress Reports 145 11.8.8.1 Remedy Completion Report 145 11.8.9.1			
11.8.4 IM Work Plan Requirements 137 11.8.4.1 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Measures Evaluation Report 143 11.8.6.7 Statement of Basis 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion Report 145 11.8.9 <td< td=""><td></td><td></td><td></td></td<>			
11.8.4.1 Interim Measures Implementation 137 11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.6.7 Statement of Basis 143 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerate			
11.8.5 Corrective Action Investigations 138 11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Implementation 147 11.8.10	11.8.4.1 In	terim Measures Implementation	137
11.8.5.1 Investigation Work Plan 138 11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.8 Remedy Completion 145 11.8.8 Remedy Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.10 Well Completion Report 147			
11.8.5.2 Corrective Action Investigation Reports 139 11.8.5.3 Risk Assessment 140 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.6.7 Statement of Basis 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.8 Remedy Completion 145 11.8.8 Remedy Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147			
11.8.5.3 Risk Assessment 140 11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.6.7 Statement of Basis 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147	11.8.5.2 Co	orrective Action Investigation Reports	139
11.8.6 Corrective Measures Evaluation 140 11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.7 Corrective Measures Implementation 144 11.8.7 Corrective Measures Implementation Plan 144 11.8.7.2 Corrective Measures Implementation Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147			
11.8.6.1 General 140 11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147		tive Measures Evaluation	140
11.8.6.2 Corrective Measures Evaluation Report 140 11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.6.7 Statement of Basis 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147	•		
11.8.6.3 Cleanup Standards 141 11.8.6.4 Remedy Evaluation Criteria 141 11.8.6.5 Approval of Corrective Measures Evaluation Report 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.6.7 Statement of Basis 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.8 Remedy Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147			
11.8.6.4 Remedy Evaluation Criteria. 141 11.8.6.5 Approval of Corrective Measures Evaluation Report. 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.6.7 Statement of Basis. 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General. 144 11.8.7.2 Corrective Measures Implementation Plan. 144 11.8.7.3 Health and Safety Plan. 145 11.8.7.4 Progress Reports. 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Clean-up Process. 146 11.8.9.1 Accelerated Corrective Measures Work Plan. 147 11.8.9.2 Accelerated Corrective Measures Implementation. 147 11.8.10 Well Completion Report. 147			
11.8.6.5 Approval of Corrective Measures Evaluation Report. 143 11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.6.7 Statement of Basis. 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General. 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147 11.8.10 Well Completion Report 147	11.8.6.4 Re	emedy Evaluation Criteria.	141
11.8.6.6 Relationship to Corrective Action Requirements 143 11.8.6.7 Statement of Basis 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Completion Report 145 11.8.9.1 Accelerated Clean-up Process 146 11.8.9.2 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147			
11.8.6.7 Statement of Basis. 143 11.8.7 Corrective Measures Implementation 144 11.8.7.1 General. 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147			
11.8.7 Corrective Measures Implementation 144 11.8.7.1 General 144 11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.9 Accelerated Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147			
11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.8.1 Remedy Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147		tive Measures Implementation	144
11.8.7.2 Corrective Measures Implementation Plan 144 11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.8.1 Remedy Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147		1	
11.8.7.3 Health and Safety Plan 145 11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.8.1 Remedy Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147			
11.8.7.4 Progress Reports 145 11.8.8 Remedy Completion 145 11.8.8.1 Remedy Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147			
11.8.8 Remedy Completion 145 11.8.8.1 Remedy Completion Report 145 11.8.9 Accelerated Clean-up Process 146 11.8.9.1 Accelerated Corrective Measures Work Plan 147 11.8.9.2 Accelerated Corrective Measures Implementation 147 11.8.10 Well Completion Report 147		•	
11.8.8.1Remedy Completion Report14511.8.9Accelerated Clean-up Process14611.8.9.1Accelerated Corrective Measures Work Plan14711.8.9.2Accelerated Corrective Measures Implementation14711.8.10Well Completion Report147		v Completion	145
11.8.9Accelerated Clean-up Process			
11.8.9.1Accelerated Corrective Measures Work Plan14711.8.9.2Accelerated Corrective Measures Implementation14711.8.10Well Completion Report147			
11.8.9.2 Accelerated Corrective Measures Implementation			
11.8.10 Well Completion Report			
* *			
	11.8.10 Well C		

11.10 METHODS AND PROCEDURES	<u>147</u>
11.10.1 Standard Operating Procedures	148
11.10.2 Investigation, Sampling, and Analysis Methods	148
11.10.2.1 Introduction and Purpose	148
11.10.2.2 Field Exploration Activities	149
11.10.2.3 Sub-Surface Features/Utility Geophysical Surveys	149
11.10.2.4 Drilling and Soil, Rock, and Sediment Sampling	149
11.10.2.5 Sample Point and Structure Location Surveying	155
11.10.2.6 Subsurface Vapor-Phase Monitoring and Sampling	155
11.10.2.7 Groundwater Monitoring	156
11.10.2.8 Groundwater Sampling	157
11.10.2.9 Sample Handling	160
<u>11.10.2.10 In-Situ Testing</u>	161
11.10.2.11 Decontamination Procedures	162
11.10.2.12 Field Equipment Calibration Procedures	162
11.10.2.13 Collection and Management of Investigation Derived Waste	163
11.10.2.14 Documentation of Field Activities	
11.10.3 Chemical Analyses	164
11.10.3.1 Laboratory QA/QC Requirements	165
11.10.3.2 Review of Field and Laboratory QA/QC Data	168
11.10.3.3 Blanks, Field Duplicates, Reporting Limits, and Holding Times	169
11.10.3.4 Representativeness and Comparability	
11.10.3.5 Laboratory Reporting, Documentation, Data Reduction, and	
Corrective Action	
11.10.4 Site-Specific Human Health Risk Assessment	171
11.10.4.1 Human Health Risk Assessment Methods	171
11.10.5 Site-Specific Ecological Risk Assessment Methods	
11.10.6 Determination of Background	174
11.10.6.1 Comparing Site Data to Background	175
11.11 MONITORING WELL CONSTRUCTION REQUIREMENTS	175
11.11.1 Types of Monitoring Wells	175
11.11.2 Drilling Methods	
11.11.2.1 Hollow-Stem Auger	
11.11.2.2 Air Rotary/Air Down-The-Hole Hammer/ODEX	177
11.11.2.3 Water Rotary and Mud Rotary	178
11.11.2.4 Dual-Wall Reverse Circulation	179
11.11.2.5 Resonant Sonic	179
11.11.2.6 Cryogenic	179
11.11.3 Well Construction/Completion Methods	180
11.11.3.1 Well Construction Materials	100
11.11.3.2 Well Construction Techniques	180
11.11.3.3 Well Screen and Filter Pack Design	180
11.11.3.2Well Construction Techniques11.11.3.3Well Screen and Filter Pack Design11.11.3.4Annular Sealant	180 183

11.11.5 Surf	face Completion	<u>186</u>
11.11.6 Wel	1 Abandonment	187
	umentation	
11.12 REPORT	ING REQUIREMENTS	189
	eral	
	estigation Work Plan	
11.12.2.1	Title Page	190
11.12.2.2	Executive Summary (Abstract)	190
11.12.2.3	Table of Contents.	190
11.12.2.4	Introduction	
11.12.2.5	Background	191
11.12.2.6	Site Conditions	
11.12.2.7	Scope of Activities	
11.12.2.8	Investigation Methods.	192
11.12.2.9	Monitoring and Sampling Program	
11.12.2.10	Schedule	
11.12.2.11	Tables	
11.12.2.12	Figures	
11.12.2.13	Appendices	
	estigation Report	
11.12.3.1	Title Page	
11.12.3.2	Executive Summary (Abstract)	
11.12.3.3	Table of Contents.	
11.12.3.4	Introduction	
11.12.3.5	Background	
11.12.3.6	Scope of Activities.	
11.12.3.7	Field Investigation Results.	
11.12.3.8	Site Conditions.	
11.12.3.9	Exploratory Drilling or Excavation Investigations	
11.12.3.10	Exploratory and Monitoring Well Boring Geophysical Logging.	
11.12.3.11	Subsurface Conditions Subsurface Conditions	
11.12.3.12	Monitoring Well Construction and Boring or Excavation	177
1111213112	Abandonment	197
11.12.3.13	Groundwater Conditions	
11.12.3.14	Surface Water Conditions	
11.12.3.15	Surface Air and Subsurface Vapor Conditions	
11.12.3.16	Materials Testing Results	
11.12.3.17	Pilot Testing Results	. <u>. 190</u> 198
11.12.3.17	Regulatory Criteria.	
11.12.3.19	Site Contamination.	
11.12.3.19	Conclusions	
11.12.3.21	Recommendations	
11.12.3.21	Tables	
11.12.3.22	Figures	202 203
11.14.3.43	Tiguico	∠∪⊃

	Appendices	<u> 204</u>
.12.4 Peri	odic Monitoring Report	205
11.12.4.1	Title Page	205
11.12.4.2	Executive Summary (Abstract)	205
11.12.4.3	Table of Contents	206
11.12.4.4	Introduction	206
11.12.4.5	Scope of Activities	206
11.12.4.6	Regulatory Criteria	206
11.12.4.7		
11.12.4.8	Analytical Data Results	207
11.12.4.9	Remediation System Monitoring	207
11.12.4.10		
11.12.4.11		
11.12.4.12	Figures	208
11.12.4.13		
11.12.5.1		
11.12.5.2	Executive Summary (Abstract)	210
11.12.5.3		
11.12.5.4		
11.12.5.5	Background	210
11.12.5.6		
11.12.5.7	Sampling Results	211
11.12.5.8		
		040
11.12.5.9	Risk Screening Levels	<u>. 212</u>
11.12.5.9 11.12.5.10	Risk Screening Levels Risk Assessment Results	
		212
11.12.5.10	Risk Assessment Results	. 212 . 213
11.12.5.10 11.12.5.11	Risk Assessment Results. Conclusions and Recommendations Tables	. 212 . 213 . 213
11.12.5.10 11.12.5.11 11.12.5.12	Risk Assessment Results Conclusions and Recommendations Tables Figures	. 212 . 213 . 213 . 213
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14	Risk Assessment Results. Conclusions and Recommendations Tables Figures. Appendices.	. 212 . 213 . 213 . 213 . 214
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14	Risk Assessment Results Conclusions and Recommendations Tables Figures	. 212 . 213 . 213 . 213 . 214 . 214
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 1.12.6 Corr	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. Pective Measures Evaluation Report.	. 212 . 213 . 213 . 213 . 214 . 214
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 1.12.6 Corr 11.12.6.1	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. Title Page. Executive Summary (Abstract).	. 212 . 213 . 213 . 213 . 214 . 214 . 214
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 1.12.6 Corr 11.12.6.1 11.12.6.2	Risk Assessment Results. Conclusions and Recommendations Tables Figures Appendices Tective Measures Evaluation Report Title Page Executive Summary (Abstract) Table of Contents	. 212 . 213 . 213 . 213 . 214 . 214 . 214 . 215
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 1.12.6 Corr 11.12.6.1 11.12.6.2 11.12.6.3	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. Tective Measures Evaluation Report. Title Page. Executive Summary (Abstract). Table of Contents. Introduction.	. 212 . 213 . 213 . 213 . 214 . 214 . 214 . 215 . 215
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 1.12.6 Corn 11.12.6.1 11.12.6.2 11.12.6.3 11.12.6.4	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. ective Measures Evaluation Report Title Page. Executive Summary (Abstract) Table of Contents Introduction. Background.	. 212 . 213 . 213 . 214 . 214 . 214 . 215 . 215 . 215
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 1.12.6 Corn 11.12.6.1 11.12.6.2 11.12.6.3 11.12.6.4 11.12.6.5	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. ective Measures Evaluation Report. Title Page. Executive Summary (Abstract) Table of Contents. Introduction. Background Site Conditions.	. 212 . 213 . 213 . 214 . 214 . 214 . 215 . 215 . 215 . 216
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 .12.6 Corr 11.12.6.1 11.12.6.2 11.12.6.3 11.12.6.4 11.12.6.5 11.12.6.6	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. Title Page. Executive Summary (Abstract). Table of Contents. Introduction. Background. Site Conditions. Potential Receptors.	. 212 . 213 . 213 . 214 . 214 . 214 . 215 . 215 . 215 . 216
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 1.12.6 Corn 11.12.6.1 11.12.6.2 11.12.6.3 11.12.6.4 11.12.6.5 11.12.6.5 11.12.6.7	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. Title Page. Executive Summary (Abstract). Table of Contents. Introduction. Background. Site Conditions. Potential Receptors Regulatory Criteria.	. 212 . 213 . 213 . 214 . 214 . 214 . 215 . 215 . 215 . 216 . 216
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 1.12.6 Corn 11.12.6.1 11.12.6.2 11.12.6.3 11.12.6.4 11.12.6.5 11.12.6.6 11.12.6.7 11.12.6.8 11.12.6.9	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. ective Measures Evaluation Report. Title Page. Executive Summary (Abstract) Table of Contents. Introduction. Background. Site Conditions. Potential Receptors Regulatory Criteria. Identification of Corrective Measures Options	. 212 . 213 . 213 . 214 . 214 . 215 . 215 . 215 . 216 . 216 . 217
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 1.12.6 Corn 11.12.6.1 11.12.6.2 11.12.6.3 11.12.6.4 11.12.6.5 11.12.6.5 11.12.6.6 11.12.6.7 11.12.6.8	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. Title Page. Executive Summary (Abstract). Table of Contents. Introduction. Background. Site Conditions. Potential Receptors. Regulatory Criteria. Identification of Corrective Measures Options Evaluation of Corrective Measures Options	. 212 . 213 . 213 . 214 . 214 . 214 . 215 . 215 . 215 . 216 . 216 . 217 . 217
11.12.5.10 11.12.5.11 11.12.5.12 11.12.5.13 11.12.5.14 11.2.6.1 11.12.6.1 11.12.6.3 11.12.6.4 11.12.6.5 11.12.6.5 11.12.6.7 11.12.6.8 11.12.6.9 11.12.6.10	Risk Assessment Results. Conclusions and Recommendations Tables. Figures. Appendices. ective Measures Evaluation Report. Title Page. Executive Summary (Abstract) Table of Contents. Introduction. Background. Site Conditions. Potential Receptors Regulatory Criteria. Identification of Corrective Measures Options	. 212 . 213 . 213 . 214 . 214 . 215 . 215 . 215 . 216 . 216 . 217 . 217 . 217
	11.12.4.3 11.12.4.4 11.12.4.5 11.12.4.6 11.12.4.7 11.12.4.8 11.12.4.9 11.12.4.10 11.12.4.11 11.12.4.12 11.12.4.13 .12.5 Risk 11.12.5.1 11.12.5.2 11.12.5.3 11.12.5.4 11.12.5.5 11.12.5.5 11.12.5.6 11.12.5.7 11.12.5.8	11.12.4.3 Table of Contents. 11.12.4.4 Introduction. 11.12.4.5 Scope of Activities. 11.12.4.6 Regulatory Criteria. 11.12.4.7 Monitoring Results. 11.12.4.8 Analytical Data Results. 11.12.4.9 Remediation System Monitoring. 11.12.4.10 Summary. 11.12.4.11 Tables. 11.12.4.12 Figures. 11.12.4.13 Appendices. 12.5 Risk Assessment Report 11.12.5.1 Title Page. 11.12.5.2 Executive Summary (Abstract) 11.12.5.3 Table of Contents. 11.12.5.4 Introduction. 11.12.5.5 Background. 11.12.5.6 Site Description. 11.12.5.7 Sampling Results. 11.12.5.8 Conceptual Site Model.

<u>11.12.</u>	6.14 Tables	<u> 219</u>
11.12.	6.15 Figures	220
	6.16 Appendices	
	ENERAL PERMIT CONDITIONS	
1.1—AU7	THORITY	11
1.2 PER	MITTEES AND PERMITTED ACTIVITY	11
	ATIONS	
1.4 EFF	ECT OF PERMIT	12
1.4.1	Effect of this Permit on Interim Status Units	13
	ECT OF INACCURACIES IN PERMIT APPLICATION	
	MIT ACTIONS.	
	- Duration of Permit	
	Permit Modification	
	Reserved	
1.6.4		
1.0.1	Issuance	14
165	Permit Re-Application	
1.0.5 1.6.6	Continuation of Expiring Permit.	15
	Permit Review by the Department	
	MIT CONSTRUCTION	
1.7 1	Severability	
1./.1 1.0 DEE	- <u>Severationry</u> 'INITIONS	
	FIES AND REQUIREMENTS	
	- Duty to Comply	
	Enforcement	
	Transfer of Permit	
	Need to Halt or Reduce Activity Not a Defense	
	Duty to Mitigate	
	Proper Operation and Maintenance	
	Duty to Provide Information	
	Inspection and Entry	
<u>1.9.9</u>	Sampling and Records	
1.9.9.	Representative Sampling	
1.9.10 —	- Reporting Planned Changes	
1.9.11	Reporting Anticipated Noncompliance	
<u>1.9.12</u>	24 Hour and Subsequent Reporting	
<u>1.9.12</u>	<u>.1 24 Hour Oral Report</u>	
<u>1.9.12</u>	.2 Five Day Written Report	
	<u>Written Reporting of a Non-threatening Release</u>	
	Other Noncompliance	
<u>1.9.15</u>	Omissions or Misstatements in Applications or Other Reports	
<u>1.9.16</u>	Signatory requirement	
<u>1.9.17</u>	Submissions to the New Mexico Environment Department	
1.9.18	Approval of Submittals	25

1.9.19 Extensions of Time	25
1.9.20 Confidential Information	26
1.9.21 New or Modified Permitted Units.	26
1.10 INFORMATION REPOSITORY	
1.10.1—PUBLIC ENVIRONMENTAL DATABASE	
1.11—GENERAL DOCUMENTS AND INFORMATION TO BE MAINTAINED	
AT THE FACILITY	
1.12 COMMUNITY RELATIONS PLAN	
1.13 PUBLIC NOTIFICATION VIA ELECTRONIC MAIL (E MAIL)	
1.14 DISPUTE RESOLUTION	
1.14.1 Notice to the Department	
1.14.2 Agreement or Disagreement between Parties	
1.14.3 Final Decision of the Department	
1.14.4 Actions Not Affected by Dispute	
1.14.5 — Available Remedies Reserved	
1.15 COMPLIANCE SCHEDULE	
1.16 TRANSFER OF LAND OWNERSHIP	
1.16.1 Determination of Need for Further Action	
1.16.2 Restricted Use	
1.16.3 Enforceability against Transferee	
1.16.4 EPA Institutional Controls Tracking System	
1.16.5 <u>Transfer of Facility Property to another Federal Agency</u>	
1.17 NOTICE OF DEMOLITION ACTIVITIES	
1.17.1 Content and Format of Notice.	
1.17.2 Demolition Activities Update	34
<u>1.17.3</u> <u>Actions</u>	
PART 2: GENERAL FACILITY CONDITIONS	 36
2.1 DESIGN, CONSTRUCTION, MAINTENANCE, AND OPERATION OF	
THE FACILITY	36
2.2 <u>AUTHORIZED WASTES</u>	
2.2.1 <u>Hazardous Waste from Off-Site Sources</u>	36
2.2.2 <u>Hazardous Waste from Foreign Sources</u>	37
2.2.3 PCB - Contaminated Waste	37
2.3 <u>LAND DISPOSAL RESTRICTIONS</u>	
2.3.1 <u>Hazardous Waste Storage</u>	37
2.3.2 <u>Prohibition on Dilution</u>	
2.3.3 <u>Documentation of Exclusion or Exemption</u>	38
2.4 WASTE ANALYSIS	39
2.4.1 General Waste Characterization Requirements	39
2.4.2 Sampling and Analysis for Hazardous Wastes	40
2.4.3 Acceptable Knowledge	
2.4.4 Waste Received from Off-Site	
2.4.5 Treatment-Derived Waste	42
2.4.6 Reserved	42

2.4.7 —	— Waste Characterization Review	42
	Waste Characterization for Compliance with RCRA Air	
	Emission Requirements	43
2.4.9	Waste Characterization for Compliance with Land Disposal	
	Restrictions	44
2.5 SE	CURITY	45
2.5.1	Warning Signs	45
	ENERAL INSPECTION REQUIREMENTS	
2.6.1	Inspection Schedule	46
	Repair of Equipment and Structures	
	Inspection Logs and Records	
	RSONNEL TRAINING	
	ECIAL REQUIREMENTS FOR IGNITABLE, REACTIVE, OR	,
	COMPATIBLE WASTE	48
	—Ignitable and Reactive Waste Precautions	
	Incompatible Waste Precautions.	
	ASTE MINIMIZATION PROGRAM	
	EPAREDNESS AND PREVENTION	
	Required Equipment	
	Testing and Maintenance of Equipment	
	— Access to Communications or Alarm System	
	Spill Response.	
	— Arrangements with Local Authorities	
	ONTINGENCY PLAN	
	Implementation of Contingency Plan	
	Content of the Contingency Plan	
	<u>Distribution</u>	
	Amendments to Plan	
	Incident Response Commander	
	Required Emergency Procedures	
	.6.1 Immediate Actions	
	.6.2 Release, Fire, or Explosion	
	.6.3 Reporting Findings	
	. <u>6.4</u> <u>Mitigative Measures</u>	
	. <u>6.5</u> <u>Monitoring</u>	
	Post-Emergency Procedures	
	Need for Further Corrective Action	
	Notification and Record Keeping	
2.12— <u>RE</u>	CORDKEEPING AND REPORTING	59
2.12.1 -	Manifest Systems.	59
2.12.2	Facility Operating Record	59
	Availability of Facility Operating Record	
	Record Retention	
	Biennial Report	

PART 3: STORAGE IN CONTAINERS	 64
2.1 CENERAL CONDITIONS	<i>C</i> 1
3.1 GENERAL CONDITIONS	
3.2 CONDITION OF CONTAINERS	
3.3 ACCEPTABLE STORAGE CONTAINERS	
3.4—COMPATIBILITY OF WASTE WITH CONTAINERS	
3.5 MANAGEMENT OF CONTAINERS	
3.5.1 Storage Configuration and Minimum Aisle Space	
3.6 WASTE CONTAINER LABELING	
3.7—CONTAINMENT SYSTEMS	
3.7.1 Containers with Free Liquids	67
3.7.2 <u>Containers without Free Liquids</u>	
3.8 INSPECTION SCHEDULES AND PROCEDURES	68
3.9 VOLATILE ORGANIC AIR EMISSIONS	69
3.10 TA-3 CONTAINER STORAGE REQUIREMENTS	70
3.10.1—General Operating Conditions	70
3.10.2 Secondary Containment	70
3.11—TA-50 CONTAINER STORAGE REQUIREMENTS	
3.11.1 General Operating Conditions	70
3.11.2 Preventing Hazards in Loading/Unloading	70
3.11.3 Preventing Run-on	
3.12—TA-54 CONTAINER STORAGE REQUIREMENTS	
3.12.1 General Operating Conditions	
3.12.2 Preventing Run-on and Run-off	
3.12.2.1 — Domes 153 & 283	
3.12.2.2 Storage Shed 8	
3.12.2.3 TA-54-33	
3.12.3 Secondary Containment	
3.12.3.1 TA 54.32	
3.12.3.2 TA-54-35.	
3.12.3.3 TA-54-36	
3.12.3.4 TA-54-58	
3.12.3.5 TA-54-39 and Containment Pad	
3.12.3.6 Storage Sheds 144, 145, 146, and 177	
3.12.3.7 — Dome 224	
3.13—TA-55 CONTAINER STORAGE REQUIREMENTS	
3.13.1 General Operating Conditions 3.14 TA 63 CONTAINER STORAGE REQUIREMENTS	/4 7/
3.14.1—General Operating Conditions	
3.14.2 Retention Basin	
3.14.3 Subsurface Vapor Monitoring	
PART 4: TA-55 STORAGE IN TANKS AND TREATMENT BY S	
•••••••••••••••••••••••••••••••••••••••	84
4.1—GENERAL CONDITIONS	84
	

<u>4.2</u>	EXISTING TANK SYSTEM INTEGRITY	84
4.3	REPLACEMENT TANK SYSTEM AND STABILIZATION UNIT	
	COMPONENTS	85
4.4_	TANK SYSTEMS AND STABILIZATION UNIT CONTAINMENT	85
4.5	IGNITABLE, REACTIVE, OR INCOMPATIBLE WASTES	87
4.6	TA-50 RADIOACTIVE LIQUID WASTE TREATMENT FACILITY	87
PART	S: (RESERVED)	
PART	<u> 6: (RESERVED)</u>	 90
DADT	7: TREATMENT IN CONTAINERS	02
IANI	THE ATTIVITIES OF TABLERS	 7
7.1 -	—GENERAL CONDITIONS	92
7.2	GLOVE BAG/GLOVEBOX INTEGRITY AND CONTAINMENT	92
7.3	TREATMENT REQUIREMENTS	93
7.4	RELEASES WITHIN THE PERMITTED UNIT	
7.5	INCOMPATIBLE WASTES.	93
7.6 –	—— CONFIRMATION ANALYSIS	93
PART	8: Treatment by Macroencapsulation	
<u>8.1 </u>	GENERAL CONDITIONS	
8.2	MACROENCAPSULATION REQUIREMENTS	96
<u>8.3</u>	RELEASES WITHIN THE PERMITTED UNIT	97
<u>8.4</u>	<u>INCOMPATIBLE WASTES</u>	
PART	9: CLOSURE	 99
0.1	DUTTO O DIVIGITION	0.0
<u>9.1</u>	INTRODUCTION	99
<u>9.</u>	1.1 Regulated Units	99
<u>9.</u>	1.2 Indoor Units	
<u>9.</u>	1.3 Outdoor Units	
<u>9.2</u>	CLOSURE PERFORMANCE STANDARDS	
<u>9.</u>	2.1 Clean Closure	
<u>9.</u>	2.2 Inability to Achieve Clean Closure Performance Standards	
	9.2.2.1 Indoor Units	
	9.2.2.2 Outdoor Units Co-located with Regulated Units	
	9.2.2.3 Other Outdoor Units	
<u>9.3</u> _	CLOSURE REQUIREMENTS FOR REGULATED UNITS	
<u>9.4</u> _	CLOSURE REQUIREMENTS FOR INDOOR AND OUTDOOR UNITS.	
<u>9.</u>	4.1 <u>Closure Schedule</u>	
	9.4.1.1 <u>Time Allowed for Closure</u>	
<u>9.</u>	4.2 Removal of Hazardous Waste	
<u>9.</u>	4.3 Decontamination and Removal	
	9.4.3.1 <u>Decontamination of Surfaces, Structures, and Related Equipment</u>	_
	9.4.3.2 Removal of Structures, Related Equipment, and Pads	
9.	4.4 Decontamination Verification and Soil Sampling	104

9.4.4.1 Decontamination Verification and S	<u>oil Sampling Activities 104</u>
9.4.5 Management and Disposal Procedures fo	
During Closure	
9.4.6 Records Review and Structural Assessme	ent105
9.4.6.1 Records Review	
9.4.6.2 Structural Assessment	105
9.4.7 Closure Plans	106
9.4.7.1 Sampling and Analysis Plan	
9.4.8 Amendment of the Closure Plan	108
9.4.9 Variance to Decontamination Verification	n Standards108
9.5—CLOSURE CERTIFICATION REPORT TO T	 THE DEPARTMENT109
PART 10: POST-CLOSURE CARE	
10.1—POST-CLOSURE CARE	111
10.1.1 Post-Closure Care Plan	112
10.1.2—Amendment of the Post-Closure Care Pla	<u>.n112</u>
10.2 NOTICES AND CERTIFICATIONS	
10.2.1 Notification Requirements	113
10.2.2 Record Requirements	
10.2.3 Completion of Post-Closure Requirement	
PART 11: CORRECTIVE ACTION	
11.1—CORRECTIVE ACTION REQUIREMENTS ORDER	115
11.2.1—Identification of SWMUs and AOCs Req	
Action	
11.3—GENERAL CONDITIONS	-
11.3.1—Groundwater Monitoring	
11.3.1.1 Notification of Detections	
11.3.1.2 Source Identification and Corrective	
11.3.2 Groundwater Monitoring Reporting	
11.3.3 Corrective Action Beyond the Facility Bo	
11.3.4 Off-Site Access	
11.3.5 Newly Discovered Releases	
11.3.6 Field Activities	
11.3.7 Health and Safety Plan	
11.3.8 Recordkeeping	
11.4—CLEANUP LEVELS	
11.4.1 Groundwater Cleanup Levels	
11.4.1.1 Groundwater Cleanup Levels 11.4.1.1 Groundwater Cleanup Level for Per	
11.4.2 Soil and Sediment	
11.4.2.2 Soil Cleanup Levels for Polyablaria	
11.4.2.2 Soil Cleanup Levels for Polychlorin	HELL FUDIENVIS
11.4.3 Surface Water Cleanup Levels	

11.5—ECOLOGICAL RISK EVALUATION	122
11.6—VARIANCE FROM CLEAN-UP LEVELS	
11.6.1—Water Ouality Standards	
11.6.2 Other Cleanup Levels	
11.7—PERMIT MODIFICATION FOR CORRECTIVE ACTION COMPLETE	
11.7.1 Long-term Monitoring and Maintenance of SWMUs and AOCs	124
11.8 CORRECTIVE ACTION PROCEDURES	124
11.8.1 Release Assessment	124
11.8.1.1 Release Assessment Report 11.8.1.1	24
11.8.1.2 Requirement to Proceed 1	25
11.8.2 Interim Measures	125
11.8.2.1 Department-Initiated Interim Measures 1	
11.8.2.2 Permittees-Initiated Interim Measures 1	
11.8.3 Emergency Interim Measures	126
11.8.4 IM Work Plan Requirements	
11.8.4.1 Interim Measures Implementation	
11.8.5 Corrective Action Investigations	
11.8.5.1 Investigation Work Plan	
11.8.5.2 Corrective Action Investigation Reports	
11.8.5.3— Risk Assessment	
11.8.6 Corrective Measures Evaluation	
11.8.6.1— General	
11.8.6.2 <u>Corrective Measures Evaluation Report</u>	
11.8.6.3—Cleanup Standards	
11.8.6.4 Remedy Evaluation Criteria	
11.8.6.5 Approval of Corrective Measures Evaluation Report	
11.8.6.6 Relationship to Corrective Action Requirements	
11.8.6.7 Statement of Basis.	
11.8.7—Corrective Measures Implementation	
11.8.7.1 General	
11.8.7.2 Corrective Measures Implementation Plan 1	
11.8.7.3 Health and Safety Plan	
11.8.7.4 Progress Reports 1	
11.8.8—Remedy Completion	
11.8.8.1 Remedy Completion Report	
11.8.9 Accelerated Clean-up Process	
11.8.9.2 Accelerated Corrective Measures Implementation 11.8.9.2	
11.8.10—Well Completion Report	
11.10 METHODS AND PROCEDURES	
11.10 METHODS AND PROCEDURES	
11.10.1 Standard Operating Procedures.	
11.10.2 Investigation, Sampling, and Analysis Methods	
11.10.2.1—Introduction and Purpose	31

<u>11.10.2.2</u> —Field Exploration Activities	. 138
11.10.2.3 Sub-Surface Features/Utility Geophysical Surveys	. 138
11.10.2.4 Drilling and Soil, Rock, and Sediment Sampling	. 138
11.10.2.5 Sample Point and Structure Location Surveying	. 144
11.10.2.6—Subsurface Vapor-Phase Monitoring and Sampling	. 144
11.10.2.7 Groundwater Monitoring	
11.10.2.8 Groundwater Sampling	
11.10.2.9 Sample Handling.	
11.10.2.10 In-Situ Testing	. 150
11.10.2.11—Decontamination Procedures	
11.10.2.12—Field Equipment Calibration Procedures	. 151
11.10.2.13 Collection and Management of Investigation Derived Waste	
11.10.2.14—Documentation of Field Activities	
11.10.3 Chemical Analyses.	
11.10.3.1—Laboratory QA/QC Requirements	
11.10.3.2 Review of Field and Laboratory QA/QC Data	
11.10.3.3 Blanks, Field Duplicates, Reporting Limits, and Holding Times	
11.10.3.4 Representativeness and Comparability	
11.10.3.5 Laboratory Reporting, Documentation, Data Reduction, and	. 10,
Corrective Action	159
11.10.4 Site-Specific Human Health Risk Assessment	
11.10.4.1— Human Health Risk Assessment Methods	
11.10.5 Site-Specific Ecological Risk Assessment Methods	
11.10.6—Determination of Background.	
11.10.6.1 Comparing Site Data to Background	
11.11 MONITORING WELL CONSTRUCTION REQUIREMENTS	
11.11.1 Types of Monitoring Wells	
11.11.2 Drilling Methods	
11.11.2.1—Hollow-Stem Auger	
11.11.2.2— Air Rotary/Air Down-The-Hole Hammer/ODEX	
11.11.2.3 — Water Rotary and Mud Rotary	
11.11.2.4 — Dual-Wall Reverse Circulation	
11.11.2.5 Resonant Sonic.	. 168
11.11.2.6 — Cryogenic	
11.11.3 Well Construction/Completion Methods	
11.11.3.1—Well Construction Materials	
11.11.3.2 Well Construction Techniques.	
11.11.3.3 Well Screen and Filter Pack Design	
11.11.3.4—Annular Sealant.	
11.11.4 Well Development	
11.11.5—Surface Completion	
11.11.6 Well Abandonment	
11.11.7 Documentation	
11.12_REPORTING REQUIREMENTS	
11.14-NLI ONTINO REQUIREMENTS	170

11.12.1 —	General.	178
11.12.2	Investigation Work Plan	.179
11.12.2	2.1—Title Page	179
11.12.2	Executive Summary (Abstract).	179
11.12.2	2.3—Table of Contents	179
11.12.2	2.4 Introduction	179
	2.5 Background	
11.12.2	2.6 Site Conditions	180
11.12.2	2.7 Scope of Activities	181
	2.8—Investigation Methods	
	2.9 Monitoring and Sampling Program	
	2.10 Schedule	
	2-11—Tables	
11.12.2	2.12 Figures	182
	2.13—Appendices	
	Investigation Report	
	3.1—Title Page	
	3.2 Executive Summary (Abstract)	
	3.3 Table of Contents	
	3.4—Introduction	
	3.5 Background	
	8.6 Scope of Activities	
	3.7—Field Investigation Results	
	3.8—Site Conditions	
	8.9 Exploratory Drilling or Excavation Investigations	
	8.10 Exploratory and Monitoring Well Boring Geophysical Logging	
	3.11—Subsurface Conditions	
	8.12—Monitoring Well Construction and Boring or Excavation	100
11.12.5	Abandonment	186
11 12 2	3.13—Groundwater Conditions	
	3.14 Surface Water Conditions	
	3.15—Surface Water Conditions 3.15—Surface Air and Subsurface Vapor Conditions	
		. 187
	8-17—Pilot Testing Results	
		
	3.18 Regulatory Criteria	
	3.19 Site Contamination	
	3.20 <u>Conclusions</u>	
	3.21 Recommendations	
	3.22— <u>Tables</u>	
	3.23 <u>Figures</u>	
	3.24 Appendices	
	Periodic Monitoring Report	
	1.1 <u>Title Page</u>	
11.12.4	1.2—Executive Summary (Abstract)	. 194

	11.12.4.3	- <u>Table of Contents</u>	. 195
	11.12.4.4	- <u>Introduction</u>	. 195
	<u>11.12.4.5</u>	Scope of Activities	. 195
	<u>11.12.4.6</u>	Regulatory Criteria	. 195
	<u>11.12.4.7</u>	-Monitoring Results.	. 195
	<u>11.12.4.8</u>	-Analytical Data Results.	. 196
	11.12.4.9	Remediation System Monitoring	. 196
	<u>11.12.4.10</u>	-Summary	. 196
	11.12.4.11	<u>-Tables</u>	. 196
	<u>11.12.4.12</u>	<u>Figures</u>	. 197
	11.12.4.13	-Appendices	. 198
1	1.12.5 Risk	Assessment Report	198
	11.12.5.1	-Title Page	. 199
	11.12.5.2	Executive Summary (Abstract).	. 199
	11.12.5.3	-Table of Contents	. 199
	11.12.5.4	-Introduction	. 199
		Background	
		Site Description.	
		Sampling Results	
		Conceptual Site Model.	
		Risk Screening Levels.	
		Risk Assessment Results.	
	11.12.5.11	Conclusions and Recommendations	
	11.12.5.12	 - Tables	
		Figures.	
	11.12.5.14	Appendices.	
1	1.12.6 Cor	rective Measures Evaluation Report	
	11.12.6.1	-Title Page	
	11.12.6.2	Executive Summary (Abstract).	
		-Table of Contents	
		Background	
	11.12.6.6	Site Conditions	
	11.12.6.7	Potential Receptors	
		Regulatory Criteria	
		-Identification of Corrective Measures Options	
		Evaluation of Corrective Measures Options	
		Selection of Preferred Corrective Measure	
		Design Criteria to Meet Cleanup Objectives	
		-Schedule	
		- Tables - Tables	
		Figures	
		-Appendices	

Table 1.2.1. List of Hazardous Waste Management Units and Co-Operators

Location	Type of Permitted Unit	Owner/Co-operator
TA-3	Storage	DOE/Triad
TA-14	Interim Status	DOE/Triad
	Open Burning/Open Detonation	
TA-16	Interim Status	DOE/Triad
	Open Burning	
TA-36	Interim Status	DOE/Triad
	Open Denotation	
TA-39	Interim Status	DOE/Triad
	Open Denotation	
TA-50	Storage and Treatment	DOE/Triad
TA-55	Storage and Treatment	DOE/Triad
TA-63	Storage	DOE/Triad
TA-54-38 West	Storage	DOE/Triad
TA-54	Storage and Disposal (Including	DOE/N3B
Areas G, H and L	Units Undergoing Closure)	
<u>TA-60</u>	Storage and Treatment	DOE/Triad

1.3 CITATIONS

Whenever this Permit incorporates by reference a provision of the 20.4.1 NMAC or Title 40 CFR, the Permit shall be deemed to incorporate the citation by reference, including all subordinate provisions of the cited provision, and make binding the full text of the cited provision.

Hazardous waste management regulations are cited throughout this Permit. The federal Hazardous Waste Management Regulations, 40 CFR Parts 260 through 273, are generally cited rather than the New Mexico Hazardous Waste Management Regulations, 20.4.1 NMAC. The federal regulations are cited because only the federal regulations set forth the detailed regulatory requirements; the State regulations incorporate by reference, with certain exceptions, the federal regulations in their entirety. Citing only the federal regulations also serves to avoid encumbering each citation with references to two sets of regulations. However, it is the State regulations that are legally applicable and enforceable. Therefore, for the purpose of this Permit, and enforcement of its terms and conditions, all references to provisions of federal regulations that have been incorporated into the State regulations shall be deemed to include the State incorporation of those provisions.

1.4 EFFECT OF PERMIT

As to those activities specifically authorized or otherwise specifically addressed under this Permit, compliance with this Permit during its term shall constitute compliance, for

purposes of enforcement, with Subtitle C of RCRA and the HWA, and the implementing regulations at 40 CFR Parts 264, 266, and 268 except for those requirements that become effective by statute after the Permit has been issued (*see* 40 CFR § 270.4).

Compliance with this Permit shall not constitute a defense to any order issued or any action brought under: §§ 74-4-10, 74-4-10.1, or 74-4-13 of the HWA; §§ 3008(a), 3008(h), 3013, 7002(a)(1)(B), or 7003 of RCRA; §§ 104, 106(a), or 107, of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 U.S.C. §§ 9601 to 9675; or any other federal, state or local law providing for protection of public health or the environment.

This Permit does not convey any property rights of any sort or any exclusive privilege, nor authorize any injury to persons or property, any invasion of other private rights, or any infringement of state or local laws or regulations. Compliance with this Permit does not relieve Permittees from the responsibility of complying with all applicable state or federal laws and regulations (*see* 40 CFR §§ 270.4, 270.30(g) and 270.32(b)(1)).

1.4.1 Effect of this Permit on Interim Status Units

For the interim status units listed in Table J-1 that the Permittees do not choose to operate, the Permittees shall submit to the Department within 180 days of the effective date of this Permit either a notice of intent to close in accordance with a current closure plan, or a revised closure plan. These documents shall indicate that the closure of these interim status units shall be initiated in accordance with 40 CFR § 265.113(a) no later than 270 days of the effective date of this Permit.

For the interim status units listed in Table J-1 that the Permittees propose to permit, the Permittees shall submit to the Department 180 days of the effective date of this Permit a permit modification request in accordance with 40 CFR § 270.42 that includes all applicable information required at 40 CFR §§ 270.10, 270.11, 270.14, and 270.23 for each unit.

1.5 EFFECT OF INACCURACIES IN PERMIT APPLICATION

This Permit is based on information submitted in the Permittees' Application. The Application has numerous iterations; however, this Permit is based on:

- (1) the Part A Application dated August 2018;
- (2) the General Part B Permit Application dated August 2003;
- (3) the TA-3-29 CMR Part B Application dated September 1999;
- (4) the TA-50 Part B Permit Application dated August 2002;
- (5) the TA-54 Part B Permit Application dated June 2003;

- (6) the TA-55 Part B Permit Application dated September 2003; and
- (7) the TA-63 Permit Modification Request dated August 2011; and
- (8) the TA-60 Permit Modification Request dated March 2023.

Any inaccuracies found in the Application may be grounds for the termination, revocation and re-issuance, or modification of the Permit in accordance with 40 CFR §§ 270.41 through 270.43, which are incorporated herein by reference, and for enforcement action.

The Permittees shall inform the Department of any deviation from, or changes in, the information contained in the Application that would affect the Permittees' ability to comply with this Permit. Upon knowledge of such deviations, the Permittees shall, within 30 days, provide this information in writing to the Department in accordance with Permit Sections 1.9.14 and 1.9.15 and 40 CFR §§ 270.30(l)(11) and 270.43(a)(2), which are incorporated herein by reference.

1.6 PERMIT ACTIONS

1.6.1 **Duration of Permit**

This Permit shall be effective for a fixed term of ten years from its effective date. The effective date of this Permit shall be 30 days after notice of the Department's decision has been served on the Permittees or such later time as the Department may specify (*see* 40 CFR § 270.50(a)).

1.6.2 Permit Modification

This Permit may be modified for both routine and significant changes as specified in 40 CFR §§ 270.41 through 270.43, and any modification shall conform to the requirements specified in these regulations. The filing of a permit modification request by the Permittees, or the notification by the Permittees of planned changes or anticipated noncompliance, does not stay the applicability or enforceability of any permit condition (see 40 CFR § 270.30(f)).

1.6.3 Reserved

1.6.4 Permit Suspension, Termination, and Revocation and Re-Issuance

This Permit may be suspended, terminated, or revoked and re-issued for cause as specified in § 74-4-4.2 of the HWA and 40 CFR §§ 270.41 and 270.43.

3.15 TA-60 CONTAINER STORAGE REQUIREMENTS

The Permittees (DOE and Triad) co-operate hazardous waste management unit at TA-60 and have a duty to meet the additional permit requirements in this Section.

3.15.1 General Operating Conditions

The Permittees shall ensure that storage of hazardous or mixed waste in containers at TA-60 occurs only inside the permitted unit in the southern portion of Building 17 and as identified in Attachment A (*Technical Area Unit Descriptions*) and Attachment J (*Hazardous Waste Management Units*).

3.15 TA-60 CONTAINER STORAGE REQUIREMENTS

The Permittees (DOE and Triad) co-operate hazardous waste management unit at TA-60 and have a duty to meet the additional permit requirements in this Section.

3.15.1 General Operating Conditions

The Permittees shall ensure that storage of hazardous or mixed waste in containers at TA-60 occurs only inside the permitted unit in the southern portion of Building 17 and as identified in Attachment A (*Technical Area Unit Descriptions*) and Attachment J (*Hazardous Waste Management Units*).

ATTACHMENT A TECHNICAL AREA (TA) - UNIT DESCRIPTIONS

TABLE OF CONTENTS

A.1	TA-3	5
	A.1.1 TA-3 Building 29	5
	A.1.2 Security and Access	6
	A.1.3 Emergency Equipment	6
<u>A.2</u>	RESERVED	7
<u>A.3</u>	TA-50	7
	A.3.1 TA-50-69 Indoor Permitted Unit	8
	A.3.2 TA-50-69 Outdoor Permitted Unit	9
	A.3.3 Security and Access	10
<u>A.4</u>	TA-54	12
	A.4.1 AREA L	13
	A.4.2 AREA G	16
	A.4.3 TA-54 West	27
	A.4.4 Security and Access Control	30
	A.4.5 Emergency Equipment	30
	A.4.6 Preventing Run-on and Runoff	33
<u>A.5</u>	TA-55	34
	A.5.1 B40	34
	A.5.2 B05	34
	A.5.3 K13	34
	A.5.4 B45	35
	A.5.5 B13	35
	A.5.6 G12	35
	A.5.7 Vault	35
	A.5.8 Outdoor Storage Pad	35
	A.5.9 TA-55-0355 Pad	36
	A.5.10 Mixed Waste Storage Tank System	36
	A.5.11 Mixed Waste Stabilization Unit	41
	A.5.12 Security and Access Control	43
	A.5.13 Emergency Equipment	43

A.6	TA-63	44
	A.6.1 Concrete Pad	45
	A.6.2 Storage Buildings	45
	A.6.3 Storage and Characterization Building	46
	A.6.4 Characterization Trailers	47
	A.6.5 Retention Basin	48
	A.6.6 Other Project Structures	48
	A.6.7 Security and Access Control	49
	A.6.8 Required Equipment	49
	A.6.9 Control of Run-on/Run-off	51
	A.6.10 Subsurface Vapor Monitoring	51
<u>A.7</u>	TA-60	52
	A.7.1 TA-60 Building 0017	52
	A.7.2 Security and Access	53
	A.7.3 Emergency Equipment	53
A.1 –	<u>TA-3</u>	4
	A.1.1 <u>TA-3 Building 29</u>	4
	A.1.2 Security and Access	5
	A.1.3 <u>Emergency Equipment</u>	5
A.2 _	<u>RESERVED</u>	6
A.3_	<u>TA-50</u>	6
	A.3.1 TA-50-69 Indoor Permitted Unit	7
	A.3.2 <u>TA-50-69 Outdoor Permitted Unit</u>	8
	A.3.3 Security and Access	9
A.4 _	<u>TA-54</u>	11
	A.4.1 AREA L	12
	A.4.2 AREA G	15
	A.4.3 <u>TA-54 West</u>	25
	A.4.4 Security and Access Control	28
	A.4.5 <u>Emergency Equipment</u>	28
	A.4.6 Preventing Run-on and Runoff	31
A.5	<u>TA-55</u>	32
	A.5.1 B40	32

	A.5.2— <u>B05</u>	32
	A.5.3 <u>K13</u>	32
	A.5.4 <u>B45</u>	33
	A.5.5 <u>B13</u>	33
	A.5.6 <u>G12</u>	33
	A.5.7— <u>Vault</u>	33
	A.5.8 Outdoor Storage Pad	33
	A.5.9 <u>TA-55-0355 Pad</u>	34
	A.5.10 Mixed Waste Storage Tank System	34
	A.5.11 Mixed Waste Stabilization Unit	38
	A.5.12 Security and Access Control	40
	A.5.13 Emergency Equipment	41
A.6 –	<u>TA-63</u>	42
	A.6.1 Concrete Pad	43
	A.6.2 Storage Buildings	43
	A.6.3—Storage and Characterization Building	44
	A.6.4 <u>Characterization Trailers</u>	44
	A.6.5 Retention Basin	46
	A.6.6 Other Project Structures	46
	A.6.7 <u>Security and Access Control</u>	47
	A.6.8 Required Equipment	47
	A.6.9 Control of Run-on/Run-off	49
	A.6.10 Subsurface Vapor Monitoring	49

on Figure 56. These five wells must be installed and operational within 90 days of completion of construction of the TWF buildings.

Vapor monitoring wells VMW-1, VMW-2, and VMW-3 shall be constructed with a single vapor monitoring port located in the center of a sampling interval between 5 ft and 10 ft below ground surface (bgs). Vapor monitoring wells VMW-4 and VMW-5 shall be constructed with two vapor monitoring ports located at 25 ft and 60 ft below ground surface (bgs). Boreholes will be advanced using hollow stem auger drilling methods. The vapor monitoring wells shall be constructed utilizing the same type of stainless steel (SS) tubing sampling system used at Vapor Monitoring Well 50-613183 at MDA C.

Well boreholes for VMW-1, VMW-2, and VMW-3 must be advanced to the design depth of 10 ft bgs. A continuous 0.25 inch stainless steel sampling tube with a screened end opening must then be placed in the borehole centered in the sampling interval (5 ft to 10 ft bgs) depth and clean sand filter pack added as the auger(s) are withdrawn to create a vapor permeable medium in the interval 5 ft to 10 ft bgs. The vapor monitoring wells must then be sealed with 2.5 ft of hydrated bentonite clay overlain by 2 ft of bentonite-cement grout.

Well boreholes for VMW-4 and VMW-5 must be advanced to the design depth of 67.5 ft bgs. A minimum 5 ft hydrated bentonite clay plug must be placed above and below each sampling interval. A continuous 0.25 inch stainless steel sampling tube with a screened end opening must be placed in the borehole centered in the 5-foot sampling intervals and clean sand filter pack added as the auger(s) are withdrawn to create a vapor permeable medium in the intervals from 62.5 ft to 57.5 ft bgs and 22.5 ft to 27.5 ft bgs. Bentonite chips shall fill the borehole between sampling interval hydrated bentonite plugs and from the top of the 25 ft sampling interval to 5.5 ft bgs and overlain by a 5 ft bentonite cement grout surface seal.

Final construction of the vapor monitoring wells requires the installation of above ground steel protective casings to protect the wells. The Permittees shall take measures to ensure that the surface monuments will not be damaged by snow removal or other maintenance equipment. The well surface seals must be allowed to cure for at least 24 hr before collecting vapor samples. Sampling will be performed by extracting formation air through the sand layer and into the SS tubing.

A.7 TA-60

TA-60 sits atop Sigma Mesa between Sandia and Mortandad Canyons in the north-central part of LANL. Sandia and Mortandad Canyons head on the west margin of TA-60 forming steep cliffs at the top of canyon walls. TA-60-0017 is located approximately 0.8 miles east of the intersection of Diamond and Enewetak Drives adjacent to *Roads & Grounds* area.

A.7.1 TA-60 Building 0017

The TA-60-0017 facility was constructed in 1986 to support atomic tests conducted at the Nevada Test Site. It is a unique pre-engineered steel-frame structure consisting of two wings connected by a small control room and stairwell enclosure. The building has concrete footings, slabs, and stem walls with the south portion (permitted area) being 120 ft. long by 29 ft. wide

and 23 ft. high. The permitted unit stores containers of hazardous and mixed low level waste in solid and liquid form. Secondary containment is used for storage of liquid wastes. Raised pallets, wheeled drum dollies, and/or other appropriate methods are used to elevate 55-gallon drums off the floor. The containers may be stacked two (2) or three (3) high as determined appropriate (see Figure 60 in Permit Attachment N (Figures)).

A.7.2 Security and Access

Security is maintained through LANL-wide physical and administratively-controlled barriers along with building restrictions. These barriers prevent unknowing entry and minimize the possibility for unauthorized entry of persons or livestock into the areas. Eight-foot-high chain-link industrial fences surround the entire perimeter of the area. Bilingual (*i.e.*, English and Spanish) warning signs are also posted at the entrances to each portion of the permitted unit within the building and can be seen from any approach to these locations. The legends on the signs indicate "Danger: Hazardous Waste Storage Area" and "Unauthorized Persons Keep Out." The signs are legible from a distance of at least 25 ft. There is an entry gate through the fence (*see* Figure 52 in Permit Attachment N (*Figures*)). Outside doors to the building include two electric roll up doors and 5 man doors all with locks. Roll up doors to the building can only be opened from inside the building; opening these doors must be coordinated with facility personnel. When the roll up doors are opened for shipments of material or waste, personnel are present to restrict the entry and exit of unauthorized persons. In addition to the fence and secure doors, cliffs and canyons surrounding TA 60 provide natural barriers to discourage unauthorized entry.

A.7.3 Emergency Equipment

TA-60-0017 is equipped with a fire alarm system to alert personnel to evacuate the area. The evacuation alarm system may be activated by manual pull stations. The facility is also equipped with a sprinkler system. Personnel use cellular telephones in the event of an emergency.

Fire hydrants (TA-60-0909 and -0910) are installed according to National Fire Protection Association standards and located within required distance of TA-60-0017. Water is supplied to the fire hydrants by a municipal water system through a 6-in. line that in turn is fed from a 12-in. line coming off the main water line; at an adequate volume and pressure (*i.e.*, approximately 1000 gallons per minute and 120 pounds per square inch static pressure) in accord with NFPA guidelines to supply a water hose in the event of a fire. Spill kits, which contain sorbent pillows, safety glasses, and gloves, are located in facility. Trained personnel may use this equipment to mitigate small containable spills when they are certain their actions will not put themselves or others at risk. Available personnel decontamination equipment includes safety showers and emergency eyewashes.

The buddy system will always be employed when containers are actively managed to assure that safety showers and eyewashes can be reached in an emergency. Safety Data Sheets (SDS) (formerly Material Safety Data Sheets (MSDS)) provide useful exposure information and are available onsite.

ATTACHMENT B PART A APPLICATION FORM

United States Environmental Protection Agency RCRA SUBTITLE C SITE IDENTIFICATION FORM

Reason fo	r Subr	nittal	(Sele	ct or	nly on	e.)																
		btaini or a pe	_	-	_	an EP <i>A</i>	\ ID nu	mber	for	on-go	ing	regula	ated ac	ctivitie	es (It	ems	10-17	7 be	elow) th	nat w	/ill cor	itinue
	Sı	ubmitt	ting a	as a c	ompo	onent o	f the H	lazaro	dous	s Wast	te R	eport	for			(Rep	ortin	g Y	ear)			
			wa	ste, >	> 1 kg		te haza	ardou	ıs wa	aste, o	r>	100 k	g of ac	ute ha	azard	ous v	waste		on-acu ill cleai			
] N	otifyir	ng th	at re	gulate	ed activ	vity is r	o lon	iger	occurr	ring	at thi	s Site									
] 0	btaini	ng oı	r upd	lating	an EPA	\ ID nu	mber	for	condu	ıctir	ng Elec	ctronic	Mani	ifest	Broke	er act	tivit	ies			
\checkmark	Sı	ubmitt	ting a	a new	v or re	evised I	Part A	(pern	nit) l	orm												
Site EPA II N Site Name	M	Т	8	9	0	0	1 0	5		1 5												
Los	Alan	nos N	atio	nal l	Labo	ratory	,															
Site Locati	ion Ad	dress																				
Stree	et Add	ress		В	Bikini	Atoll	Road	, SM	-30													
City,	Town	, or Vil	llage	L	os A	lamos	3								Cou	nty	Lo	s A	Alamo	s		
State	9	Nev	v Me	exico)		Cou	ıntry	ι	JSA					Zip (Code	87	54	5			
Latit	ude	35.8	8740)74N			Lon	gitud	le -	106.3	293	37				Jse La	at/Lo	ng	as Prim	ary /	Addres	SS
Site Mailir	ng Add	lress														S	ame	as	Locatio	n Stı	eet A	ddress
Stree	et Add	ress		PC) Во	x 1663	B, MS	A316	3													
-						amos									1							
State	5	Ne	w M	lexic	0		Cou	ntry	US	SA					Zip (Code	87	545	5			
Site Land [·]	Туре																					
Pı	rivate		_C₀	unty		Dist	rict	✓	Fed	deral		Tr	ibal		Mun	icipa	l		State		Ot	her
North Am	erican	Indus	stry C	Classi	ficati	on Syst	tem (N	AICS)) Co	de(s) f	or t	he Sit	e (at l	east 5	-digi	t cod	es)					
A. (Prima	ry)		928 [,]	110						С			5622	211							
В.				541	71						D	٠.		5629	910							

EPA ID N	lumber	N	M	0	8	9	0	0	1	0	5	1	5]	OMB# 20	050-0024; Expire	s 04/30/2024		
8. Site C	Contact I	nform	nation	n												Same as Lo	cation Address		
	First Na	me	Thec	odc	ore				MI	Α					Last Nan	Last Name Wyka			
	Title	М	lanag	ger,	Natio	nal N	uclea	r Sed	curity	Adn	ninist	ratio	on, Lo	os Alam	os Field Of	s Field Office, U.S. Department of Energy			
	Street A	ddres	SS		3	747 W	/est	Jem	ez Ro	oad,	MS A	A31	6						
	City, To	wn, oi	r Villa	age	L	os Al	amo	s											
	State	New	v Me	xic	0				Cour	ntry	USA	\			Zip Code	87544			
	Email	thec	odore	e.w	vyka@	nns	a.doe	e.gov	/										
	Phone	(505	5) 66	7-5	105				Ext						Fax	(505) 606-5948			
_	Owner a	of Si	-												Date E	Same as Lo	cation Address		
	U. S. I	Depa	rtme	nt	of En	ergy									1/1/19	-	7 1 1 1 1 1 1		
	Owner	Гуре																	
	Privat	e		Cou	inty		Distri	ct	\checkmark	ede	ral		Trik	oal	Municip	al State	Other		
	Street A	ddres	SS		3	747 W	/est	Jem	ez Ro	oad,	MS A	A31	6						
	City, Town, or Village Los Alamos																		
	State New Mexico Cou					Cour	Country USA					Zip Code	87544						
	Email	the	odor	e.v	vyka(@nns	a.do	e.go	V										
	Phone	(505	5) 667	7-5	105				Ext						Fax	(505) 606-5948	3		
	Comments The U.S Department of Energy (DOE) owns and co-operates the facility. The DOE National Nuclear Security Administration, Los Alamos Field Off National Security, LLC (Triad) co-operate specified hazardous waste management units located at Technical Areas (TA) 3, 14, 16, 36, 39, 50, 55, 6 The DOE Environmental Management, Los Alamos Field Office and Newport News Nuclear BWXT-Los Alamos, LLC (N3B) co-operate different has management units located at TA 54, Areas G, H and L.						55, 63, and 54 West.												
Ī	B. Name	e of Si	ite's L	Lega	al Ope	erator										Same as Lo	ocation Address		
	Full Nan Triad		onal (Sed	curity	, LLC	;								Date E	Became Operator (2018	mm/dd/yyyy)		
	Operato Privat			Cou	ınty		Distri	ct		ede	ral	[Trik	oal	Municip	al State	Other		
	Street A	ddres	SS		В	ikini <i>i</i>	Atoll	Roa	d, Bl	dg S	M-30	0, M	S A1	02					
	City, To	wn, oı	r Villa	age	L	os Al	amos	S											
	State	Nev	v Me	xic	ю				Cou	ntry	US	SA			Zip Code	87545			
	Email	sc	olem	nan	n@lar	ıl.gov	,												
	Phone	(50	5) 60	6-0)154				Ext						Fax				
	Comme	nts S	ee Ito	em	18, C	Comm	nents	, for	add	ition	al Ov	wne	r/Op	erator i	nformatio	n			

N	M	0	8	9	0	0	1	0	5	1	5
---	---	---	---	---	---	---	---	---	---	---	---

10. Type of Regulated Waste Activity (at your site)

Mark "Yes" or "No" for all current activities (as of the date submitting the form); complete any additional boxes as instructed.

Α. Ι	Hazard	lous	Waste	Activities
------	--------	------	-------	-------------------

√ Y	N	1. Gen	erator of H	azardous Waste—If "Yes", mark only one of the following—a, b, c					
		√	a. LQG	-Generates, in any calendar month, 1,000 kg/mo (2,200 lb/mo) or more of non-acute hazardous waste (includes quantities imported by importer site); or - Generates, in any calendar month, or accumulates at any time, more than 1 kg/mo (2.2 lb/mo) of acute hazardous waste; or - Generates, in any calendar month or accumulates at any time, more than 100 kg/mo (220 lb/mo) of acute hazardous spill cleanup material.					
			b. SQG	100 to 1,000 kg/mo (220-2,200 lb/mo) of non-acute hazardous waste and no more than 1 kg (2.2 lb) of acute hazardous waste and no more than 100 kg (220 lb) of any acute hazardous spill cleanup material.					
			c. VSQG	Less than or equal to 100 kg/mo (220 lb/mo) of non-acute hazardous waste.					
Y	2. Short-Term Generator (generates from a short-term or one-time event and not from on-going processes). If "Yes", provide an explanation in the Comments section. Note: If "Yes", you MUST indicate that you are a Generator of Hazardous Waste in Item 10.A.1 above.								
√ Y	N	3. Trea	ater, Storer se activities	or Disposer of Hazardous Waste—Note: Part B of a hazardous waste permit is required is.					
√ Y	N	4. Rece	eives Hazaro	dous Waste from Off-site					
Y	√N	5 Recy	cler of Haza	rdous Waste					
			a. Recycle	r who stores prior to recycling					
			b. Recycle	r who does not store prior to recycling					
Y	VΝ	6. Exer	npt Boiler a	nd/or Industrial Furnace—If "Yes", mark all that apply.					
			a. Small Q	uantity On-site Burner Exemption					
			b. Smeltin	g, Melting, and Refining Furnace Exemption					

B. Waste Codes for Federally Regulated Hazardous Wastes. Please list the waste codes of the Federal hazardous wastes handled at your site. List them in the order they are presented in the regulations (e.g. D001, D003, F007, U112). Use an additional page if more spaces are needed.

See 3a and 3b			

C. Waste Codes for State Regulated (non-Federal) Hazardous Wastes. Please list the waste codes of the State hazardous wastes handled at your site. List them in the order they are presented in the regulations. Use an additional page if more spaces are needed.

None			

10. Type of Regulated Waste Activity (at your site)

B. Waste Codes for Federally Regulated Hazardous Wastes.

D001	D002	D003	D004	D005	D006	D007
D008	D009	D010	D011	D012	D013	D014
D015	D016	D017	D018	D019	D020	D021
D022	D023	D024	D025	D026	D027	D028
D029	D030	D031	D032	D033	D034	D035
D036	D037	D038	D039	D040	D041	D042
D043	F001	F002	F003	F004	F005	F006
F007	F008	F009	F010	F011	F012	F019
F020	F021	F022	F023	F024	F025	F026
F027	F028	F032	F034	F035	F037	F038
F039	K044	K045	K046	K047	K084	K101
K102	P001	P002	P003	P004	P005	P006
P007	P008	P009	P010	P011	P012	P013
P014	P015	P016	P017	P018	P020	P021
P022	P023	P024	P026	P027	P028	P029
P030	P031	P033	P034	P036	P037	P038
P039	P040	P041	P042	P043	P044	P045
P046	P047	P048	P049	P050	P051	P054
P056	P057	P058	P059	P060	P062	P063
P064	P065	P066	P067	P068	P069	P070
P071	P072	P073	P074	P075	P076	P077
P078	P081	P082	P084	P085	P087	P088
P089	P092	P093	P094	P095	P096	P097
P098	P099	P101	P102	P103	P104	P105
P106	P108	P109	P110	P111	P112	P113
P114	P115	P116	P118	P119	P120	P121
P122	P123	P127	P128	P185	P188	P189
P190	P191	P192	P194	P196	P197	P198
P199	P201	P202	P203	P204	P205	U001
U002	U003	U004	U005	U006	U007	U008
U009	U010	U011	U012	U014	U015	U016
U017	U018	U019	U020	U021	U022	U023
U024	U025	U026	U027	U028	U029	U030
U031	U032	U033	U034	U035	U036	U037
U038	U039	U041	U042	U043	U044	U045
U046	U047	U048	U049	U050	U051	U052
U053	U055	U056	U057	U058	U059	U060
U061	U062	U063	U064	U066	U067	U068
U069	U070	U071	U072	U073	U074	U075

10. Type of Regulated Waste Activity (at your site)B. Waste Codes for Federally Regulated Hazardous Wastes. (Continued)

D. Waste Coat	o lot i cactally	Regulateu naza	i adas viastos.	Continueu)		
U076	U077	U078	U079	U080	U081	U082
U083	U084	U085	U086	U087	U088	U089
U090	U091	U092	U093	U094	U095	U096
U097	U098	U099	U101	U102	U103	U105
U106	U107	U108	U109	U110	U111	U112
U113	U114	U115	U116	U117	U118	U119
U120	U121	U122	U123	U124	U125	U126
U127	U128	U129	U130	U131	U132	U133
U134	U135	U136	U137	U138	U140	U141
U142	U143	U144	U145	U146	U147	U148
U149	U150	U151	U152	U153	U154	U155
U156	U157	U158	U159	U160	U161	U162
U163	U164	U165	U166	U167	U168	U169
U170	U171	U172	U173	U174	U176	U177
U178	U179	U180	U181	U182	U183	U184
U185	U186	U187	U188	U189	U190	U191
U192	U193	U194	U196	U197	U200	U201
U202	U203	U204	U205	U206	U207	U208
U209	U210	U211	U213	U214	U215	U216
U217	U218	U219	U220	U221	U222	U223
U225	U226	U227	U228	U234	U235	U236
U237	U238	U239	U240	U243	U244	U246
U247	U248	U249	U271	U278	U279	U280
U328	U353	U359	U364	U367	U372	U373
U387	U389	U394	U395	U404	U409	U410
U411						
· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·

EPA ID Number

	N	M	0	8	9	0	0	1	0	5	1	5
--	---	---	---	---	---	---	---	---	---	---	---	---

1.	Additional Regulated Waste Activities (NOTE: Refer to your State regulations to determine if a separate permit is required.
	A. Other Waste Activities

A. O	tner wa	ste Ac	πνιπες							
Y	N	1. Transporter of Hazardous Waste—If "Yes", mark all that apply.								
		✓	a. Transporter							
		√	b. Transfer Facility (at your site)							
Y	√N	2. U	nderground Injection Control							
Y	Y N 3. United States Importer of Hazardous Waste									
Y N 4. Recognized Trader—If "Yes", mark all that apply.										
			a. Importer							
			b. Exporter							
ПΥ	V N	5. Ir that	nporter/Exporter of Spent Lead-Acid Batteries (SLABs) under 40 CFR 266 Subpart G—If "Yes", mark all apply.							
			a. Importer							
			b. Exporter							
B. Ur	niversal '	Waste	Activities							
VΥ	N	1. Lar apply.	ge Quantity Handler of Universal Waste (you accumulate 5,000 kg or more) - If "Yes" mark all that Note: Refer to your State regulations to determine what is regulated.							
		\checkmark	a. Batteries							
		V	b. Pesticides							
		<u> </u>	c. Mercury containing equipment							
		V	d. Lamps							
		<u>√</u>	e. Aerosol Cans							
			f. Other (specify)							
			g. Other (specify)							
Υ	V N	2. D	estination Facility for Universal Waste Note: A hazardous waste permit may be required for this y.							
CUs	sed Oil A	ctivitie								
Пү	√ N		ed Oil Transporter—If "Yes", mark all that apply.							
			a. Transporter							
		一	b. Transfer Facility (at your site)							
Y	√ N	2. Use	ed Oil Processor and/or Re-refiner—If "Yes", mark all that apply.							
			a. Processor							
			b. Re-refiner							
Υ	√ N	3. Off-	Specification Used Oil Burner							
ПΥ	V _N	4. Use	d Oil Fuel Marketer—If "Yes", mark all that apply.							
			a. Marketer Who Directs Shipment of Off-Specification Used Oil to Off-Specification Used Oil Burner							
		П	b. Marketer Who First Claims the Used Oil Meets the Specifications							

A ID Num	ber	N	M	0	8	9	0		0	1	0	5	1	5		OMB# 2050-0024; Expires 04/30/2024
D. Ph	armac	eutic	al A	ctiviti	es											
Y	1. Operating under 40 CFR Part 266, Subpart P for the management of hazardous waste pharmaceuticals—if "Yes", mark only one. Note: See the item-by-item instructions for definitions of healthcare facility and reverse distributor.															
	a. Healthcare Facility b. Reverse Distributor															
Y	√N	pha	With rma	drawi ceutio	ing fro	om op Note:	oera Yo	ating u m	ay o	nly	with	draw	if you	ı are	a	part P for the management of hazardous waste healthcare facility that is a VSQG for all of uticals.
E ligible A es pursu								s—1	Notif	ica	tion 1	or op	ting i	nto (or	withdrawing from managing laboratory hazar
Y	√N	was	tes i		orato	ries—	· If '	'Yes	", m	ark	all tl					Subpart K for the management of hazardous see the item-by-item instructions for defini-
			1	. Coll	ege o	r Univ	/ers	ity								
			2	. Tead	ching	Hosp	ital	tha	t is o	wr	ed b	y or h	as a f	orm	al	written affiliation with a college or university
			3	. Non	-profi	t Inst	itut	e th	at is	ov	vned	by or	has a	for	ma	al written affiliation with a college or universit
Y	✓N	B. V	Vith	drawi	ing fro	om 40) CF	R Pa	art 2	62,	Subp	art K	for tl	ne m	nar	nagement of hazardous wastes in laboratories
Episodi	c Gen	eratio	on													
·	√N	Are no n	you a		60 da	ays, th	nat	mov	es y							planned or unplanned episodic event, lasting category. If "Yes", you must fill out the
LQG Co	nsolid	ation	of V	/sqg	Haza	rdous	W	aste)							
□ Y	✓N	pur	suan		O CFF											Naste Under the Control of the Same Person Addendum for LQG Consolidation of VSQG
Notifica	ition o	of LQG	Site	e Clos	sure f	or a C	Cent	ral .	Accu	mı	ulatio	n Are	a (CA	A) (ор	otional) OR Entire Facility (required)
Y	✓N	LQG	Site	Clos	ure of	a Ce	ntra	al Ac	ccum	ula	ation	Area	(CAA)	or E	Ent	tire Facility.
		A.	C	entra	l Accu	ımula	tior	n Ar	ea (C	ΆΑ	() or	_Enti	re Fa	cility	,	
		В. Е	Ехре	cted	closur	e dat	:e: _				m	ım/do	І/ууу	/		
		C. F	Requ	estin	g new	/ closi	ure	dat	e:				mm/o	dd/y	уу	у
		D. I	Date 1. In	close	ed : olianc	e with	n th	e clo	_ mm	n/d e p	d/yyy erfor	/y manc	e staı	ndar	ds	40 CFR 262.17(a)(8)
			2. No	ot in c	ompl	iance	wit	h th	ne clo	osu	re pe	rforn	nance	star	nd	ards 40 CFR 262.17(a)(8)

0

M

EPA ID Number

8

9

0

0

0

1

5

5

OMB# 2050-0024; Expires 04/30/2024

1

	_			8	9	0	0	1	0	5	1	5	OMB# 2050-0024; Expires 04/30/2024
Notification	n of Ha	azard	lous	Seco	ndar	y Mat	erial	(HSN	1) Act	tivity			
	ha	zardo	ous s	econ	dary	mate	rial ur	nder 4	40 CF	R 260	.30, 4	10 CFF	managing, are managing, or will stop managing R 261.4(a)(23), (24), (25), or (27)? If "Yes", you for Managing Hazardous Secondary Material.
Electronic N	/lanife	st Bro	oke	r									
∏Y ∏N	ter	n to c	obta	in, co		ete, ar							electing to use the EPA electronic manifest sysest under a contractual relationship with a haze
Comments	(inclu	de ite	em r	numb	er for	r each	com	ment)				
1													
vision in accommitted. Base omitted. Base ong the inforr are that the owing violati R 270.10(b) a	cordan ed on mation re are ons. N	ce wi my in , the signif Note: '0.11	ith a iquii info ficar For).	ry of format ormat or per the I	em de the pe tion su nalties	esigne erson ubmit s for s Haza	ed to a or pe ted is submi rdous	erson to to tting was	e tha s who he be false ste Pa	t qual o man est of infori art A p	ified age t my kr matic perm i	perso he sys nowle on, inc t App	nnel properly gather and evaluate the informat stem, or those persons directly responsible for g dge and belief, true, accurate, and complete. I a cluding the possibility of fines and imprisonment dication, all owners and operators must sign (s
vision in accommitted. Base of the informare that the owing violating 270.10(b) and Signature	cordan ed on mation re are ons. N and 27	ce wi my in , the signif Note: 70.11)	ith a iquii info ficar For).	ry of format ormat or the I	em de the pe ion su nalties RCRA	esigne erson ubmit s for s Haza or aut	ed to a or pe ted is submi rdous	erson to to tting was	e tha s who he be false ste Pa	t qual o man est of infori art A p	ified age t my kr matic perm i	perso he sys nowle on, inc t App	achments were prepared under my direction or innel properly gather and evaluate the informat stem, or those persons directly responsible for g dge and belief, true, accurate, and complete. I a cluding the possibility of fines and imprisonment dication, all owners and operators must sign (s
vision in acc mitted. Basing the inforrare that the wing violation 270.10(b)	cordan ed on mation re are ons. Nand 27 of lega	ce wi my in , the signif Note: 70.11)	ith a iquii info ficar For).	ry of format ormat or the I	em de the pe ion su nalties RCRA	esigne erson ubmit s for s Haza or aut	ed to a or pe ted is submi rdous	erson to to tting was	e tha s who he be false ste Pa	t qual o man est of infori art A p	ified age t my kr matic perm i	perso he sys nowle on, inc t App	nnel properly gather and evaluate the informat stem, or those persons directly responsible for g dge and belief, true, accurate, and complete. I a cluding the possibility of fines and imprisonment dication, all owners and operators must sign (s
vision in accomitted. Basing the informate that the eving violation at 270.10(b) at Signature Printed Name of the Email	cordan ed on mation re are ons. Nand 27 of lega	ce wi my in , the signif Note: '0.11) al ow	ith an	ry of ormat ormat or the I	em de the pe ion su nalties RCRA	esigne erson ubmit s for s Haza or aut	ed to a or pe ted is submi rdous	erson to to tting was	e tha s who he be false ste Pa	t qual o man est of infori art A p	ified age t my kr matic perm i	perso he sys nowle on, inc t App	nnel properly gather and evaluate the informatistem, or those persons directly responsible for gather, or those persons directly responsible for gather and belief, true, accurate, and complete. It is cluding the possibility of fines and imprisonment blication, all owners and operators must sign (see (mm/dd/yyyy)) Director, Office of Quality and Regulatory Compliance, Environmental Management, Los Alamos Field Office, U.S.
vision in accomitted. Basing the informate that the eving violation at 270.10(b) at Signature Printed Name of the Email	ordan ed on mation re are ons. N and 27 of lega ame (F B Bish	ce wi my in , the signif Note: 70.11) al ow First, I	ith a aquit info ficar For her, Mid	system sy	em de the pe tion su nalties RCRA	esigne erson ubmit s for s Haza or aut	ed to a or pe ted is submi rdous	erson: , to ti titing s Was	e tha s who he be false ste Pa	t qual o man est of r inforr art A p	ified age t my kr matic	perso he sys nowle on, inc t App Date	nnel properly gather and evaluate the informatistem, or those persons directly responsible for gather, or those persons directly responsible for gather and belief, true, accurate, and complete. It is cluding the possibility of fines and imprisonment blication, all owners and operators must sign (see (mm/dd/yyyy)) Director, Office of Quality and Regulatory Compliance, Environmental Management, Los Alamos Field Office, U.S.

ADDENDUM TO THE SITE IDENTIFICATION FORM: NOTIFICATION OF HAZARDOUS SECONDARY MATERIAL ACTIVITY

ONLY fill out this form if:

- You are located in a State that allows you to manage excluded hazardous secondary material (HSM) under 40 CFR 260.30, 261.4(a)(23), (24), (25), or (27) (or state equivalent; See https://www.epa.gov/hw/where-2018-definition-solid-waste-rule-effect for a list of eligible states; AND
- You are or will be managing excluded HSM in compliance with 40 CFR 260.30, 261.4(a)(23), (24), (25), or (27) (or state equivalent) or have stopped managing excluded HSM in compliance with the exclusion(s) and do not expect to manage any amount of excluded HSM under the exclusion(s) for at least one year. <u>Do not include any information regarding your hazardous waste activities in this section.</u> Note: If your facility was granted a solid waste variance under 40 CFR 260.30 prior to July 13, 2015, your management of HSM under 40 CFR 260.30 is grandfathered under the previous regulations and you are not required to notify for the HSM management activity excluded under 40 CFR 260.30.

1. Reason for Notification (Include dates where requested)										
Facility w	Facility will begin managing excluded HSM as of (mm/dd/yyyy).									
Facility is still managing excluded HSM/re-notifying as required by March 1 of each even-numbered year.										
Facility has stopped managing excluded HSM as of (mm/dd/yyyy) and is notifying as required.										
2. Description of Excluded HSM Activity. Please list the appropriate codes (see Code List section of the instructions) and quantities, in short tons, to describe your excluded HSM activity ONLY (do not include any information regarding your hazardous wastes). Use additional pages if more space is needed.										
A. Facility	B. Waste Code(s) for HSM		D. Actual Short Tons of	E. Land-						
Code		of excluded HSM to	excluded HSM that was	based Unit						
		be managed annually	managed during the most recent odd-numbered year	Code						
01	D001, D002, D003, F003	1	LT 1	NA						

N M 0 8 9 0 0 1 0 5

ADDENDUM TO THE SITE IDENTIFICATION FORM: EPISODIC GENERATOR

ONLY fill out this form if:

You are an SQG or VSQG generating hazardous waste from a planned or unplanned episodic event, lasting no
more then 60 days, that moves the generator to a higher generator category pursuant to 40 CFR 262 Subpart L.
 Note: Only one planned and one unplanned episodic event are allowed within one year; otherwise, you must
follow the requirements of the higher generator category. Use additional pages if more space is needed.

Episodic Event								
Equipment maint	nventory removal ruction or demolition enance during plant	shutdowns	2. Unplanned Accidental spills Production process upsets Product recalls "Acts of nature" (Tornado, hurricane, flood, etc.) Other					
3. Emergency Conta	act Phone	4. Emergency Conf	act Name					
5. Beginning Date		(mm/dd/yyyy)	6. End Date	(mm/d	d/yyyy)			
Waste 1								
7. Waste Descriptio	n			8. Estimated Quanti	ty (in pounds)			
9. Federal and/or State Hazardous Waste Codes								
Waste 2								
7. Waste Descriptio	n			8. Estimated Quantity (in pounds)				
9. Federal and/or S	itate Hazardous Wast	te Codes						
Waste 3								
7. Waste Descriptio	n		8. Estimated Quantity (in pounds)					
9. Federal and/or S	itate Hazardous Wast	te Codes						

Ν	M	0	8	9	0	0	1	0	5	1	5
---	---	---	---	---	---	---	---	---	---	---	---

ADDENDUM TO THE SITE IDENTIFICATION FORM: LQG CONSOLIDATION OF VSQG HAZARDOUS WASTE

ONLY fill out this form if:

• You are an LQG receiving hazardous waste from VSQGs under the control of the same person. Use additional pages if more space is needed.

VSQG 1						
1. EPA ID Number (if assigned)	2. Name					
3. Street Address						
4. City, Town, or Village	5. State	6. Zip Code				
7. Contact Phone Number	8. Contact Name	1				
9. Email						
VSQG 2						
1. EPA ID Number (if assigned)	2. Name					
3. Street Address						
4. City, Town, or Village	5. State	6. Zip Code				
7. Contact Phone Number	8. Contact Name	8. Contact Name				
9. Email	•					
VSQG 3						
1. EPA ID Number (if assigned)	2. Name					
3. Street Address	I					
4. City, Town, or Village	5. State	6. Zip Code				
7. Contact Phone Number	8. Contact Name	8. Contact Name				
9. Email						

Ν	M	0	8	9	0	0	1	0	5	1	5
---	---	---	---	---	---	---	---	---	---	---	---

United States Environmental Protection Agency HAZARDOUS WASTE PERMIT PART A FORM

1. Facility Permit Contact

First Name	Theodore	MI A	Last Name Wyka							
Title	itle Manager, National Nuclear Security Administration, Los Alamos Field Office, U.S. Department of Energy									
Email	theodore.wyka@nnsa.do	theodore.wyka@nnsa.doe.gov								
Phone	(505) 667-5105	Ext	Fax (505) 667-5948							

2. Facility Permit Contact Mailing Address

Street Address 3747 West Jemez Road, MS A316							
City, Town, or Village Los Alamos							
State NM	Country USA	Zip Code 87544					

3. Facility Existence Date (mm/dd/yyyy)

1/1/1943	
----------	--

4. Other Environmental Permits

A. Permit Type	B. Permit Number										C. Description	
See Page 10a												

5. Nature of Business

The central mission of Los Alamos National Laboratory is the reduction of global nuclear danger supported by research that also contributes to conventional defense, civilian, and industrial needs. This includes programs in nuclear, medium energy, and space physics; hydrodynamics; conventional explosives; chemistry; metallurgy; radiochemistry; space nuclear systems; controlled thermonuclear fusion; laser research; environmental technology; geothermal, solar, and fossil energy research; nuclear safeguards; biomedicine; health and biotechnology; and industrial partnerships.

4. Other Environmental Permits (continued)

Environmental P	erm	its (cont	inue	d)									1
A. Permit Type					В	. Per	mit	Num	ber					C. Description
N	N	М	R	1	0	0	-	-	-					NPDES Construction General Permit coverage for various individual construction projects: NMR100xxx
N	N	М	0	0	2	8	3	5	5					NPDES Industrial and Sanitary Point Source Discharges
N	N	М	R	0	5	0	0	1	1					NPDES Storm Water Multi-Sector General Permit (MSGP)
N	N	М	R	0	5	0	0	1	2					NPDES MSGP
N	N	М	R	0	5	0	0	1	3					NPDES MSGP
N	N	М	0	0	3	0	7	5	9					NPDES LANL Storm Water Individual Permit
N	N	М	G	8	7	0	0	0	2					NPDES Pesticides General Permit (PGP) for discharges from the application of pesticides
R	N	М	0	8	9	0	0	1	0	5	1	5		RCRA Hazardous Waste Facility Permit
E	D	Р	-	8	5	7								TA-46 SWWS Plant and TA-3 Sanitary Effluent Reclamation Facility (SERF) Discharge Permit
E	D	Р	-	1	1	3	2							TA-50 Radioactive Liquid Waste Treatment Facility, Discharge Permit
E	D	Р	-	1	5	8	9							Six (6) Domestic Septic Tank/Leachfield Systems, Discharge Permit
E	D	Р	-	1	7	9	3							On-Site Treatment and Land Application of Groundwater, Discharge Permit
E	D	Р	-	1	8	3	5							Injection of Treated Groundwater into Class V Underground Injection Control (UIC) Wells, Discharge
F	N	w	Р	-	4	3								Water Canyon West Jemez road Storm Drain Controls
F	N	w	Р	-	3	8								Sandia Canyon TA-72 Storm Water Controls
F	N	W	Р	-	2	7								Habitat Restoration- Mortandad Wetland Enhancement
F	N	w	P	-	4	3								Sandia Canyon (Lower) Area 1 Storm Water Controls
F	N	w	Р	-	4	3								Sandia Canyon (Lower) Area 2 Storm Water Controls
F	N	W	Р	-	4	3								Upper Ancho Canyon Structure Storm Water Controls
F	N	W	Р	-	4	3								North Ancho Canyon Lower Structure Storm Water Controls
F	N	W	Р	-	1	8								North Ancho Canyon Aggregate Area Phase II Project
F	N	W	Р	-	5									Lower LA Canyon Gaging Station E110.7 Installation and E109.9 Gage Structure Removal
E	Р	1	0	0	-	R	2	-	М	4				LANL Air Emissions Title V Operating Permit
E	2	1	9	5	-	R	1	-	R	9	0			Various 20 NMAC 2.72.202 Exemptions
E	2	1	9	5	В	-	М	3	R	1				TA-3 Power Plant
E	2	1	9	5	F	-	R	4						TA-33 Large Generator
E	G	С	Р	3	-	2	1	9	5	G	-	R	1	TA-60 Asphalt Plant
E	2	1	9	5	Н	-	R	1						Data disintegrator
E	2	1	9	5	N	-	R	2						Chemistry and Metallurgy Research Replacement Facility
E	2	1	9	5	Р	-	R	1						TA-33 Small Generators
E	6	3	4	-	M	2	-	R	1					TA-3-141 Beryllium Operations
E	6	3	2	-	R	1								TA-35-213 Beryllium Operations
E	1	0	8	1	M	1	-	R	7					TA-55-4 Beryllium Operations

6. Process Codes and Design Capacities

Li	ne	Α. Ι	Process	Code	B. Process De	esign Capacity	C. Process Total	D. Hait Name
Nun	nber				(1) Amount	(2) Unit of Measure	Number of Units	D. Unit Name
								See Page 11a

7. Description of Hazardous Wastes (Enter codes for Items 7.A, 7.C and 7.D(1))

		A.	ЕРА Н	lazard	ous	B. Estimated	C. Unit of Measure	D. Processes											
Line	No.		Wast	te No.		Annual Qty of Waste	Measure			(1	L) Pro	ocess	Code	es			(2) Process Description (if code is not entered in 7.D1))		
																	See Pages 11b-11pppp		

8. Map

Attach to this application a topographical map, or other equivalent map, of the area extending to at least one mile beyond property boundaries. The map must show the outline of the facility, the location of each of its existing intake and discharge structures, each of its hazardous waste treatment, storage, or disposal facilities, and each well where it injects fluids underground. Include all spring, rivers, and other surface water bodies in this map area. See instructions for precise requirements.

