

Department of Energy

National Nuclear Security Administration

Sandia Field Office P.O. Box 5400 Albuquerque, NM 87185

JUN 26 2023

ENTERED

NNSA-2023-004668

Received

JUN 2 8 2023

สมบัติ Privardous Wasta อิน**ายสน**

Subject:

Submittal of Mixed Waste Landfill Annual Long-Term Monitoring and

Maintenance Report, April 2022-March 2023, Sandia National Laboratories, New Mexico, Environmental Protection Agency

Identification Number NM5890110518

Dear Mr. Maestas:

Mr. Ricardo Maestas

Santa Fe, New Mexico 87505

Acting Chief, Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Bldg. 1

The Department of Energy, National Nuclear Security Administration, Sandia Field Office, and National Technology & Engineering Solutions of Sandia, LLC submit the Subject document dated June 2023. This submittal is required by Section 1.4.1 of the Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan and satisfies the requirements listed in Section 4.8.1.

If you have any questions, please contact me at (505) 845-6036 or Dr. Adria Bodour of our staff at (505) 845-6930 or adria.bodour@nnsa.doe.gov.

Sincerely,

Daryl J. Hauck, Ph.D.

Manager

JUN 2 6 2023

cc w/enclosure:

Beau Masse, Chief

NMED DOE Oversight Bureau

121 Tijeras Ave. NE, Suite 1000, Albuquerque, New Mexico 87102

Naomi Davidson

NMED/HWB

121 Tijeras Ave. NE, Suite 1000, Albuquerque, New Mexico 87102

Laurie King

Environmental Protection Agency Region 6

1201 Elm Street, Suite 500, Dallas, Texas 75270-2102

Zimmerman Library

University of New Mexico

1 University of New Mexico, Albuquerque, New Mexico 87101-0001

cc w/o enclosure:

David Cobrain, NMED/HWB

Amy Blumberg, SNL/NM

Konstantin Parkhomenko, SNL/NM

Rodney Keith, SNL/NM

Michael Nagy, SNL/NM

Sue Collins, SNL/NM

Michael Mitchell, SNL/NM

M. Anna Gallegos, SNL/NM

Dori Richards, SFO/Legal

Conrad Valencia, SFO/ENG

Saj Zappitello, SFO/ENG

Adria Bodour, SFO/ENG

Submittal of Mixed Waste Landfill Annual Long-Term Monitoring & Maintenance Report, April 2022 – March 2023

Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan

Sandia National Laboratories Albuquerque, New Mexico **EPA ID No. NM5890110518**

CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations.

RODNEY KEITH (Affiliate) Date: 2023.05.31 14:06:36

Digitally signed by RODNEY KEITH (Affiliate)

Rodney L. Keith, Senior Manager **Defense Waste Management Programs** Sandia National Laboratories/New Mexico Operator

Date signed

Daryld. Hauck, Ph.D., Manager

U.S. Department of Energy

National Nuclear Security Administration

Sandia Field Office

Owner

MIXED WASTE LANDFILL ANNUAL LONG-TERM MONITORING & MAINTENANCE REPORT APRIL 2022 – MARCH 2023

SANDIA NATIONAL LABORATORIES, NEW MEXICO LONG-TERM STEWARDSHIP

JUNE 2023

United States Department of Energy Sandia Field Office

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

MIXED WASTE LANDFILL ANNUAL LONG-TERM MONITORING & MAINTENANCE REPORT APRIL 2022 – MARCH 2023

Facility: Mixed Waste Landfill

Location: Sandia National Laboratories

Albuquerque, New Mexico

EPA ID No.: NM5890110518

Permit Basis: Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan,

submitted March 2012, effective January 8, 2014, and incorporated into

Attachment M of the Sandia National Laboratories Resource

Conservation and Recovery Act Facility Permit by reference in March

2016.

Owner: United States Department of Energy

Sandia Field Office

Technical Contact: Dr. Adria Bodour, Engineering

U.S. Department of Energy, Sandia Field Office

P.O. Box 5400/MS 0184 Albuquerque, NM 87185-5400

505-845-6930

adria.bodour@nnsa.doe.gov

Operator: National Technology & Engineering Solutions of Sandia, LLC

Technical Contact: Mr. Michael Nagy, Manager

Environmental Restoration & Stewardship

Sandia National Laboratories P.O. Box 5800/MS 1103 Albuquerque, NM 87185-5800

FOE 04E 2470

505-845-3178

mdnagy@sandia.gov

EXECUTIVE SUMMARY

The Mixed Waste Landfill (MWL) at Sandia National Laboratories, New Mexico is a solid waste management unit that underwent corrective action in accordance with Title 20, Chapter 4, Part 1, Section 500 of the New Mexico Administrative Code (20.4.1.500 NMAC), incorporating Title 40, Code of Federal Regulations Part 264.101 (40 CFR 264.101); regulatory criteria found in the Final Order No. HWB 04-11(M) State of New Mexico Before the Secretary of the Environment in the Matter of Request for a Class 3 Permit Modification for Corrective Measures for the Mixed Waste Landfill, Sandia National Laboratories, Bernalillo County, New Mexico, EPA ID# 5890110518 (NMED May 2005); the Compliance Order on Consent (NMED April 2004); and the Resource Conservation and Recovery Act Facility Operating Permit for Sandia National Laboratories, Environmental Protection Agency (EPA) Identification No. NM5890110518 (NMED January 2015, with all approved modifications).

As of March 13, 2016, the February 2016 Final Order No. HWB 15-18 (P), State of New Mexico Before the Secretary of the Environment in the Matter of Proposed Permit Modification for Sandia National Laboratories, EPA ID #5890110518