9. Facility Drawing

All existing facilities must include a scale drawing of the facility. See instructions for more detail.

10. Photographs

All existing facilities must include photographs (aerial or ground-level) that clearly delineate all existing structures; existing storage, treatment, and disposal areas; and sites of future storage, treatment, or disposal areas. See instructions for more detail.

11. Comments

Items 4, 6, and 7 have supplemental pages added in this document as referenced at each applicable item. All documentation is arranged by individual Technical Areas (TAs) at the Los Alamos National Laboratory.

6. Process Codes and Design Capacities (continued)

Line Number		ΔΙ	Process	Code	B. Process De	sign Capacity	C. Process Total	
		7	100033	couc	(1) Amount	(2) Unit of Measure	Number of Units	D. Unit Name
Х	1	S	0	1	18,500	G	001	Technical Area 3
Х	2	Т	0	4	3,441	U	001	Technical Area 3
Х	3	X	0	1	20 or 50	J*	002	Technical Area 14 *Total indicates per day not per hour
Х	4	X	0	1	1,200 or 50	J* or U	002	Technical Area 16 *Total indicates per day not per hour
Х	5	X	0	1	2,000	J*	001	Technical Area 36 *Total indicates per day not per hour
Х	6	X	0	1	2,000	J*	002	Technical Area 39 *Total indicates per day not per hour
X	7	S	0	1	31,500	G	002	Technical Area 50
X	8	Т	0	4	3,716	U	002	Technical Area 50
Х	9	S	0	1	407,880	G	001	Technical Area 54, Area L
1	0	Т	0	4	23,160	U	001	Technical Area 54, Area L
1	1	D	8	0	1,200	Υ	001	Technical Area 54, Area L
1	2	S	9	9	600	G	001	Technical Area 54, Area L
1	3	S	0	1	4,346,590	G	009	Technical Area 54, Area G
1	4	Т	0	4	185,280	U	008	Technical Area 54, Area G
1	5	S	9	9	4,950	G	001	Technical Area 54, Area G
1	6	D	8	0	14	Y	001	Technical Area 54, Area G
1	7	S	0	1	34,110 + 13,410 ⁺	G	002	Technical Area 54, West *Total includes excess storage capacity
1	8	Т	0	4	3,441	U	001	Technical Area 54, West
1	9	D	8	0	63	Υ	001	Technical Area 54, Area H
2	0	S	0	1	272,145	G	009	Technical Area 55
2	1	S	0	2	137	G	001	Technical Area 55
2	2	Т	0	4	13,914	U	005	Technical Area 55
2	3	S	0	1	105,875	G	001	Technical Area 63
2	4	Т	0	4	23,160	U	001	Technical Area 63
2	5	S	0	1	17,600	G	001	Technical Area 60
2	6	Т	0	4	3,441	U	001	Technical Area 60

N M 0 8 9 0 0 1	0 5 1 5
-----------------	---------

Line	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	e NO.		Waste			Annual Qty of Waste	Measure	(1) Process Codes								(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea 6	63 (CO	ntir	nue	d)			
3 6	1	U	1	6	6	40	Р	S	0	1						
3 6	2	U	1	6	7	40	Р	S	0	1						
3 6	3	U	1	6	8	40	Р	S	0	1						
3 6	4	U	1	6	9	40	Р	s	0	1						
3 6	5	U	1	7	0	40	Р	S	0	1						
3 6	6	U	1	7	1	40	Р	S	0	1						
3 6	7	U	1	7	2	40	Р	s	0	1						
3 6	8	U	1	7	3	40	Р	s	0	1						
3 6	9	U	1	7	4	40	Р	S	0	1						
3 7	0	U	1	7	6	40	Р	s	0	1						
3 7	1	U	1	7	7	40	Р	S	0	1						
3 7	2	U	1	7	8	40	Р	S	0	1						
3 7	3	U	1	7	9	40	Р	S	0	1						
3 7	4	U	1	8	0	40	Р	S	0	1						
3 7	5	U	1	8	1	40	Р	S	0	1						
3 7	6	U	1	8	2	40	Р	S	0	1						
3 7	7	U	1	8	3	40	Р	S	0	1						
3 7	8	U	1	8	4	40	Р	S	0	1						
3 7	9	U	1	8	5	40	Р	S	0	1						
3 8	0	U	1	8	6	40	Р	S	0	1						
3 8	1	U	1	8	7	40	Р	S	0	1						
3 8	2	U	1	8	8	40	Р	S	0	1						
3 8	3	U	1	8	9	40	Р	S	0	1						
3 8	4	U	1	9	0	40	Р	S	0	1						
3 8	5	U	1	9	1	40	Р	s	0	1						
3 8	6	U	1	9	2	40	Р	s	0	1						
3 8	7	U	1	9	3	40	Р	s	0	1						
3 8	8	U	1	9	4	40	Р	s	0	1						
3 8	9	U	1	9	6	40	Р	S	0	1						
3 9	0	U	1	9	7	40	Р	s	0	1						
3 9	1	U	2	0	0	40	Р	s	0	1						
3 9	2	U	2	0	1	40	Р	s	0	1						
3 9	3	U	2	0	2	40	Р	s	0	1						
3 9	4	U	2	0	3	40	Р	s	0	1						
3 9	5	U	2	0	4	40	Р	s	0	1						
3 9	6	U	2	0	5	40	Р	S	0	1						

N M 0 8 9 0 0 1	0 5 1 5
-----------------	---------

	e No.		EPA H			B. Estimated	C. Unit of	D. Proce								ocesses	
LIII	e NO.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess (Code	s		(2) Process Description (if code is not entered in 7.D1))
						Waste	Techni	cal	Ar	ea (60						
	1	D	0	0	1	21,727	Р	S	0	1							
	2	D	0	0	2	13,931	Р	S	0	1							
	3	D	0	0	3	2,903	Р	S	0	1							
	4	D	0	0	4	6,508	Р	S	0	1	Т	0	4				
	5	D	0	0	5	2,382	Р	S	0	1	Т	0	4				
	6	D	0	0	6	5, 751	Р	S	0	1	Т	0	4				
	7	D	0	0	7	9, 060	Р	S	0	1	Т	0	4				
	8	D	0	0	8	15,914	Р	S	0	1	Т	0	4				
	9	D	0	0	9	2,433	Р	S	0	1	Т	0	4				
1	0	D	0	1	0	4,850	Р	S	0	1	Т	0	4				
1	1	D	0	1	1	8,799	Р	S	0	1	Т	0	4				
1	2	D	0	1	2	100	Р	S	0	1							
1	3	D	0	1	3	100	Р	S	0	1							
1	4	D	0	1	4	100	Р	S	0	1							
1	5	D	0	1	5	100	Р	S	0	1							
1	6	D	0	1	6	44	Р	S	0	1							
1	7	D	0	1	7	66	Р	S	0	1							
1	8	D	0	1	8	1,283	Р	S	0	1	Т	0	4				
1	9	D	0	1	9	2,949	Р	S	0	1	Т	0	4				
2	0	D	0	2	0	100	Р	S	0	1	Т	0	4				
2	1	D	0	2	1	1,909	Р	S	0	1	Т	0	4				
2	2	D	0	2	2	6,156	Р	S	0	1	Т	0	4				
2	3	D	0	2	3	100	Р	S	0	1	Т	0	4				
2	4	D	0	2	4	100	Р	S	0	1	Т	0	4				
2	5	D	0	2	5	100	Р	S	0	1	Т	0	4				
2	6	D	0	2	6	518	Р	S	0	1	Т	0	4				
2	7	D	0	2	7	55	Р	S	0	1	Т	0	4				
2	8	D	0	2	8	3,053	Р	S	0	1	Т	0	4				
2	9	D	0	2	9	293	Р	S	0	1	Т	0	4				
3	0	D	0	3	0	5,491	Р	S	0	1	Т	0	4				
3	1	D	0	3	1	293	Р	S	0	1	Т	0	4				
3	2	D	0	3	2	3,135	Р	S	0	1	Т	0	4				
3	3	D	0	3	3	48	Р	S	0	1	Т	0	4				
3	4	D	0	3	4	1,228	Р	S	0	1	Т	0	4				
3	5	D	0	3	5	1,979	Р	s	0	1	Т	0	4				
3	6	D	0	3	6	549	Р	S	0	1	Т	0	4				

N M 0 8 9 0 0 1 0 5 1	5
-----------------------	---

Line	No.		EPA H			B. Estimated	C. Unit of	D. Process								ocesses	
LIII	e NO.		Waste	No.		Annual Qty of Waste	Measure	(1) Process Codes									(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	ue	d)				
3	7	D	0	3	7	761	Р	s	0	1	Т	0	4				
3	8	D	0	3	8	2,629	Р	s	0	1	Т	0	4				
3	9	D	0	3	9	1,658	Р	S	0	1	Т	0	4				
4	0	D	0	4	0	1,662	Р	s	0	1	Т	0	4				
4	1	D	0	4	1	293	Р	S	0	1	Т	0	4				
4	2	D	0	4	2	1,182	Р	S	0	1	Т	0	4				
4	3	D	0	4	3	655	Р	S	0	1	Т	0	4				
4	4	F	0	0	1	442,263	Р	S	0	1	Т	0	4				
4	5	F	0	0	2	16,083	Р	S	0	1	Т	0	4				
4	6	F	0	0	3	36,170	Р	S	0	1							
4	7	F	0	0	4	925	Р	S	0	1	Т	0	4				
4	8	F	0	0	5	27,196	Р	S	0	1							
4	9	F	0	0	6	100	Р	S	0	1							
5	0	F	0	0	7	74	Р	s	0	1							
5	1	F	0	0	8	100	Р	S	0	1							
5	2	F	0	0	9	165	Р	S	0	1							
5	3	F	0	1	0	100	Р	S	0	1							
5	4	F	0	1	1	100	Р	S	0	1							
5	5	F	0	1	2	100	Р	S	0	1							
5	6	F	0	1	9	100	Р	S	0	1							
5	7	F	0	2	0	100	Р	S	0	1							
5	8	F	0	2	1	100	Р	S	0	1							
5	9	F	0	2	2	100	Р	S	0	1							
6	0	F	0	2	3	100	Р	S	0	1							
6	1	F	0	2	4	100	Р	s	0	1							
6	2	F	0	2	5	100	Р	s	0	1							
6	3	F	0	2	6	100	Р	s	0	1							
6	4	F	0	2	7	165	Р	s	0	1							
6	5	F	0	2	8	100	Р	S	0	1							
6	6	F	0	3	2	100	Р	S	0	1							
6	7	F	0	3	4	100	Р	S	0	1							
6	8	F	0	3	5	100	Р	S	0	1							
6	9	F	0	3	7	100	Р	S	0	1							
7	0	F	0	3	8	100	Р	S	0	1							
7	1	F	0	3	9	100	Р	S	0	1							
7	2	K	0	4	4	100	Р	s	0	1							

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: NO.	,	Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess	Code	!S	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (COI	ntir	iue	d)			
7	3	K	0	4	5	100	Р	s	0	1						
7	4	K	0	4	6	100	Р	S	0	1						
7	5	K	0	4	7	100	Р	s	0	1						
7	6	K	0	8	4	100	Р	s	0	1						
7	7	K	1	0	1	100	Р	S	0	1						
7	8	K	1	0	2	100	Р	S	0	1						
7	9	Р	0	0	1	100	Р	S	0	1						
8	0	Р	0	0	2	100	Р	s	0	1						
8	1	Р	0	0	3	293	Р	S	0	1						
8	2	Р	0	0	4	100	Р	S	0	1						
8	3	Р	0	0	5	100	Р	S	0	1						
8	4	Р	0	0	6	143	Р	s	0	1						
8	5	Р	0	0	7	100	Р	S	0	1						
8	6	Р	0	0	8	100	Р	s	0	1						
8	7	Р	0	0	9	100	Р	s	0	1						
8	8	Р	0	1	0	100	Р	S	0	1						
8	9	Р	0	1	1	143	Р	S	0	1						
9	0	Р	0	1	2	293	Р	s	0	1						
9	1	Р	0	1	3	100	Р	s	0	1						
9	2	Р	0	1	4	100	Р	S	0	1						
9	3	Р	0	1	5	293	Р	S	0	1						
9	4	Р	0	1	6	100	Р	S	0	1						
9	5	Р	0	1	7	100	Р	S	0	1						
9	6	Р	0	1	8	100	Р	S	0	1						
9	7	Р	0	2	0	100	Р	S	0	1						
9	8	Р	0	2	1	100	Р	S	0	1						
9	9	Р	0	2	2	17	Р	S	0	1						
1 0	0	Р	0	2	3	100	Р	s	0	1						
1 0	1	Р	0	2	4	100	Р	S	0	1						
1 0	2	Р	0	2	6	100	Р	S	0	1						
1 0	3	Р	0	2	7	100	Р	s	0	1						
1 0	4	Р	0	2	8	100	Р	s	0	1						
1 0	5	Р	0	2	9	293	Р	s	0	1						
1 0	6	Р	0	3	0	28	Р	s	0	1						
1 0	7	Р	0	3	1	485	Р	S	0	1						
1 0	8	Р	0	3	3	143	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of					` '				ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Pro	cess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (CO	ntir	nue	d)			
10	9	Р	0	3	4	100	Р	S	0	1						
11	0	Р	0	3	6	100	Р	S	0	1						
11	1	Р	0	3	7	100	Р	S	0	1						
11	2	Р	0	3	8	227	Р	S	0	1						
11	3	Р	0	3	9	100	Р	S	0	1						
11	4	Р	0	4	0	100	Р	S	0	1						
11	5	Р	0	4	1	100	Р	S	0	1						
11	6	Р	0	4	2	100	Р	s	0	1						
11	7	Р	0	4	3	143	Р	S	0	1						
11	8	Р	0	4	4	100	Р	S	0	1						
11	9	Р	0	4	5	100	Р	S	0	1						
1 2	0	Р	0	4	6	100	Р	S	0	1						
12	1	Р	0	4	7	100	Р	S	0	1						
1 2	2	Р	0	4	8	143	Р	S	0	1						
1 2	3	Р	0	4	9	100	Р	S	0	1						
12	4	Р	0	5	0	100	Р	S	0	1						
1 2	5	Р	0	5	1	100	Р	S	0	1						
1 2	6	Р	0	5	4	100	Р	S	0	1						
1 2	7	Р	0	5	6	2,624	Р	S	0	1						
1 2	8	Р	0	5	7	100	Р	S	0	1						
12	9	Р	0	5	8	100	Р	S	0	1						
13	0	Р	0	5	9	100	Р	S	0	1						
13	1	Р	0	6	0	100	Р	S	0	1						
13	2	Р	0	6	2	100	Р	S	0	1						
13	3	Р	0	6	3	293	Р	S	0	1						
13	4	Р	0	6	4	100	Р	s	0	1						
13	5	Р	0	6	5	100	Р	s	0	1						
13	6	Р	0	6	6	100	Р	s	0	1						
13	7	Р	0	6	7	100	Р	S	0	1						
1 3	8	Р	0	6	8	293	Р	S	0	1						
13	9	Р	0	6	9	100	Р	s	0	1						
14	0	Р	0	7	0	100	Р	s	0	1						
14	1	Р	0	7	1	100	Р	s	0	1						
14	2	Р	0	7	2	100	Р	s	0	1						
14	3	Р	0	7	3	293	Р	s	0	1						
14	4	Р	0	7	4	100	Р	S	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (CO	ntir	nue	d)			
14	5	Р	0	7	5	100	Р	S	0	1						
14	6	Р	0	7	6	403	Р	S	0	1						
14	7	Р	0	7	7	100	Р	S	0	1						
14	8	Р	0	7	8	425	Р	S	0	1						
14	9	Р	0	8	1	100	Р	S	0	1						
1 5	0	Р	0	8	2	100	Р	S	0	1						
1 5	1	Р	0	8	4	100	Р	S	0	1						
1 5	2	Р	0	8	5	100	Р	S	0	1						
1 5	3	Р	0	8	7	5	Р	S	0	1						
1 5	4	Р	0	8	8	100	Р	S	0	1						
1 5	5	Р	0	8	9	100	Р	s	0	1						
1 5	6	Р	0	9	2	143	Р	S	0	1						
1 5	7	Р	0	9	3	100	Р	S	0	1						
1 5	8	Р	0	9	4	100	Р	S	0	1						
1 5	9	Р	0	9	5	293	Р	S	0	1						
1 6	0	Р	0	9	6	293	Р	S	0	1						
1 6	1	Р	0	9	7	100	Р	S	0	1						
16	2	Р	0	9	8	293	Р	S	0	1						
16	3	Р	0	9	9	100	Р	S	0	1						
16	4	Р	1	0	1	100	Р	S	0	1						
16	5	Р	1	0	2	100	Р	S	0	1						
16	6	Р	1	0	3	100	Р	S	0	1						
16	7	Р	1	0	4	143	Р	S	0	1						
1 6	8	Р	1	0	5	5	Р	S	0	1						
16	9	Р	1	0	6	293	Р	S	0	1						
17	0	Р	1	0	8	100	Р	S	0	1						
17	1	Р	1	0	9	100	Р	S	0	1						
17	2	Р	1	1	0	100	Р	s	0	1						
17	3	Р	1	1	1	100	Р	S	0	1						
17	4	Р	1	1	2	143	Р	s	0	1						
17	5	Р	1	1	3	293	Р	s	0	1						
17	6	Р	1	1	4	100	Р	s	0	1						
17	7	Р	1	1	5	100	Р	S	0	1						
17	8	Р	1	1	6	100	Р	s	0	1						
17	9	Р	1	1	8	100	Р	S	0	1						
18	0	Р	1	1	9	143	Р	S	0	1						

	No.		ЕРА Н			B. Estimated	C. Unit of					(-)	, (3.			 ocesses
Line			Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (50 (COI	ntir	nue	d)			
18	1	Р	1	2	0	293	Р	s	0	1						
18	2	Р	1	2	1	100	Р	S	0	1						
18	3	Р	1	2	2	100	Р	S	0	1						
18	4	Р	1	2	3	100	Р	s	0	1						
18	5	Р	1	2	7	100	Р	S	0	1						
18	6	Р	1	2	8	100	Р	S	0	1						
18	7	Р	1	8	5	100	Р	s	0	1						
18	8	Р	1	8	8	100	Р	S	0	1						
18	9	Р	1	8	9	100	Р	S	0	1						
19	0	Р	1	9	0	100	Р	S	0	1						
19	1	Р	1	9	1	100	Р	s	0	1						
19	2	Р	1	9	2	100	Р	s	0	1						
19	3	Р	1	9	4	100	Р	S	0	1						
19	4	Р	1	9	6	100	Р	s	0	1						
19	5	Р	1	9	7	100	Р	s	0	1						
19	6	Р	1	9	8	100	Р	S	0	1						
19	7	Р	1	9	9	100	Р	s	0	1						
19	8	Р	2	0	1	100	Р	s	0	1						
19	9	Р	2	0	2	100	Р	s	0	1						
2 0	0	Р	2	0	3	100	Р	S	0	1						
2 0	1	Р	2	0	4	100	Р	S	0	1						
2 0	2	Р	2	0	5	100	Р	S	0	1						
2 0	3	U	0	0	1	15	Р	S	0	1						
2 0	4	U	0	0	2	45	Р	S	0	1						
2 0	5	U	0	0	3	485	Р	S	0	1						
2 0	6	U	0	0	4	100	Р	S	0	1						
2 0	7	U	0	0	5	100	Р	S	0	1						
2 0	8	U	0	0	6	7	Р	s	0	1						
2 0	9	U	0	0	7	143	Р	s	0	1						
2 1	0	U	0	0	8	8	Р	S	0	1						
2 1	1	U	0	0	9	143	Р	s	0	1						
2 1	2	U	0	1	0	100	Р	s	0	1						
2 1	3	U	0	1	1	100	Р	s	0	1						
2 1	4	U	0	1	2	293	Р	s	0	1						
2 1	5	U	0	1	4	100	Р	S	0	1						
2 1	6	U	0	1	5	100	Р	s	0	1						

Line	No.		EPA H			B. Estimated	C. Unit of						-			ocesses
Line	e NO.		Waste	No.		Annual Qty of	Measure				(1)	Prod	ess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
						Waste T	echnical Ar	ea (60 (COI	ntir	nue	d)			
2 1	7	U	0	1	6	100	Р	S	0	1			Ĺ			
2 1	8	U	0	1	7	100	Р	S	0	1						
2 1	9	U	0	1	8	143	Р	S	0	1						
2 2	0	U	0	1	9	20	Р	S	0	1						
2 2	1	U	0	2	0	100	Р	S	0	1						
2 2	2	U	0	2	1	100	Р	S	0	1						
2 2	3	U	0	2	2	293	Р	S	0	1						
2 2	4	U	0	2	3	100	Р	S	0	1						
2 2	5	U	0	2	4	100	Р	S	0	1						
2 2	6	U	0	2	5	3	Р	S	0	1						
2 2	7	U	0	2	6	100	Р	s	0	1						
2 2	8	U	0	2	7	100	Р	s	0	1						
2 2	9	U	0	2	8	100	Р	S	0	1						
2 3	0	U	0	2	9	293	Р	S	0	1						
2 3	1	U	0	3	0	100	Р	s	0	1						
2 3	2	U	0	3	1	26	Р	S	0	1						
2 3	3	U	0	3	2	100	Р	S	0	1						
2 3	4	U	0	3	3	143	Р	S	0	1						
2 3	5	U	0	3	4	100	Р	S	0	1						
2 3	6	U	0	3	5	100	Р	S	0	1						
2 3	7	U	0	3	6	100	Р	S	0	1						
2 3	8	U	0	3	7	143	Р	S	0	1						
2 3	9	U	0	3	8	100	Р	S	0	1						
2 4	0	U	0	3	9	100	Р	S	0	1						
2 4	1	U	0	4	1	143	Р	S	0	1						
2 4	2	U	0	4	2	100	Р	S	0	1						
2 4	3	U	0	4	3	100	Р	S	0	1						
2 4	4	U	0	4	4	152	Р	s	0	1						
2 4	5	U	0	4	5	293	Р	S	0	1						
2 4	6	U	0	4	6	100	Р	S	0	1						
2 4	7	U	0	4	7	100	Р	s	0	1						
2 4	8	U	0	4	8	100	Р	s	0	1						
2 4	9	U	0	4	9	100	Р	s	0	1						
2 5	0	U	0	5	0	100	Р	S	0	1						
2 5	1	U	0	5	1	100	Р	S	0	1						

	No.		EPA H			B. Estimated	C. Unit of						•			ocesses
Line	i NO.		Waste	No.		Annual Qty of	Measure				(1)	Proc	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
						Waste T	echnical Ar	ea (60 (COI	ntir	ue	d)			
2 5	2	U	0	5	2	18	Р	S	0	1						
2 5	3	U	0	5	3	3	Р	s	0	1						
2 5	4	U	0	5	5	143	Р	S	0	1						
2 5	5	U	0	5	6	61	Р	s	0	1						
2 5	6	U	0	5	7	293	Р	s	0	1						
2 5	7	U	0	5	8	100	Р	S	0	1						
2 5	8	U	0	5	9	100	Р	S	0	1						
2 5	9	U	0	6	0	100	Р	S	0	1						
2 6	0	U	0	6	1	100	Р	s	0	1						
2 6	1	U	0	6	2	100	Р	S	0	1						
2 6	2	U	0	6	3	100	Р	s	0	1						
2 6	3	U	0	6	4	100	Р	s	0	1						
2 6	4	U	0	6	6	100	Р	S	0	1						
2 6	5	U	0	6	7	3	Р	s	0	1						
2 6	6	U	0	6	8	12	Р	s	0	1						
2 6	7	U	0	6	9	100	Р	s	0	1						
2 6	8	U	0	7	0	165	Р	S	0	1						
2 6	9	U	0	7	1	100	Р	S	0	1						
2 7	0	U	0	7	2	100	Р	S	0	1						
2 7	1	U	0	7	3	100	Р	S	0	1						
2 7	2	U	0	7	4	100	Р	S	0	1						
2 7	3	U	0	7	5	381	Р	S	0	1						
2 7	4	U	0	7	6	100	Р	S	0	1						
2 7	5	U	0	7	7	27	Р	S	0	1						
2 7	6	U	0	7	8	100	Р	S	0	1						
2 7	7	U	0	7	9	100	Р	S	0	1						
2 7	8	U	0	8	0	4,129	Р	S	0	1						
2 7	9	U	0	8	1	100	Р	s	0	1						
28	0	U	0	8	2	100	Р	s	0	1						
28	1	U	0	8	3	9	Р	s	0	1						
28	2	U	0	8	4	100	Р	s	0	1						
28	3	U	0	8	5	143	Р	s	0	1						
28	4	U	0	8	6	100	Р	s	0	1						
28	5	U	0	8	7	100	Р	s	0	1						
28	6	U	0	8	8	100	Р	s	0	1						
28	7	U	0	8	9	100	Р	s	0	1						

5

1

	No.		EPA H			B. Estimated	C. Unit of						•			ocesses
Line	: NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	cess	Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (COI	ntir	ue	d)			
28	8	U	0	9	0	100	Р	s	0	1						
28	9	U	0	9	1	518	Р	S	0	1						
2 9	0	U	0	9	2	143	Р	s	0	1						
2 9	1	U	0	9	3	100	Р	s	0	1						
2 9	2	U	0	9	4	100	Р	S	0	1						
2 9	3	U	0	9	5	100	Р	s	0	1						
2 9	4	U	0	9	6	100	Р	s	0	1						
2 9	5	U	0	9	7	100	Р	s	0	1						
2 9	6	U	0	9	8	100	Р	S	0	1						
2 9	7	U	0	9	9	100	Р	s	0	1						
2 9	8	U	1	0	1	100	Р	s	0	1						
2 9	9	U	1	0	2	100	Р	S	0	1						
3 0	0	U	1	0	3	9	Р	S	0	1						
3 0	1	U	1	0	5	100	Р	s	0	1						
3 0	2	U	1	0	6	100	Р	S	0	1						
3 0	3	U	1	0	7	100	Р	S	0	1						
3 0	4	U	1	0	8	104	Р	S	0	1						
3 0	5	U	1	0	9	143	Р	S	0	1						
3 0	6	U	1	1	0	100	Р	S	0	1						
3 0	7	U	1	1	1	100	Р	S	0	1						
3 0	8	U	1	1	2	5	Р	S	0	1						
3 0	9	U	1	1	3	100	Р	S	0	1						
3 1	0	U	1	1	4	100	Р	S	0	1						
3 1	1	U	1	1	5	3	Р	S	0	1						
3 1	2	U	1	1	6	100	Р	s	0	1						
3 1	3	U	1	1	7	18	Р	s	0	1						
3 1	4	U	1	1	8	100	Р	s	0	1						
3 1	5	U	1	1	9	100	Р	s	0	1						
3 1	6	U	1	2	0	100	Р	S	0	1						
3 1	7	U	1	2	1	293	Р	s	0	1						
3 1	8	U	1	2	2	778	Р	s	0	1						
3 1	9	U	1	2	3	8	Р	s	0	1						
3 2	0	U	1	2	4	143	Р	s	0	1						
3 2	1	U	1	2	5	3	Р	s	0	1						
3 2	2	U	1	2	6	100	Р	s	0	1						
3 2	3	U	1	2	7	100	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of						•			ocesses
Line	e NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	ess (Code	s	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (COI	ntir	ue	d)			
3 2	4	U	1	2	8	100	Р	s	0	1						
3 2	5	U	1	2	9	100	Р	S	0	1						
3 2	6	U	1	3	0	100	Р	s	0	1						
3 2	7	U	1	3	1	293	Р	S	0	1						
3 2	8	U	1	3	2	100	Р	S	0	1						
3 2	9	U	1	3	3	5	Р	S	0	1						
3 3	0	U	1	3	4	38	Р	S	0	1						
3 3	1	U	1	3	5	8	Р	S	0	1						
3 3	2	U	1	3	6	143	Р	S	0	1						
3 3	3	U	1	3	7	100	Р	S	0	1						
3 3	4	U	1	3	8	100	Р	S	0	1						
3 3	5	U	1	4	0	293	Р	s	0	1						
3 3	6	U	1	4	1	100	Р	S	0	1						
3 3	7	U	1	4	2	100	Р	S	0	1						
3 3	8	U	1	4	3	100	Р	s	0	1						
3 3	9	U	1	4	4	293	Р	S	0	1						
3 4	0	U	1	4	5	293	Р	S	0	1						
3 4	1	U	1	4	6	100	Р	s	0	1						
3 4	2	U	1	4	7	100	Р	s	0	1						
3 4	3	U	1	4	8	100	Р	S	0	1						
3 4	4	U	1	4	9	100	Р	S	0	1						
3 4	5	U	1	5	0	100	Р	S	0	1						
3 4	6	U	1	5	1	13	Р	S	0	1						
3 4	7	U	1	5	2	100	Р	S	0	1						
3 4	8	U	1	5	3	143	Р	S	0	1						
3 4	9	U	1	5	4	83	Р	S	0	1						
3 5	0	U	1	5	5	100	Р	S	0	1						
3 5	1	U	1	5	6	100	Р	s	0	1						
3 5	2	U	1	5	7	100	Р	S	0	1						
3 5	3	U	1	5	8	100	Р	S	0	1						
3 5	4	U	1	5	9	10	Р	s	0	1						
3 5	5	U	1	6	0	293	Р	s	0	1						
3 5	6	U	1	6	1	15	Р	S	0	1						
3 5	7	U	1	6	2	49	Р	S	0	1						
3 5	8	U	1	6	3	143	Р	s	0	1						
3 5	9	U	1	6	4	100	Р	s	0	1						

	No.		EPA H			B. Estimated	C. Unit of									ocesses
Line	NO.		Waste	No.		Annual Qty of Waste	Measure				(1)	Proc	cess	Code	:S	(2) Process Description (if code is not entered in 7.D1))
							echnical Ar	ea (60 (COI	ntir	nue	d)			
3 6	0	U	1	6	5	293	Р	s	0	1						
3 6	1	U	1	6	6	100	Р	S	0	1						
3 6	2	U	1	6	7	143	Р	S	0	1						
3 6	3	U	1	6	8	143	Р	S	0	1						
3 6	4	U	1	6	9	12	Р	S	0	1						
3 6	5	U	1	7	0	12	Р	s	0	1						
3 6	6	U	1	7	1	100	Р	s	0	1						
3 6	7	U	1	7	2	100	Р	s	0	1						
3 6	8	U	1	7	3	100	Р	S	0	1						
3 6	9	U	1	7	4	100	Р	s	0	1						
3 7	0	U	1	7	6	100	Р	s	0	1						
3 7	1	U	1	7	7	100	Р	s	0	1						
3 7	2	U	1	7	8	100	Р	S	0	1						
3 7	3	U	1	7	9	100	Р	s	0	1						
3 7	4	U	1	8	0	100	Р	s	0	1						
3 7	5	U	1	8	1	100	Р	S	0	1						
3 7	6	U	1	8	2	100	Р	S	0	1						
3 7	7	U	1	8	3	100	Р	s	0	1						
3 7	8	U	1	8	4	100	Р	s	0	1						
3 7	9	U	1	8	5	100	Р	S	0	1						
3 8	0	U	1	8	6	100	Р	S	0	1						
3 8	1	U	1	8	7	100	Р	S	0	1						
3 8	2	U	1	8	8	293	Р	S	0	1						
3 8	3	U	1	8	9	100	Р	S	0	1						
3 8	4	U	1	9	0	293	Р	S	0	1						
3 8	5	U	1	9	1	100	Р	S	0	1						
3 8	6	U	1	9	2	100	Р	S	0	1						
3 8	7	U	1	9	3	100	Р	s	0	1						
3 8	8	U	1	9	4	100	Р	S	0	1						
3 8	9	U	1	9	6	293	Р	S	0	1						
3 9	0	U	1	9	7	100	Р	s	0	1						
3 9	1	U	2	0	0	100	Р	s	0	1						
3 9	2	U	2	0	1	100	Р	s	0	1						
3 9	3	U	2	0	2	100	Р	s	0	1						
3 9	4	U	2	0	3	100	Р	s	0	1						
3 9	5	U	2	0	4	293	Р	s	0	1						

Cly or waste				EPA H			B. Estimated	C. Unit of					` '				ocesses
39 6 U 2 0 5 100 P S 0 1	Line	: NO.		Waste	No.		Qty of	Measure				(1)	Pro	cess	Code	es	(2) Process Description (if code is not entered in 7.D1))
39 7 U 2 0 6 100 P S 0 1							T	echnical Ar	ea (60 (CO	ntir	nue	d)			
39 8 U 2 0 7 100 P S 0 1 Image: color of the color of t	3 9	6	U	2	0	5	100	Р	S	0	1						
39 9 U 2 0 8 100 P S 0 1	3 9	7	U	2	0	6	100	Р	S	0	1						
40 0 U 2 0 9 100 P S 0 1	3 9	8	U	2	0	7	100	Р	S	0	1						
40 1 U 2 1 0 513 P S 0 1 .	3 9	9	U	2	0	8	100	Р	S	0	1						
40 2 U 2 1 1 30 P S 0 1 Image: color of the	4 0	0	U	2	0	9	100	Р	S	0	1						
40 3 U 2 1 3 33 P S 0 1 U 2 1 4 100 P S 0 1 U 2 1 4 100 P S 0 1 U 2 1 6 293 P S 0 1 U 2 1 6 293 P S 0 1 U 2 1 6 293 P S 0 1 U 2 1 6 293 P S 0 1 U 2 1 0 P S 0 1 U 2 2 1 0 P S 0 1 U 2 2 0 20 P S 0 1 U 2 1 1 0 P S 0 1 U 2 1 1 0 P S 0 1 1 1 1 1 1 1 1 1 1	4 0	1	U	2	1	0	513	Р	S	0	1						
40 4 U 2 1 4 100 P S 0 1 1 4 40 5 U 2 1 5 100 P S 0 1 1 4 40 6 U 2 1 6 293 P S 0 1 1 4 40 8 U 2 1 7 100 P S 0 1 1 40 8 U 2 1 8 293 P S 0 1 1 40 9 U 2 1 9 293 P S 0 1 1 41 0 U 2 2 0 20 P S 0 1 1 41 0 U 2 2 1 100 P S 0 1 1 41 1 U 2 2 2 100 P S 0 1 41 41 2 2 2 1 100	4 0	2	U	2	1	1	30	Р	S	0	1						
40 5 U 2 1 5 100 P S 0 1 1 1 40 6 U 2 1 6 293 P S 0 1 </td <td>4 0</td> <td>3</td> <td>U</td> <td>2</td> <td>1</td> <td>3</td> <td>33</td> <td>Р</td> <td>S</td> <td>0</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4 0	3	U	2	1	3	33	Р	S	0	1						
40 6 U 2 1 6 293 P S 0 1 40 7 U 2 1 7 100 P S 0 1 40 8 U 2 1 8 293 P S 0 1 40 9 U 2 1 9 293 P S 0 1 41 0 U 2 2 0 20 P S 0 1 41 1 U 2 2 1 100 P S 0 1 41 1 U 2 2 1 100 P S 0 1 41 3 U 2 2 5 12 P S 0 1 41 4 U 2 2 5 12 P S 0 1 41 6 U 2 2 7 293 P <t< td=""><td>4 0</td><td>4</td><td>U</td><td>2</td><td>1</td><td>4</td><td>100</td><td>Р</td><td>S</td><td>0</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4 0	4	U	2	1	4	100	Р	S	0	1						
40 7 U 2 1 7 100 P S 0 1 40 8 U 2 1 8 293 P S 0 1 40 9 U 2 1 9 293 P S 0 1 41 0 U 2 2 0 20 P S 0 1 41 1 U 2 2 1 100 P S 0 1 41 1 U 2 2 2 100 P S 0 1 41 3 U 2 2 3 21 P S 0 1 41 4 U 2 2 5 12 P S 0 1 41 6 U 2 2 7 293 P S 0 1 41 7 U 2 3 4 100 P <t< td=""><td>4 0</td><td>5</td><td>U</td><td>2</td><td>1</td><td>5</td><td>100</td><td>Р</td><td>S</td><td>0</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4 0	5	U	2	1	5	100	Р	S	0	1						
40 8 U 2 1 8 293 P S 0 1 40 9 U 2 1 9 293 P S 0 1 41 0 U 2 2 0 20 P S 0 1 41 0 U 2 2 1 1 100 P S 0 1 41 1 U 2 2 1 1 100 P S 0 1 41 1 U 2 2 2 1 1 100 P S 0 1 41 3 U 2 2 3 21 P S 0 1 41 4 U 2 2 5 12 P S 0 1 41 5 U 2 2 6 6,594 P S 0 1 41 6 U 2 2 7 293 P S 0 1 41 7 U 2 2 8 1,219 P S 0 1 41 8 U 2 3 4 100 P S 0 1 41 8 U 2 3 5 100 P S 0 1 41 8 U 2 3 5 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 41 9 U 2 3 6 100 P S 0 1 42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 1 42 1 U 2 3 7 100 P S 0 1 1 42 1 U 2 3 7 100 P S 0 1 1 42 1 U 2 4 0 143 P S 0 1 1 42 1 U 2 4 0 143 P S 0 1 1 42 1 U 2 4 0 143 P S 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 0	6	U	2	1	6	293	Р	S	0	1						
40 9 U 2 1 9 293 P S 0 1	4 0	7	U	2	1	7	100	Р	S	0	1						
41 0 U 2 2 1 1 100 P S 0 1 41 1 U 2 2 1 1 100 P S 0 1 41 2 U 2 2 2 1 100 P S 0 1 41 3 U 2 2 3 21 P S 0 1 41 5 U 2 2 5 12 P S 0 1 41 5 U 2 2 6 6,594 P S 0 1 41 6 U 2 2 7 293 P S 0 1 41 7 U 2 2 8 1,219 P S 0 1 41 8 U 2 3 4 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 1 U 2 3 8 100 P S 0 1 42 1 U 2 3 9 61 P S 0 1 42 1 U 2 4 0 143 P S 0 1 42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 6 231 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 8 U 2 4 8 100 P S 0 1 42 8 U 2 4 8 100 P S 0 1 42 8 U 2 4 8 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	4 0	8	U	2	1	8	293	Р	S	0	1						
41 1 U 2 2 1 100 P S 0 1 41 2 U 2 2 2 100 P S 0 1 41 3 U 2 2 3 21 P S 0 1 41 4 U 2 2 5 12 P S 0 1 41 5 U 2 2 6 6,594 P S 0 1 41 6 U 2 2 7 293 P S 0 1 41 7 U 2 2 8 1,219 P S 0 1 41 8 U 2 3 4 100 P S 0 1 41 9 U 2 3 6 100 P S 0 1 42 0 U 2 3 6 100 P	4 0	9	U	2	1	9	293	Р	S	0	1						
41 2 U 2 2 100 P S 0 1 41 3 U 2 2 3 21 P S 0 1 41 4 U 2 2 5 12 P S 0 1 41 5 U 2 2 6 6,594 P S 0 1 41 6 U 2 2 7 293 P S 0 1 41 7 U 2 2 8 1,219 P S 0 1 41 8 U 2 3 4 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 8 100 P S	4 1	0	U	2	2	0	20	Р	s	0	1						
41 3 U 2 2 3 21 P S 0 1 41 4 U 2 2 5 12 P S 0 1 41 5 U 2 2 6 6,594 P S 0 1 41 6 U 2 2 7 293 P S 0 1 41 7 U 2 2 8 1,219 P S 0 1 41 8 U 2 3 4 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 8 100 P S 0 1 42 3 U 2 3 9 61 P	4 1	1	U	2	2	1	100	Р	S	0	1						
41 4 U 2 2 5 12 P S 0 1 41 5 U 2 2 6 6,594 P S 0 1 41 6 U 2 2 7 293 P S 0 1 41 7 U 2 2 8 1,219 P S 0 1 41 8 U 2 3 4 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 41 9 U 2 3 6 100 P S 0 1 42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 8 100 P S 0 1 42 3 U 2 4 0 143 P	4 1	2	U	2	2	2	100	Р	S	0	1						
41 5 U 2 2 6 6,594 P S 0 1 41 6 U 2 2 7 293 P S 0 1 41 7 U 2 2 8 1,219 P S 0 1 41 8 U 2 3 4 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 1 U 2 3 8 100 P S 0 1 42 3 U 2 3 9 61 P S 0 1 42 5 U 2 4 3 100 P	4 1	3	U	2	2	3	21	Р	S	0	1						
41 6 U 2 2 7 293 P S 0 1 41 7 U 2 2 8 1,219 P S 0 1 41 8 U 2 3 4 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 1 U 2 3 8 100 P S 0 1 42 3 U 2 3 9 61 P S 0 1 42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 4 100 P	4 1	4	U	2	2	5	12	Р	s	0	1						
41 7 U 2 2 8 1,219 P S 0 1 41 8 U 2 3 4 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 2 U 2 3 8 100 P S 0 1 42 3 U 2 3 9 61 P S 0 1 42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 4 100 P S 0 1 42 8 U 2 4 6 231 P	4 1	5	U	2	2	6	6,594	Р	S	0	1						
41 8 U 2 3 4 100 P S 0 1 41 9 U 2 3 5 100 P S 0 1 42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 2 U 2 3 8 100 P S 0 1 42 3 U 2 3 9 61 P S 0 1 42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 3 100 P S 0 1 42 6 U 2 4 4 100 P S 0 1 42 8 U 2 4 7 100 P	4 1	6	U	2	2	7	293	Р	S	0	1						
41 9 U 2 3 5 100 P S 0 1 42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 2 U 2 3 8 100 P S 0 1 42 3 U 2 3 9 61 P S 0 1 42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 3 100 P S 0 1 42 6 U 2 4 4 100 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P	4 1	7	U	2	2	8	1,219	Р	S	0	1						
42 0 U 2 3 6 100 P S 0 1 42 1 U 2 3 7 100 P S 0 1 42 2 U 2 3 8 100 P S 0 1 42 3 U 2 3 9 61 P S 0 1 42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 3 100 P S 0 1 42 6 U 2 4 4 100 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	4 1	8	U	2	3	4	100	Р	S	0	1						
42 1 U 2 3 7 100 P S 0 1 42 2 U 2 3 8 100 P S 0 1 42 3 U 2 3 9 61 P S 0 1 42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 3 100 P S 0 1 42 6 U 2 4 4 100 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	4 1	9	U	2	3	5	100	Р	S	0	1						
42 2 U 2 3 8 100 P S 0 1 42 3 U 2 3 9 61 P S 0 1 42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 3 100 P S 0 1 42 6 U 2 4 4 100 P S 0 1 42 7 U 2 4 6 231 P S 0 1 42 8 U 2 4 8 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	4 2	0	U	2	3	6	100	Р	S	0	1						
42 3 U 2 3 9 61 P S 0 1 42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 3 100 P S 0 1 42 6 U 2 4 4 100 P S 0 1 42 7 U 2 4 6 231 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	4 2	1	U	2	3	7	100	Р	S	0	1						
42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 3 100 P S 0 1 42 6 U 2 4 4 100 P S 0 1 42 7 U 2 4 6 231 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	4 2	2	U	2	3	8	100	Р	s	0	1						
42 4 U 2 4 0 143 P S 0 1 42 5 U 2 4 3 100 P S 0 1 42 6 U 2 4 4 100 P S 0 1 42 7 U 2 4 6 231 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	\vdash					9		Р	1								
42 5 U 2 4 3 100 P S 0 1 42 6 U 2 4 4 100 P S 0 1 42 7 U 2 4 6 231 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1			-		-												
42 6 U 2 4 4 100 P S 0 1 42 7 U 2 4 6 231 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	\vdash				-				1								
42 7 U 2 4 6 231 P S 0 1 42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	\vdash		-						+								
42 8 U 2 4 7 100 P S 0 1 42 9 U 2 4 8 100 P S 0 1	\vdash								-								
42 9 U 2 4 8 100 P S 0 1	\vdash				-				1								
	\vdash								+								
143 U U Z 4 9 100 P	4 3	0	U	2	4	9	100	P	S	0	1						
43 1 U 2 7 1 100 P S 0 1	-		-		-												

		A.	ЕРА Н	azard	ous	B. Estimated	C. Unit of								D	. Pr	ocesses
Line	No.		Waste	No.		Annual Qty of Waste	Measure				(1)	Prod	ess (Code	s		(2) Process Description (if code is not entered in 7.D1))
						Т	echnical Ar	ea (60 (CO	ntir	nue	d)				
4 3	2	U	2	7	8	100	Р	S	0	1							
4 3	3	U	2	7	9	100	Р	S	0	1							
4 3	4	U	2	8	0	100	Р	S	0	1							
4 3	5	U	3	2	8	100	Р	s	0	1							
4 3	6	U	3	5	3	100	Р	S	0	1							
4 3	7	U	3	5	9	100	Р	s	0	1							
4 3	8	U	3	6	4	100	Р	s	0	1							
4 3	9	U	3	6	7	100	Р	s	0	1							
4 4	0	U	3	7	2	100	Р	S	0	1							
4 4	1	U	3	7	3	100	Р	s	0	1							
4 4	2	U	3	8	7	100	Р	s	0	1							
4 4	3	U	3	8	9	100	Р	s	0	1							
4 4	4	U	3	9	4	100	Р	S	0	1							
4 4	5	U	3	9	5	100	Р	S	0	1							
4 4	6	U	4	0	4	100	Р	S	0	1							
4 4	7	U	4	0	9	100	Р	S	0	1							
4 4	8	U	4	1	0	100	Р	S	0	1							
4 4	9	U	4	1	1	100	Р	S	0	1							

ATTACHMENT D CONTINGENCY PLAN

TABLE OF CONTENTS

LIST OF TABL	ES	<u> 7</u>
	RES	
GENERAL CON	NTINGENCY PLAN	9
D.1 HAZAR	DOUS AND MIXED WASTE EMERGENCY RESPONSE RESOUR	RCES 9
D.1.1 Emer	gency Management	10
D.1.2 Haza	rdous Materials Response	12
D.1.3 Envir	conmental Regulation and Waste Management Compliance Response.	12
<u>D.1.3.1</u>	Ecology Personnel	13
D.1.3.2	Meteorology and Air Quality Personnel	13
D.1.3.3	Hazardous Waste Compliance Personnel	13
D.1.3.4	Water Quality and Hydrology Personnel	13
D.1.4 Other	r Facility Response Resources	13
D.1.5 Contr	racted Response	13
D.1.5.1	Security Services	14
D.1.5.2	Maintenance and Site Services	14
D.1.5.3	Los Alamos Fire Department	14
D.1.6 Facil	ity Support	14
D.1.6.1	Health Physics Operations	
<u>D.1.6.2</u>	Occupational Medicine Personnel	14
D.1.6.3	Industrial Hygiene and Safety Personnel	15
D.1.6.4	Performance Assurance Office	15
D.1.7 Outsi	de Response Agencies	15
D.1.7.1	Los Alamos Police Department	
D.1.7.2	Los Alamos County Emergency Management Coordinator	15
D.1.7.3	Los Alamos Medical Center	15
D.2 EMERG	ENCY EQUIPMENT AND COMMUNICATIONS	16

D.2.1 Emergency Equipment	<u> 16</u>
D.2.2 Emergency Communications	
D.2.2.1 Fire Alarms	16
D.2.2.2 Power Dispatch	16
D.2.2.3 Additional Communication Systems	16
D.3 CONTINGENCY PLAN IMPLEMENTATION	17
D.3.1 Requirements for Implementation	17
D.3.2 Emergency Notification	18
D.3.3 Incident Response Commander Actions	19
D.4 SPILLS	20
D.4.1 Spill Control Procedures	21
D.4.1.1 Tank System Spill Control and Reporting	21
D.4.1.2 Tank System/Secondary Containment Repair and Closure	22
D.4.1.3 Certification of Major Repairs	22
D.4.2 Decontamination Verification.	22
d.5 EXPLOSION	23
D.6 FIRE	24
D.7 UNPLANNED NONSUDDEN RELEASES	24
D.7.1 Responsibility	24
D.7.2 Nonsudden Releases	25
D.7.3 Nonsudden Release Surveillance	25
D.8 EXPOSURE TO HAZARDOUS OR MIXED WASTE	25
D.9 PROTECTIVE ACTIONS	26
D.9.1 Emergency Process Shutdown Prior To Evacuation	26
D.9.2 Evacuation Plan	26
D.10 SALVAGE AND CLEANUP	27
D.11 EMERGENCY RESPONSE RECORDS AND REPORTS	28
D.12 CONTINGENCY PLAN AMENDMENT	28
D.13 REFERENCES	28
TA-3 41	

D.1.3.2 Meteorology and Air Quality Personnel	15
D.1.3.3 <u>Hazardous Waste Compliance Personnel</u>	16
D.1.3.4 Water Quality and Hydrology Personnel	16
D.1.4 Other Facility Response Resources	16
D.1.5—Contracted Response	16
D.1.5.1 <u>Security Services</u>	16
D.1.5.2 Maintenance and Site Services	16
D.1.5.3 Los Alamos Fire Department	17
D.1.6—Facility Support	17
D.1.6.1 Health Physics Operations	17
D.1.6.2 Occupational Medicine Personnel	17
D.1.6.3 <u>Industrial Hygiene and Safety Personnel</u>	17
D.1.6.4 Performance Assurance Office	17
D.1.7—Outside Response Agencies	18
D.1.7.1 Los Alamos Police Department	18
D.1.7.2 Los Alamos County Emergency Management Coordinator	18
D.1.7.3 Los Alamos Medical Center	18
D.2 <u>EMERGENCY EQUIPMENT AND COMMUNICATIONS</u>	18
D.2.1—Emergency Equipment	18
D.2.2—Emergency Communications	19
D.2.2.1 Fire Alarms	19
D.2.2.2 Power Dispatch	19
D.2.2.3 Additional Communication Systems	19
D.3—CONTINGENCY PLAN IMPLEMENTATION	20
D.3.1—Requirements for Implementation	20
D.3.2—Emergency Notification	21
D.3.3—Incident Response Commander Actions	22

D.4 <u>SPILLS</u>	23
D.4.1—Spill Control Procedures	
D.4.1.1—Tank System Spill Control and Reporting	24
D.4.1.2 Tank System/Secondary Containment Repair and Clo	osure 25
D.4.1.3 <u>Certification of Major Repairs</u>	25
D.4.2 Decontamination Verification	25
D.5 <u>EXPLOSION</u>	26
D.6 FIRE	27
D.7 UNPLANNED NONSUDDEN RELEASES	27
D.7.1—Responsibility	27
D.7.2 Nonsudden Releases	
D.7.3 Nonsudden Release Surveillance	
D.8 EXPOSURE TO HAZARDOUS OR MIXED WASTE	
D.9 PROTECTIVE ACTIONS	
D.9.1 Emergency Process Shutdown Prior To Evacuation	
D.9.2 Evacuation Plan	
D.10 SALVAGE AND CLEANUP	
D.11 EMERGENCY RESPONSE RECORDS AND REPORTS	
D.12 CONTINGENCY PLAN AMENDMENT	
D.13 REFERENCES	
TA-3	4.6
Table D-1	47
TA 50	
ATTACHMENT D	50
CONTINGENCY PLAN	50
Table D-1	
TA-54	55
ATTACHMENT D	
CONTINGENCY PLAN	
TABLE D-1	
Table D.2	50

TABLE D-3	 62
TA-55	65
CONTINGENCY PLAN	65
Table D-1	66
TABLE D-2	 68
TABLE D-3	 70
TABLE D-4	 72
TA-63	 7 4
TABLE D-1	 76

LIST OF TABLES

TABLE NO.	<u>TITLE</u>
D-1	Los Alamos National Laboratory-Wide Emergency Equipment
D-2	Waste Analysis Parameters and Test Methods
D-3	Evacuation Determination and Reentry Conditions
TA-3, D-1	TA-3 Emergency Equipment
TA-50, D-1	TA-50 Emergency Equipment
TA-54, D-1	TA-54 Area L Emergency Equipment
TA-54, D-2	TA-54 Area G Emergency Equipment
TA-54, D-3	TA-54 West Emergency Equipment
TA-55, D-1	TA-55 Building 4, First Floor Emergency Equipment
TA-55, D-2	TA-55 Building 4, Basement Emergency Equipment
TA-55, D-3	TA-55 Container Storage Pad Emergency Equipment
TA-55, D-4	TA-55-0355 Pad Emergency Equipment
TA-63, D-1	TA-63 Transuranic Waste Facility Emergency Equipment
TA-60, D-1	TA-60 Building 17, Container Storage Facility

additional Facility resources is provided, as necessary. Assistance is coordinated through emergency management personnel.

D.2 EMERGENCY EQUIPMENT AND COMMUNICATIONS

D.2.1 Emergency Equipment

The Permittees shall make available the lists of emergency equipment listed in Table D-1 for use at any of Permittees' hazardous or mixed waste management units. The list includes emergency equipment available in the HAZMAT vehicles and trailers as well as supplemental emergency equipment maintained by the LAFD, MSS, and occupational medicine personnel. A list of emergency equipment available for use at specific hazardous and/or mixed waste management units is identified in Attachment Tables TA-3, D-1; TA-50, D-1; TA-54, Area L, D-1; TA-54, Area G, D-2; TA-54 West, D-3; TA-55 Building 4 First Floor, D-1; TA-55 Building 4 Basement, D-2; TA-55 Container Storage Pad, D-3; TA-55-0355 Pad, D-4; TA-60 Building 17, D-1 and TA-63 Transuranic Waste Facility, D-1. Emergency equipment listed in these tables may be replaced and/or upgraded with functionally equivalent components and equipment, as necessary, for routine maintenance and repair.

D.2.2 Emergency Communications

The initial phase of an emergency may involve a small number of individuals at the affected area and that requires notification of the Incident Response Commander, utilizing local communication equipment and/or systems. When responding to hazardous and/or mixed waste emergencies, the Permittees shall ensure that emergency management personnel can provide communications between response units and emergency organizations.

D.2.2.1 Fire Alarms

Fire alarms are monitored 24 hours per day by trained personnel in the EOSC. Both the primary and backup buildings where the monitoring takes place have emergency power systems. The Incident Response Commander is notified when there is confirmed fire or smoke by the EOSC.

D.2.2.2 Power Dispatch

The Permittees shall maintain the Power Dispatch facility 24 hours a day. Alarms at this facility are connected to Facility experiments, equipment, and/or buildings to record outages and hazardous conditions. Any conditions that activate these alarms shall be reported immediately to the building management or to the EOSC operator for notification and response.

D.2.2.3 Additional Communication Systems

Internal communication systems at the Facility include:

- 1. Preprogrammed telephone system
- 2. Private telephone lines

jurisdictions, agencies will work together through the designated member of the unified command to establish a common set of objectives and strategies and single incident Action Plan.

3. If a fire results from an explosion, the LAFD Senior Officer will, upon arrival at the scene, evaluate all available information and determine the appropriate firefighting methods and tactics. The LAFD Senior Officer will direct firefighting operations under a unified command.

D.6 FIRE

- 1. Fires and resultant releases of hazardous or mixed waste may result in a significant threat to human health or the environment. Implementation of this Plan is required whenever there is a fire at a permitted unit.
- 2. Fire alarms will be sounded automatically or manually to alert personnel that a fire hazard exists and to evacuate the area immediately if in the vicinity. Information related to the various fire alarms at the specific units is included in Attachment Tables TA-3, D-1; TA-50, D-1; TA-54, Area L, D-1; TA-54, Area G, D-2; TA-54 West, D-3; TA-55 Building 4 First Floor, D-1; TA-55 Building 4 Basement, D-2; TA-55 Container Storage Pad, D-3; TA-55-0355 Pad, D-4; TA-60 Building 17, D-1; and TA-63 Transuranic Waste Facility, D-1.
- 3. Depending on the size of the fire and the fuel source, portable fire extinguishers may be used. However, Facility policy does not encourage the use of portable fire extinguishers by employees unless they are properly trained. Instead, Facility policy encourages immediate evacuation of the area and notification of the Los Alamos County Dispatch Center by dialing 911. For any fire, including a fire that involves hazardous or mixed waste, the responsible Line Manager and emergency management personnel must be contacted immediately. The Incident Response Commander will alert the LAFD and all other necessary emergency response personnel. If the fire spreads or increases in intensity, all personnel must follow protective actions as designated by the Incident Response Commander. The Incident Response Commander assumes incident command or enters unified command and will remain near the scene to advise personnel responding to the fire of the known hazards.
- 4. Upon arrival at the scene, the LAFD Senior Officer will evaluate all available information and determine the appropriate firefighting methods and tactics. The LAFD Senior Officer will direct firefighting operations under a unified command.

D.7 UNPLANNED NONSUDDEN RELEASES

Nonsudden releases include those incidents that, if uncontrolled, impact the environment over a long period of time. Such incidents include minor leaks from containers and loss of secondary containment integrity.

D.7.1 Responsibility

Appropriate Facility personnel are responsible for correction of a nonsudden release from a hazardous or mixed waste unit if the correction can be performed safely with normal

TA-60 ATTACHMENT D CONTINGENCY PLAN

TA-60

ATTACHMENT D

CONTINGENCY PLAN

Specific information on emergency response resources and release prevention/mitigation at TA-60 is provided below.

<u>Listings of emergency equipment currently available for use at TA-60 Building 17 are presented in Table D-1 below.</u>

TABLE D-1

TA-60 Building 17, Container Storage Facility

Emergency Equipment

FIRE CONTROL EQUIPMENT

The structure is equipped with a wet pipe sprinkler system, an alarm system (pull-stations, horn, and strobe units), and a partial smoke detection system. The smoke detection is located over the fire alarm control panel (FACP) and is required for the FACP. Also, exit signage, emergency lights and ABC and/or BC rated fire extinguishers are located and spaced accordingly in the structure. An ABC and/or BC rated fire extinguisher is located in each vehicle used to transport waste containers to the facility.

Description of General Capabilities:

In the event of a small fire, portable and manually operated fire extinguishers may be used by any qualified employee. For larger fires, the Emergency Operations and Support Center (EOSC) and the Los Alamos Fire Department (LAFD) is alerted and requested to respond.

The EOSC and LAFD are also notified upon activation of the flame or smoke detectors.

Fire hydrant located near TA-60-0017.

Description of General Capabilities: Fire hydrant supplies water at an adequate volume and pressure to satisfy the requirements of 40 CFR 264.32(d).

SPILL CONTROL EQUIPMENT

Spill control stations and/or portable spill kits are located at TA-60-0017. Each spill kit generally includes bags of absorbent and an inventory of tools and supplies.

COMMUNICATION EQUIPMENT

<u>Telephone system located inside the container storage unit of building.</u> Facility personnel use cell <u>phones for communications.</u>

Description of General Capabilities:

Telephone and portable two-way radios for internal and external communication are available for use by any employee. Employees can be notified of an emergency situation and appropriate response action through the LANL Alert notification system.

Fire alarm pull station located in the storage building and adjacent area. In case of a fire, notification will be made via telephone.

<u>Description of General Capabilities:</u>

In the event of a fire, manually operated fire alarms may be activated by any employee to alert TA-60-0017 site personnel, the EOSC, and the LAFD.

Fire and public address system alarms are located throughout the facility.

Description of General Capabilities:

The fire and public address system are activated or used to provide a sound signal to alert personnel of fires or the need to clear the area.

DECONTAMINATION EQUIPMENT

Eyewash/emergency shower stations are available at TA-60-0017. Safety Data Sheets (SDSs) are available. SDS information is maintained where appropriate for personnel accessibility and are used for chemicals that will be needed to support operations or emergency activities.

<u>Description of General Capabilities:</u>

Eyewashes and emergency showers may be used by personnel who receive a chemical splash to the eyes or body. Specific SDSs should be reviewed prior to working with chemicals.

PERSONAL PROTECTIVE EQUIPMENT

Personnel at TA-60-0017 are required to use appropriate personal protective equipment (PPE) to protect themselves from hazards found under normal conditions. This PPE may include gloves, steel toe shoes, and eye protection, additional PPE may be required during unusual hazardous situations. First aid kits and hearing protection are also available.

Description of General Capabilities:

To prevent undue exposure of personnel to hazardous waste, PPE appropriate for the waste containers being managed will be worn by all on-site personnel at TA-60-0017. First aid kits are available and may be used by personnel who sustain minor injuries at the unit in the course of operations. Hearing protection may be used by operations personnel to mitigate noise impacts.

ATTACHMENT J HAZARDOUS WASTE MANAGEMENT UNITS

Unit Identifier	Process Codes	Operating Capacity	General Information	Type of Unit
			Characterization Trailers, and Outside Storage Pad Includes treatment process for macroencapsulation Total square footage—79,239	
TA-60, Building 17	<u>S01</u> <u>T04</u>	17,600 gal 3,441 gal/day	Located in the southern wing of Building 17 (TA-60-0017) Includes treatment process for macroencapsulation Total square footage – 3,480	<u>Indoor</u>

ATTACHMENT N FIGURES

List of Figures for Permit

- Figure 1: LANL Regional Location Map
- Figure 2: LANL Facility Boundary and Technical Area (TA)-Specific Map
- Figure 3: LANL Facility Boundary with Detail of Non-LANL Areas
- Figure 4: TA-3 Security Fences, Entry Gates, and Entry Stations
- Figure 5: Reserved
- Figure 6: TA-50 Security Fences, Entry Gates, and Entry Stations
- Figure 7: TA-54, Area L, Security Fences, Entry Gates, and Entry Stations
- Figure 8: TA-54, Area G, Security Fences, Entry Gates, and Entry Stations
- Figure 9: TA-54 West Security Fences, Entry Gates, and Entry Stations
- Figure 10: TA-55 Security Fences, Entry Gates, and Entry Stations
- Figure 11: TA-3 Location Map
- Figure 12: TA-3, Building 29, Location Map
- Figure 13: TA-3 Building 29, Container Storage Unit, Portion of Room 9010
- Figure 14: TA-3, Building 29, Room 9020
- Figure 15: TA-3, Building 29, Room 9030
- Figure 16: Reserved
- Figure 17: Reserved
- Figure 18: Reserved
- Figure 19: Reserved
- Figure 20: Reserved
- Figure 21: Reserved
- Figure 22: TA-50 Location Map
- Figure 23: TA-50 Building 69, Indoor Storage/Treatment Unit and Outdoor Storage Unit
- Figure 24: TA-54 Location Map
- Figure 25: TA-54, Areas G, H, L, and TA-54 West Location Map
- Figure 26: TA-54, Area L, Container Storage Units
- Figure 27: TA-54, Area G, Container Storage Units
- Figure 28: TA-54 Area G, Pad 9 (TWISP Domes 229, 230, 231, & 232)
- Figure 29: TA-54, Area G, Pad 1
- Figure 30: TA-54, Area G, Pad 3 (Dome 48)
- Figure 31: TA-54, Area G, Pad 10
- Figure 32: TA-54, Area G, Pad 5 (Domes 49 and 224; and Storage Sheds 144, 145, 146, 177,
- 1027, 1028, 1029, and 1041)
- Figure 33: TA-54, Area G, Pad 6 (Domes 153 & 283)
- Figure 34: TA-54, Area G, Storage Shed 8
- Figure 35: TA-54, Area G, Building 33
- Figure 36: TA-54, Area G, Pad 11 (Dome 375)
- Figure 37: TA-54 West, Building 38 (High Bay and Low Bay) and Outdoor Pad
- Figure 38: TA-55 Location Map
- Figure 39: TA-55, Building 4, Location Map
- Figure 40: TA-55, Building 4, Room B40– UCNI
- Figure 41: TA-55, Building 4, Room K13– UCNI
- Figure 42: TA-55, Building 4, Room B05– UCNI
- Figure 43: TA-55, Building 4, Room B45 UCNI
- Figure 44: TA-55, Building 4, Vault UCNI

Figure 45: TA-55, Building 4, Outdoor Container Storage Pad

Figure 46: TA-55, Building 185

Figure 47: TA-55, Building 4, Room 401, Storage Tank System Process Flow Diagram

Figure 48: TA-55, Building 4, Room 401, Cementation Unit Process Flow Diagram

Figure 49: Emergency Facilities at Los Alamos National Laboratory

Figure 50: TA-54, MDA H

Figure 51: TA-60 Location Map

Figure 52: Security and Access to TA-60-0017

Figure 53: TA-60-0017 Site Plan

Figure 54: TA-63 Location Map

Figure 55: TA-63 Transuranic Waste Facility

Figure 56: Transuranic Waste Facility Subsurface Vapor Monitoring Network

Figure 57: TA-44, Building 4, Room B13

Figure 58: TA-55, Building 4, Room G12

Figure 59: TA-55, Pad 55-0355

This map was created for work processes associated with the Environmental & Remediation Support Services. All other uses for this map should be confirmed with LANL EPC-CP staff.

Created by GIS Program, Map Number 19-182-32, January 2023

Figure 2: LANL Facility Boundary and Technical Area (TA)-Specific Map

Figure 3: LANL Facility Boundary with Detail of Non-LANL Areas

This map was created for work processes associated with the Environmental & Remediation Support Services. All other uses for this map should be confirmed with LANL EPC-CP staff.

Created by GIS Program, Map Number 19-182-49, January 2023

Figure 51: TA-60 Location Map

Figure 52: Security and Access to TA-60-0017

Figure 53: TA-60-0017 Site Plan

Attachment 4 TA-60-0017 Closure Plan, Indoor Container Storage Unit

- G.1 TECHNICAL AREA 3, BUILDING 29 INDOOR CONTAINER STORAGE UNIT
- G.4 TECHNICAL AREA 50, BUILDING 69, INDOOR CONTAINER STORAGE UNIT
- G.5 TECHNICAL AREA 50, BUILDING 69, OUTDOOR CONTAINER STORAGE UNIT
- G.6 TECHNICAL AREA 54, AREA G, PAD 1, OUTDOOR CONTAINER STORAGE UNIT
- G.7 TECHNICAL AREA 54, AREA G, PAD 3, OUTDOOR CONTAINER STORAGE UNIT
- G.8 TECHNICAL AREA 54, AREA G, PAD 5, OUTDOOR CONTAINER STORAGE UNIT
- G.9 TECHNICAL AREA 54, AREA G, PAD 6, OUTDOOR CONTAINER STORAGE UNIT
- G.10 TECHNICAL AREA 54, AREA G, PAD 9, OUTDOOR CONTAINER STORAGE UNIT
- G.11 TECHNICAL AREA 54, AREA G, PAD 10, OUTDOOR CONTAINER STORAGE UNIT
- G.12 TECHNICAL AREA 54, AREA G, PAD 11, OUTDOOR CONTAINER STORAGE UNIT
- G.13 TECHNICAL AREA 54, AREA G, STORAGE SHED 8, INDOOR CONTAINER STORAGE UNIT
- G.14 TECHNICAL AREA 54, AREA G, BUILDING 33, INDOOR CONTAINER STORAGE UNIT
- G.15 TECHNICAL AREA 54, AREA L, OUTDOOR CONTAINER STORAGE UNIT
- G.16 TECHNICAL AREA 54 WEST, BUILDING 38, INDOOR CONTAINER STORAGE UNIT
- G.17 TECHNICAL AREA 54, WEST, OUTDOOR CONTAINER STORAGE UNIT
- G.18 TECHNICAL AREA 55, BUILDING 4 ROOM B40, INDOOR CONTAINER STORAGE UNIT
- G.19 TECHNICAL AREA 55, BUILDING 4 ROOM K13, INDOOR CONTAINER STORAGE UNIT
- G.20 TECHNICAL AREA 55, BUILDING 4, ROOM B05, INDOOR CONTAINER STORAGE UNIT
- G.21 TECHNICAL AREA 55, BUILDING 4, ROOM B45, INDOOR CONTAINER STORAGE UNIT
- G.22 TECHNICAL AREA 55, BUILDING 4, VAULT, INDOOR CONTAINER STORAGE UNIT
- G.23 TECHNICAL AREA 55, BUILDING 4, ROOM 401, INDOOR STORAGE TANK UNIT
- G.24 TECHNICAL AREA 55, BUILDING 4, ROOM 401, INDOOR MIXED WASTE STABILIZATION TREATMENT UNIT
- G.25 TECHNICAL AREA 55, 0355 PAD
- G.26 TECHNICAL AREA 55, OUTDOOR STORAGE PAD
- G.27 TECHNICAL AREA 63, TRANSURANIC WASTE FACILITY
- G.29 TECHNICAL AREA 55, BUILDING 4 ROOM B13 INDOOR CONTAINER STORAGE UNIT
- G.30 TECHNICAL AREA 55, BUILDING 4 ROOM G12 INDOOR CONTAINER STORAGE UNIT

<u>G.31 – TECHNICAL AREA 60, BUILDING 17 INDOOR CONTAINER STORAGE UNIT</u>

ATTACHMENT G.31 TECHNICAL AREA 60, BUILDING 17 INDOOR CONTAINER STORAGE UNIT CLOSURE PLAN

TABLE OF CONTENTS

LIST OF TABLES	iv
LIST OF FIGURES	v
1.0 INTRODUCTION	1
2.0 DESCRIPTION OF UNIT TO BE CLOSED	1
3.0 ESTIMATE OF MAXIMUM WASTE STORED	1
4.0 GENERAL CLOSURE REQUIREMENTS	2
4.1 Closure Performance Standard	2
4.2 Closure Schedule	2
5.0 CLOSURE PROCEDURES	3
5.1 Removal of Waste	3
5.2 Records Review and Structural Assessment	3
5.2.1 Records Review	3
5.2.2 Structural Assessment	4
5.3 Decontamination and Removal of Structures and Related Equipment	4
5.3.1 Removal of Structures and Related Equipment	
5.3.2 Decontamination of Structures and Related Equipment	
5.4 Equipment Used During Decontamination Activities	5
6.0 SAMPLING AND ANALYSIS PLAN	5
6.1 Decontamination Verification Sampling Activities	5
6.2 Sample Collection Procedures	6
6.2.1 Wipe Sampling	6
6.2.2 Solid Chip Sampling	6
6.2.3 Cleaning of Sampling Equipment	6
6.3 Sample Management Procedures	7
6.3.1 Sample Documentation	7
6.3.1.1 Chain-of-Custody 7	
6.3.1.2 Sample Labels and Custody Seals 7	
6.3.1.3 Sample Logbook 8	

	6.3.2	Sample Handling, Preservation, and Storage	8
	6.3.3	Packaging and Transportation of Samples	8
6	4 Sam	ple Analysis Requirements	9
	6.4.1	Analytical Laboratory Requirements	9
	6.4.2	Quality Assurance/Quality Control	9
	6.4.2.1	Field Quality Control 10	
	6.4.2.2	Analytical Laboratory QC Samples 10	
	6.4.3	Data Reduction, Verification, Validation, and Reporting	10
	6.4.4	Data Reporting Requirements	10
7.0	WASTE	MANAGEMENT	10
8.0	CLOSUI	RE CERTIFICATION REPORT	11
9 0	REFERE	FNCFS	11

LIST OF TABLES

TABLE NO.	TITLE
G.31-1	Closure Schedule for the Technical Area 60, Building 17, Container Storage Unit
G.31-2	Potential Waste Materials, Waste Types, and Disposal Options
G.31-3	Sample Containers, Preservation Techniques, and Holding Times
G.31-4	Summary of Analytical Methods
G.31-5	Quality Control Sample Types, Applicable Analyses, Frequency, and Acceptance
	Criteria

LIST OF FIGURES

FIGURE NO. TITLE

G.31-1 Technical Area 60, Building 17, Indoor Container Storage Unit

1.0 INTRODUCTION

This closure plan describes the activities necessary to close the indoor hazardous waste container storage unit which is located in the southern portion of Technical Area (TA) 60, Building 17 (TA-60-0017) at the Los Alamos National Laboratory (Facility), hereinafter referred to as the permitted unit. The information provided in this closure plan addresses the closure requirements specified in Permit Part 9 and the Code of Federal Regulations (CFR), Title 40, Part 264, Subparts G and I for hazardous waste management units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act.

Until closure is complete and has been certified in accordance with Permit Section 9.5, a copy of the approved closure plan or the hazardous waste facility permit containing the plan, any approved revisions to the plan, and closure activity documentation associated with the closure will be on file with hazardous waste compliance personnel at the Facility and at the U.S. Department of Energy (DOE) Los Alamos Site Office. Prior to closure of the permitted unit, this closure plan may be amended in accordance with Permit Section 9.4.8, as necessary and appropriate, to provide updated sampling and analysis plans and to incorporate updated decontamination technologies. Amended closure plans shall be submitted to the New Mexico Environment Department (Department) for approval prior to implementing closure activities.

2.0 DESCRIPTION OF UNIT TO BE CLOSED

A specific description of the permitted unit can be found in Permit Attachment A (*Technical Area Unit Descriptions*). Additional features and equipment located at the permitted unit and not discussed within the Permit are described below.

The floor of the permitted unit has been used for staging and storage of hazardous waste. The permitted unit is located in the southern part of TA-60-0017. This storage area is rectangularly shaped (approximately 3480 ft.²) as shown in Figure 3-3. The maximum storage capacity of this unit is approximately 17,600 gal. or the equivalent of 320 55-gal drums. The types of waste containers holding hazardous or mixed waste that are stored include various small containers, 30-, 55-, 85-gal drums and solid waste boxes. Containers with free liquids are stored in the unit, so secondary containment is utilized appropriately.

The structure where permitted unit resides was constructed in 1986. The unit is used to store hazardous and mixed waste. Permit Part 3 (*Storage in Containers*), Permit Attachment A (*Technical Area Unit Descriptions*), Permit Attachment B (*Part A Application*), and Permit Attachment C (*Waste Analysis Plan*) include information regarding waste management procedures and hazardous waste constituents stored at the permitted unit.

3.0 ESTIMATE OF MAXIMUM WASTE STORED

To date, hazardous waste has been stored at the permitted unit only in a temporary central accumulation area capacity. Throughout the life of this Permit, it is estimated that 2,000 cubic meters of waste will be stored in the permitted unit.

4.0 GENERAL CLOSURE REQUIREMENTS

4.1 Closure Performance Standard

As required by Permit Section 9.2, the permitted unit will be closed to meet the following performance standards:

- a. remove all hazardous waste residues and hazardous constituents; and
- b. ensure contaminated media do not contain concentrations of hazardous constituents greater than the clean-up levels established in accordance with Permit Sections 11.4 and 11.5. For soils, the cleanup levels shall be established based on residential use. The Permittees must also demonstrate that there is no potential to contaminate groundwater.

If the Permittees are unable to achieve either of the clean closure standards above, they must:

- c. control hazardous waste residues, hazardous constituents, and, as applicable, contaminated media such that they do not exceed a total excess cancer risk of 10⁻⁵ for carcinogenic substances and, for non-carcinogenic substances, a target Hazard Index of 1.0 for human receptors, and meet Ecological Screening Levels established under Permit Section 11.5;
- d. minimize the need for further maintenance;
- e. control, minimize, or eliminate, to the extent necessary to protect human health and the environment, the post-closure escape of hazardous waste, hazardous constituents, leachate, contaminated runoff, or hazardous waste decomposition products to the ground, groundwater, surface waters, or to the atmosphere; and
- f. comply with the closure requirements of Permit Part 9 (*Closure*) and 40 CFR Part 264 Subparts G and I for container storage units.

Closure of the permitted unit will be deemed complete when: 1) all structures, surfaces, and equipment have been decontaminated, or otherwise properly disposed of; 2) closure has been certified by an independent, professional engineer licensed in the State of New Mexico; and 3) closure certification has been submitted to, and approved by, the Department.

4.2 Closure Schedule

This closure plan schedule is intended to address the closure requirements for the permitted unit within the authorized timeframe of the current Hazardous Waste Facility Permit (*see* Permit Section 9.4). The following section provides the schedule of closure activities (*see also* Table G.31-1 in this closure plan).

Notification of closure will occur at least 45 days before the Permittees expect to begin closure (*see* 40 CFR § 264.112(d)(1)) and closure activities will begin according to the requirements of 40 CFR § 264.112(d)(2). However, pursuant to 40 CFR § 264.112(e), removing hazardous wastes and decontaminating or dismantling equipment in accordance with an approved closure plan may be conducted at any time before or after notification of closure. Notification of the structural assessment (assessment), as described in Section 5.2 of this closure plan, shall occur in accordance with Permit Section 9.4.6.2.

Within 90 days after the final receipt of hazardous waste, the permitted unit will be emptied of all stored waste. Within ten days of completing hazardous waste removal or within 100 days of the final receipt of hazardous waste, the Permittees will complete the records review (review) and assessment and submit an amended closure plan, if necessary, to the Department for review and approval as a permit modification in accordance with Permit Section 9.4.8. Upon approval of the modified closure plan, if applicable, the Permittees will decontaminate unit surfaces and related equipment.

Decontamination verification, and soil sampling if applicable, will be conducted to demonstrate surfaces, related equipment, and media if applicable, at the permitted unit meet the closure performance standards in Permit Section 9.2.

All closure activities, including submittal of a final closure certification report to the Department for review and approval, will be completed within 180 days after the final receipt of waste. In the event that closure of the permitted unit cannot proceed according to schedule, the Permittees will notify the Department in accordance with the extension request requirements in Permit Section 9.4.1.1.

5.0 CLOSURE PROCEDURES

Closure activities at the permitted unit will include: removal of hazardous wastes; proper management and disposal of hazardous waste residues and contaminated equipment associated with the permitted unit; verification that the closure performance standards have been achieved; and submittal of a final closure certification report. The following sections describe the procedures to be used for closure of the permitted unit.

5.1 Removal of Waste

In accordance with Permit Section 9.4.2, all stored hazardous waste will be removed from the permitted unit scheduled for closure. Depending upon their size, containers will be removed with forklifts, container dollies, air pallets or manually. Containers will be placed on flatbed trucks, trailers, or other appropriate vehicles for transport. Appropriate shipping documentation will accompany the wastes during transport. Containers holding hazardous waste will be moved to a permitted on-site storage unit or a permitted off-site treatment, storage, or disposal facility.

5.2 Records Review and Structural Assessment

After waste removal and before starting decontamination and sampling activities, the Facility Operating and Inspection Records for the permitted unit will be reviewed and an assessment will be conducted to determine any finding(s) or action(s) that may influence closure activities or additional sampling locations.

5.2.1 Records Review

The Facility Operating and Inspection Records shall be reviewed as outlined in Permit Section 9.4.6.1. The goals of the review will be to:

- a. confirm the specific hazardous waste constituents of concern; and
- b. confirm additional sampling locations (*e.g.*, locations of any spills or chronic conditions identified in the Operating and Inspection Records).

5.2.2 Structural Assessment

An assessment of the permitted unit's physical condition will be conducted in accordance with Permit Section 9.4.6.2. The assessment will include inspecting the floor and walls of the permitted unit for any existing cracks or conditions that indicate a potential for, or an actual, release of constituents. If a crack, gap, or stained area is present, the Permittees will amend this closure plan in order to update the sampling and analysis plan (SAP) (see Section 6.0 of this closure plan) to add these sampling locations and the applicable sampling methods and procedures. This inspection will be documented with photographs and drawings, as necessary.

5.3 Decontamination and Removal of Equipment and Structures

In accordance with procedures in Permit Section 9.4.3, all remaining hazardous waste residues and hazardous constituents will be removed from the permitted unit. The permitted unit's structures and equipment will be decontaminated, removed, or both and managed appropriately. All waste material will be controlled, handled, characterized, and disposed of in accordance with Permit Attachment C (*Waste Analysis Plan*) and Facility waste management procedures. Decontamination activities will ensure the removal of all hazardous waste residues and hazardous constituents from the permitted unit to meet the closure performance standards outlined in Permit Section 9.2.

5.3.1 Removal of Structures and Related Equipment

All structures and related equipment that are removed will not require decontamination, will be considered solid and potentially hazardous waste (as defined by this Permit) when removed, and disposed of in accordance with Permit Section 9.4.5 and Section 7.0 of this closure plan. Table G.31-2 outlines the potential waste materials, waste types, and disposal options.

5.3.2 Decontamination of Structures and Related Equipment

All structures and equipment that will be reused by the Facility will be decontaminated in accordance with Permit Section 9.4.3.1. There is currently no equipment located at the permitted unit that is expected to be left in place; however, if equipment identified during the assessment is expected to be left in place, it will be decontaminated in accordance with this section.

Decontamination of the permitted unit will be conducted by first removing loose material (*e.g.*, dust dirt) through sweeping followed by washing using a manual wipe down method with a solution consisting of a surfactant detergent (*e.g.*, Alconox[®]) and water mixed in accordance with the manufacture's recommendations.

Wipe-down washing will be utilized because of the need to minimize the potential for exposure to workers and the mitigation of cleaning solution to other areas of the adjacent building outside the Permitted unit's boundary. While unlikely, migration of the wash solution (in the form of splashing, condensation, or drainage) from steam cleaning or pressure washing may potentially contaminate or otherwise negatively affect ongoing operations within the adjacent building. Migration can potentially be mitigated using plastic barriers taped to surfaces to enclose the area. However, areas enclosed in this manner will require workers to use additional personal protective equipment (PPE). This PPE will include fully enclosed protective wear and supplied air because of the increased risk of exposure to personnel due to a potential release of radiological materials and organic compounds and concentrations

within the enclosure. Enclosure of the area increases the risk of personnel exhaustion, because of the additional PPE, and the potential for worker to reach radiological work exposure limits. Therefore, wipedown washing, rather than steam cleaning for pressure washing will be utilized because of the need to minimize the potential for exposure to workers and the migration of cleaning solution to other areas of the adjacent building outside of the permitted unit's boundary.

The entirety of the unit's floor will be decontaminated. To ensure that decontamination of the walls is conducted to a sufficient height, all walls in the permitted unit will be decontaminated to an appropriate height of 8 feet.

The ceiling and areas outside of the permitted unit will be presumed to be free of contamination unless: there is some physical indication of contamination (*e.g.*, staining), the records review reveals waste management outside of designated area, or a spill or release occurred within the permitted unit that could have affected the surrounding areas.

Cloths, or other absorbent cleaning devices, will not be reused to wipe-down the surfaces after being wetted in the wash solution or after spraying solution onto surfaces. Only one cloth or absorbent cleaning device will be used at a time in a single area to prevent cross-contamination. To minimize the amount of liquid waste generated as a result of decontamination activities, the wash solution will be dispersed from buckets, spray bottles, or other types of small containers.

Portable berms or other such devices (*e.g.*, absorbent socks, plastic sheeting, wading pools, existing secondary containment) will collect excess wash water and provide containment during the decontamination process.

5.4 Equipment Used During Decontamination Activities

Reusable protective clothing, tools, and equipment used during closure activities will be cleaned with a wash water solution. Residue, disposable equipment, and equipment that cannot be decontaminated will be containerized and managed as waste as summarized in Table G.31-2 and in accordance Permit Section 9.4.5 and Section 7.0 of this closure plan.

6.0 SAMPLING AND ANALYSIS PLAN

This SAP addresses the specific closure sampling and analysis requirements in Permit Section 9.4.7 and describes the sampling, analysis, and quality assurance and quality control (QA/QC) methods that will be used to demonstrate that the Permittees have met the closure performance standards outlined in Permit Section 9.2.

6.1 Decontamination Verification Sampling Activities

Decontamination verification sampling activities will be conducted at the Permitted unit in order to verify that surfaces and related equipment at the permitted unit meet the closure performance standards in Permit Section 9.2. All samples will be collected and analyzed in accordance with the procedures in Section 6.2, 6.3, and 6.4 of this closure plan.

One wipe sample will be collected from each piece of decontaminated equipment at the permitted unit. In compliance with Permit Section 9.4.7.1.i, this closure plan will ensure the collection of at least one wipe

sample from the floor and from each wall (up to 11 ft.) of the permitted unit. Verification wipe samples will be collected from random locations within each of the sample areas indicated on Figure G.31-1 of this closure plan. A total of one wipe sample, from the floor, and four wipe samples from the walls. Solid chip samples may be collected and analyzed to determine if residual hazardous constituents remain in the concrete floor at the permitted unit.

6.2 Sample Collection Procedures

Samples will be collected in accordance with the Permit Section 9.4.7.1 and procedures identified in this SAP which incorporates guidance from the United States Environmental Protection Agency (US EPA) (EPA, 1986 and EPA, 2002), DOE (DOE, 1995), and other Department-approved procedures.

6.2.1 Wipe Sampling

Surface wipe samples will be collected and analyzed used to determine if residual hazardous constituents remain on surfaces, structures, or equipment at the permitted unit. Samples will be collected in accordance with the National Institute of Occupational Safety and Health (NIOSH) *Manual of Analytical Methods* (NIOSH, 1994). The appropriate wipe sample method will consider the type of surface being sampled, the type of constituent being sampled for, the solution used, and the desired constituent concentration detection limit.

The NIOSH method includes wiping a 100-square centimeter area at each discrete location with a gauze wipe wetted with a liquid solution appropriate for the desired analysis (e.g., deionized water for lead). For wipe sampling, guidance from the analytical laboratory must be obtained prior to wipe verification sampling to confirm that the solution chosen for each analysis is appropriate for the analysis to be conducted and that wipe sampling is a proper technique for the analysis.

6.2.2 Solid Chip Sampling

Solid chip samples may be collected and analyzed to determine if residual hazardous constituents remain in the concrete floor at the permitted unit. Any non-porous inclusions from the sampling location will be removed by brushing or wiping. Using a chisel, drill, hole saw, or similar too, a minimum of 100 grams of the sample will be collected to a depth of 2 cm, or to and alternate depth specified in the assessment and transferred to and an appropriate sampling container. The holding time and preservation techniques to be used for each analysis will be determined form Table G.31-3.

6.2.3 Cleaning of Sampling Equipment

Reusable sampling equipment will be cleaned and rinsed prior to use. Sampling equipment rinsate blanks will be collected and analyzed only if reusable sampling equipment is used. Reusable decontamination equipment, including protective clothing and tools, used during closure activities will be scraped as necessary to remove residue and cleaned with a wash water solution. Sampling equipment will be cleaned prior to each use with a wash solution, rinsed several times with tap water, and air-dried to prevent cross contamination of samples. A disposable sampler is considered clean if still in a factory-sealed wrapper.

6.3 Sample Management Procedures

The following sections provide a description of sample documentation, handling, preservation, storage, packaging, and transportation requirements that will be followed during the sampling activities associated with the closure.

6.3.1 Sample Documentation

Sampling personnel will complete and maintain records to document sampling and analysis activities. Sample documentation will include sample identification numbers, chain-of-custody forms, analysis requested, sample logbooks detailing sample collection activities, and shipping forms (if necessary).

6.3.1.1 Chain-of-Custody

Chain-of-custody forms will be maintained by sampling personnel until the samples are relinquished to the analytical laboratory. This will ensure the integrity of the samples and provide for an accurate and defensible written record of the sampling possession and handling from the time of collection until laboratory analysis. One chain-of-custody form may be used to document all of the samples collected from a single sampling event. The sample collector will be responsible for the integrity of the samples collected until properly transferred to another person. The EPA considers a sample to be in a person's custody if it is:

- a. in a person's physical possession;
- b. in view of the person in possession; or
- c. secured by that person in a restricted access area to prevent tampering.

The sample collector will document all pertinent sample collection data. Individuals relinquishing or receiving custody of the samples will sign, date, and note the time on the analysis request and chain-of-custody form. A chain-of-custody form must accompany all samples from collection through laboratory analysis. The analytical laboratory will return the completed chain-of-custody form to the Facility and it will become a part of the permanent record documenting the sampling efforts.

6.3.1.2 Sample Labels and Custody Seals

A sample label will be affixed to each sample container. The sample label will include the following information:

- a. a unique sample identification number;
- b. name of the sample collector;
- c. date and time of collection;
- d. type of preservatives used, if any; and
- e. location from which the sample was collected.

A custody seal will be placed on each sample container to detect unauthorized tampering with the samples. These labels must be initialed, dated, and affixed by the sample collector in such a manner that it is necessary to break the seal to open the container.

6.3.1.3 Sample Logbook

All pertinent information on the sampling effort must be recorded in a bound logbook. Information must be recorded in ink and any cross outs must be made with a single line with the change initialed and dated by the author. The sample logbook will include the following information:

- a. the sample location;
- b. suspected composition;
- c. sample identification number;
- d. volume/mass of sample taken;
- e. purpose of sampling;
- f. description of sample point and sampling methodology;
- g. date and time of collection;
- h. name of the sample collector;
- i. sample destination and how it will be transported;
- j. observations;
- k. name(s) of personnel responsible for the observations; and
- 1. any deviations and supporting information.

6.3.2 Sample Handling, Preservation, and Storage

Samples will be collected and containerized in appropriate pre-cleaned sample containers. Table G.31-3 presents the requirements in *SW-846* (EPA, 1986) for sample containers, preservation techniques, and holding times. Samples that require cooling to 4 degrees Celsius will be placed in a cooler with ice or ice gel or in a refrigerator immediately upon collection.

6.3.3 Packaging and Transportation of Samples

All packaging and transportation activities will meet safety expectations, QA requirements, DOE Orders, and relevant local, state, and federal laws (including 10 CFR and 49 CFR). Appropriate Facility documents establish these requirements for packaging design, testing, acquisition, acceptance, use, maintenance, and decommissioning and for on-site, intra-site, and off-site shipment preparation and transportation of general commodities, hazardous materials, substances, waste, and defense program materials.

Off-site transportation of samples will occur via private, contract, or common motor carrier, air carrier, or freight. All off-site transportation will be processed through the Facility packaging and transportation organization, unless the shipper is specifically authorized through formal documentation by that organization to independently tender shipments to common motor or air carriers.

6.4 Sample Analysis Requirements

Samples will be analyzed for all hazardous constituents listed in 40 CFR Part 261 Appendix VIII and in Appendix IX of 40 CFR Part 264 that have been stored at the permitted unit over its operational history. Samples will be analyzed by an independent laboratory using the methods outlined in Table G.31-4. Analytes, test methods and instrumentation, target detection limits, and rationale for metals and organic analyses are presented in Table G.31-4. If any of the information from these tables has changed at the time of closure, the Permittees will amend this closure plan to update all methods in this SAP.

6.4.1 Analytical Laboratory Requirements

The analytical laboratory will perform the detailed qualitative and quantitative chemical analyses specified in Section 6.4.2. The analytical laboratory will have:

- a. a documented comprehensive QA/QC program;
- b. technical analytical expertise;
- c. a document control and records management plan; and
- d. the capability to perform data reduction, validation, and reporting.

The selection of the analytical testing methods identified in Table G.31-4 was based on the following considerations:

- e. the physical form of the waste;
- f. constituents of concern;
- g. required detection limits (e.g., regulatory thresholds); and
- h. information requirements (e.g., waste classification).

6.4.2 Quality Assurance/Quality Control

All sampling and analysis will be conducted in accordance with QA/QC procedures defined by the latest revision of "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" (SW-846) (EPA, 1986), or other Department-approved procedures. Field sampling procedures and laboratory analyses will be evaluated through the use of QA/QC samples to assess the overall quality of the data produced. QC samples evaluate precision, accuracy, and potential sample constituents associated with the sampling and analysis process and are described in the following sections, along with information on calculations necessary to evaluate the QC results.

6.4.2.1 Field Quality Control

The field QC samples that will be collected are trip blanks, field blanks, field duplicates, and equipment rinsate blanks. Table G.31-5 presents a summary of QC sample types, applicable analyses, frequency, and acceptance criteria. QC samples will be given a unique sample identification number and submitted to the analytical laboratory as blind samples. QC samples will be identified on the applicable forms so that the results can be applied to the associated sample.

6.4.2.2 Analytical Laboratory QC Samples

QA/QC considerations are an integral part of analytical laboratory operations. Laboratory QA ensures that analytical methods generate data that are technically sound, statistically valid, and that can be documented. QC procedures are the tools employed to measure the degree to which these QA objectives are met.

6.4.3 Data Reduction, Verification, Validation, and Reporting

Analytical data generated by the activities described in this closure plan will be verified and validated. Data reduction is the conversion of raw data to reportable units, transfer of data between recording media, and computation of summary statistics, standard errors, confidence intervals, and statistical tests.

6.4.4 Data Reporting Requirements

Analytical results will include all pertinent information about the condition and appearance of the sample-as-received. Analytical reports will include:

- a. a summary of analytical results for each sample;
- b. results from QC samples such as blanks, spikes, and calibrations;
- c. reference to standard methods or a detailed description of analytical procedures; and
- d. raw data printouts for comparison with summaries.

The laboratory will describe the analysis in sufficient detail so that the data user can understand how the sample was analyzed.

7.0 WASTE MANAGEMENT

All waste generated during closure will be controlled, handled, characterized, and disposed of in accordance with Permit Section 9.4.5, Permit Attachment C (*Waste Analysis Plan*), and Facility waste management procedures. Closure activities may generate different types of waste materials: these wastes are listed with potential disposal options in Table G.31-2 of this closure plan. Subsequent disposition options for the decontaminated structures and equipment include reuse, recycling, or disposal. Reusable protective clothing, tools, and equipment used during decontamination will be cleaned with a wash water solution. Disposable equipment and other small equipment that cannot be decontaminated, as summarized in Table G.31-3, will be containerized and managed as waste.

8.0 CLOSURE CERTIFICATION REPORT

Upon completion of the closure activities at the permitted unit, a closure certification report will be prepared and submitted to the Department for review and approval in accordance with Permit Section 9.5.

9.0 REFERENCES

DOE, 1995. "DOE Methods for Evaluating Environmental and Waste Management Samples," DOE/EM-0089T, Rev. 2. Prepared for the U.S. Department of Energy by Pacific Northwest Laboratory, Richland, Washington.

EPA, 1986 and all approved updates. "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," EPA-SW-846, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, U.S. Government Printing Office, Washington, D.C.

EPA, 2002. "RCRA Waste Sampling Draft Technical Guidance Planning, Implementation, and Assessment," EPA530-D-02-002, August 2002, Office of Solid Waste, U.S. Environmental Protection Agency, Washington, D.C.

LANL, 1999. "Screening Level Ecological Risk Assessment Methods," LA-UR-99-1406, Los Alamos National Laboratory, Los Alamos, New Mexico.

NIOSH, 1994. The National Institute for Occupational Health and Safety (NIOSH) *Manual of Analytical Methods*, 4th ed. Issue 1. 1994.

NMED, 2006. "Technical Background Document for Development of Soil Screening Levels," Rev. 4.0, June 2006, New Mexico Environment Department, Santa Fe, New Mexico.

Closure Schedule for the Technical Area 60, Building 17, Container Storage Unit **Table G.31-1**

Activity	Maximum Time Required
Notify the Department of intent to close.	-45 days
Final receipt of waste.	Day 0
Complete waste removal.	Day 90
Complete records review and structural assessment.	10 days after completed waste removal or 100 days after final receipt of waste
Complete all closure activities and submit final closure certification report to the Department.	Day 180

Table G.31-2
Potential Waste Materials, Waste Types, and Disposal Options

waste Subtitle D landfill	The PPE will be treated to meet Land Disposal Restriction (LDR) treatment standards, if necessary, and disposed in a Subtitle C or D landfill, as appropriate.	e solid Either an authorized on-site radioactive waste disposal area that is not undergoing closure under RCRA or its state analog, or an authorized off-site radioactive waste disposal facility.
Non-regulated solid waste	Hazardous waste	Low-level radioactive solid waste
Personal protective	equipment (PPE)	

Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill or WIPP, as appropriate.	Sanitary sewer	Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill, as appropriate.	Radioactive Liquid Water Treatment Facility (RLWTF).	Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill or WIPP, as appropriate.	Subtitle D landfill or recycled	The waste will be treated to meet Land Disposal Restriction (LDR) treatment standards, if necessary, and disposed in a Subtitle C or D landfill, as appropriate.	Either an authorized on-site radioactive waste disposal area that is not undergoing closure under RCRA or its state analog, or an authorized off-site radioactive waste disposal facility.
Mixed waste	Non-regulated solid waste	Hazardous waste	Radioactive liquid waste	Mixed waste	Non-regulated solid waste	Hazardous waste	Low-level radioactive solid waste
	Decontamination wash water	I	ı	I	Metal	1	I

	Mixed waste	Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill or WIPP, as appropriate.
Discarded Concrete	Non-regulated solid waste	Subtitle D landfill, recycled or reused.
	Hazardous waste	Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill, as appropriate.
	Low-level radioactive solid waste	Either an authorized on-site radioactive waste disposal area that is not undergoing closure under RCRA or its state analog, or an authorized off-site radioactive waste disposal facility.
	Mixed waste	Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill or WIPP, as appropriate.
Discarded waste management equipment	Non-regulated solid waste	Subtitle D landfill
	Hazardous waste	Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill, as appropriate.

Either an authorized on-site radioactive waste disposal area that is not undergoing closure under RCRA or its state analog, or an authorized off-site radioactive waste disposal facility.	Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill or WIPP, as appropriate.	Subtitle D landfill	Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill, as appropriate.	Either an authorized on-site radioactive waste disposal area that is not undergoing closure under RCRA or its state analog, or an authorized off-site radioactive waste disposal facility.	Waste will be treated to meet LDR treatment standards, if necessary, and disposed in a Subtitle C or D landfill or WIPP, as appropriate.
Low-level radioactive solid waste	Mixed waste	Non-regulated solid waste	Hazardous waste	Low-level radioactive solid waste	Mixed waste
		Sampling equipment			

Table G.31-3 Sample Containers^a, Preservation Techniques, and Holding Times^b

Analyte Class and Sample Type	Container Type and Materials	Preservation	Holding Time
	Metals		
TCLP/ Total Metals: Arsenic, Barium, Cadmium, Chromium, Lead, Selenium, Silver	Aqueous Media: 500-mL Wide-Mouth-Polyethylene or Glass with Teflon Liner	Aqueous Media: HNO3 to pH <2 Cool to 4°C	180 Days
	Solid Media: 125-mL Glass	Solid Media: Cool to 4°C	
Total Mercury	Aqueous Media: 500-mL Wide-Mouth-Polyethylene or Glass with Teflon Liner	Aqueous Media: HNO3 to pH <2 Cool to 4 °C	28 Days
	Solid Media: 125-mL Glass	Solid Media: Cool to 4°C	
	Volatile Organic Compounds	spunodu	
Target Compound Volatile Organic Compounds	Aqueous Media: Two 40-mL Amber Glass Vials with Teflon-Lined Septa	Aqueous Media: HCl to pH<2 Cool to 4 °C	14 days

		Seven days from field collection to extraction. 40 days from extraction to determinative	analysis.
Solid Media: Cool to 4°C Add 5 mL Methanol or Other Water Miscible Organic Solvent to 40-mL Glass Vials	spunodwo	Aqueous Media: Cool to 4 °C	Solid Media: Cool to 4°C
Solid Media: 125-mL Glass or Two 40-mL Amber Glass Vials with Teflon-Lined Septa	Semi-Volatile Organic Compounds	Aqueous Media: Four 1-L Amber Glass with Teflon- Lined Lid	Solid Media: 250-mL Glass
		Target Compound Semi-volatile Organic Compounds	

 $^{\circ}$ C = degrees Celsius HNO₃ = nitric acid Characteristic Leaching Procedure

management considerations.

Information obtained from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, U.S. Environmental Protection Agency, 1986 and all approved updates.

C. = degrees Celsius HNO₃ = nitric acid to the nitric ac

Table G.31-4 Summary of Analytical Methods

Analyte	EPA <i>SW-846</i> Analytical Method ^a	Test Methods/ Instrumentation	Target Detection Limit ^b	Rationale
		Metal Analysis		
Arsenic	7060A°, 7061A	FLAA, GFAA	10 ng/L	
Barium	7080A ^d , 7081 ^c	FLAA, GFAA	200 ng/L	
Cadmium	7130 ^d , 7131A ^c	FLAA, GFAA	2 ug/L	
Chromium	7190 ^d , 7191 °	FLAA, GFAA	10 ug/L	
Lead	7420 d, 7421 °	FLAA, GFAA	S ug/L	Determine the metal concentration in the samples.
Mercury	7470A, 7471A °	CVAA	0.2 ug/L	
Selenium	7740°, 7741A	FLAA, GFAA	5 ug/L	
Silver	7760A ^d , 7761°	FLAA, GFAA	10 ug/L	
		Organic Analysis		

Determine the VOCs concentration in the samples.	Determine the SVOCs concentration in the samples.
10 mg/L	10 mg/L
GC/MS	GC/MS
8260B	8270D °
Target compound list VOCs plus ten tentatively identified compounds (TIC)	Target compound list SVOCs plus 20 TICs

U.S. Environmental Protection Agency (EPA), 1986 and all approved updates, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-

furnace Graphite GFAA =mg/L = milligrams per liter; spectroscopy; absorption FLAA = Flame atomic absorption spectroscopy;

spectroscopy;

absorption

atomic

GC/MS = Gas chromatography/mass spectrometry;

ug/L = micrograms per liter.

Table G.31-5

Quality Control Sample Types, Applicable Analyses, Frequency, and Acceptance Criteria

eptance Criteria	
Accept	
Frequency	
Applicable	Analysis ^a
QC Sample	Type

Detection limits listed for metals are for clean water. Detection limits for organics are expressed as practical quantitation limits. Actual detection limits may be higher depending on sample composition and matrix type.

Method being integrated into Method 7010, per the May 1998 SW-846 Draft Update IVA.

Method being integrated into Method 7000B, per the May 1998 SW-846 Draft Update IVA.

Method being revised to 7471B per the May 1998 SW-846 Draft Update IVA. atomic Cold-vapor CVAA

Trip Blank	VOC	One set per shipping cooler containing samples to be analyzed for VOCs	Not Applicable
Field Blank	VOC/SVOC, metals	VOC/SVOC, metals One sample daily per analysis	Not Applicable
Field Duplicate	Chemical	One for each sampling sequence	Relative percent difference less than or equal to 20 percent
Equipment Rinsate Blank ^b	VOC/SVOC, metals One sample daily	One sample daily	Not Applicable

For VOC and SVOC analysis, if blank shows detectable levels of any common laboratory contaminant (e.g., methylene chloride, acetone, 2-butanone, toluene, and/or any phthalate ester), sample must exhibit that contaminant at a level 10 times the quantitation limit to be considered detectable. For all other contaminants, sample must exhibit the contaminant at a level 5 times the quantitation level to be considered detectable.

Collected only if reusable sampling equipment used.

Figure G.31-1. TA 60, Building 17 Indoor Container Storage Unit

Attachment 5 LANL Traffic Study and TA-60 Traffic Data

LOS ALAMOS
NATIONAL
LABORATORY
DIAMOND DRIVE
BETWEEN WEST
JEMEZ ROAD
AND PAJARITO ROAD

COMPREHENSIVE TRAFFIC STUDY

LOS ALAMOS, NEW MEXICO

FINAL REPORT

SEPTEMBER 30, 2018

Prepared for:

Prepared by:

LOS ALAMOS NATIONAL LABORATORY DIAMOND DRIVE BETWEEN WEST JEMEZ ROAD AND PAJARITO ROAD

COMPREHENSIVE TRAFFIC STUDY LOS ALAMOS, NEW MEXICO

SEPTEMBER 30, 2018

REVISED FINAL REPORT

Prepared by: 3AEGREEN, JV 7500 JEFFERSON ST NE ALBUQUERQUE, NM 87109

Prepared for:

LOS ALAMOS NATIONAL SECURITY, LLC P.O. BOX 1663, MS-D442 LOS ALAMOS, NM 87544

PREPARED BY:

J. WRAGE, P.E., PTOE SEPTEMBER

LOS ALAMOS NATIONAL LABORATORY DIAMOND DRIVE BETWEEN WEST JEMEZ ROAD AND PAJARITO ROAD

COMPREHENSIVE TRAFFIC STUDY

TABLE OF CONTENTS

l.	INT	RODU	JCTION AND SUMMARY	1
	A.	Stud	y Purpose	1
	B.	Exec	cutive Summary	1
		1.	Site Location and Study Area	1
		2.	Principal Findings	2
		3.	Recommended Improvements	3
II.	ST	UDY A	AREA CONDITIONS	8
	A.	Stud	y Area	8
	B.	Exist	ing Roadway and Multimodal Facility Description	8
		1.	Roadway	8
		2.	Multi-Modal	9
	C.	Data	Sources	10
III.	AN	ALYSI	S OF EXISTING CONDITIONS	11
	A.	Traff	ic Counts	11
	B.	Exist	ing Traffic Conditions	11
	C.	Exist	ing Levels of Service	12
		1.	Synchro	12
	D.	Exist	ing Results Discussion	13
IV.	TR	AFFIC	AND IMPROVEMENT ANALYSIS	21
	A.	Impre	ovements Required for Existing Conditions	21
		1.	Roadway Improvements	21
		2.	Bicycle and Pedestrian Improvements	24
		3.	Pajarito Intersection Options	25
	B.	Grow	th Available from Roadway Improvements	30
		1.	Pajarito Intersection Options	33
		2.	Grable Re-Alignment	34
	C.	High	Growth Scenario Evaluation	37

V.	CO	NCLUSIONS AND RECOMMENDATIONS	42
	A.	Conclusions	42
	B.	Recommended Improvements	43
		FIGURES	
Fig	ure 1	I – Overall Vicinity Map	5
Fig	ure 2	2 – South Portion of Corridor	6
Fig	ure 3	3 – North Portion of Corridor	7
Fig	ure 4	4 – Existing Conditions HCM Calculated 95 th -Percentile Queue AM (PM)	17
Fig	ure 5	5 – 2018 AM (PM) Peak Hour Traffic Volumes	20
Fig	ure 6	6 – Improvements to Accommodate Existing Conditions	23
Fig	ure 7	7 – Signalized Pajarito Intersection	26
Fig	ure 8	3 – Roundabout Pajarito Intersection	27
Fig	ure 9	9 – Realigned Pajarito Intersection	28
Fig	ure 1	10 – Future Growth Traffic Volumes (33%)	32
Fig	ure 1	I1 – Realigned Grable Intersection	35
Fig	ure 1	I2 – High Growth Scenario (50% Growth) Traffic Volumes	41
		TABLES	
		IABLES	
		Bicycle and Pedestrian Count Summary	
		– LOS Definitions	
Tal	ole 3	 2018 Existing Signalized Intersection Capacity Analysis Results 	14
Tal	ole 4	- 2018 Existing Unsignalized Intersection Results	15
Tal	ole 5	 2018 Build Signalized Intersection Capacity Analysis Results Improved 	22
		- 2018 Build Unsignalized Intersection Results Improved	
Tal	ole 7	- Delay Comparisons (sec) for Pajarito Options	29
Tal	ole 8	 2038 Build Signalized Intersection Capacity Analysis Results 33% Growth 	
		Scenario – Improved	31
Tal	ole 9	- 2038 Build Unsignalized Intersection Results 33% Growth Scenario Improved	J33

Table 10 – Delay Comparisons (sec) for Pajarito Options – 33% Growth Scenario	34
Table 11 – 33% Growth Scenario Build Unsignalized Intersection Results Realigned Grab	ole
Intersection with Improvements	35
Table 12 – 2038 Build Signalized Intersection Capacity Analysis Results 50% Growth	
Scenario	38
Table 13 – 2038 Build Unsignalized Intersection Results 50% Growth Scenario	40

APPENDICES

- Appendix A Existing Traffic Counts
- Appendix B 2018 Existing Intersection Capacity Analysis
- Appendix C 2018 Improved Intersection Capacity Analysis
- Appendix D 2038 Improved Intersection Capacity Analysis (33% Total Growth / 1.43% Annual Growth)
- Appendix E 2038 Improved Intersection Capacity Analysis (50% Total Growth / 2% Annual Growth)

I. INTRODUCTION AND SUMMARY

Los Alamos National Security, LLC (LANS) is evaluating the Diamond Drive corridor between West Jemez Road and Pajarito Road to determine if improvements are needed to accommodate expected future traffic volumes and to improve the pedestrian and bicycle user experience. This study will consider the vehicular traffic needs and evaluate alternates for improving traffic operations.

A. STUDY PURPOSE

The purpose of the traffic study is to determine the impacts on the roadway network from background growth and present options for improving traffic operations. A vicinity map that shows the study intersections is shown in Figure 1.

B. EXECUTIVE SUMMARY

1. SITE LOCATION AND STUDY AREA

The site is located on Los Alamos National Laboratory.

The study area consists of the following intersections:

- Diamond Drive and Pajarito Road (existing minor street Two-Way Stop Controlled unsignalized T-intersection)
- Diamond Drive and Sigma Road (full access signalized intersection)
- Diamond Drive and Eniwetok Drive (full access signalized intersection)
- Diamond Drive and South Driveway (existing minor street Stop Controlled unsignalized T-intersection west of Diamond that serves parking areas and Mercury Road)
- Diamond Drive and Grable (existing minor street Stop Controlled unsignalized
 T-intersection east of Diamond that serves the power plant)
- Diamond Drive and Coronado (existing minor street Stop Controlled unsignalized T-intersection)
- Diamond Drive and Embudo Avenue (existing signalized T-intersection)
- Diamond Drive and West Jemez Road (existing signalized T-intersection)

The intersection evaluations include analysis for the AM and PM peak hours for the following traffic conditions:

- Existing traffic (2018)
- Existing traffic (2018) with roadway and intersection improvements

- 2038 Horizon Year with growth allowed with roadway and intersection improvements identified that accommodate 2018 existing traffic levels
- 2038 Horizon Year with 50% increase in background traffic growth assumed based on input from LANS

2. PRINCIPAL FINDINGS

The traffic analysis found that the existing operations have gueue spillover issues due to lane utilization, close intersection spacing, and high peak hour demand. This is due to the heavy directional nature of the traffic flows (large inflow in the AM and large outflow in the PM) resulting in large peaks desiring to go in the same direction (westbound-to-westbound on West Jemez and westbound-to-southbound on Diamond in the AM peak hour, and. eastbound-to-eastbound on West Jemez and northbound-to-eastbound on Diamond in the PM peak hour). Lane utilization impacts Diamond Drive as the majority of exiting traffic is destined to the east from Diamond Drive and there is only one lane on Diamond. Although the traffic analysis procedures suggest the intersections could operate at an acceptable level of service as an isolated intersection under existing geometry, the proximity of the intersections, inadequate queue storage, and the large peaking of traffic result in poor operations in the field under actual traffic conditions. The addition of a second northbound lane, beginning at Eniwetok, combined with aligning the two northbound lanes with the two northbound right turn lanes at West Jemez Road, would allow drivers to feel comfortable using either lane while driving north on Diamond Drive to their desired destination. The northbound left turn lanes at West Jemez Road would be the lanes that drivers would have to change lanes to enter, as the northbound left turn lane volume is less than 5% of the total northbound traffic, during the PM peak hour, and work acceptable with just a single northbound left turn lane.

By making the improvements described above to address existing traffic volumes, it will also provide sufficient capacity to accommodate ad addition 33% in traffic growth.

Another growth scenario that was evaluated was to increase the traffic by 50%, which would support 2% growth per year for 20 years. Based on input from LANS this could be a possible growth scenario for the potential land uses and mission changes over the next 20 years.

With the addition of the high growth scenario of a 50% increase in traffic, this additional traffic results in overcapacity issues with the proposed laneage and intersection improvements, particularly at the West Jemez Road and Diamond Drive intersection. To

improve level of service and eliminate queue spillover of traffic into upstream intersections an additional eastbound through is required on West Jemez Road, as well as a triple westbound left turn from West Jemez onto Diamond. These improvements will prevent queue spillover of the westbound left turn into the Vehicle Access Portal (VAP) in the AM peak hour, as well as prevent eastbound through queue spillover into the Casa Grande and Pajarito intersections with West Jemez Road in the PM peak hour.

Please note that with the 50% growth scenario, the intersections along West Jemez Road will also likely require improvements to accommodate this level of growth. Evaluation of impacts to West Jemez Road intersections, West Jemez and East Jemez intersection, and interactions with vehicles exiting the VAP were beyond the scope of this study.

This third westbound left turn lane requires an additional southbound lane on Diamond Drive. In the high growth scenario, this additional southbound lane would terminate at Eniwetok Drive as the southbound right turn lane.

Bicycle lanes are present on only a short stretch on Diamond on the approaches to Eniwetok Drive. In the rest of the corridor the bicyclists must share the road with vehicular traffic or use the sidewalk and share with pedestrians. To improve the safety of bicyclists, a 6-foot bike lane, plus a foot and a half buffer, should be added to the length of Diamond Drive.

Sidewalks are present, along the corridor, however much of the sidewalk is substandard in width for a pleasant pedestrian experience, lack a buffer from traffic, is in poor condition, and have no aesthetic treatments. A full 6-foot sidewalk, with landscape buffer should be constructed to improve the pedestrian perception of safety.

3. RECOMMENDED IMPROVEMENTS

The corridor would benefit from upgraded traffic signal equipment and retiming the traffic signals to optimize the timings and to interconnect the signals with a master controller at West Jemez Road, so each traffic signal can communicate with each other. This controller could also control the traffic signals along West Jemez Road at Casa Grande, Bikini Atoll and Pajarito.

Emergency response could be improved by adding emergency vehicle traffic signal pre-emption equipment to allow the emergency vehicles to change the traffic signal indications to green as they approach the signal.

Construct a second northbound lane from the westbound-to-northbound right turn lane at Eniwetok to where the second northbound through lane begins at the Coronado driveway south of Embudo Avenue.

Align the two northbound lanes with the two northbound right turn lanes at West Jemez Road.

Extend the westbound-to-northbound right turn lane merge from Pajarito onto Diamond to past Sigma Road to allow for additional queue storage for northbound traffic at Sigma Road.

Intersection improvements at the Pajarito and Diamond intersection by adding either a traffic signal or roundabout. The specific improvement at this intersection will be further evaluated during future design studies and after internal LANL planning reviews are completed.

Add a second southbound lane from West Jemez Road to south of Coronado Road. Construct 6-foot sidewalks along the corridor to improve pedestrian accommodations.

Add a 6-foot (minimum) bike lane, plus 1.5-foot buffer, on both sides of Diamond Drive from Pajarito Road to West Jemez Road. This additional widening will improve both bicycle and pedestrian safety.

Figure 1 Overall Vicinity Map

Diamond Drive Between West Jemez Road and Pajarito Road Los Alamos National Laboratory Comprehensive Traffic Study

Bohannan A Huston

9

Diamond Drive Between West Jemez Road and Pajarito Road Los Alamos National Laboratory Comprehensive Traffic Study

II. STUDY AREA CONDITIONS

A. STUDY AREA

The site is located on Los Alamos National Laboratory.

The study area consists of the following intersections:

- Diamond Drive and Pajarito Road (existing minor street Two-Way Stop Controlled unsignalized T-intersection)
- Diamond Drive and Sigma Road (full access signalized intersection)
- Diamond Drive and Eniwetok Drive (full access signalized intersection)
- Diamond Drive and South Driveway (existing minor street Stop Controlled unsignalized T-intersection west of Diamond that serves parking areas and Mercury Road)
- Diamond Drive and Grable (existing minor street Stop Controlled unsignalized
 T-intersection east of Diamond that serves the power plant)
- Diamond Drive and Coronado (existing minor street Stop Controlled unsignalized T-intersection)
- Diamond Drive and Embudo Avenue (existing signalized T-intersection)
- Diamond Drive and West Jemez Road (existing signalized T-intersection)

The intersection evaluations include analysis for the AM and PM peak hours for the following traffic conditions:

- Existing traffic (2018)
- Existing traffic (2018) with roadway and intersection improvements
- 2038 Horizon Year with growth allowed with roadway and intersection improvements identified that accommodate 2018 existing traffic levels
- 2038 Horizon Year with 50% increase in background traffic growth assumed based on input from LANS

B. EXISTING ROADWAY AND MULTIMODAL FACILITY DESCRIPTION

1. ROADWAY

See Figure 1 through Figure 5 for a graphic that is described below.

Except for north of Embudo Avenue, Diamond Drive has one vehicular travel lane in each direction, with left turn lanes at all intersections except for the Coronado Driveway.

Dedicated right turn lanes are present on Diamond Drive at Eniwetok Drive. All minor streets

have exiting shared left/through and right turn lanes. All minor streets have a single-entry lane, although the northbound right turn lane at Eniwetok has a large radius with a merge onto Eniwetok, as does the eastbound right from Eniwetok onto Diamond, with a merge onto Diamond.

At Pajarito Road, there is a dedicated southbound left and right turn lane at the T-intersection from Diamond Drive onto Pajarito Road. Westbound on Pajarito Road, there is a dedicated, yield condition right turn lane with a large radius, that merges onto Diamond Drive. A single eastbound and westbound through lane are present on Pajarito and must stop at the stop sign at Diamond. The eastbound lane is a shared through/left turn lane.

At the West Jemez Road and Diamond Drive T-intersection, there is dual northbound left and dual northbound right turn lanes from Diamond onto West Jemez Road. Dual westbound left turn lanes and two westbound through lanes carry traffic west on West Jemez Road. A single eastbound right turn lane and two eastbound through lanes are available for traffic proceeding eastbound on West Jemez Road. This intersection is also used extensively by bicyclists and pedestrians from the townsite of Los Alamos, as they can bypass the Vehicle Access Portal by continuing straight across the Omega bridge and cross West Jemez Road on their way into LANL property.

At Embudo Avenue, one of the westbound-to-southbound left turn lanes from West Jemez Road dual left turn lanes converts to a southbound left turn lane, and all traffic continuing south on Diamond Drive must merge into the single southbound through lane. The westbound approach of Embudo has a dedicated left and dedicated right turn lane onto Diamond Drive. This intersection also sees large amounts of pedestrian traffic due to the Transit Center to the east. A significant number of pedestrians use the intersection crosswalk and a comparable number also use the pedestrian underpass just south of the intersection. At approximately the Coronado Driveway, Diamond Drive expands to two northbound lanes, with one a dedicated through lane, and the other a shared through/right turn lane at Embudo Avenue.

Each driveway, except the North driveway, has two exit lanes, one for right turns and one for left turns. Similarly, each driveway, except the North, has entering left turn lanes. No driveway has a dedicated entering right turn lane. Each driveway has a single-entry lane.

2. MULTI-MODAL

Sidewalks are present along the entire length of the Diamond Drive corridor between West Jemez Road and Pajarito Road, except for a short portion on the east side north of

Pajarito Road, where a dirt trail is present, suggesting pedestrian use. The sidewalks are typically 6-feet in width. Also, a portion of the distance between Eniwetok and Sigma on the west there are two sidewalks, one that appears to be generally used by bicyclists and the other, farther from the road, used by pedestrians.

Marked crosswalks are present on all four legs at all signalized intersections, and all driveways also have marked crosswalks parallel to Diamond Drive. None of the driveways have crosswalk markings to allow pedestrians to cross east-west across Diamond. Many of the markings have substantial deterioration due to vehicular traffic use.

All intersection crosswalks have Americans with Disability Act ramps and tactile detectable warning surfaces, although it does not appear they are all to current standards.

There is only a short portion of Diamond Drive that has an on-street bicycle lane (north and south of Eniwetok). The balance of the corridor has sharrows, which indicate to drivers they should share the road with bicyclists. During the site visits a relatively small proportion of bicyclists used the road surface and most appeared to use the sidewalks.

C. DATA SOURCES

The data used in this report consist of the traffic counts described below, aerial photography and mapping from Google Earth®, information provided by LANS, and site visits.

III. ANALYSIS OF EXISTING CONDITIONS

A. TRAFFIC COUNTS

Per contract, the traffic counts were collected by LANS Staff, using manual counters and training provided by Bohannan Huston, Inc.

Traffic count data collected was compared to previous counts and found to match closely to historical counts provided by LANS Traffic.

The first day of counts was June 28, 2018, with the rest of the counts July 9 through July 11 due to the July 4th holiday the previous week. There were no counts the week of July 4th, as that is a holiday week when traffic patterns are not at normal levels due to the holiday and likely Staff vacations.

Although the vehicular counts matched closely the previous counts provided by LANS, the counting of pedestrians, bicycles and heavy vehicles require additional steps in the manual counting process, and it appears the data collection for pedestrians and bikes was not applied as consistently as is was for collection of vehicle traffic counts. However, Bohannan Huston, Inc. attempted to rectify this to some degree based on discussions and information provided by LANS Staff.

B. EXISTING TRAFFIC CONDITIONS

Figure 5 is a summary of the existing peak hour traffic volumes, existing laneage, turning movements, and intersection level of service. Existing traffic counts are included in Appendix A.

The traffic counts included counts for heavy vehicles, pedestrians, and bicyclists. The tables below are a summary of the bicycle and pedestrian counts for the AM and PM peak hour, along with a tally of the number of jaywalkers during the entire count period.

Table 1 – Bicycle and Pedestrian Count Summary											
	Pajarito		Sigma		Eniwetok				South Drive		
Mode	AM	PM	AM	PM	Α	M	PM		AM	PM	
Bikes	36	33	23	11	1	9	15		18	10	
Ped	5	6	20	10	4	5	39		31	38	
Entire Count Jaywalkers	-	ı	-	-			-	1	1	0	

Table 1 – Bicycle and Pedestrian Count Summary (cont.)										
	Gra	ble Coronado		nado	Embudo			West Jemez		
Mode	AM	PM	AM	РМ	Al	M	PM		AM	PM
Bikes	15	3	11	14	36	6	29		27	8
Ped	24	25	68	122	20)2	171		90	51
Entire Count Jaywalkers	0	4	7	15	5		-	-	-	-

In addition to the above, 350 pedestrians were observed during the peak hours using the pedestrian tunnel south of Embudo.

C. EXISTING LEVELS OF SERVICE

The Sixth Edition of the *Highway Capacity Manual*¹ (HCM) defines Level of Service (LOS) for signalized and unsignalized intersections as follows:

Table 2 – LOS Definitions									
Level of Service	Definition	Signalized (sec/veh)	Unsignalized (sec/veh)						
Α	Most vehicles do not stop.	<10	<10						
В	Some vehicles stop.	>10 and <20	>10 and <15						
С	Significant numbers of vehicles stop.	>20 and <35	>15 and <25						
D	Many vehicles stop.	>35 and <55	>25 and <35						
Е	Limit of acceptable delay.	>55 and <80	>35 and <50						
F	Unacceptable delay.	>80	>50						

Level of Service D is the generally acceptable level of service in urban areas and when intersections operate below this level, improvements are generally considered, where feasible.

1. SYNCHRO

Existing intersection traffic volumes and lane geometry were analyzed using the Synchro version 10 software that uses the signalized intersection, unsignalized intersection, and arterial analysis methodology from the Sixth Edition of the HCM. The Synchro model uses internal, iterative, proprietary optimization methods based on HCM calculated total

¹ Highway Capacity Manual 6th Edition, A Guide for Multimodal Mobility Analysis, Transportation Research Board, The National Academies of Sciences, Washington, DC, 2016

delays and the calculated number of stops to evaluate multiple traffic signal cycle lengths, green times provided for each movement of phase of traffic using the intersection, and traffic signal offsets (the time when each signal indication turns green as vehicles progress through the corridor) to determine a best overall signal timing plan for a corridor under the inputs given for the evaluation period. These timing plans are then evaluated using the HCM procedures to estimate the average delay for a typical peak hour operation. Please keep in mind it is an average delay for the entire peak hour, indicating some vehicles throughout the peak hour will have higher delay and some will have lower delay. Synchro estimates the expected precision of the calculated delays by the HCM methodology is 10% to 29%².

Individual intersection output for the existing conditions analysis is included in Appendix B.

Appendix B also includes a description of the data inputs and assumptions used in creating the Synchro model, as well as a certificate from the Synchro software indicating conformance with Highway Capacity Manual procedures.

D. EXISTING RESULTS DISCUSSION

Table 3 shows the results for the signalized analysis for the existing 2018 traffic volumes. This data is located on the individual intersection summary output for each intersection included in Appendix B, generally shown at the bottom of each page. The listed results are the average delay in seconds per vehicle, which is a weighted average of the delay for every vehicle that passes through the intersection in the peak hour evaluated.

The table also lists the volume-to-capacity ratio (v/c) for the movement with the highest v/c ratio at the intersection. The v/c ratio is also shown on the summary output pages in the Appendix, approximately in the middle for the signalized intersections, and in the bottom third for the unsignalized intersections. The v/c ratio is a ratio of the actual volume passing through the intersection (by movement – through, left, right, etc.) compared to the calculated capacity available to serve that movement. Volume-to-capacity ratios above 0.85 - 0.90 indicate that there are likely congestion problems beginning to occur at the intersection.

The last column in the table is the level of service, or LOS, which is derived from the computed delay for the intersection discussed above and the thresholds listed in Table 2, and is a letter grade that assesses the motorist's perception of delay. This information is

² Synchro Studio 10 User Guide, Trafficware, LLC, Sugarland, TX, October 2017, page 19-36

also on the summary output pages in the Appendix, near the bottom of the page near the reported delay. Signalized intersections have higher delay thresholds for each letter grade than do unsignalized intersections, as the assumption is that drivers will tolerate a longer delay knowing they will get to proceed within a relatively short period of time.

The output in the Appendix also report a lane group and approach delay. The lane group is the delay for each lane group, which may be a single movement if there is just a single lane (left, through, or right), or a shared movement (through/right, through/left, left/right, two throughs, or 2 throughs shared with a right or left). This is because the methodology cannot distinguish the delay for shared lanes.

The approach delay is the weighted average of an individual approach lane groups for a particular direction: westbound, eastbound, northbound, or southbound.

The results reported below were evaluated as semi-actuated, uncoordinated traffic signals, with a cycle length of 90 seconds, as complete, current signal timing plans were not made available, as well as any indication if the signals were interconnected. The results below are based on interpretation of the data provide by LANS and site observations.

From the tables it appears the signalized intersections currently operate at reasonable levels of service, with no individual movements LOS E or F, however a few movements do have high v/c ratios, indicating areas of further evaluation. As the reported delay do not agree with visual observations during the PM peak hour, a further review was conducted, particularly in the PM peak hour. During the AM peak period when the author was present, the results reported above seem indicative of the level of congestion observed.

Table 3 – 2018 Existing Signalized Intersection Capacity Analysis Results									
	20	18 AM Pea	k	2018 PM Peak					
Signalized Intersections	Delay (sec.)	Max V/C	LOS	Delay (sec.)	Max V/C	LOS			
Diamond and Sigma	7.6	0.54	Α	15.4	0.60	В			
Diamond and Eniwetok	7.5	0.58	Α	9.1	0.52	А			
Diamond and Embudo	6.5	0.67	Α	38.8	0.95	D			
Diamond and West Jemez	15.7	0.85	В	23.7	0.92	С			
No movements LOS E or F	•	•		•					

Table 4 – 201	8 Existir	ng Unsi	gnalized l	nterse	ction Re	sults			
		2018 A	M Peak			2018 PM Peak			
Intersection/Movement	Delay	v/c	Queue* (ft)	LOS	Delay	v/c	Queue* (ft)	LOS	
Pajarito & Diamond - TWSC	Err**			F	59.7			F	
EB Left	Err**	Err**	Err**	F	224	1.33	400	F	
WB Through	231	1.30	325	F	26.0	0.52	75	D	
WB Right	9.8	0.31	50	Α	10.9	0.43	75	В	
SB Left	8.1	0.30	50	Α	7.7	0.17	25	Α	
SB Right	0	0.06	0	Α	0.0	0.03	0	Α	
Pajarito & Diamond – if RAB	5.8			Α	5.8			Α	
EB Approach	5.8	0.14	0	Α	6.2	0.27	25	Α	
WB Through	4.1	0.16	25	Α	4.2	0.15	25	Α	
WB Right	5.0	0.26	25	Α	6.7	0.38	50	Α	
SB Left	7.4	0.42	50	Α	5.1	0.23	25	Α	
SB Right	3.8	0.08	0	Α	3.4	0.04	0	Α	
Diamond & South Dr – TWSC	0.6			E	1.9			D	
NB Left	11.6	0.02	25	В	8.1	0.01	0	Α	
EB Left	37.2	0.13	25	Е	30.4	0.34	50	D	
EB Right	20.6	0.02	25	С	10.4	0.02	25	В	
Diamond & Grable – TWSC	0.5			D	2.3			F	
WB Left	33.6	0.02	25	D	51.1	0.07	25	F	
WB Right	10.3	0.01	0	В	32.6	0.38	50	D	
SB Left	8.1	0.05	25	Α	12.3	0.14	25	В	
Diamond & Coronado – TWSC	0.1			С	0.1			Е	
NB Left	10.7	0.01	0	В	0	0	0	Α	
EB Left/Right	21.3	0.02	25	С	37.1	0.03	25	E	

TWSC - Two-way Stop controlled intersection

RAB – roundabout

The poor performance in the PM peak hour is considered to be due to the lack of northbound capacity on Diamond Drive. The conflicting movements with exiting traffic at the West Jemez intersection, and the lane alignment at the West Jemez Road intersection, which result in long queues throughout the entire corridor during the peak hour. A queue diagram, showing the HCM calculated 95th - percentile queue, is shown in Figure 4.

At West Jemez Road, the northbound lanes align with the northbound left turn lanes, which have very low volume in the PM peak hour. The northbound right turn lanes at West Jemez Road are added on the right of Diamond Drive, so all drivers wanting to turn right (virtually all of the traffic in the PM peak hour) are stacked in the single right turn lane from West Jemez Road back to Pajarito Road. A second lane is added just south of Embudo; however, drivers tend to use only the right lane on Diamond north of Coronado as they approach the intersection of West Jemez, in order to ensure they can get into the

^{* -} HCM 95th percentile queue rounded to next 25-foot increment

^{** -} volume exceeds capacity and delay. v/c and queue cannot be calculated

northbound right turn lanes at West Jemez. This poor lane utilization significantly degrades actual LOS as it essentially reduces Diamond to one northbound through lane as drivers are afraid they will not be able to turn right if they use the inside lane, and try to merge into the right turn lane, once it is present. This results in queue spillover into downstream intersections, and the lack of capacity (a second northbound lane) results in the backups observed towards Pajarito. The analysis presented above includes a lane utilization adjustment, which did affect the queue, but did not have much of an impact on LOS.

Another key factor leading to the large queues experienced on Diamond Drive is the large peak of exiting traffic and the desired destination for exiting vehicles. In the AM peak hour, entering traffic is primarily westbound from the VAP through the Diamond and West Jemez intersection. This traffic either turns left, onto southbound Diamond, or proceeds west to Casa Grande, Bikini Atoll or Pajarito. This traffic shares the same green time at the Diamond intersection.

In the PM peak hour, the drivers reverse their commute, and exit eastbound on West Jemez past Diamond, or northbound-to-eastbound from Diamond Drive onto West Jemez. This results in the exiting eastbound traffic on West Jemez Road having to share the green time with the northbound Diamond exiting traffic at the Diamond and West Jemez intersection, as they are conflicting movements in the PM peak hour. They cannot proceed simultaneously through the intersection as they do in the AM peak hour. This competition for intersection space and green time increases the congestion and queue on both Diamond Drive and West Jemez Road.

Highway Capacity Manual procedures assume the traffic signals operate in isolated conditions, meaning the procedures assume there is sufficient spacing between traffic signals to accommodate queue between intersections, as well as sufficient turn bay queue storage, so there is no queue spillover from intersection to intersection or beyond a turn bay. A review of the 95th-percentile queue results in Appendix B (approximately two-thirds down the page with the column heading "%ile BackOfQ(95%), veh/ln") show the northbound queues in the PM peak hour at the Embudo intersection have substantial back up past available storage: 16 vehicles for the northbound through queue and 25 vehicles for the northbound through/right queue. As there are actually not two lanes through the intersection, these two queues are added together to estimate the actual queue at the intersection. This combined 41-vehicle queue is 1,025 feet (using 25-feet as an estimate of the typical distance for vehicles and the gap between vehicles). This 1,025-foot queue is

KEY AM QUEUE LENGTH

Diamond Drive Between West Jemez Road and Pajarito Los Alamos National Laboratory Comprehensive Study

Figure 4
Existing Conditions
HCM Calculated 95th Percentile
AM(PM) Queue Lengths

approximately the distance between Embudo and Eniwetok. As vehicles are continually added to the queue from the westbound-to-northbound merge lane at Eniwetok, as well as from the driveways at Coronado, Grable and the South driveway, this spillover is continually added to and exacerbated, and impacts the rest of the network by spilling over into Sigma and back towards Pajarito. This spillover is not considered in the HCM methodology or results, which assumes adequate spacing and capacity that prevents queue spillover. This spillover results in a noticeable effect on actual delays and queues experienced by drivers in the field, that is not reflected in the analysis results.

The results in Appendix B also indicate the PM peak hour northbound queue at the Sigma intersection has a queue of 12 vehicles, or approximately 300 feet, which will back up past the location where the westbound-to-northbound right turn lane merges with the northbound through traffic (approximately 225 feet south of Sigma). Therefore, the northbound queue at Sigma backs up toward the Pajarito intersection as westbound-to-northbound right turning vehicles are added to the queue.

The factors described above are considered to be the cause of the poor operations experienced along Diamond Drive in the PM peak hour.

The unsignalized intersection results shown in Table 4, show that the intersection of Pajarito Road and Diamond Drive currently operates at LOS F in both the AM and PM peak hours under the existing unsignalized control, with very high delay for the eastbound approach on Pajarito. Additional analysis reported later in this document will evaluate this intersection with both a traffic signal and roundabout alternatives, but the table does show the intersection will operate at acceptable levels of service as a roundabout under existing volumes. The future results presented in Table 5 on page 22, and discussed in Section IV.A.3.a), will show that it will also operate at acceptable levels of service if signalized.

Anecdotal observations of the traffic counters also indicated several near-miss crashes were observed during the traffic count periods at the Diamond and Pajarito intersection.

The unsignalized results in Table 4 show the driveways have poor level of service and high delay during the peak hour, particularly for the exiting left turn movements. This is not a surprise, as many unsignalized minor streets and driveways operate with poor levels of service when intersecting a high-volume arterial. A future consideration could be to realign the Grable driveway with the South driveway, and this new intersection would be approximately 550 feet from Eniwetok and Embudo, approximately midway between the two intersections. However, it is expected that these driveways operate at acceptable delays

outside of the peak hour, thereby negating the need for the expense of the realignment if willing to accept poor LOS during peak hours for minor street movements. Realignment of this intersection will be discussed further in Section IV.B.2, Grable Re-Alignment, on page 34.

Please note this report references the level of service of the unsignalized intersection the same as the worst movement level of service at that intersection. This is done to ensure visibility and discussion of the poor level of service of the movement, and not necessarily as an indication of the overall performance of the intersection, nor to indicate improvements are needed. There are situations similar to this corridor, where high delays are accepted during the peak hours for minor street intersections that do not have appropriate spacing, or low volumes opposing a high volume major street, and operate acceptably during non-peak hours.

Also, in general, if this report reports a queue length, it is the 95th percentile queue length, unless otherwise specified.

Figure 5 shows the number of lanes, movement LOS, traffic volumes, and overall intersection level of service for each intersection.

IV. TRAFFIC AND IMPROVEMENT ANALYSIS

A. IMPROVEMENTS REQUIRED FOR EXISTING CONDITIONS

1. ROADWAY IMPROVEMENTS

The above existing conditions analysis indicates improvements are necessary to improve traffic operations under existing traffic volumes. As it is impossible to lengthen the corridor to allow additional queue storage length, it is necessary to widen the corridor to increase available storage length.

As the existing queues back up from Embudo south to Eniwetok, and then from Sigma back to Pajarito, these locations are the focus of the proposed improvements. Additionally, there is concern of the southbound queue in the AM peak hour at Embudo backing up into the West Jemez intersection, so improvements will be considered at this location as well.

These improvements consist of:

A traffic signal or roundabout at Diamond and Pajarito.

This intersection should retain its current lane configuration of a dedicated westbound right turn and separate westbound through lane and dedicated southbound right and left turn lanes. An eastbound left turn lane is added to reduce the queue length for the eastbound approach. The westbound right turn lane radius could be reduced to improve bicyclists perception of safety. The southbound right turn lane radii could also be reduced for the same reason.

For the roundabout scenario, a westbound and southbound right turn bypass lane is added to remove the right turn traffic from these approaches from circulating through the roundabout. Two eastbound circulating lanes are also included so the southbound-to-eastbound left turn and the eastbound through movements can move simultaneously and avoid conflict with the southbound-to-eastbound left turn circulating volume. This would require widening of Pajarito Road east of the intersection to allow these two movements to merge back into a single lane Pajarito Road.

- Extend the westbound-to-northbound merge from Pajarito Road to north of Sigma Road.
 This is to allow sufficient length for the merge to occur and to provide sufficient queue storage length to limit spillover to the Pajarito intersection.
- Add a second northbound lane from the Eniwetok Drive westbound-to-northbound right turn merge lane to connect to the second northbound lane that begins at Coronado Drive.

This second lane added from Eniwetok north to Embudo will provide additional capacity and queue storage for northbound traffic as it approaches West Jemez Road.

 Interconnect the traffic signals with upgraded traffic signal equipment so they communicate with each other and coordinate the traffic signal timing to improve progression along the Diamond corridor.

Figure 6 shows the above improvements.

The HCM results for the improved condition is shown in Table 5, with the Synchro summary output sheets included in Appendix C. The results indicate the intersections will operate at acceptable levels of service, however, as was shown in the existing conditions analysis above, it is necessary to review the queue lengths along the corridor, particularly at Embudo and Sigma.

Table 5 – 2018 Build Signalized Intersection Capacity Analysis Results Improved								
	2018 E	Build 1 AM	Peak	2018	Build 1 PM	Peak		
Signalized Intersections	Delay (sec.)	Max V/C	V/C LOS Delay (sec.)		Max V/C	LOS		
Diamond and Sigma	5.7	0.52	Α	14.6	0.50	В		
Diamond and Eniwetok	4.5	0.70	Α	4.9	0.46	А		
Diamond and Embudo	5.4	0.66	Α	10.9	0.78	В		
Diamond and West Jemez	20.8	0.87	С	24.9	0.85	С		
Diamond and Pajarito	14.8	0.65	В	11.9	0.44	В		
no movements LOS E or F		•			•			

The PM northbound queue, taken from Appendix C, at Embudo for the improved scenario is 5 vehicles, or 125 feet, well short of the Eniwetok intersection. At Sigma, the northbound queue is 7 vehicles, or 175 feet, providing sufficient length for vehicles to queue without backing into the Pajarito intersection.

A review of queues from Appendix C shows that vehicle queues were also acceptable and did not result in queue spillover into adjacent intersections.

Table 6 – 2018 Build Unsignalized Intersection Results Improved								
	201	8 Build	1 1 AM Pea	ak	201	18 Build	d 1 PM Pea	ak
Intersection/Movement	Delay	v/c	Queue* (ft)	LOS	Delay	v/c	Queue* (ft)	LOS
Diamond & South Dr – TWSC	0.5			D	1.1			С
NB Left	11.6	0.02	25	В	8.1	0.01	0	Α
EB Left	32.6	0.11	25	D	17.9	0.21	25	С
EB Right	2.07	0.02	25	С	10.4	0.02	25	В
Diamond & Grable – TWSC	0.5			Е	1.5			F
WB Left	36.4	0.02	25	Е	55.6	0.08	25	F
WB Right	9.5	0.01	0	Α	15.8	0.19	25	С
SB Left	8.1	0.05	25	Α	12.4	0.14	25	В
Diamond & Coronado – TWSC	0.1			С	0.1			С
NB Left	10.7	0.01	0	В	0	0.0	0	Α
EB Left/Right	20.5	0.02	25	С	20.8	0.02	0	С
* - HCM 95th percentile queue rou	inded to	next 25	-foot incre	ment				İ

HCM 95th percentile queue rounded to next 25-foot increment

The unsignalized results in Table 6 show the driveways will again have poor level of service and high delay, particularly for the exiting left turn movements. This is not a surprise, as many unsignalized minor streets and driveways operate with poor levels of service when intersecting a high-volume arterial. However, it is expected that these driveways operate at acceptable delays outside of the peak hour.

2. BICYCLE AND PEDESTRIAN IMPROVEMENTS

As discussed in Section II.B.2, Existing Roadway and Multimodal Facility Description on page 8, the bicycle infrastructure is limited and the pedestrian facilities are inconsistent. The bicycle and pedestrian counts in Table 1 indicate high bicycle use along the corridor, with significant pedestrian volumes, particularly at West Jemez and Diamond, and Embudo and Diamond.

Multi-modal level of service is based on the user's satisfaction with available accommodations³, i.e., the availability of on-street bike lanes, consistent sidewalks, bike buffer, and landscape buffers between traffic and pedestrians, adjacent roadway volume and vehicle speeds, to name the major considerations.

^{** -} volume exceeds capacity and delay. v/c and queue cannot be calculated

³ National Cooperative Highway Research Program (NCHRP) Report 616, Multimodal Level of Service Analysis for Urban Streets, National Academies of Sciences Transportation Research Board, Washington, DC, 2008, page 92

As many of these factors are not present on the existing roadway, improvements to add them will be recommended, such as on-street bike lanes with a bike buffer, continuous sidewalks and a landscape buffer between the travel lane and the pedestrians, These improvements will increase separation between vehicular traffic and bicyclists and pedestrians, thereby improving their experience and likely increasing their satisfaction with the accommodations.

3. PAJARITO INTERSECTION OPTIONS

Three options were evaluated for the intersection of Pajarito and Diamond Drive: 1) traffic signalization, 2) a roundabout, and, 3) realignment. Each will be discussed below, with Table 7 showing the comparison of the intersection level of service.

a) Traffic Signal – Option A

The first option signalizes the intersection, along with the addition of an eastbound left turn lane to minimize queues on the eastbound approach. A figure showing this option is shown in Figure 7. Results are shown in Table 5, and indicate it will operate at acceptable levels of service if signalized.

Figure 7 – Signalized Pajarito Intersection

b) Roundabout - Option B

A roundabout was also considered for the intersection. To accommodate the TRU-PAC vehicles, a two-lane roundabout is necessary to provide sufficient vehicle tracking through the intersection. The roundabout is shown in Figure 8 with results shown in Table 4.

Figure 8 - Roundabout Pajarito Intersection

c) Realignment - Option C

The westbound-to-northbound traffic on Pajarito to Diamond, and the southbound-to-eastbound movements on Diamond to Pajarito, currently have the highest volumes at the intersection. The realigned option realigns the intersection, so these movements are the "main" street, and the west leg of Pajarito tees into them as shown in Figure 9, with results summarized in Table 7.

Figure 9 - Realigned Pajarito Intersection

d) Discussion of Pajarito Options Traffic Operations

The HCM results for the three options for Pajarito are shown in Table 7. It can be seen from the table the intersection in its current alignment has the highest overall delay, and the second highest delay for the movement with the highest, or worst, delay. The realigned intersection also has low overall delay, but due to the corridor timing preferring the "main" street, to improve vehicular progression along the main street corridor, the realigned intersection has the highest delay for the movement that has the worst delay. As the roundabout is designed to keep traffic flowing, albeit at a slower speed, it has the lowest delay of the options evaluated.

A study of the table shows the roundabout option has the lowest delay overall and for the movement with the highest delay, and the other alternatives have higher overall delay, and higher delay for the movement with the highest, or worst, delay.

Table 7 – Delay Comparisons (sec) for Pajarito Options									
Peak	Signal w	/EB Left	Round	about	Realigned with Signal				
Hour	Overall Intersection	Worst Movement	Overall Intersection	Worst Movement	Overall Intersection	Worst Movement			
AM	14.8	37.1	5.4	7.3	7.4	49.4			
PM	11.9	18.7	4.6	21.4					

B. GROWTH AVAILABLE FROM ROADWAY IMPROVEMENTS

As the level of service and queue discussed in Section IV.A, Improvements Required for Existing Conditions, provided acceptable levels of service with vehicle queues that could be accommodated within the storage available, a sensitivity analysis was performed to determine the additional growth in traffic volumes that could occur and still operate at an acceptable level of service and queue.

Using the capabilities of the Synchro software to input growth rates, the corridor was evaluated until queue spillover was reached. The controlling intersection was found to be the intersection of West Jemez Road and Diamond Drive, due to the PM conflict of the eastbound through traffic and northbound right turn traffic competing for the same green time at the traffic signal. This intersection does not control in the AM peak hour as the movements in the AM peak hour are both westbound movements, the westbound through and westbound through, and share the green time.

The available traffic growth was found to be 33%, or 1.43% a year compounded over a 20-year period. The traffic volume for this scenario is shown in Figure 10.

A quirk of the Synchro output sheets is that when the input growth rate feature of Synchro is used, it does not adjust the Traffic Volume (veh/h) on the summary report (second line of the report). Instead it increases the Adj Flow Rate, veh/h (adjusted flow rate, vehicles/hour), the value used in the calculation. Reviewing the Synchro summary report in Appendix D for the Diamond and West Jemez intersection (page 12 of Appendix D) for the eastbound through movement (as it is 1,000 vehicles in the PM peak hour and makes the math easier) illustrates the adjustments made. The input volume is 1,000 vehicles per hour. The growth rate (not shown anywhere on the summary sheet, another quirk of the report) is 33%, or 1.33. The peak hour factor (one line below the Adj Flow Rate in the report), is used to adjust the hourly volume to the 15-minute volume actually used in the analysis, is 0.97 (consider it to be a safety factor in the analysis).

The volume used in the analysis for this example, the eastbound through at West Jemez in the PM peak hour is: 1,000 vehicles per hour (the 2018 volumes) multiplied by the growth rate of 1.33, which equals 1,333 vehicles per hour. This number is then divided by the peak hour factor of 0.97 (to represent the traffic volume of the peak 15 minutes if it were to occur during an hour) is 1,333 divided by 0.97 equals 1,371 vehicles per hour. This is the value shown in the Adj Flow Rate row for the eastbound through movement and used in the analysis of the intersection.

The HCM results for the improved condition with the 33% growth scenario is shown in Table 5, with the Synchro summary output sheets included in Appendix D. The results indicate the intersections will operate at acceptable levels of service, however, again it will be necessary to review the queue lengths.

Table 8 – 2038 Build Signalized Intersection Capacity Analysis Results 33% Growth Scenario – Improved									
	2038 E	Build 1 AM	Peak	2038	Build 1 PM	Peak			
Signalized Intersections	Delay (sec.)	Max V/C	LOS	Delay (sec.)	Max V/C	LOS			
Diamond and Sigma	6.6	0.73	Α	13.6	0.74	В			
Diamond and Eniwetok	10.9	0.93	В	6.5	0.70	А			
Diamond and Embudo	12.2	0.88	В	13.7	0.87	В			
Diamond and West Jemez	22.6	0.95	С	37.0	0.96	D			
no movements LOS E or F	•	•			•				

The PM northbound queue, taken from Appendix D, at Embudo for the improved scenario is now 6 vehicles, or 150 feet, well short of the Eniwetok intersection. At Sigma, the northbound queue is now 8 vehicles, or 200 feet, providing sufficient length for vehicles to queue without backing into the Pajarito intersection.

With the 33% growth, the northbound right turn lane queue from West Jemez is 16 vehicles, or approximately 400 feet, would come close to spilling over into the Embudo intersection, which would then lead to additional operational difficulties for the corridor. This condition that limits the growth on the corridor.

The 33% growth also resulted in a 25-vehicle, 650-foot queue for the PM peak hour for eastbound through traffic at West Jemez Road, which is almost the distance back to the Casa Grande intersection. Above 33% growth the eastbound queue would begin to spillover into the Casa Grande intersection, and again begin to affect traffic operations, but this time on West Jemez Road. As will be shown later, this would require widening of West Jemez Road to achieve satisfactory levels of service on Diamond Drive. This level of improvements was beyond the scope of this project.

AM Peak Hour

PM Peak Hour

Figure 10 – Future Growth Traffic Volumes (33%)

Table 9 – 2038 Build Unsignalized Intersection Results 33% Growth Scenario Improved								
	203	88 Build	d 1 AM Pea	ak	203	88 Build	d 1 PM Pea	ak
Intersection/Movement	Delay	v/c	Queue* (ft)	LOS	Delay	v/c	Queue* (ft)	LOS
Diamond & South Dr – TWSC	1.0			F	1.8			D
NB Left	14.6	0.04	25	В	8.4	0.01	0	Α
EB Left	69.4	0.28	25	F	28.3	0.38	50	D
EB Right	31.5	0.04	25	D	11.3	0.03	25	В
Diamond & Grable – TWSC	0.5			F	2.5			F
WB Left	74.3	0.06	25	F	186	0.29	25	F
WB Right	9.8	0.01	0	Α	23.1	0.35	50	С
SB Left	8.5	0.07	25	Α	17.3	0.27	50	С
Diamond & Coronado – TWSC	0.1			D	0.1			D
NB Left	12.6	0.01	0	В	0.0	0.0	0	Α
EB Left/Right	30.5	0.04	25	D	28.7	0.03	25	D
* - HCM 95th percentile queue rou	unded to	next 25	-foot incre	ment			•	

The unsignalized results in Table 9 show the driveways will again have poor level of service and high delay, particularly for the exiting left turn movements. This is not a surprise, as many unsignalized minor streets and driveways operate with poor levels of service when intersecting a high-volume arterial. However, it is expected that these driveways operate at acceptable delays outside of the peak hour.

PAJARITO INTERSECTION OPTIONS 1.

Three options were again evaluated for the intersection of Pajarito and Diamond Drive: 1) traffic signalization, 2) a roundabout, and, 3) realignment. Each will be discussed below, with Table 10 showing the comparison of the intersection level of service.

Traffic Signal - Option A a)

The first option is the signalized intersection with the addition of the eastbound left turn lane as discussed earlier, and shown in Figure 7 on page 26.

b) Roundabout - Option B

A roundabout was again evaluated as discussed earlier and is shown in Figure 8 on page 27.

^{** -} volume exceeds capacity and delay. v/c and queue cannot be calculated

c) Realignment – Option C

The westbound-to-northbound and southbound-to-eastbound movements currently have the highest volumes. The realigned option realigns the intersection, so these movements are the "main" street, and the west leg of Pajarito tees into them as shown in Figure 9 on page 28.

d) Discussion

The HCM results for the three options for Pajarito are shown in Table 10. As under existing traffic volumes, the intersection in its current alignment has the highest overall delay, and the second highest delay for the movement with the highest, or worst, delay. The realigned intersection also has low overall delay, but due to the corridor timing preferring the "main" street, in order to improve vehicular progression along the corridor, the realigned intersection has the highest delay for the movement that has the worst delay. As the roundabout is designed to keep traffic flowing, albeit at a slower speed, it has the lowest delay of the options evaluated.

Table 10 – Delay Comparisons (sec) for Pajarito Options – 33% Growth Scenario								
Peak	Signal w	/EB Left	Round	about	Realigned with Signal			
Hour	Overall Intersection	Worst Movement	Overall Intersection	Worst Movement	Overall Intersection	Worst Movement		
AM	15.8	36.7	7.1	10.6	8.4	42.6		
PM	12.8	20.1	5.9	22.8				

Please note the results above have different traffic volumes and a different traffic signal timing plan than that evaluated in Table 7, and therefore a direct comparison of the results in not meaningful due to those changes in traffic volumes and signal timing.

2. GRABLE RE-ALIGNMENT

As part of the scope, it was requested to evaluate the possibility of combining driveways along Diamond Drive. The best candidate for this, due to intersection spacing, is to realign the Grable driveway with the South driveway, as shown in Figure 11.

Figure 11 - Realigned Grable Intersection

Table 11 – 33% Growth Scenario Build Unsignalized Intersection Results Realigned Grable Intersection with Improvements									
	2038 Build 1 AM Peak 2038 Build 1 PM Peak								
Intersection/Movement	Delay	v/c	Queue* (ft)	LOS	Delay v/c Queue*			LOS	
Diamond & Grable – TWSC	0.5			Е	1.5			F	
WB Left	36.4	0.02	25	E	55.6	0.08	25	F	
WB Right	9.5	0.01	0	Α	15.8	0.19	25	С	
SB Left	8.1	0.05	25	Α	12.4	0.14	25	В	
* - HCM 95 th percentile queue rounded to next 25-foot increment ** - volume exceeds capacity and delay. v/c and queue cannot be calculated									

The unsignalized results in Table 11 show the realigned driveways will also have poor level of service and high delay, particularly for the exiting left turn movements as do the intersections in their current configuration. As they have poor performance as separate intersections, it is no surprise they have poor performance when combined. However, it is

expected that these driveways operate at acceptable delays outside of the peak hour, thereby negating the need for the expense of the realignment.

It is not recommended the realigned intersection, if implemented, be signalized. This is because of the proximity of the Eniwetok signalized intersection, and the concern over queue spillover into it and the impact from the free-flow westbound-to-northbound right turn volume from Eniwetok onto Diamond.

A further concern would be the likelihood of driver confusion for drivers leaving the parking lots on Grable and the South driveway. As the current configuration has parking on both the north and south sides of the intersection, the short throat distance (space for vehicles to stack when waiting at the intersection) could cause confusion as to who has the right-of-way when the traffic signal indication for the driveway is green. The concern would be as the signal is nearing the end of the green cycle for the driveways, drivers would accelerate from both directions, potentially dealing to an increase in crashes as drivers try to make the light.

C. HIGH GROWTH SCENARIO EVALUATION

As was mentioned in the previous section, the proposed improvements to improve traffic operations for existing traffic levels also resulted in acceptable traffic operations for 33% more traffic, or 1.43% a year over 20 years. A potential growth scenario of 2% a year over 20 years, or a total growth of 150% (50% more traffic) was also evaluated to determine the levels of improvement required to accommodate this high growth scenario.

This second set of improvements will include All improvements identified in the previous improvements plus:

 The addition of a third lane on West Jemez Road through the intersection with Diamond Drive. This includes widening of West Jemez both west and east of the intersection.

On the east this widening would extend to where three lanes begin on the approach to the West Jemez and East Jemez Road intersection. On the west this will extend back 500 feet towards Casa Grande to ensure there is sufficient length to accommodate predicted queues. It is likely this widening of West Jemez would extend farther west than this, as the West Jemez intersections of Casa Grande, Bikini Atoll, and Pajarito are analyzed with this additional traffic growth.

 Add a third westbound-to-southbound left turn lane on West Jemez Road at the Diamond Drive intersection.

This additional left turn lane is required so that the vehicle queue does extend back into the VAP.

 A third southbound lane would be constructed on Diamond Drive to accept the third westbound-to-southbound left turn lane from West Jemez Road to Diamond Drive.

This additional lane would extend to Eniwetok Drive. One of the southbound lanes would convert to a left turn lane at Embudo as it does today. The other would continue south to Eniwetok and drop as the southbound right turn lane.

• Extend the westbound-to-northbound right turn lane from Pajarito in the previous improvements through the Sigma intersection to Eniwetok where it will drop as the right turn lane. Also construct a dedicated northbound right turn lane at Sigma.

This is in order to provide two (2) northbound through lanes through the Sigma intersection in order to prevent the northbound queue from spilling back into the Pajarito intersection with Diamond.

Figure 12 shows the traffic volumes along the Diamond Drive corridor for this high growth scenario.

Table 12 shows the results for the signalized analysis for the high growth traffic volumes with the second set of mitigation improvements discussed above.

Table 12 – 2038 Build Signalized Intersection Capacity Analysis Results 50% Growth Scenario									
	2038 E	Build 2 AM	Peak	2038	Build 2 PM	Peak			
Signalized Intersections	Delay (sec.)	V/C	LOS	Delay (sec.)	V/C	LOS			
Diamond and Sigma	6.4	0.71	Α	15.6	0.75	В*			
Diamond and Eniwetok	6.3	0.81	А	11.9	0.83	В			
Diamond and Embudo	3.4	0.48	Α	7.9	0.83	Α			
Diamond and West Jemez	21.4	0.83	С	32.2	0.93	С			
Diamond and Pajarito	17.5	0.66	В	22.3	0.80	С			
* - movements LOS E or F									

The results indicate the intersections operate at acceptable levels of service, with no movements LOS F.

The only movement with LOS E is at Sigma, the eastbound left. This is a relatively low volume movement (60 in the PM peak hour), so typically it would be appropriate to accept a higher level of service. It is also likely this result is an artifact of the analysis methodology and would not actually be present with actuated signal timing implementation.

The queue for the northbound through movement at Sigma is alleviated with extending the through lane to Eniwetok. The 95th-percentile queue at Sigma in the PM peak hour is 200-feet. A dedicated right turn lane is also required, in addition to the second through lane to prevent queue spillover into the Pajarito intersection. The eastbound left turn queue is 100-feet in the PM peak hour.

In this second growth scenario, the northbound PM queue at Eniwetok is 100-feet, with the distance between Eniwetok and Sigma approximately 830 feet. A dedicated right turn lane, continued from the second northbound through lane from the Sigma intersection, is required to have acceptable northbound queues at Eniwetok, as the combined through and right queues extend past the length of the existing northbound right turn lane.

In this scenario, with the second northbound lane added at Eniwetok from the westbound right turn lane all the way to West Jemez, there are no queue spillover concerns on Diamond at the Embudo intersection.

The westbound right turn queue on Embudo is 200 feet.

With these additional improvements, the northbound right turn queue from West Jemez Road is now 400 feet in the peak hour, with the distance between Embudo and West Jemez approximately 425 feet. As this scenario has three eastbound through lanes on West Jemez Road, a third northbound right turn lane could be constructed, and would reduce the northbound right turn queue to 225 feet. As these proposed improvements already have significant impact to the surrounding area, the decision to construct this improvement should be evaluated once this impact is more thoroughly evaluated in the future.

The calculated 95th percentile queue for the westbound through at the West Jemez and Diamond intersection in the AM peak hour is 475 feet, again approaching the exit of the VAP.

In the PM peak hour, the queue for the eastbound through movement on West Jemez Road is reduced to 450 feet, and would not spillover into upstream intersections, however it would extend past the (gated) eastern driveway near the parking garage.

The signalized intersection results in Table 12 show the Diamond and Pajarito intersection will operate at acceptable level of service in the growth scenario as a signalized intersection, however the eastbound queue with existing geometry would be 350-feet. Table 13 also shows this intersection would operate acceptable as a roundabout.

Table 13 – 20		_	nalized In		tion Res	ults		
	203	88 Build	2 AM Pea	ak	203	30 Build	d 2 PM Pea	ak
Intersection/Movement	Delay	v/c	Queue* (ft)	LOS	Delay	v/c	Queue* (ft)	LOS
Pajarito & Diamond – RAB	8.7			Α	8.4			Α
EB Approach	8.6	0.24	25	Α	9.5	0.47	75	Α
WB Through	4.6	0.21	25	Α	5.1	0.22	25	Α
WB Right	6.0	0.34	50	Α	10.3	0.58	100	В
SB Left	12.7	0.66	125	В	6.5	0.33	25	Α
SB Right	4.5	0.13	0	Α	3.7	0.06	0	Α
Diamond & South Dr – TWSC	1.1			F	1.6			D
NB Left	14.4	0.04	25	В	8.2	0.01	0	Α
EB Left	78.8	0.33	50	F	29.2	0.38	50	D
EB Right	16.7	0.02	25	С	9.7	0.02	25	Α
Diamond & Grable – TWSC	0.5			D	1.7			F
WB Left	31.0	0.02	25	D	56.4	0.09	25	F
WB Right	9.8	0.01	0	Α	17.1	0.24	25	С
SB Left	8.5	0.07	25	Α	12.9	0.16	25	В
Diamond & Coronado – TWSC	0.1		_	D	0.1			D
NB Left	13.2	0.01	0	В	0.0	0.0	0	Α
EB Left/Right	25.4	0.04	25	D	28.1	0.03	25	D
* - HCM 95 th percentile queue rou ** - volume exceeds capacity and					calculate	d		

The unsignalized results in Table 13 are similar to the previous results in that the minor street left turn operate at poor levels of service in the peak hours.

AM Peak Hour

PM Peak Hour

Figure 12 – High Growth Scenario (50% Growth) Traffic Volumes

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The traffic analysis found that the existing operations have queue spillover issues due to lane utilization, close intersection spacing, and high peak hour demand. This is due to the heavy directional nature of the traffic flows (large inflow in the AM and large outflow in the PM) resulting in large peaks desiring to go in the same direction (westbound-to-westbound on West Jemez and westbound-to-southbound on Diamond in the AM peak hour, and, eastbound-to-eastbound on West Jemez and northbound-to-eastbound on Diamond in the PM peak hour). Lane utilization impacts Diamond Drive as the majority of exiting traffic is destined to the east from Diamond Drive and there is only one lane on Diamond. Although the traffic analysis procedures suggest the intersections could operate at an acceptable level of service as an isolated intersection under existing geometry, the proximity of the intersections, inadequate gueue storage, and the large peaking of traffic result in poor operations in the field under actual traffic conditions. The addition of a second northbound lane, beginning at Eniwetok, combined with aligning the two northbound lanes with the two northbound right turn lanes at West Jemez Road, would allow drivers to feel comfortable using either lane while driving north on Diamond Drive to their desired destination. The northbound left turn lanes at West Jemez Road would be the lanes that drivers would have to change lanes to enter, as the northbound left turn lane volume is less than 5% of the total northbound traffic, during the PM peak hour, and work acceptable with just a single northbound left turn lane.

By making the improvements described above to address existing traffic volumes, it will also provide sufficient capacity to accommodate ad addition 33% in traffic growth.

Another growth scenario that was evaluated was to increase the traffic by 50%, which would support 2% growth per year for 20 years. Based on input from LANS this could be a possible growth scenario for the potential land uses and mission changes over the next 20 years.

With the addition of the high growth scenario of a 50% increase in traffic, this additional traffic results in overcapacity issues with the proposed laneage and intersection improvements, particularly at the West Jemez Road and Diamond Drive intersection. To improve level of service and eliminate queue spillover of traffic into upstream intersections an additional eastbound through is required on West Jemez Road, as well as a triple westbound left turn from West Jemez onto Diamond. These improvements will prevent

queue spillover of the westbound left turn into the Vehicle Access Portal (VAP) in the AM peak hour, as well as prevent eastbound through queue spillover into the Casa Grande and Pajarito intersections with West Jemez Road in the PM peak hour.

Please note that with the 50% growth scenario, the intersections along West Jemez Road will also likely require improvements to accommodate this level of growth. Evaluation of impacts to West Jemez Road intersections, West Jemez and East Jemez intersection, and interactions with vehicles exiting the VAP were beyond the scope of this study.

This third westbound left turn lane requires an additional southbound lane on Diamond Drive. In the high growth scenario, this additional southbound lane would terminate at Eniwetok Drive as the southbound right turn lane.

Bicycle lanes are present on only a short stretch on Diamond on the approaches to Eniwetok Drive. In the rest of the corridor the bicyclists must share the road with vehicular traffic or use the sidewalk and share with pedestrians. To improve the safety of bicyclists, a 6-foot bike lane, plus a foot and a half buffer, should be added to the length of Diamond Drive.

Sidewalks are present, along the corridor, however much of the sidewalk is substandard in width for a pleasant pedestrian experience, lack a buffer from traffic, is in poor condition, and have no aesthetic treatments. A full 6-foot sidewalk, with landscape buffer should be constructed to improve the pedestrian perception of safety.

B. RECOMMENDED IMPROVEMENTS

The corridor would benefit from upgraded traffic signal equipment and retiming the traffic signals to optimize the timings and to interconnect the signals with a master controller at West Jemez Road, so each traffic signal can communicate with each other. This controller could also control the traffic signals along West Jemez Road at Casa Grande, Bikini Atoll and Pajarito.

Emergency response could be improved by adding emergency vehicle traffic signal pre-emption equipment to allow the emergency vehicles to change the traffic signal indications to green as they approach the signal.

Construct a second northbound lane from the westbound-to-northbound right turn lane at Eniwetok to where the second northbound through lane begins at the Coronado driveway south of Embudo Avenue.

Align the two northbound lanes with the two northbound right turn lanes at West Jemez Road.

Extend the westbound-to-northbound right turn lane merge from Pajarito onto Diamond to past Sigma Road to allow for additional queue storage for northbound traffic at Sigma Road.

Intersection improvements at the Pajarito and Diamond intersection by adding either a traffic signal or roundabout. The specific improvement at this intersection will be further evaluated during future design studies and after internal LANL planning reviews are completed.

Add a second southbound lane from West Jemez Road to south of Coronado Road. Construct 6-foot sidewalks along the corridor to improve pedestrian accommodations.

Add a 6-foot (minimum) bike lane, plus 1.5-foot buffer, on both sides of Diamond Drive from Pajarito Road to West Jemez Road. This additional widening will improve both bicycle and pedestrian safety.

APPENDIX A EXISTING TRAFFIC COUNTS

Appendix A Listing – Existing Traffic Counts

Diamond & Pajarito	1-16
•	
Diamond & Sigma	17-32
Diamond & Eniwetok	33-47
Diamond & South Drive	48-62
Diamond & Grable	63-73
Diamond & Coronado	74-81
Diamond & Embudo	82-104
Diamond & West Jemez	105-130

Bohannon Huston, Inc.

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 1A File Name: 1A SAVANNA

Site Code : 00000000 Start Date : 7/11/2018

Page No : 1

Groups Pr	inted-	Bikes
-----------	--------	-------

	DIA						1A					DIA				1A					
		Fre	om No	orth				om E				Fr	om Sc				Fr	om W			
Start Time		Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK	***																				
	ı																				
06:15	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
06:30	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	2	0	3	4
06:45	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
Total	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	0	1	2	0	3	7
07:00	0	0	0	0	0	1	0	0	0	4	0	0	0	0	0	0	1	4	0	2	6
07:00	0	0	0	0	0	4 2	0	0	0	4 2	0	0	0	0	0	0	0	1	0	0	6 2
07.15	0	0	-	0		1	0			1		0	0	0	-		1	0	0	1	
07:30	0	0	0	0	0	4	0	0	0		0	0	0	0	0	0	2	2	0		2 8
Total	0	0	0	0	0	11	0	0	0	11	0	0	0	0	0	0	4	3	0	7	<u>o_</u> 18
Total	0	U	U	U	U	11	U	U	U	111	U	U	U	U	U	U	4	3	U	/	10
08:00	0	0	0	0	0	4	1	0	0	5	0	0	0	0	0	0	0	1	0	1	6
08:15	0	0	0	0	0	5	1	0	0	6	0	0	0	0	0	0	1	0	0	1	7
08:30	0	0	0	0	0	6	0	0	0	6	0	0	0	0	0	0	0	2	0	2	8
*** BREAK	***																				
Total	0	0	0	0	0	15	2	0	0	17	0	0	0	0	0	0	1	3	0	4	21
*** BREAK	***																				
14:45	0	0	0	0	0	3	1	0	0	4	0	0	0	0	0	0	0	0	0	0	4
Total	0	0	0	0	0	3	1	0	0	4	0	0	0	0	0	0	0	0	0	0	4
Total	, 0	O	O	U	0		'	O	U	7	U	U	O	U	0	U	U	U	U	0	
15:00	0	0	0	0	0	5	0	0	0	5	0	0	0	0	0	0	1	0	0	1	6
15:15	0	0	0	0	0	9	1	0	0	10	0	0	0	0	0	0	0	0	0	0	10
15:30	0	0	0	0	0	3	1	0	0	4	0	0	0	0	0	0	1	0	0	1	5
15:45	0	0	0	0	0	3	1	0	0	4	0	0	0	0	0	0	0	0	0	0	4
Total	0	0	0	0	0	20	3	0	0	23	0	0	0	0	0	0	2	0	0	2	25
16:00	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
16:15	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	I																				
16:45	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
Total	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	4
*** BREAK	***																				
17:15	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
	U ***	U	U	U	U	1	U	U	U	1	U	U	U	U	U	U	U	U	U	U	ı
Grand Total	0	0	0	0	0	58	6	0	0	64	0	0	0	0	0	0	8	8	0	16	80
Apprch %	0	0	0	0	J	90.6	9.4	0	0	04	0	0	0	0	J	0	50	50	0	10	00
Total %	0	0	0	0	0	72.5	7.5	0	0	80	0	0	0	0	0	0	10	10	0	20	
10tai 70	1 0	U	U	U	U	12.0	1.5	U	U	00	U	U	U	U	U	U	10	10	U	20	

Bohannon Huston, Inc.

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 1A SAVANNA

Site Code : 00000000 Start Date : 7/11/2018

Page No : 2

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 1A SAVANNA

Site Code : 00000000 Start Date : 7/11/2018

		DIA					1A					DIA					1A				
		Fr	om No	orth			Fi	rom E	ast			Fr	om So	outh			Fr	om W	lest		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Froi	m 05:4	15 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	07:45															
07:45	0	0	0	0	0	4	0	0	0	4	0	0	0	0	0	0	2	2	0	4	8
08:00	0	0	0	0	0	4	1	0	0	5	0	0	0	0	0	0	0	1	0	1	6
08:15	0	0	0	0	0	5	1	0	0	6	0	0	0	0	0	0	1	0	0	1	7
08:30	0	0	0	0	0	6	0	0	0	6	0	0	0	0	0	0	0	2	0	2	8
Total Volume	0	0	0	0	0	19	2	0	0	21	0	0	0	0	0	0	3	5	0	8	29
% App. Total	0	0	0	0		90.5	9.5	0	0		0	0	0	0		0	37.5	62.5	0		
PHF	.000	.000	.000	.000	.000	.792	.500	.000	.000	.875	.000	.000	.000	.000	.000	.000	.375	.625	.000	.500	.906

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 1A SAVANNA

Site Code : 00000000 Start Date : 7/11/2018

		DIA					1A					DIA					1A				
		Fr	om No	orth			Fi	om E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 12:0	00 to 1	7:30 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	14:45															
14:45	0	0	0	0	0	3	1	0	0	4	0	0	0	0	0	0	0	0	0	0	4
15:00	0	0	0	0	0	5	0	0	0	5	0	0	0	0	0	0	1	0	0	1	6
15:15	0	0	0	0	0	9	1	0	0	10	0	0	0	0	0	0	0	0	0	0	10
15:30	0	0	0	0	0	3	1	0	0	4	0	0	0	0	0	0	1	0	0	1	5
Total Volume	0	0	0	0	0	20	3	0	0	23	0	0	0	0	0	0	2	0	0	2	25
% App. Total	0	0	0	0		87	13	0	0		0	0	0	0		0	100	0	0		
PHF	.000	.000	.000	.000	.000	.556	.750	.000	.000	.575	.000	.000	.000	.000	.000	.000	.500	.000	.000	.500	.625

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 1A SAVANNA Location: 1A

Site Code : 00000000 Start Date : 7/11/2018

Groups Printed- Vehic	les - Heavy Vehicles
1A	DIA

Start Time Sym Throw Left Pecks Sym Sym		1							ups P	rınted	- Vehic	les - H		Vehic	cles							
Start Time Right Thru Left Peeds Ann tone Right Thru Left Peeds Right Thru Left Peeds Right Thru Left Peeds Right Thru Left Right Right Thru Left Right			DIA					1A					DIA					1A				
Os-45																						
Total 0 0 0 0 0 0 19 10 0 0 29 0 0 0 2 2 0 0 4 0 0 4 0 0 4 0 0 6 0 0 0 0 0 0 0 0	Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00	05:45	0	0	0	0	0	19	10	0	0	29	0	0	0		2	0	4	0	0	4	35
06:15 0 0 0 0 0 0 0 28 30 0 0 58 0 0 0 0 0 0 0 9 0 0 9 0 0 9 0 6 30 6 30	Total	0	0	0	0	0	19	10	0	0	29	0	0	0	2	2	0	4	0	0	4	35
06:15	06:00	0	0	0	0	0	25	20	0	0	45	0	0	0	0	0	0	8	1	0	9	54
06:30 0 0 0 0 0 0 46 40 0 0 86 0 0 0 0 0 0 0 14 3 0 17 06:45 0 0 0 0 0 0 54 47 0 0 101 0 0 0 0 0 0 0 0 48 6 0 24 Total 0 0 0 0 0 0 153 137 0 0 290 0 0 0 0 0 0 0 49 10 0 59 3 07:00 0 0 0 0 0 58 34 0 0 92 0 0 0 0 0 0 0 0 49 10 0 59 3 07:00 0 0 0 0 0 57 52 0 0 109 0 0 0 0 0 0 15 8 0 24 07:30 0 0 0 0 0 0 57 52 0 0 109 0 0 0 0 0 0 15 8 0 23 07:45 0 0 0 0 0 0 68 46 0 0 114 0 0 0 1 1 0 15 8 0 23 07:45 0 0 0 0 0 0 68 46 0 0 114 0 0 0 1 1 0 15 8 0 23 07:45 0 0 0 0 0 0 68 46 0 0 114 0 0 0 1 1 0 13 10 0 23 17otal 0 0 0 0 0 0 773 181 0 0 454 0 0 0 2 2 0 51 31 0 82 08:00 0 0 0 0 0 0 57 26 0 0 83 0 0 0 1 1 0 0 14 10 0 24 08:15 0 0 0 0 0 0 57 26 0 0 83 0 0 0 1 1 0 0 10 11 0 21 08:30 0 0 0 0 0 0 57 26 0 0 83 0 0 0 1 1 0 0 10 11 0 21 08:30 0 0 0 0 0 0 57 26 0 0 83 0 0 0 0 1 1 0 0 10 11 0 21 18:65 0 0 0 0 0 0 51 24 0 0 75 0 0 0 3 3 0 38 35 0 73 ***BREAK*** Total 0 0 0 0 0 0 51 24 0 0 75 0 0 0 3 3 0 29 18 0 47 15:00 0 0 0 0 0 0 51 24 0 0 75 0 0 0 3 3 0 29 18 0 47 15:00 0 0 0 0 0 0 88 24 0 0 112 0 0 0 3 3 0 0 29 18 0 47 15:00 0 0 0 0 0 0 88 32 0 0 120 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 88 32 0 0 120 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 88 32 0 0 120 0 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 0 134 28 0 1 163 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 0 134 28 0 1 163 0 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 0 188 32 0 0 120 0 0 0 0 0 0 0 0 28 15 0 43 16:00 0 0 0 0 0 0 124 28 0 1 163 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 0 124 28 0 1 163 0 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 124 28 0 1 163 0 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 124 28 0 1 163 0 0 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 124 28 0 1 163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06:15	0	0	0	0	0	1	30	0	0		0	0	0	0	0	0	9	0	0	9	67
O6:45		0	0				_					_				-						103
Total 0		_	-	-		-				-		-	-		-	-	_			-		125
07:15		_					_															349
07:15	07:00	۱ ۵	0	0	0	0	50	24	0	0	02	۱ ۵	0	0	0	0	۱ ،	0	1	0	12	104
07:30		_										_				-						133
Total 0		_			•					•		-			•	-				•		
Total 0 0 0 0 0 0 0 273 181 0 0 454 0 0 0 2 2 0 51 31 0 82 3 08:00 0 0 0 0 0 0 64 26 0 0 90 0 0 0 1 1 0 14 10 0 24 08:15 0 0 0 0 0 0 57 26 0 0 83 0 0 0 1 1 0 0 14 14 0 28 08:30 0 0 0 1 1 0 0 14 14 0 28 0 18 0 1 0 1 0 1 1 0 14 14 0 28 0 1 1 0 1 0 1 1 0 14 14 14 0 28 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1		_	-	-	-	-			-	-		_	-			- 1	_			-		163
08:00		_													_							138
08:15 0 0 0 0 0 0 0 57 26 0 0 83 0 0 0 0 1 1 1 0 10 11 0 21 ****BREAK**** Total 0 0 0 0 0 0 198 72 0 0 270 0 0 0 3 3 0 38 35 0 73 ****BREAK**** Total 0 0 0 0 0 0 0 198 72 0 0 270 0 0 0 0 3 3 0 38 35 0 73 ****BREAK**** 14:45 0 0 0 0 0 0 51 24 0 0 75 0 0 0 3 3 0 29 18 0 47 Total 0 0 0 0 0 0 51 24 0 0 75 0 0 0 0 3 3 0 29 18 0 47 15:00 0 0 0 0 0 0 51 24 0 0 75 0 0 0 0 3 3 0 29 18 0 47 15:15 0 0 0 0 0 0 0 88 24 0 0 112 0 0 0 3 3 0 29 18 0 47 15:15 0 0 0 0 0 0 0 88 24 0 0 112 0 0 0 3 3 0 24 22 0 46 15:30 0 0 0 0 0 0 76 21 0 0 97 0 0 0 0 0 0 29 20 0 49 15:45 0 0 0 0 0 0 320 96 0 0 416 0 0 0 3 3 0 98 84 0 182 16:00 0 0 0 0 0 0 134 28 0 1 163 0 0 0 0 0 0 28 15 0 43 16:15 0 0 0 0 0 0 0 185 40 0 162 0 0 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 123 28 0 0 120 0 0 0 0 0 0 0 44 22 0 66 16:30 0 0 0 0 0 0 115 26 0 0 141 0 0 0 0 1 1 1 0 39 17 0 56 16:45 0 0 0 0 0 0 123 30 0 135 0 0 0 1 1 1 0 39 17 0 56 16:45 0 0 0 0 0 0 123 30 0 135 0 0 0 1 1 1 0 39 17 0 56 16:45 0 0 0 0 0 0 122 33 0 0 135 0 0 0 1 1 1 0 39 17 0 56 16:45 0 0 0 0 0 0 122 33 0 0 135 0 0 0 1 1 1 0 42 30 0 72 Total 0 0 0 0 0 0 178 726 0 22509 0 0 0 1 1 1 0 42 30 0 72 Grand Total 0 0 0 0 0 178 728 0 0 1 19 0 0 0 0 0 0 0 25 5 0 2 1 0 3	lotal	0	0	0	0	0	273	181	0	0	454	0	0	0	2	2	0	51	31	0	82	538
08:30 0 0 0 0 0 0 77 20 0 0 97 0 0 0 1 1 0 14 14 0 28 *** ****BREAK **** Total 0 0 0 0 0 198 72 0 0 270 0 0 0 3 3 0 38 35 0 73 : ****BREAK **** **** **** **** **** **** ****	08:00	0				0					90	-			1	1	0	14	10	0		115
*** BREAK *** Total 0 0 0 0 0 198 72 0 0 270 0 0 0 3 3 0 38 35 0 73 : *** BREAK *** 14:45 0 0 0 0 0 0 51 24 0 0 75 0 0 0 3 3 0 29 18 0 47 Total 0 0 0 0 0 51 24 0 0 75 0 0 0 3 3 0 29 18 0 47 15:00 0 0 0 0 0 0 68 19 0 0 87 0 0 0 0 3 3 0 29 18 0 47 15:05 0 0 0 0 0 0 0 88 24 0 0 112 0 0 0 3 3 0 24 22 0 46 15:30 0 0 0 0 0 0 88 24 0 0 112 0 0 0 3 3 0 24 22 0 46 15:30 0 0 0 0 0 0 88 32 0 0 120 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 320 96 0 0 416 0 0 0 3 3 0 98 84 0 182 0 16:00 0 0 0 0 0 134 28 0 1 163 0 0 0 0 0 0 28 15 0 43 16:15 0 0 0 0 0 0 108 54 0 0 162 0 0 0 0 0 0 0 44 22 0 66 16:30 0 0 0 0 0 0 108 54 0 0 162 0 0 0 0 0 0 0 44 22 0 66 16:30 0 0 0 0 0 0 115 26 0 0 141 0 0 0 1 1 1 0 39 17 0 56 16:45 0 0 0 0 0 0 102 33 0 0 135 0 0 1 1 1 0 42 30 0 72 Total 0 0 0 0 0 12 54 0 1 167 0 0 0 0 1 1 0 42 30 0 72 17:00 0 0 0 0 0 0 12 54 0 1 167 0 0 0 0 2 2 0 153 84 0 237 17:00 0 0 0 0 0 0 184 4 0 0 167 0 0 0 0 0 0 0 0 25 15 0 40 17:30 0 0 0 0 0 0 178 726 0 2 2509 0 0 0 17 17 0 510 306 0 816 3 Apprch % 0 0 0 0 0 0 178 727 0 0 119 0 0 0 0 0 0 0 25 15 0 40 17:30 % Vehicles 0 0 0 0 0 0 166 3 0 0 19 0 0 5 5 5 0 2 1 0 3	08:15	0	0	0		0		26	0	0	83	0	0		1	1	0	10	11	0	21	105
Total 0 0 0 0 0 198 72 0 0 270 0 0 0 3 3 0 38 35 0 73 : ****BREAK**** 14:45 0 0 0 0 0 0 51 24 0 0 75 0 0 0 3 3 0 29 18 0 47 Total 0 0 0 0 0 0 51 24 0 0 75 0 0 0 3 3 0 29 18 0 47 15:00 0 0 0 0 0 0 68 19 0 0 87 0 0 0 0 0 0 17 13 0 30 15:15 0 0 0 0 0 0 0 88 24 0 0 112 0 0 0 3 3 0 24 22 0 46 15:30 0 0 0 0 0 0 76 21 0 0 97 0 0 0 0 0 0 29 20 0 49 15:45 0 0 0 0 0 0 88 32 0 0 120 0 0 0 0 0 28 29 0 57 Total 0 0 0 0 0 0 320 96 0 0 416 0 0 0 3 3 0 0 98 84 0 182 0 16:00 0 0 0 0 0 134 28 0 1 163 0 0 0 0 0 0 28 15 0 43 16:15 0 0 0 0 0 0 185 4 0 0 162 0 0 0 0 0 0 44 22 0 66 16:30 0 0 0 0 0 115 26 0 0 141 0 0 0 1 1 0 39 17 0 56 16:45 0 0 0 0 0 0 185 4 0 0 162 0 0 0 0 0 0 0 44 22 0 66 16:45 0 0 0 0 0 0 115 26 0 0 141 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0			0	0	0	0	77	20	0	0	97	0	0	0	1	1	0	14	14	0	28	126
### BREAK ### 14:45	*** BREAK 3	***																				
14:45	Total	0	0	0	0	0	198	72	0	0	270	0	0	0	3	3	0	38	35	0	73	346
Total 0 0 0 0 0 0 51 24 0 0 75 0 0 0 0 3 3 0 0 29 18 0 47 15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** BREAK	***																				
Total 0 0 0 0 0 0 51 24 0 0 75 0 0 0 3 3 3 0 29 18 0 47 15:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14:45	0	0	0	0	0	51	24	0	0	75	0	0	0	3	3	0	29	18	0	47	125
15:15																						125
15:15	15:00	0	0	0	Ο	٥	68	10	0	0	87	۱ ،	Ο	0	Ο	0	l n	17	13	0	30	117
15:30		_				-						-				-				-		161
15:45		_				-						-				-				-		146
Total 0 0 0 0 0 0 320 96 0 0 416 0 0 0 3 3 3 0 98 84 0 182 0 16:00 0 0 0 0 0 0 134 28 0 1 163 0 0 0 0 0 0 0 28 15 0 43 1 16:15 0 0 0 0 0 0 108 54 0 0 162 0 0 0 0 0 0 0 44 22 0 66 1 16:30 0 0 0 0 0 115 26 0 0 141 0 0 0 1 1 1 0 39 17 0 56 1 16:45 0 0 0 0 0 102 33 0 0 135 0 0 0 1 1 1 0 42 30 0 72 1 Total 0 0 0 0 0 12 2 0 153 84 0 237 8 17:00 0 0 0 0 0 112 54 0 1 167 0 0 0 0 0 0 45 20 0 65 1 17:15 0 0 0 0 0 0 112 7 0 0 119 0 0 0 0 0 0 25 15 0 40 1 17:30 0 0 0 0 0 0 84 4 0 0 88 0 0 0 2 2 0 18 9 0 27 6 Grand Total 0 0 0 0 0 1781 726 0 2 2509 0 0 0 17 17 0 510 306 0 816 3 Apprch % 0 0 0 0 0 0 1781 726 0 2 2509 0 0 0 17 17 0 510 306 0 816 3 Apprch % 0 0 0 0 0 0 772 23 0 0 1753 9.2 0 24.4 Vehicles 0 0 0 0 0 0 16 3 0 100 99.2 0 0 0 70.6 70.6 0 99.6 99.7 0 99.6 98.7 Heavy Vehicles 0 0 0 0 0 0 16 3 0 0 19 0 0 0 5 5 0 2 1 0 3		_										_				-						177
16:00 0 0 0 0 0 134 28 0 1 163 0 0 0 0 0 0 28 15 0 43 2 16:15 0 0 0 0 0 0 108 54 0 0 162 0 0 0 0 0 0 0 44 22 0 66 2 16:30 0 0 0 0 0 115 26 0 0 141 0 0 0 0 1 1 1 0 39 17 0 56 16:45 0 0 0 0 0 0 102 33 0 0 135 0 0 0 1 1 1 0 42 30 0 72 3 16:45 0 0 0 0 0 0 0 459 141 0 1 601 0 0 0 2 2 0 153 84 0 237 8 17:15 0 0 0 0 0 112 7 0 0 119 0 0 0 0 0 2 2 0 18 9 0 27 17:30 0 0 0 0 0 1781 726 0 2 2509 0 0 0 17 17 0 510 306 0 816 33 17:04 0 0 0 0 0 0 0 165 723 0 2 2490 0 0 0 12 12 0 508 305 0 813 33 18 Wehicles 0 0 0 0 0 0 16 3 0 0 19 0 0 0 5 5 0 2 1 0 3		_										_							_			601
16:15 0 0 0 0 0 0 108 54 0 0 162 0 0 0 0 0 0 44 22 0 66 2 16:30 0 0 0 0 0 0 115 26 0 0 141 0 0 0 0 1 1 0 0 39 17 0 56 16:45 0 0 0 0 0 0 102 33 0 0 135 0 0 0 1 1 0 0 42 30 0 72 2 Total 0 0 0 0 0 0 459 141 0 1 601 0 0 0 2 2 0 153 84 0 237 8 17:00 0 0 0 0 0 112 54 0 1 167 0 0 0 0 0 0 45 20 0 65 2 17:15 0 0 0 0 0 0 112 7 0 0 119 0 0 0 0 0 2 2 0 18 9 0 27 Grand Total 0 0 0 0 0 1781 726 0 2 2509 0 0 0 17 17 0 510 306 0 816 33 Apprch % 0 0 0 0 0 1781 726 0 2 2509 0 0 0 170 170 0 52.5 37.5 0 Total % 0 0 0 0 0 0 53.3 21.7 0 0.1 75.1 0 0 0 0.5 0.5 0 15.3 9.2 0 24.4 Vehicles 0 0 0 0 0 0 1765 723 0 2 2490 0 0 0 12 12 0 508 305 0 813 33 % Vehicles 0 0 0 0 0 0 16 3 0 0 19 0 0 0 5 5 0 2 1 0 3	Total	0	U	U	U	U	320	90	U	U	410	U	U	U	3	3	0	90	04	U	102	001
16:30 0 0 0 0 115 26 0 0 141 0 0 0 1 1 0 39 17 0 56 1 16:45 0 0 0 0 0 0 112 33 0 0 135 0 0 0 1 1 0 42 30 0 72 2 Total 0 0 0 0 0 141 0 1 0 0 0 153 84 0 237 84 17:00 0 0 0 0 0 167 0 0 0 0 45 20 0 65 2 17:15 0 0 0 0 112 7 0 0 119 0 0 0 0 25 15 0 40 17:30 0 0 0 0 0 112 7 0 0 119 0 0 0 0 27 <td></td> <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>_</td> <td></td> <td></td> <td>-</td> <td></td> <td>206</td>		_	-	-	-	-			-			_	-		-	-	_			-		206
16:45 0 0 0 0 102 33 0 0 135 0 0 0 1 1 0 42 30 0 72 2 Total 0 0 0 0 0 459 141 0 1 601 0 0 0 2 2 0 153 84 0 237 8 17:00 0 0 0 0 1 167 0 0 0 0 45 20 0 65 2 17:15 0 0 0 0 112 7 0 0 119 0 0 0 0 25 15 0 40 17:30 0 0 0 0 84 4 0 88 0 0 2 2 0 18 9 0 27 Grand Total 0 0		_				-						_			-	-						228
Total 0 0 0 0 0 459 141 0 1 601 0 0 0 2 2 0 153 84 0 237 8 17:00 0 0 0 0 0 112 54 0 1 167 0 0 0 0 0 0 0 45 20 0 65 2 17:15 0 0 0 0 0 0 112 7 0 0 119 0 0 0 0 0 0 25 15 0 40 17:30 0 0 0 0 0 0 84 4 0 0 88 0 0 0 2 2 0 18 9 0 27 17:30 0 0 0 0 0 0 1781 726 0 2 2509 0 0 0 17 17 0 510 306 0 816 3 17:30 0 0 0 0 0 0 0 1781 726 0 2 2509 0 0 0 17 17 0 510 306 0 816 3 17:30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_										-										198
17:00																						208
17:15 0 0 0 0 112 7 0 0 119 0 0 0 0 0 25 15 0 40 40 17:30 0	Total	0	0	0	0	0	459	141	0	1	601	0	0	0	2	2	0	153	84	0	237	840
17:30 0 0 0 0 84 4 0 0 88 0 0 0 2 2 0 18 9 0 27 3 Grand Total 0 0 0 0 0 1781 726 0 2 2509 0 0 0 17 17 0 510 306 0 816 3 Apprch % 0 <t< td=""><td>17:00</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>112</td><td>54</td><td>0</td><td>1</td><td>167</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>45</td><td>20</td><td>0</td><td>65</td><td>232</td></t<>	17:00	0	0	0	0	0	112	54	0	1	167	0	0	0	0	0	0	45	20	0	65	232
Grand Total 0 0 0 0 1781 726 0 2 2509 0 0 0 17 17 0 510 306 0 816 33 Apprch % 0 2 24.4 0 0 0 0 0 0 0 0 24.4 0 0 0 0 0 24.4 0 <td>17:15</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>112</td> <td>7</td> <td>0</td> <td>0</td> <td>119</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>25</td> <td>15</td> <td>0</td> <td>40</td> <td>159</td>	17:15	0	0	0	0	0	112	7	0	0	119	0	0	0	0	0	0	25	15	0	40	159
Apprch % 0 0 0 0 0 0.1 0	17:30	0	0	0	0	0	84	4	0	0	88	0	0	0	2	2	0	18	9	0	27	117
Apprch % 0 0 0 71 28.9 0 0.1 0 0 0 100 0 62.5 37.5 0 7 7 7 28.9 0 0.1 0 0 0 100 0 62.5 37.5 0 2 24.4 Vehicles 0 0 0 0 0 1765 723 0 2 2490 0 0 0 12 12 0 508 305 0 813 33 % Vehicles 0 0 0 0 16 3 0 0 19 0 0 0 0 99.6 99.7 0 99.6 99.7 Heavy Vehicles 0 0 0 0 16 3 0 0 19 0 0 5 5 0 2 1 0 3	Grand Total	0	0	0	0	0	1781	726	0	2	2509	0	0	0	17	17	0	510	306	0	816	3342
Total % 0 0 0 0 53.3 21.7 0 0.1 75.1 0 0 0 0.5 0.5 0 15.3 9.2 0 24.4 Vehicles 0 0 0 0 1765 723 0 2 2490 0 0 12 12 0 508 305 0 813 33 % Vehicles 0 0 0 0 99.1 99.6 0 100 99.2 0 0 0 0 99.6 99.7 0 99.6 99.7 Heavy Vehicles 0 0 0 0 16 3 0 0 19 0 0 5 5 0 2 1 0 3	Apprch %	0	0	0	0		71		0	0.1		0	0	0	100		0	62.5		0		
Vehicles 0 0 0 0 1765 723 0 2 2490 0 0 0 12 12 0 508 305 0 813 33 % Vehicles 0 0 0 0 99.1 99.6 0 100 99.2 0 0 0 70.6 0 99.6 99.7 0 99.6 99.7 Heavy Vehicles 0 0 0 0 16 3 0 0 19 0 0 5 5 0 2 1 0 3		0	0	0		0	53.3	21.7			75.1	0				0.5	0	15.3	9.2	0	24.4	
% Vehicles 0 0 0 0 99.1 99.6 0 100 99.2 0 0 0 70.6 0 99.6 99.7 0 99.6 99.7 Heavy Vehicles 0 0 0 0 16 3 0 0 19 0 0 5 5 0 2 1 0 3		_					1765	723														3315
Heavy Vehicles 0 0 0 0 0 16 3 0 0 19 0 0 0 5 5 0 2 1 0 3		_	-	-	-	-			-	_		_	-	-			_			-		99.2
								3														27
% Heavy Vehicles 0 0 0 0 0 0 0.9 0.4 0 0 0.8 0 0 0 29.4 29.4 0 0.4 0.3 0 0.4		_										-										0.8

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 1A SAVANNA

Site Code : 00000000 Start Date : 7/11/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 1A SAVANNA

Site Code : 00000000 Start Date : 7/11/2018

		DIA					1A					DIA					1A				
		Fre	om No	orth			Fi	rom E	ast			Fre	om Sc	outh			Fr	om W	lest		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fron	m 05:4	5 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	on Be	gins at	07:15															
07:15	0	0	0	0	0	57	52	0	0	109	0	0	0	0	0	0	15	9	0	24	133
07:30	0	0	0	0	0	90	49	0	0	139	0	0	0	1	1	0	15	8	0	23	163
07:45	0	0	0	0	0	68	46	0	0	114	0	0	0	1	1	0	13	10	0	23	138
08:00	0	0	0	0	0	64	26	0	0	90	0	0	0	1	1	0	14	10	0	24	115
Total Volume	0	0	0	0	0	279	173	0	0	452	0	0	0	3	3	0	57	37	0	94	549
% App. Total	0	0	0	0		61.7	38.3	0	0		0	0	0	100		0	60.6	39.4	0		
PHF	.000	.000	.000	.000	.000	.775	.832	.000	.000	.813	.000	.000	.000	.750	.750	.000	.950	.925	.000	.979	.842
Vehicles	0	0	0	0	0	279	172	0	0	451	0	0	0	1	1	0	57	37	0	94	546
% Vehicles	0	0	0	0	0	100	99.4	0	0	99.8	0	0	0	33.3	33.3	0	100	100	0	100	99.5
Heavy Vehicles	0	0	0	0	0	0	1	0	0	1	0	0	0	2	2	0	0	0	0	0	3
% Heavy Vehicles	0	0	0	0	0	0	0.6	0	0	0.2	0	0	0	66.7	66.7	0	0	0	0	0	0.5

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 1A SAVANNA

Site Code : 00000000 Start Date : 7/11/2018

		DIA					1A					DIA					1A				
		Fre	om No	orth			Fr	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analysi	is Fror	n 12:0	00 to 1	7:30 - F	Peak 1	of 1														
Peak Hour f	or Enti	ire Inte	ersecti	on Be	gins at	16:15															
16:15	0	0	0	0	0	108	54	0	0	162	0	0	0	0	0	0	44	22	0	66	228
16:30	0	0	0	0	0	115	26	0	0	141	0	0	0	1	1	0	39	17	0	56	198
16:45	0	0	0	0	0	102	33	0	0	135	0	0	0	1	1	0	42	30	0	72	208
17:00	0	0	0	0	0	112	54	0	1	167	0	0	0	0	0	0	45	20	0	65	232
Total Volume	0	0	0	0	0	437	167	0	1	605	0	0	0	2	2	0	170	89	0	259	866
% App. Total	0	0	0	0		72.2	27.6	0	0.2		0	0	0	100		0	65.6	34.4	0		
PHF	.000	.000	.000	.000	.000	.950	.773	.000	.250	.906	.000	.000	.000	.500	.500	.000	.944	.742	.000	.899	.933
Vehicles	0	0	0	0	0	428	166	0	1	595	0	0	0	2	2	0	168	88	0	256	853
% Vehicles	0	0	0	0	0	97.9	99.4	0	100	98.3	0	0	0	100	100	0	98.8	98.9	0	98.8	98.5
Heavy Vehicles	0	0	0	0	0	9	1	0	0	10	0	0	0	0	0	0	2	1	0	3	13
% Heavy Vehicles	0	0	0	0	0	2.1	0.6	0	0	1.7	0	0	0	0	0	0	1.2	1.1	0	1.2	1.5

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 1B File Name: 1B_TAMIA

File Name : 1B_TAMIA Site Code : 00000000 Start Date : 7/11/2018

Page No : 1

Groups Printed- Bikes

		DIA					1B					DIA					1B				
		Fr	om N				Fr	om E	ast			Fr	om Sc				Fr	om W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK ³	***																				
06:30	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
06:45	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1_
Total	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
*** BREAK	***																				
07:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				
Total	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:00	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
08:15	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
08:30	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
DILAN	***																				
Total	2	0	5	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
*** BREAK	***																				
15:00	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
15:15	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
15:30	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
*** BREAK	***																				
Total	0	0	8	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
*** BREAK	***																				
16:45	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Total	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				
Grand Total	2	0	17	0	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19
Apprch %	10.5	0	89.5	0		0	0	0	0		0	0	0	0		0	0	0	0		
Total %	10.5	0	89.5	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 1B_TAMIA Site Code : 00000000 Start Date : 7/11/2018

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 1B_TAMIA Site Code : 00000000 Start Date : 7/11/2018

		DIA					1B					DIA					1B				
		Fr	om No	orth			Fı	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	07:45															
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
08:15	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
08:30	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Total Volume	2	0	5	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
% App. Total	28.6	0	71.4	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.500	.000	.625	.000	.583	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.583

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 1B_TAMIA Site Code : 00000000 Start Date : 7/11/2018

		DIA					1B					DIA					1B				
		Fr	om No	orth			Fr	om E	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Froi	m 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	14:45															
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
15:15	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
15:30	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
Total Volume	0	0	8	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
% App. Total	0	0	100	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.500	.000	.500	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.500

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 1B TAMIA Location: 1B

Site Code : 00000000 Start Date : 7/11/2018

Groups Printed- Vehic	les - Heavy Vehicles
1B	DIA

	1	DIA						ups P	rintea	- Vehic	ies - n		venic	lies			40				
		DIA	NI	41-			1B_		4			DIA		41-			1B	14	14		
Start Time		Thru	om No				Thru	rom E				Thru	om So				Thru	om W			
	Right		Left		App. Total	Right		Left	Peds	App. Total	Right		Left		App. Total	Right		Left		App. Total	Int. Total
06:00	8	0	69 94	0	77 405	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	77 105
06:15	11	0		0	105	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	105
06:30	11	0	109	0	120		0	0	0	0	0	0	0	0	0	0	0	-	0	0	120
<u>06:45</u>	22	0	131	0	153	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>1</u> 1	1	154
Total	52	0	403	0	455	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	456
07:00	31	0	97	0	128	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	128
07:15	32	0	100	0	132	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	132
07:30	21	0	116	0	137	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	137
07:45	18	0	122	0	140	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	141
Total	102	0	435	0	537	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	538
08:00	21	0	123	0	144	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	145
08:15	21	0	79	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	102
08:30	24	0	67	0	91	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	91
08:45	22	0	81	0	103	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	103
Total	88	0	350	0	438	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	441
*** BREAK	***																				
15:00	16	0	48	1	65	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	68
15:15	24	0	51	0	75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	75
15:30	16	0	24	0	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40
15:45	12	0	34	0	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	46
Total	68	0	157	1	226	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	229
16:00	14	0	57	0	71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	71
16:15	7	0	40	0	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47
16:30	9	0	64	0	73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73
16:45	10	0	62	0	72	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	73
Total	40	0	223	0	263	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	264
17:00	8	1	68	0	77	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	79
17:15	8	0	38	0	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	46
17:30	2	0	48	0	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50
17:45	3	0	28	0	31	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	33
Total	21	1	182	0	204	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	208
Grand Total	371	1	1750	1	2123	0	0	0	0	0	0	0	0	0	0	0	0	0	13	13	2136
Apprch %	17.5	0	82.4	0		0	0	0	0		0	0	0	0		0	0	0	100		
Total %	17.4	0	81.9	0	99.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0.6	0.6	
Vehicles	370	1	1737	1	2109	0	0	0	0	0	0	0	0	0	0	0	0	0	11	11	2120
% Vehicles	99.7	100	99.3	100	99.3	0	0	0	0	0	0	0	0	0	0	0	0	0	84.6	84.6	99.3
Heavy Vehicles	1	0	13	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	16
% Heavy Vehicles	0.3	0	0.7	0	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	15.4	15.4	0.7

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 1B_TAMIA Site Code : 00000000 Start Date : 7/11/2018

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 1B_TAMIA Site Code : 00000000 Start Date : 7/11/2018

		DIA					1B					DIA					1B				
		Fr	om No	orth			Fr	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour /	Analysi	is Froi	m 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Enti	re Inte	ersecti	ion Be	gins at	07:15															
07:15	32	0	100	0	132	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	132
07:30	21	0	116	0	137	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	137
07:45	18	0	122	0	140	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	141
08:00	21	0	123	0	144	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	145
Total Volume	92	0	461	0	553	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	555
% App. Total	16.6	0	83.4	0		0	0	0	0		0	0	0	0		0	0	0	100		
PHF	.719	.000	.937	.000	.960	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.500	.500	.957
Vehicles	91	0	454	0	545	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	547
% Vehicles	98.9	0	98.5	0	98.6	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	98.6
Heavy Vehicles	1	0	7	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
% Heavy Vehicles	1.1	0	1.5	0	1.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.4

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 1B_TAMIA Site Code : 00000000 Start Date : 7/11/2018

		DIA					1B					DIA					1B				
		Fre	om No	orth			Fr	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fron	n 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	on Be	gins at	16:15															
16:15	7	0	40	0	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	47
16:30	9	0	64	0	73	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73
16:45	10	0	62	0	72	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	73
17:00	8	1	68	0	77	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	79
Total Volume	34	1	234	0	269	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	272
% App. Total	12.6	0.4	87	0		0	0	0	0		0	0	0	0		0	0	0	100		
PHF	.850	.250	.860	.000	.873	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.375	.375	.861
Vehicles	34	1	234	0	269	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	272
% Vehicles	100	100	100	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Location: 2A

Start Date: 06/28/2018

File Name: 2A

Site Code : 00000000 Start Date : 6/28/2018

Page No : 1

Groups Printed- Bikes

									Group	os Printe	eu- Dir										
		DIM					SIG					DIM					SIG				
		Fr	om No	rth			Fı	om Ea	ast			Fre	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK	***																				
06:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				
06:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
06:45	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Total	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
07:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:30	0	3	1	1	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
07:45	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Total	0	6	2	1	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
08:00	0	7	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
08:15	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				
Total	0	8	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
*** BREAK	***																				
15:00	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
15:15	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				
Total	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
*** BREAK	***																				
Grand Total	0	21	2	1	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	24
Apprch %	0	87.5	8.3	4.2	- '	0	0	0	0		0	0	0	0		0	0	0	0		
Total %	0	87.5	8.3	4.2	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10.001/0	, ,		0.5	1.2	100		0	9	J	5		J	J	J	9	J	9	J	J	9	

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2A

Site Code : 00000000 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2A

Site Code : 00000000 Start Date : 6/28/2018

		DIM	:				SIG					DIM	[SIG]
		Fr	om No	rth			Fi	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	05:30	to 11:3	0 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 07:1	.5															
07:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:30	0	3	1	1	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
07:45	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
08:00	0	7	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
Total Volume	0	12	2	1	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
% App. Total	0	80	13.3	6.7		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.429	.500	.250	.536	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.536

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2A

Site Code : 00000000 Start Date : 6/28/2018

		DIM					SIG					DIM	[SIG				
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	11:45	to 17:3	0 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 14:3	0															
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
15:15	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Total Volume	0	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
% App. Total	0	100	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.333	.000	.000	.333	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.333

Bohannon Huston, Inc. 7500 Jefferson Street NE

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 2A

Start Date: 06/28/2018

File Name: 2A

Site Code : 00000000 Start Date : 6/28/2018

05:30 1 0 0 0 1 0 <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th> Right 0 1 1 2 1 3 1 7 1 0 3 1 5 2 1 3 3 3 1 3 3 1 3 3</th> <th> Thru</th> <th> Left</th> <th>Peds 0 0 0 0 2 2 5 3 12 1 1 5 1 1</th> <th>1 1 4 5 11 5 25 25 6 6 2 15</th> <th> Int. Total</th>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Right 0 1 1 2 1 3 1 7 1 0 3 1 5 2 1 3 3 3 1 3 3 1 3 3	Thru	Left	Peds 0 0 0 0 2 2 5 3 12 1 1 5 1 1	1 1 4 5 11 5 25 25 6 6 2 15	Int. Total
Start Time	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 2 1 3 1 7	Thru	Left	Peds 0 0 0 0 2 2 5 3 12 1 1 5 1 1	0 1 1 4 5 11 5 25 25 2 5 6 6 2 15	1 55 56 134 136 192 172 634 151 135 165 159 610 163 114
05:30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 2 1 3 1 7	0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 2 1 5 0 3 2 0 5	0 0 0 2 2 5 3 12 1 2 1 1 5	0 1 1 4 5 11 5 25 25 2 5 6 6 2 15	1 55 56 134 136 192 172 634 151 135 165 159 610 163 114
O5:45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 3 1 7 7 1 0 3 1 5 1 5 1 2 1	0 0 0 1 0 1 0 0 0 0 0 0	0 0 0 2 2 2 1 5 0 3 3 2 0 0 5	0 0 2 2 5 3 12 1 2 1 1 5 1	1 1 4 5 11 5 25 25 6 6 2 15	55 56 134 136 192 172 634 151 135 165 159 610 163 114
Total	0 0 0 0 0 0 0 0 0 0	1	0 0 0 1 0 1 1 0 0 0 0 0 0	0 0 2 2 2 1 5 0 3 3 2 0 5	0 2 2 5 3 12 1 2 1 1 5 1 1	1 4 5 11 5 25 25 6 6 2 15	56 134 136 192 172 634 151 135 165 159 610 163 114
06:00 9 114 6 1 130 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	2 1 3 1 7 7 1 0 3 1 5 1 5 1 2 1	0 0 1 0 1 0 0 0 0 0 0	0 2 2 2 1 1 5 5 0 0 3 2 2 0 0 5 5 1 1	2 2 2 5 3 12 1 2 1 1 5 5 1 1 1	4 5 11 5 25 25 6 6 2 15 4 3	134 136 192 172 634 151 135 165 159 610 163 114
06:15	0 0 0 0 0 0 0 0 0	1 3 1 7 7 1 0 3 1 5 5 1 2 1	0 1 0 0 0 0 0 0 0	22 11 5 0 0 3 2 0 5	2 5 3 12 1 2 1 1 5	5 11 5 25 25 6 2 15 4 3	136 192 172 634 151 135 165 159 610
06:15	0 0 0 0 0 0 0 0 0	1 3 1 7 7 1 0 3 1 5 5 1 2 1	0 1 0 0 0 0 0 0 0	22 11 5 0 0 3 2 0 5	2 5 3 12 1 2 1 1 5	5 11 5 25 25 6 2 15 4 3	136 192 172 634 151 135 165 159 610
06:30 14 157 10 0 181 0 <td< td=""><td>0 0 0 0 0 0 0 0</td><td>3 1 7 7 1 0 3 1 5 5 1 2 1</td><td>1 0 0 0 0 0 0 0</td><td>2 1 5 0 3 2 0 0 5</td><td>5 3 12 1 2 1 1 5 5</td><td>111 5 25 25 2 5 6 2 15 15 4 3</td><td>192 172 634 151 135 165 159 610</td></td<>	0 0 0 0 0 0 0 0	3 1 7 7 1 0 3 1 5 5 1 2 1	1 0 0 0 0 0 0 0	2 1 5 0 3 2 0 0 5	5 3 12 1 2 1 1 5 5	111 5 25 25 2 5 6 2 15 15 4 3	192 172 634 151 135 165 159 610
06:45 10 136 19 2 167 0 <th< td=""><td>0 0 0 0 0 0 0</td><td>1 7 1 0 3 1 5 5 1 2 1</td><td>0 1 0 0 0 0 0</td><td>1 5 0 3 2 0 5 1</td><td>3 12 1 2 1 1 1 5</td><td>5 25 25 5 6 2 15 4 3</td><td>172 634 151 135 165 159 610</td></th<>	0 0 0 0 0 0 0	1 7 1 0 3 1 5 5 1 2 1	0 1 0 0 0 0 0	1 5 0 3 2 0 5 1	3 12 1 2 1 1 1 5	5 25 25 5 6 2 15 4 3	172 634 151 135 165 159 610
Total 49 514 42 4 609 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 1 0 3 1 5 2 1	0 0 0 0 0 0	5 0 3 2 0 5	12 1 2 1 1 5	25 2 5 6 2 15 4 3	634 151 135 165 159 610 163 114
07:00 11 115 18 5 149 0 0 0 0 0 0 0 0 0	0 0 0 0 0	1 0 3 1 5 5 1 2 1	0 0 0 0 0	0 3 2 0 5	1 2 1 1 5	2 5 6 2 15 4 3	151 135 165 159 610
07:15	0 0 0 0	0 3 1 5	0 0 0 0	3 2 0 5	2 1 1 5	5 6 2 15 4 3	135 165 159 610
07:30 5 137 17 0 159 0	0 0 0 0 0	3 1 5	0 0 0 0	2 0 5	1 1 5 1 1	6 2 15 4 3	165 159 610 163 114
07:30 5 137 17 0 159 0	0 0 0 0 0	3 1 5	0 0 0 0	2 0 5	1 1 5 1 1	6 2 15 4 3	165 159 610 163 114
Total 28 483 68 16 595 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	5 2 1	0 0	5 1 1	5 1 1	15 4 3	159 610 163 114
Total 28 483 68 16 595 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	5 2 1	0 0	5 1 1	5 1 1	15 4 3	610 163 114
08:15 3 99 6 3 111 0 0 0 0 0 0 0 0	0	1	0	1	1	3	114
08:15 3 99 6 3 111 0 0 0 0 0 0 0 0	0	1	0	1	1	3	114
*** BREAK *** Total 7 240 20 3 270 0 0 0 0 0 0 0 0 0							
Total 7 240 20 3 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	3	0	2	2	7	277
*** BREAK *** 14:45 2 48 5 5 60 0 0 0 0 0 0 0 0 Total 2 48 5 5 60 0 0 0 0 0 0 0 0	0	3	0	2	2	7	277
14:45 2 48 5 5 60 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Total 2 48 5 5 60 0 0 0 0 0 0 0 0 0							
	0	2					71
	0	2	0	4	5	11	71
15:00 2 34 3 1 40 0 0 0 0 0 0 0 0 0	0	6	0	4	2	12	52
15:15 2 48 5 0 55 0 0 0 0 0 0 0 0 0	0	3	0	6	0	9	64
15:30 2 37 2 2 43 0 0 0 1 1 0 0 0 0	0	1	0	8	0	9	53
15:45 3 63 4 0 70 0 0 0 0 0 0 0 0	0	4	0			11	81
Total 9 182 14 3 208 0 0 0 1 1 0 0 0 0	0	14	0	24	3	41	250
16:00 1 51 2 4 58 0 0 0 0 0 0 0 0 0	0	4	0	14	0	18	76
16:15 1 51 0 0 52 0 0 0 0 0 0 0 0 0	0	8	0	11	0	19	71
16:30 1 43 1 3 48 0 0 0 0 0 0 0 0 0	0	5		4	0	9	57
16:45 1 46 1 2 50 0 0 0 0 0 0 0 0 0	0	8		6	3	22	72
Total 4 191 4 9 208 0 0 0 0 0 0 0 0 0	0	25	5	35	3	68	276
17:00 1 57 0 3 61 0 0 0 0 0 0 0 0 1 0	1	2	0	4	2	8	70
17:15 0 29 0 0 29 0 0 0 0 0 0 0 0 0	0	1					33
17:30 0 21 0 0 21 0 0 0 0 0 0 0 0 0	0	2					24
Grand Total 105 1811 155 43 2114 0 0 0 3 3 0 0 1 0	1	62	6		33	183	2301
Appreh % 5 85.7 7.3 2 0 0 0 100 0 0 100 0		33.9	3.3		18		
Total % 4.6 78.7 6.7 1.9 91.9 0 0 0 0.1 0.1 0 0 0 0	0	2.7	0.3		1.4	8	
Vehicles 105 1799 155 39 2098 0 0 0 3 3 0 0 1 0	1	62	6		25	175	2277
	100	100	100		75.8	95.6	99
Heavy Vehicles 0 12 0 4 16 0 0 0 0 0 0 0 0 0	0	0	0	0	8	8	24
% Heavy Vehicles 0 0.7 0 9.3 0.8 0 0 0 0 0 0 0 0 0		0	0	0	24.2	4.4	1

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2A

Site Code : 00000000 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2A

Site Code : 00000000 Start Date : 6/28/2018

		DIM					SIG					DIM	[SIG				
		Fr	om No	rth			Fı	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	05:30	to 11:3	0 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 06:1	5															
06:15	16	107	7	1	131	0	0	0	0	0	0	0	0	0	0	1	0	2	2	5	136
06:30	14	157	10	0	181	0	0	0	0	0	0	0	0	0	0	3	1	2	5	11	192
06:45	10	136	19	2	167	0	0	0	0	0	0	0	0	0	0	1	0	1	3	5	172
07:00	11	115	18	5	149	0	0	0	0	0	0	0	0	0	0	1	0	0	1	2	151
Total Volume	51	515	54	8	628	0	0	0	0	0	0	0	0	0	0	6	1	5	11	23	651
% App. Total	8.1	82	8.6	1.3		0	0	0	0		0	0	0	0		26.1	4.3	21.7	47.8		
PHF	.797	.820	.711	.400	.867	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.500	.250	.625	.550	.523	.848
Vehicles	51	509	54	8	622	0	0	0	0	0	0	0	0	0	0	6	1	5	7	19	641
% Vehicles	100	98.8	100	100	99.0	0	0	0	0	0	0	0	0	0	0	100	100	100	63.6	82.6	98.5
Heavy Vehicles	0	6	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	10
% Heavy Vehicles	0	1.2	0	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	36.4	17.4	1.5

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2A

Site Code : 00000000 Start Date : 6/28/2018

		DIM					SIG					DIM	[SIG				
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fı	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	11:45	to 17:3	0 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 15:4	15															
15:45	3	63	4	0	70	0	0	0	0	0	0	0	0	0	0	4	0	6	1	11	81
16:00	1	51	2	4	58	0	0	0	0	0	0	0	0	0	0	4	0	14	0	18	76
16:15	1	51	0	0	52	0	0	0	0	0	0	0	0	0	0	8	0	11	0	19	71
16:30	1	43	1	3	48	0	0	0	0	0	0	0	0	0	0	5	0	4	0	9	57
Total Volume	6	208	7	7	228	0	0	0	0	0	0	0	0	0	0	21	0	35	1	57	285
% App. Total	2.6	91.2	3.1	3.1		0	0	0	0		0	0	0	0		36.8	0	61.4	1.8		
PHF	.500	.825	.438	.438	.814	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.656	.000	.625	.250	.750	.880
Vehicles	6	208	7	7	228	0	0	0	0	0	0	0	0	0	0	21	0	35	1	57	285
% Vehicles	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	100	0	100	100	100	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Location: 2B

Start Date: 06/28/2018

File Name: 2B

Site Code : 00000000 Start Date : 6/28/2018

Page No : 1

Groups Printed- Bikes

	1	DIAM	OND				2B		O. ou)5 I I III (DIAM	OND				2B				
			om No	rth				om Ea	ast				om So	uth				om W	est		
Start Time	Right	Thru		Peds	App. Total	Right	Thru	Left		App. Total	Right	Thru	Left		App. Total	Right	Thru	Left		App. Total	Int. Total
*** BREAK	***				**																
06:45	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1_
Total	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
07:00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
07:15	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2
07:30	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	0	0	2
07:45	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	2
Total	0	0	0	0	0	0	0	1	0	1	1	5	0	0	6	0	0	0	0	0	7
*** BREAK	***																				
08:15	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
08:30	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
08:45	0	0	0	0	0	0	0	0	0	0	2	2	0	0	4	0	0	0	0	0	4
Total	0	0	0	0	0	1	0	0	0	1	2	5	0	0	7	0	0	0	0	0	8
*** BREAK	***																				
15:00	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	4
*** BREAK	***																				
15:30	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
*** BREAK																					
Total	0	0	0	0	0	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	7
16:00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
*** BREAK	***					'															
16:30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
*** BREAK	***																				
Total	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2
17:00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
	***	U	U	U	U	0	U	U	U	0	0	1	U	U	1	U	U	U	U	0	1
Total	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
Grand Total	0	0	0	0	0	1	0	1	0	2	3	21	0	0	24	0	0	0	0	0	26
Apprch %	0	0	0	0		50	0	50	0		12.5	87.5	0	0		0	0	0	0		
Total %	0	0	0	0	0	3.8	0	3.8	0	7.7	11.5	80.8	0	0	92.3	0	0	0	0	0	

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2B

Site Code : 00000000 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2B

Site Code : 00000000 Start Date : 6/28/2018

	1	DIAM	OND				2B]	DIAM	OND				2B				1
		Fr	om No	orth			Fı	rom E	ast			Fr	om So	uth			Fı	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	06:00	to 11:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 08:0	00															
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
08:30	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
08:45	0	0	0	0	0	0	0	0	0	0	2	2	0	0	4	0	0	0	0	0	4
Total Volume	0	0	0	0	0	1	0	0	0	1	2	5	0	0	7	0	0	0	0	0	8
% App. Total	0	0	0	0		100	0	0	0		28.6	71.4	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.250	.000	.000	.000	.250	.250	.417	.000	.000	.438	.000	.000	.000	.000	.000	.500

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2B

Site Code : 00000000 Start Date : 6/28/2018

																					1
	1	DIAM	OND				2B]	DIAM	OND				2B				
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	12:00	to 17:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 14:4	15															
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	4
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
Total Volume	0	0	0	0	0	0	0	0	0	0	0	7	0	0	7	0	0	0	0	0	7
% App. Total	0	0	0	0		0	0	0	0		0	100	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.438	.000	.000	.438	.000	.000	.000	.000	.000	.438

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Location: 2B

Start Date: 06/28/2018

File Name: 2B

Site Code : 00000000 Start Date : 6/28/2018

								ups Pr	inted-	Vehicle											7
]	DIAM					2B					DIAM					2B				
			om No	rth			F	rom E				Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00	0	0	4	0	4	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	19
06:15	0	0	6	0	6	2	0	0	0	2	4	14	5	0	23	0	0	0	0	0	31
06:30	0	0	0	0	0	0	0	1	2	3	0	24	6	0	30	0	0	0	0	0	33
06:45	0	0	0	0	0	1	0	0	0	1	2	61	8	0	71	0	0	0	0	0	72
Total	0	0	10	0	10	3	0	1	2	6	6	114	19	0	139	0	0	0	0	0	155
07:00	0	0	0	0	0	1	0	2	0	3	8	61	5	0	74	0	0	0	0	0	77
07:15	0	0	0	0	0	1	0	0	0	1	2	55	1	0	58	0	0	0	0	0	59
07:30	0	0	0	0	0	3	0	4	0	7	9	69	2	0	80	0	0	0	0	0	87
07:45	0	0	0	0	0	7	0	5	0	12	11	73	3	1	88	0	0	0	0	0	100
Total	0	0	0	0	0	12	0	11	0	23	30	258	11	1	300	0	0	0	0	0	323
08:00	0	0	0	0	0	1	0	3	0	4	7	66	0	0	73	0	0	0	0	0	77
08:15	0	0	0	0	0	4	0	5	0	9	10	61	1	0	72	0	0	0	0	0	81
08:30	0	0	0	0	0	1	0	4	1	6	9	41	0	0	50	0	0	0	0	0	56
08:45	0	0	0	0	0	3	0	2	0	5	8	56	2	0	66	0	0	0	0	0	71
Total	0	0	0	0	0	9	0	14	1	24	34	224	3	0	261	0	0	0	0	0	285
*** BREAK	***																				
15:00	0	0	0	0	0	9	0	3	0	12	4	73	1	0	78	0	0	0	0	0	90
15:15	0	0	0	0	0	2	0	1	1	4	4	65	2	1	72	0	0	0	0	0	76
15:30	0	0	0	0	0	8	0	5	0	13	3	77	1	0	81	0	0	0	0	0	94
15:45	0	0	0	0	0	10	0	7	0	17	3	80	0	0	83	0	0	0	0	0	100
Total	0	0	0	0	0	29	0	16	1	46	14	295	4	1	314	0	0	0	0	0	360
16:00	0	0	0	0	0	7	0	4	0	11	3	95	1	0	99	0	0	0	0	0	110
16:15	0	0	0	0	0	8	0	2	0	10	0	124	2	0	126	0	0	0	0	0	136
16:30	0	0	0	0	0	12	0	6	0	18	6	117	2	2	127	0	0	0	0	0	145
16:45	0	0	0	0	0	13	0	12	1	26	3	141	2	0	146	0	0	0	0	0	172
Total	0	0	0	0	0	40	0	24	1	65	12	477	7	2	498	0	0	0	0	0	563
17:00	0	0	0	0	0	14	0	3	0	17	3	108	0	0	111	0	0	0	0	0	128
17:15	0	0	0	0	0	11	0	0	1	12	1	126	1	0	128	0	0	0	0	0	140
17:30	0	0	0	0	0	8	0	6	0	14	1	141	0	0	142	0	0	0	0	0	156
17:45	0	0	0	0	0	9	0	4	2	15	3	81	0	2	86	0	0	0	0	0	101
Total	0	0	0	0	0	42	0	13	3	58	8	456	1	2	467	0	0	0	0	0	525
Grand Total	0	0	10	0	10	135	0	79	8	222	104	1824	45	6	1979	0	0	0	0	0	2211
Apprch %	0	0	100	0		60.8	0	35.6	3.6		5.3	92.2	2.3	0.3		0	0	0	0		
Total %	0	0	0.5	0	0.5	6.1	0	3.6	0.4	10	4.7	82.5	2	0.3	89.5	0	0	0	0	0	
Vehicles	0	0	10	0	10	135	0	79	6	220	104	1819	45	5	1973	0	0	0	0	0	2203
% Vehicles	0	0	100	0	100	100	0	100	75	99.1	100	99.7	100	83.3	99.7	0	0	0	0	0	99.6
Heavy Vehicles	0	0	0	0	0	0	0	0	2	2	0	5	0	1	6	0	0	0	0	0	8
% Heavy Vehicles	0	0	0	0	0	0	0	0	25	0.9	0	0.3	0	16.7	0.3	0	0	0	0	0	0.4

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2B

Site Code : 00000000 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2B

Site Code : 00000000 Start Date : 6/28/2018

	I	DIAM	OND				2B]	DIAM	OND				2B				
		Fr	om No	rth			Fı	rom E	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	06:00	to 11:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inters	section	Begin	s at 07:3	0															
07:30	0	0	0	0	0	3	0	4	0	7	9	69	2	0	80	0	0	0	0	0	87
07:45	0	0	0	0	0	7	0	5	0	12	11	73	3	1	88	0	0	0	0	0	100
08:00	0	0	0	0	0	1	0	3	0	4	7	66	0	0	73	0	0	0	0	0	77
08:15	0	0	0	0	0	4	0	5	0	9	10	61	1	0	72	0	0	0	0	0	81
Total Volume	0	0	0	0	0	15	0	17	0	32	37	269	6	1	313	0	0	0	0	0	345
% App. Total	0	0	0	0		46.9	0	53.1	0		11.8	85.9	1.9	0.3		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.536	.000	.850	.000	.667	.841	.921	.500	.250	.889	.000	.000	.000	.000	.000	.863
Vehicles	0	0	0	0	0	15	0	17	0	32	37	269	6	1	313	0	0	0	0	0	345
% Vehicles	0	0	0	0	0	100	0	100	0	100	100	100	100	100	100	0	0	0	0	0	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 2B

Site Code : 00000000 Start Date : 6/28/2018

						_															
]]	DIAM	OND				2B]]	DIAM	OND				2B				1
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	12:00	to 17:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 16:4	15															
16:45	0	0	0	0	0	13	0	12	1	26	3	141	2	0	146	0	0	0	0	0	172
17:00	0	0	0	0	0	14	0	3	0	17	3	108	0	0	111	0	0	0	0	0	128
17:15	0	0	0	0	0	11	0	0	1	12	1	126	1	0	128	0	0	0	0	0	140
17:30	0	0	0	0	0	8	0	6	0	14	1	141	0	0	142	0	0	0	0	0	156
Total Volume	0	0	0	0	0	46	0	21	2	69	8	516	3	0	527	0	0	0	0	0	596
% App. Total	0	0	0	0		66.7	0	30.4	2.9		1.5	97.9	0.6	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.821	.000	.438	.500	.663	.667	.915	.375	.000	.902	.000	.000	.000	.000	.000	.866
Vehicles	0	0	0	0	0	46	0	21	2	69	8	513	3	0	524	0	0	0	0	0	593
% Vehicles	0	0	0	0	0	100	0	100	100	100	100	99.4	100	0	99.4	0	0	0	0	0	99.5
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0.6	0	0	0.6	0	0	0	0	0	0.5

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 3A File Name: 3A_JAMES

Site Code : 00000000 Start Date : 7/10/2018

Page No : 1

Groups Printed- Bikes

		DIA					3A					DIA					3A				
		Fr	om N	orth			Fr	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK *	***																				
15:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
15:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
15:30	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
*** BREAK '	***																				
Total	0	1	3	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
*** BREAK *	-	_	_		_		_			_ 1	_	_		_	- 1	_	_	_		_ 1	_
16:45	0	0	2	0_	2	0	0	0	0	0	0	0	0	0_	0	0_	0_	0	0	0	2_
Total	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
*** BREAK *	***																				
Grand Total	0	1	5	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
Apprch %	0	16.7	83.3	0	O	0	0	0	0	O	0	0	0	0	0	0	0	0	0	o l	O
Total %	0	16.7	83.3	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
i Stai 70	U	10.7	00.0	U	100	, 0	U	U	U	U	U	U	U	U	0	U	U	U	U	0	

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 3A_JAMES Site Code: 00000000 Start Date: 7/10/2018

		DIA				3A						DIA						3A					
		Fr	om No	orth			Fı	om E	ast			Fr	om So	outh			Fr	om W	est				
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total		
Peak Hour A	Analys	is Froi	m 06:0	00 to 1	1:45 - F	Peak 1	of 1																
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	06:00																	
06:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
06:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
06:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
06:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		L		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 3A_JAMES Site Code: 00000000 Start Date: 7/10/2018

																		•			
		DIA					3A					DIA					3A				
		Fr	om No	orth			Fr	om E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 12:0	00 to 1	7:30 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	14:45															
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
15:15	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
15:30	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Total Volume	0	1	3	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
% App. Total	0	25	75	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.250	.375	.000	.500	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.500

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 3A JAMES Location: 3A

> Site Code : 00000000 Start Date : 7/10/2018

Groups Printed- Vehic	les - Heavy Vehicles
3A	DIA

	DIA 3A DIA 3A From North From East From South From West																				
								_													
Start Time	Right		Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00	2	98	15	0	115	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	115
06:15	0	121	32	4	157	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	158
06:30	1	137	24	2	164	0	0	0	0	0	0	0	0	0	0	2	0	0	2	4	168
06:45	6	199	49	5	259	0	0	0	1	1_	0	0	0	0	0	1	0	0	3	4	264
Total	9	555	120	11	695	0	0	0	1	1	0	0	0	0	0	4	0	0	5	9	705
07:00	6	137	68	0	211	0	0	0	0	0	0	0	0	0	0	0	0	1	3	4	215
07:15	6	127	57	1	191	0	0	0	0	0	Ö	Ō	0	Ō	0	1	1	2	6	10	201
07:30	12	122	45	2	181	0	0	0	0	0	0	0	0	0	0	5	0	0	3	8	189
07:45	7	150	24	0	181	0	0	0	0	0	0	0	0	0	0	5	0	0	5	10	191
Total	31	536	194	3	764	0	0	0	0	0	0	0	0	0	0	11	1	3	17	32	796
08:00	7	141	31	1	180	0	0	0	0	0	0	0	0	0	0	6	3	0	3	12	192
08:15	15	105	35	6	161	0	0	0	0	0	0	0	0	0	0	6	6	3	2	17	178
08:30	6	72	36	11	125	0	0	0	0	0	0	0	0	0	0	4	7	6	3	20	145
08:45	4	82	27	15	128	0	0	0	0	0	0	0	0	0	0	7	2	3	1	13	141
Total	32	400	129	33	594	0	0	0	0	0	0	0	0	0	0	23	18	12	9	62	656
*** BREAK	***																				
							_					_			_ 1		_				
15:00	2	53	15	11	81	0	0	0	0	0	0	0	0	0	0	4	5	6	4	19	100
15:15	1	39	20	2	62	0	0	0	0	0	0	0	0	0	0	2	1	8	3	14	76
15:30	1	47	11	4	63	0	0	0	0	0	0	0	0	0	0	5	0	3	4	12	75
<u>15:45</u>	2	32	8	8	50	0	0	0	0	0	0	0	0	0	0	3	2	7	6	18	68
Total	6	171	54	25	256	0	0	0	0	0	0	0	0	0	0	14	8	24	17	63	319
16:00	1	30	6	3	40	0	0	0	0	0	0	0	0	0	0	3	2	16	1	22	62
16:15	0	44	11	2	57	0	0	0	0	0	0	0	0	0	0	3	0	2	2	7	64
16:30	1	59	7	1	68	0	0	0	0	0	0	0	0	0	0	3	0	11	0	14	82
16:45	2	58	9	5	74	0	0	0	0	0	0	0	0	0	0	2	1	7	0	10	84
Total	4	191	33	11	239	0	0	0	0	0	0	0	0	0	0	11	3	36	3	53	292
17:00	1	56	4	6	67	0	0	0	0	0	0	0	0	0	0	4	0	12	1	17	84
17:15	0	63	4	5	72	0	0	0	Õ	Ö	Ö	Ö	0	Ö	Ö	3	0	9	3	15	87
17:30	1	48	3	7	59	0	0	0	0	0	0	0	0	0	0	2	0	14	0	16	75
Grand Total	84	2020	541	101	2746	0	0	0	1	1	Ö	Ö	0	Ö	Ö	72	30	110	55	267	3014
Apprch %	3.1	73.6	19.7	3.7		0	0	0	100	•	0	0	0	0		27	11.2	41.2	20.6		
Total %	2.8	67	17.9	3.4	91.1	0	0	0	0	0	0	0	0	0	0	2.4	1	3.6	1.8	8.9	
Vehicles	83	2019	534	89	2725	0	0	0	1	1	0	0	0	0	0	71	30	110	22	233	2959
% Vehicles	98.8	100	98.7	88.1	99.2	0	0	0	100	100	0	0	0	0	0	98.6	100	100	40	87.3	98.2
Heavy Vehicles	1	1	7	12	21	0	0	0	0	0	0	0	0	0	0	1	0	0	33	34	55
% Heavy Vehicles	1.2	0	1.3	11.9	8.0	0	0	0	0	0	0	0	0	0	0	1.4	0	0	60	12.7	1.8

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 3A_JAMES Site Code: 00000000 Start Date: 7/10/2018

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 3A_JAMES Site Code: 00000000 Start Date: 7/10/2018

		DIA					3A					DIA					3A				
		Fre	om No	orth			Fr	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fron	m 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersect	ion Be	gins at	06:45															
06:45	6	199	49	5	259	0	0	0	1	1	0	0	0	0	0	1	0	0	3	4	264
07:00	6	137	68	0	211	0	0	0	0	0	0	0	0	0	0	0	0	1	3	4	215
07:15	6	127	57	1	191	0	0	0	0	0	0	0	0	0	0	1	1	2	6	10	201
07:30	12	122	45	2	181	0	0	0	0	0	0	0	0	0	0	5	0	0	3	8	189
Total Volume	30	585	219	8	842	0	0	0	1	1	0	0	0	0	0	7	1	3	15	26	869
% App. Total	3.6	69.5	26	1		0	0	0	100		0	0	0	0		26.9	3.8	11.5	57.7		
PHF	.625	.735	.805	.400	.813	.000	.000	.000	.250	.250	.000	.000	.000	.000	.000	.350	.250	.375	.625	.650	.823
Vehicles	30	585	217	1	833	0	0	0	1	1	0	0	0	0	0	7	1	3	0	11	845
% Vehicles	100	100	99.1	12.5	98.9	0	0	0	100	100	0	0	0	0	0	100	100	100	0	42.3	97.2
Heavy Vehicles	0	0	2	7	9	0	0	0	0	0	0	0	0	0	0	0	0	0	15	15	24
% Heavy Vehicles	0	0	0.9	87.5	1.1	0	0	0	0	0	0	0	0	0	0	0	0	0	100	57.7	2.8

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 3A_JAMES Site Code: 00000000 Start Date: 7/10/2018

		DIA					0.4					DIA					0.4				1
		DIA					3A					DIA					3A				
		Fr	om No	orth			Fi	rom E	ast			Fr	om Sc	outh			Fr	om W	lest		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Froi	m 12:0	00 to 1	7:30 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	16:30															
16:30	1	59	7	1	68	0	0	0	0	0	0	0	0	0	0	3	0	11	0	14	82
16:45	2	58	9	5	74	0	0	0	0	0	0	0	0	0	0	2	1	7	0	10	84
17:00	1	56	4	6	67	0	0	0	0	0	0	0	0	0	0	4	0	12	1	17	84
17:15	0	63	4	5	72	0	0	0	0	0	0	0	0	0	0	3	0	9	3	15	87
Total Volume	4	236	24	17	281	0	0	0	0	0	0	0	0	0	0	12	1	39	4	56	337
% App. Total	1.4	84	8.5	6		0	0	0	0		0	0	0	0		21.4	1.8	69.6	7.1		
PHF	.500	.937	.667	.708	.949	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.750	.250	.813	.333	.824	.968
Vehicles	4	236	24	17	281	0	0	0	0	0	0	0	0	0	0	12	1	39	1	53	334
% Vehicles	100	100	100	100	100	0	0	0	0	0	0	0	0	0	0	100	100	100	25.0	94.6	99.1
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	75.0	5.4	0.9

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 3B File Name : 3B

Site Code : 00000000

Start Date : 7/10/2018

Groups Pr	inted-	Bikes
-----------	--------	-------

		DIA					3B					DIA					3B				
		Fro	om No	orth				rom E	ast			Fre	om So				Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:30	0	0	0	0	0	1	1	1_	0	3	0	1_	0	0	1_	0	0	0	0	0	4
Total	0	0	0	0	0	1	1	1	0	3	0	1	0	0	1	0	0	0	0	0	4
06:00	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	2
06:30	0	0	0	0	0	1_	0	0	0	1	0	1	0	0	1	0	0	0	0	0	2
Total	0	0	0	0	0	1	0	1	0	2	1	1	0	0	2	0	0	0	0	0	4
07:00	0	0	0	0	0	0	0	0	0	0	0	3	1	0	4	0	0	0	0	0	4
07:30	0	0	0	0	0	0	0	2	0	2	2	2	0	0	4	0	0	0	0	0	6
Total	0	0	0	0	0	0	0	2	0	2	2	5	1	0	8	0	0	0	0	0	10
08:00 *** BREAK	0	0	0	0	0	3	0	3	0	6	6	1	0	0	7	0	0	0	0	0	13
Total	0	0	0	0	0	3	0	3	0	6	6	1	0	0	7	0	0	0	0	0	13
*** BREAK	***																				
14:30	0	0	0	0	0	2	0	0	0	2	1	4	0	0	5	0	0	0	0	0	7
Total	0	0	0	0	0	2	0	0	0	2	1	4	0	0	5	0	0	0	0	0	7
15:00	0	0	0	0	0	1	0	0	0	1	0	3	0	0	3	0	0	0	0	0	4
15:30	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2
Total	0	0	0	0	0	1	0	0	0	1	0	5	0	0	5	0	0	0	0	0	6
16:00	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
16:30	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
Total	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
*** BREAK	***																				
Grand Total	0	0	0	0	0	8	1	7	0	16	12	17	1	0	30	0	0	0	0	0	46
Apprch %	0	0	0	0		50	6.2	43.8	0		40	56.7	3.3	0		0	0	0	0		
Total %	0	0	0	0	0	17.4	2.2	15.2	0	34.8	26.1	37	2.2	0	65.2	0	0	0	0	0	

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 3B

Site Code : 00000000 Start Date : 7/10/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 3B

Site Code : 00000000 Start Date : 7/10/2018

		DIA					3B					DIA					3B				
		Fr	om No	orth			Fi	rom E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Froi	m 05:3	30 to 1	1:30 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	07:30															
07:30	0	0	0	0	0	0	0	2	0	2	2	2	0	0	4	0	0	0	0	0	6
08:00	0	0	0	0	0	3	0	3	0	6	6	1	0	0	7	0	0	0	0	0	13
Total Volume	0	0	0	0	0	3	0	5	0	8	8	3	0	0	11	0	0	0	0	0	19
% App. Total	0	0	0	0		37.5	0	62.5	0		72.7	27.3	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.500	.000	.833	.000	.667	.667	.750	.000	.000	.786	.000	.000	.000	.000	.000	.731

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 3B

Site Code : 00000000 Start Date : 7/10/2018

		DIA					3B					DIA					3B				l
		Fr	om No	orth			Fi	rom E	ast			Fre	om Sc	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Froi	m 12:0	00 to 1	7:00 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersect	ion Be	gins at	14:30															
14:30	0	0	0	0	0	2	0	0	0	2	1	4	0	0	5	0	0	0	0	0	7
15:00	0	0	0	0	0	1	0	0	0	1	0	3	0	0	3	0	0	0	0	0	4
Total Volume	0	0	0	0	0	3	0	0	0	3	1	7	0	0	8	0	0	0	0	0	11
% App. Total	0	0	0	0		100	0	0	0		12.5	87.5	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.750	.000	.000	.000	.750	.500	.875	.000	.000	.800	.000	.000	.000	.000	.000	.786

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 3B File Name: 3B

Site Code : 00000000 Start Date : 7/10/2018

Page No : 1

Groups Printed-Vehicles - Heavy Vehicles

		DIA					3B	ирэг	iiiieu	· veille	163 - 1	DIA	veille	163			3B				
			om No	orth				rom E	act				om Sc	suth				om W	loct		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left		App. Total	Right	Thru	Left		App. Total	Int. Total
05:30	Nigiti 0	0	0	0	App. Total	15	0	1	0	App. 10tal	7	25	0	0	App. 10tal	O Rigiti	0	0	0	App. Total	48
Total	0	0	0	0	0	15	0	1	0	16	7	25	0	0	32	0	0	0	0	0	48
Total	, 0	U	U	U	U	13	U	'	U	10	,	23	U	U	32	0	U	U	U	U	40
06:00	0	0	0	0	0	10	0	6	3	19	14	57	8	0	79	0	0	0	0	0	98
06:30	0	0	0	0	0	17	0	13	2	32	17	93	12	0	122	0	0	0	0	0	154
Total	0	0	0	0	0	27	0	19	5	51	31	150	20	0	201	0	0	0	0	0	252
07:00	0	0	0	0	0	20	3	11	0	34	20	92	3	1	116	0	0	0	0	0	150
07:30	0	0	0	0	0	30	1	30	6	67	15	134	18	4	171	0	0	0	0	0	238
Total	0	0	0	0	0	50	4	41	6	101	35	226	21	5	287	0	0	0	0	0	388
08:00 *** BREAK	0	3	0	1	4	27	0	21	4	52	20	84	3	6	113	0	0	0	0	0	169
Total	0	3	0	1	4	27	0	21	4	52	20	84	3	6	113	0	0	0	0	0	169
*** BREAK	***																				
14:30	0	0	0	0	0	61	1	19	2	83	22	154	4	3	183	0	0	0	0	0	266
Total	0	0	0	0	0	61	1	19	2	83	22	154	4	3	183	0	0	0	0	0	266
15:00	0	0	0	0	0	58	3	16	3	80	21	223	2	10	256	0	0	0	0	0	336
15:30	0	0	0	0	0	132	0	24	4	160	15	290	4	3	312	0	0	0	0	0	472
Total	0	0	0	0	0	190	3	40	7	240	36	513	6	13	568	0	0	0	0	0	808
16:00	0	0	0	0	0	63	0	18	3	84	6	307	7	8	328	0	0	0	0	0	412
16:30	0	0	0	0	0	45	0	18	8	71	1	312	0	6	319	0	0	0	0	0	390
Total	0	0	0	0	0	108	0	36	11	155	7	619	7	14	647	0	0	0	0	0	802
17:00	0	0	0	0	0	44	0	7	3	54	1	243	1	5	250	0	0	0	0	0	304
Grand Total	0	3	0	1	4	522	8	184	38	752	159	2014	62	46	2281	0	0	0	0	0	3037
Apprch %	0	75	0	25		69.4	1.1	24.5	5.1		7	88.3	2.7	2		0	0	0	0		
ˈTotal %	0	0.1	0	0	0.1	17.2	0.3	6.1	1.3	24.8	5.2	66.3	2	1.5	75.1	0	0	0	0	0	
Vehicles	0	3	0	1	4	522	8	184	36	750	159	1999	62	45	2265	0	0	0	0	0	3019
% Vehicles	0	100	0	100	100	100	100	100	94.7	99.7	100	99.3	100	97.8	99.3	0	0	0	0	0	99.4
Heavy Vehicles	0	0	0	0	0	0	0	0	2	2	0	15	0	1	16	0	0	0	0	0	18
% Heavy Vehicles	0	0	0	0	0	0	0	0	5.3	0.3	0	0.7	0	2.2	0.7	0	0	0	0	0	0.6

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 3B

Site Code : 00000000 Start Date : 7/10/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 3B

Site Code : 00000000 Start Date : 7/10/2018

		DIA					3B					DIA					3B				
		Fre	om No	orth			Fi	rom E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fron	m 05:3	30 to 1	1:30 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	07:30															
07:30	0	0	0	0	0	30	1	30	6	67	15	134	18	4	171	0	0	0	0	0	238
08:00	0	3	0	1_	4	27	0	21	4	52	20	84	3	6	113	0	0	0	0	0	169
Total Volume	0	3	0	1	4	57	1	51	10	119	35	218	21	10	284	0	0	0	0	0	407
% App. Total	0	75	0	25		47.9	8.0	42.9	8.4		12.3	76.8	7.4	3.5		0	0	0	0		
PHF	.000	.500	.000	.500	.500	.950	.500	.850	.833	.888	.875	.813	.583	.833	.830	.000	.000	.000	.000	.000	.855
Vehicles	0	3	0	1	4	57	1	51	9	118	35	218	21	10	284	0	0	0	0	0	406
% Vehicles	0	100	0	100	100	100	100	100	90.0	99.2	100	100	100	100	100	0	0	0	0	0	99.8
Heavy Vehicles	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	. 1
% Heavy Vehicles	0	0	0	0	0	0	0	0	10.0	8.0	0	0	0	0	0	0	0	0	0	0	0.2

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 3B

Site Code : 00000000 Start Date : 7/10/2018

		DIA					3B					DIA					3B				
		Fr	om No	orth			Fi	rom E	ast			Fre	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. To
Peak Hour A	Analys	is Fro	m 12:0	00 to 1	7:00 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	15:30															
15:30	0	0	0	0	0	132	0	24	4	160	15	290	4	3	312	0	0	0	0	0	47
16:00	0	0	0	0	0	63	0	18	3	84	6	307	7	8	328	0	0	0	0	0	41
Total Volume	0	0	0	0	0	195	0	42	7	244	21	597	11	11	640	0	0	0	0	0	88
% App. Total	0	0	0	0		79.9	0	17.2	2.9		3.3	93.3	1.7	1.7		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.739	.000	.875	.875	.763	.700	.972	.786	.688	.976	.000	.000	.000	.000	.000	.936
Vehicles	0	0	0	0	0	195	0	42	6	243	21	594	11	10	636	0	0	0	0	0	879
% Vehicles	0	0	0	0	0	100	0	100	85.7	99.6	100	99.5	100	90.9	99.4	0	0	0	0	0	99.
Heavy Vehicles	0	0	0	0	0	0	0	0	1	1	0	3	0	1	4	0	0	0	0	0	:
% Heavy Vehicles	0	0	0	0	0	0	0	0	14.3	0.4	0	0.5	0	9.1	0.6	0	0	0	0	0	0.0

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 4A

File Name: 4A Start Date: 06/28/2018

Site Code : 00000000 Start Date : 6/28/2018

Page No : 1

Groups Printed- Bikes

		DIA					4A					DIA					4A				
		Fr	om No	rth			Fı	rom E	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK	***																				
																					1
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
Total %																					

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4A

Site Code : 00000000 Start Date : 6/28/2018

		DIA					4A					DIA					4A]
		Fr	om No	orth			Fı	rom E	ast			Fr	om So	uth			Fı	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	06:00	to 11:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 06:0	00															
06:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4A

Site Code : 00000000 Start Date : 6/28/2018

																					1
		DIA					4A					DIA					4A				
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	12:00	to 17:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 12:0	00															
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

Bohannon Huston, Inc. 7500 Jefferson Street NE

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 4A

Start Date: 06/28/2018

File Name: 4A

Site Code : 00000000 Start Date : 6/28/2018

							Gro	ups Pr	inted-	Vehicles	s - Hea	vv Ve	hicles								
		DIA					4A					DIA					4A				
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left		App. Total	Right	Thru	Left		App. Total	Int. Total
06:00	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	1	0	0	2	3	7
06:15	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	1	0	0	2	3	8
06:30	8	0	0	0	8	0	0	0	0	0	0	0	0	0	0	1	0	1	6	8	16
06:45	15	0	0	0	15	0	0	0	0	0	0	0	0	0	0	0	0	3	5	8	23
Total	32	0	0	0	32	0	0	0	0	0	0	0	0	0	0	3	0	4	15	22	54
																				'	
07:00	19	0	0	0	19	0	0	0	0	0	0	0	0	0	0	1	0	0	2	3	22
07:15	27	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	1	5	6	33
07:30	24	0	0	0	24	0	0	0	0	0	0	0	0	0	0	1	0	4	7	12	36
07:45	39	0	0	0	39	0	0	0	0	0	0	0	0	0	0	2	0	2	5	9	48
Total	109	0	0	0	109	0	0	0	0	0	0	0	0	0	0	4	0	7	19	30	139
											-				- '						
08:00	28	0	0	1	29	0	0	0	0	0	0	0	0	0	0	1	0	7	12	20	49
08:15	13	0	0	0	13	0	0	0	0	0	0	0	0	0	0	2	0	5	2	9	22
08:30	10	0	0	0	10	0	0	0	0	0	0	0	0	0	0	2	0	2	0	4	14
08:45	16	0	0	1	17	0	0	0	0	0	0	0	0	0	0	4	0	5	10	19	36
Total	67	0	0	2	69	0	0	0	0	0	0	0	0	0	0	9	0	19	24	52	121
*** BREAK	***																				
15:00	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	2	0	5	8	15	20
15:15	1	0	0	1	2	0	0	0	0	0	0	0	0	0	0	1	0	10	12	23	25
15:30	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	8	2	11	12
15:45	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	7	4	11	16
Total	12	0	0	1	13	0	0	0	0	0	0	0	0	0	0	4	0	30	26	60	73
16:00	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	5	4	9	10
16:15	3	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0	10	0	10	14
16:30	7	0	0	0	7	0	0	0	0	0	0	0	0	0	0	1	0	21	4	26	33
16:45	3	0	0	1	4	0	0	0	0	0	0	0	0	0	0	1	0	9	4	14	18
Total	14	0	0	2	16	0	0	0	0	0	0	0	0	0	0	2	0	45	12	59	75
17:00	=	0	0	0	5	0	0	0	0	0		0	0	0	0	1	0	12	2	18	23
17:00	5 4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	4 2	0	9	2 5	16	20
17:13	4	0	0	1	5	0	0	0	0	0	0	0	0	0	0	4	1	12	2	19	24
17:30	1	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	13	3	16	18
Total	14	0	0	2	16	0	0	0	0	0	0	0	0	0	0	10	1	46	12	69	85
C1T (1	240	0	0	7	255	_	0	0	0	0	۱ ۵	0	0	0	0	22	1	1.5.1	100	202	E 477
Grand Total	248 97.3	0	0	7	255	0	0	0	0	0	0	0	0	0	0	32	1	151	108	292	547
Apprch %		0	0	2.7	16.6	0	0	0	0	^	0	0	0	0		11	0.3	51.7	37	52.4	
Total %	45.3	0	0	1.3	46.6	0	0	0	0	0	0	0	0	0	0	5.9	0.2	27.6	19.7	53.4	510
Vehicles	248	0	0	7	255	0	0	0	0	0	0	0	0	0	0	32	1	151	71 65.7	255	510
% Vehicles	100	0	0	100	100	0	0	0	0	0	0	0	0	0	0	100	100	100	65.7	87.3	93.2
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37	37	37
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34.3	12.7	6.8

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4A

Site Code : 00000000 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4A

Site Code : 00000000 Start Date : 6/28/2018

		DIA					4A					DIA					4A				
		Fr	om No	rth			Fı	rom E	ast			Fr	om So	uth			Fı	om W	⁷ est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	06:00 1	to 11:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inters	section	Begin	s at 07:1	5															
07:15	27	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	1	5	6	33
07:30	24	0	0	0	24	0	0	0	0	0	0	0	0	0	0	1	0	4	7	12	36
07:45	39	0	0	0	39	0	0	0	0	0	0	0	0	0	0	2	0	2	5	9	48
08:00	28	0	0	1	29	0	0	0	0	0	0	0	0	0	0	1	0	7	12	20	49
Total Volume	118	0	0	1	119	0	0	0	0	0	0	0	0	0	0	4	0	14	29	47	166
% App. Total	99.2	0	0	0.8		0	0	0	0		0	0	0	0		8.5	0	29.8	61.7		
PHF	.756	.000	.000	.250	.763	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.500	.000	.500	.604	.588	.847
Vehicles	118	0	0	1	119	0	0	0	0	0	0	0	0	0	0	4	0	14	12	30	149
% Vehicles	100	0	0	100	100	0	0	0	0	0	0	0	0	0	0	100	0	100	41.4	63.8	89.8
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17	17	17
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	58.6	36.2	10.2

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4A

Site Code : 00000000 Start Date : 6/28/2018

		DIA					4A					DIA					4A				
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	12:00	to 17:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inters	section	Begin	s at 16:3	30															
16:30	7	0	0	0	7	0	0	0	0	0	0	0	0	0	0	1	0	21	4	26	33
16:45	3	0	0	1	4	0	0	0	0	0	0	0	0	0	0	1	0	9	4	14	18
17:00	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	4	0	12	2	18	23
17:15	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	2	0	9	5	16	20
Total Volume	19	0	0	1	20	0	0	0	0	0	0	0	0	0	0	8	0	51	15	74	94
% App. Total	95	0	0	5		0	0	0	0		0	0	0	0		10.8	0	68.9	20.3		
PHF	.679	.000	.000	.250	.714	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.500	.000	.607	.750	.712	.712
Vehicles	19	0	0	1	20	0	0	0	0	0	0	0	0	0	0	8	0	51	12	71	91
% Vehicles	100	0	0	100	100	0	0	0	0	0	0	0	0	0	0	100	0	100	80.0	95.9	96.8
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20.0	4.1	3.2

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 4B

File Name: 4B Start Date: 06/28/2018

Site Code : 00000000 Start Date : 6/28/2018

Page No : 1

Groups Printed- Bikes

		DIA					4B		Grou	93 1 1 1110		DIA					4B				
		Fr	om No				F	rom Ea				Fr	om So				Fı	om W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK	***																				
06:15	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
06:30	0	0	0	0	0	0	0	0	0	0	0	3	1	0	4	0	0	0	0	0	4
06:45	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2
Total	0	0	0	0	0	0	0	0	0	0	0	6	1	0	7	0	0	0	0	0	7
07:00	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2
07:15	ő	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2
07:30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
07:45	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	4
Total	0	0	0	0	0	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	9
08:00	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
08:15	0	0	0	0	0	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	6
08:30	0	0	0	0	0	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	5
08:45	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
Total	0	0	0	0	0	0	0	0	0	0	0	17	0	0	17	0	0	0	0	0	17
*** BREAK	***																				
15:00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
15:15	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
15:30	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	4
15:45	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
Total	0	0	0	0	0	0	0	0	0	0	0	9	0	0	9	0	0	0	0	0	9
16:00	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2
16:15	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
16:30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
*** BREAK																					
Total	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	4
17:00 *** BREAK	***	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
17:30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
*** BREAK	***																				
Total	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	4
Grand Total	0	0	0	0	0	0	0	0	0	0	0	49	1	0	50	0	0	0	0	0	50
Apprch %	0	0	0	0		0	0	0	0		0	98	2	0		0	0	0	0		
Total %	0	0	0	0	0	0	0	0	0	0	0	98	2	0	100	0	0	0	0	0	

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4B

Site Code : 00000000 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4B

Site Code : 00000000 Start Date : 6/28/2018

		DIA					4B					DIA					4B]
		Fr	From North				Fı	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	06:00	to 11:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 07:4	15															
07:45	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	4
08:00	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
08:15	0	0	0	0	0	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	6
08:30	0	0	0	0	0	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	5
Total Volume	0	0	0	0	0	0	0	0	0	0	0	18	0	0	18	0	0	0	0	0	18
% App. Total	0	0	0	0		0	0	0	0		0	100	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.750	.000	.000	.750	.000	.000	.000	.000	.000	.750

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4B

Site Code : 00000000 Start Date : 6/28/2018

		DIA					4B					DIA					4B				
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	12:00 1	to 17:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inters	section	Begin	s at 15:1	5															
15:15	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
15:30	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	4
15:45	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	3
16:00	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2
Total Volume	0	0	0	0	0	0	0	0	0	0	0	10	0	0	10	0	0	0	0	0	10
% App. Total	0	0	0	0		0	0	0	0		0	100	0	0		0	0	0	0		
DITE	000	000	000	000	000	000	000	000	000	000	000	625	000	000	625	000	000	000	000	000	625

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 4B

Start Date: 06/28/2018

File Name: 4B

Site Code : 00000000 Start Date : 6/28/2018

Groups Printed- Vehicles	s - Heavy Vehicles
4B	DIA

		DIA						ups Pr	ıntea-	Vehicle	s - Hea	_				I	400				1
		DIA					4B	_				DIA					4B				
G Tr:			om No					rom E					om So					rom W	1		
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left		App. Total	Right	Thru	Left		App. Total	Int. Total
06:00	0	0	0	0	0	0	1	0	3	4	0	18	1	2	21	0	0	0	0	0	25
06:15	0	0	0	0	0	0	0	0	0	0	0	15	1	0	16	0	0	0	0	0	16
06:30	0	0	0	0	0	0	0	0	4	4	0	21	1	0	22	0	0	0	0	0	26
06:45	0	0	0	0	0	0	0	0	5	5	0	51	0	0	51	0	0	0	0	0	56
Total	0	0	0	0	0	0	1	0	12	13	0	105	3	2	110	0	0	0	0	0	123
07:00	0	0	0	0	0	0	0	0	1	1	0	46	0	0	46	0	0	0	0	0	47
07:15	0	0	0	0	0	0	0	0	0	0	0	58	2	0	60	0	0	0	0	0	60
07:30	0	0	0	0	0	0	0	0	1	1	0	53	2	0	55	0	0	0	0	0	56
07:45	0	0	0	0	0	0	0	0	0	0	0	72	2	0	74	0	0	0	0	0	74
Total	0	0	0	0	0	0	0	0	2	2	0	229	6	0	235	0	0	0	0	0	237
08:00	0	0	0	0	0	0	0	0	8	8	0	71	2	0	73	0	0	0	0	0	81
08:15	0	0	0	0	0	0	0	0	1	1	0	67	5	0	72	0	0	0	0	0	73
08:30	0	0	0	0	0	0	0	0	6	6	0	46	2	1	49	0	0	0	1	1	56
08:45	0	0	0	0	0	0	0	0	0	0	0	62	2	0	64	0	0	0	0	0	64
Total	0	0	0	0	0	0	0	0	15	15	0	246	11	1	258	0	0	0	1	1	274
*** BREAK	***																				
15:00	0	0	0	0	0	0	1	0	3	4	0	90	1	0	91	0	0	0	0	0	95
15:15	0	0	0	0	0	0	0	0	3	3	0	100	0	0	100	0	0	0	0	0	103
15:30	0	0	0	0	0	0	0	0	2	2	0	107	0	0	107	0	0	0	0	0	109
15:45	0	0	0	0	0	0	0	0	1	1	0	145	1	0	146	0	0	0	0	0	147
Total	0	0	0	0	0	0	1	0	9	10	0	442	2	0	444	0	0	0	0	0	454
16:00	0	0	0	0	0	0	0	0	5	5	0	170	0	0	170	0	0	0	0	0	175
16:15	0	0	0	0	0	0	0	0	5	5	0	199	1	0	200	0	0	0	0	0	205
16:30	0	0	0	0	0	0	0	0	2	2	0	165	0	0	165	0	0	0	0	0	167
16:45	0	0	0	0	0	0	0	0	4	4	0	187	1	0	188	0	0	0	0	0	192
Total	0	0	0	0	0	0	0	0	16	16	0	721	2	0	723	0	0	0	0	0	739
17:00	0	0	0	0	0	0	0	0	3	3	0	187	1	2	190	0	0	0	0	0	193
17:15	0	0	0	0	0	0	0	0	4	4	0	199	1	2	202	0	0	0	0	0	206
17:30	0	0	0	0	0	0	0	0	7	7	0	198	0	0	198	0	0	0	0	0	205
17:45	0	0	0	0	0	0	0	0	7	7	0	129	0	1	130	0	0	0	0	0	137
Total	0	0	0	0	0	0	0	0	21	21	0	713	2	5	720	0	0	0	0	0	741
Grand Total	0	0	0	0	0	0	2	0	75	77	0	2456	26	8	2490	0	0	0	1	1	2568
Apprch %	0	0	0	0		0	2.6	0	97.4		0	98.6	1	0.3		0	0	0	100		
Total %	0	0	0	0	0	0	0.1	0	2.9	3	0	95.6	1	0.3	97	0	0	0	0	0	
Vehicles	0	0	0	0	0	0	2	0	49	51	0	2456	26	6	2488	0	0	0	1	1	2540
% Vehicles	0	0	0	0	0	0	100	0	65.3	66.2	0	100	100	75	99.9	0	0	0	100	100	98.9
Heavy Vehicles	0	0	0	0	0	0	0	0	26	26	0	0	0	2	2	0	0	0	0	0	28
% Heavy Vehicles	0	0	0	0	0	0	0	0	34.7	33.8	0	0	0	25	0.1	0	0	0	0	0	1.1

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4B

Site Code : 00000000 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4B

Site Code : 00000000 Start Date : 6/28/2018

		DIA					4B					DIA					4B				
		Fr	om No	rth			Fı	rom E	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	06:00	to 11:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inters	section	Begin	s at 07:3	30															
07:30	0	0	0	0	0	0	0	0	1	1	0	53	2	0	55	0	0	0	0	0	56
07:45	0	0	0	0	0	0	0	0	0	0	0	72	2	0	74	0	0	0	0	0	74
08:00	0	0	0	0	0	0	0	0	8	8	0	71	2	0	73	0	0	0	0	0	81
08:15	0	0	0	0	0	0	0	0	1	1	0	67	5	0	72	0	0	0	0	0	73
Total Volume	0	0	0	0	0	0	0	0	10	10	0	263	11	0	274	0	0	0	0	0	284
% App. Total	0	0	0	0		0	0	0	100		0	96	4	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.313	.313	.000	.913	.550	.000	.926	.000	.000	.000	.000	.000	.877
Vehicles	0	0	0	0	0	0	0	0	10	10	0	263	11	0	274	0	0	0	0	0	284
% Vehicles	0	0	0	0	0	0	0	0	100	100	0	100	100	0	100	0	0	0	0	0	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 4B

Site Code : 00000000 Start Date : 6/28/2018

		DIA					4B					DIA					4B]
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fı	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	12:00	to 17:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 16:4	15															
16:45	0	0	0	0	0	0	0	0	4	4	0	187	1	0	188	0	0	0	0	0	192
17:00	0	0	0	0	0	0	0	0	3	3	0	187	1	2	190	0	0	0	0	0	193
17:15	0	0	0	0	0	0	0	0	4	4	0	199	1	2	202	0	0	0	0	0	206
17:30	0	0	0	0	0	0	0	0	7	7	0	198	0	0	198	0	0	0	0	0	205
Total Volume	0	0	0	0	0	0	0	0	18	18	0	771	3	4	778	0	0	0	0	0	796
% App. Total	0	0	0	0		0	0	0	100		0	99.1	0.4	0.5		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.643	.643	.000	.969	.750	.500	.963	.000	.000	.000	.000	.000	.966
Vehicles	0	0	0	0	0	0	0	0	11	11	0	771	3	2	776	0	0	0	0	0	787
% Vehicles	0	0	0	0	0	0	0	0	61.1	61.1	0	100	100	50.0	99.7	0	0	0	0	0	98.9
Heavy Vehicles	0	0	0	0	0	0	0	0	7	7	0	0	0	2	2	0	0	0	0	0	9
% Heavy Vehicles	0	0	0	0	0	0	0	0	38.9	38.9	0	0	0	50.0	0.3	0	0	0	0	0	1.1

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Location: 5 (AM) Start Date: 06/28/2018 File Name: 5_am Site Code: 00000005 Start Date : 6/28/2018

Page No : 1

Groups Printed- Bikes

]
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK	***							•				•									•
06:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3	4	4
06:45	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Total	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	1	3	4	7
Total	0	U	U	3	3	1 0	U	U	U	U	0	U	U	U	U	U	U	1	3	4	/
07:00	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
07:15	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
07:30	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
07:45	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Total	0	0	0	12	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12
08:00	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
08:15	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:30	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Grand Total	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	0	1	3	4	26
Apprch %	0	0	0	100		0	0	0	0		0	0	0	0		0	0	25	75		
Total %	0	0	0	84.6	84.6	0	0	0	0	0	0	0	0	0	0	0	0	3.8	11.5	15.4	

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 5_am Site Code : 00000005 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 5_am Site Code : 00000005 Start Date : 6/28/2018

																					1
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	05:45	to 08:3	0 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 07:1	5															
07:15	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
07:30	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
07:45	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
08:00	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Total Volume	0	0	0	15	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
% App. Total	0	0	0	100		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.625	.625	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.625

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 5 (PM) File Name: 5_PM

Start Date: 06/28/2018 Site Code : 00000005 Start Date : 6/28/2018

Page No : 1

Groups Printed- Bikes

		Fr	om N	orth			Fı	rom E	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Tota
*** BREAK	***																				
14:45	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	2
Total	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	2
*** BREAK 15:30 *** BREAK	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Total	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				
Grand Total	0	0	0	1	1	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	3
Apprch %	0	0	0	100		100	0	0	0		100	0	0	0		0	0	0	0		
Total %	0	0	0	33.3	33.3	33.3	0	0	0	33.3	33.3	0	0	0	33.3	0	0	0	0	0	

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 5_PM Site Code: 00000005 Start Date: 6/28/2018

						E E 4						F. C. 4												
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Right Thru Left Peds App. Total					Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total			
Peak Hour A	nalysis	From	14:30	to 17:3	0 - Peak	1 of 1																		
Peak Hour fo	r Entir	e Inter	section	Begin	s at 14:4	15																		
14:45	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	2			
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
15:30	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1			
Total Volume	0	0	0	1	1	1	0	0	0	1	1	0	0	0	1	0	0	0	0	0	3			
% App. Total	0	0	0	100		100	0	0	0		100	0	0	0		0	0	0	0					
PHF	.000	.000	.000	.250	.250	.250	.000	.000	.000	.250	.250	.000	.000	.000	.250	.000	.000	.000	.000	.000	.375			

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Location: 5 (AM) Start Date: 06/28/2018 File Name: 5 am

Site Code : 00000005 Start Date : 6/28/2018

Page No : 1

Groups Printed- Vehicles - Heavy Vehicles

							GIU	ирэтт	iiittu-	v cilicie	J - 1100	ivy ve	incies								1
		Fr	om No	orth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est.		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:45	0	0	2	0	2	1	0	0	1	2	0	0	0	0	0	0	0	0	0	0	4
Total	0	0	2	0	2	1	0	0	1	2	0	0	0	0	0	0	0	0	0	0	4
06:00	0	0	2	0	2	1	0	1	0	2	0	0	0	2	2	0	0	1	0	1	7
06:15	0	0	8	0	8	0	0	0	1	1	0	0	0	0	0	0	0	2	0	2	11
06:30	0	0	10	1	11	0	0	0	2	2	1	0	0	2	3	0	0	2	3	5	21
06:45	0	0	16	3	19	0	0	0	1	1	3	0	0	1	4	0	0	0	0	0	24
Total	0	0	36	4	40	1	0	1	4	6	4	0	0	5	9	0	0	5	3	8	63
07:00	0	0	17	5	22	0	0	1	0	1	5	0	0	0	5	0	0	0	0	0	28
07:15	0	0	10	6	16	3	0	1	0	4	3	0	0	0	3	0	0	0	0	0	23
07:30	0	0	2	5	7	1	0	3	0	4	4	0	0	0	4	0	0	0	0	0	15
07:45	0	0	3	11	14	6	0	2	0	8	7	0	0	0	7	0	0	0	0	0	29
Total	0	0	32	27	59	10	0	7	0	17	19	0	0	0	19	0	0	0	0	0	95
																					ı
08:00	0	0	1	4	5	4	0	3	0	7	1	0	0	0	1	0	0	0	0	0	13
08:15	0	0	5	13	18	8	0	2	0	10	3	0	0	0	3	0	0	0	0	0	31
08:30	0	0	1	11	12	5	0	2	0	7	1	0	0	0	1	0	0	0	0	0	20
Grand Total	0	0	77	59	136	29	0	15	5	49	28	0	0	5	33	0	0	5	3	8	226
Apprch %	0	0	56.6	43.4		59.2	0	30.6	10.2		84.8	0	0	15.2		0	0	62.5	37.5		
Total %	0	0	34.1	26.1	60.2	12.8	0	6.6	2.2	21.7	12.4	0	0	2.2	14.6	0	0	2.2	1.3	3.5	
Vehicles	0	0	77	33	110	29	0	15	3	47	28	0	0	5	33	0	0	2	1	3	193
% Vehicles	0	0	100	55.9	80.9	100	0	100	60	95.9	100	0	0	100	100	0	0	40	33.3	37.5	85.4
Heavy Vehicles	0	0	0	26	26	0	0	0	2	2	0	0	0	0	0	0	0	3	2	5	33
% Heavy Vehicles	0	0	0	44.1	19.1	0	0	0	40	4.1	0	0	0	0	0	0	0	60	66.7	62.5	14.6

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 5_am Site Code : 00000005 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 5_am Site Code : 00000005 Start Date : 6/28/2018

						From East						From South												
		Fr	om No	orth			Fı	om E	ast			Fr	om So	uth			Fı	om W	est					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total			
Peak Hour A	nalysis	From	05:45	to 08:3	0 - Peak	1 of 1																		
Peak Hour fo	r Entir	e Inter	section	Begin	s at 06:3	0																		
06:30	0	0	10	1	11	0	0	0	2	2	1	0	0	2	3	0	0	2	3	5	21			
06:45	0	0	16	3	19	0	0	0	1	1	3	0	0	1	4	0	0	0	0	0	24			
07:00	0	0	17	5	22	0	0	1	0	1	5	0	0	0	5	0	0	0	0	0	28			
07:15	0	0	10	6	16	3	0	1	0	4	3	0	0	0	3	0	0	0	0	0	23			
Total Volume	0	0	53	15	68	3	0	2	3	8	12	0	0	3	15	0	0	2	3	5	96			
% App. Total	0	0	77.9	22.1		37.5	0	25	37.5		80	0	0	20		0	0	40	60					
PHF	.000	.000	.779	.625	.773	.250	.000	.500	.375	.500	.600	.000	.000	.375	.750	.000	.000	.250	.250	.250	.857			
Vehicles	0	0	53	13	66	3	0	2	2	7	12	0	0	3	15	0	0	0	1	1	89			
% Vehicles	0	0	100	86.7	97.1	100	0	100	66.7	87.5	100	0	0	100	100	0	0	0	33.3	20.0	92.7			
Heavy Vehicles	0	0	0	2	2	0	0	0	1	1	0	0	0	0	0	0	0	2	2	4	7			
% Heavy Vehicles	0	0	0	13.3	2.9	0	0	0	33.3	12.5	0	0	0	0	0	0	0	100	66.7	80.0	7.3			

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Location: 5 (PM) Start Date: 06/28/2018 File Name: 5 PM

Site Code : 00000005 Start Date : 6/28/2018

Page No : 1

Groups Printed- Vehicles - Heavy Vehicles

							Grot	ibs i i	inteu- venicies - Heavy venicies												1
		Fr	om No	orth			Fi	rom E	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
14:30	0	0	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
14:45	0	0	2	1	3	2	0	1	0	3	6	0	0	0	6	0	0	0	0	0	12
Total	0	0	6	1	7	2	0	1	0	3	6	0	0	0	6	0	0	0	0	0	16
						'									- 1						
15:00	0	0	5	9	14	6	0	1	0	7	5	0	0	0	5	0	0	0	0	0	26
15:15	0	0	6	3	9	6	0	0	0	6	0	0	0	0	0	0	0	0	0	0	15
15:30	0	0	3	9	12	9	0	1	0	10	5	0	0	0	5	0	0	0	0	0	27
15:45	0	0	1	4	5	33	0	2	0	35	0	0	0	0	0	0	0	0	0	0	40
Total	0	0	15	25	40	54	0	4	0	58	10	0	0	0	10	0	0	0	0	0	108
16:00	0	0	1	7	8	8	0	0	0	8	1	0	0	0	1	0	0	0	0	0	17
16:15	0	0	0	2	2	16	0	4	0	20	1	0	0	0	1	0	0	0	0	0	23
16:30	0	0	0	5	5	3	0	0	0	3	0	0	0	0	0	0	0	0	0	0	8
16:45	0	0	0	3	3	1	0	1	0	2	2	0	1	8	11	0	0	0	1	1	17
Total	0	0	1	17	18	28	0	5	0	33	4	0	1	8	13	0	0	0	1	1	65
17:00	0	0	0	3	3	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	4
17:15	0	0	0	8	8	9	0	0	0	9	0	0	0	0	0	0	0	0	0	0	17
17:30	0	0	2	10	12	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	17
Grand Total	0	0	24	64	88	98	0	10	0	108	21	0	1	8	30	0	0	0	1	1	227
Apprch %	0	0	27.3	72.7		90.7	0	9.3	0		70	0	3.3	26.7		0	0	0	100		
Total %	0	0	10.6	28.2	38.8	43.2	0	4.4	0	47.6	9.3	0	0.4	3.5	13.2	0	0	0	0.4	0.4	
Vehicles	0	0	24	20	44	98	0	10	0	108	21	0	1	4	26	0	0	0	1	1	179
% Vehicles	0	0	100	31.2	50	100	0	100	0	100	100	0	100	50	86.7	0	0	0	100	100	78.9
Heavy Vehicles	0	0	0	44	44	0	0	0	0	0	0	0	0	4	4	0	0	0	0	0	48
% Heavy Vehicles	0	0	0	68.8	50	0	0	0	0	0	0	0	0	50	13.3	0	0	0	0	0	21.1

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 5_PM Site Code : 00000005 Start Date : 6/28/2018

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name : 5_PM Site Code : 00000005 Start Date : 6/28/2018

			•			From East						From South						From West						
		Fr	om No	orth			Fi	rom E	ast			Fr	om So	uth			Fi	om W	est					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total			
Peak Hour A	nalysis	From	14:30	to 17:3	0 - Peak	1 of 1																		
Peak Hour fo	r Entir	e Inter	section	n Begin	s at 15:(00																		
15:00	0	0	5	9	14	6	0	1	0	7	5	0	0	0	5	0	0	0	0	0	26			
15:15	0	0	6	3	9	6	0	0	0	6	0	0	0	0	0	0	0	0	0	0	15			
15:30	0	0	3	9	12	9	0	1	0	10	5	0	0	0	5	0	0	0	0	0	27			
15:45	0	0	1	4	5	33	0	2	0	35	0	0	0	0	0	0	0	0	0	0	40			
Total Volume	0	0	15	25	40	54	0	4	0	58	10	0	0	0	10	0	0	0	0	0	108			
% App. Total	0	0	37.5	62.5		93.1	0	6.9	0		100	0	0	0		0	0	0	0					
PHF	.000	.000	.625	.694	.714	.409	.000	.500	.000	.414	.500	.000	.000	.000	.500	.000	.000	.000	.000	.000	.675			
Vehicles	0	0	15	9	24	54	0	4	0	58	10	0	0	0	10	0	0	0	0	0	92			
% Vehicles	0	0	100	36.0	60.0	100	0	100	0	100	100	0	0	0	100	0	0	0	0	0	85.2			
Heavy Vehicles	0	0	0	16	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16			
% Heavy Vehicles	0	0	0	64.0	40.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14.8			

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Location: 6

Start Date: 06/27/2018

File Name: 6

Site Code : 00000000 Start Date : 6/27/2018

Page No : 1

Groups Printed- Bikes

		DIA	$\overline{\mathbf{C}}$			6 DIA C 6]	
			om No	rth			F	rom E	ast				om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru			App. Total	Right	Thru			App. Total	Right	Thru	Left		App. Total	Int. Total
*** BREAK	***																				
06:00	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
*** BREAK	***																				
06:45	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Total	0	5	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
*** BREAK	***										ı				,						ı
07:15	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:30	0	6	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
07:45	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Total	0	8	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
08:00	0	2	0	0	2	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	3
08:15	0	1	0	0	1		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				
Total	0	3	0	0	3	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	4
*** BREAK	***																				
14:45	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Total	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
15:00	0	8	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
15:15	0	3	0	0	3		0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
*** BREAK	***																				
15:45	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Total	0	13	0	0	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13
*** BREAK	***																				
16:30	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				·
Total	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				
17:15	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
*** BREAK Grand Total	0	34	0	0	34	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	35
Apprch %	0	100	0	0	34	0	0	0	0	0	0	0	100	0	1	0	0	0	0	Ü	33
Total %	0	97.1	0	0	97.1	0	0	0	0	0	0	0	2.9	0	2.9	0	0	0	0	0	
TOTAL /0	ı U	//.1	U	U	21.1	1 0	U	U	U	U	U	U	4.7	U	4.7	U	U	U	U	U	I

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 6

Site Code : 00000000 Start Date : 6/27/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 6

Site Code : 00000000 Start Date : 6/27/2018

		DIA	С				6					DIA	C				6]
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	rom W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	05:45	to 11:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 07:1	5															
07:15	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:30	0	6	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
07:45	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
08:00	0	2	0	0	2	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	3
Total Volume	0	10	0	0	10	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	11
% App. Total	0	100	0	0		0	0	0	0		0	0	100	0		0	0	0	0		
PHF	.000	.417	.000	.000	.417	.000	.000	.000	.000	.000	.000	.000	.250	.000	.250	.000	.000	.000	.000	.000	.458

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 6

Site Code : 00000000 Start Date : 6/27/2018

																					•
		DIA	C				6					DIA	C				6				
		Fr	om No	rth			F	rom E	ast			Fr	om So	uth			Fı	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	12:00	to 17:3	0 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 14:3	30															
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
15:00	0	8	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
15:15	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
Total Volume	0	14	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
% App. Total	0	100	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.438	.000	.000	.438	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.438

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 6

Start Date: 06/27/2018

File Name: 6

Site Code : 00000000 Start Date : 6/27/2018

Groups Printed-	Vehicles	- Heavy Vehicles	
6		DIA C	

		DIA	<u> </u>					ups Pr	ıntea-	Vehicles	s - Hea	_									1
		DIA					6					DIA					6		T .		
G Tr.			om No					rom E					om So					om W			
Start Time	Right	Thru	Left		App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left		App. Total	Right	Thru	Left	1	App. Total	Int. Total
05:45	1	115	0	0	116	0	0	0	0	0	0	0	0	0	0	0	0	l	0	1	117
Total	1	115	0	0	116	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	117
06:00	0	157	0	4	161	0	0	0	2	2	0	0	0	0	0	0	0	0	4	4	167
06:15	3	173	0	0	176	0	0	0	3	3	0	0	1	1	2	2	0	0	10	12	193
06:30	2	244	0	0	246	0	0	0	3	3	0	0	0	0	0	1	0	0	12	13	262
06:45	0	224	0	0	224	0	0	0	1	1	0	0	0	0	0	1	0	0	10	11	236
Total	5	798	0	4	807	0	0	0	9	9	0	0	1	1	2	4	0	0	36	40	858
07:00	1	228	0	0	229	0	0	0	1	1	0	0	0	0	0	0	0	0	15	15	245
07:15	2	191	0	0	193	0	0	0	2	2	0	0	1	0	1	1	0	1	24	26	222
07:30	0	213	0	0	213	0	0	0	0	0	0	0	1	0	1	0	0	0	23	23	237
07:45	2	193	0	0	195	0	0	0	3	3	0	0	2	0	2	4	0	1	33	38	238
Total	5	825	0	0	830	0	0	0	6	6	0	0	4	0	4	5	0	2	95	102	942
08:00	0	162	0	0	162	0	0	0	0	0	0	0	0	0	0	0	29	1	16	46	208
08:15	2	116	0	0	118	0	0	0	4	4	0	0	2	0	2	0	0	0	38	38	162
08:30	0	128	0	1	129	0	0	0	5	5	0	0	0	1	1	2	0	0	31	33	168
*** BREAK		120	Ů	1	12)	, ,	Ü	Ü	5			Ů	Ü		- 1	_	· ·	Ü	51	33	100
Total	2	406	0	1	409	0	0	0	9	9	0	0	2	1	3	2	29	1	85	117	538
*** BREAK	***																				
14:45	0	49	0	0	49	0	0	0	3	3	0	0	0	0	0	0	0	0	19	19	71
Total	0	49	0	0	49	0	0	0	3	3	0	0	0	0	0	0	0	0	19	19	71
15:00	0	47	0	1	48	0	0	0	8	8	0	0	0	0	0	0	0	2	33	35	91
15:15	0	64	0	0	64	0	0	0	1	1	0	0	0	0	0	0	0	1	13	14	79
15:30	0	46	0	3	49	0	0	0	4	4	ő	0	0	0	0	0	0	0	18	18	71
15:45	1	65	0	0	66	0	0	0	2	2	0	0	0	0	0	0	0	0	39	39	107
Total	1	222	0	4	227	0	0	0	15	15	0	0	0	0	0	0	0	3	103	106	348
16:00	0	47	0	0	47	0	0	0	4	4	0	0	0	1	1	0	0	0	26	26	78
16:15	0	51	0	0	51	0	0	0	1	1	0	0	1	0	1	0	0	0	21	21	74
16:30	0	26	0	1	27	0	0	0	4	4	0	0	0	0	0	0	0	0	18	18	49
16:45	1	36	0	2	39	0	0	0	5	5	0	0	0	0	0	0	0	0	19	19	63
Total	1	160	0	3	164	0	0	0	14	14	0	0	1	1	2	0	0	0	84	84	264
17:00	1	42	0	0	43	0	0	0	1	1	0	0	0	0	0	1	0	0	24	25	69
17:00	0	24	0	0	24	0	0	0	5	5	0	0	1	0	1	1	0	0	15	16	46
17:13	0	24	0	0	24	0	0	0	9	9	0	0	1	0	1	0	0	0	13	14	48
Grand Total	16	2665	0	12	2693	0	0	0	71	71	0	0	10	3	13	13	29	7	475	524	3301
Apprch %	0.6	99	0	0.4	2093	0	0	0	100	/ 1	0	0	76.9	23.1	13	2.5	5.5	1.3	90.6	J2 4	3301
Appren % Total %	0.6	80.7	0	0.4	81.6	0	0	0	2.2	2.2	0	0	0.3	0.1	0.4	0.4	0.9	0.2	14.4	15.9	
	15	2665	0	12		0	0	0				0	10	3	13	12		0.2_ 7	398		2202
Vehicles % Vehicles	93.8	100	-	100	2692 100		-	-	52 73.2	52 72.2	0	0	100	100	100	92.3	29 100	100	398 83.8	446	3203
			0			0	0	0		73.2										85.1	97
Heavy Vehicles % Heavy Vehicles	6.2	0	0	0	1	0	0	0	19	19	0	0	0	0	0	1	0	0	77 16.2	78	98
	1 h /	0	0	0	0	0	0	0	26.8	26.8	0	0	0	0	0	7.7	0	0	16.2	14.9	3

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 6

Site Code : 00000000 Start Date : 6/27/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 6

Site Code : 00000000 Start Date : 6/27/2018

		DIA					-					DIA	C				-				1
							6 -	_									6 _				
		Fr	om No	orth			Fi	rom E	ast			Fr	om So	uth			Fi	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	05:45	to 11:4	5 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inter	section	Begin	s at 06:3	30															
06:30	2	244	0	0	246	0	0	0	3	3	0	0	0	0	0	1	0	0	12	13	262
06:45	0	224	0	0	224	0	0	0	1	1	0	0	0	0	0	1	0	0	10	11	236
07:00	1	228	0	0	229	0	0	0	1	1	0	0	0	0	0	0	0	0	15	15	245
07:15	2	191	0	0	193	0	0	0	2	2	0	0	1	0	1	1	0	1	24	26	222
Total Volume	5	887	0	0	892	0	0	0	7	7	0	0	1	0	1	3	0	1	61	65	965
% App. Total	0.6	99.4	0	0		0	0	0	100		0	0	100	0		4.6	0	1.5	93.8		
PHF	.625	.909	.000	.000	.907	.000	.000	.000	.583	.583	.000	.000	.250	.000	.250	.750	.000	.250	.635	.625	.921
Vehicles	5	887	0	0	892	0	0	0	7	7	0	0	1	0	1	3	0	1	39	43	943
% Vehicles	100	100	0	0	100	0	0	0	100	100	0	0	100	0	100	100	0	100	63.9	66.2	97.7
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22	22	22
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36.1	33.8	2.3

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 6

Site Code : 00000000 Start Date : 6/27/2018

		DIA	C				6					DIA	C				6				
		Fr	om No	rth			Fı	rom E	ast			Fr	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	nalysis	From	12:00	to 17:3	0 - Peak	1 of 1															
Peak Hour fo	r Entir	e Inters	section	Begin	s at 15:0	00															
15:00	0	47	0	1	48	0	0	0	8	8	0	0	0	0	0	0	0	2	33	35	91
15:15	0	64	0	0	64	0	0	0	1	1	0	0	0	0	0	0	0	1	13	14	79
15:30	0	46	0	3	49	0	0	0	4	4	0	0	0	0	0	0	0	0	18	18	71
15:45	1	65	0	0	66	0	0	0	2	2	0	0	0	0	0	0	0	0	39	39	107
Total Volume	1	222	0	4	227	0	0	0	15	15	0	0	0	0	0	0	0	3	103	106	348
% App. Total	0.4	97.8	0	1.8		0	0	0	100		0	0	0	0		0	0	2.8	97.2		
PHF	.250	.854	.000	.333	.860	.000	.000	.000	.469	.469	.000	.000	.000	.000	.000	.000	.000	.375	.660	.679	.813
Vehicles	1	222	0	4	227	0	0	0	14	14	0	0	0	0	0	0	0	3	97	100	341
% Vehicles	100	100	0	100	100	0	0	0	93.3	93.3	0	0	0	0	0	0	0	100	94.2	94.3	98.0
Heavy Vehicles	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	6	6	7
% Heavy Vehicles	0	0	0	0	0	0	0	0	6.7	6.7	0	0	0	0	0	0	0	0	5.8	5.7	2.0

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Location: 7A File Name: 7A

Site Code : 00000000

Start Date : 7/9/2018

Page No : 1

Groups Printed- Bikes

		DIA					7A					DIA					7A				
		Fr	om No				Fr	om E	ast			Fre	om Sc	outh			Fr	om W	/est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK	***																				
06:15	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
DIVEAN	***																				
Total	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
*** BREAK	***																				
08:00	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
	***														- 1						
Total	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
*** BREAK	***																				
15:00	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
*** BREAK	***																				
15:45	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Total	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
*** BREAK	***																				
Grand Total	0	0	0	0	0	4	0	0	0	4	1	0	0	0	1	0	0	0	0	0	5
Apprch %	0	0	0	0		100	0	0	0		100	0	0	0		0	0	0	0		
Total %	0	0	0	0	0	80	0	0	0	80	20	0	0	0	20	0	0	0	0	0	

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7A

Site Code : 00000000 Start Date : 7/9/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7A

Site Code : 00000000 Start Date : 7/9/2018

		DIA					7A					DIA					7A				
		Fre	om No	orth			Fi	om E	ast			Fr	om So	outh			Fr	om W	lest		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fron	m 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	06:00															
06:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:15	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
06:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
% App. Total	0	0	0	0		100	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.250	.000	.000	.000	.250	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.250

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7A

Site Code : 00000000 Start Date : 7/9/2018

		DIA					7A					DIA					7A				
		Fr	om No	orth			Fi	om E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	15:00															
15:00	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Total Volume	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2
% App. Total	0	0	0	0		100	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.500	.000	.000	.000	.500	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.500

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 7A File Name: 7A

Site Code : 00000000

Start Date : 7/9/2018

							Gro	ıns P	rinted:	- Vehic	les - F	leavv	Vehic	les							
		DIA					7A	лро .	micou	7 01110		DIA					7A				
		Fre	om No	orth			F	rom E	ast			Fre	om Sc	uth			Fr	om W	/est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00	0	0	0	0	0	4	0	5	0	9	0	0	0	0	0	0	0	0	0	0	9
06:15	0	0	0	0	0	3	0	6	1	10	0	0	0	0	0	0	0	0	0	0	10
06:30	0	0	0	0	0	4	0	4	1	9	0	0	0	0	0	0	0	0	0	0	9
06:45	0	0	0	0	0	3	0	7	0	10	0	0	0	0	0	0	0	0	0	0	10
Total	0	0	0	0	0	14	0	22	2	38	0	0	0	0	0	0	0	0	0	0	38
07:00	0	0	0	0	0	6	0	5	0	11	0	0	0	0	0	0	0	0	0	0	11
07:15	0	0	0	0	0	4	0	6	0	10	0	0	0	0	0	0	0	0	0	0	10
07:30	0	0	0	0	0	7	0	4	1	12	0	0	0	0	0	0	0	0	0	0	12
07:45	0	0	0	0	0	6	0	9	1_	16	0	0	0	0	0	0	0	0	0	0	16
Total	0	0	0	0	0	23	0	24	2	49	0	0	0	0	0	0	0	0	0	0	49
08:00	0	0	0	0	0	2	0	0	2	4	0	0	1	0	1	0	0	0	0	0	5
08:15	0	0	0	0	0	7	0	4	6	17	0	0	0	0	0	0	0	0	0	0	17
08:30	0	0	0	0	0	3	0	4	0	7	0	0	0	0	0	0	0	0	0	0	7
08:45	0	0	0	0	0	4	0	3	1_	8	0	0	0	0	0	0	0	0	0	0	8
Total	0	0	0	0	0	16	0	11	9	36	0	0	1	0	1	0	0	0	0	0	37
*** BREAK *	k**																				
15:00	0	0	0	0	0	19	0	8	0	27	0	0	0	0	0	0	0	0	0	0	27
15:15	0	0	0	0	0	22	0	4	0	26	0	0	0	0	0	0	0	0	0	0	26
15:30	0	0	0	0	0	14	0	4	1	19	0	0	0	0	0	0	0	0	0	0	19
15:45	0	0	0	0	0	15	0	3	0	18	0	0	0	0	0	0	0	0	0	0	18
Total	0	0	0	0	0	70	0	19	1	90	0	0	0	0	0	0	0	0	0	0	90
16:00	0	0	0	0	0	18	0	5	0	23	0	0	0	0	0	0	0	0	0	0	23
16:15	0	0	0	0	0	23	0	4	3	30	0	0	0	0	0	0	0	0	0	0	30
16:30	0	0	0	0	0	35	0	9	0	44	0	0	0	0	0	0	0	0	0	0	44
16:45	0	0	0	0	0	14	0	3	7	24	0	0	0	0	0	0	0	0	0	0	24
Total	0	0	0	0	0	90	0	21	10	121	0	0	0	0	0	0	0	0	0	0	121
17:00	0	0	0	0	0	29	0	7	5	41	0	0	0	0	0	0	0	0	0	0	41
17:15	0	0	0	0	0	18	0	8	4	30	0	0	0	0	0	0	0	0	0	0	30
17:30	0	0	0	0	0	20	0	7	3	30	0	0	0	0	0	0	0	0	0	0	30
17:45 Total	0	0 0	0	0 0	0	21 88	0	24	6 18	29 130	0	0	0	0	0	0	0	0 0	0	0	29 130
		U	U	U	U	. 00	U	24	10	130	U	U	U	U	0	U	U	U	U		130
Grand Total	0	0	0	0	0	301	0	121	42	464	0	0	1	0	1	0	0	0	0	0	465
Apprch %	0	0	0	0	_	64.9	0	26.1	9.1	00.5	0	0	100	0		0	0	0	0	_	
Total %_	0	0	0	0	0	64.7	0	26	9	99.8	0	0	0.2	0	0.2	0	0	0	0	0	446
Vehicles	0	0	0	0	0	301	0	115	25	441	0	0	1	0	1	0	0	0	0	0	442
% Vehicles	0	0	0	0	0	100	0	95	59.5	95	0	0	100	0	100	0	0	0	0	0	95.1
Heavy Vehicles	0	0	0	0	0	0	0	6 5	17 40.5	23	0	0	0	0	0	0	0	0	0	0	23
% Heavy Vehicles	0	U	0	0	0	0	U	5	40.5	5	0	0	0	U	0	U	U	U	U	0	4.9

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7A

Site Code : 00000000 Start Date : 7/9/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7A

Site Code : 00000000 Start Date : 7/9/2018

		DIA					7A					DIA					7A				
		Fre	om No	orth			Fi	rom E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fror	n 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Enti	ire Inte	ersecti	on Be	gins at	07:30															
07:30	0	0	0	0	0	7	0	4	1	12	0	0	0	0	0	0	0	0	0	0	12
07:45	0	0	0	0	0	6	0	9	1	16	0	0	0	0	0	0	0	0	0	0	16
08:00	0	0	0	0	0	2	0	0	2	4	0	0	1	0	1	0	0	0	0	0	5
08:15	0	0	0	0	0	7	0	4	6	17	0	0	0	0	0	0	0	0	0	0	17
Total Volume	0	0	0	0	0	22	0	17	10	49	0	0	1	0	1	0	0	0	0	0	50
% App. Total	0	0	0	0		44.9	0	34.7	20.4		0	0	100	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.786	.000	.472	.417	.721	.000	.000	.250	.000	.250	.000	.000	.000	.000	.000	.735
Vehicles	0	0	0	0	0	22	0	13	9	44	0	0	1	0	1	0	0	0	0	0	45
% Vehicles	0	0	0	0	0	100	0	76.5	90.0	89.8	0	0	100	0	100	0	0	0	0	0	90.0
Heavy Vehicles	0	0	0	0	0	0	0	4	1	5	0	0	0	0	0	0	0	0	0	0	5
% Heavy Vehicles	0	0	0	0	0	0	0	23.5	10.0	10.2	0	0	0	0	0	0	0	0	0	0	10.0

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7A

Site Code : 00000000 Start Date : 7/9/2018

		DIA					7A					DIA					7A				
		Fre	om No	orth			Fı	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fror	n 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Enti	re Inte	ersecti	on Be	gins at	16:15															
16:15	0	0	0	0	0	23	0	4	3	30	0	0	0	0	0	0	0	0	0	0	30
16:30	0	0	0	0	0	35	0	9	0	44	0	0	0	0	0	0	0	0	0	0	44
16:45	0	0	0	0	0	14	0	3	7	24	0	0	0	0	0	0	0	0	0	0	24
17:00	0	0	0	0	0	29	0	7	5	41	0	0	0	0	0	0	0	0	0	0	41
Total Volume	0	0	0	0	0	101	0	23	15	139	0	0	0	0	0	0	0	0	0	0	139
% App. Total	0	0	0	0		72.7	0	16.5	10.8		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.721	.000	.639	.536	.790	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.790
Vehicles	0	0	0	0	0	101	0	23	7	131	0	0	0	0	0	0	0	0	0	0	131
% Vehicles	0	0	0	0	0	100	0	100	46.7	94.2	0	0	0	0	0	0	0	0	0	0	94.2
Heavy Vehicles	0	0	0	0	0	0	0	0	8	8	0	0	0	0	0	0	0	0	0	0	8
% Heavy Vehicles	0	0	0	0	0	0	0	0	53.3	5.8	0	0	0	0	0	0	0	0	0	0	5.8

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 7B File Name: 7B SAVANNA

Site Code : 00000000 Start Date : 7/10/2018

Groups Printed- B	Bikes
-------------------	-------

		DIA					7B					DIA					7B				
		Fre	om No	rth			Fi	om E	ast			Fre	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
06:15	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	2
06:30	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0	0	0	0	0	3
06:45	0	1_	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1_
Total	0	1	0	0	1	0	0	0	0	0	5	1	0	0	6	0	0	0	0	0	7
07:00	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	3
07:15	0	0	1	0	1	0	0	0	0	0	1	5	0	0	6	0	0	0	0	0	7
07:30	0	0	0	0	0	0	0	0	0	0	0	6	0	0	6	0	0	0	0	0	6
07:45	0	0	0	0	0	0	0	0	0	0	0	1_	0	0	1	0	0	0	0	0	1_
Total	0	1	1	0	2	0	0	0	0	0	1	14	0	0	15	0	0	0	0	0	17
08:00	0	1	0	0	1	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	5
08:15	0	7	0	0	7	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	11
08:30	0	6	0	0	6	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	9
08:45	0	1	0	0	1	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	9
Total	0	15	0	0	15	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	34
*** BREAK '	***																				
15:00	0	2	0	0	2	0	0	0	0	0	1	7	0	0	8	0	0	0	0	0	10
15:15	0	4	0	0	4	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	8
15:30	0	3	0	0	3	0	0	0	0	0	2	3	0	0	5	0	0	0	0	0	8
15:45	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1_
Total	0	9	0	0	9	0	0	0	0	0	4	14	0	0	18	0	0	0	0	0	27
16:00	0	1	0	0	1	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	3
16:15	0	1	0	0	1	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	3
16:30	0	0	0	0	0	0	0	0	0	0	1	2	0	0	3	0	0	0	0	0	3
16:45	0	3	0	0	3	0	0	0	0	0	0	0_	0	0	0	0	0	0	0	0	3_
Total	0	5	0	0	5	0	0	0	0	0	2	5	0	0	7	0	0	0	0	0	12
17:00	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
17:15	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	0	0	0	0	0	2
17:30	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
17:45	0	1_	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1_
Total	0	3	0	0	3	0	0	0	0	0	2	1	0	0	3	0	0	0	0	0	6
Grand Total	0	34	1	0	35	0	0	0	0	0	14	54	0	0	68	0	0	0	0	0	103
Apprch %	0	97.1	2.9	0		0	0	0	0		20.6	79.4	0	0		0	0	0	0		
ˈTotal %	0	33	1	0	34	0	0	0	0	0	13.6	52.4	0	0	66	0	0	0	0	0	

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7B_SAVANNA

Site Code : 00000000 Start Date : 7/10/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7B SAVANNA

Site Code : 00000000 Start Date : 7/10/2018

		DIA					7B					DIA					7B				
		Fr	om No	orth			Fi	om E	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	08:00															
08:00	0	1	0	0	1	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	5
08:15	0	7	0	0	7	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	11
08:30	0	6	0	0	6	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	9
08:45	0	1	0	0	1	0	0	0	0	0	0	8	0	0	8	0	0	0	0	0	9
Total Volume	0	15	0	0	15	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	34
% App. Total	0	100	0	0		0	0	0	0		0	100	0	0		0	0	0	0		
PHF	.000	.536	.000	.000	.536	.000	.000	.000	.000	.000	.000	.594	.000	.000	.594	.000	.000	.000	.000	.000	.773

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7B SAVANNA

Site Code : 00000000 Start Date : 7/10/2018

		DIA					7B					DIA					7B]
			om No	orth				om E	ast				om Sc	outh				om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	15:00															
15:00	0	2	0	0	2	0	0	0	0	0	1	7	0	0	8	0	0	0	0	0	10
15:15	0	4	0	0	4	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	8
15:30	0	3	0	0	3	0	0	0	0	0	2	3	0	0	5	0	0	0	0	0	8
15:45	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
Total Volume	0	9	0	0	9	0	0	0	0	0	4	14	0	0	18	0	0	0	0	0	27
% App. Total	0	100	0	0		0	0	0	0		22.2	77.8	0	0		0	0	0	0		
PHF	.000	.563	.000	.000	.563	.000	.000	.000	.000	.000	.500	.500	.000	.000	.563	.000	.000	.000	.000	.000	.675

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 7B File Name: 7B SAVANNA

Site Code : 00000000 Start Date : 7/10/2018

Groups Printed-Vehic	les - Heavy Vehicles
7B	DΙΔ

								ups P	rintea	- Vehic	ies - F		venic	cies							
		DIA					7B					DIA					7B				
			om No					rom E					om So					om W			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00	0	133	1	0	134	0	0	0	0	0	7	18	0	0	25	0	0	0	0	0	159
06:15	0	157	6	0	163	0	0	0	0	0	3	16	0	0	19	0	0	0	0	0	182
06:30	0	186	7	0	193	0	0	0	0	0	2	22	0	0	24	0	0	0	0	0	217
06:45	0	276	12	0	288	0	0	0	0	0	6	37	0	0	43	0	0	0	0	0	331
Total	0	752	26	0	778	0	0	0	0	0	18	93	0	0	111	0	0	0	0	0	889
07:00	0	242	13	0	255	0	0	0	0	0	2	47	0	0	49	0	0	0	0	0	304
07:15	0	209	14	0	223	Ö	0	0	0	0	7	56	0	Ő	63	0	Ö	0	0	ő	286
07:30	0	206	15	0	221	0	0	0	0	0	5	44	0	0	49	0	0	0	0	0	270
07:45	0	224	20	0	244	0	0	0	0	0	4	64	0	0	68	0	0	0	0	0	312
Total	0	881	62	0	943	0	0	0	0	0	18	211	0	0	229	0	0	0	0	0	1172
08:00	0	193	13	0	206	0	0	0	0	0	12	73	0	0	85	0	0	0	0	0	291
08:15	0	165	27	0	192	0	0	0	0	0	10	64	0	0	74	0	0	0	0	0	266
08:30	0	111	27	0	138	0	0	0	0	0	9	53	0	0	62	0	0	0	0	0	200
08:45	0	115	34	0	149	0	0	0	0	0	4	47	0	0	51	0	0	0	0	0	200
Total	0	584	101	0	685	0	0	0	0	0	35	237	0	0	272	0	0	0	0	0	957
*** BREAK	***																				
15:00	1	61	3	0	65	0	0	0	0	0	1	122	0	0	123	0	0	0	0	0	188
15:15	0	56	6	0	62	0	0	0	0	0	4	110	0	0	114	0	0	0	0	0	176
15:30	0	61	4	0	65	0	0	0	0	0	6	154	0	0	160	0	0	0	0	0	225
15:45	0	43	6	0	49	0	0	0	0	0	2	181	0	0	183	0	0	0	0	0	232
Total	1	221	19	0	241	0	0	0	0	0	13	567	0	0	580	0	0	0	0	0	821
16:00	0	40	4	0	44	0	0	0	0	0	5	246	0	0	251	0	0	0	0	0	295
16:15	0	54	8	0	62	0	0	0	0	0	5	215	0	0	220	0	0	0	0	0	282
16:30	0	63	3	0	66	0	0	0	0	0	1	213	0	0	214	0	0	0	0	0	280
16:45	0	65	3	0	68	0	0	0	0	0	0	217	0	0	217	0	0	0	0	0	285
Total	0	222	18	0	240	0	0	0	0	0	11	891	0	0	902	0	0	0	0	0	1142
17:00	0	57	6	0	63	0	0	0	0	0	4	208	0	0	212	0	0	0	0	0	275
17:15	0	59	4	0	63	0	0	0	0	0	2	221	0	0	223	0	0	0	0	0	286
17:30	0	41	2	0	43	0	0	0	0	0	3	185	0	0	188	0	0	0	0	0	231
17:45	0	34	1	0	35	0	0	0	0	0	0	121	0	0	121	0	0	0	0	0	156
Total	0	191	13	0	204	0	0	0	0	0	9	735	0	0	744	0	0	0	0	0	948
Grand Total	1	2851	239	0	3091	0	0	0	0	0	104	2734	0	0	2838	0	0	0	0	0	5929
Apprch %	0	92.2	7.7	0		0	0	0	0		3.7	96.3	0	0		0	0	0	0		
Total %	0	48.1	4	0	52.1	0	0	0	0	0	1.8	46.1	0	0	47.9	0	0	0	0	0	
Vehicles	1	2851	239	0	3091	0	0	0	0	0	104	2734	0	0	2838	0	0	0	0	0	5929
% Vehicles	100	100	100	0	100	0	0	0	0	0	100	100	0	0	100	0	0	0	0	0	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7B SAVANNA

Site Code : 00000000 Start Date : 7/10/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7B SAVANNA

Site Code : 00000000 Start Date : 7/10/2018

		DIA					7B					DIA					7B				
		Fre	om No	orth			Fı	om E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fron	n 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	on Be	gins at	06:45															
06:45	0	276	12	0	288	0	0	0	0	0	6	37	0	0	43	0	0	0	0	0	331
07:00	0	242	13	0	255	0	0	0	0	0	2	47	0	0	49	0	0	0	0	0	304
07:15	0	209	14	0	223	0	0	0	0	0	7	56	0	0	63	0	0	0	0	0	286
07:30	0	206	15	0	221	0	0	0	0	0	5	44	0	0	49	0	0	0	0	0	270
Total Volume	0	933	54	0	987	0	0	0	0	0	20	184	0	0	204	0	0	0	0	0	1191
% App. Total	0	94.5	5.5	0		0	0	0	0		9.8	90.2	0	0		0	0	0	0		
PHF	.000	.845	.900	.000	.857	.000	.000	.000	.000	.000	.714	.821	.000	.000	.810	.000	.000	.000	.000	.000	.900
Vehicles	0	933	54	0	987	0	0	0	0	0	20	184	0	0	204	0	0	0	0	0	1191
% Vehicles	0	100	100	0	100	0	0	0	0	0	100	100	0	0	100	0	0	0	0	0	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 7B SAVANNA

Site Code : 00000000 Start Date : 7/10/2018

		DIA					7B					DIA					7B				
		Fre	om No	orth			Fr	om E	ast			Fre	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fror	n 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	on Be	gins at	16:00															
16:00	0	40	4	0	44	0	0	0	0	0	5	246	0	0	251	0	0	0	0	0	295
16:15	0	54	8	0	62	0	0	0	0	0	5	215	0	0	220	0	0	0	0	0	282
16:30	0	63	3	0	66	0	0	0	0	0	1	213	0	0	214	0	0	0	0	0	280
16:45	0	65	3	0	68	0	0	0	0	0	0	217	0	0	217	0	0	0	0	0	285
Total Volume	0	222	18	0	240	0	0	0	0	0	11	891	0	0	902	0	0	0	0	0	1142
% App. Total	0	92.5	7.5	0		0	0	0	0		1.2	98.8	0	0		0	0	0	0		
PHF	.000	.854	.563	.000	.882	.000	.000	.000	.000	.000	.550	.905	.000	.000	.898	.000	.000	.000	.000	.000	.968
Vehicles	0	222	18	0	240	0	0	0	0	0	11	891	0	0	902	0	0	0	0	0	1142
% Vehicles	0	100	100	0	100	0	0	0	0	0	100	100	0	0	100	0	0	0	0	0	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 7C File Name: 7C_TAMIA

File Name: 7C_TAMIA Site Code: 00000000 Start Date: 7/10/2018

Page No : 1

Groups Printed- Bikes

		DIA					7C					DIA					7C					
		Fr	om N	orth			Fi	rom E	ast			Fre	om Sc	outh			Fr	om W	est			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total	
*** BREAK *	***																					
Grand Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0			
Total %																						

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 7C_TAMIA Site Code: 00000000 Start Date: 7/10/2018

		DIA					7C					DIA					7C				
		Fr	om No	orth			Fi	om E	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	06:00															
06:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 7C_TAMIA Site Code: 00000000 Start Date: 7/10/2018

																					1
		DIA					7C					DIA					7C				
		Fr	om No	orth			Fr	om E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Froi	m 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	12:00															
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

7500 Jefferson Street NE Albuquerque, NM 87109

Location: 7C

File Name : 7C_TAMIA Site Code : 00000000 Start Date : 7/10/2018

Groups Printed-Vehic	les - Heavy Vehicles
7C	DIA

	1	DIA						ups P	rintea	- Vehic	ies - H		venic	cies			7C				
		DIA	NI	41-			7C		4			DIA	0	41-				14	14		
Ctout Times		Thru	om N				Thru	rom E				Thru	om So				Thru	om W			
Start Time	Right		Left		App. Total	Right		Left	Peds	App. Total	Right		Left		App. Total	Right		Left		App. Total	Int. Total
06:00	0	1	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	4
06:15	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	9 4	9	13
06:30	0	-	0	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0	•	4	11
06:45	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	9	9	10
Total	0	1	0	13	14	0	0	0	0	0	0	0	0	0	0	0	0	0	24	24	38
07:00	0	0	0	15	15	0	0	0	0	0	0	0	0	0	0	0	0	0	16	16	31
07:15	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0	10	10	15
07:30	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	19	19	25
07:45	0	0	0	14	14	0	0	0	0	0	0	0	0	0	0	0	0	0	10	10	24
Total	0	0	0	40	40	0	0	0	0	0	0	0	0	0	0	0	0	0	55	55	95
08:00	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	0	0	29	29	51
08:15	0	0	0	17	17	0	0	0	0	0	0	0	0	3	3	0	0	0	8	8	28
08:30	0	0	0	39	39	0	0	0	0	0	0	0	0	3	3	0	0	0	24	24	66
08:45	1	0	0	25	26	0	0	0	0	0	0	0	0	5	5	0	0	0	26	26	57
Total	1	0	0	103	104	0	0	0	0	0	0	0	0	11	11	0	0	0	87	87	202
*** BREAK	***																				
15:00	0	0	0	13	13	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	17
15:15	0	0	0	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	17	17	25
15:30	0	0	0	13	13	0	0	0	0	0	0	0	0	2	2	0	0	0	11	11	26
15:45	0	0	0	11	11	0	0	0	0	0	0	0	0	0	0	0	0	0	12	12	23
Total	0	0	0	45	45	0	0	0	0	0	0	0	0	2	2	0	0	0	44	44	91
16:00	0	0	0	11	11	0	0	0	0	0	0	0	0	0	0	0	0	0	11	11	22
16:15	0	0	0	20	20	0	0	0	0	0	0	0	0	1	1	0	0	0	36	36	57
16:30	0	0	0	14	14	0	0	0	0	0	0	0	0	0	0	0	0	0	14	14	28
16:45	0	0	0	16	16	0	0	0	0	0	0	0	0	1	1	0	0	0	18	18	35
Total	0	0	0	61	61	0	0	0	0	0	0	0	0	2	2	0	0	0	79	79	142
17:00	0	0	0	28	28	0	0	0	0	0	0	0	0	2	2	0	0	0	20	20	50
17:15	0	0	0	26	26	0	0	0	0	0	0	0	0	1	1	0	0	0	19	19	46
17:30	0	0	0	22	22	0	0	0	0	0	0	0	0	1	1	0	0	0	17	17	40
17:45	0	0	0	13	13	0	0	0	0	0	0	0	0	2	2	0	0	0	6	6	21
Total	0	0	0	89	89	0	0	0	0	0	0	0	0	6	6	0	0	0	62	62	157
Grand Total	1	1	0	351	353	0	0	0	0	0	0	0	0	21	21	0	0	0	351	351	725
Apprch %	0.3	0.3	0	99.4		0	0	0	0		0	0	0	100		0	0	0	100		
Total %	0.1	0.1	0	48.4	48.7	0	0	0	0	0	0	0	0	2.9	2.9	0	0	0	48.4	48.4	
Vehicles	1	1	0	349	351	0	0	0	0	0	0	0	0	21	21	0	0	0	351	351	723
% Vehicles	100	100	0	99.4	99.4	0	0	0	0	0	0	0	0	100	100	0	0	0	100	100	99.7
Heavy Vehicles	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
% Heavy Vehicles	0	0	0	0.6	0.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.3

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 7C_TAMIA Site Code: 00000000 Start Date: 7/10/2018

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 7C_TAMIA Site Code: 00000000 Start Date: 7/10/2018

		DIA					7C					DIA					7C				
		Fre	om No	orth			Fr	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analysi	is Fror	n 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	gins at	00:80																			
08:00	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	0	0	29	29	51
08:15	0	0	0	17	17	0	0	0	0	0	0	0	0	3	3	0	0	0	8	8	28
08:30	0	0	0	39	39	0	0	0	0	0	0	0	0	3	3	0	0	0	24	24	66
08:45	1	0	0	25	26	0	0	0	0	0	0	0	0	5	5	0	0	0	26	26	57
Total Volume	1	0	0	103	104	0	0	0	0	0	0	0	0	11	11	0	0	0	87	87	202
% App. Total	1	0	0	99		0	0	0	0		0	0	0	100		0	0	0	100		
PHF	.250	.000	.000	.660	.667	.000	.000	.000	.000	.000	.000	.000	.000	.550	.550	.000	.000	.000	.750	.750	.765
Vehicles	1	0	0	103	104	0	0	0	0	0	0	0	0	11	11	0	0	0	87	87	202
% Vehicles	100	0	0	100	100	0	0	0	0	0	0	0	0	100	100	0	0	0	100	100	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 7C_TAMIA Site Code: 00000000 Start Date: 7/10/2018

		DIA					7C					DIA					7C				
		Fre	om No	orth			Fr	om E	ast			Fr	om Sc	outh			Fr	om W	lest		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fror	m 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour for Entire Intersection Begins at																					
16:45	0	0	0	16	16	0	0	0	0	0	0	0	0	1	1	0	0	0	18	18	35
17:00	0	0	0	28	28	0	0	0	0	0	0	0	0	2	2	0	0	0	20	20	50
17:15	0	0	0	26	26	0	0	0	0	0	0	0	0	1	1	0	0	0	19	19	46
17:30	0	0	0	22	22	0	0	0	0	0	0	0	0	1	1	0	0	0	17	17	40
Total Volume	0	0	0	92	92	0	0	0	0	0	0	0	0	5	5	0	0	0	74	74	171
% App. Total	0	0	0	100		0	0	0	0		0	0	0	100		0	0	0	100		
PHF	.000	.000	.000	.821	.821	.000	.000	.000	.000	.000	.000	.000	.000	.625	.625	.000	.000	.000	.925	.925	.855
Vehicles	0	0	0	92	92	0	0	0	0	0	0	0	0	5	5	0	0	0	74	74	171
% Vehicles	0	0	0	100	100	0	0	0	0	0	0	0	0	100	100	0	0	0	100	100	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Location: 8A File Name: 8A

Site Code : 00000000 Start Date : 7/11/2018

Page No : 1

Groups Printed- Bikes

		DIA					8A					DIA					A8				
		Fr	om No	orth			Fi	om E	ast			Fre	om So	uth			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1_
Tota	I 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
*** BREAK	***																				
06:15	5 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	2	2
*** BREAK	***																				
06:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1_
Tota	I 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	3	3
*** BREAK	***																				
07:30		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	2
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1_
Tota	I 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	3
*** BREAK	***																				
Grand Tota	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	0	1	7	7
Apprch %	0	0	0	0		0	0	0	0		0	0	0	0		28.6	57.1	0	14.3		
Total %		0	0	0	0	0	0	0	0	0	0	0	0	0	0	28.6	57.1	0	14.3	100	

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8A

Site Code : 00000000 Start Date : 7/11/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8A

Site Code : 00000000 Start Date : 7/11/2018

		DIA					8A					DIA					8A				
		Fr	om No	orth			Fi	om E	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Froi	m 05:4	15 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersect	ion Be	gins at	05:45															
05:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
06:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	2	2
06:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	3	3
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		33.3	33.3	0	33.3		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.250	.250	.000	.250	.375	.375

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8A

Site Code : 00000000 Start Date : 7/11/2018

																					,
		DIA					8A					DIA					8A				
		Fr	om No	orth			Fr	om E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 12:0	00 to 1	7:15 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	12:00															
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

Groups Printed- Vehicles - Heavy Vehicles

Location: 8A File Name: 8A

Site Code : 00000000 Start Date : 7/11/2018

		DIA					8A	ирэтт	iiitcu	Venic	103 - 1	DIA	VEITIC	03			8A				
			om No	orth				rom E	ast				om So	uth				om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru		Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
05:45	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	11	6	0	0	17	18
Total	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	11	6	0	0	17	18
																				·	
06:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	10	0	4	34	34
06:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23	10	0	6	39	39
06:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26	12	0	6	44	44
06:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	27	11_	0	4	42	42
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	96	43	0	20	159	159
		_		_				_		_ 1			_		_				_	1	
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	23	0	8	56	56
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	27	0	9	72	72
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41	26	0	11	78	78
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37	27	0	21	85	85
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	139	103	0	49	291	291
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	43	35	0	11	89	89
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	38	25	0	8	71	69 71
*** BREAK		U	U	U	0	U	U	U	U	U	U	U	U	U	U	30	25	U	0	/ 1	7 1
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	81	60	0	19	160	160
Total	0	U	U	U	0	U	U	U	U	0	U	U	U	U	U	01	00	U	13	100	100
*** BREAK	***																				
2.121																					
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34	78	0	4	116	116
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34	78	0	4	116	116
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	31	75	0	4	110	110
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	142	0	9	169	169
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	131	0	2	153	153
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23	209	0	5	237	237
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	92	557	0	20	669	669
40.00		•	_	0	0		_	0	_	0	0	^	0	_	0	0.5	407	•		000	000
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	197	0	1	223	223
16:15 16:30	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0	38 31	230 251	0	5 12	273 294	273 294
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33	258	0	8	294	
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	127	936	0	<u>o</u> 26	1089	299 1089
Total	0	U	U	U	0	U	U	U	U	U	U	U	U	U	U	121	930	U	20	1009	1009
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23	261	0	10	294	294
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	166	0	15	199	199
Grand Total	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	621	2210	0	163	2994	2995
Apprch %	0	0	0	100	.	0	0	0	0		0	0	0	0	3	20.7	73.8	0	5.4	2004	_000
Total %	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20.7	73.8	0	5.4	100	
Vehicles	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	621	2210	0	120	2951	2952
% Vehicles	Ö	0	0	100	100	0	0	0	0	Ö	0	0	0	0	0	100	100	0	73.6	98.6	98.6
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	43	43	43
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0	0	0	0	26.4	1.4	1.4

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8A

Site Code : 00000000 Start Date : 7/11/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8A

Site Code : 00000000 Start Date : 7/11/2018

		DIA					8A					DIA					8A				
		Fre	om No	orth			Fr	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fror	n 05:4	15 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Enti	ire Inte	ersecti	on Be	gins at	07:15															
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	27	0	9	72	72
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41	26	0	11	78	78
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37	27	0	21	85	85
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	43	35	0	11	89	89
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	157	115	0	52	324	324
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		48.5	35.5	0	16		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.913	.821	.000	.619	.910	.910
Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	157	115	0	41	313	313
% Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	0	78.8	96.6	96.6
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	11	11
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21.2	3.4	3.4

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8A

Site Code : 00000000 Start Date : 7/11/2018

		DIA					8A					DIA					8A				
		Fr	om No	orth			Fı	om E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour /	Analys	is Froi	m 12:0	00 to 1	7:15 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	16:15															
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	38	230	0	5	273	273
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	31	251	0	12	294	294
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33	258	0	8	299	299
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23	261	0	10	294	294
Total Volume	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	125	1000	0	35	1160	1160
% App. Total	0	0	0	0		0	0	0	0		0	0	0	0		10.8	86.2	0	3		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.822	.958	.000	.729	.970	.970
Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	125	1000	0	27	1152	1152
% Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	100	0	77.1	99.3	99.3
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	8	8
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22.9	0.7	0.7

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

Page No : 1

Groups Printed-Bikes

									Group	JS PIIII	ieu- D										
		DIA					8B					DIA					8B				
		Fr	om No	orth			F	rom E	ast				om So	outh			Fr	om W	lest		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK '	k**													•							
06:15	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	2
*** BREAK *	***																			·	
Total	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	2
,																					
07:00	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
07:15	0	0	0	0	0	0	0	0	0	0	3	0	3	0	6	0	0	0	0	0	6
07:30	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
07:45	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1
Total	0	0	0	0	0	0	0	0	0	0	5	0	4	0	9	0	0	0	0	0	9
08:00	0	0	0	0	0	0	0	0	0	0	2	0	5	0	7	0	0	0	0	0	7
08:15	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
08:30	0	0	0	0	0	0	0	0	0	0	3	0	5	0	8	0	0	0	0	0	8
08:45	Ō	Ō	0	0	0	0	0	0	Ö	0	6	Ō	1	Ö	7	0	0	Ō	Ö	0	7
Total	0	0	0	0	0	0	0	0	0	0	13	0	11	0	24	0	0	0	0	0	24
*** BREAK *	***																				
15:00	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0	0	0	0	0	3
15:15	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
	***																			·	
15:45	0	0	0	0	0	0	0	0	0	0	7	0	1	0	3	0	0	0	0	0	3
Total	0	0	0	0	0	0	0	0	0	0	7	0	1	0	8	0	0	0	0	0	8
*** BREAK *	***																				
17:00 *** BREAK *	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
Total	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1
	ء ا	_	_	_	_	ء ا	_	_	_	-					ا		_			ای	
Grand Total	0	0	0	0	0	0	0	0	0	0	26	0	18	0	44	0	0	0	0	0	44
Apprch %	0	0	0	0		0	0	0	0		59.1	0	40.9	0		0	0	0	0		
Total %	0	0	0	0	0	0	0	0	0	0	59.1	0	40.9	0	100	0	0	0	0	0	

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

		DIA					8B					DIA					8B				
		Fr	om No	orth			Fi	om E	ast			Fr	om So	outh			Fr	om W	lest		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Froi	m 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	08:00															
08:00	0	0	0	0	0	0	0	0	0	0	2	0	5	0	7	0	0	0	0	0	7
08:15	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
08:30	0	0	0	0	0	0	0	0	0	0	3	0	5	0	8	0	0	0	0	0	8
08:45	0	0	0	0	0	0	0	0	0	0	6	0	1	0	7	0	0	0	0	0	7
Total Volume	0	0	0	0	0	0	0	0	0	0	13	0	11	0	24	0	0	0	0	0	24
% App. Total	0	0	0	0		0	0	0	0		54.2	0	45.8	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.542	.000	.550	.000	.750	.000	.000	.000	.000	.000	.750

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

		DIA					8B					DIA					8B				
		Fr	om No	orth			Fi	om E	ast			Fr	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Froi	m 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	15:00															
15:00	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3	0	0	0	0	0	3
15:15	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	0	0	0	2	0	1	0	3	0	0	0	0	0	3
Total Volume	0	0	0	0	0	0	0	0	0	0	7	0	1	0	8	0	0	0	0	0	8
% App. Total	0	0	0	0		0	0	0	0		87.5	0	12.5	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.583	.000	.250	.000	667	.000	.000	.000	.000	.000	.667

Bohannon Huston, Inc. 7500 Jefferson Street NE

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

						Gro	ups P	rinted-	- Vehic	les - F	leavy	Vehic	eles							
	DIA					8B					DIA					8B				
	Fr	om No	orth			F	rom E	ast			Fr	om Sc	outh			Fr	om W	lest		
Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
0	0	0	1	1	0	0	0	0	0	12	0	14	3	29	0	0	0	1	1	31
0	0	0	3	3	0	0	0	0	0	8	0	14	0	22	0	0	0	0	0	25
0	0	0	5	5	0	0	0	1	1	12	0	19	0	31	0	0	0	0	0	37
0	0	0	5	5	0	0	0	0	0	18	0	27	0	45	0	0	0	0	0	50
0	0	0	14	14	0	0	0	1	1	50	0	74	3	127	0	0	0	1	1	143
0	0	0	3	3	0	0	0	0	0	16	0	25	0	41	0	0	0	0	0	44
0	0	0	3	3	0	0	0	0	0	15	1	34	1	51	0	0	0	0	0	54
0	0	0	7	7	0	0	0	1	1	27	0	31	0	58	0	0	0	0	0	66
0	0	0	2	2	0	0	0	0	0	33	0	61	0	94	0	0	0	0	0	96
0	0	0	15	15	0	0	0	1	1	91	1	151	1	244	0	0	0	0	0	260
0	0	0	12	12	0	0	0	0	0	31	0	42	2	75	0	0	0	0	0	87
0	0	0	5	5	0	0	0	0	0	49	0	24	2	75	0	0	0	0	0	80
0	0	0	8	8	0	0	0	0	0	42	0	35	2	79	0	0	0	0	0	87
0	0	0	4	4	0	0	0	0	0	54	3	35	3	95	0	0	0	0	0	99
0	0	0	29	29	0	0	0	0	0	176	3	136	9	324	0	0	0	0	0	353

2	0	0	2	4	0	0	0	0	0	81	0	33	1	115	0	0	0	0	0	119
0	0	0	1	1	0	0	0	0	0	82	0	40	0	122	0	0	0	0	0	123
0	0	0	2	2	0	0	0	0	0	129	0	23	0	152	0	0	0	0	0	154
0	0	0	0	0	0	0	0	0	0	156	0	26	1	183	0	0	0	0	0	183
2	0	0	5	7	0	0	0	0	0	448	0	122	2	572	0	0	0	0	0	579
0	0	0	2	2	0	0	0	0	0	214	0	29	0	243	0	0	0	0	0	245
0	0	0	4	4	0	0	0	0	0	202	0	15	1	218	0	0	0	0	0	222
0	0	0	1	1	0	0	0	0	0	220	0	11	1	232	0	0	0	0	0	233
0	0	0	1	1	0	0	0	0	0	206	0	4	3	213	0	0	0	0	0	214
0	0	0	8	8	0	0	0	0	0	842	0	59	5	906	0	0	0	0	0	914
0	0	0	0	0	0	0	0	0	0	229	0	7	0	236	0	0	0	0	0	236
_	-	-			-	-	-	-	-		-		-		-	-		-	-	234
_	-	-		- 1	-	-	-	-	-		-		-		-	-	-	-	-	235
																				203
0	0	0	13	13	0	0	0	1	1	869	0	24	1	894	0	0	0	0	0	908
2	0	0	84	86	0	0	0	3	3	2476	4	566	21	3067	0	0	0	1	1	3157
2.3	0	0	97.7		0	0	0	100		80.7	0.1	18.5	0.7		0	0	0	100		
0.1	0	0	2.7	2.7	0	0	0	0.1	0.1	78.4	0.1	17.9	0.7	97.1	0	0	0	0	0	
2	0	0	26	28	0	0	0	3	3	2472	4	563	21	3060	0	0	0	1	1	3092
100	0	0	31	32.6	0	0	0	100	100	99.8	100	99.5	100	99.8	0	0	0	100	100	97.9
0	0	0	58	58	0	0	0	0	0	4	0	3	0	7	0	0	0	0	0	65
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Free Right Thru	From No Right Thru Left 0	Fight Thru Left Peds 0	Right Thru Left Peds App. Total 0	Right	Pick From North F F Right Thru Left Peds App. Total Right Thru 0	Pick From North From E From E	Pick From North From East From East From North From East From E	Name	No	DIA	DIA From North From East From St Fr	From East	DIA From North From East From South From South From Left Peds App. Total Right Thru Left Peds App. Total App. Total App. Total Right Thru Left Peds App. Total Ap	S	S	DIA From North From East DIA From South From Worth Right Thru Left Peds Augu-Tool Right Thru Left Left Peds Right Thru Left Left Peds Augu-Tool Right Thru Left Left	DIA From North From East From South From West From Worth From Left Peds Age, Toda Right Thru Left Peds Age, Toda Age,	B From North From East From South From West From West Right Thru Left Peds Regist Thru Left Peds

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

		DIA					8B					DIA					8B				
		Fre	om No	orth			Fı	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fror	n 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Enti	re Inte	ersecti	ion Be	gins at	00:80															
08:00	0	0	0	12	12	0	0	0	0	0	31	0	42	2	75	0	0	0	0	0	87
08:15	0	0	0	5	5	0	0	0	0	0	49	0	24	2	75	0	0	0	0	0	80
08:30	0	0	0	8	8	0	0	0	0	0	42	0	35	2	79	0	0	0	0	0	87
08:45	0	0	0	4	4	0	0	0	0	0	54	3	35	3	95	0	0	0	0	0	99
Total Volume	0	0	0	29	29	0	0	0	0	0	176	3	136	9	324	0	0	0	0	0	353
% App. Total	0	0	0	100		0	0	0	0		54.3	0.9	42	2.8		0	0	0	0		
PHF	.000	.000	.000	.604	.604	.000	.000	.000	.000	.000	.815	.250	.810	.750	.853	.000	.000	.000	.000	.000	.891
Vehicles	0	0	0	13	13	0	0	0	0	0	176	3	136	9	324	0	0	0	0	0	337
% Vehicles	0	0	0	44.8	44.8	0	0	0	0	0	100	100	100	100	100	0	0	0	0	0	95.5
Heavy Vehicles	0	0	0	16	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16
% Heavy Vehicles	0	0	0	55.2	55.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4.5

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

		DIA					8B					DIA					8B				
		Fr	om No	orth			Fi	om E	ast			Fre	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour	Analys	is Froi	m 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersect	ion Be	gins at	16:45															
16:45	0	0	0	1	1	0	0	0	0	0	206	0	4	3	213	0	0	0	0	0	214
17:00	0	0	0	0	0	0	0	0	0	0	229	0	7	0	236	0	0	0	0	0	236
17:15	0	0	0	8	8	0	0	0	1	1	218	0	7	0	225	0	0	0	0	0	234
17:30	0	0	0	3	3	0	0	0	0	0	224	0	8	0	232	0	0	0	0	0	235
Total Volume	0	0	0	12	12	0	0	0	1	1	877	0	26	3	906	0	0	0	0	0	919
% App. Total	0	0	0	100		0	0	0	100		96.8	0	2.9	0.3		0	0	0	0		
PHF	.000	.000	.000	.375	.375	.000	.000	.000	.250	.250	.957	.000	.813	.250	.960	.000	.000	.000	.000	.000	.974
Vehicles	0	0	0	4	4	0	0	0	1	1	876	0	25	3	904	0	0	0	0	0	909
% Vehicles	0	0	0	33.3	33.3	0	0	0	100	100	99.9	0	96.2	100	99.8	0	0	0	0	0	98.9
Heavy Vehicles	0	0	0	8	8	0	0	0	0	0	1	0	1	0	2	0	0	0	0	0	10
% Heavy Vehicles	0	0	0	66.7	66.7	0	0	0	0	0	0.1	0	3.8	0	0.2	0	0	0	0	0	1.1

7500 Jefferson Street NE Albuquerque, NM 87109

File Name: 8B

Site Code : 00000000 Start Date : 7/10/2018

Bohannon Huston, Inc. 7500 Jefferson Street NE

Albuquerque, NM 87109

File Name: 8C_JAMES Site Code: 00000000 Start Date : 7/11/2018

Page No : 1

Groups Printed-Bikes

									Orou	JS FIIII	ica- D										ı
		DIA					8C					DIA					8C				
			om No					rom E					om Sc					om V			
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
*** BREAK *	**																				
07:00	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
07:15	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	2
07:30	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	0	0	0	0	0	2
*** BREAK *	**																				
Total	0	0	0	0	0	0	5	0	0	5	0	0	0	0	0	0	0	0	0	0	5
08:00	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	0	0	0	0	0	2
08:15	0	0	0	0	0	0	4	2	0	6	0	0	0	0	0	0	0	0	0	0	6
08:30	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	0	0	0	0	0	2
08:45	0	0	0	0	0	0	6	3	0	9	0	0	0	0	0	0	0	0	0	0	9
Total	0	0	0	0	0	0	12	7	0	19	0	0	0	0	0	0	0	0	0	0	19
*** BREAK *	**																				
15:15	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
*** BREAK *						_														_	
Total	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
16:00	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
DIVEAR	**		_	_	_			_		. 1		_	_		- 1	_	_	_		_	1 .
16:30	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
16:45	0	0	0	0	0	0	0	0	1_	1	0	0	0	0	0	0	0	0	0	0	1_
Total	0	0	0	0	0	0	1	1	1	3	0	0	0	0	0	0	0	0	0	0	3
*** BREAK *	**																				
17:30	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
17:45	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
Total	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	2
Grand Total	0	0	0	0	0	0	19	10	1	30	0	0	0	0	0	0	0	0	0	0	30
Apprch %	0	0	0	0		0	63.3	33.3	3.3		0	0	0	0		0	0	0	0		
Total %	0	0	0	0	0	0	63.3	33.3	3.3	100	0	0	0	0	0	0	0	0	0	0	

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 8C_JAMES Site Code: 00000000 Start Date: 7/11/2018

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 8C_JAMES Site Code: 00000000 Start Date: 7/11/2018

		DIA					8C					DIA					8C				
		Fr	om No	orth			Fi	rom E	ast			Fr	om So	outh			Fr	om W	/est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Froi	m 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	08:00															
08:00	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	0	0	0	0	0	2
08:15	0	0	0	0	0	0	4	2	0	6	0	0	0	0	0	0	0	0	0	0	6
08:30	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	0	0	0	0	0	2
08:45	0	0	0	0	0	0	6	3	0	9	0	0	0	0	0	0	0	0	0	0	9
Total Volume	0	0	0	0	0	0	12	7	0	19	0	0	0	0	0	0	0	0	0	0	19
% App. Total	0	0	0	0		0	63.2	36.8	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.500	.583	.000	.528	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.528

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 8C_JAMES Site Code: 00000000 Start Date: 7/11/2018

		DIA					8C					DIA					8C				
		Fr	om No	orth			Fi	rom E	ast			Fr	om So	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analys	is Fro	m 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	16:00															
16:00	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1
16:45	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1_
Total Volume	0	0	0	0	0	0	1	1	1	3	0	0	0	0	0	0	0	0	0	0	3
% App. Total	0	0	0	0		0	33.3	33.3	33.3		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.250	.250	.250	.750	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.750

Bohannon Huston, Inc. 7500 Jefferson Street NE

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 8C_JAMES Site Code: 00000000 Start Date: 7/11/2018

							Grou	ups Pi	rinted-	- Vehic	les - F	leavv	Vehic	les							
		DIA					8C					DIA					8C				
		Fr	om No	orth			F	rom E	ast			Fr	om Sc	uth			Fr	om W	/est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00	0	0	0	0	0	1	96	115	0	212	0	0	0	0	0	0	0	0	0	0	212
06:15	0	0	0	0	0	0	147	148	2	297	0	0	0	0	0	0	0	0	0	0	297
06:30	0	0	0	0	0	0	237	170	1	408	0	0	0	0	0	0	0	0	0	0	408
06:45	0	0	0	0	0	0	286	235	0	521	0	0	0	0	0	0	0	0	0	0	521
Total	0	0	0	0	0	1	766	668	3	1438	0	0	0	0	0	0	0	0	0	0	1438
07:00	0	0	0	0	0	0	272	246	1	519	0	0	0	0	0	0	0	0	0	0	519
07:15	0	0	0	0	0	28	236	185	2	451	0	0	0	0	0	0	0	0	0	0	451
07:30	0	0	0	0	0	0	265	229	3	497	0	0	0	0	0	0	0	0	0	0	497
07:45	0	0	0	0	0	0	232	204	3_	439	0	0	0	0	0	0	0	0	0	0	439
Total	0	0	0	0	0	28	1005	864	9	1906	0	0	0	0	0	0	0	0	0	0	1906
08:00	0	0	0	0	0	0	163	191	1	355	0	0	0	0	0	0	0	0	0	0	355
08:15	0	0	0	0	0	0	130	147	2	279	0	0	0	0	0	0	0	0	0	0	279
08:30	0	0	0	0	0	0	112	133	4	249	0	0	0	0	0	0	0	0	0	0	249
08:45	0	0	0	0	0	0	101	110	4	215	0	0	0	0	0	0	0	0	0	0	215
Total	0	0	0	0	0	0	506	581	11	1098	0	0	0	0	0	0	0	0	0	0	1098
*** BREAK '	***																				
15:00	0	0	0	0	0	0	26	39	0	65	0	0	0	0	0	0	0	0	0	0	65
15:15	0	0	0	0	0	0	26	46	0	72	0	0	0	0	0	0	0	0	0	0	72
15:30	0	0	0	0	0	0	21	34	0	55	0	0	0	0	0	0	0	0	0	0	55
15:45	0	0	0	0	0	0	27	33	0	60	0	0	0	0	0	0	0	0	0	0	60
Total	0	0	0	0	0	0	100	152	0	252	0	0	0	0	0	0	0	0	0	0	252
16:00	0	0	0	0	0	0	22	29	0	51	0	0	0	0	0	0	0	0	0	0	51
16:15	0	0	0	0	0	0	17	23	0	40	0	0	0	0	0	0	0	0	0	0	40
16:30	0	0	0	0	0	0	21	21	1	43	0	0	0	0	0	0	0	0	0	0	43
16:45	0	0	0	0	0	1	22	30	8	61	0	0	0	0	0	0	0	0	0	0	61
Total	0	0	0	0	0	1	82	103	9	195	0	0	0	0	0	0	0	0	0	0	195
17:00	0	0	0	0	0	0	29	24	2	55	0	0	0	0	0	0	0	0	0	0	55
17:15	0	0	0	0	0	0	14	13	12	39	0	0	0	0	0	0	0	0	0	0	39
17:30	0	0	0	0	0	0	13	26	3	42	0	0	0	0	0	0	0	0	0	0	42
17:45	0	0	0	0	0	0	9	14	1_	24	0	0	0	0	0	0	0	0	0	0	24
Total	0	0	0	0	0	0	65	77	18	160	0	0	0	0	0	0	0	0	0	0	160
Grand Total	0	0	0	0	0	30	2524	2445	50	5049	0	0	0	0	0	0	0	0	0	0	5049
Apprch %	0	0	0	0		0.6	50	48.4	1		0	0	0	0		0	0	0	0		
Total %	0	0	0	0	0	0.6	50	48.4	1_	100	0	0	0	0	0	0	0	0	0	0	
Vehicles	0	0	0	0	0	30	2524	2444	37	5035	0	0	0	0	0	0	0	0	0	0	5035
% Vehicles	0	0	0	0	0	100	100	100	74_	99.7	0	0	0	0	0	0	0	0	0	0	99.7
Heavy Vehicles	0	0	0	0	0	0	0	1	13	14	0	0	0	0	0	0	0	0	0	0	14
% Heavy Vehicles	0	0	0	0	0	0	0	0	26	0.3	0	0	0	0	0	0	0	0	0	0	0.3

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 8C_JAMES Site Code: 00000000 Start Date: 7/11/2018

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 8C_JAMES Site Code: 00000000 Start Date: 7/11/2018

		DIA					8C					DIA					8C				
		Fr	om No	orth			Fi	rom E	ast			Fr	om So	outh			Fr	om W	lest		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour	Analys	is Froi	m 06:0	00 to 1	1:45 - F	Peak 1	of 1														
Peak Hour f	for Ent	ire Inte	ersecti	ion Be	gins at	06:45															
06:45	0	0	0	0	0	0	286	235	0	521	0	0	0	0	0	0	0	0	0	0	521
07:00	0	0	0	0	0	0	272	246	1	519	0	0	0	0	0	0	0	0	0	0	519
07:15	0	0	0	0	0	28	236	185	2	451	0	0	0	0	0	0	0	0	0	0	451
07:30	0	0	0	0	0	0	265	229	3	497	0	0	0	0	0	0	0	0	0	0	497
Total Volume	0	0	0	0	0	28	1059	895	6	1988	0	0	0	0	0	0	0	0	0	0	1988
% App. Total	0	0	0	0		1.4	53.3	45	0.3		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.250	.926	.910	.500	.954	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.954
Vehicles	0	0	0	0	0	28	1059	895	4	1986	0	0	0	0	0	0	0	0	0	0	1986
% Vehicles	0	0	0	0	0	100	100	100	66.7	99.9	0	0	0	0	0	0	0	0	0	0	99.9
Heavy Vehicles	0	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	2
% Heavy Vehicles	0	0	0	0	0	0	0	0	33.3	0.1	0	0	0	0	0	0	0	0	0	0	0.1

7500 Jefferson Street NE Albuquerque, NM 87109

> File Name: 8C_JAMES Site Code: 00000000 Start Date: 7/11/2018

		DIA					8C					DIA					8C				
		Fre	om No	orth			Fr	om E	ast			Fre	om Sc	outh			Fr	om W	est		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour A	Analysi	is Fror	n 12:0	00 to 1	7:45 - F	Peak 1	of 1														
Peak Hour f	or Enti	re Inte	ersecti	on Be	gins at	15:00															
15:00	0	0	0	0	0	0	26	39	0	65	0	0	0	0	0	0	0	0	0	0	65
15:15	0	0	0	0	0	0	26	46	0	72	0	0	0	0	0	0	0	0	0	0	72
15:30	0	0	0	0	0	0	21	34	0	55	0	0	0	0	0	0	0	0	0	0	55
15:45	0	0	0	0	0	0	27	33	0	60	0	0	0	0	0	0	0	0	0	0	60
Total Volume	0	0	0	0	0	0	100	152	0	252	0	0	0	0	0	0	0	0	0	0	252
% App. Total	0	0	0	0		0	39.7	60.3	0		0	0	0	0		0	0	0	0		
PHF	.000	.000	.000	.000	.000	.000	.926	.826	.000	.875	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.875
Vehicles	0	0	0	0	0	0	100	152	0	252	0	0	0	0	0	0	0	0	0	0	252
% Vehicles	0	0	0	0	0	0	100	100	0	100	0	0	0	0	0	0	0	0	0	0	100
Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Vehicles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX B 2018 EXISTING INTERSECTION CAPACITY ANALYSIS

Appendix B Listing – 2018 Existing Intersection Capacity Analysis

Synchro Certification Statement

Required HCM Data, Potential Data Sources and Default Values listing

Diamond & Sigma AM

Diamond & Eniwetok AM

Diamond & Embudo AM

Diamond & West Jemez AM

Diamond & Sigma PM

Diamond & Eniwetok PM

Diamond & Embudo PM

Diamond & West Jemez PM

Diamond & Pajarito Roundabout AM

Diamond & Pajarito Roundabout PM

Diamond & Pajarito Unsignalized AM

Diamond & South Drive AM

Diamond & Grable AM

Diamond & Coronado AM

Diamond & Pajarito Unsignalized PM

Diamond & South Drive PM

Diamond & Grable PM

Diamond & Coronado PM

e of Validati TO THOMORD.

Synchro

Synchro is a macroscopic analysis and optimization software application used by engineers to assess the traffic and environmental effects of transportation projects.

methods) published by the Transportation Research Board (TRB) of the National Academies of Science in the United States for signalized intersections and roundabouts. Synchro Synchro supports the Highway Capacity Manual's methodology (2000, 2010, and 6th Ed. incorporates the concepts, guidelines and computational procedures of the Highway Capacity Manual.

formulas provided by the TRB. This includes validation and accuracy of the data, content All Synchro application results are verified via a technical reference library of of all displays, and verification of system outputs through QA/QC.

X July U. Jeff Cornelius, Director of Software Development

[PAGE 1 OF 1]

Exhibit 10-	Fxhihit 16	3-11 Sixth Edition of the High	Exhibit 19-11 Sixth Edition of the Highway Canacity Manual ons 19-23 and 19-24	
Required Data and Units	Basis	Potential Data Source(s)	Suggested Default Value	Notes
		ľ		
Demand flow rate (veh/h)	Σ	Field data, past counts	Must be provided	Actual traffic counts plus growth factors for future year analyses
Right-turn-on-red flow rate (veh/h)	Ø	Field data, past counts	0 veh/h	0
Percentage heavy vehicles (%)	MG	Field data, past counts		Actual traffic counts, no adjustments for traffic growth to be conservative
Peak hour factor (decimal)	_	Field data, analyst judgement	Hourly data and 0.25-h analysis period: Total entering volume greater than 1,000 veh/h, 0.92 Total entering volume less than 1,000 veh/h 0.90, Otherwise 1.00	Actual traffic counts, no adjustments for traffic growth to be conservative
Platoon ratio (decimal)	MG	Field data, analyst judgement	See discussion	Calculated by Synchro based on signal timing inputs and cycle length per HCM procedures
Upstream filtering adjustment factor (decimal)	MG	Field data, analyst judgement	1.0	Calculated by Synchro per HCM procedures
Initial queue (veh)	MG	Field data, analyst judgement	Must be provided	Set a zero, as at the beginning of the peak hour it was assumed there was no queue, though it does build througout the peak hour to be substantial
Base saturation flow rate (pc/h/ln)	MG	Field data, analyst judgement	Metro pop. greater than 250,000: 1,900 pc/h/ln, Otherwise 1,750 pc/h/ln	1,900 veh/h was used as it was considered that drivers are commuter who are familiar with the area and who all have experience in larger metro areas (like Albuquerque)
(leasingly) and	(de de la constante de la const	Calculated by Synchro using HCM procedures, except at Embudo where it was modified to reflect that most
Latte utilization aujustment (actor (ucumal)	2	rielu uata, arialyst juugeriierit	ske discussion	drivers were in the obusing right turn lane to be able to access the right turn lanes at the West Jemez road intersection
Pedestrian flow rate (p/h)	۷	Field data, past counts	Must be provided	From actual counts
Bicycle flow rate (bicycles/h)	⋖	Field data, past counts	Must be provided	From actual counts
On-street parking maneuver rate (veh/h)	MG	Field data, analyst judgement	See discussion	n/a
Local bus stopping rate (buses/h)	4	Field data, analyst judgement	CBD bus stop: 12 buses/h Non-CBD bus stop: 2 buses/h	n/a
Unsignalized movement delay (s)	Σ	Field data	See discussion	No unsignalized movements at signalized intersections
			Geometric Design	
Number of lanes (In)	Σ	Field data, aerial photo	Must be provided	Determined from aerial
Average lane width (ft)	MG	Field data, aerial photo	12 ft	Estimated from aerial
Number of receiving lanes (In)	⋖	Field data, aerial photo	Must be provided	Determined from aerial
Turn bay length (ft)	MG	Field data, aerial photo	Must be provided	Determined from aerial
Presence of on-street parking	MG	Field data, aerial photo		n/a
(/o/ = v	•		Flat approach: 0%	
Approach grade (%)	۲	הפום מפופ	Moderate grade on approach: 3% Steep grade on approach: 6%	riat approach based on site visit
		Signal	\circ	
Type of signal control	-	Field data	Must be provided	Based on site visit
Phase sequence	4	Field data	Must be provided	Based on site visit

Required Data and Units	Basis	Potential Data Source(s)	Suggested Default Value	Notes
left-turn operational mode	4	Field data	Must be provided	Based on site visit
Dallac loft + 11 to abacing contion	<	מייים מייים		2/2
Dalias leit-turri priasirig option	۷ ۵	Field data	Dictated by local use	n/a
Passage time (s) (if actuated)	Ь	Field data	2.0 s (presence detection)	3.0 s, Synchro default
Maximum green (s) (if actuated)	۵	Field data	Major-street through movement: 50 s Minor-street thorugh movement: 30 s Left-turn movement: 20 s	Based on Synchro optimization procedures
Green duration (s) (if pretimed)	۵	Field data	Major-street through movement: 50 s Minor-street thorugh movement: 30 s Left-turn movement: 20 s	Based on Synchro optimization procedures
Minimum green (s)	۵	Field data	Major-street through movement: 10 s Minor-street thorugh movement: 8 sLeft-turn movement: 6 s	Based on Synchro optimization procedures
Yellow change + red clearance (s)*	Ь	Field data	4.0 s	4.5 s, Synchro default
Walk (s)	۵	Field data	Actuated: 7.0 s Pretimed: green interval minuse pedestrian clear	7.0 s, Synchro default
Pedestrian clear (s)	Ь	Field data	Based on 3.5-ft/s walking speed	Based on Synchro defaults based on HCM procedures
Phase recall (if actuated)	Ь	Field data	No recall	None
Dual entry (if actuated)	Ь	Field data	Not enabled (i.e., use single entry)	Synchro defaults per HCM procedures
Simultaneous gap-out (if actuated)	∢	Field data	Enabled	Synchro defaults per HCM procedures Used 90 seconds for existing, allowed Synchro to
Cycle length (if pretimed)	_	Field data	See discussion	optimize for growth scenarios
			Other Data	
Analysis period duration (h)	-	Set by analyst	0.25 h	0.25 h
Speed limit (mi/h)	A	Field data, road inventory	Must be provided	30 MPH
Stop-line detector length (ft) and detection mode (if actuated)	MG	Field data	40 ft, presence detection mode	40 ft
Area type (CBD, non-CBD)	-	Analyst judgment	Must be provided	non-CBD
Notes: M - movement: one value for each left-turn, through, and right-turn movement.	ugh, and righ	t-turn movement.		
A = approach: one value or condition for the intersection approach.	7		20 000 01 000 day 100	
Independent of the properties of the propertie	מון שונון פארו	usive tuili lailes alla Olle value lo	usive tutii jahes aliu one value toi the tiilougii movement (mtuasive oi ariy tutii movements m a shareu lahe)	Is ill a slialed ialle).
P = phase: one value or condition for each signal phase.				
CBD = central business district; val. = volume; pop. = population.	ulation.			
* Specific values of yellow change and red clearance should be determined by local guidelin	uld be deterr	nined by local guidelin		
Required Additional Input Da	ta, Potent	ial Data Sources, and Defa	Required Additional Input Data, Potential Data Sources, and Default Values for Motorized Vehicle Analysis with Coordinated Signal Control	ith Coordinated Signal Control
	Exhi	bit 19-12 Sixth Edition of t	bit 19-12 Sixth Edition of the Highway Capacity Manual, p. 19-24	
		Pc	Potential Data	
Required Data and Units	Basis	Source(s)	Suggested Default Value	Notes
Cycle length (s)	ı	Field Data	See discussion	Used 90 seconds for existing, allowed Synchro to optimize for growth scenarios
Phase splits (s) (if actuated)	Ь	Field Data	See discussion	Synchro optimiziation
Offset (s)	_	Field Data	Equal to travel time in Phase 2 direction**	Synchro optimiziation
Conserver and (1) Some (2)	- -	Field Data	Fixed	Sylicing deladic for N/3 cool dinadion
Notes: I = intersection: one value or condition for the intersection.	tersection.		2005	2200
P = phase: one value or condition for each signal phase.				
** Assumes Phase 2 is the reference phase. Substitute 6 if Phase 6 is the reference phase.	if Phase 6 is	the reference phase.		

Required Input D	Data, Potential Data Sources,	Required Input Data, Potential Data Sources, and Default Values for Roundabout Motorized Vehicle Analysis	ed Vehicle Analysis
	Exhibit 22-9 Sixth Edition	Exhibit 22-9 Sixth Edition of the Highway Capacity Manual, p. 22-14	
		Potential Data	
Required Data and Units	Potential Data Source(s)	Suggested Default Value	Notes
		Geometric Data	
Number and configuration of lanes on each approach	Design plans, road inventory	Must be provided	Used aerial to determine
		Demand Data	
Hourly turning movement demand volume (veh/h) AND peak hour factor OR Hourly turning movement demand flow rate (veh/h)	D Field data, modeling	Must be provided	Actual traffic counts plus growth factors for future year analyses
Analysis period length (min)	Set by analyst	15 min (0.25 h)	15 min
Peak hour factor (decimal)	Field data	0.92	Actual from traffic counts, no adjustments for traffic growth to be conservative
Heavy vehicle percentage (%)	Field data	3%	Actual from traffic counts, no adjustments for traffic growth to be conservative
Lane Utilization	Field data	Left-through + through-right: % traffic in left lane: 0.47* % traffic in right lane: 0.53*	
		Left-through-right + right: % traffic in left lane: 0.47* % traffic in right lane: 0.53*	Used 1.0 as each movement has their own lane, no need to use more than one lane
		Left + left-through-right: % traffic in left lane: 0.53* % traffic in right lane: 0.47*	
Note: *These values are generally consistent with observed values for through the near ranacity.	erved values for through movements	at signalized intersections. These values should be appli	movements at signalized intersections. These values should be applied with care, particularly under conditions estimated to
De lleal capacity			

Required Input Data, Pot	ential Data Sources, and Defa	Required Input Data, Potential Data Sources, and Default Values for Two-Way Stop Controlled Motorized Vehicle Analysis	Aotorized Vehicle Analysis
	Exhibit 20-5 Sixth Edition o	Exhibit 20-5 Sixth Edition of the Highway Capacity Manual, p. 20-10	
		Potential Data	
Required Data and Units	Potential Data Source(s)	Suggested Default Value	Notes
		Geometric Data	
Number and configuration of lanes on each approach	Design plans, road inventory	Must be provided	Used aerial to determine
Approach grades	Design plans, road inventory	%0	Site visit, 0%
Special geometric factors such as: Unique channelization aspects Existence of two-way left-turn lane or raised or striped median storage (or both) Existence of upstream signals	Design plans, road inventory	Must be provided	Used aerial to determine
		Demand Data	
Hourly turning movement demand volume (veh/h) AND peak hour factor OR Hourly turning movement demand flow rate (veh/h)	Field data, modeling	Must be provided	Actual traffic counts plus growth factors for future year analyses
Analysis period length (min)	Set by analyst	15 min (0.25 h)	15 min
Peak hour factor (decimal)	Field data	0.92	Actual from traffic counts, no adjustments for traffic growth to be conservative
Heavy vehicle percentage (%)	Field data	3%	Actual from traffic counts, no adjustments for traffic growth to be conservative
Saturation flow rate for major-street through movement (for analysis of shared or short major-street , left-turn lanes)	Field data	1,800 veh/h	1,900 veh/h as drivers were considered to be familiar with area due to daily use
Saturation flow rate for major-street right-turn movement (for analysis of shared or short major-street , Field data left-turn lanes)	Field data	1,500 veh/h	1,900 veh/h as drivers were considered to be familiar with area due to daily use

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations 4		۶	→	•	•	←	•	1	†	~	/	Į.	4
Traffic Volume (veh/h)	Movement	EBL	EBT		WBL	WBT			NBT	NBR		SBT	SBR
Future Volume (veh/h)	Lane Configurations		4	7		र्स	7	7	₽		ሻ	1>	
Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Traffic Volume (veh/h)	5	1	6		0		6	269	37		515	54
Pect-Bisk Adji(A-pbT)					17						51	515	54
Parking Bus Adj			0			0			0			0	
Work Zone On Approach	, , , , , , , , , , , , , , , , , , ,												
Adj Salz Flow, vehir/hin 1648 1648 1648 1648 1870 4870 1870 4870 1870 4870 1870 4870 1870 4870 1870 4870 1870 4		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 6 1 7 20 0 17 7 313 43 60 606 64 Peak Hour Factor 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.85 0.85 0.85 0.85 Percent Heavy Veh, % 17 17 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													
Peak Hour Factor 0.85 0.85 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86													
Percent Heavy Veh, % 17 17 17 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													
Cap, veh/h 106 9 147 117 0 163 499 1009 139 755 1112 117 Arrive On Green 0.11 0.11 0.11 0.11 0.11 0.11 0.01 0.63 0.63 0.05 0.67 0.67 Sat Flow, veh/h 15 81 1346 48 0 1491 1781 1602 220 1781 1656 175 Gry Volume(v), veh/h 7 0 7 20 0 17 7 0 356 60 0 670 Gry Sat Flow(s), veh/h 95 0 1346 48 0 1491 1781 0 1822 1781 0 1831 Qseve(g.s), s. 0.0 0.0 0.0 0.7 0.1 0.0 5.8 0.7 0.0 122 Prop In Lane 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.01 1.00													
Arrive On Green													
Sat Flow, veh/h													
Grp Volume(v), veh/h 7 0 7 20 0 17 7 0 356 60 0 670 Grp Sat Flow(s), veh/h/ln 95 0 1346 48 0 1491 1781 0 1822 1781 0 1831 Q Serve(g_s), s 0.0 0.0 0.3 7.0 0.0 0.7 0.1 0.0 5.8 0.7 0.0 122 Cycle Q Clear(g_c), s 7.0 0.0 0.3 7.0 0.0 0.7 0.1 0.0 5.8 0.7 0.0 122 Vcycle Q Clear(g_c), selv/h 114 0 147 117 0 163 499 0 1147 755 0 1230 V/C Ratio(X) 0.06 0.00 0.05 0.17 0.00 0.01 0.00 0.1147 755 0 1230 V/C Ratio(X) 0.06 0.00 0.17 0.00 0.01 0.01 0.01 0.01 0.													
Grp Sat Flow(s), veh/h/ln 95 0 1346 48 0 1491 1781 0 1822 1781 0 1831 Q Serve(g_s), s 0.0 0.0 0.0 0.3 0.2 0.0 0.7 0.1 0.0 5.8 0.7 0.0 12.2 Cycle Q Clear(g_c), s 7.0 0.0 0.3 7.0 0.0 0.7 0.1 0.0 5.8 0.7 0.0 12.2 Cycle Q Clear(g_c), s 7.0 0.0 0.3 7.0 0.0 0.7 0.1 0.0 5.8 0.7 0.0 12.2 Cycle Q Clear(g_c), s 7.0 0.0 0.3 7.0 0.0 0.0 1.00 1.00 5.8 0.7 0.0 12.2 Cycle Q Clear(g_c), veh/h 114 0 147 117 0 163 499 0 1147 755 0 1230 V/C Ratio(X) 0.06 0.00 0.05 0.17 0.00 0.10 0.01 0.00 0.31 0.08 0.00 0.54 Avail Cap(c_a), veh/h 377 0 429 406 0 475 912 0 1147 1094 0 1230 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Q Serve(g_s), s													
Cycle Q Clear(g_c), s 7.0 0.0 0.3 7.0 0.0 0.7 0.1 0.0 5.8 0.7 0.0 12.2 Prop In Lane 0.86 1.00 1.00 1.00 1.00 0.12 1.00 0.10 Lane GP Cap(c), veh/h 114 0 147 117 0 163 499 0 1147 755 0 1230 V/C Ratio(X) 0.06 0.00 0.05 0.17 0.00 0.10 0.00 0.31 0.08 0.00 0.54 Avail Cap(c_a), veh/h 377 0 429 406 0 475 912 0 1147 1094 0 1230 HCM Platoon Ratio 1.00 1.													
Prop In Lane													
Lane Grp Cap(c), veh/h 114 0 147 117 0 163 499 0 1147 755 0 1230 V/C Ratio(X) 0.06 0.00 0.05 0.17 0.00 0.10 0.01 0.00 0.31 0.08 0.00 0.54 Avail Cap(c_a), veh/h 377 0 429 406 0 475 912 0 1147 1094 0 1230 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			0.0			0.0			0.0			0.0	
V/C Ratio(X) 0.06 0.00 0.05 0.17 0.00 0.10 0.01 0.00 0.31 0.08 0.00 0.54 Avail Cap(c_a), veh/h 377 0 429 406 0 475 912 0 1147 1094 0 1230 HCM Platoon Ratio 1.00 </td <td></td>													
Avail Cap(c_a), veh/h 377 0 429 406 0 475 912 0 1147 1094 0 1230 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
HCM Platoon Ratio	. ,												
Upstream Filter(I)													
Uniform Delay (d), s/veh 26.0 0.0 25.6 32.1 0.0 25.8 4.9 0.0 5.5 3.6 0.0 5.5 Incr Delay (d2), s/veh 0.2 0.0 0.1 0.7 0.0 0.3 0.0 0.0 0.0 0.7 0.0 0.0 1.7 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.													
Incr Delay (d2), s/veh	. ()												
Initial Q Delay(d3),s/veh													
%ile BackOfQ(95%), veh/In 0.2 0.0 0.2 0.6 0.0 0.4 0.0 0.0 3.4 0.3 0.0 6.8 Unsig. Movement Delay, s/veh 26.2 0.0 25.8 32.8 0.0 26.1 4.9 0.0 6.2 3.7 0.0 7.2 LnGrp LOS C A C C A C A													
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 26.2 0.0 25.8 32.8 0.0 26.1 4.9 0.0 6.2 3.7 0.0 7.2 LnGrp LOS C A C C A C A A A A A A A A A A A A A													
LnGrp Delay(d),s/veh 26.2 0.0 25.8 32.8 0.0 26.1 4.9 0.0 6.2 3.7 0.0 7.2 LnGrp LOS C A C C A C A			0.0	0.2	0.6	0.0	0.4	0.0	0.0	3.4	0.3	0.0	6.8
LnGrp LOS C A C C A C A											. –		
Approach Vol, veh/h 14 37 363 730 Approach Delay, s/veh 26.0 29.7 6.2 6.9 Approach LOS C C A A Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.8 45.0 11.6 5.1 47.7 11.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 15.5 40.5 20.5 15.5 40.5 20.5 Max Q Clear Time (g_c+l1), s 2.7 7.8 9.0 2.1 14.2 9.0 Green Ext Time (p_c), s 0.1 2.4 0.0 0.0 5.2 0.1 Intersection Summary HCM 6th Ctrl Delay 7.6	, , ,												
Approach Delay, s/veh 26.0 29.7 6.2 6.9 Approach LOS C C A A Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.8 45.0 11.6 5.1 47.7 11.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 15.5 40.5 20.5 40.5 20.5 Max Q Clear Time (g_c+l1), s 2.7 7.8 9.0 2.1 14.2 9.0 Green Ext Time (p_c), s 0.1 2.4 0.0 0.0 5.2 0.1 Intersection Summary HCM 6th Ctrl Delay 7.6		С		С	С		С	A		A	A		A
Approach LOS C C A A A Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.8 45.0 11.6 5.1 47.7 11.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 15.5 40.5 20.5 15.5 40.5 20.5 Max Q Clear Time (g_c+I1), s 2.7 7.8 9.0 2.1 14.2 9.0 Green Ext Time (p_c), s 0.1 2.4 0.0 0.0 5.2 0.1 Intersection Summary HCM 6th Ctrl Delay 7.6													
Timer - Assigned Phs 1 2 4 5 6 8 Phs Duration (G+Y+Rc), s 7.8 45.0 11.6 5.1 47.7 11.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 15.5 40.5 20.5 40.5 20.5 Max Q Clear Time (g_c+I1), s 2.7 7.8 9.0 2.1 14.2 9.0 Green Ext Time (p_c), s 0.1 2.4 0.0 0.0 5.2 0.1 Intersection Summary HCM 6th Ctrl Delay 7.6	11 71												
Phs Duration (G+Y+Rc), s 7.8 45.0 11.6 5.1 47.7 11.6 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 15.5 40.5 20.5 40.5 20.5 Max Q Clear Time (g_c+I1), s 2.7 7.8 9.0 2.1 14.2 9.0 Green Ext Time (p_c), s 0.1 2.4 0.0 0.0 5.2 0.1 Intersection Summary HCM 6th Ctrl Delay 7.6	Approach LOS		С			С			Α			Α	
Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 15.5 40.5 20.5 15.5 40.5 20.5 Max Q Clear Time (g_c+l1), s 2.7 7.8 9.0 2.1 14.2 9.0 Green Ext Time (p_c), s 0.1 2.4 0.0 0.0 5.2 0.1 Intersection Summary HCM 6th Ctrl Delay 7.6	Timer - Assigned Phs	1	2		4	5	6		8				
Max Green Setting (Gmax), s 15.5 40.5 20.5 15.5 40.5 20.5 Max Q Clear Time (g_c+l1), s 2.7 7.8 9.0 2.1 14.2 9.0 Green Ext Time (p_c), s 0.1 2.4 0.0 0.0 5.2 0.1 Intersection Summary HCM 6th Ctrl Delay 7.6	Phs Duration (G+Y+Rc), s	7.8	45.0		11.6	5.1	47.7		11.6				
Max Q Clear Time (g_c+I1), s 2.7 7.8 9.0 2.1 14.2 9.0 Green Ext Time (p_c), s 0.1 2.4 0.0 0.0 5.2 0.1 Intersection Summary HCM 6th Ctrl Delay 7.6	Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Green Ext Time (p_c), s 0.1 2.4 0.0 0.0 5.2 0.1 Intersection Summary HCM 6th Ctrl Delay 7.6 7.6 7.6	Max Green Setting (Gmax), s	15.5	40.5		20.5	15.5	40.5		20.5				
Intersection Summary HCM 6th Ctrl Delay 7.6	Max Q Clear Time (g_c+I1), s	2.7	7.8		9.0	2.1	14.2		9.0				
HCM 6th Ctrl Delay 7.6	Green Ext Time (p_c), s	0.1	2.4		0.0	0.0	5.2		0.1				
HCM 6th Ctrl Delay 7.6	Intersection Summary												
				7.6									
HCM 6th LOS A	HCM 6th LOS												

	۶	→	•	€	←	4	1	†	/	-	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		र्स	7	ሻ	•	7	ሻ	•	7
Traffic Volume (veh/h)	3	1	7	51	1	57	21	218	35	30	585	219
Future Volume (veh/h)	3	1	7	51	1	57	21	218	35	30	585	219
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.96		0.91	0.95		1.00	1.00		1.00	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	1	8	59	1	0	26	266	0	37	713	267
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.82	0.82	0.82	0.82	0.82	0.82
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	200	53	136	237	3		425	1217		839	1233	1033
Arrive On Green	0.09	0.09	0.09	0.09	0.09	0.00	0.03	0.65	0.00	0.04	0.66	0.66
Sat Flow, veh/h	1048	557	1436	1291	33	1585	1781	1870	1585	1781	1870	1567
Grp Volume(v), veh/h	4	0	8	60	0	0	26	266	0	37	713	267
Grp Sat Flow(s),veh/h/ln	1605	0	1436	1323	0	1585	1781	1870	1585	1781	1870	1567
Q Serve(g_s), s	0.0	0.0	0.3	2.6	0.0	0.0	0.3	3.6	0.0	0.4	13.1	4.4
Cycle Q Clear(g_c), s	0.1	0.0	0.3	2.7	0.0	0.0	0.3	3.6	0.0	0.4	13.1	4.4
Prop In Lane	0.75		1.00	0.98		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	253	0	136	240	0		425	1217		839	1233	1033
V/C Ratio(X)	0.02	0.00	0.06	0.25	0.00		0.06	0.22		0.04	0.58	0.26
Avail Cap(c_a), veh/h	595	0	473	554	0		817	1217		1215	1233	1033
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	25.6	0.0	25.7	26.8	0.0	0.0	4.6	4.4	0.0	3.2	5.8	4.4
Incr Delay (d2), s/veh	0.0	0.0	0.2	0.5	0.0	0.0	0.1	0.4	0.0	0.0	2.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	0.0	0.2	1.5	0.0	0.0	0.1	2.0	0.0	0.2	7.5	2.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	25.6	0.0	25.8	27.3	0.0	0.0	4.6	4.8	0.0	3.2	7.8	5.0
LnGrp LOS	С	Α	С	С	Α		Α	Α		Α	Α	Α
Approach Vol, veh/h		12			60	А		292	А		1017	
Approach Delay, s/veh		25.8			27.3			4.8			6.9	
Approach LOS		C			C			A			A	
	1			1		6		8				
Timer - Assigned Phs Phs Duration (G+Y+Rc), s	6.9	45.0		10.4	6.3	45.6		10.4				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	15.5	40.5		20.5	15.5	40.5		20.5				
Max Q Clear Time (g c+l1), s	2.4	5.6		20.5	2.3	15.1		4.7				
Green Ext Time (p_c), s	0.0	1.7		0.0	0.0	6.6		0.2				
	0.0	1.7		0.0	0.0	0.0		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			7.5									
HCM 6th LOS			Α									
Notes												

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

	•	4	†	<i>></i>	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	7	7	↑ ↑		7	+		
Fraffic Volume (veh/h)	22	17	184	20	54	933		
Future Volume (veh/h)	22	17	184	20	54	933		
nitial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00		0.97	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Nork Zone On Approach	No		No			No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	30	23	204	22	60	1037		
Peak Hour Factor	0.74	0.74	0.90	0.90	0.90	0.90		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	81	72	1357	145	1049	1554		
Arrive On Green	0.05	0.05	0.54	0.54	0.23	0.83		
Sat Flow, veh/h	1781	1585	3414	267	1781	1870		
Grp Volume(v), veh/h	30	23	77	149	60	1037		
Grp Sat Flow(s),veh/h/ln	1781	1585	954	1811	1781	1870		
Q Serve(g_s), s	1.2	1.0	2.9	3.0	0.0	15.3		
Cycle Q Clear(g_c), s	1.2	1.0	2.9	3.0	0.0	15.3		
Prop In Lane	1.00	1.00		0.15	1.00			
Lane Grp Cap(c), veh/h	81	72	518	984	1049	1554		
V/C Ratio(X)	0.37	0.32	0.15	0.15	0.06	0.67		
Avail Cap(c_a), veh/h	505	449	518	984	1049	1554		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	33.7	33.6	8.2	8.3	3.4	2.3		
Incr Delay (d2), s/veh	2.8	2.5	0.6	0.3	0.0	2.3		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(95%),veh/ln	1.0	8.0	1.1	2.0	0.4	4.0		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d),s/veh	36.5	36.2	8.8	8.6	3.5	4.6		
LnGrp LOS	D	D	Α	Α	Α	Α		
Approach Vol, veh/h	53		226			1097		
Approach Delay, s/veh	36.4		8.7			4.6		
Approach LOS	D		Α			Α		
Timer - Assigned Phs	1	2				6	8	
Phs Duration (G+Y+Rc), s	20.9	44.0				64.9	7.8	
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5	
Max Green Setting (Gmax), s	16.4	39.5				60.4	20.6	
Max Q Clear Time (g_c+l1), s	2.0	5.0				17.3	3.2	
Green Ext Time (p_c), s	0.1	1.4				12.0	0.1	
Intersection Summary								
HCM 6th Ctrl Delay			6.5					
HCM 6th LOS			Α					
TOWN OUT LOO			$\overline{\Lambda}$					

Initial Q (Qb), veh		\rightarrow	*	•	-	1	1	
Lane Configurations Traffic Volume (veh/h) 115 157 895 1059 13 176 Future Volume (veh/h) 115 157 895 1059 13 176 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 0.94 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 Adj Flow Rate, veh/h 126 173 942 1115 15 210 Peak Hour Factor 0.91 0.91 0.95 0.95 0.84 0.84 Percent Heavy Veh, % 2 3 3 Arrive On Green 0.15 0.15 0.32 0.54 0.32 0.32 Sat Flow, veh/h 3647 1482 3456 3647 3456 2790 Grp Volume(v), veh/h 126 173 942 1115 15 210 Grp Sat Flow(s), veh/h/ln 1777 1482 1728 1777 1728 1395 Q Serve(g_s), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 521 725 1114 1916 1107 1793 V/C Ratio(X) 0.24 0.24 0.85 0.58 0.01 0.12 Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.2 0.2 4.2 0.3 0.0 0.1 Initial Q Delay(d), s/veh 14 4 10.5 24.4 10.2 14.9 4.6 LnGrp Dolay (s), veh/h 299 2057 225 Approach Delay, s/veh LnGrp Delay(d), s/veh 16.3 16.7 5.2 Approach Delay, s/veh LnGrp Delay(d), s/veh 16.3 16.3 16.5 Green Ext Time (g_c-t1), s 2.2 18.3 6.5 Green Ext Time (g_c-t1), s 2.2 18.3 6.5 Green Ext Time (g_c-t), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Traffic Volume (veh/h)								
Future Volume (veh/h)						13		
Ped-Bike Adj(A_pbT)	Future Volume (veh/h)	115	157	895	1059	13	176	
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 1870 Adj Flow Rate, veh/h 126 173 942 1115 15 210 1991 0.91 0.95 0.95 0.84 0.84 0.84 1992 1115 15 210 0.91 0.91 0.95 0.95 0.84 0.84 0.84 1992 1115 15 210 0.91 0.91 0.95 0.95 0.84 0.84 0.84 1992 1115 15 210 0.91 0.91 0.95 0.95 0.84 0.84 0.84 1992 1115 15 210 0.91 0.91 0.95 0.95 0.84 0.84 0.84 1992 1115 15 0.92 0.95 0.84 0.84 0.84 1992 1115 15 0.92 0.95 0.95 0.84 0.84 0.84 1992 1115 15 0.92 0.95 0.95 0.84 0.84 0.84 1992 1115 15 0.95 0.95 0.84 0.84 0.84 1992 1115 15 0.95 0.95 0.84 0.84 0.84 1992 1115 15 0.95 0.95 0.84 0.84 0.84 1992 1115 15 0.95 0.95 0.95 0.84 0.84 0.84 1992 1115 15 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9	Initial Q (Qb), veh	0	0	0	0	0	0	
Work Zone On Ápproach No No No No Adj Sat Flow, veh/h/In 1870 20 22 2	Ped-Bike Adj(A_pbT)		0.94	1.00		1.00	1.00	
Adj Sat Flow, veh/h/ln 1870 183 1870 183 182 1820 1820 1820 20 20 20 20 20 20 20 20 20 20 45 16.3 13.5 0.2 0.0 20 20 0.0 20 20 0.0 20 20 20 20 20 20 20	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Flow Rate, veh/h Peak Hour Factor O.91 O.91 O.91 O.95 O.95 O.84 O.84 Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Work Zone On Approach	No			No	No		
Peak Hour Factor 0.91 0.91 0.95 0.95 0.84 0.84 Percent Heavy Veh, % 2 0 4.5 1.6 3 3456 2790 0 <td>Adj Sat Flow, veh/h/ln</td> <td>1870</td> <td>1870</td> <td>1870</td> <td>1870</td> <td>1870</td> <td>1870</td> <td></td>	Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Adj Flow Rate, veh/h	126	173	942	1115	15	210	
Cap, veh/h 521 725 1114 1916 1107 1793 Arrive On Green 0.15 0.15 0.32 0.54 0.32 0.32 Sat Flow, veh/h 3647 1482 3456 3647 3456 2790 Grp Volume(v), veh/h 126 173 942 1115 15 210 Grp Sat Flow(s), veh/h/In 1777 1482 1728 1777 1728 1395 Q Serve(g_s), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0	Peak Hour Factor			0.95				
Arrive On Green 0.15 0.15 0.32 0.54 0.32 0.32 Sat Flow, veh/h 3647 1482 3456 3647 3456 2790 Grp Volume(v), veh/h 126 173 942 1115 15 210 Grp Sat Flow(s), veh/h/lin 1777 1482 1728 1777 1728 1395 Q Serve(g_s), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 521 725 1114 1916 1107 1793 V/C Ratio(X) 0.24 0.24 0.85 0.58 0.01 0.12 Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Percent Heavy Veh, %							
Sat Flow, veh/h 3647 1482 3456 3647 3456 2790 Grp Volume(v), veh/h 126 173 942 1115 15 210 Grp Sat Flow(s), veh/h/ln 1777 1482 1728 1777 1728 1395 Q Serve(g_s), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 521 725 1114 1916 1107 1793 V/C Ratio(X) 0.24 0.24 0.28 0.58 0.01 0.12 Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Cap, veh/h		725					
Grp Volume(v), veh/h 126 173 942 1115 15 210 Grp Sat Flow(s),veh/h/ln 1777 1482 1728 1777 1728 1395 Q Serve(g_s), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 521 725 1114 1916 1107 1793 V/C Ratio(X) 0.24 0.24 0.24 0.85 0.58 0.01 0.12 Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00	Arrive On Green							
Grp Sat Flow(s),veh/h/ln 1777 1482 1728 1777 1728 1395 Q Serve(g_s), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 521 725 1114 1916 1107 1793 V/C Ratio(X) 0.24 0.24 0.85 0.58 0.01 0.12 Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 </td <td>Sat Flow, veh/h</td> <td>3647</td> <td>1482</td> <td>3456</td> <td>3647</td> <td>3456</td> <td>2790</td> <td></td>	Sat Flow, veh/h	3647	1482	3456	3647	3456	2790	
Grp Sat Flow(s),veh/h/ln 1777 1482 1728 1777 1728 1395 Q Serve(g_s), s 2.0 4.5 16.3 13.5 0.2 0.0 Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 521 725 1114 1916 1107 1793 V/C Ratio(X) 0.24 0.24 0.85 0.58 0.01 0.12 Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 </td <td>Grp Volume(v), veh/h</td> <td>126</td> <td>173</td> <td>942</td> <td>1115</td> <td>15</td> <td>210</td> <td></td>	Grp Volume(v), veh/h	126	173	942	1115	15	210	
Cycle Q Clear(g_c), s 2.0 4.5 16.3 13.5 0.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 521 725 1114 1916 1107 1793 V/C Ratio(X) 0.24 0.24 0.85 0.58 0.01 0.12 Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.2 0.2 4.2 0.3 0.0 0.1 Initial Q Delay(d3),s/veh 0.0 0.0	Grp Sat Flow(s),veh/h/ln	1777	1482		1777	1728	1395	
Prop In Lane	Q Serve(g_s), s		4.5	16.3				
Lane Grp Cap(c), veh/h 521 725 1114 1916 1107 1793 V/C Ratio(X) 0.24 0.24 0.85 0.58 0.01 0.12 Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.2 10.3 20.2 9.9 14.8 4.4 Incr Delay (d2), s/veh 0.2 0.2 4.2 0.3 0.0 0.1 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(95%),veh/ln 1.4 4.3 10.6 7.5 0.1 0.7 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 24.4 10.5 24.4 10.2 14.9 4.6 LnGrp LOS C B C B B A Approach Vol, veh/h 299 2057 225 Approach Delay, s/veh 16.3 16.7 5.2 Approach LOS B A Timer - Assigned Phs 2 3 4 Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+I1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.0	Cycle Q Clear(g_c), s	2.0	4.5		13.5	0.2		
V/C Ratio(X) 0.24 0.24 0.85 0.58 0.01 0.12 Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.2 10.3 20.2 9.9 14.8 4.4 Incr Delay (d2), s/veh 0.2 0.2 4.2 0.3 0.0 0.1 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(95%),veh/ln 1.4 4.3 10.6 7.5 0.1 0.7 Unsig. Movement Delay, s/veh 24.4 10.5 24.4 10.2 14.9 4.6 LnGrp Delay(d),s/veh 24.4 10.5 24.4 10.2 14.9 4.6 LnGrp LoS C B C B A	Prop In Lane							
Avail Cap(c_a), veh/h 1694 1214 1377 3359 1107 1793 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.2 10.3 20.2 9.9 14.8 4.4 Incr Delay (d2), s/veh 0.2 0.2 4.2 0.3 0.0 0.1 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(95%),veh/ln 1.4 4.3 10.6 7.5 0.1 0.7 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 24.4 10.5 24.4 10.2 14.9 4.6 LnGrp LOS C B C B B A Approach Vol, veh/h 299 2057 225 Approach Delay, s/veh 16.3 16.7 5.2 Approach LOS B B A Timer - Assigned Phs 2 3 4 Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+I1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Lane Grp Cap(c), veh/h	521	725	1114	1916	1107	1793	
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.2 10.3 20.2 9.9 14.8 4.4 Incr Delay (d2), s/veh 0.2 0.2 4.2 0.3 0.0 0.1 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	V/C Ratio(X)	0.24	0.24	0.85	0.58	0.01	0.12	
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 24.2 10.3 20.2 9.9 14.8 4.4 Incr Delay (d2), s/veh 0.2 0.2 4.2 0.3 0.0 0.1 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Avail Cap(c_a), veh/h							
Uniform Delay (d), s/veh 24.2 10.3 20.2 9.9 14.8 4.4 Incr Delay (d2), s/veh 0.2 0.2 4.2 0.3 0.0 0.1 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	HCM Platoon Ratio							
Incr Delay (d2), s/veh	Upstream Filter(I)							
Initial Q Delay(d3),s/veh	Uniform Delay (d), s/veh							
%ile BackOfQ(95%),veh/ln 1.4 4.3 10.6 7.5 0.1 0.7 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 24.4 10.5 24.4 10.2 14.9 4.6 LnGrp LOS C B C B B A Approach Vol, veh/h 299 2057 225 Approach Delay, s/veh 16.3 16.7 5.2 Approach LOS B B A Timer - Assigned Phs 2 3 4 Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+l1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Incr Delay (d2), s/veh							
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 24.4 10.5 C B C B Approach Vol, veh/h Approach Delay, s/veh 16.3 Approach LOS B Approach LOS B A Approach LOS B A Approach LOS B A Approach LOS B A Timer - Assigned Phs Change Period (Y+Rc), s Change Period (Y+Rc), s Max Green Setting (Gmax), s Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s Intersection Summary HCM 6th Ctrl Delay 15.7	Initial Q Delay(d3),s/veh							
LnGrp Delay(d),s/veh 24.4 10.5 24.4 10.2 14.9 4.6 LnGrp LOS C B C B B A Approach Vol, veh/h 299 2057 225 Approach Delay, s/veh 16.3 16.7 5.2 Approach LOS B B A Timer - Assigned Phs 2 3 4 Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+I1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	%ile BackOfQ(95%),veh/ln		4.3	10.6	7.5	0.1	0.7	
LnGrp LOS C B C B B A Approach Vol, veh/h 299 2057 225 Approach Delay, s/veh 16.3 16.7 5.2 Approach LOS B B A Timer - Assigned Phs 2 3 4 Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+l1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7								
Approach Vol, veh/h 299 2057 225 Approach Delay, s/veh 16.3 16.7 5.2 Approach LOS B B A Timer - Assigned Phs 2 3 4 Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+I1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	LnGrp Delay(d),s/veh							
Approach Delay, s/veh 16.3 16.7 5.2 Approach LOS B B A Timer - Assigned Phs 2 3 4 Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+l1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	LnGrp LOS		В	С			A	
Approach LOS B B A Timer - Assigned Phs 2 3 4 Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+l1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Approach Vol, veh/h	299			2057	225		
Timer - Assigned Phs 2 3 4 Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+l1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Approach Delay, s/veh	16.3			16.7	5.2		
Phs Duration (G+Y+Rc), s 25.0 25.1 13.9 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+l1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Approach LOS	В			В	Α		
Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+l1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Timer - Assigned Phs		2	3	4			
Max Green Setting (Gmax), s 20.5 25.5 30.5 Max Q Clear Time (g_c+l1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Phs Duration (G+Y+Rc), s		25.0	25.1	13.9			
Max Q Clear Time (g_c+l1), s 2.2 18.3 6.5 Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Change Period (Y+Rc), s		4.5	4.5	4.5			
Green Ext Time (p_c), s 0.8 2.4 1.3 Intersection Summary HCM 6th Ctrl Delay 15.7	Max Green Setting (Gmax), s		20.5	25.5	30.5			
Intersection Summary HCM 6th Ctrl Delay 15.7	Max Q Clear Time (g_c+l1), s		2.2	18.3	6.5			
HCM 6th Ctrl Delay 15.7	Green Ext Time (p_c), s		8.0	2.4	1.3			
HCM 6th Ctrl Delay 15.7	Intersection Summary							
•				15.7				
	HCM 6th LOS			В				

	۶	→	*	€	←	4	4	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4	7	7	f)		7	₽	
Traffic Volume (veh/h)	35	0	21	21	0	46	3	516	8	7	208	6
Future Volume (veh/h)	35	0	21	21	0	46	3	516	8	7	208	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1856	1856	1856	1870	1870	1870
Adj Flow Rate, veh/h	40	0	24	24	0	53	3	593	9	8	236	7
Peak Hour Factor	0.88	0.88	0.88	0.87	0.87	0.87	0.87	0.87	0.87	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2	3	3	3	2	2	2
Cap, veh/h	97	0	426	97	0	426	639	981	15	373	983	29
Arrive On Green	0.27	0.00	0.27	0.27	0.00	0.27	0.00	0.54	0.54	0.01	0.54	0.54
Sat Flow, veh/h	5	0	1565	5	0	1565	1767	1822	28	1781	1806	54
Grp Volume(v), veh/h	40	0	24	24	0	53	3	0	602	8	0	243
Grp Sat Flow(s),veh/h/ln	5	0	1565	5	0	1565	1767	0	1850	1781	0	1859
Q Serve(g_s), s	0.1	0.0	0.9	0.1	0.0	1.9	0.1	0.0	16.8	0.2	0.0	5.2
Cycle Q Clear(g_c), s	20.5	0.0	0.9	20.5	0.0	1.9	0.1	0.0	16.8	0.2	0.0	5.2
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.01	1.00		0.03
Lane Grp Cap(c), veh/h	97	0	426	97	0	426	639	0	996	373	0	1012
V/C Ratio(X)	0.41	0.00	0.06	0.25	0.00	0.12	0.00	0.00	0.60	0.02	0.00	0.24
Avail Cap(c_a), veh/h	98	0	426	98	0	426	996	0	996	721	0	1012
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	37.6	0.0	20.2	37.6	0.0	20.6	8.0	0.0	11.9	9.6	0.0	9.0
Incr Delay (d2), s/veh	2.8	0.0	0.1	1.3	0.0	0.1	0.0	0.0	2.7	0.0	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	1.4	0.0	0.6	0.8	0.0	1.2	0.0	0.0	11.1	0.1	0.0	3.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	40.4	0.0	20.3	38.9	0.0	20.8	8.0	0.0	14.6	9.6	0.0	9.5
LnGrp LOS	D	A	С	D	A	C	A	A	В	A	A	A
Approach Vol, veh/h		64			77			605			251	
Approach Delay, s/veh		32.9			26.4			14.6			9.5	
Approach LOS		С			С			В			Α	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.3	45.0		25.0	4.8	45.5		25.0				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	15.5	40.5		20.5	15.5	40.5		20.5				
Max Q Clear Time (g_c+l1), s	2.2	18.8		22.5	2.1	7.2		22.5				
Green Ext Time (p_c), s	0.0	4.2		0.0	0.0	1.5		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			15.4									
HCM 6th LOS			В									

	۶	→	•	€	←	4	1	†	/	-	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		र्स	7	ሻ	↑	7	ሻ	↑	7
Traffic Volume (veh/h)	39	1	12	42	0	195	11	594	21	24	236	4
Future Volume (veh/h)	39	1	12	42	0	195	11	594	21	24	236	4
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.95		0.93	0.94		1.00	1.00		1.00	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	41	1	13	45	0	0	11	612	0	25	243	4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	3	3	3	3	3	3	2	2	2	2	2	2
Cap, veh/h	295	6	188	251	0		815	1184		530	1184	976
Arrive On Green	0.13	0.13	0.13	0.13	0.00	0.00	0.03	0.63	0.00	0.03	0.63	0.63
Sat Flow, veh/h	1439	46	1468	1078	0	1572	1781	1870	1585	1781	1870	1541
Grp Volume(v), veh/h	42	0	13	45	0	0	11	612	0	25	243	4
Grp Sat Flow(s),veh/h/ln	1485	0	1468	1078	0	1572	1781	1870	1585	1781	1870	1541
Q Serve(g_s), s	0.0	0.0	0.5	2.0	0.0	0.0	0.0	11.4	0.0	0.0	3.5	0.1
Cycle Q Clear(g_c), s	1.4	0.0	0.5	3.5	0.0	0.0	0.0	11.4	0.0	0.0	3.5	0.1
Prop In Lane	0.98		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	301	0	188	251	0		815	1184		530	1184	976
V/C Ratio(X)	0.14	0.00	0.07	0.18	0.00		0.01	0.52		0.05	0.21	0.00
Avail Cap(c_a), veh/h	559	0	470	502	0		1197	1184		912	1184	976
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.9	0.0	24.5	26.5	0.0	0.0	5.0	6.4	0.0	8.8	5.0	4.3
Incr Delay (d2), s/veh	0.2	0.0	0.2	0.3	0.0	0.0	0.0	1.6	0.0	0.0	0.4	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	1.0	0.0	0.3	1.1	0.0	0.0	0.1	6.9	0.0	0.3	2.1	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	25.2	0.0	24.7	26.8	0.0	0.0	5.0	8.0	0.0	8.9	5.3	4.3
LnGrp LOS	С	Α	С	С	Α		Α	Α		Α	Α	Α
Approach Vol, veh/h		55			45	Α		623	А		272	
Approach Delay, s/veh		25.0			26.8			8.0			5.7	
Approach LOS		С			С			Α			А	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.3	45.0		12.7	6.3	45.0		12.7				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	15.5	40.5		20.5	15.5	40.5		20.5				
Max Q Clear Time (g c+l1), s	2.0	13.4		3.4	2.0	5.5		5.5				
Green Ext Time (p_c), s	0.0	4.5		0.2	0.0	1.5		0.1				
Intersection Summary	3.0	1.0		J	0.0	1.0		711				
•			0.4									
HCM 6th LOS			9.1									
HCM 6th LOS			Α									
Notes												

Unsignalized Delay for [NBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Movement		•	4	†	<i>></i>	/	↓		
Traffic Volume (veh/h)	Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Traffic Volume (veh/h)	Lane Configurations		7	† Ъ		7	+		
Initial Q (Qb), veh		23	101		11	18			
Ped-Bike Adji(A_pbT) 1.00 No No No No Adj Sat Flow, veh/hin 1870 1970 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1978 1878 1870	Future Volume (veh/h)	23	101	891	11	18	222		
Parking Bus, Adj	Initial Q (Qb), veh	0	0	0	0	0	0		
Work Zone On Approach No No No No No Adj Stat Flow, veh/h/l/ln 1870 1870 1870 1870 1870 Adj Flow Rate, veh/h 31 136 1204 15 19 229 Peak Hour Factor 0.74 0.74 0.74 0.74 0.97 0.97 Percent Heavy Veh, % 2 <	Ped-Bike Adj(A_pbT)	1.00	1.00		0.97	1.00			
Adj Sat Flow, veh/h/In 1870 229 229 229 229 229 229 229 22	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Adj Flow Rate, veh/h 31 136 1204 15 19 229 Peak Hour Factor 0.74 0.74 0.74 0.74 0.97 0.97 Percent Heavy Veh, % 2 <td>Work Zone On Approach</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Work Zone On Approach								
Peak Hour Factor 0.74 0.74 0.74 0.74 0.97 0.97 Percent Heavy Veh, % 2									
Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
Cap, veh/h 197 175 1264 16 565 1448 Arrive On Green 0.11 0.11 0.45 0.45 0.26 0.77 Sat Flow, yeh/h 1781 1585 3698 35 1781 1870 Grp Volume(v), veh/h 31 136 413 806 19 229 Grp Sat Flow(s), veh/h/ln 1781 1585 954 1863 1781 1870 Q Serve(g_s), s 1.2 6.5 32.5 32.5 0.0 2.5 Cycle Q Clear(g_c), s 1.2 6.5 32.5 32.5 0.0 2.5 Prop In Lane 1.00 1.00 0.02 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 197 175 433 846 565 1448 V/C Ratio(X) 0.16 0.78 0.95 0.95 0.03 0.16 Avail Cap(c_a), veh/h 467 416 433 846 565 1448 HCM Platon									
Arrive On Green 0.11 0.11 0.45 0.26 0.77 Sat Flow, veh/h 1781 1585 3698 35 1781 1870 Grp Volume(v), veh/h 31 136 413 806 19 229 Grp Sat Flow(s),veh/h/ln 1781 1585 954 1863 1781 1870 Q Serve(g_s), s 1.2 6.5 32.5 32.5 0.0 2.5 Cycle Q Clear(g_c), s 1.2 6.5 32.5 32.5 0.0 2.5 Prop In Lane 1.00 1.00 0.02 1.00 Lane Grp Cap(c), veh/h 197 175 433 846 565 1448 V/C Ratio(X) 0.16 0.78 0.95 0.95 0.03 0.16 Avail Cap(c_a), veh/h 467 416 433 846 565 1448 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00									
Sat Flow, veh/h 1781 1585 3698 35 1781 1870 Grp Volume(v), veh/h 31 136 413 806 19 229 Grp Sat Flow(s), veh/h/ln 1781 1585 954 1863 1781 1870 Q Serve(g_s), s 1.2 6.5 32.5 32.5 0.0 2.5 Cycle Q Clear(g_c), s 1.2 6.5 32.5 32.5 0.0 2.5 Prop In Lane 1.00 1.00 0.02 1.00 Lane Grp Cap(c), veh/h 197 175 433 846 565 1448 V/C Ratio(X) 0.16 0.78 0.95 0.95 0.03 0.16 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 33.8 20.5 20.5 21.1 2.3 Incr Delay									
Grp Volume(v), veh/h 31 136 413 806 19 229 Grp Sat Flow(s), veh/h/ln 1781 1585 954 1863 1781 1870 Q Serve(g_s), s 1.2 6.5 32.5 32.5 0.0 2.5 Cycle Q Clear(g_c), s 1.2 6.5 32.5 32.5 0.0 2.5 Prop In Lane 1.00 1.00 0.02 1.00 Lane Grp Cap(c), veh/h 197 175 433 846 565 1448 V/C Ratio(X) 0.16 0.78 0.95 0.95 0.03 0.16 Avail Cap(c_a), veh/h 467 416 433 846 565 1448 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Fil									
Grp Sat Flow(s), veh/h/ln 1781 1585 954 1863 1781 1870 Q Serve(g_s), s 1.2 6.5 32.5 32.5 0.0 2.5 Cycle Q Clear(g_c), s 1.2 6.5 32.5 32.5 0.0 2.5 Prop In Lane 1.00 1.00 0.02 1.00 Lane Grp Cap(c), veh/h 197 175 433 846 565 1448 V/C Ratio(X) 0.16 0.78 0.95 0.95 0.03 0.16 Avail Cap(c_a), veh/h 467 416 433 846 565 1448 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 33.8 20.5 20.5 21.1 2.3 Incr Delay (32), s/veh 0.4 7.1 32.9 21.4 0.0 0.2									
Q Serve(g_s), s 1.2 6.5 32.5 32.5 0.0 2.5 Cycle Q Clear(g_c), s 1.2 6.5 32.5 32.5 0.0 2.5 Prop In Lane 1.00 1.00 0.02 1.00 Lane Grp Cap(c), veh/h 197 175 433 846 565 1448 V/C Ratio(X) 0.16 0.78 0.95 0.95 0.03 0.16 Avail Cap(c_a), veh/h 467 416 433 846 565 1448 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 33.8 20.5 20.5 21.1 2.3 Incr Delay (d2), s/veh 0.4 7.1 32.9 21.4 0.0 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(95%), veh/ln 1.0 5.0 15.8 24.7 0.5									
Cycle Q Clear(g_c), s 1.2 6.5 32.5 32.5 0.0 2.5 Prop In Lane 1.00 1.00 0.02 1.00 Lane Grp Cap(c), veh/h 197 175 433 846 565 1448 V/C Ratio(X) 0.16 0.78 0.95 0.95 0.03 0.16 Avail Cap(c_a), veh/h 467 416 433 846 565 1448 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 33.8 20.5 20.5 21.1 2.3 Incr Delay (d2), s/veh 0.4 7.1 32.9 21.4 0.0 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(95%), veh/ln 1.0 5.0 15.8 24.7 0.5 1.1									
Prop In Lane 1.00 1.00 0.02 1.00 Lane Grp Cap(c), veh/h 197 175 433 846 565 1448 V/C Ratio(X) 0.16 0.78 0.95 0.95 0.03 0.16 Avail Cap(c_a), veh/h 467 416 433 846 565 1448 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 33.8 20.5 20.5 21.1 2.3 Incr Delay (d2), s/veh 0.4 7.1 32.9 21.4 0.0 0.2 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(95%), veh/ln 1.0 5.0 15.8 24.7 0.5 1.1 Unsig. Movement Delay, s/veh LnGrp Delay(d), s/veh 31.8 40.9 53.4 41.9 21.1 2.5 LnGrp LOS C D D D C A Approach Vol, veh/h 167 1219 248 Approach Delay, s/veh 39.2 45.8 3.9 Approach LOS D D D A Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 Max Q Clear Time (g_ c+I1), s 2.0 34.5 Green Ext Time (p_ c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay HCM 6th Ctrl Delay 38.8									
Lane Grp Cap(c), veh/h V/C Ratio(X) 0.16 0.78 0.95 0.95 0.95 0.03 0.16 Avail Cap(c_a), veh/h HCM Platoon Ratio 1.00	(6=)			32.5			2.5		
V/C Ratio(X) 0.16 0.78 0.95 0.95 0.03 0.16 Avail Cap(c_a), veh/h 467 416 433 846 565 1448 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 33.8 20.5 20.5 21.1 2.3 Incr Delay (d2), s/veh 0.4 7.1 32.9 21.4 0.0 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(95%),veh/ln 1.0 5.0 15.8 24.7 0.5 1.1 Unsig. Movement Delay, s/veh 31.8 40.9 53.4 41.9 21.1 2.5 LnGrp Delay(d),s/veh 31.8 40.9 53.4 41.9 21.1 2.5 LnGrp LOS C D D D C A <									
Avail Cap(c_a), veh/h									
HCM Platoon Ratio 1.00 0.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	. ,								
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 31.5 33.8 20.5 20.5 21.1 2.3 Incr Delay (d2), s/veh 0.4 7.1 32.9 21.4 0.0 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(95%),veh/ln 1.0 5.0 15.8 24.7 0.5 1.1 Unsig. Movement Delay, s/veh 1.0 5.0 15.8 24.7 0.5 1.1 Unsig. Movement Delay, s/veh 31.8 40.9 53.4 41.9 21.1 2.5 LnGrp Delay(d),s/veh 167 1219 248 248 248 248 Approach Vol, veh/h 167 1219 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Uniform Delay (d), s/veh 31.5 33.8 20.5 20.5 21.1 2.3 Incr Delay (d2), s/veh 0.4 7.1 32.9 21.4 0.0 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.									
Incr Delay (d2), s/veh									
Initial Q Delay(d3),s/veh 0.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
%ile BackOfQ(95%),veh/ln 1.0 5.0 15.8 24.7 0.5 1.1 Unsig. Movement Delay, s/veh 31.8 40.9 53.4 41.9 21.1 2.5 LnGrp Delay(d),s/veh 31.8 40.9 53.4 41.9 21.1 2.5 LnGrp LOS C D D D C A Approach Vol, veh/h 167 1219 248 A Approach Delay, s/veh 39.2 45.8 3.9 Approach LOS D D A Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 2.0 34.5 4.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8									
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 31.8 40.9 53.4 41.9 21.1 2.5 LnGrp LOS C D D D C A Approach Vol, veh/h 167 1219 248 Approach Delay, s/veh 39.2 45.8 3.9 Approach LOS D D A Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+11), s 2.0 34.5 4.5 4.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8									
LnGrp Delay(d),s/veh 31.8 40.9 53.4 41.9 21.1 2.5 LnGrp LOS C D D D C A Approach Vol, veh/h 167 1219 248 Approach Delay, s/veh 39.2 45.8 3.9 Approach LOS D D A Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8			5.0	15.8	24.7	0.5	1.1		
LnGrp LOS C D D D C A Approach Vol, veh/h 167 1219 248 Approach Delay, s/veh 39.2 45.8 3.9 Approach LOS D D A Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8			40.0	FO 4	44.0	04.4	0.5		
Approach Vol, veh/h 167 1219 248 Approach Delay, s/veh 39.2 45.8 3.9 Approach LOS D D A Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8									
Approach Delay, s/veh 39.2 45.8 3.9 Approach LOS D D A Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+I1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8			Ŋ		ט	C			
Approach LOS D D A Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+I1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8									
Timer - Assigned Phs 1 2 6 8 Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+I1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8	**	_		_					
Phs Duration (G+Y+Rc), s 25.0 40.0 65.0 13.2 Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8	Approach LOS	D		D			Α		
Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8	Timer - Assigned Phs	1	2				6	8	
Change Period (Y+Rc), s 4.5 4.5 4.5 Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8	Phs Duration (G+Y+Rc), s	25.0	40.0				65.0	13.2	
Max Green Setting (Gmax), s 20.5 35.5 60.5 20.5 Max Q Clear Time (g_c+l1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8									
Max Q Clear Time (g_c+I1), s 2.0 34.5 4.5 8.5 Green Ext Time (p_c), s 0.0 0.7 1.5 0.4 Intersection Summary HCM 6th Ctrl Delay 38.8	. ,	20.5	35.5				60.5	20.5	
Intersection Summary HCM 6th Ctrl Delay 38.8		2.0	34.5				4.5	8.5	
HCM 6th Ctrl Delay 38.8	Green Ext Time (p_c), s	0.0	0.7				1.5	0.4	
HCM 6th Ctrl Delay 38.8	Intersection Summary								
•				38.8					
······	HCM 6th LOS			D					

	-	*	•	←		1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	^	7	ሻሻ	^	ሻሻ	77	
Traffic Volume (veh/h)	1000	125	152	100	26	877	
Future Volume (veh/h)	1000	125	152	100	26	877	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	1031	129	173	114	27	904	
Peak Hour Factor	0.97	0.97	0.88	0.88	0.97	0.97	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	1118	1120	289	1662	1359	1331	
Arrive On Green	0.31	0.31	0.08	0.47	0.39	0.39	
Sat Flow, veh/h	3647	1577	3456	3647	3456	2790	
Grp Volume(v), veh/h	1031	129	173	114	27	904	
Grp Sat Flow(s), veh/h/ln	1777	1577	1728	1777	1728	1395	
Q Serve(g_s), s	18.2	1.7	3.1	1.1	0.3	16.3	
Cycle Q Clear(g_c), s	18.2	1.7	3.1	1.1	0.3	16.3	
Prop In Lane		1.00	1.00		1.00	1.00	
Lane Grp Cap(c), veh/h	1118	1120	289	1662	1359	1331	
V/C Ratio(X)	0.92	0.12	0.60	0.07	0.02	0.68	
Avail Cap(c_a), veh/h	1124	1122	1626	3042	1359	1331	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	21.4	3.0	28.6	9.5	12.0	13.1	
Incr Delay (d2), s/veh	12.3	0.0	2.0	0.0	0.0	2.8	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	13.4	2.4	2.3	0.7	0.2	8.3	
Unsig. Movement Delay, s/ve	h						
LnGrp Delay(d),s/veh	33.7	3.1	30.6	9.5	12.0	15.9	
LnGrp LOS	С	Α	С	Α	В	В	
Approach Vol, veh/h	1160			287	931		
Approach Delay, s/veh	30.3			22.2	15.8		
Approach LOS	С			С	В		
Timer - Assigned Phs		2	3	4			
Phs Duration (G+Y+Rc), s		30.0	9.9	24.9			
Change Period (Y+Rc), s		4.5	4.5	4.5			
Max Green Setting (Gmax), s		25.5	30.5	20.5			
Max Q Clear Time (g c+l1), s		18.3	5.1	20.2			
Green Ext Time (p_c), s		2.6	0.5	0.2			
Intersection Summary							
HCM 6th Ctrl Delay			23.7				
HCM 6th LOS			C				
TIOW OUT LOO			O				

Intersection					
Intersection Delay, s/veh	5.8				
Intersection LOS	Α				
Approach	EB	WE	3		SB
Entry Lanes	1	1	1		2
Conflicting Circle Lanes	1	1	1		1
Adj Approach Flow, veh/h	112	538	3		576
Demand Flow Rate, veh/h	114	549)		588
Vehicles Circulating, veh/h	490	45			210
Vehicles Exiting, veh/h	308	559	9		45
Ped Vol Crossing Leg, #/h	2	()		0
Ped Cap Adj	1.000	1.000			1.000
Approach Delay, s/veh	5.8	4.7	7		6.8
Approach LOS	Α	A	4		Α
Laws	1 -44	1 -4	Dumana	1.64	Diabt
Lane	Left	Left	Bypass	Left	Right
Designated Moves	Lett LT	Leπ T	Bypass R	Leit	TR
				L L	
Designated Moves	LT	T	R	Len L L	TR
Designated Moves Assumed Moves RT Channelized Lane Util	LT	T	R R	Leit L L	TR
Designated Moves Assumed Moves RT Channelized	LT LT	T T	R R	L L	TR TR
Designated Moves Assumed Moves RT Channelized Lane Util	LT LT 1.000	T T 1.000 2.609 4.976	R R	L L 0.833	TR TR 0.167 2.535 4.544
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	LT LT 1.000 2.609	T T 1.000 2.609	R R Yield	L L 0.833 2.535	TR TR 0.167 2.535
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	LT LT 1.000 2.609 4.976	T T 1.000 2.609 4.976	R R Yield	0.833 2.535 4.544	TR TR 0.167 2.535 4.544
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	LT LT 1.000 2.609 4.976 114	T T 1.000 2.609 4.976 210	R R Yield 339 1318	0.833 2.535 4.544 490	TR TR 0.167 2.535 4.544 98
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	LT LT 1.000 2.609 4.976 114 837	T T 1.000 2.609 4.976 210 1318	R R Yield 339 1318 0.980	0.833 2.535 4.544 490 1173	TR TR 0.167 2.535 4.544 98 1173
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	LT LT 1.000 2.609 4.976 114 837 0.979	T T 1.000 2.609 4.976 210 1318 0.980	R R Yield 339 1318 0.980 332	L L 0.833 2.535 4.544 490 1173 0.980	TR TR 0.167 2.535 4.544 98 1173 0.980
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	LT LT 1.000 2.609 4.976 114 837 0.979 112 820 0.136	T T 1.000 2.609 4.976 210 1318 0.980 206 1292 0.159	R R Yield 339 1318 0.980 332 1292	L L 0.833 2.535 4.544 490 1173 0.980 480 1149 0.418	TR TR 0.167 2.535 4.544 98 1173 0.980 96 1149 0.084
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	LT LT 1.000 2.609 4.976 114 837 0.979 112 820	T T 1.000 2.609 4.976 210 1318 0.980 206 1292	R R Yield 339 1318 0.980 332 1292 0.257	L L 0.833 2.535 4.544 490 1173 0.980 480 1149	TR TR 0.167 2.535 4.544 98 1173 0.980 96 1149
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	LT LT 1.000 2.609 4.976 114 837 0.979 112 820 0.136	T T 1.000 2.609 4.976 210 1318 0.980 206 1292 0.159	R R Yield 339 1318 0.980 332 1292 0.257 5.0	L L 0.833 2.535 4.544 490 1173 0.980 480 1149 0.418	TR TR 0.167 2.535 4.544 98 1173 0.980 96 1149 0.084

Intersection						
Intersection Delay, s/veh	5.8					
Intersection LOS	А					
Approach		EB		WB		SB
Entry Lanes		1		1		2
Conflicting Circle Lanes		1		1		1
Adj Approach Flow, veh/h		279		650		317
Demand Flow Rate, veh/h		285		663		323
Vehicles Circulating, veh/h		277		98		184
Vehicles Exiting, veh/h		230		464		98
Ped Vol Crossing Leg, #/h		3		1		0
Ped Cap Adj	1	.000		1.000		1.000
Approach Delay, s/veh		6.2		6.0		4.9
Approach LOS		Α		Α		Α
Lane	Left		Left	Bypass	Left	Right
Designated Moves	LT		T	R	L	TR
Assumed Moves	LT		Т	R	L	TR
Assumed Moves RT Channelized			T	R Yield	L	TR
RT Channelized Lane Util	1.000		1.000		0.858	0.142
RT Channelized Lane Util Follow-Up Headway, s	1.000 2.609		1.000 2.609	Yield	2.535	0.142 2.535
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	1.000 2.609 4.976		1.000 2.609 4.976	Yield 479	2.535 4.544	0.142 2.535 4.544
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	1.000 2.609 4.976 285		1.000 2.609 4.976 184	Yield 479 1249	2.535 4.544 277	0.142 2.535 4.544 46
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	1.000 2.609 4.976 285 1040		1.000 2.609 4.976 184 1249	Yield 479 1249 0.980	2.535 4.544 277 1201	0.142 2.535 4.544 46 1201
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	1.000 2.609 4.976 285 1040 0.980		1.000 2.609 4.976 184 1249 0.980	479 1249 0.980 470	2.535 4.544 277 1201 0.982	0.142 2.535 4.544 46 1201 0.978
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	1.000 2.609 4.976 285 1040 0.980 279		1.000 2.609 4.976 184 1249 0.980	479 1249 0.980 470 1224	2.535 4.544 277 1201 0.982 272	0.142 2.535 4.544 46 1201 0.978 45
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	1.000 2.609 4.976 285 1040 0.980 279 1019		1.000 2.609 4.976 184 1249 0.980 180	Yield 479 1249 0.980 470 1224 0.384	2.535 4.544 277 1201 0.982 272 1179	0.142 2.535 4.544 46 1201 0.978 45 1175
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 285 1040 0.980 279 1019 0.274		1.000 2.609 4.976 184 1249 0.980 180 1224 0.147	Yield 479 1249 0.980 470 1224 0.384 6.7	2.535 4.544 277 1201 0.982 272 1179 0.231	0.142 2.535 4.544 46 1201 0.978 45 1175 0.038
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	1.000 2.609 4.976 285 1040 0.980 279 1019 0.274 6.2		1.000 2.609 4.976 184 1249 0.980 180 1224 0.147 4.2	Yield 479 1249 0.980 470 1224 0.384 6.7 A	2.535 4.544 277 1201 0.982 272 1179 0.231 5.1	0.142 2.535 4.544 46 1201 0.978 45 1175 0.038 3.4
RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 285 1040 0.980 279 1019 0.274		1.000 2.609 4.976 184 1249 0.980 180 1224 0.147	Yield 479 1249 0.980 470 1224 0.384 6.7	2.535 4.544 277 1201 0.982 272 1179 0.231	0.142 2.535 4.544 46 1201 0.978 45 1175 0.038

	•	→	←	4	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	*	7	*	7
Traffic Volume (veh/h)	37	57	173	279	461	92
Future Volume (Veh/h)	37	57	173	279	461	92
Sign Control		Stop	Stop		Free	
Grade		0%	0%		0%	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.96	0.96
Hourly flow rate (vph)	44	68	206	332	480	96
Pedestrians		2				
Lane Width (ft)		12.0				
Walking Speed (ft/s)		3.5				
Percent Blockage		0				
Right turn flare (veh)						
Median type					None	
Median storage veh)					110110	
Upstream signal (ft)					506	
pX, platoon unblocked					300	
vC, conflicting volume	1065	962	1058	0	0	
vC1, stage 1 conf vol	1000	302	1000	U	U	
vC2, stage 2 conf vol						
vCu, unblocked vol	1065	962	1058	0	0	
tC, single (s)	7.1	6.5	6.5	6.2	4.1	
tC, 2 stage (s)	7.1	0.5	0.5	0.2	7.1	
tF (s)	3.5	4.0	4.0	3.3	2.2	
p0 queue free %	0.5	62	0	69	70	
cM capacity (veh/h)	0	180	158	1085	1623	
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2	
Volume Total	112	206	332	480	96	
Volume Left	44	0	0	480	0	
Volume Right	0	0	332	0	96	
cSH	0	158	1085	1623	1700	
Volume to Capacity	Err	1.30	0.31	0.30	0.06	
Queue Length 95th (ft)	Err	307	33	31	0	
Control Delay (s)	Err	230.7	9.8	8.1	0.0	
Lane LOS	F	F	Α	Α		
Approach Delay (s)	Err	94.4		6.8		
Approach LOS	F	F				
Intersection Summary						
Average Delay			Err			
Intersection Capacity Utiliza	ation		49.7%	IC	U Level	of Service
Analysis Period (min)			15	10	2 20101	
Allarysis i Gilou (Illili)			10			

Intersection							
Int Delay, s/veh	0.6						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	EDL	EDK ř	NDL	IND I) 	JUC	
Traffic Vol, veh/h	14	4	11	263	892	118	
Future Vol, veh/h	14	4	11	263	892	118	
Conflicting Peds, #/hr	1	0	29	0	0	29	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-		-	None	-	None	
Storage Length	0	0	150	-	-	-	
Veh in Median Storage	e, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	85	85	88	88	85	85	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	16	5	13	299	1049	139	
Major/Minor	Minor2		Major1	N	/lajor2		
Conflicting Flow All	1474	1148	1217	0	-	0	
Stage 1	1148	-	-	-	-	-	
Stage 2	326	-	-	-	-	-	
Critical Hdwy	6.42	6.22	4.12	-	-	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518		2.218	-	-	-	
Pot Cap-1 Maneuver	139	242	573	-	-	-	
Stage 1	302	-	-	-	-	-	
Stage 2	731	-	-	-	-	-	
Platoon blocked, %	,			-	-	-	
Mov Cap-1 Maneuver	128	235	557	-	-	-	
Mov Cap-2 Maneuver	128	-	-	-	-	-	
Stage 1	287	-	-	-	-	-	
Stage 2	711	-	-	-	-	-	
Approach	EB		NB		SB		
HCM Control Delay, s	33.5		0.5		0		
HCM LOS	D						
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1 E	EBLn2	SBT	SBR
Capacity (veh/h)		557	-	128	235		
HCM Lane V/C Ratio		0.022	_	0.129	0.02	-	_
HCM Control Delay (s)		11.6	_	37.2	20.6	_	-
HCM Lane LOS		В	_	E	C	-	-
HCM 95th %tile Q(veh)	0.1	-	0.4	0.1	-	-
	,	• • • •					

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	NDL N	7	\$,,511)	<u> </u>
Traffic Vol, veh/h	2	2	277	12	53	890
Future Vol, veh/h	2	2	277	12	53	890
Conflicting Peds, #/hr	3	15	0	3	3	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	-	100	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	2	322	14	62	1035
Major/Minor I	Minor1	N	Major1		Major2	
Conflicting Flow All	1494	347	0	0	339	0
Stage 1	332	-	-	-	-	-
Stage 2	1162	_	-	_	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-		-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	136	696	-	-	1220	-
Stage 1	727	-	-	-	-	-
Stage 2	298	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	128	684	-	-	1217	-
Mov Cap-2 Maneuver	128	-	-	-	-	-
Stage 1	688	-	-	-	-	-
Stage 2	297	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	22		0		0.5	
HCM LOS	C		U		0.0	
NA' 1 (NA - 1 - NA		NET	NDE	VDI 41	VDL C	051
Minor Lane/Major Mvm	nt	NBT		VBLn1V		SBL
Capacity (veh/h)		-	-	120	684	
HCM Lane V/C Ratio		-		0.018		
HCM Control Delay (s)		-	-		10.3	8.1
HCM Lane LOS	١	-	-	D	В	A
HCM 95th %tile Q(veh)	-	-	0.1	0	0.2

Intersection						
Int Delay, s/veh	0.1					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	2	4	4	þ	_
Traffic Vol, veh/h	1	3	1	278	887	5
Future Vol, veh/h	1	3	1	278	887	5
Conflicting Peds, #/hr	0	0	61	0	0	61
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	3	1	302	964	5
Mainu/Minnu	M:O	,	11-11		4-10	
	Minor2		Major1		/lajor2	
Conflicting Flow All	1332	1028	1030	0	-	0
Stage 1	1028	-	-	-	-	-
Stage 2	304	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		2.218	-	-	-
Pot Cap-1 Maneuver	170	284	674	-	-	-
Stage 1	345	-	-	-	-	-
Stage 2	748	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	151	268	635	-	-	-
Mov Cap-2 Maneuver	151	_	-	-	-	-
Stage 1	324	_	_	_	_	_
Stage 2	705	_	_	_	_	-
otago 2						
Approach	EB		NB		SB	
HCM Control Delay, s	21.3		0		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	MRT	EBLn1	SBT	SBR
	ıı		ווטוו		ODT	ODIX
Capacity (veh/h)		635	-	225	-	-
HCM Control Doloy (a)		0.002		0.019	-	-
HCM Control Delay (s)		10.7	0	21.3	-	-
HCM Lane LOS		В	Α	С	-	-
HCM 95th %tile Q(veh)		0	_	0.1	_	

	۶	→	←	4	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		ર્ન	†	7	ሻ	7
Traffic Volume (veh/h)	89	170	167	437	234	39
Future Volume (Veh/h)	89	170	167	437	234	39
Sign Control		Stop	Stop		Free	
Grade		0%	0%		0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.86	0.86
Hourly flow rate (vph)	96	183	180	470	272	45
Pedestrians		3	1			
Lane Width (ft)		12.0	12.0			
Walking Speed (ft/s)		3.5	3.5			
Percent Blockage		0	0			
Right turn flare (veh)						
Median type					None	
Median storage veh)						
Upstream signal (ft)					506	
pX, platoon unblocked						
vC, conflicting volume	637	548	593	1	1	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	637	548	593	1	1	
tC, single (s)	7.1	6.5	6.5	6.2	4.1	
tC, 2 stage (s)		0.0	0.0	V. <u> </u>		
tF (s)	3.5	4.0	4.0	3.3	2.2	
p0 queue free %	16	50	48	57	83	
cM capacity (veh/h)	115	368	347	1083	1620	
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2	
Volume Total	279	180	470	272	45	
Volume Left	96	0	0	272	0	
Volume Right	90	0	470	0	45	
cSH	209	347	1083	1620	1700	
	1.33	0.52	0.43	0.17	0.03	
Volume to Capacity	388	71	56	15	0.03	
Queue Length 95th (ft)	224.2	26.0	10.9	7.7	0.0	
Control Delay (s)	224.2 F				0.0	
Lane LOS		D	В	A		
Approach LOS	224.2 F	15.1		6.6		
Approach LOS	F	С				
Intersection Summary						
Average Delay			59.7			
Intersection Capacity Utiliz	zation		47.6%	IC	U Level	of Service
Analysis Period (min)			15			

Int Delay, s/veh	Intersection							
Novement EBL EBR NBL NBT SBR SBR	Int Delay, s/veh	1.9						
Lane Configurations		FRI	FRR	NRI	NRT	SRT	SRR	
Traffic Vol, veh/h							SDN	
Future Vol, veh/h							10	
Conflicting Peds, #/hr								
Sign Control Stop RT Channelized Stop RT Channelized None -	<u> </u>							
RT Channelized		-	•			-		
Storage Length								
Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Reak Hour Factor 71 71 97 97 71							None	
Grade, % 0 - - 0 0 - Peak Hour Factor 71 71 97 97 71 71 Heavy Vehicles, % 2 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>		-					_	
Peak Hour Factor						-		
Major/Minor Minor2 Major1 Major2								
Mymt Flow 72 11 3 795 318 27 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1149 351 360 0 - 0 Stage 1 347 -								
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1149 351 360 0 - 0 Stage 1 347 -								
Conflicting Flow All 1149 351 360 0 - 0 Stage 1 347 - - - - - Stage 2 802 - <	Mvmt Flow	72	11	3	795	318	27	
Conflicting Flow All 1149 351 360 0 - 0 Stage 1 347 - - - - - Stage 2 802 - <								
Conflicting Flow All 1149 351 360 0 - 0 Stage 1 347 -	Major/Minor	Minor2		Major1	N	Major2		
Stage 1 347 - - - - Stage 2 802 - - - - Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - - Critical Hdwy Stg 2 5.42 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>							0	
Stage 2 802 - - - - Critical Hdwy 6.42 6.22 4.12 - - Critical Hdwy Stg 1 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Follow-up Hdwy 3.518 3.318 2.218 - - - Follow-up Hdwy 3.518 3.318 2.218 - - - - Follow-up Hdwy 3.518 3.318 2.218 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>						-		
Critical Hdwy 6.42 6.22 4.12 - - Critical Hdwy Stg 1 5.42 - - - - Critical Hdwy Stg 2 5.42 - - - - Follow-up Hdwy 3.518 3.318 2.218 - - Pot Cap-1 Maneuver 219 692 1199 - - Stage 1 716 - - - - Stage 2 441 - - - - Platoon blocked, % - - - - - Mov Cap-1 Maneuver 212 680 1182 - - - Mov Cap-2 Maneuver 212 - - - - - Stage 1 704 - - - - - Stage 2 435 - - - - - Approach EB NB SB HCM LOS D <t< td=""><td></td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td></td></t<>			_	_	_	_	_	
Critical Hdwy Stg 1 5.42			6 22	4 12	_	_	_	
Critical Hdwy Stg 2 5.42 -	,			-	_	_	_	
Follow-up Hdwy 3.518 3.318 2.218 Stage 1 716			_	_	_	_	_	
Pot Cap-1 Maneuver 219 692 1199 - <td></td> <td></td> <td></td> <td>2 218</td> <td>_</td> <td>_</td> <td>_</td> <td></td>				2 218	_	_	_	
Stage 1 716 -	. ,				_		_	
Stage 2 441 -	•			-	_		_	
Platoon blocked, %				_	_		_	
Mov Cap-1 Maneuver 212 680 1182 - - - Mov Cap-2 Maneuver 212 - <td></td> <td>771</td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td>		771			_		_	
Mov Cap-2 Maneuver 212 -		212	680	1122				
Stage 1 704 -				1102	_		-	
Stage 2 435 -				-	-		-	
Approach EB NB SB HCM Control Delay, s 27.7 0 0 HCM LOS D Minor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT Capacity (veh/h) 1182 - 212 680 - HCM Lane V/C Ratio 0.003 - 0.339 0.017 - HCM Control Delay (s) 8.1 - 30.4 10.4 - HCM Lane LOS A - D B -	•			-	-		-	
HCM Control Delay, s 27.7 0 0 0	Stage 2	435	-	-	-	-	-	
HCM Control Delay, s 27.7 0 0 0								
Minor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT Capacity (veh/h) 1182 - 212 680 - HCM Lane V/C Ratio 0.003 - 0.339 0.017 - HCM Control Delay (s) 8.1 - 30.4 10.4 - HCM Lane LOS A - D B -	Approach	EB		NB		SB		
Minor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT Capacity (veh/h) 1182 - 212 680 - HCM Lane V/C Ratio 0.003 - 0.339 0.017 - HCM Control Delay (s) 8.1 - 30.4 10.4 - HCM Lane LOS A - D B -	HCM Control Delay, s	27.7		0		0		
Minor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT Capacity (veh/h) 1182 - 212 680 - HCM Lane V/C Ratio 0.003 - 0.339 0.017 - HCM Control Delay (s) 8.1 - 30.4 10.4 - HCM Lane LOS A - D B -								
Capacity (veh/h) 1182 - 212 680 - HCM Lane V/C Ratio 0.003 - 0.339 0.017 - HCM Control Delay (s) 8.1 - 30.4 10.4 - HCM Lane LOS A - D B -								
Capacity (veh/h) 1182 - 212 680 - HCM Lane V/C Ratio 0.003 - 0.339 0.017 - HCM Control Delay (s) 8.1 - 30.4 10.4 - HCM Lane LOS A - D B -	Ndinan Lang (Nd. 1 Nd.	-1	NDI	NDT		-DL -C	ODT	
HCM Lane V/C Ratio 0.003 - 0.339 0.017 - HCM Control Delay (s) 8.1 - 30.4 10.4 - HCM Lane LOS A - D B -		ול						
HCM Control Delay (s) 8.1 - 30.4 10.4 - HCM Lane LOS A - D B -							-	
HCM Lane LOS A - D B -				-			-	
				-			-	
$\Box CM \cap C \neq b \cap O \neq b \cap O = 0$				-			-	
	HCM 95th %tile Q(veh		0	-	1.4	0.1	-	

Intersection							
Int Delay, s/veh	2.3						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	YVDL	VVDK	1\D1	אטוז	SDL	<u>361</u>	
Traffic Vol, veh/h	4	54	822	10	54	222	
Future Vol, veh/h	4	54	822	10	54	222	
Conflicting Peds, #/hr	14	25	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	-	-	100	-	
Veh in Median Storage	e, # 0	-	0	-	-	0	
Grade, %	0	-	0	-	-	0	
Peak Hour Factor	68	68	68	68	68	68	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	6	79	1209	15	79	326	
Major/Minor	Minor1	N	Major1	N	Major2		
Conflicting Flow All	1715	1242	0	0	1224	0	
Stage 1	1217	-	-	-	-	-	
Stage 2	498	-	-	-	-	-	
Critical Hdwy	6.42	6.22	-	-	4.12	-	
Critical Hdwy Stg 1	5.42	-	-	-	-	-	
Critical Hdwy Stg 2	5.42	-	-	-	-	-	
Follow-up Hdwy	3.518	3.318	-	-	2.218	-	
Pot Cap-1 Maneuver	99	213	-	-	570	-	
Stage 1	280	-	-	-	-	-	
Stage 2	611	-	-	-	-	-	
Platoon blocked, %		000	-	-		-	
Mov Cap-1 Maneuver	84	208	-	-	570	-	
Mov Cap-2 Maneuver	84	-	-	-	-	-	
Stage 1	241	-	-	-	-	-	
Stage 2	603	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	33.9		0		2.4		
HCM LOS	D						
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1V	VBLn2	SBL	SBT
Capacity (veh/h)		-	-	84	208	570	-
HCM Lane V/C Ratio		-	-		0.382		-
HCM Control Delay (s)		-	-	51.1	32.6	12.3	-
HCM Lane LOS		-	-	F	D	В	-
HCM 95th %tile Q(veh)	-	-	0.2	1.7	0.5	-
•							

Intersection						
Int Delay, s/veh	0.1					
		EDD	NDI	NDT	CDT	SBR
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M	^	^	€	ફ	^
Traffic Vol, veh/h	3	0	0	876	222	0
Future Vol, veh/h	3	0	0	876	222	0
Conflicting Peds, #/hr	4	0	103	_ 0	_ 0	103
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	0	0	1081	274	0
Major/Minor	Minor2		Major1	N	/lajor2	
						0
Conflicting Flow All	1462	377	377	0	-	0
Stage 1	377	-	-	-	-	-
Stage 2	1085	-	- 4.40		-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	142	670	1181	-	-	-
Stage 1	694	-	-	-	-	-
Stage 2	324	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	116	604	1065	-	-	-
Mov Cap-2 Maneuver	116	-	-	-	-	-
Stage 1	626	-	-	-	-	-
Stage 2	292	-	-	-	-	-
A	ED		ND		C.D.	
Approach	EB		NB		SB	
HCM Control Delay, s	37.1		0		0	
HCM LOS	Е					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1065		116	-	OBIT
HCM Lane V/C Ratio		1005		0.032	_	-
HCM Control Delay (s	\	0	-			-
HCM Lane LOS			-	37.1 E		
HCM 95th %tile Q(veh	.\	A	-		-	-
HOIVI 95(I) Wille Q(Ven)	0	-	0.1	-	-

APPENDIX C 2018 IMPROVED INTERSECTION CAPACITY ANALYSIS

Appendix C Listing – 2038 Improved Intersection Capacity Analysis

Diamond & Pajarito Signalized AM

Diamond & Pajarito Signalized PM

Diamond & Sigma AM

Diamond & Sigma PM

Diamond & Eniwetok AM

Diamond & Eniwetok PM

Diamond & Embudo AM

Diamond & Embudo PM

Diamond & West Jemez AM

Diamond & West Jemez PM

Diamond & South Drive AM

Diamond & South Drive PM

Diamond & Grable AM

Diamond & Grable PM

Diamond & Coronado AM

Diamond & Coronado PM

Diamond & Pajarito Roundabout AM

Diamond & Pajarito Roundabout PM

Diamond & Pajarito Realigned AM

Diamond & Pajarito Realigned PM

1: Pajarito & Diamond

	1	-	-	1	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	4	^	^	7	ħ	7		
Traffic Volume (veh/h)	37	57	173	279	461	92		
Future Volume (veh/h)	37	57	173	279	461	92		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach		No	No	35.0374302	No	6070965		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870		
Adj Flow Rate, veh/h	44	68	206	0	480	96		
Peak Hour Factor	0.84	0.84	0.84	0.84	0.96	0.96		
Percent Heavy Veh, %	2	2	2	2	2	2		
Cap, veh/h	167	315	315		1281	1140		
Arrive On Green	0.17	0.17	0.17	0.00	0.72	0.72		
Sat Flow, veh/h	1176	1870	1870	1585	1781	1585		
Grp Volume(v), veh/h	44	68	206	0	480	96		
Grp Sat Flow(s), veh/h/ln	1176	1870	1870	1585	1781	1585		
Q Serve(g_s), s	2.9	2.5	8.2	0.0	8.3	1.4		
Cycle Q Clear(g_c), s	11.1	2.5	8.2	0.0	8.3	1.4		
Prop In Lane	1.00	2.0	0,2	1.00	1.00	1.00		
ane Grp Cap(c), veh/h	167	315	315	1.00	1281	1140		
	0.26	0.22	0.65		0.37	0.08		
//C Ratio(X)	358	620	620		1281	1140		
Avail Cap(c_a), veh/h				1.00		1.00		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00			
Jpstream Filter(I)	1.00	1.00	1.00	0.00	0.91	0.91		
Jniform Delay (d), s/veh	36.3	28.7	31.1	0.0	4.3	3.4		
ncr Delay (d2), s/veh	0.8	0.3	2.3	0.0	0.8	0.1		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(95%),veh/ln	1.5	2.0	6.8	0.0	4.4	0.7		
Jnsig. Movement Delay, s/veh								
nGrp Delay(d),s/veh	37.1	29.1	33.4	0.0	5.1	3.5		
nGrp LOS	D	С	С		Α	Α		
Approach Vol, veh/h		112	206	Α	576			
Approach Delay, s/veh		32.2	33.4		4.8			
Approach LOS		C	С		Α			
Timer - Assigned Phs				4		6	8	
Phs Duration (G+Y+Rc), s				18.0		62.0	18.0	
Change Period (Y+Rc), s				4.5		4.5	4.5	
Max Green Setting (Gmax), s				26.5		44.5	26.5	
Max Q Clear Time (g_c+l1), s				13.1		10.3	10.2	
Green Ext Time (p_c), s				0.3		2.0	0.9	
ntersection Summary								
HCM 6th Ctrl Delay			14.8					
HCM 6th LOS			В					
Notes			-					

1: Pajarito & Diamond

	1	→	-	-	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	^	↑	7	7	7	
Traffic Volume (veh/h)	89	170	167	437	234	39	
Future Volume (veh/h)	89	170	167	437	234	39	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	96	183	180	0	272	45	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.86	0.86	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	325	412	412		1033	919	
Arrive On Green	0.22	0.22	0.22	0.00	0.58	0.58	
Sat Flow, veh/h	1204	1870	1870	1585	1781	1585	
Grp Volume(v), veh/h	96	183	180	0	272	45	
Grp Sat Flow(s), veh/h/ln	1204	1870	1870	1585	1781	1585	
Q Serve(g_s), s	3.4	3.8	3.7	0.0	3.4	0.6	
Cycle Q Clear(g_c), s	7.1	3.8	3.7	0.0	3.4	0.6	
Prop In Lane	1.00	3.0	3.1	1.00	1.00	1.00	
	325	412	412	1.00	1033	919	
Lane Grp Cap(c), veh/h	0.30	0.44	0.44		0.26	0.05	
V/C Ratio(X)			748		1033	919	
Avail Cap(c_a), veh/h	542	748		4.00		1.00	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.99	0.99	
Uniform Delay (d), s/veh	18.2	15.2	15.1	0.0	4.7	4.1	
Incr Delay (d2), s/veh	0.5	0.8	0.7	0.0	0.6	0.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	1.5	2.6	2.5	0.0	1.7	0.2	
Unsig. Movement Delay, s/veh						1.0	
LnGrp Delay(d),s/veh	18.7	15.9	15.9	0.0	5.3	4.2	
LnGrp LOS	В	В	В		Α	Α	
Approach Vol, veh/h		279	180	Α	317		
Approach Delay, s/veh		16.9	15.9		5.1		
Approach LOS		В	В		Α		
Timer - Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				14.4		30.6	14.4
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				18.0		18.0	18.0
Max Q Clear Time (g_c+l1), s				9.1		5.4	5.7
Green Ext Time (p_c), s				0.8		0.8	0.7
ntersection Summary							
HCM 6th Ctrl Delay			11.9				
HCM 6th LOS			В				
Notes							

	1	-	*	1	4	1	4	1	-	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્લ	7		र्स	74	J.	作		7	7	
Traffic Volume (veh/h)	5	1	6	17	0	15	6	269	37	51	515	54
Future Volume (veh/h)	5	1	6	17	0	15	6	269	37	51	515	54
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.99		0.97	0.98		0.97	1.00		0.97	0.99		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1648	1648	1648	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	6	1	7	20	0	17	7	313	43	60	606	64
Peak Hour Factor	0.85	0.85	0.85	0.86	0.86	0.86	0.86	0.86	0.86	0.85	0.85	0.85
Percent Heavy Veh, %	17	17	17	2	2	2	2	2	2	2	2	2
Cap, veh/h	85	7	157	93	0	179	468	1685	229	860	1169	123
Arrive On Green	0.12	0.12	0.12	0.12	0.00	0.12	0.01	0.54	0.54	0.35	1.00	1.00
Sat Flow, veh/h	9	60	1349	24	0	1531	1781	3128	425	1781	1656	175
Grp Volume(v), veh/h	7	0	7	20	0	17	7	176	180	60	0	670
Grp Sat Flow(s), veh/h/ln	69	0	1349	24	0	1531	1781	1777	1776	1781	0	1831
Q Serve(g_s), s	0.0	0.0	0.4	0.2	0.0	0.8	0.2	4.1	4.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	9.3	0.0	0.4	9.3	0.0	0.8	0.2	4.1	4.2	0.0	0.0	0.0
Prop In Lane	0.86		1.00	1.00	80000	1.00	1.00		0.24	1.00		0.10
Lane Grp Cap(c), veh/h	92	0	157	93	0	179	468	957	957	860	0	1292
V/C Ratio(X)	0.08	0.00	0.04	0.22	0.00	0.10	0.01	0.18	0.19	0.07	0.00	0.52
Avail Cap(c_a), veh/h	230	0	305	244	0	346	565	957	957	860	0	1292
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	0.81	0.81	0.81	0.86	0.00	0.86
Uniform Delay (d), s/veh	31.8	0.0	31.4	40.0	0.0	31.6	9.8	9.4	9.5	4.7	0.0	0.0
Incr Delay (d2), s/veh	0.4	0.0	0.1	1.1	0.0	0.2	0.0	0.3	0.4	0.0	0.0	1.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.2	0.0	0.2	0.7	0.0	0.5	0.1	2.8	2.8	0.5	0.0	0.8
Unsig. Movement Delay, s/veh		10000		250	2140	15.1.1	2420	100000	3000000	1000000		22307
LnGrp Delay(d),s/veh	32.2	0.0	31.5	41.1	0.0	31.8	9.8	9.8	9.8	4.7	0.0	1.3
LnGrp LOS	С	Α	С	D	Α	С	Α	Α	Α	Α	Α	Α
Approach Vol, veh/h		14			37			363			730	
Approach Delay, s/veh		31.8			36.8			9.8			1.6	
Approach LOS		C			D			A			A	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	18.5	47.6		13.9	5.2	60.9		13.9				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.3	43.1		18.1	5.1	43.3		18.1				
Max Q Clear Time (g_c+l1), s	2.0	6.2		11.3	2.2	2.0		11.3				
Green Ext Time (p_c), s	0.0	2.3		0.0	0.0	5.6		0.0				
Intersection Summary	2.0			0.00			-	5.00			-	-
HCM 6th Ctrl Delay			5.7									1
			100000000000000000000000000000000000000									
HCM 6th LOS			Α									

2: Diamond & Sigma

	1	-	1	1	—		1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		ર્ન	7		4	7	7	1		7	P	
Traffic Volume (veh/h)	35	0	21	21	0	46	3	516	8	7	208	(
Future Volume (veh/h)	35	0	21	21	0	46	3	516	8	7	208	(
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No	10702 10		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1856	1856	1856	1870	1870	1870
Adj Flow Rate, veh/h	40	0	24	24	0	53	3	593	9	8	236	7
Peak Hour Factor	0.88	0.88	0.88	0.87	0.87	0.87	0.87	0.87	0.87	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2	3	3	3	2	2	2
Cap, veh/h	80	0	408	80	0	411	571	1717	26	560	1056	31
Arrive On Green	0.26	0.00	0.26	0.26	0.00	0.26	0.00	0.48	0.48	0.21	1.00	1.00
Sat Flow, veh/h	0	0	1564	0	0	1572	1767	3553	54	1781	1806	54
Grp Volume(v), veh/h	40	0	24	24	0	53	3	294	308	8	0	243
Grp Sat Flow(s), veh/h/ln	0	0	1564	0	0	1572	1767	1763	1844	1781	0	1859
Q Serve(g_s), s	0.0	0.0	1.0	0.0	0.0	2.3	0.1	9.3	9.3	0.0	0.0	0.0
Cycle Q Clear(g_c), s	23.5	0.0	1.0	23.5	0.0	2.3	0.1	9.3	9.3	0.0	0.0	0.0
Prop In Lane	1.00	0.0	1.00	1.00	-	1.00	1.00	1916	0.03	1.00	0.5480	0.03
Lane Grp Cap(c), veh/h	80	0	408	80	0	411	571	852	891	560	0	1087
V/C Ratio(X)	0.50	0.00	0.06	0.30	0.00	0.13	0.01	0.35	0.35	0.01	0.00	0.22
Avail Cap(c_a), veh/h	80	0	408	80	0	411	750	852	891	560	0	1087
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	0.78	0.78	0.78	0.99	0.00	0.99
Uniform Delay (d), s/veh	45.0	0.0	25.0	45.0	0.0	25.4	13.4	14.4	14.4	11.5	0.0	0.0
Incr Delay (d2), s/veh	4.7	0.0	0.1	2.1	0.0	0.1	0.0	0.9	0.8	0.0	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	1.8	0.0	0.7	1.0	0.0	1.6	0.1	6.5	6.8	0.1	0.0	0.3
Unsig. Movement Delay, s/veh		0.0	0.1	1.0	0.0	1.0		0.0	0.0	211	313	
LnGrp Delay(d),s/veh	49.7	0.0	25.0	47.1	0.0	25.6	13.4	15.3	15.2	11.6	0.0	0.5
LnGrp LOS	D	A	С	D	Α	С	В	В	В	В	Α	A
Approach Vol, veh/h		64			77			605			251	
Approach Delay, s/veh		40.5			32.3			15.3			0.8	
Approach LOS		D			C			В			A	
Timer - Assigned Phs	1	2		4	5	6		8				-
Phs Duration (G+Y+Rc), s	14.0	48.0		28.0	4.9	57.1		28.0				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	9.5	43.5	-	23.5	9.5	43.5		23.5				
Max Q Clear Time (g_c+l1), s	2.0	11.3		25.5	2.1	2.0		25.5				
Green Ext Time (p_c), s	0.0	4.0		0.0	0.0	1.5		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			14.6									
			В									

	1	-	1	1	←	*	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		र्भ	7		र्भ	7	7	1	7	7	^	7
Traffic Volume (veh/h)	3	1	7	51	1	57	21	218	35	30	585	219
Future Volume (veh/h)	3	1	7	51	1	57	21	218	35	30	585	219
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.98		0.90	0.95		1.00	1.00		1.00	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	3	1	8	59	1	0	26	266	0	37	713	267
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.82	0.82	0.82	0.82	0.82	0.82
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	178	49	130	206	3		684	1319		651	1017	850
Arrive On Green	0.09	0.09	0.09	0.09	0.09	0.00	0.39	1.00	0.00	0.07	1.00	1.00
Sat Flow, veh/h	1093	535	1431	1286	31	1585	1781	1870	1585	1781	1870	1563
Grp Volume(v), veh/h	4	0	8	60	0	0	26	266	0	37	713	267
Grp Sat Flow(s), veh/h/ln	1628	0	1431	1317	0	1585	1781	1870	1585	1781	1870	1563
Q Serve(g_s), s	0.0	0.0	0.4	3.4	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0
Cycle Q Clear(g_c), s	0.2	0.0	0.4	3.5	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0
Prop In Lane	0.75	0.0	1.00	0.98		1.00	1.00	177.5	1.00	1.00	7070	1.00
Lane Grp Cap(c), veh/h	227	0	130	209	0	1100	684	1319		651	1017	850
V/C Ratio(X)	0.02	0.00	0.06	0.29	0.00		0.04	0.20		0.06	0.70	0.31
Avail Cap(c_a), veh/h	425	0.00	322	388	0		684	1319		700	1017	850
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	33.1	0.0	33.2	34.7	0.0	0.0	4.4	0.0	0.0	9.4	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.2	0.7	0.0	0.0	0.0	0.3	0.0	0.0	4.0	1.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.1	0.0	0.3	2.0	0.0	0.0	0.2	0.2	0.0	0.5	2.0	0.4
Unsig. Movement Delay, s/veh		0.0	0.0	2.0	0.0	0.0	0.2	0,2	0.0	0.0	5.7	
LnGrp Delay(d),s/veh	33.2	0.0	33.4	35.5	0.0	0.0	4.4	0.3	0.0	9.4	4.0	1.0
LnGrp LOS	C	A	C	D	A	0.0	A	A	0,0	A	A	A
Approach Vol, veh/h	0	12	-		60	А	/,	292	А		1017	
Approach Delay, s/veh		33.3			35.5	A		0.7	A		3.4	
		C			D			Α.			Α	
Approach LOS		C			U			^				
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.3	60.9		11.8	20.2	48.0		11.8				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.0	43.5		18.0	5.0	43.5		18.0				
Max Q Clear Time (g_c+l1), s	2.8	2.0		2.4	2.0	2.0		5.5				
Green Ext Time (p_c), s	0.0	1.7		0.0	0.0	7.3		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			4.5									
HCM 6th LOS			Α									
Notes					-	-						

	•	→	-	1	4	1	1	↑	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ર્લ	7"		र्भ	7	1	1	7	7	1	7
Traffic Volume (veh/h)	39	1	12	42	0	195	11	594	21	24	236	4
Future Volume (veh/h)	39	1	12	42	0	195	11	594	21	24	236	4
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.97		0.93	0.94		1.00	0.99		1.00	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	41	1	13	45	0	0	11	612	0	25	243	4
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	3	3	3	3	3	3	2	2	2	2	2	2
Cap, veh/h	253	5	170	203	0		908	1323		518	1049	864
Arrive On Green	0.12	0.12	0.12	0.12	0.00	0.00	0.34	1.00	0.00	0.05	1.00	1.00
Sat Flow, veh/h	1484	45	1458	1052	0	1572	1781	1870	1585	1781	1870	1540
Grp Volume(v), veh/h	42	0	13	45	0	0	11	612	0	25	243	4
Grp Sat Flow(s),veh/h/ln	1529	0	1458	1052	0	1572	1781	1870	1585	1781	1870	1540
Q Serve(g_s), s	0.0	0.0	0.7	2.9	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0
Cycle Q Clear(g_c), s	2.0	0.0	0.7	4.9	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0
Prop In Lane	0.98		1.00	1.00	(F-17/E)	1.00	1.00	150.5	1.00	1.00		1.00
Lane Grp Cap(c), veh/h	258	0	170	203	0	318.7	908	1323		518	1049	864
V/C Ratio(X)	0.16	0.00	0.08	0.22	0.00		0.01	0.46		0.05	0.23	0.00
Avail Cap(c_a), veh/h	409	0	332	347	0		908	1323		581	1049	864
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	0.99	0.99	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	36.0	0.0	35.4	38.2	0.0	0.0	4.8	0.0	0.0	9.7	0.0	0.0
Incr Delay (d2), s/veh	0.3	0.0	0.2	0.5	0.0	0.0	0.0	1.2	0.0	0.0	0.5	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	1.5	0.0	0.5	1.7	0.0	0.0	0.1	0.8	0.0	0.4	0.3	0.0
Unsig. Movement Delay, s/veh		0.0	0.0			4,4	4.1	0,0				
LnGrp Delay(d),s/veh	36.3	0.0	35.6	38.8	0.0	0.0	4.8	1.2	0.0	9.7	0.5	0.0
LnGrp LOS	D	A	D	D	A	3.7	Α	Α		Α	Α	Α
Approach Vol, veh/h		55			45	Α		623	А		272	
Approach Delay, s/veh		36.1			38.8	111		1.2	1.0		1.4	
Approach LOS		D			D			A			A	
				, A							A	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	6.8	68.2		15.0	20.0	55.0		15.0				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.5	50.5		20.5	5.5	50.5		20.5				
Max Q Clear Time (g_c+l1), s	2.6	2.0		4.0	2.0	2.0		6.9				
Green Ext Time (p_c), s	0.0	4.9		0.2	0.0	1.6		0.1				
Intersection Summary												
HCM 6th Ctrl Delay			4.9									
HCM 6th LOS			Α									
Notes	-									-		

	1	4	1	1	1	†	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	1	7	1		7	^	
Traffic Volume (veh/h)	22	17	184	20	54	933	
Future Volume (veh/h)	22	17	184	20	54	933	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.96	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	30	23	204	22	60	1037	
Peak Hour Factor	0.74	0.74	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	77	69	1270	135	1200	1579	
Arrive On Green	0.04	0.04	0.79	0.79	0.39	0.84	
Sat Flow, veh/h	1781	1585	3320	343	1781	1870	
Grp Volume(v), veh/h	30	23	111	115	60	1037	
Grp Sat Flow(s), veh/h/ln	1781	1585	1777	1793	1781	1870	
Q Serve(g_s), s	1.3	1.1	1.2	1.2	0.0	15.5	
Cycle Q Clear(g_c), s	1.3	1.1	1.2	1.2	0.0	15.5	
Prop In Lane	1.00	1.00	114	0.19	1.00	10.0	
Lane Grp Cap(c), veh/h	77	69	700	706	1200	1579	
V/C Ratio(X)	0.39	0.34	0.16	0.16	0.05	0.66	
Avail Cap(c_a), veh/h	668	594	700	706	1200	1579	
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.69	0.69	
Uniform Delay (d), s/veh	37.2	37.2	5.3	5.3	2.7	2.2	
Incr Delay (d2), s/veh	3.2	2.8	0.5	0.5	0.0	1.5	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	1.1	0.9	0.9	1.0	0.3	3.6	
Unsig. Movement Delay, s/veh		0.0	0.0	1.0	0.5	3.0	
	40.4	40.0	5.8	5.8	2.7	3.7	
LnGrp Delay(d),s/veh LnGrp LOS	40.4 D	40.0 D	3.6 A	3.6 A	Α.	3.7 A	
	17-97	D	226	А	A	1097	
Approach Vol, veh/h	53						
Approach Delay, s/veh	40.2		5.8			3.6	
Approach LOS	D		Α			Α	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	36.0	36.0				72.0	8.0
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	5.0	31.5				41.0	30.0
Max Q Clear Time (g_c+l1), s	2.0	3.2				17.5	3.3
Green Ext Time (p_c), s	0.0	1.3				9.7	0.1
Intersection Summary							
HCM 6th Ctrl Delay			5.4				
HCM 6th LOS			Α				

	1	*	1	-	1	1	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	19	7	^		4	1	
Traffic Volume (veh/h)	23	101	891	11	18	222	
Future Volume (veh/h)	23	101	891	11	18	222	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.97	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	31	136	1204	15	19	229	
Peak Hour Factor	0.74	0.74	0.74	0.74	0.97	0.97	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	195	173	1649	21	744	1479	
Arrive On Green	0.11	0.11	0.92	0.92	0.28	0.79	
Sat Flow, veh/h	1781	1585	3686	45	1781	1870	
Grp Volume(v), veh/h	31	136	595	624	19	229	
Grp Sat Flow(s), veh/h/ln	1781	1585	1777	1860	1781	1870	
Q Serve(g_s), s	1.4	7.5	7.5	7.5	0.0	2.6	
Cycle Q Clear(g_c), s	1.4	7.5	7.5	7.5	0.0	2.6	
Prop In Lane	1.00	1.00	7.0	0.02	1.00	2.0	
Lane Grp Cap(c), veh/h	195	173	815	854	744	1479	
V/C Ratio(X)	0.16	0.78	0.73	0.73	0.03	0.15	
Avail Cap(c_a), veh/h	596	530	815	854	744	1479	
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.99	0.99	
Uniform Delay (d), s/veh	36.3	39.1	2.3	2.3	6.3	2.2	
Incr Delay (d2), s/veh	0.4	7.6	5.7	5.5	0.0	0.2	
	0.0	0.0	0.0	0.0	0.0	0.0	
Initial Q Delay(d3),s/veh	1.1	5.8	4.1	4.2	0.0	1.3	
%ile BackOfQ(95%),veh/ln		0.0	4.1	4.2	0.2	1.0	
Unsig. Movement Delay, s/veh		46.7	8.0	7.8	6.3	2.5	
LnGrp Delay(d),s/veh	36.7 D	46.7 D	8.0 A		Α	2.5 A	
_nGrp LOS		U		A	А		
Approach Vol, veh/h	167		1219			248	
Approach Delay, s/veh	44.8		7.9			2.8	
Approach LOS	D		Α			Α	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	29.9	45.8				75.7	14.3
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	5.1	41.3				50.9	30.1
Max Q Clear Time (g_c+l1), s	2.0	9.5				4.6	9.5
Green Ext Time (p_c), s	0.0	10.3				1.5	0.5
Intersection Summary							
HCM 6th Ctrl Delay			10.9				
HCM 6th LOS			В				

	-	1	1	-	4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	44	7	77	^	7	77	
Traffic Volume (veh/h)	115	157	895	1059	13	176	
Future Volume (veh/h)	115	157	895	1059	13	176	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		0.93	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	12/2/495/	30,00	No	No	1000000	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	126	173	942	1115	15	210	
Peak Hour Factor	0.91	0.91	0.95	0.95	0.84	0.84	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	442	806	1083	1756	701	1972	
Arrive On Green	0.12	0.12	0.31	0.49	0.39	0.39	
Sat Flow, veh/h	3647	1470	3456	3647	1781	2790	
Grp Volume(v), veh/h	126	173	942	1115	15	210	
Grp Sat Flow(s), veh/h/ln	1777	1470	1728	1777	1781	1395	
Q Serve(g_s), s	2.6	5.1	20.6	18.5	0.4	0.0	
Cycle Q Clear(g_c), s	2.6	5.1	20.6	18.5	0.4	0.0	
Prop In Lane	210	1.00	1.00		1.00	1.00	
ane Grp Cap(c), veh/h	442	806	1083	1756	701	1972	
V/C Ratio(X)	0.28	0.21	0.87	0.63	0.02	0.11	
Avail Cap(c_a), veh/h	800	954	1317	2354	701	1972	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	31.8	10.5	25.9	14.9	14.8	3.7	
ncr Delay (d2), s/veh	0.4	0.1	5.6	0.4	0.1	0.1	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	2.0	5.8	13.6	10.9	0.3	0.8	
Jnsig. Movement Delay, s/veh		0.0	10.0	10.0	0.0	.0.0	
_nGrp Delay(d),s/veh	32.1	10.7	31.5	15.3	14.9	3.8	
nGrp LOS	C	В	C	В	В	A	
pproach Vol, veh/h	299		Ū	2057	225	0.4400	
Approach Delay, s/veh	19.7			22.7	4.6		
Approach LOS	19.7 B			C	4.0 A		
	Б			-			
Fimer - Assigned Phs		2	3	4			8
hs Duration (G+Y+Rc), s		36.0	29.6	14.5			44.0
Change Period (Y+Rc), s		4.5	4.5	4.5			4.5
Max Green Setting (Gmax), s		18.0	30.5	18.0			53.0
Max Q Clear Time (g_c+l1), s		2.4	22.6	7.1			20.5
Green Ext Time (p_c), s		0.7	2.5	1.0			9.6
ntersection Summary							
ICM 6th Ctrl Delay			20.8				
ICM 6th LOS			C				

1000 1000 0 1.00 No	125 125 125 0 1.00	WBL 152 152 0	WBT ↑↑ 100	NBL	NBR		
1000 1000 0 1.00 No	125 125 0 1.00	152 152	^^	A COMPANY AND ADDRESS OF	2121		
1000 1000 0 1.00 No	125 125 0 1.00	152 152	100	A COMPANY AND ADDRESS OF	1.1.		
1000 0 1.00 No	125 0 1.00	152		26	877		
0 1.00 No	1.00		100	26	877		
1.00 No	1.00		0	0	0		
No		1.00	70.0	1.00	1.00		
No	1.00	1.00	1.00	1.00	1.00		
	10000	2.30.00	No	No	20000		
1870	1870	1870	1870	1870	1870		
1031	129	173	114	27	904		
0.97	0.97	0.88	0.88	0.97	0.97		
					2		
				0.43	0.43		
100000000000000000000000000000000000000							
L1.L			1.0				
1214			1659				
	0.4	0.0	15.1	0.0	0.0		
	2.5	135	13.0	14.7	18.0		
	Α.	U			U		
U				Б			
	2	3	4			8	
	43.5	11.3	35.2			46.5	
	4.5	4.5	4.5			4.5	
	19.5	22.5	34.5			61.5	
	16.4	6.4	26.2			3.6	
	1.3	0.5	4.5			0.7	
		24.9					
	0.97 2 1214 0.34 3647 1031 1777 24.2 24.2 1214 0.85 1362 1.00 1.00 27.5 4.8 0.0 15.8 32.3 C	2 2 1214 1226 0.34 0.34 3647 1578 1031 129 1777 1578 24.2 1.8 24.2 1.8 24.2 1.8 1.00 1214 1226 0.85 0.11 1362 1292 1.00 1.00 27.5 2.5 4.8 0.0 0.0 0.0 15.8 3.4 32.3 2.5 C A 1160 29.0 C 2 43.5 4.5 19.5 16.4	2 2 2 1214 1226 260 0.34 0.34 0.08 3647 1578 3456 1031 129 173 1777 1578 1728 24.2 1.8 4.4 24.2 1.8 4.4 24.2 1.8 4.4 1.00 1.00 1214 1226 260 0.85 0.11 0.67 1362 1292 864 1.00 1.00 1.00 1.00 1.00 1.00 27.5 2.5 40.5 4.8 0.0 2.9 0.0 0.0 0.0 15.8 3.4 3.5 C A D 1160 29.0 C 2 3 43.5 11.3 4.5 4.5 19.5 22.5 16.4 6.4 1.3 0.5	2 2 2 2 1214 1226 260 1659 0.34 0.34 0.08 0.47 3647 1578 3456 3647 1031 129 173 114 1777 1578 1728 1777 24.2 1.8 4.4 1.6 24.2 1.8 4.4 1.6 1.00 1.00 1214 1226 260 1659 0.85 0.11 0.67 0.07 1362 1292 864 2428 1.00 1.00 1.00 1.00 1.00 1.00 1.00 27.5 2.5 40.5 13.2 4.8 0.0 2.9 0.0 0.0 0.0 0.0 0.0 15.8 3.4 3.5 1.1 32.3 2.5 43.5 13.2 C A D B 1160 287 29.0 31.5 C C 2 3 4 43.5 11.3 35.2 4.5 4.5 4.5 19.5 22.5 34.5 16.4 6.4 26.2 1.3 0.5 4.5	2 2 2 2 2 2 1214 1226 260 1659 772 0.34 0.34 0.08 0.47 0.43 3647 1578 3456 3647 1781 1031 129 173 114 27 1777 1578 1728 1777 1781 24.2 1.8 4.4 1.6 0.8 24.2 1.8 4.4 1.6 0.8 1.00 1.00 1.00 1214 1226 260 1659 772 0.85 0.11 0.67 0.07 0.03 1362 1292 864 2428 772 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2 2 2 2 2 2 2 2 2 2 1418 0.34	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Int Delay, s/veh	in customer							
Second	Intersection	0.5				1		
raffic Vol, veh/h raffic Vol, veh/r raffic Vol,	Int Delay, s/veh	0.5						
raffic Vol, veh/h uture Vol, veh/h 14	Movement	EBL	EBR	NBL		SBT	SBR	
raffic Vol, veh/h tuture Vol, veh/h 14	Lane Configurations	4	7	19	44	B		
Stage 1	Traffic Vol, veh/h						118	
Stop Stop Free	Future Vol, veh/h	14	4	11	263	892	118	
Stop Stop Free	Conflicting Peds, #/hr		0	29	0	0	29	
Tr Channelized - None -	Sign Control	Stop	Stop	Free	Free	Free	Free	
torage Length	RT Channelized	-			None	-	None	
teh in Median Storage, # 0	Storage Length	0		150	-	-		
Stage 1		e,# 0			0	0	-	
Reak Hour Factor	Grade, %		-	-			-	
Reavy Vehicles, % 2 2 2 2 2 2 2 2 2			85	88	88	85	85	
Major Minor Minor Major Major Major								
Alajor/Minor Minor2 Major1 Major2								
Stage 1	WWIICHIOW	10		10	200	1010	,00	
Stage 1						2 2 22		
Stage 1 1148 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -						Major2		
Stage 2	Conflicting Flow All		1148	1217	0		0	
Fritical Hdwy Stg 1 5.43	Stage 1		1.70	-	-		9	
Artitical Hdwy Stg 1 5.43		177	-		-			
Artitical Hdwy Stg 1 5.43	Critical Hdwy	6.63	6.23	4.13	-	-		
Stritical Hdwy Stg 2	Critical Hdwy Stg 1		-	-	-		-	
Stage 1 301			-	-	2	-		
Stage 1 301 -			3.319	2.219	-	-		
Stage 1 301 -					3	-	(0):	
Stage 2 836 -				-	-	1/50		
Alatoon blocked, %			1.	-		-	- 4	
flov Cap-1 Maneuver 147 234 555 - <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td>					-		-	
Stage 1 286 - Stage 2 813		147	234	555			-	
Stage 1 286 -					-	-		
Stage 2 813 -						-	-	
Description			- 110					
CM Control Delay, s 30 0.5 0	Staye Z	013				1,50	- 50	
CM Control Delay, s 30 0.5 0								
CM Control Delay, s 30 0.5 0	Approach	EB	-	NB		SB		
CM LOS D	HCM Control Delay, s	30		0.5		0		
Minor Lane/Major Mvmt NBL NBT EBLn1 EBLn2 SBT Capacity (veh/h) 555 - 147 234 - ICM Lane V/C Ratio 0.023 - 0.112 0.02 - ICM Control Delay (s) 11.6 - 32.6 20.7 - ICM Lane LOS B - D C -	HCM LOS							
Capacity (veh/h) 555 - 147 234 - ICM Lane V/C Ratio 0.023 - 0.112 0.02 - ICM Control Delay (s) 11.6 - 32.6 20.7 - ICM Lane LOS B - D C -								
Capacity (veh/h) 555 - 147 234 - ICM Lane V/C Ratio 0.023 - 0.112 0.02 - ICM Control Delay (s) 11.6 - 32.6 20.7 - ICM Lane LOS B - D C -	AP C 04 : 54		MIDI	NOT	EDI -41	-DI -0	CDT	
ICM Lane V/C Ratio 0.023 - 0.112 0.02 - ICM Control Delay (s) 11.6 - 32.6 20.7 - ICM Lane LOS B - D C		nt						
ICM Control Delay (s) 11.6 - 32.6 20.7 - ICM Lane LOS B - D C -								
ICM Lane LOS B - D C -								
)						
ICM 95th %tile Q(veh) 0.1 - 0.4 0.1 -							_	
	HCM 95th %tile Q(veh	1)	0.1	-	0.4	0.1	- 3	

Intersection					6	
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	75	7	*	^	13	
Traffic Vol, veh/h	51	8	3	771	226	19
Future Vol, veh/h	51	8	3	771	226	19
Conflicting Peds, #/hr	1	4	15	0	0	15
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None		None
Storage Length	0	0	150	-	-	
Veh in Median Storage				0	0	-
Grade, %	0		-	0	0	-
Peak Hour Factor	71	71	97	97	71	71
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	72	11	3	795	318	27
million IVII	12		J	, 00	5,10	
Por array way						
Parket State of the State of th	Minor2		Major1		Major2	
Conflicting Flow All	752	351	360	0		0
Stage 1	347	-	- 4		-	-
Stage 2	405	-	-	+		•
Critical Hdwy	6.63	6.23	4.13	=	-	
Critical Hdwy Stg 1	5.43		-	+		-
Critical Hdwy Stg 2	5.83		-	-	-	-
Follow-up Hdwy	3.519	3.319	2.219	+		+
Pot Cap-1 Maneuver	362	692	1197	-	-	100
Stage 1	715	(-)		+		-
Stage 2	643	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	351	680	1180	-	-	-
Mov Cap-2 Maneuver	351	-		-		
Stage 1	703	-	-	5		-
Stage 2	634	-	-	-	-	-,
	3.0.1					1011
A	ED		ND		OB	200
Approach	EB		NB		SB	-
HCM Control Delay, s	16.9		0		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	EBLn2	SBT
Capacity (veh/h)		1180	4	351	680	-
HCM Lane V/C Ratio		0.003	2			-
HCM Control Delay (s)		8.1	-	17.9	10.4	-
HCM Lane LOS		Α	2	С	В	2
HCM 95th %tile Q(veh)	0	-	0.8	0.1	-
particular and the second seco	,	- Sal		10000		

Intersection							
Int Delay, s/veh	0.5						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	4	7	1		ħ	1	
Traffic Vol, veh/h	2	2	277	12	53	890	
Future Vol, veh/h	2	2	277	12	53	890	
Conflicting Peds, #/hr	3	15	0	3	3	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	1	None	(*)	None	-	None	
Storage Length	0	0	-	-	100	-	
Veh in Median Storage	,# 0	190	0	-	35	0	
Grade, %	0		0	-		0	
Peak Hour Factor	86	86	86	86	86	86	
Heavy Vehicles, %	2	2	2	2	2	2	
Mvmt Flow	2	2	322	14	62	1035	
NAMES OF THE PARTY							
V4 + 10 P 1	Minand		Aniand		Majora		
	Minor1		Major1		Major2	0	
Conflicting Flow All	1494	186	0	0	339	0	
Stage 1	332	-	-/	-			
Stage 2	1162	- 0.00		-	440	•	
Critical Hdwy	6.63	6.93	175	-	4.13	•	
Critical Hdwy Stg 1	5.83	17	-	-		•	
Critical Hdwy Stg 2	5.43		(#)		0.040		
Follow-up Hdwy		3.319	179	- 5	2.219	•	
Pot Cap-1 Maneuver	124	825			1219		
Stage 1	700			-		•	
Stage 2	297		17	- 5	-	-	
Platoon blocked, %			- 5	- 17	1010		
Mov Cap-1 Maneuver	117	811	•	-	1216		
Mov Cap-2 Maneuver	117			. 5		•	
Stage 1	662	- 1	*	- 1		15	
Stage 2	296	le.		5		•	
Approach	WB		NB		SB		
HCM Control Delay, s	23		0		0.5		
HCM LOS	C		300				
Miner Lene/Major Mun	, t	NBT	MEDI	VBLn1V	MRI n2	SBL	
Minor Lane/Major Mvm	11		MOIN	117	811	1216	
Capacity (veh/h)		-	-		0.003		
HCM Control Doloy (a)		-	-	36.4	9.5	8.1	
HCM Control Delay (s) HCM Lane LOS		-	-	50.4 E	Α.	A	
	1	-	-	0.1	0	0.2	
HCM 95th %tile Q(veh))	-	-	0.1	U	0.2	

Intersection							
Int Delay, s/veh	1.5						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y	7	1 1>	11011	ሻ	↑	
Traffic Vol, veh/h	4	54	822	10	54	222	
Future Vol, veh/h	4	54	822	10	54	222	
Conflicting Peds, #/hr	14	25	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	CONTRACTOR AND		None		None	
Storage Length	0	0	-	-	100	-	
Veh in Median Storage			0	-		0	
Grade, %	0		0	-		0	
Peak Hour Factor	68	68	68	68	68	68	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	6	79	1209	15	79	326	
Hittinet ion		100				-	
MIST DATE	1.11		Mark of				
	Minor1		Major1		Major2		
Conflicting Flow All	1715	637	0	0	1224	0	
Stage 1	1217	-		-			
Stage 2	498	-	-	-			
Critical Hdwy	6.63	6.93	-	- 0	4.13	ie.	
Critical Hdwy Stg 1	5.83	-	-	-	-	-	
Critical Hdwy Stg 2	5.43	-	-		-		
Follow-up Hdwy	3.519		-	-	2.219		
Pot Cap-1 Maneuver	90	421	-		567		
Stage 1	244		-	-		-	
Stage 2	610	-	14	TH	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	77	411	-	-	567	(=)	
Mov Cap-2 Maneuver	77		-	-	(4)	-	
Stage 1	210	-	-	-	-		
Stage 2	602	-	-	4	-	-	
Approach	WB	-	NB		SB		
HCM Control Delay, s	18.5		0		2.4	19 19	
HCM LOS	10.5		U		2.4		
TIOW LOG	U						
Minor Lanc/Major Mun	nt	NDT	NIPDV	VBLn1V	VRI n2	SBL	
Minor Lane/Major Mvn	IC	NBT		77	411	567	
Capacity (veh/h)		(2)	-				
HCM Lane V/C Ratio	100		-	0.076		0.14	
HCM Control Delay (s)		-		55.6 F	15.8 C	12.4 B	
110111 100		100	-	-		В	
HCM Lane LOS HCM 95th %tile Q(veh		19721		0.2	0.7	0.5	

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			412	P	
Traffic Vol, veh/h	1	3	1	278	887	5
Future Vol, veh/h	1	3	1	278	887	5
Conflicting Peds, #/hr	0	0	61	0	0	61
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Otop	None	-	None	-	None
Storage Length	0	TYONG -		-	_	140116
Veh in Median Storage	1570	115		0	0	
Grade, %	0			0	0	2
Peak Hour Factor	92	92	92	92	92	92
	2	2	2	2	2	2
Heavy Vehicles, %						
Mvmt Flow	1	3	1	302	964	5
Major/Minor I	Minor2	9	Major1	1	Major2	
Conflicting Flow All	1181	1028	1030	0	-	0
Stage 1	1028	-			-	
Stage 2	153		-	1/4		_
Critical Hdwy	6.63	6.23	4.13	1	-	4
Critical Hdwy Stg 1	5.43	0.20	1.10	102	-	_
Critical Hdwy Stg 2	5.83	-		-	-	
Follow-up Hdwy		3.319	2.219	-	-	-
	196	283	672	-	-	-
Pot Cap-1 Maneuver		0.000		-		
Stage 1	344	-	-	-	-	-
Stage 2	860	- (4)	-			-
Platoon blocked, %	7			-	-	-
Mov Cap-1 Maneuver	174	267	633	(=)	190	
Mov Cap-2 Maneuver	174	-	-	-	-	-
Stage 1	323	-	-	(2)	(+)	-
Stage 2	810	-	-	34	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	20.5		0		0	
HCM LOS	20.5 C		U		U	
TION LOS	C					
	-					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		633	9	236	-	-
HCM Lane V/C Ratio		0.002		0.018	-	
HCM Control Delay (s)		10.7	0	20.5		-
HCM Lane LOS		В	Α	C	-	-
HCM 95th %tile Q(veh))	0		0.1	-	

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			414	1	
Traffic Vol, veh/h	3	0	0	876	222	0
Future Vol, veh/h	3	0	0	876	222	0
Conflicting Peds, #/hr	4	0	103	0	0	103
Sign Control	Stop		Free	Free	Free	Free
RT Channelized	Ciop	THE PERSON NAMED IN	-		-	None
Storage Length	0	-		-		-
Veh in Median Storage	And the second			0	0	
Grade, %	0	-	-	0	0	
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	0	0	1081	274	0
Major/Minor I	Minor2	SEE Y	Major1	1	Major2	
Conflicting Flow All	922	377	377	0	-	0
Stage 1	377	-	-	2	345	-
Stage 2	545				-	
Critical Hdwy	6.63	6.23	4.13	-		721
Critical Hdwy Stg 1	5.43	0.23	4.10	- 2	12	120
Critical Hdwy Stg 2	5.83	-	-	-	_	
		2 240	0.040	- 5	45	-
Follow-up Hdwy			2.219	2	-	120
Pot Cap-1 Maneuver	284	669	1180	-		
Stage 1	693	-	-		-	-
Stage 2	546	-	-	-	120	-
Platoon blocked, %				-	_	-
Mov Cap-1 Maneuver	231	603	1064	-	-	-
Mov Cap-2 Maneuver	231	-	2	2	-	- 4
Stage 1	625	-	2	=	1/20	-
Stage 2	492	-	14	25	14	-
- Canada						
Approach	EB		NB		SB	
HCM Control Delay, s	20.8		0		0	
HCM LOS	C					
		MDI	NOT	EDI = 4	CDT	CDD
Minor Long/Mair- Marin	IU	NBL		EBLn1	SBT	SBR
Minor Lane/Major Mvm		21167	-	231		-
Capacity (veh/h)		1064				
Capacity (veh/h) HCM Lane V/C Ratio		-	-	0.016		-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0	-	20.8		-
Capacity (veh/h) HCM Lane V/C Ratio		-				

Intersection	5								
Intersection Delay, s/veh	5.4								
Intersection LOS	Α								
Approach		EB		WB			SB		
Entry Lanes		1		1			1		
Conflicting Circle Lanes		2		2			2		
Adj Approach Flow, veh/h		112		538			576		
Demand Flow Rate, veh/h		114		549			588		
Vehicles Circulating, veh/h		490		45			210		
Vehicles Exiting, veh/h		210		490			45		
Ped Vol Crossing Leg, #/h		0		0			0		
Ped Cap Adj		1.000		1.000			1.000		
Approach Delay, s/veh		1.7		4.6			6.8		
Approach LOS		Α		Α			Α		
Lane	Left	Bypass	Left	В	ypass	Left		Bypass	
Designated Moves	L	R	Т		R	L		R	
Assumed Moves	L	R	T		R	L		R	
RT Channelized		Free			Yield			Yield	
Lane Util	1.000		1.000			1.000			
Follow-Up Headway, s	2.535		2.535			2.535		-	
Critical Headway, s	4.328	69	4.328		339	4.328		98	
Entry Flow, veh/h	45	1938	210		1318	490		1114	
Cap Entry Lane, veh/h	936	0.980	1367		0.980	1188		0.980	
Entry HV Adj Factor	0.978	68	0.980		332	0.980		96	
Flow Entry, veh/h	44	1900	206		1292	480		1092	
Cap Entry, veh/h	915	0.036	1340		0.257	1164		0.088	
V/C Ratio	0.048	0.0	0.154		5.0	0.412		4.1	
Control Delay, s/veh	4.4	Α	3.9		Α	7.3		Α	
LOS	Α	0	A		1	A		0	
95th %tile Queue, veh	0		1			2			

Intersection							
Intersection Delay, s/veh	4.6						
Intersection LOS	Α						
Approach		EB		WB		SB	
Entry Lanes		1		1		1	
Conflicting Circle Lanes		2		2		2	
Adj Approach Flow, veh/h		279		650		317	
Demand Flow Rate, veh/h		285		663		323	
Vehicles Circulating, veh/h		277		98		184	
Vehicles Exiting, veh/h		184		277		98	
Ped Vol Crossing Leg, #/h		0		1		0	
Ped Cap Adj		1.000		1.000		1.000	
Approach Delay, s/veh		1.4		5.9		4.8	
Approach LOS		Α		Α		Α	
Lane	Left	Bypas	s Left	Bypas	s Left	Bypass	
Designated Moves	L	1	7 T		R L	R	
Assumed Moves	L	-	7 T		R L	R	
RT Channelized		Fre	Э	Yiel	d	Yield	
Lane Util	1.000		1.000		1.000		
Follow-Up Headway, s	2.535		2.535		2.535		
Critical Headway, s	4.328	18	4.328	47	9 4.328	46	
Entry Flow, veh/h	98	193	3 184	124	9 277	1144	
Cap Entry Lane, veh/h	1122	0.98	1307	0.98	0 1214	0.980	
Entry HV Adj Factor	0.980	18	0.980	47	0.982	45	
Flow Entry, veh/h	96	190	180	122	4 272	1121	
Cap Entry, veh/h	1099	0.09		0.38		0.040	
V/C Ratio	0.087	0.0	0.141	6.		3.5	
Control Delay, s/veh	4.0	/			A 5.0	Α	
LOS	Α)) A		2 A	0	
95th %tile Queue, veh	0		0		1		

	•	*	1	1	Ţ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	7	^	1	7
Traffic Volume (veh/h)	37	57	173	279	461	92
Future Volume (veh/h)	37	57	173	279	461	92
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	HILDRING.	(2.03)	No	No	0.8189.02
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	44	68	206	332	480	96
Peak Hour Factor	0.84	0.84	0.84	0.84	0.96	0.96
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	111	99	714	1566	1369	1230
Arrive On Green	0.06	0.06	0.06	0.84	0.73	0.73
Sat Flow, veh/h	1781	1585	1781	1870	1870	1546
Grp Volume(v), veh/h	44	68	206	332	480	96
Grp Sat Flow(s), veh/h/ln	1781	1585	1781	1870	1870	1546
Q Serve(g_s), s	2.1	3.8	2.2	3.2	8.3	1.2
Cycle Q Clear(g_c), s	2.1	3.8	2.2	3.2	8.3	1.2
Prop In Lane	1.00	1.00	1.00	0.2	0.0	1.00
Lane Grp Cap(c), veh/h	111	99	714	1566	1369	1230
V/C Ratio(X)	0.40	0.69	0.29	0.21	0.35	0.08
Avail Cap(c_a), veh/h	366	326	981	1566	1369	1230
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	0.92	0.92
Upstream Filter(I)					4.4	
Uniform Delay (d), s/veh	40.6	41.3	2.6	1.4		2.0
Incr Delay (d2), s/veh	2.3	8.1	0.2	0.3	0.7	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	1.8	6.3	0.8	0.9	4.9	0.8
Unsig. Movement Delay, s/veh		10.1	0.0		F.0	0.4
LnGrp Delay(d),s/veh	42.8	49.4	2.8	1.8	5.0	2.1
LnGrp LOS	D	D	Α	A	A	Α
Approach Vol, veh/h	112			538	576	
Approach Delay, s/veh	46.8			2.2	4.5	
Approach LOS	D			Α	Α	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		79.9		10.1	9.5	70.4
Change Period (Y+Rc), s		4.5		4.5	4.5	4.5
Max Green Setting (Gmax), s		62.5		18.5	18.5	39.5
Max Q Clear Time (g_c+l1), s		5.2		5.8	4.2	10.3
Green Ext Time (p_c), s		2.1		0.2	0.5	3.7
Intersection Summary						
HCM 6th Ctrl Delay			7.4			
HCM 6th LOS			A			
IOM OUI LOO						

	1	*	4	†		1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	7	†	^	74
Traffic Volume (veh/h)	89	170	167	437	234	39
Future Volume (veh/h)	89	170	167	437	234	39
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	200-000		No	No	11122
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	96	183	180	470	272	45
Peak Hour Factor	0.93	0.93	0.93	0.93	0.86	0.86
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	290	258	836	1192	1192	1241
Arrive On Green	0.16	0.16	0.64	0.64	1.00	1.00
Sat Flow, veh/h	1781	1585	1061	1870	1870	1542
Grp Volume(v), veh/h	96	183	180	470	272	45
Grp Sat Flow(s), veh/h/ln	1781	1585	1061	1870	1870	1542
Q Serve(g_s), s	2.1	4.9	3.3	5.5	0.0	0.0
Cycle Q Clear(g_c), s	2.1	4.9	3.3	5.5	0.0	0.0
Prop In Lane	1.00	1.00	1.00	0.0	0.0	1.00
	290	258		1100	1100	
Lane Grp Cap(c), veh/h			836	1192	1192	1241
V/C Ratio(X)	0.33	0.71	0.22	0.39	0.23	0.04
Avail Cap(c_a), veh/h	713	634	836	1192	1192	1241
HCM Platoon Ratio	1.00	1.00	1.00	1.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.99	0.99
Uniform Delay (d), s/veh	16.7	17.8	3.6	4.0	0.0	0.0
Incr Delay (d2), s/veh	0.7	3.6	0.6	1.0	0.4	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	1.4	3.2	0.8	2.2	0.3	0.0
Unsig. Movement Delay, s/veh			, -	7020	7270	
LnGrp Delay(d),s/veh	17.3	21.4	4.2	4.9	0.4	0.1
LnGrp LOS	В	С	Α	Α	Α	Α
Approach Vol, veh/h	279			650	317	
Approach Delay, s/veh	20.0			4.7	0.4	
Approach LOS	В			Α	Α	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		33.2		11.8		33.2
Change Period (Y+Rc), s		4.5		4.5		4.5
Max Green Setting (Gmax), s		18.0		18.0		18.0
Max Q Clear Time (g_c+l1), s		7.5		6.9		2.0
Green Ext Time (p_c), s		2.7		0.6		1.5
Intersection Summary						
HCM 6th Ctrl Delay			7.0			
HCM 6th LOS			A			

APPENDIX D 2038 IMPROVED INTERSECTION CAPACITY ANALYSIS (33% TOTAL GROWTH / 1.43% ANNUAL GROWTH)

Appendix D Listing – 2038 Improved Intersection Capacity Analysis – 33% Total Growth

Diamond & Pajarito Signalized AM

Diamond & Pajarito Signalized PM

Diamond & Sigma AM

Diamond & Sigma PM

Diamond & Eniwetok AM

Diamond & Eniwetok PM

Diamond & Embudo AM

Diamond & Embudo PM

Diamond & West Jemez AM

Diamond & West Jemez PM

Diamond & South Drive AM

Diamond & South Drive PM

Diamond & Grable AM

Diamond & Grable PM

Diamond & Coronado AM

Diamond & Coronado PM

Diamond & Pajarito Roundabout AM

Diamond & Pajarito Roundabout PM

Diamond & Pajarito Realigned AM

Diamond & Pajarito Realigned PM

Diamond & South Drive/Realigned Grable AM

Diamond & South Drive/Realigned Grable PM

1: Pajarito & Diamond

	1	-	4-		1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	4	^	4	7	N	7	
Traffic Volume (veh/h)	37	57	173	279	461	92	
Future Volume (veh/h)	37	57	173	279	461	92	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	59	90	274	0	639	127	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.96	0.96	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	179	403	403	-	1197	1065	
Arrive On Green	0.22	0.22	0.22	0.00	0.67	0.67	
Sat Flow, veh/h	1105	1870	1870	1585	1781	1585	
	59	90	274	0	639	127	
Grp Volume(v), veh/h	1105	1870	1870	1585	1781	1585	
Grp Sat Flow(s),veh/h/ln							
Q Serve(g_s), s	4.1	3.2	10.8	0.0	14.7	2.3	
Cycle Q Clear(g_c), s	14.9	3.2	10.8	0.0	14.7	2.3	
Prop In Lane	1.00	100	100	1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	179	403	403		1197	1065	
V/C Ratio(X)	0.33	0.22	0.68		0.53	0.12	
Avail Cap(c_a), veh/h	280	573	573		1197	1065	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.80	0.80	
Uniform Delay (d), s/veh	35.7	25.9	28.8	0.0	6.7	4.7	
Incr Delay (d2), s/veh	1.1	0.3	2.0	0.0	1.4	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	2.0	2.5	8.4	0.0	8.1	1.2	
Unsig. Movement Delay, s/vel							
LnGrp Delay(d),s/veh	36.7	26.1	30.9	0.0	8.1	4.9	
LnGrp LOS	D	C	C		Α	Α	
Approach Vol, veh/h		149	274	A	766		
Approach Delay, s/veh		30.3	30.9		7.5		
Approach LOS		C	C		Α		
Timer - Assigned Phs			C. I. I.	4		6	8
Phs Duration (G+Y+Rc), s				21.7		58.3	21.7
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				24.5		46.5	24.5
Max Q Clear Time (g_c+l1), s				16.9		16.7	12.8
Green Ext Time (p_c), s				0.3		2.8	1.1
Intersection Summary							
HCM 6th Ctrl Delay			15.8	·			
HCM 6th LOS			В				
Notes				-		- 9	

	1	→	←		1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	7	^	^	77	7	7	
Traffic Volume (veh/h)	89	170	167	437	234	39	
Future Volume (veh/h)	89	170	167	437	234	39	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	127	243	239	0	362	60	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.86	0.86	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	338	516	516		969	862	
Arrive On Green	0.28	0.28	0.28	0.00	0.54	0.54	
Sat Flow, veh/h	1141	1870	1870	1585	1781	1585	
Grp Volume(v), veh/h	127	243	239	0	362	60	
Grp Sat Flow(s), veh/h/ln	1141	1870	1870	1585	1781	1585	
Q Serve(g_s), s	5.2	5.4	5.3	0.0	5.8	0.9	
Cycle Q Clear(g_c), s	10.5	5.4	5.3	0.0	5.8	0.9	
Prop In Lane	1.00	0.1	0.0	1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	338	516	516	1.00	969	862	
V/C Ratio(X)	0.38	0.47	0.46		0.37	0.07	
Avail Cap(c_a), veh/h	536	842	842		969	862	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.99	0.99	
Uniform Delay (d), s/veh	19.4	15.1	15.0	0.0	6.5	5.4	
	0.7	0.7	0.6	0.0	1.1	0.2	
Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
	2.3	3.7	3.6	0.0	3.3	0.5	
%ile BackOfQ(95%),veh/ln		3.1	3.0	0.0	3.3	0.0	
Unsig. Movement Delay, s/veh		15.7	15.7	0.0	7.6	5.6	
LnGrp Delay(d),s/veh	20.1 C		Appending.	0.0			
LnGrp LOS	U	B	B	٨	A 422	Α	
Approach Vol, veh/h		370	239	Α	422		
Approach Delay, s/veh		17.2	15.7		7.3		
Approach LOS		В	В		Α		
Timer - Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				18.3		31.7	18.3
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				22.5		18.5	22.5
Max Q Clear Time (g_c+l1), s				12.5		7.8	7.3
Green Ext Time (p_c), s				1.3		1.0	1.1
Intersection Summary							
HCM 6th Ctrl Delay			12.8				
HCM 6th LOS			В				
A CANADA							

2018 AM Existing - Interim Improvements - 33% growth

	1	-	1	1	-	4	1	↑	-	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		લ	7"		र्स	7	7	1		1	Î	
Traffic Volume (veh/h)	5	1	6	17	0	15	6	269	37	51	515	54
Future Volume (veh/h)	5	1	6	17	0	15	6	269	37	51	515	54
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	(
Ped-Bike Adj(A_pbT)	0.99		0.97	0.99		0.97	1.00		0.97	0.99		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1648	1648	1648	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	8	2	9	26	0	23	9	416	57	80	806	84
Peak Hour Factor	0.85	0.85	0.85	0.86	0.86	0.86	0.86	0.86	0.86	0.85	0.85	0.85
Percent Heavy Veh, %	17	17	17	2	2	2	2	2	2	2	2	2
Cap, veh/h	82	11	204	92	0	231	404	1685	229	748	1111	116
Arrive On Green	0.15	0.15	0.15	0.15	0.00	0.15	0.01	0.54	0.54	0.28	1.00	1.00
Sat Flow, veh/h	7	70	1360	12	0	1539	1781	3127	425	1781	1659	173
Grp Volume(v), veh/h	10	0	9	26	0	23	9	235	238	80	0	890
Grp Sat Flow(s), veh/h/ln	77	0	1360	12	0	1539	1781	1777	1776	1781	0	1832
Q Serve(g_s), s	0.1	0.0	0.5	0.1	0.0	1.0	0.2	5.6	5.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	12.0	0.0	0.5	12.0	0.0	1.0	0.2	5.6	5.7	0.0	0.0	0.0
Prop In Lane	0.80	-	1.00	1.00	17.77	1.00	1.00		0.24	1.00		0.09
Lane Grp Cap(c), veh/h	93	0	204	92	0	231	404	957	957	748	0	1226
V/C Ratio(X)	0.11	0.00	0.04	0.28	0.00	0.10	0.02	0.25	0.25	0.11	0.00	0.73
Avail Cap(c_a), veh/h	190	0	308	197	0	348	497	957	957	748	0	1226
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	0.76	0.76	0.76	0.66	0.00	0.66
Uniform Delay (d), s/veh	29.9	0.0	29.1	40.0	0.0	29.3	9.8	9.8	9.8	6.2	0.0	0.0
Incr Delay (d2), s/veh	0.5	0.0	0.1	1.7	0.0	0.2	0.0	0.5	0.5	0.0	0.0	2.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.3	0.0	0.3	1.0	0.0	0.7	0.1	3.8	3.9	0.8	0.0	1.5
Unsig. Movement Delay, s/veh			100,450		200000							
LnGrp Delay(d),s/veh	30.4	0.0	29.2	41.7	0.0	29.5	9.8	10.3	10.3	6.3	0.0	2.5
LnGrp LOS	C	Α	C	D	Α	C	Α	В	В	Α	Α	Α
Approach Vol, veh/h		19			49			482			970	
Approach Delay, s/veh		29.8			36.0			10.3			2.8	
Approach LOS		C			D			В			Α	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	15.8	47.6		16.6	5.4	58.0		16.6				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.3	43.1		18.1	5.1	43.3		18.1				
Max Q Clear Time (g_c+l1), s	2.0	7.7		14.0	2.2	2.0		14.0				
Green Ext Time (p_c), s	0.0	3.1		0.0	0.0	8.9		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			6.6									
HCM 6th LOS			Α									

	•	-	*	-	-	1	1	1	-	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्व	7		र्	7	7	1		1	7	
Traffic Volume (veh/h)	35	0	21	21	0	46	3	516	8	7	208	6
Future Volume (veh/h)	35	0	21	21	0	46	3	516	8	7	208	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1856	1856	1856	1870	1870	1870
Adj Flow Rate, veh/h	53	0	32	32	0	70	5	789	12	11	314	9
Peak Hour Factor	0.88	0.88	0.88	0.87	0.87	0.87	0.87	0.87	0.87	0.88	0.88	0.88
Percent Heavy Veh, %	2	2	2	2	2	2	3	3	3	2	2	2
Cap, veh/h	72	0	383	72	0	385	700	2156	33	343	967	28
Arrive On Green	0.24	0.00	0.24	0.24	0.00	0.24	0.09	0.61	0.61	0.03	1.00	1.00
Sat Flow, veh/h	0	0	1562	0	0	1571	1767	3553	54	1781	1808	52
Grp Volume(v), veh/h	53	0	32	32	0	70	5	391	410	11	0	323
Grp Sat Flow(s), veh/h/ln	0	0	1562	0	0	1571	1767	1763	1844	1781	0	1859
Q Serve(g_s), s	0.0	0.0	1.6	0.0	0.0	3.5	0.0	11.2	11.2	0.3	0.0	0.0
Cycle Q Clear(g_c), s	24.5	0.0	1.6	24.5	0.0	3.5	0.0	11.2	11.2	0.3	0.0	0.0
Prop In Lane	1.00	245	1.00	1.00	3.5	1.00	1.00		0.03	1.00		0.03
Lane Grp Cap(c), veh/h	72	0	383	72	0	385	700	1070	1119	343	0	995
V/C Ratio(X)	0.74	0.00	0.08	0.44	0.00	0.18	0.01	0.37	0.37	0.03	0.00	0.32
Avail Cap(c_a), veh/h	72	0	383	72	0	385	700	1070	1119	471	0	995
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	0.71	0.71	0.71	0.98	0.00	0.98
Uniform Delay (d), s/veh	50.0	0.0	29.1	50.0	0.0	29.8	10.5	9.9	9.9	12.8	0.0	0.0
Incr Delay (d2), s/veh	32.2	0.0	0.1	4.2	0.0	0.2	0.0	0.7	0.7	0.0	0.0	0.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	3.5	0.0	1.1	1.6	0.0	2.4	0.1	7.1	7.3	0.2	0.0	0.4
Unsig. Movement Delay, s/veh		0.0	****	110	0.0		011		110	0.12	0.0	0.11
LnGrp Delay(d),s/veh	82.2	0.0	29.2	54.2	0.0	30.1	10.5	10.6	10.6	12.8	0.0	0.9
LnGrp LOS	F	A	C	D	A	C	В	В	В	В	A	A
Approach Vol, veh/h		85			102			806			334	
Approach Delay, s/veh		62.2			37.6			10.6			1.2	_
Approach LOS		E			D			В			A	
Timer - Assigned Phs	1_	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	5.8	65.2		29.0	13.0	58.0		29.0				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	8.5	53.5		24.5	8.5	53.5		24.5				
Max Q Clear Time (g_c+l1), s	2.3	13.2		26.5	2.0	2.0		26.5				
Green Ext Time (p_c), s	0.0	5.9		0.0	0.0	2.2		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			13.6									
HCM 6th LOS			В									

2018 AM Existing - Interim Improvements - 33% growth

	1	-	*	1	+	*	1	1	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्व	7"		र्भ	7"	7	^	7	1	1	i*
Traffic Volume (veh/h)	3	1	7	51	1	57	21	218	35	30	585	219
Future Volume (veh/h)	3	1	7	51	1	57	21	218	35	30	585	219
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.98		0.91	0.96		1.00	1.00		1.00	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	5	2	11	79	2	0	34	354	0	49	949	355
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	0.82	0.82	0.82	0.82	0.82	0.82
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	192	64	156	226	5		588	1276		618	1017	850
Arrive On Green	0.11	0.11	0.11	0.11	0.11	0.00	0.36	1.00	0.00	0.08	1.00	1.00
Sat Flow, veh/h	1064	598	1450	1273	43	1585	1781	1870	1585	1781	1870	1563
Grp Volume(v), veh/h	7	0	11	81	0	0	34	354	0	49	949	355
Grp Sat Flow(s), veh/h/ln	1662	0	1450	1317	0	1585	1781	1870	1585	1781	1870	1563
Q Serve(g_s), s	0.0	0.0	0.5	4.5	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0
Cycle Q Clear(g_c), s	0.3	0.0	0.5	4.8	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0
Prop In Lane	0.71		1.00	0.98		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	256	0	156	231	0	1100	588	1276	1.00	618	1017	850
V/C Ratio(X)	0.03	0.00	0.07	0.35	0.00		0.06	0.28		0.08	0.93	0.42
Avail Cap(c_a), veh/h	432	0	326	389	0		588	1276		658	1017	850
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	0.99	0.99	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	32.0	0.0	32.1	34.1	0.0	0.0	5.3	0.0	0.0	9.4	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.2	0.9	0.0	0.0	0.0	0.5	0.0	0.1	16.1	1.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.2	0.0	0.4	2.7	0.0	0.0	0.3	0.3	0.0	0.7	8.0	0.6
Unsig. Movement Delay, s/veh		0.0	0.4	4.1	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0
LnGrp Delay(d),s/veh	32.0	0.0	32.3	35.0	0.0	0.0	5.4	0.5	0.0	9.4	16.1	1.5
LnGrp LOS	C	A	C	C	Α	0.0	Α	A	0.0	Α	В	A
Approach Vol, veh/h		18	-		81	A	- 1	388	Α	- /1	1353	
Approach Delay, s/veh		32.2			35.0	A		1.0	A		12.0	
		0 C			33.0 C			Α			12.0 B	
Approach LOS		C			C			А			D	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.8	59.1		13.1	18.9	48.0		13.1				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.1	43.4		18.0	5.0	43.5		18.0				
Max Q Clear Time (g_c+l1), s	3.1	2.0		2.5	2.0	2.0		6.8				
Green Ext Time (p_c), s	0.0	2.4		0.0	0.0	12.0		0.2				- 1
Intersection Summary												
HCM 6th Ctrl Delay			10.9									
HCM 6th LOS			В									
Motor			(700)									

2018 PM Existing - Interim Improvements - 33% Growth

			•		-	1		1	-	*	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
	र्स	7		4	7	19	^	7	7	^	7
39	1	12	42	0	195	11	594	21	24	236	-
39	1	12	42	0	195	11	594	21	24	236	4
0	0	0	0	0	0	0	0	0	0	0	(
0.97		0.93	0.94		1.00	1.00		1.00	1.00		0.97
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	No			No			No			No	
1856	1856	1856	1856	1856	1856	1870	1870	1870	1870	1870	1870
55	1	17	59	0	0	15	814	0	33	324	
0.94	0.94	0.94	0.94	0.94	0.94	0.97	0.97	0.97	0.97	0.97	0.97
3	3	3	3	3	3	2	2	2	2	2	2
264	4	183	197	0		932	1167		696	1167	962
0.13	0.13	0.13	0.13	0.00	0.00	0.23	1.00	0.00	0.23	1.00	1.00
	33	1466	996	0	1572				1781	1870	1541
				0							5
											1541
											0.0
											0.0
	0.0			0.0			0.0			0.0	1.00
	0			0	1100	The state of the s	1167	11.00		1167	962
											0.01
											962
					1.00			2 00			2.00
											1.00
											0.0
											0.0
											0.0
											0.0
2.0	0.0	0.1	2.0	0.0	0.0	0.1	2.0	0.0	0.2	0.0	0.0
30.0	0.0	38.0	13.7	0.0	0.0	3.0	31	0.0	31	0.6	0.0
					0.0			0.0			Α
U		U	U		۸	A		٨	A		
					A			A			
	D			D			А			А	
1	2		4	5	6		8				
16.1	66.9			16.1	66.9		17.0				
0.0	7.7		0.2	0.0	2.2		0.1				
		6.5									
		Α									
	39 0 0.97 1.00 1856 55 0.94 3 264 0.13 1539 56 1573 0.0 2.9 0.98 268 0.21 359 1.00 1.00 39.6 0.4 0.0 2.3 39.9 D	39 1 39 1 0 0 0.97 1.00 1.00 No 1856 1856 55 1 0.94 0.94 3 3 264 4 0.13 0.13 1539 33 56 0 1573 0 0.0 0.0 2.9 0.0 0.98 268 0 0.21 0.00 359 0 1.00 1.00 1.00 0.00 39.6 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.4 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	39 1 12 39 1 12 0 0 0 0 0.97 0.93 1.00 1.00 1.00 No 1856 1856 1856 55 1 17 0.94 0.94 0.94 3 3 3 3 264 4 183 0.13 0.13 0.13 1539 33 1466 56 0 17 1573 0 1466 0.0 0.0 1.0 2.9 0.0 1.0 0.98 1.00 268 0 183 0.21 0.00 0.09 359 0 280 1.00 1.00 1.00 1.00 0.00 1.00 39.6 0.0 38.7 0.4 0.0 0.2 0.0 0.0 0.0 2.3 0.0 0.7 39.9 0.0 38.9 D A D 73 39.7 D 1 2 16.1 66.9 4.5 4.5 5.0 62.4 2.0 2.0 0.0 7.7	39 1 12 42 39 1 12 42 0 0 0 0 0 0 0.97 0.93 0.94 1.00 1.00 1.00 1.00 No 1856 1856 1856 1856 55 1 17 59 0.94 0.94 0.94 0.94 3 3 3 3 3 264 4 183 197 0.13 0.13 0.13 0.13 1539 33 1466 996 56 0 17 59 1573 0 1466 996 0.0 0.0 1.0 4.3 2.9 0.0 1.0 7.2 0.98 1.00 1.00 268 0 183 197 0.21 0.00 0.09 0.30 359 0 280 282 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1	39	39 1 12 42 0 195 39 1 12 42 0 195 0 0 0 0 0 0 0.97 0.93 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00	39 1 12 42 0 195 11 39 1 12 42 0 195 11 0 0 0 0 0 0 0 0.97 0.93 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1856 1856 1856 1856 1856 1856 1870 55 1 17 59 0 0 15 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.13 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00	1	1	39	39

	1		↑	1	1	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	7	7	1		1	^	
Traffic Volume (veh/h)	22	17	184	20	54	933	
Future Volume (veh/h)	22	17	184	20	54	933	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.96	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1000000	No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	40	31	272	30	80	1379	
Peak Hour Factor	0.74	0.74	0.90	0.90	0.90	0.90	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	88	79	1267	138	1096	1567	
Arrive On Green	0.05	0.05	0.13	0.13	0.39	0.84	
Sat Flow, veh/h	1781	1585	3310	351	1781	1870	
Grp Volume(v), veh/h	40	31	149	153	80	1379	
Grp Sat Flow(s), veh/h/ln	1781	1585	1777	1791	1781	1870	
Q Serve(g_s), s	1.7	1.5	6.0	6.1	0.0	36.4	
Cycle Q Clear(g_c), s	1.7	1.5	6.0	6.1	0.0	36.4	
Prop In Lane	1.00	1.00	1941.7)	0.20	1.00		
ane Grp Cap(c), veh/h	88	79	700	705	1096	1567	
//C Ratio(X)	0.45	0.39	0.21	0.22	0.07	0.88	
Avail Cap(c_a), veh/h	668	594	700	705	1096	1567	
HCM Platoon Ratio	1.00	1.00	0.33	0.33	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	0.58	0.58	
Uniform Delay (d), s/veh	37.0	36.9	23.7	23.8	4.4	4.0	
ncr Delay (d2), s/veh	3.6	3.2	0.7	0.7	0.0	4.5	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	1.5	1.2	4.9	5.0	0.7	8.7	
Jnsig. Movement Delay, s/veh		A11 6.00°C		3337		2.11	
nGrp Delay(d),s/veh	40.6	40.0	24.4	24.5	4.4	8.5	
nGrp LOS	D	D	C	C	Α	A	
Approach Vol, veh/h	71	-	302			1459	
Approach Delay, s/veh	40.3		24.4			8.3	
Approach LOS	D		C			A	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	35.5	36.0				71.5	8.5
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	5.0	31.5				41.0	30.0
Max Q Clear Time (g_c+l1), s	2.0	8.1				38.4	3.7
Green Ext Time (p_c), s	0.0	1.7				2.3	0.2
ntersection Summary							
ICM 6th Ctrl Delay			12.2				
ICM 6th LOS			В				

	1		1	1	1	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	The same of the sa
Lane Configurations	1	7"	1		7	^	
Traffic Volume (veh/h)	23	101	891	11	18	222	
uture Volume (veh/h)	23	101	891	11	18	222	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.97	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	41	182	1601	20	25	304	
Peak Hour Factor	0.74	0.74	0.74	0.74	0.97	0.97	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	245	218	1836	23	610	1444	
Arrive On Green	0.14	0.14	1.00	1.00	0.22	0.77	
Sat Flow, veh/h	1781	1585	3686	45	1781	1870	
Grp Volume(v), veh/h	41	182	791	830	25	304	
Grp Sat Flow(s), veh/h/ln	1781	1585	1777	1860	1781	1870	
Q Serve(g_s), s	2.0	11.2	0.0	0.0	0.0	4.4	
Cycle Q Clear(g_c), s	2.0	11.2	0.0	0.0	0.0	4.4	
Prop In Lane	1.00	1.00	0.0	0.02	1.00	7.7	
ane Grp Cap(c), veh/h	245	218	908	951	610	1444	
//C Ratio(X)	0.17	0.83	0.87	0.87	0.04	0.21	
vail Cap(c_a), veh/h	540	480	908	951	610	1444	
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00	
Jpstream Filter(I)	1.00	1.00	1.00	1.00	0.98	0.98	
	38.0	42.0	0.0	0.0	4.7	3.1	
Jniform Delay (d), s/veh ncr Delay (d2), s/veh	0.3	8.0	11.2	10.9	0.0	0.3	
	0.0	0.0	0.0	0.0	0.0	0.0	
nitial Q Delay(d3),s/veh	1.6	8.4	5.1	5.2	0.0	2.5	
6ile BackOfQ(95%),veh/ln		0.4	5.1	3.2	0.5	2.0	
Jnsig. Movement Delay, s/veh		E0.0	44.0	40.0	17	2.4	
nGrp Delay(d),s/veh	38.4	50.0	11.2	10.9	4.7	3.4	
nGrp LOS	D	D	В	В	Α	A	
approach Vol, veh/h	223		1621			329	
pproach Delay, s/veh	47.9		11.1			3.5	
Approach LOS	D		В			Α	
imer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	26.1	55.6				81.7	18.3
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	5.1	51.1				60.7	30.3
Max Q Clear Time (g_c+l1), s	2.0	2.0				6.4	13.2
Green Ext Time (p_c), s	0.0	19.1				2.0	0.6
ntersection Summary							
ICM 6th Ctrl Delay			13.7		-		
ICM 6th LOS			В				

	→	1	1	←	1	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	44	7"	77	44	ħ	77	
Traffic Volume (veh/h)	115	157	895	1059	13	176	
Future Volume (veh/h)	115	157	895	1059	13	176	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		0.94	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1100	No	No	1100	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	168	229	1253	1483	21	279	
Peak Hour Factor	0.91	0.91	0.95	0.95	0.84	0.84	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	552	700	1313	2102	527	1886	
Arrive On Green	0.16	0.16	0.38	0.59	0.30	0.30	
Sat Flow, veh/h	3647	1486	3456	3647	1781	2790	
Grp Volume(v), veh/h	168	229	1253	1483	21	279	
	1777	1486	1728	1777	1781	1395	
Grp Sat Flow(s), veh/h/ln	3.4	8.0	28.2	23.4	0.7	0.0	
Q Serve(g_s), s	3.4	8.0	28.2	23.4	0.7	0.0	
Cycle Q Clear(g_c), s	3.4			23.4		1.00	
Prop In Lane	550	1.00	1.00	0400	1.00		
Lane Grp Cap(c), veh/h	552	700	1313	2102	527	1886	
V/C Ratio(X)	0.30	0.33	0.95	0.71	0.04	0.15	
Avail Cap(c_a), veh/h	800	804	1317	2354	527	1886	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	30.0	14.2	24.1	11.5	20.1	4.7	
Incr Delay (d2), s/veh	0.3	0.3	15.2	0.9	0.1	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	2.5	7.7	19.3	12.4	0.5	1.2	
Unsig. Movement Delay, s/veh			2212		22.4		
LnGrp Delay(d),s/veh	30.3	14.5	39.3	12.3	20.2	4.8	
LnGrp LOS	С	В	D	В	С	Α	
Approach Vol, veh/h	397			2736	300		
Approach Delay, s/veh	21.2			24.7	5.9		
Approach LOS	C			C	Α		
Timer - Assigned Phs		2	3	4	Dept.	1	8
Phs Duration (G+Y+Rc), s		28.2	34.9	16.9			51.8
Change Period (Y+Rc), s		4.5	4.5	4.5			4.5
Max Green Setting (Gmax), s		18.0	30.5	18.0			53.0
Max Q Clear Time (g_c+l1), s		2.7	30.2	10.0			25.4
Green Ext Time (p_c), s		1.0	0.2	1.2			13.4
Intersection Summary							
HCM 6th Ctrl Delay			22.6				
HCM 6th LOS			C				

			Diamic	niu Di	IVOL	Valu	ation
2	018 PM	Existing	- Interim	Improve	ments -	33%	Growth

	-	1	1	4	4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	44	7	14/4	44	7	77	
Traffic Volume (veh/h)	1000	125	152	100	26	877	
Future Volume (veh/h)	1000	125	152	100	26	877	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	7).	1.00	1.00	35.0	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1000		No	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	1371	171	230	151	36	1202	
Peak Hour Factor	0.97	0.97	0.88	0.88	0.97	0.97	
Percent Heavy Veh, %	2	2	2	2	2	2	,
Cap, veh/h	1433	1224	316	1917	660	1288	
Arrive On Green	0.40	0.40	0.09	0.54	0.37	0.37	
Sat Flow, veh/h	3647	1579	3456	3647	1781	2790	
		171	230	151	36	1202	
Grp Volume(v), veh/h	1371			1777		1395	
Grp Sat Flow(s),veh/h/ln	1777	1579	1728		1781		
Q Serve(g_s), s	37.5	2.7	6.5	2.0	1.3	31.6	
Cycle Q Clear(g_c), s	37.5	2.7	6.5	2.0	1.3	31.6	
Prop In Lane	4400	1.00	1.00	4047	1.00	1.00	
Lane Grp Cap(c), veh/h	1433	1224	316	1917	660	1288	
V/C Ratio(X)	0.96	0.14	0.73	0.08	0.05	0.93	
Avail Cap(c_a), veh/h	1439	1227	881	2505	660	1288	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.72	0.72	
Uniform Delay (d), s/veh	29.0	2.9	44.2	11.1	20.2	25.4	
Incr Delay (d2), s/veh	14.7	0.1	3.2	0.0	0.1	10.4	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	24.9	4.7	5.2	1.4	1.0	15.4	
Unsig. Movement Delay, s/veh					-		
LnGrp Delay(d),s/veh	43.7	2.9	47.4	11.1	20.3	35.9	
nGrp LOS	D	Α	D	В	C	D	
Approach Vol, veh/h	1542			381	1238		
Approach Delay, s/veh	39.2			33.0	35.4		
Approach LOS	D			C	D		
Timer - Assigned Phs		2	3	4			8
Phs Duration (G+Y+Rc), s		41.5	13.6	44.8			58.5
Change Period (Y+Rc), s		4.5	4.5	4.5			4.5
Max Green Setting (Gmax), s		20.5	25.5	40.5			70.5
Max Q Clear Time (g_c+l1), s		33.6	8.5	39.5			4.0
Green Ext Time (p_c), s		0.0	0.7	0.8			1.0
ntersection Summary							
			37.0				
HCM 6th Ctrl Delay							

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ħ	77	19			
Traffic Vol, veh/h	14	4	11	263	892	118
Future Vol, veh/h	14	4	11	263	892	118
Conflicting Peds, #/hr	1	0	29	0	0	29
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	The state of the s		None
Storage Length	0	0	150	-	-	-
Veh in Median Storage	9,525		(4)	0	0	-
Grade, %	0	-		0	0	-
Peak Hour Factor	85	85	88	88	85	85
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	6	17	397	1396	185
	- 75		2/	100000		
	Minor2		Major1		Major2	
Conflicting Flow All	1752		1610	0) e :	0
Stage 1	1518	-	+	-		
Stage 2	234	-	-	-) - .	-
Critical Hdwy	6.63	6.23	4.13	-	(e)) (*)
Critical Hdwy Stg 1	5.43	-	-	-		
Critical Hdwy Stg 2	5.83		-	-		-
Follow-up Hdwy	3.519	3.319	2.219	-	-	-
Pot Cap-1 Maneuver	85	146	403	-	-	-
Stage 1	199	-	-	-		-
Stage 2	783	(*)	-	- 4		-
Platoon blocked, %				-	1.0	-
Mov Cap-1 Maneuver	77	142	392	-		-
Mov Cap-2 Maneuver	77	-	-	-		-
Stage 1	185		-	- 4	-	
Stage 2	761		-	-	-	
THE PARTY OF THE P						
Approach	EB		NB		SB	
HCM Control Delay, s	61		0.6		0	
HCM LOS	F					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	EBLn2	SBT
Capacity (veh/h)		392		77	142	-
HCM Lane V/C Ratio		0.042	-	0.284		-
HCM Control Delay (s)		14.6			31.5	-
HCM Lane LOS		В	-	F	D	
HCM 95th %tile Q(veh))	0.1	-	1	0.1	-
The same selven					-	

Intersection							
Int Delay, s/veh	1.8						
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	7	7	7	44	P		_
Traffic Vol, veh/h	51	8	3	771	226	19	
Future Vol, veh/h	51	8	3	771	226	19	
Conflicting Peds, #/hr	1	4	15	0	0	15	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	Otop	None	-		- 100	None	
Storage Length	0	0	150	-	_	-	
Veh in Median Storage		_	-	0	0		
Grade, %	0	-	-	0	0		
Peak Hour Factor	71	71	97	97	71	71	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	96	15	4	1057	423	36	
WWITH FIOW	90	13	4	1001	423	30	
Major/Minor	Minor2		Major1		Major2		
Conflicting Flow All	994	460	474	0	-	0	
Stage 1	456	-	-	2	-	-	
Stage 2	538	- 2	2	12	2	-	
Critical Hdwy	6.63	6.23	4.13	-	- 2	120	
Critical Hdwy Stg 1	5.43	-	-	2	2	-	
Critical Hdwy Stg 2	5.83		100	2	- 5	4	
Follow-up Hdwy	3.519	3.319	2.219	92	2	-	
Pot Cap-1 Maneuver	256	600	1086		- 5	120	
Stage 1	637	-		-	2	2	
Stage 2	550	2	1/4/3		- 2	1.00	
Platoon blocked, %	000		- 30	9	2		
Mov Cap-1 Maneuver	248	589	1070				
Mov Cap-1 Maneuver	248	000	10/0	2			
		-		-		-	
Stage 1	626		-	7	-	-	
Stage 2	542	-	•	-		-	
Approach	EB		NB		SB		
HCM Control Delay, s	26		0		0		
HCM LOS	D						
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1 I	EBLn2	SBT	
Capacity (veh/h)		1070	-	248	589		
HCM Lane V/C Ratio		0.004		0.385		-	
HCM Control Delay (s)		8.4		28.3	11.3	-	
HCM Lane LOS		Α		D	В	-	
HCM 95th %tile Q(veh)	1	0	-	1.7	0.1	(4)	
Holvi Jour Joure Qiveri		U		1.1	0, 1		

Intersection							
Int Delay, s/veh	0.5						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	4	7	1		ሻ	^	•
Traffic Vol, veh/h	2	2	277	12	53	890	
Future Vol, veh/h	2	2	277	12	53	890	
Conflicting Peds, #/hr	3	15	0	3	3	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	-	None	-	None	-	None	
Storage Length	0	0	-	-	100	-	
Veh in Median Storage		12	0	-		0	
Grade, %	0	2	0	2	2	0	
Peak Hour Factor	86	86	86	86	86	86	
Heavy Vehicles, %	2	2	2	2	2	2	
	3	3	428	19	82	1376	
Mvmt Flow	3	3	420	19	02	13/0	
Major/Minor I	Minor1	N	Major1		Wajor2		
Conflicting Flow All	1984	242	0	0	450	0	
Stage 1	441	-	-	-	-	-	
Stage 2	1543	_	-	-	-	-	
Critical Hdwy	6.63	6.93	-	3	4.13		
Critical Hdwy Stg 1	5.83	-	_	-	_	-	
Critical Hdwy Stg 2	5.43	-				-	
Follow-up Hdwy	3.519	3.319	-		2.219	7 <u>4</u> 2	
Pot Cap-1 Maneuver	60	759	-	=	1109	-	
Stage 1	617	-		-	-	-	
	193				_	621	
Stage 2	193	*	-	-			
Platoon blocked, %		740	-	12	4400	(=)	
Mov Cap-1 Maneuver	55	746	-	-	1106		
Mov Cap-2 Maneuver	55	-	-	-	-	-	
Stage 1	569	Jan	-	2	=	120	
Stage 2	192	-	-	-	-	-	
Approach	WB		NB		SB		
Approach					0.5		
HCM Control Delay, s	42.1		0		0.5		
HCM LOS	E						
Minor Lane/Major Mvm	nt	NBT	NBRI	NBLn1V	VBLn2	SBL	
Capacity (veh/h)			-	55	746	1106	
HCM Lane V/C Ratio		-		0.056			
HCM Control Delay (s)	4	1		74.3	9.8	8.5	
HCM Lane LOS	Y-12-		-	F	Α.	A	
HCM 95th %tile Q(veh	1	-	-	0.2	0	0.2	

Intersection							
Int Delay, s/veh	2.5						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	19	7	1		7	^	
Traffic Vol, veh/h	4	54	822	10	54	222	
Future Vol, veh/h	4	54	822	10	54	222	
Conflicting Peds, #/hr	14	25	0	0	0	0	
Sign Control	Stop	Stop	Free	Free	Free	Free	
RT Channelized	Ctop	None	-	None	-		
Storage Length	0	0	2	-	100	-	
Veh in Median Storage	777	_	0		100	0	
Grade, %	0	2	0	12	-	0	
Peak Hour Factor	68	68	68	68	68	68	
Heavy Vehicles, %	2	2	2	2	2	2	
Mymt Flow	8	106	1608	20	106	434	
WWIT Flow	0	100	1000	20	100	434	
Major/Minor	Minor1	1	Major1		Major2		
Conflicting Flow All	2278	839	0		1628	0	Ī
Stage 1	1618	-	593		-	-	
Stage 2	660	2	-	-	_	-	
Critical Hdwy	6.63	6.93	(4)		4.13	-	
Critical Hdwy Stg 1	5.83	-	-	-	-	_	
Critical Hdwy Stg 2	5.43			-			
Follow-up Hdwy		3.319	-	-	2.219	_	
Pot Cap-1 Maneuver	38	310	020		397		
Stage 1	148	-	_	4	-	-	
Stage 2	513	_	_		i i	-	
Platoon blocked, %	010					-	
Mov Cap-1 Maneuver	27	303			397	-	
	27	SAGREGUE		-	397	-	
Mov Cap-2 Maneuver		-	-	-	-	-	
Stage 1	108	•	-	-	-	-	
Stage 2	506		-	12	2	-	
Approach	WB		NB		SB		
HCM Control Delay, s	34.3		0		3.4		
HCM LOS	D		U		0.7		
TIOW LOO							
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1V	VBLn2	SBL	
Capacity (veh/h)		-		27	303	397	
HCM Lane V/C Ratio			-	0.29	0.349	0.266	
HCM Control Delay (s))	-	-	185.7	23.1	17.3	
HCM Lane LOS		-	-	F	C	C	
HCM 95th %tile Q(veh)	-		0.9	1.5	1.1	

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/F			44	1>	
Traffic Vol, veh/h	1	3	1	278	887	5
Future Vol, veh/h	1	3	1	278	887	5
Conflicting Peds, #/hr	0	0	61	0	0	61
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None	#	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	1		0	0	(-
Grade, %	0	-		0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	1	4	1	402	1282	7
Ve comp			Mark Control			
	Minor2		Major1		Major2	
Conflicting Flow All	1550	1347	1350	0	-	0
Stage 1	1347	-	1.00	17		17/
Stage 2	203	-	-		-	(7)
Critical Hdwy	6.63	6.23	4.13	=		100
Critical Hdwy Stg 1	5.43	-	-	-	1-	
Critical Hdwy Stg 2	5.83	-	(*)	-		
Follow-up Hdwy	3.519	3.319	2.219	-	-	1
Pot Cap-1 Maneuver	114	184	508	-	15	-
Stage 1	241	-	-	-	-	-
Stage 2	812	-	-	-		-
Platoon blocked, %				-	-	170
Mov Cap-1 Maneuver	101	173	478	-	1-	1-
Mov Cap-2 Maneuver	101	-	-	-		-
Stage 1	226	-	-	- 2		-
Stage 2	765	-	-	_	-	
Olago L	100					
	Water		ATTEN			
Approach	EB		NB		SB	
HCM Control Delay, s	30.5		0		0	
HCM LOS	D					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		478	-	10 to	-	-
HCM Lane V/C Ratio		0.003		0.039	_	-
HCM Control Delay (s)	1	12.6	0	30.5	1/4	-
HCM Lane LOS		B	A	D	12	-
HCM 95th %tile Q(veh	1	0	-	0.1	160	
How Jour Jour Q Ven)	U		0.1		

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			414	1>	
Traffic Vol, veh/h	3	0	0	876	222	0
Future Vol, veh/h	3	0	0	876	222	0
Conflicting Peds, #/hr		0	103	0	0	103
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Otop	None	-	None	-	None
Storage Length	0	None -				OF SHARM STEEL
Veh in Median Storag			*	0	-	-
Grade, %	0	-			0	
		- 04	- 04	0	0	- 04
Peak Hour Factor	81	81	81	81	81	81
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	0	0	1438	365	0
Major/Minor	Minor2		Major1	N	/lajor2	
Conflicting Flow All	1191	468	468	0	-	0
Stage 1	468	-	-	-	-	-
Stage 2	723		-	-	-	
Critical Hdwy	6.63	6.23	4.13		7.	
Critical Hdwy Stg 1	5.43	0.20	7, 10	-	-	
Critical Hdwy Stg 2	5.83			-	-	
		2 240	0.040		- 7	(4)
Follow-up Hdwy	3.519	3.319				(5.1
Pot Cap-1 Maneuver	193	594	1092		-	
Stage 1	629		-	-	S-10	•
Stage 2	442	(*)		-	-	
Platoon blocked, %				-	85	-
Mov Cap-1 Maneuver	157	536	985	-		-
Mov Cap-2 Maneuver	157		-			-
Stage 1	567	-	-	-		-
Stage 2	399	-		-	-	(=)
Assessed	ED		MD		00	
Approach	EB	-	NB		SB	
HCM Control Delay, s	28.7		0		0	
HCM LOS	D					
Minor Lane/Major Mvm	nt	NBL	NBTE	Bl n1	SBT	SBR
Capacity (veh/h)		985	- NDT L	157	-	
HCM Lane V/C Ratio		W SW PC-Starte		0.031		-
		-			-	-
HCM Control Delay (s) HCM Lane LOS		0	-	28.7	-	
		A	-	D	-	-
HCM 95th %tile Q(veh))	0	-	0.1	4	

2018 AM Existing - Interim Improvements - Pajarito RAB 33% growth

ntersection									
ntersection Delay, s/veh	7.1								
ntersection LOS	Α								
Approach		EB		WB			SB		
Entry Lanes		1		1			1		
Conflicting Circle Lanes		2		2			2		
Adj Approach Flow, veh/h		149		716			766		
Demand Flow Rate, veh/h		152		730			782		
/ehicles Circulating, veh/h		652		60			279		
/ehicles Exiting, veh/h		279		652			60		
Ped Vol Crossing Leg, #/h		0		0			0		
Ped Cap Adj		1.000		1.000			1.000		
Approach Delay, s/veh		2.1		5.5			9.7		
pproach LOS		Α		Α			Α		
ane	Left	Bypass	Left	Ву	pass	Left	Вур		
Designated Moves	L	R	T		R	L		R	
ssumed Moves	L	R	T		R	L		R	
T Channelized		Free		,	Yield		Y	ield	
ane Util	1.000		1.000			1.000			
ollow-Up Headway, s	2.535		2.535			2.535			
Critical Headway, s	4.328	92	4.328		451	4.328		130	
Entry Flow, veh/h	60	1938	279		1298	652		038	
Cap Entry Lane, veh/h	816	0.980	1349	0	0.980	1120		980	
Entry HV Adj Factor	0.983	90	0.980		442	0.980		127	
low Entry, veh/h	59	1900	274		1272	639		018	
cap Entry, veh/h	802	0.047	1323	0).347	1098	0.	125	
//C Ratio	0.074	0.0	0.207		6.1	0.582		4.7	
Control Delay, s/veh	5.2	Α	4.5		Α	10.6		Α	
OS	A	0	Α		2	В		0	
5th %tile Queue, veh	0		1			4			

Intersection										
Intersection Delay, s/veh	5.9									
Intersection LOS	Α									
Approach		EB			WB			SB		
Entry Lanes		1			1			1		
Conflicting Circle Lanes		2			2			2		
Adj Approach Flow, veh/h		370			864			422		
Demand Flow Rate, veh/h		378			882			430		
Vehicles Circulating, veh/h		369			130			244		
Vehicles Exiting, veh/h		244			369			130		
Ped Vol Crossing Leg, #/h		0			1			0		
Ped Cap Adj		1.000			1.000			1.000		
Approach Delay, s/veh		1.6			7.8			5.9		
Approach LOS		Α			Α			Α		
Lane	Left		Bypass	Left		Bypass	Left		Bypass	
Designated Moves	L		R	T		R	L		R	
Assumed Moves	L		R	T		R	L		R	
RT Channelized			Free			Yield			Yield	
Lane Util	1.000			1.000			1.000			
Follow-Up Headway, s	2.535			2.535			2.535			
Critical Headway, s	4.328		248	4.328		637	4.328		61	
Entry Flow, veh/h	130		1938	244		1209	369		1076	
Cap Entry Lane, veh/h	1038		0.980	1272		0.980	1154		0.980	
Entry HV Adj Factor	0.977		243	0.980		625	0.981		60	
Flow Entry, veh/h	127		1900	239		1185	362		1055	
Cap Entry, veh/h	1014		0.128	1246		0.528	1132		0.057	
V/C Ratio	0.125		0.0	0.192		9.0	0.320		3.9	
Control Delay, s/veh	4.7		Α	4.5		Α	6.3		Α	
LOS	Α		0	A		3	Α		0	
95th %tile Queue, veh	0			1			1			

2018 AM Existing - Interim Improvements - Realigned Pajarito 33% Growth

	1	*	1	Î	Ţ	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	'n	↑	^	7
Traffic Volume (veh/h)	37	57	173	279	461	92
Future Volume (veh/h)	37	57	173	279	461	92
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1100	1100	No	No	1100
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	59	90	274	442	639	127
Peak Hour Factor	0.84	0.84	0.84	0.84	0.96	0.96
Percent Heavy Veh, %	2	2	2	2	2	2
	144	128	578	1509	1265	1174
Cap, veh/h Arrive On Green		0.08	0.07	0.81	0.68	0.68
	0.08					
Sat Flow, veh/h	1781	1585	1781	1870	1870	1545
Grp Volume(v), veh/h	59	90	274	442	639	127
Grp Sat Flow(s), veh/h/ln	1781	1585	1781	1870	1870	1545
Q Serve(g_s), s	2.5	4.4	3.3	4.8	13.4	1.7
Cycle Q Clear(g_c), s	2.5	4.4	3.3	4.8	13.4	1.7
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	144	128	578	1509	1265	1174
V/C Ratio(X)	0.41	0.70	0.47	0.29	0.50	0.11
Avail Cap(c_a), veh/h	401	357	848	1509	1265	1174
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.81	0.81
Uniform Delay (d), s/veh	34.9	35.8	4.8	2.0	6.4	2.6
Incr Delay (d2), s/veh	1.9	6.8	0.6	0.5	1.2	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.0	7.3	1.2	1.6	7.7	1.2
Unsig. Movement Delay, s/veh	2.0	1.0	1,2	1.0	1.0	1.2
LnGrp Delay(d),s/veh	36.8	42.6	5.4	2.5	7.5	2.7
	D	42.0 D	3.4 A	2.5 A	7.5 A	A.7
LnGrp LOS		U	A			А
Approach Vol, veh/h	149			716	766	
Approach Delay, s/veh	40.3			3.6	6.7	
Approach LOS	D			Α	Α	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		69.0		11.0	10.4	58.6
Change Period (Y+Rc), s		4.5		4.5	4.5	4.5
Max Green Setting (Gmax), s		53.0		18.0	18.0	30.5
Max Q Clear Time (g_c+l1), s		6.8		6.4	5.3	15.4
Green Ext Time (p_c), s		3.0		0.4	0.6	4.3
		3.0		0.0	0.0	4.5
Intersection Summary						
HCM 6th Ctrl Delay			8.4			
HCM 6th LOS			Α			

2018 PM Existing - Interim Improvements - Realigned Pajarito - 33% Growth

	•	*	1	1	1	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	7	1	^	7
Traffic Volume (veh/h)	89	170	167	437	234	39
Future Volume (veh/h)	89	170	167	437	234	39
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No	1.00	1.00	No	No	1.00
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	127	243	239	625	362	60
Peak Hour Factor	0.93	0.93	0.93	0.93	0.86	0.86
English Address Color On Color (September 2017)				2		
Percent Heavy Veh, %	2	217	742		1160	1272
Cap, veh/h	356	317	742	1160		1273
Arrive On Green	0.20	0.20	0.62	0.62	1.00	1.00
Sat Flow, veh/h	1781	1585	964	1870	1870	1542
Grp Volume(v), veh/h	127	243	239	625	362	60
Grp Sat Flow(s),veh/h/ln	1781	1585	964	1870	1870	1542
Q Serve(g_s), s	3.1	7.2	6.3	9.5	0.0	0.0
Cycle Q Clear(g_c), s	3.1	7.2	6.3	9.5	0.0	0.0
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	356	317	742	1160	1160	1273
V/C Ratio(X)	0.36	0.77	0.32	0.54	0.31	0.05
Avail Cap(c_a), veh/h	641	571	742	1160	1160	1273
HCM Platoon Ratio	1.00	1.00	1.00	1.00	2.00	2.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.99	0.99
Uniform Delay (d), s/veh	17.2	18.9	4.8	5.4	0.0	0.0
Incr Delay (d2), s/veh	0.6	3.9	1.1	1.8	0.7	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.1	4.8	1.7	4.7	0.4	0.0
Unsig. Movement Delay, s/veh	2.1	1.0	1.1	7.1	0.4	0.0
LnGrp Delay(d),s/veh	17.8	22.8	5.9	7.2	0.7	0.1
LnGrp LOS	B	C C	14.64.00	7.2 A	Α	Α
		C	A			А
Approach Vol, veh/h	370			864	422	
Approach Delay, s/veh	21.1			6.9	0.6	
Approach LOS	C			Α	Α	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		35.5		14.5		35.5
Change Period (Y+Rc), s		4.5		4.5		4.5
Max Green Setting (Gmax), s		23.0		18.0		23.0
Max Q Clear Time (g_c+l1), s		11.5		9.2		2.0
Green Ext Time (p_c), s		4.1		0.8	-	2.4
				3,3		-0.1
Intersection Summary			0.4			
HCM 6th Ctrl Delay			8.4			
HCM 6th LOS			A			

Intersection						-10							
Int Delay, s/veh	1.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	19	ß		M	ß		-	1		7	B		
Traffic Vol, veh/h	14	1	4	2	1	2	-	The second second	12	53	890	118	
Future Vol, veh/h	14	1	4	2	1	2	11		12	53	890	118	
Conflicting Peds, #/hr	1	0	0	0	0	0	29		0	0	0	29	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free		Free	Free	Free	Free	
RT Channelized			None			None		The same of the same of	None			None	
Storage Length	0	-	-	0		-	150	_	-	250	-	-	
Veh in Median Storage		0		-	0	-		720	-		0	- 72	
Grade, %	-	0		-	0			^		(=):	0		
Peak Hour Factor	90	92	90	92	92	92	97	97	92	92	97	97	
Heavy Vehicles, %	2	2	2	2	2	2	2		2	2	2	2	
Mymt Flow	21	1	6	3	1	2	15		17	77	1220	162	
minut ion	LI		0	0		2	10	044	17		1220	102	
Major/Minor 1	Minor2			Minor1	0.31	7	Major1			Major2		7	
Conflicting Flow All	1688	1875	1330	1842	1948	182		0	0	361	0	0	
Stage 1	1484	1484	-	383	383						3		
Stage 2	204	391	-	1459	1565	-	_	-	-		-		
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13		-	4.13	-	-	
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-		-	-	-	
Critical Hdwy Stg 2	6.53	5.53		6.13	5.53						-		
Follow-up Hdwy	3.519	4.019	3.319	3.519	4.019	3.319	2.219	-	_	2.219	-		
Pot Cap-1 Maneuver	67	71	188	52	64	830	481			1196			
Stage 1	155	188	-	612	611	-	101	-		1100	-		
Stage 2	779	606	-	160	171	-		-					
Platoon blocked, %	110	000		100	17.1				- 3		-	-	
Mov Cap-1 Maneuver	59	63	183	46	56	829	468			1196			
Mov Cap-1 Maneuver	59	63	100	46	56	023	400		-	1190	10	-	
Stage 1	146	171		592	591				-	-	× =	•	
	750	587	-	144	156	- F	-		7		199		
Stage 2	750	307	-	144	100						(.=.		
Approach	EB			WB			NB	West	-	SB			
HCM Control Delay, s	79.6			58.3			0.5			0.4			
HCM LOS	F			F			0,0			VIII			
TOM EOO													
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn1 I	EBLn2V	VBLn1\	WBLn2	SBL	SBT	SBR		
Capacity (veh/h)		468		- 2	59	133	46	127	1196	15			
HCM Lane V/C Ratio		0.032	2	-		0.055			0.064				
HCM Control Delay (s)		12.9	10/2	741	95.9	33.6	88.4	34.2	8.2	-	-		
HCM Lane LOS		В		72	F	D	F	D	A	1/2			
		0.1			1.3	0.2	0.2	0.1	0.2	1/25			

Intersection												
Int Delay, s/veh	4.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	B		4	B		7	1		7	B	
Traffic Vol, veh/h	51	1	8	4	1	54	3		10	53	226	19
Future Vol, veh/h	51	1	8	4	1	54	3	771	10	53	226	19
Conflicting Peds, #/hr	1	0	4	0	0	0	15	0	0	0	0	15
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized			None	-		None			None		-	None
Storage Length	0	-	-	0	-	-	150	-	-	150	-	
Veh in Median Storage	,# -	0	11-	-	0		-	0	(e)		0	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	92	85	92	92	92	97	97	92	92	97	97
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	80	1	13	6	1	78	4	1057	14	77	310	26
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	1030	1571	342	1560	1577	537	351	0		1071	0	0
Stage 1	492	492		1072	1072	-				-	-	-
Stage 2	538	1079		488	505	-	-		-	-	-	-
Critical Hdwy	7.33	6.53	6.23	7.33	6.53	6.93	4.13		(*)	4.13		
Critical Hdwy Stg 1	6.13	5.53	-	6.53	5.53	-	-	-			-	-
Critical Hdwy Stg 2	6.53	5.53		6.13	5.53			-				
Follow-up Hdwy	3.519	4.019	3.319		4.019	3.319	2.219	-	-	2.219	-	
Pot Cap-1 Maneuver	199	110	700	83	109	489	1206		(m)	649	-	7-
Stage 1	558	547	-	236	296	-	-			-		
Stage 2	496	294		560	539	196				-		1.0
Platoon blocked, %									-		-	
Mov Cap-1 Maneuver	148	95	687	73	94	489	1189	- 2		649	200	-
Mov Cap-2 Maneuver	148	95	-	73	94	-	-	-		-	-	
Stage 1	548	475	-	235	295						100	-
Stage 2	413	293	-	481	468	-	-	-		-	-	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	48.6			17.6			0			2.1		
HCM LOS	E			C						-11		
Minor Lane/Major Mvm	t	NBL	NBT	NBR	EBLn11	EBL n2V	VBL n 1\	NBI n2	SBL	SBT	SBR	
Capacity (veh/h)	-	1189	INDI	-	148	418	73	454	649	-	-	
HCM Lane V/C Ratio		0.003	-		0.539					-		
HCM Control Delay (s)		0.003	-		54.7	13.9	58.5	14.6	11.3	,	-	
HCM Lane LOS		A	-	2	54.7 F	В	50.5 F	14.0 B	В		-	
HCM 95th %tile Q(veh)		0	-		2.7	0.1	0.3	0.6	0.4	-	100	
How som whe diven		U		- 5	2.1	0.1	0.3	0.0	0.4	-		4

APPENDIX E 2038 IMPROVED INTERSECTION CAPACITY ANALYSIS (50% TOTAL GROWTH / 2% ANNUAL GROWTH)

Appendix E Listing – 2038 Improved Intersection Capacity Analysis – 50% Total Growth

Diamond & Pajarito Signalized AM

Diamond & Sigma AM

Diamond & Eniwetok AM

Diamond & Embudo AM

Diamond & West Jemez AM

Diamond & Pajarito Signalized PM

Diamond & Sigma PM

Diamond & Eniwetok PM

Diamond & Embudo PM

Diamond & West Jemez PM

Diamond & Pajarito Roundabout AM

Diamond & Pajarito Roundabout PM

Diamond & South Drive AM

Diamond & Grable AM

Diamond & Coronado AM

Diamond & South Drive PM

Diamond & Grable PM

Diamond & Coronado PM

	۶	→	+	4	/	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	^	7	7	7	
Traffic Volume (veh/h)	37	57	173	279	461	92	
Future Volume (veh/h)	37	57	173	279	461	92	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	62	95	268	0	713	142	
Peak Hour Factor	0.90	0.90	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	106	141	407		1215	1082	
Arrive On Green	0.22	0.22	0.22	0.00	0.68	0.68	
Sat Flow, veh/h	232	646	1870	1585	1781	1585	
Grp Volume(v), veh/h	157	0	268	0	713	142	
Grp Sat Flow(s), veh/h/ln	878	0	1870	1585	1781	1585	
Q Serve(g_s), s	5.5	0.0	11.8	0.0	19.1	2.8	
Cycle Q Clear(g_c), s	17.3	0.0	11.8	0.0	19.1	2.8	
Prop In Lane	0.39	0.0	11.0	1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	247	0	407	1.00	1215	1082	
V/C Ratio(X)	0.64	0.00	0.66		0.59	0.13	
Avail Cap(c_a), veh/h	327	0.00	509		1215	1082	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.81	0.81	
Uniform Delay (d), s/veh	34.8	0.0	32.2	0.0	7.6	5.0	
Incr Delay (d2), s/veh	2.7	0.0	2.2	0.0	1.7	0.2	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	6.2	0.0	9.2	0.0	10.4	1.5	
Unsig. Movement Delay, s/veh		0.0	9.2	0.0	10.4	1.0	
LnGrp Delay(d),s/veh	37.5	0.0	34.3	0.0	9.3	5.2	
LnGrp LOS	37.5 D	0.0 A	34.3 C	0.0	9.5 A	3.2 A	
Approach Vol, veh/h	D	157	268	А	855		
• •				А			
Approach Delay, s/veh		37.5	34.3		8.6		
Approach LOS		D	С		Α		
Timer - Assigned Phs				4		6	
Phs Duration (G+Y+Rc), s				24.1		65.9	
Change Period (Y+Rc), s				4.5		4.5	
Max Green Setting (Gmax), s				24.5		56.5	
Max Q Clear Time (g_c+l1), s				19.3		21.1	
Green Ext Time (p_c), s				0.3		3.3	
.,				3.0			
Intersection Summary			17.5				
HCM 6th Ctrl Delay			17.5				
HCM 6th LOS			В				
Notes							

	۶	→	*	•	+	4	1	†	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4	7	ሻ	^	7	7	₽	
Traffic Volume (veh/h)	5	1	6	17	0	15	6	269	37	51	515	54
Future Volume (veh/h)	5	1	6	17	0	15	6	269	37	51	515	54
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.99		0.98	0.99		0.97	1.00		0.97	0.99		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1648	1648	1648	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	8	2	10	28	0	25	9	416	57	79	796	84
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	17	17	17	2	2	2	2	2	2	2	2	2
Cap, veh/h	73	9	220	82	0	249	431	2089	900	721	1122	118
Arrive On Green	0.16	0.16	0.16	0.16	0.00	0.16	0.01	0.59	0.59	0.20	1.00	1.00
Sat Flow, veh/h	6	58	1362	10	0	1541	1781	3554	1532	1781	1656	175
Grp Volume(v), veh/h	10	0	10	28	0	25	9	416	57	79	0	880
Grp Sat Flow(s),veh/h/ln	64	0	1362	10	0	1541	1781	1777	1532	1781	0	1831
Q Serve(g_s), s	0.1	0.0	0.6	0.1	0.0	1.2	0.2	4.9	1.4	0.0	0.0	0.0
Cycle Q Clear(g_c), s	14.5	0.0	0.6	14.5	0.0	1.2	0.2	4.9	1.4	0.0	0.0	0.0
Prop In Lane	0.80		1.00	1.00		1.00	1.00		1.00	1.00		0.10
Lane Grp Cap(c), veh/h	82	0	220	82	0	249	431	2089	900	721	0	1241
V/C Ratio(X)	0.12	0.00	0.05	0.34	0.00	0.10	0.02	0.20	0.06	0.11	0.00	0.71
Avail Cap(c_a), veh/h	133	0	274	137	0	310	512	2089	900	721	0	1241
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	0.71	0.71	0.71	0.72	0.00	0.72
Uniform Delay (d), s/veh	32.9	0.0	31.9	45.0	0.0	32.2	8.8	8.7	7.9	6.7	0.0	0.0
Incr Delay (d2), s/veh	0.7	0.0	0.1	2.5	0.0	0.2	0.0	0.2	0.1	0.0	0.0	2.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.4	0.0	0.3	1.2	0.0	8.0	0.1	3.2	8.0	1.0	0.0	1.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	33.6	0.0	32.0	47.5	0.0	32.3	8.8	8.8	8.0	6.8	0.0	2.5
LnGrp LOS	С	Α	С	D	Α	С	Α	Α	Α	Α	Α	A
Approach Vol, veh/h		20			53			482			959	
Approach Delay, s/veh		32.8			40.3			8.7			2.9	
Approach LOS		С			D			Α			А	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	13.5	57.4		19.1	5.5	65.4		19.1				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.5	52.9		18.1	5.1	53.3		18.1				
Max Q Clear Time (g_c+l1), s	2.0	6.9		16.5	2.2	2.0		16.5				
Green Ext Time (p_c), s	0.0	3.3		0.0	0.0	9.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			6.4									
HCM 6th LOS			Α									

	۶	→	*	•	←	4	4	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		र्स	7	ሻ	↑	7	ሻ	†	7
Traffic Volume (veh/h)	3	1	7	51	1	57	21	218	35	30	585	219
Future Volume (veh/h)	3	1	7	51	1	57	21	218	35	30	585	219
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.98		0.92	0.96		1.00	1.00		1.00	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	5	2	12	85	2	0	32	337	0	46	905	339
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	187	64	159	218	4		557	1314		672	1112	930
Arrive On Green	0.11	0.11	0.11	0.11	0.11	0.00	0.29	1.00	0.00	0.08	1.00	1.00
Sat Flow, veh/h	1086	586	1451	1275	39	1585	1781	1870	1585	1781	1870	1565
Grp Volume(v), veh/h	7	0	12	87	0	0	32	337	0	46	905	339
Grp Sat Flow(s),veh/h/ln	1672	0	1451	1314	0	1585	1781	1870	1585	1781	1870	1565
Q Serve(g_s), s	0.0	0.0	0.7	5.5	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Cycle Q Clear(g_c), s	0.3	0.0	0.7	5.8	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
Prop In Lane	0.71		1.00	0.98		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	251	0	159	223	0		557	1314		672	1112	930
V/C Ratio(X)	0.03	0.00	0.08	0.39	0.00		0.06	0.26		0.07	0.81	0.36
Avail Cap(c_a), veh/h	387	0	290	345	0		557	1314		705	1112	930
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	0.99	0.99	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	35.8	0.0	36.0	38.4	0.0	0.0	5.4	0.0	0.0	8.4	0.0	0.0
Incr Delay (d2), s/veh	0.0	0.0	0.2	1.1	0.0	0.0	0.0	0.5	0.0	0.0	6.6	1.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.3	0.0	0.4	3.4	0.0	0.0	0.3	0.3	0.0	0.7	3.7	0.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	35.9	0.0	36.2	39.5	0.0	0.0	5.5	0.5	0.0	8.4	6.6	1.1
LnGrp LOS	D	Α	D	D	Α		Α	Α		Α	Α	<u>A</u>
Approach Vol, veh/h		19			87	Α		369	Α		1290	
Approach Delay, s/veh		36.1			39.5			0.9			5.2	
Approach LOS		D			D			Α			А	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.9	67.8		14.3	17.7	58.0		14.3				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.1	53.4		18.0	5.0	53.5		18.0				
Max Q Clear Time (g_c+l1), s	3.0	2.0		2.7	2.0	2.0		7.8				
Green Ext Time (p_c), s	0.0	2.3		0.0	0.0	11.3		0.2				
Intersection Summary												
HCM 6th Ctrl Delay			6.3									
HCM 6th LOS			A									

	•	4	†	<i>></i>	/	 	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ሻ	7	↑ ↑		ሻ	^	
Traffic Volume (veh/h)	22	17	184	20	54	933	
Future Volume (veh/h)	22	17	184	20	54	933	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.97	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	39	30	285	31	84	1443	
Peak Hour Factor	0.85	0.85	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	81	72	1809	195	1086	3036	
Arrive On Green	0.05	0.05	1.00	1.00	0.24	0.85	
Sat Flow, veh/h	1781	1585	3317	347	1781	3647	
Grp Volume(v), veh/h	39	30	156	160	84	1443	
Grp Sat Flow(s),veh/h/ln	1781	1585	1777	1794	1781	1777	
Q Serve(g_s), s	1.9	1.7	0.0	0.0	0.0	9.0	
Cycle Q Clear(g_c), s	1.9	1.7	0.0	0.0	0.0	9.0	
Prop In Lane	1.00	1.00		0.19	1.00		
Lane Grp Cap(c), veh/h	81	72	997	1007	1086	3036	
V/C Ratio(X)	0.48	0.41	0.16	0.16	0.08	0.48	
Avail Cap(c_a), veh/h	386	343	997	1007	1086	3036	
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.81	0.81	
Uniform Delay (d), s/veh	41.9	41.8	0.0	0.0	2.3	1.6	
Incr Delay (d2), s/veh	4.3	3.8	0.3	0.3	0.0	0.4	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	1.7	1.3	0.2	0.2	0.4	2.0	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	46.2	45.5	0.3	0.3	2.3	2.0	
LnGrp LOS	D	D	Α	Α	Α	Α	
Approach Vol, veh/h	69		316			1527	
Approach Delay, s/veh	45.9		0.3			2.1	
Approach LOS	D		Α			Α	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	26.4	55.0				81.4	8.6
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	6.5	50.5				61.5	19.5
Max Q Clear Time (g_c+l1), s	2.0	2.0				11.0	3.9
Green Ext Time (p_c), s	0.1	2.0				17.0	0.1
Intersection Summary							
HCM 6th Ctrl Delay			3.4				
HCM 6th LOS			Α				

	→	*	1	•	4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	^	7	ት ትት	^	ሻሻ	77	
Traffic Volume (veh/h)	115	157	895	1059	13	176	
Future Volume (veh/h)	115	157	895	1059	13	176	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)		0.94	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	178	243	1384	1638	20	272	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	758	767	1792	1973	1192	1957	
Arrive On Green	0.15	0.15	0.36	0.56	0.34	0.34	
Sat Flow, veh/h	5274	1483	5023	3647	3456	2790	
Grp Volume(v), veh/h	178	243	1384	1638	20	272	
Grp Sat Flow(s), veh/h/ln	1702	1483	1674	1777	1728	1395	
Q Serve(g_s), s	2.8	8.9	22.0	34.2	0.3	0.0	
Cycle Q Clear(g_c), s	2.8	8.9	22.0	34.2	0.3	0.0	
Prop In Lane	2.0	1.00	1.00	Q 1.L	1.00	1.00	
Lane Grp Cap(c), veh/h	758	767	1792	1973	1192	1957	
V/C Ratio(X)	0.23	0.32	0.77	0.83	0.02	0.14	
Avail Cap(c_a), veh/h	1050	851	2037	2349	1192	1957	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	
Uniform Delay (d), s/veh	33.8	13.8	25.7	16.5	19.4	4.4	
Incr Delay (d2), s/veh	0.2	0.2	1.7	2.3	0.0	0.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	2.0	9.1	13.3	18.7	0.3	1.2	
Unsig. Movement Delay, s/veh		0.1	10.0	10.1	3.0	1.4	
LnGrp Delay(d),s/veh	34.0	14.1	27.4	18.8	19.5	4.6	
LnGrp LOS	C	В	C	В	В	4.0 A	
Approach Vol, veh/h	421			3022	292		
Approach Delay, s/veh	22.5			22.7	5.6		
Approach LOS	22.5 C			ZZ.1	3.0 A		
Apploacii LOO	C			U	A		
Timer - Assigned Phs		2	3	4			
Phs Duration (G+Y+Rc), s		35.5	36.6	17.9			
Change Period (Y+Rc), s		4.5	4.5	4.5			
Max Green Setting (Gmax), s		21.5	36.5	18.5			
Max Q Clear Time (g_c+l1), s		2.3	24.0	10.9			
Green Ext Time (p_c), s		1.1	4.9	1.2			
Intersection Summary							
HCM 6th Ctrl Delay			21.4				
HCM 6th LOS			C				
			J				

	۶	→	←	*	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	†	7	ሻ	7	
Traffic Volume (veh/h)	89	170	167	437	234	39	
Future Volume (veh/h)	89	170	167	437	234	39	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	1.00	No	No	1.00	No	1.00	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	148	283	258	0	362	60	
Peak Hour Factor	0.90	0.90	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	200	338	709	_	928	825	
Arrive On Green	0.38	0.38	0.38	0.00	0.52	0.52	
Sat Flow, veh/h	386	892	1870	1585	1781	1585	
Grp Volume(v), veh/h	431	0	258	0	362	60	
Grp Sat Flow(s), veh/h/ln	1277	0	1870	1585	1781	1585	
Q Serve(g_s), s	20.8	0.0	8.9	0.0	11.0	1.7	
Cycle Q Clear(g_c), s	29.7	0.0	8.9	0.0	11.0	1.7	
Prop In Lane	0.34	0.0	0.5	1.00	1.00	1.00	
Lane Grp Cap(c), veh/h	538	0	709	1.00	928	825	
V/C Ratio(X)	0.80	0.00	0.36		0.39	0.07	
Avail Cap(c_a), veh/h	747	0.00	966		928	825	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	0.00	0.99	0.99	
Uniform Delay (d), s/veh	28.4	0.0	20.1	0.0	13.0	10.7	
Incr Delay (d2), s/veh	4.3	0.0	0.3	0.0	0.3	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	14.0	0.0	6.8	0.0	7.5	1.0	
Jnsig. Movement Delay, s/vel		3.0	3.0	0.0	7.0	1.0	
LnGrp Delay(d),s/veh	32.7	0.0	20.4	0.0	13.2	10.8	
LnGrp LOS	C	Α	C	3.0	В	В	
Approach Vol, veh/h		431	258	А	422		
Approach Delay, s/veh		32.7	20.4	A	12.9		
Approach LOS		02.7 C	20.4 C		12.3 B		
Timer - Assigned Phs				4		6	8
Phs Duration (G+Y+Rc), s				38.6		51.4	38.6
Change Period (Y+Rc), s				4.5		4.5	4.5
Max Green Setting (Gmax), s				46.5		34.5	46.5
Max Q Clear Time (g_c+I1), s				31.7		13.0	10.9
Green Ext Time (p_c), s				2.4		1.3	1.5
Intersection Summary							
HCM 6th Ctrl Delay			22.3				
HCM 6th LOS			С				
Notes							

2038 PM - 2% Annual Growth 50% Total - Dual Mitigated

	۶	→	*	•	←	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4	7	7	^	7	7	₽	
Traffic Volume (veh/h)	35	0	21	21	0	46	3	516	8	7	208	6
Future Volume (veh/h)	35	0	21	21	0	46	3	516	8	7	208	6
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.97	1.00		0.98
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1856	1856	1856	1870	1870	1870
Adj Flow Rate, veh/h	60	0	36	36	0	79	5	798	12	11	322	9
Peak Hour Factor	0.88	0.88	0.88	0.87	0.87	0.87	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	2	2	2	2	2	3	3	3	2	2	2
Cap, veh/h	80	0	391	80	0	393	570	1822	791	466	1074	30
Arrive On Green	0.25	0.00	0.25	0.25	0.00	0.25	0.01	0.52	0.52	0.17	1.00	1.00
Sat Flow, veh/h	0	0	1563	0	0	1572	1767	3526	1530	1781	1809	51
Grp Volume(v), veh/h	60	0	36	36	0	79	5	798	12	11	0	331
Grp Sat Flow(s),veh/h/ln	0	0	1563	0	0	1572	1767	1763	1530	1781	0	1860
Q Serve(g_s), s	0.0	0.0	1.6	0.0	0.0	3.6	0.1	12.7	0.3	0.0	0.0	0.0
Cycle Q Clear(g_c), s	22.5	0.0	1.6	22.5	0.0	3.6	0.1	12.7	0.3	0.0	0.0	0.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.03
Lane Grp Cap(c), veh/h	80	0	391	80	0	393	570	1822	791	466	0	1104
V/C Ratio(X)	0.75	0.00	0.09	0.45	0.00	0.20	0.01	0.44	0.02	0.02	0.00	0.30
Avail Cap(c_a), veh/h	80	0	391	80	0	393	706	1822	791	466	0	1104
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	0.87	0.87	0.87	0.98	0.00	0.98
Uniform Delay (d), s/veh	45.0	0.0	25.9	45.0	0.0	26.7	11.8	13.6	10.6	13.2	0.0	0.0
Incr Delay (d2), s/veh	32.0	0.0	0.1	3.9	0.0	0.2	0.0	0.7	0.0	0.0	0.0	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	3.7	0.0	1.1	1.6	0.0	2.4	0.1	8.3	0.2	0.2	0.0	0.4
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	77.0	0.0	26.0	48.9	0.0	26.9	11.8	14.3	10.6	13.2	0.0	0.7
LnGrp LOS	Е	Α	С	D	Α	С	В	В	В	В	Α	<u>A</u>
Approach Vol, veh/h		96			115			815			342	
Approach Delay, s/veh		57.9			33.8			14.2			1.1	
Approach LOS		Е			С			В			А	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	12.0	51.0		27.0	5.1	57.9		27.0				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	7.5	46.5		22.5	7.5	46.5		22.5				
Max Q Clear Time (g_c+l1), s	2.0	14.7		24.5	2.1	2.0		24.5				
Green Ext Time (p_c), s	0.0	6.5		0.0	0.0	2.2		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			15.6									
HCM 6th LOS			В									

	۶	→	*	•	←	*	4	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	7		र्स	7	ሻ	•	7	ሻ	•	7
Traffic Volume (veh/h)	39	1	12	42	0	195	11	594	21	24	236	4
Future Volume (veh/h)	39	1	12	42	0	195	11	594	21	24	236	4
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	0.97		0.94	0.95		1.00	1.00		1.00	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1856	1856	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	62	2	19	67	0	0	17	919	0	37	365	6
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	3	3	3	3	3	3	2	2	2	2	2	2
Cap, veh/h	288	8	202	216	0		755	1112		652	1112	916
Arrive On Green	0.14	0.14	0.14	0.14	0.00	0.00	0.24	1.00	0.00	0.08	0.40	0.40
Sat Flow, veh/h	1527	59	1475	990	0	1572	1781	1870	1585	1781	1870	1540
Grp Volume(v), veh/h	64	0	19	67	0	0	17	919	0	37	365	6
Grp Sat Flow(s), veh/h/ln	1586	0	1475	990	0	1572	1781	1870	1585	1781	1870	1540
Q Serve(g_s), s	0.0	0.0	1.0	4.4	0.0	0.0	0.0	0.0	0.0	0.0	12.2	0.2
Cycle Q Clear(g_c), s	3.0	0.0	1.0	7.3	0.0	0.0	0.0	0.0	0.0	0.0	12.2	0.2
Prop In Lane	0.97	0.0	1.00	1.00	0.0	1.00	1.00	0.0	1.00	1.00	12.2	1.00
Lane Grp Cap(c), veh/h	296	0	202	216	0	1.00	755	1112	1.00	652	1112	916
V/C Ratio(X)	0.22	0.00	0.09	0.31	0.00		0.02	0.83		0.06	0.33	0.01
. ,	383	0.00	295	298	0.00		755	1112		652	1112	916
Avail Cap(c_a), veh/h						1.00			2.00			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00	0.67	0.67	0.67
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	0.00	0.97	0.97	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	34.8	0.0	33.9	38.1	0.0	0.0	7.0	0.0	0.0	4.1	14.6	11.0
Incr Delay (d2), s/veh	0.4	0.0	0.2	0.8	0.0	0.0	0.0	6.9	0.0	0.0	0.8	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	2.3	0.0	0.7	2.6	0.0	0.0	0.2	3.8	0.0	0.3	9.7	0.1
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	35.2	0.0	34.1	38.9	0.0	0.0	7.1	6.9	0.0	4.2	15.4	11.1
LnGrp LOS	D	Α	С	D	Α		Α	Α		Α	В	B
Approach Vol, veh/h		83			67	Α		936	Α		408	
Approach Delay, s/veh		34.9			38.9			6.9			14.3	
Approach LOS		С			D			Α			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	15.2	58.0		16.8	15.2	58.0		16.8				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	5.0	53.5		18.0	5.0	53.5		18.0				
Max Q Clear Time (g_c+l1), s	2.0	2.0		5.0	2.0	14.2		9.3				
Green Ext Time (p_c), s	0.0	9.6		0.2	0.0	2.5		0.1				
Intersection Summary												
•			11.0									
HCM 6th Ctrl Delay			11.9									
HCM 6th LOS			В									
Notes												

	•	4	†	<i>></i>	/	 	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	ች	7	↑ ↑		ሻ	^	
Traffic Volume (veh/h)	23	101	891	11	18	222	
Future Volume (veh/h)	23	101	891	11	18	222	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00		0.97	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No		No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	
Adj Flow Rate, veh/h	41	178	1378	17	28	343	
Peak Hour Factor	0.85	0.85	0.97	0.97	0.97	0.97	
Percent Heavy Veh, %	2	2	2	2	2	2	
Cap, veh/h	241	215	2056	25	546	2717	
Arrive On Green	0.14	0.14	1.00	1.00	0.14	0.76	
Sat Flow, veh/h	1781	1585	3687	44	1781	3647	
Grp Volume(v), veh/h	41	178	681	714	28	343	
Grp Sat Flow(s),veh/h/ln	1781	1585	1777	1861	1781	1777	
Q Serve(g_s), s	1.8	9.8	0.0	0.0	0.0	2.3	
Cycle Q Clear(g_c), s	1.8	9.8	0.0	0.0	0.0	2.3	
Prop In Lane	1.00	1.00		0.02	1.00		
Lane Grp Cap(c), veh/h	241	215	1017	1065	546	2717	
V/C Ratio(X)	0.17	0.83	0.67	0.67	0.05	0.13	
Avail Cap(c_a), veh/h	386	343	1017	1065	546	2717	
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.99	0.99	
Uniform Delay (d), s/veh	34.4	37.9	0.0	0.0	4.6	2.8	
Incr Delay (d2), s/veh	0.3	8.9	3.5	3.4	0.0	0.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(95%),veh/ln	1.5	7.7	1.8	1.8	0.3	1.1	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	34.8	46.8	3.5	3.4	4.6	2.9	
LnGrp LOS	С	D	Α	Α	Α	Α	
Approach Vol, veh/h	219		1395			371	
Approach Delay, s/veh	44.6		3.4			3.0	
Approach LOS	D		Α			А	
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	17.3	56.0				73.3	16.7
Change Period (Y+Rc), s	4.5	4.5				4.5	4.5
Max Green Setting (Gmax), s	5.5	51.5				61.5	19.5
Max Q Clear Time (g_c+l1), s	2.0	2.0				4.3	11.8
Green Ext Time (p_c), s	0.0	14.4				2.5	0.4
Intersection Summary							
HCM 6th Ctrl Delay			7.9				
HCM 6th LOS			A				
			, ,				

	→	\rightarrow	•	←	4	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^ ^	7	ሻሻሻ	^	ሻሻ	77
Traffic Volume (veh/h)	1000	125	152	100	26	877
Future Volume (veh/h)	1000	125	152	100	26	877
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	1546	193	235	155	40	1356
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Percent Heavy Veh, %	2	2	2	2	2	2
Cap, veh/h	1664	1224	382	1607	1548	1462
Arrive On Green	0.33	0.33	0.08	0.45	0.45	0.45
Sat Flow, veh/h	5274	1578	5023	3647	3456	2790
Grp Volume(v), veh/h	1546	193	235	155	40	1356
Grp Sat Flow(s),veh/h/ln	1702	1578	1674	1777	1728	1395
Q Serve(g_s), s	26.3	2.8	4.1	2.2	0.6	33.7
Cycle Q Clear(g_c), s	26.3	2.8	4.1	2.2	0.6	33.7
Prop In Lane		1.00	1.00		1.00	1.00
Lane Grp Cap(c), veh/h	1664	1224	382	1607	1548	1462
V/C Ratio(X)	0.93	0.16	0.61	0.10	0.03	0.93
Avail Cap(c_a), veh/h	1674	1227	1535	2428	1548	1462
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.82	0.82
Uniform Delay (d), s/veh	29.3	2.6	40.3	14.1	13.9	19.8
Incr Delay (d2), s/veh	9.6	0.1	1.6	0.0	0.0	9.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	17.2	5.5	3.1	1.6	0.4	15.8
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	38.9	2.7	41.9	14.2	13.9	29.7
LnGrp LOS	D	Α	D	В	В	С
Approach Vol, veh/h	1739			390	1396	
Approach Delay, s/veh	34.9			30.9	29.3	
Approach LOS	С			С	С	
		^	^			
Timer - Assigned Phs		2	3	4		
Phs Duration (G+Y+Rc), s		44.8	11.4	33.8		
Change Period (Y+Rc), s		4.5	4.5	4.5		
Max Green Setting (Gmax), s		19.5	27.5	29.5		
Max Q Clear Time (g_c+l1), s		35.7	6.1	28.3		
Green Ext Time (p_c), s		0.0	0.8	1.0		
Intersection Summary						
HCM 6th Ctrl Delay			32.2			
HCM 6th LOS			C			
HOW OUT LOO			O			

Intersection						Į
Intersection Delay, s/veh	8.7					
Intersection LOS	А					
Approach	EB	WB			SB	
	1				2	
Entry Lanes	1	1			1	
Conflicting Circle Lanes	157	•				
Adj Approach Flow, veh/h	157	699			855	
Demand Flow Rate, veh/h	160	713			872	
Vehicles Circulating, veh/h	727	63			273	
Vehicles Exiting, veh/h	418	824			63	
Ped Vol Crossing Leg, #/h	2	0			0	
Ped Cap Adj	1.000	1.000			1.000	
Approach Delay, s/veh	8.6	5.5			11.3	
Approach LOS	Α	A			В	
Lane	Left	Left	Bypass	Left	Right	
Designated Moves	LT	T	R	L	TR	
				L		
Designated Moves	LT	Т	R	L	TR	
Designated Moves Assumed Moves	LT	Т	R R	L L 0.834	TR	
Designated Moves Assumed Moves RT Channelized	LT LT	T T	R R	L L	TR TR	
Designated Moves Assumed Moves RT Channelized Lane Util	LT LT 1.000	T T 1.000	R R	L L 0.834	TR TR 0.166	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	LT LT 1.000 2.609	T T 1.000 2.609	R R Yield	L L 0.834 2.535	TR TR 0.166 2.535	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s	LT LT 1.000 2.609 4.976	T T 1.000 2.609 4.976	R R Yield	0.834 2.535 4.544	TR TR 0.166 2.535 4.544	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	LT LT 1.000 2.609 4.976 160	T T 1.000 2.609 4.976 273	R R Yield 440 1294	0.834 2.535 4.544 727	TR TR 0.166 2.535 4.544 145	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	LT LT 1.000 2.609 4.976 160 657	T T 1.000 2.609 4.976 273 1294	R R Yield 440 1294 0.980	0.834 2.535 4.544 727 1108	TR TR 0.166 2.535 4.544 145 1108	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor	LT LT 1.000 2.609 4.976 160 657 0.982	T T 1.000 2.609 4.976 273 1294 0.980	R R Yield 440 1294 0.980 431	L L 0.834 2.535 4.544 727 1108 0.981	TR TR 0.166 2.535 4.544 145 1108 0.979	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	LT LT 1.000 2.609 4.976 160 657 0.982 157	T T 1.000 2.609 4.976 273 1294 0.980 268	R R Yield 440 1294 0.980 431 1269	L L 0.834 2.535 4.544 727 1108 0.981 713	TR TR 0.166 2.535 4.544 145 1108 0.979 142	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	LT LT 1.000 2.609 4.976 160 657 0.982 157 645	T T 1.000 2.609 4.976 273 1294 0.980 268 1269	R R Yield 440 1294 0.980 431 1269 0.340	L L 0.834 2.535 4.544 727 1108 0.981 713 1086	TR TR 0.166 2.535 4.544 145 1108 0.979 142 1085	
Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	LT LT 1.000 2.609 4.976 160 657 0.982 157 645 0.243	T T 1.000 2.609 4.976 273 1294 0.980 268 1269 0.211	R R Yield 440 1294 0.980 431 1269 0.340 6.0	L L 0.834 2.535 4.544 727 1108 0.981 713 1086 0.656	TR TR 0.166 2.535 4.544 145 1108 0.979 142 1085 0.131	

Intersection					
Intersection Delay, s/veh	8.4				
Intersection LOS	А				
Approach	EB		WB		SB
Entry Lanes	1		1		2
Conflicting Circle Lanes	1		1		1
Adj Approach Flow, veh/h	431		934		422
Demand Flow Rate, veh/h	440		953		430
Vehicles Circulating, veh/h	369		151		263
Vehicles Exiting, veh/h	324		658		151
Ped Vol Crossing Leg, #/h	3		1		0
Ped Cap Adj	1.000		1.000		1.000
Approach Delay, s/veh	9.5		8.8		6.1
Approach LOS	Д		А		Α
Lane	Left	Left	Bypass	Left	Right
D 1 1 111					
Designated Moves	LT	T	R	L	TR
Designated Moves Assumed Moves	LT LT	T	R R	L	TR TR
				L	
Assumed Moves			R	L L 0.858	
Assumed Moves RT Channelized	LT	Т	R	L	TR
Assumed Moves RT Channelized Lane Util	LT 1.000	1.000 2.609 4.976	R Yield 690	0.858	TR 0.142 2.535 4.544
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s	1.000 2.609 4.976 440	1.000 2.609 4.976 263	R Yield	0.858 2.535 4.544 369	TR 0.142 2.535 4.544 61
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	1.000 2.609 4.976 440 947	1.000 2.609 4.976 263 1183	R Yield 690 1183 0.980	0.858 2.535 4.544 369 1118	TR 0.142 2.535 4.544
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h	1.000 2.609 4.976 440	1.000 2.609 4.976 263	R Yield 690 1183	0.858 2.535 4.544 369	TR 0.142 2.535 4.544 61
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h	1.000 2.609 4.976 440 947 0.980 431	1.000 2.609 4.976 263 1183 0.980 258	R Yield 690 1183 0.980 676 1160	0.858 2.535 4.544 369 1118 0.981 362	TR 0.142 2.535 4.544 61 1118 0.984 60
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h	1.000 2.609 4.976 440 947 0.980 431 928	1.000 2.609 4.976 263 1183 0.980 258 1160	R Yield 690 1183 0.980 676 1160 0.583	0.858 2.535 4.544 369 1118 0.981 362 1097	TR 0.142 2.535 4.544 61 1118 0.984 60 1099
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h	1.000 2.609 4.976 440 947 0.980 431 928 0.465	1.000 2.609 4.976 263 1183 0.980 258	R Yield 690 1183 0.980 676 1160	0.858 2.535 4.544 369 1118 0.981 362 1097 0.330	TR 0.142 2.535 4.544 61 1118 0.984 60 1099 0.055
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh	1.000 2.609 4.976 440 947 0.980 431 928 0.465 9.5	1.000 2.609 4.976 263 1183 0.980 258 1160 0.222 5.1	R Yield 690 1183 0.980 676 1160 0.583 10.3 B	0.858 2.535 4.544 369 1118 0.981 362 1097 0.330 6.5	TR 0.142 2.535 4.544 61 1118 0.984 60 1099
Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio	1.000 2.609 4.976 440 947 0.980 431 928 0.465	1.000 2.609 4.976 263 1183 0.980 258 1160 0.222	R Yield 690 1183 0.980 676 1160 0.583 10.3	0.858 2.535 4.544 369 1118 0.981 362 1097 0.330	TR 0.142 2.535 4.544 61 1118 0.984 60 1099 0.055

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations)	T T	NDL T	↑ ↑	↑	אופט
Traffic Vol, veh/h	14	4	11	263	892	118
Future Vol, veh/h	14	4	11	263	892	118
Conflicting Peds, #/hr	1	0	29	203	092	29
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	0	150	-	_	-
Veh in Median Storage	-	-	-	0	0	_
Grade, %	0	<u>-</u>	_	0	0	_
Peak Hour Factor	90	90	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	23	7	17	407	1379	182
IVIVIII(I IOW	20	,	17	707	1010	102
	Minor2		//ajor1	ľ	Major2	
Conflicting Flow All	1738	810	1590	0	-	0
Stage 1	1499	-	-	-	-	-
Stage 2	239	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	78	323	409	-	-	-
Stage 1	171	-	-	-	-	-
Stage 2	778	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	71	314	398	-	-	-
Mov Cap-2 Maneuver	71	-	-	-	-	-
Stage 1	159	-	-	-	-	-
Stage 2	756	-	-	-	-	-
Annroach	EB		NID		SB	
Approach			NB			
HCM Control Delay, s	65		0.6		0	
HCM LOS	F					
Minor Lane/Major Mvm	nt	NBL	NBTI	EBLn1 I	EBLn2	SBT
Capacity (veh/h)		398	-		314	-
HCM Lane V/C Ratio		0.043	_	0.329		_
HCM Control Delay (s)		14.4	_	78.8	16.7	_
HCM Lane LOS		В	_	F	С	-
HCM 95th %tile Q(veh))	0.1	-	1.2	0.1	-
		J . 1			J	

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	YVDL	VVDK	↑	אטוז	SDL	↑ ↑
Traffic Vol, veh/h	2	1 2	T № 277	12	53	TT 890
Future Vol, veh/h	2	2	277	12	53	890
Conflicting Peds, #/hr	3	15	0	3	3	030
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	_	-	100	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	3	428	19	82	1376
Major/Minor N	Minor1	N	/lajor1	N	Major2	
Conflicting Flow All	1296	242	0	0	450	0
Stage 1	441	-	-	-	- 30	-
Stage 2	855	<u>-</u>	_	_	_	_
Critical Hdwy	6.84	6.94	_	_	4.14	_
Critical Hdwy Stg 1	5.84	-	_	_	-	_
Critical Hdwy Stg 2	5.84	_	-	_	-	_
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	154	759	_	-	1107	-
Stage 1	616	-	-	-	-	-
Stage 2	377	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	142	746	-	-	1104	-
Mov Cap-2 Maneuver	142	-	-	-	-	-
Stage 1	569	-	-	-	-	-
Stage 2	376	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	20.4		0		0.5	
HCM LOS	20.4 C		U		0.5	
TICIVI LOS	U					
Minor Lane/Major Mvm	<u>it</u>	NBT	NBRV	VBLn1V		SBL
Capacity (veh/h)		-	-	1 12		1104
HCM Lane V/C Ratio		-	-	0.023		
HCM Control Delay (s)		-	-	31	9.8	8.5
HCM Lane LOS		-	-	D	A	A
HCM 95th %tile Q(veh))	-	-	0.1	0	0.2

Intersection						
Int Delay, s/veh	0.1					
•					057	055
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/			41	ħβ	
Traffic Vol, veh/h	1	3	1	278	887	5
Future Vol, veh/h	1	3	1	278	887	5
Conflicting Peds, #/hr	0	0	61	0	0	61
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	5	2	430	1372	8
Major/Minor I	Minor2	N	/lajor1	N	/lajor2	
	1656	751	1441	0	//ajuiz -	0
Conflicting Flow All			1441			
Stage 1	1437	-	-	-	-	-
Stage 2	219	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	89	353	467	-	-	-
Stage 1	185	-	-	-	-	-
Stage 2	796	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	78	332	440	-	-	-
Mov Cap-2 Maneuver	78	-	-	-	-	-
Stage 1	173	-	-	-	-	-
Stage 2	750	-	-	-	-	-
Annroach	EB		NB		SB	
Approach						
HCM Control Delay, s	25.4		0		0	
HCM LOS	D					
Minor Lane/Major Mvm	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		440	-		-	-
HCM Lane V/C Ratio		0.004		0.036	_	_
HCM Control Delay (s)		13.2	0	25.4	-	-
HCM Lane LOS		В	A	D	_	-
HCM 95th %tile Q(veh)	0	-	0.1	_	-
Jivi Jour Jour &(Vori	1	U		0.1		

Intersection						
Int Delay, s/veh	1.6					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\	7	\	^	†	40
Traffic Vol, veh/h	51	8	3	771	226	19
Future Vol, veh/h	51	8	3	771	226	19
Conflicting Peds, #/hr	1	4	_ 15	0	0	15
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	0	150	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	85	85	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	90	14	5	1192	349	29
Major/Minor	Minor?	N	Jaior1	N	Major?	
	Minor2		Major1		Major2	
Conflicting Flow All	986	208	393	0	-	0
Stage 1	379	-	-	-	-	-
Stage 2	607	-	-	-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	245	798	1162	-	-	-
Stage 1	662	-	-	-	-	-
Stage 2	507	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	237	784	1145	-	-	-
Mov Cap-2 Maneuver	237	-	-	-	-	-
Stage 1	650	-	-	-	-	-
Stage 2	500	_	_	_	_	_
2.0.30 2	300					
Approach	EB		NB		SB	
HCM Control Delay, s	26.6		0		0	
HCM LOS	D					
Minor Lane/Major Mvm	nt	NBL	NRTI	EBLn1 E	FRI n2	SBT
	IL .					ODT
Capacity (veh/h)		1145	-		784	-
HCM Cantrol Dalay (a)		0.004	-		0.018	-
HCM Control Delay (s)		8.2	-	29.2	9.7	-
HCM Lane LOS		A	-	D	A	-
HCM 95th %tile Q(veh)		0	-	1.7	0.1	-

Intersection Int Delay, s/veh 1.7 Movement WBL WBR NBT NBR SBL SBT Lane Configurations Traffic Vol, veh/h 4 54 822 10 54 222 Future Vol, veh/h 4 54 822 10 54 222 Conflicting Peds, #/hr 14 25 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free Free RT Channelized - None - None - None Storage Length 0 0 - - 100 - Veh in Median Storage, # 0 - 0 - - 0 Grade, % 0 - 0 - - 0 0 Peak Hour Factor 85 85 97 97 97 97 Heavy Vehicles, % 2 2 2 2 2 2 2 2 Mvmt Flow 7 95 1271 15 84 343 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 1633 668 0 0 1286 0 Stage 1 1279 - - - - - - Stage 1 1279 - - - - - - Stage 1 279 364 364 365 366 3
Movement WBL WBR NBT NBR SBL SBT Lane Configurations Image: Configuration of the co
Lane Configurations The co
Traffic Vol, veh/h 4 54 822 10 54 222 Future Vol, veh/h 4 54 822 10 54 222 Conflicting Peds, #/hr 14 25 0 0 0 0 Sign Control Stop Stop Free Free Free Free Free Free Free Free Ree Free Pree Pree Free
Future Vol, veh/h 4 54 822 10 54 222 Conflicting Peds, #/hr 14 25 0 0 0 0 Sign Control Stop Stop Free
Conflicting Peds, #/hr 14 25 0 0 0 0 Sign Control Stop Stop Free
Sign Control Stop Stop Free Poon Grade, % 0 - 0 - 0 - 0 0 - 2 2 2 2 2
RT Channelized - None - None - None Storage Length 0 0 - 100 - Veh in Median Storage, # 0 - 0 - 0 - 0 - 0 Grade, % 0 - 10 </td
Storage Length 0 0 - - 100 - Veh in Median Storage, # 0 - 0 - - 0 Grade, % 0 - 0 - - 0 Peak Hour Factor 85 85 97 97 97 Heavy Vehicles, % 2 3 343 343 Major/Minor Minor1 Major1 Major2 Major2 Conflicting Flow All 1633 668 0 0 1286 0 Stage 1 1279 - - - - - - -
Veh in Median Storage, # 0 - 0 - - 0 Grade, % 0 - 0 - - 0 Peak Hour Factor 85 85 97 97 97 Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 34 343 Major/Minor Minor1 Major1 Major2 Major2 Conflicting Flow All 1633 668 0 0 1286 0 Stage 1 1279 - - - - - -
Grade, % 0 - 0 - - 0 Peak Hour Factor 85 85 97 97 97 97 Heavy Vehicles, % 2 </td
Peak Hour Factor 85 85 97 97 97 97 Heavy Vehicles, % 2
Heavy Vehicles, % 2
Mvmt Flow 7 95 1271 15 84 343 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 1633 668 0 0 1286 0 Stage 1 1279 - - - - -
Major/Minor Minor1 Major1 Major2 Conflicting Flow All 1633 668 0 0 1286 0 Stage 1 1279 - - - - -
Conflicting Flow All 1633 668 0 0 1286 0 Stage 1 1279
Conflicting Flow All 1633 668 0 0 1286 0 Stage 1 1279
Conflicting Flow All 1633 668 0 0 1286 0 Stage 1 1279
Stage 1 1279
Ctoro 2
Stage 2 354
Critical Hdwy 6.84 6.94 4.14 -
Critical Hdwy Stg 1 5.84
Critical Hdwy Stg 2 5.84
Follow-up Hdwy 3.52 3.32 2.22 -
Pot Cap-1 Maneuver 92 401 535 -
Stage 1 225
Stage 2 681
Platoon blocked, %
Mov Cap-1 Maneuver 77 391 535 -
Mov Cap-2 Maneuver 77
Stage 1 190
Stage 2 672
Approach WB NB SB
HCM Control Delay, s 19.8 0 2.5
HCM LOS C
Minor Long/Major Mymt NDT NDDW/DL n4WDL n2 ODL
Minor Lane/Major Mvmt NBT NBRWBLn1WBLn2 SBL
Capacity (veh/h) 77 391 535
HCM Lane V/C Ratio 0.092 0.244 0.156
HCM Control Delay (s) 56.4 17.1 13
HCM Lane LOS F C B
HCM 95th %tile Q(veh) 0.3 0.9 0.6

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	**	רטוע	TADE	41	↑ 13-	אופט
Traffic Vol, veh/h	3	0	0	4 T 876	222	0
Future Vol, veh/h	3	0	0	876	222	0
Conflicting Peds, #/hr	4	0	103	0/0	0	103
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	85	85	97	97	97	97
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	0	0	1355	343	0
Major/Minor	Minor2	N	/lajor1	N	/lajor2	
Conflicting Flow All	1128	275	446	0	//ajuiz	0
Stage 1	446	210	440		-	-
	682	-	-	-	-	
Stage 2		6.04		-	-	-
Critical Hdwy	6.84	6.94	4.14	-	-	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	2.22	-	-	-
Pot Cap-1 Maneuver	198	722	1111	-	-	-
Stage 1	612	-	-	-	-	-
Stage 2	464	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	161	651	1002	-	-	-
Mov Cap-2 Maneuver	161	-	-	-	-	-
Stage 1	552	-	-	-	-	-
Stage 2	419	-	-	-	_	-
y -						
					-	
Approach	EB		NB		SB	
HCM Control Delay, s	28.1		0		0	
HCM LOS	D					
Minor Long/Major Maria	-t	NDI	NDT	CDL4	CDT	CDD
Minor Lane/Major Mvn	11(NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1002	-		-	-
HCM Lane V/C Ratio		-	-	0.033	-	-
HCM Control Delay (s))	0	-		-	-
HCM Lane LOS		Α	-	D	-	-
HCM 95th %tile Q(veh	1)	0	-	0.1	-	-

LANL R & G Traffic Crew

Los Alamos National Lab PO Box 1663 Los Alamos, NM 87545

Site Code: TA 60 Station ID:

TA-60 East of Roads & Grounds

Latitude: 0' 0.0000 Undefined

Start Time	Mon 08-Oct-18	Tue	Wed	Thu	ı Fri		Average Day)	Sat	Sun		Week Average		
12:00 AM		3*	*	*	0		_0_		0	0		0		
01:00	*	*	*	*	0		0		0	0		0		
02:00	*	*	*	*	0		0		0	0		0		
03:00	*		*	w	1		1		0	0		0		
04:00	*	36	*	*	0		0		0	0		0		
05:00	*	*	*	*	1		1		0	0		0		
06:00		*	*		2		2		0	0		1 1		
07:00	*	*	*	*	9		9		0	0		3		
08:00			*	*	32		32		0	2		11		
09:00		*	*	*	20		20		0	0		7		
10:00	801	*	*	w	13		13		0	0		1		
11:00		*	*	*	27		27		0	0		9 📗		
12:00 PM	*	*	*	*	22		22		0	0		7		
01:00		*	*	*	22		22		0	0		71		
02:00	*	*	*	ykr	49		49		0	1		17		
03:00		*	w	42	21		32		0	1		16		
04:00		*	*	2	2		2		0	2		12		
05:00		*	*	0	2		1		0	0		0		
06:00	**	36	w	2	0		1		0	0		0		
07:00	380	*	*	0	0		0		Ô	0		0		
08:00		*	*	0	0		0		0	0		0		
09:00		*	*	0	0		0		0	2		Ō		
10:00	*	*	*	0	0		Ō		Ō	0		0		
11:00	100	*	*	0	2		1		0	0		0		
Total	0	0	0	46	225		235		0	8		84		
% Avg. WkDay	0.0%	0.0%	0.0%	19.6%	95.7%	1	00.0%							
% Avg. Week	0.0%	0.0%	0.0%	54.8%	267.9%	2	79.8%		0.0%	9.5%				
AM Peak	-	2	¥	-	08:00	-	08:00	2	2	08:00	/ a c	08:00	2	
Vol.	(*)	8	-	_	32	_	32	-		2	-	_ 11		
PM Peak				15:00	14:00	392	14:00			16:00	500	14:00	5	
Vol.				42	49		49			2		17	9	

LANL R & G Traffic Crew

Los Alamos National Lab PO Box 1663 Los Alamos, NM 87545

Site Code: TA 60 Station ID: TA-60 East of Roads & Grounds

Latitude: 0' 0.0000 Undefined

Start Time	Mon 15-Oct-18	Tue	e Wed	d Thu	ı Fri		Average Day		Sat	Sun		Week Average		
12:00 AM	1	0	0	0	0	_	0		0	2		0		
01:00	0	Ō	0	0	0		0		2	0		0		
02:00	1	0	0	0	0		0		0	0		0		
03:00	2	0	0	1	1		1		0	0		1		
04:00	3	0	0	2	0		1		0	0		1		
05:00	0	0	0	3	3		1		0	0		1		
06:00	5	0	0	0	0		1		1	0		1		
07:00	1	2	6	4	1		3		3	0		2		
08:00	9	30	36	27	19		24		0	0		17		
09:00	21	28	24	14	16		21		1	0		15		
10:00	23	14	18	27	33		23		1	0		17		
11:00	21	19	31	40	40		30		0	0		22		
12:00 PM	7	10	23	18	9		13		0	0		10		
01:00	21	27	36	30	33		29		0	0		21		
02:00	33	37	31	37	41		36		0	6		26		
03:00	26	24	37	22	19		26		0	4		19		
04:00	1	0	1	2	2		1		0	2		1 1		
05:00	5	3	1	0	0		2		0	4		2		
06:00	3	1	1	0	0		1		0	7		12		
07:00	1	0	0	0	0		0		0	1		0		
08:00	0	0	3	0	0		1		0	2		1		
09:00	0	0	1	0	0		0		0	0		0		
10:00	0	2	0	0	0		0		0	2		1		
11:00	0	0	0	0	0		0		0	0		0		
Total	184	197	249	227	217		214	-	8	30		160		
% Avg. WkDay	86.0%	92.1%	116.4%	106.1%	101.4%		100.0%							_
% Avg. Week		123.1%	155.6%	141.9%	135.6%		133.8%		5.0%	18.8%				
AM Peak	10:00	08:00	08:00	11:00	11:00	200	11:00	2	07:00	00:00		11:00		3
Vol.	23	30	36	40	40		30		3	2		22	æ	
PM Peak	14:00	14:00	15:00	14:00	14:00		14:00	8	8	18:00		14:00		
Vol.	33	37	37	37	41	-	36	2	2	7	•	26	2	- 8

LANL R & G Traffic Crew

Los Alamos National Lab PO Box 1663 Los Alamos, NM 87545

Site Code: TA 60 Station ID: TA-60 East of Roads & Grounds

Latitude: 0' 0.0000 Undefined

Start Time	Mon 22-Oct-18	Tue	We	d Thu	Fri		Average Day		Sat	Sun		Week Average		
12:00 AM	0	0	2	2	0		1		*	•		1		
01:00	2	2	2	1	2		2		*	*		2	*1	
02:00	0	0	0	1	0		0		*			0		
03:00	0	0	0	0	0		0		*	•		0		
04:00	0	0	0	0	0		0		*	•		0		
05:00	2	0	0	0	2		1		*	*		1		
06:00	0	0	0	. 0	0		0		*			0		
07:00	0	7	3	5	20		7		*			7		
08:00	18	28	16	24	35		24		*	*		24		
09:00	20	16	24	7	33		20			*		20		
10:00	20	13	21	24	20		20		*	*		20		
11:00	26	22	25	43	24		28		*	*		28		
12:00 PM	11	23	6	8	26		15		*	*		15		
01:00	12	27	22	28	*		22		*	*		22		
02:00	41	26	27	43	*		34					34		
03:00	39	36	28						*	*				
03:00	0	0		19 0	: 15°		30		*			30 🔚		
05:00	2	2	0	0	*		0 2		*	*		0 2		
06:00	0	0	0	6	*		2		*	*		12		
07:00	0	0	0	0	*		0		*	*		0		
08:00	0	2	0	0	*		0		*			0		
09:00	0	0	0	0	*		0		*	*		0		
10:00	0	2	0	0	*		0		w	*		0		
11:00	0	0	0	0	*		0		*	*		0		
Total	193	206	178	211	162		208		0	0		208		
Total	100	200	170	211	102		200		U	U		200		
% Avg.	92.8%	99.0%	85.6%	101.4%	77.9%		100.0%							
WkDay	JZ.O /0	JJ.U /0	00.078	10 1.4 /0	11.0/0		100.0/0							
% Avg.	92.8%	99.0%	85.6%	101.4%	77.9%		100.0%		0.0%	0.0%				
Week									0.0%	0.076				
AM Peak	11:00	08:00	11:00	11:00	08:00	-	11:00	=	=	186	9-2	11:00	-	
Vol.	26	28	25	43	35	-	28	70	15	.7	N 5 10	28	51	
PM Peak	14:00	15:00	15:00	14:00	12:00	2	14:00	2	172	12	\$25	14:00		
Vol.	41	36	28	43	26	/=	34	=		920	120	34	¥!	
Total	37	7 40)3 4	27 48	4 604		657	1		8 38		452		

ADT

ADT 154

AADT 154

Attachment 6 Design Drawings

ENCLOSURE 2

Public Notice of Class 2 Permit Modification Request

and Public Meeting for Technical Area 60

New Container Storage Unit

Los Alamos National Laboratory, EPA ID# NM0890010515

> EPC-DO-23-086 LA-UR-23-21636

Public Notice

Los Alamos National Laboratory Hazardous Waste Facility Permit, EPA ID No. NM0890010515

The U.S. Department of Energy (DOE) and Triad National Security, LLC (Triad), have submitted **Activity:**

a Class 2 permit modification request to add a new container storage unit at Technical Area 60.

Facility: The Permit authorizes the U.S. Department of Energy (DOE); Triad National Security, LLC

> (Triad); and Newport News Nuclear BWXT-Los Alamos, LLC (N3B) [the Permittees] to manage, store, and treat hazardous waste at LANL. Under authority of the New Mexico Hazardous Waste Act (Section 74-4-1 et seg., NMSA 1978, as amended, 1992) and the New Mexico Hazardous Waste Management Regulations (20.4.1 NMAC), the New Mexico Environment Department (NMED) can approve or deny hazardous waste permits and closure plans, permit

modifications, and amendments.

Availability: The proposed permit modification is available for public review weekdays between 8:00 am and

5:00 pm at

NMED - Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6313

Copies are also available at the LANL Hardcopy Public Reading Room by appointment (call 505-709-7466) weekdays from 9:00 am to 4:00 pm at

> Northern New Mexico Citizens' Advisory Board Office 94 Cities of Gold Road in Pojoaque, New Mexico

https://environment.lanl.gov/public-reading-room/

Electronic copies of the permit modification request can also be found in the LANL Electronic Public Reading Room (EPRR) at http://eprr.lanl.gov

The LANL Hazardous Waste Facility Permit can be found on the NMED LANL Permit web page at: https://www.env.nm.gov/hazardous-waste/lanl-permit/

Meeting: A public meeting about the permit modification will be held from 5:00 pm to 7:00pm on April 19,

2023 via WebEx.

From Link: https://lanl-us.webex.com/lanl-us/j.php?MTID=md3aa442009bba2308759287a2b978e91

Using meeting number: 2456 245 3427 (access code) Meeting password: PublicMeeting

Bv phone: +1-415-655-0002 (US Toll) Meeting number: 2456 245 3427

Comments:

Neelam Dhawan NMED-Hazardous Waste Bureau, 2905 Rodeo Park Drive East, Building 1, Santa Fe, New Mexico 87505-6313 Telephone (505) 476-6000 or e-mail: neelam.dhawan@env.nm.gov

The Permittee's compliance history during the life of the permit being modified is available from the NMED contact person. The public comment period for this permit modification will run from March 16, 2023 through May 15, 2023. Any person who wishes to comment on this action should submit written or e-mail comments with the commenter's name and address to the address above. Only written comments received on or before May 15, 2023, will be considered.

Facility Contact: If you have questions, please contact Los Alamos National Laboratory.

> Steven Horak **Environmental Communication & Public Involvement** P.O. Box 1663. MS S020 Los Alamos, NM 87545

Phone/email: 505-551-4514 / envoutreach@lanl.gov

Environmental Protection & Compliance Division Waste Management Programs P.O. Box 1663, Mail Stop M969 Los Alamos, NM 87545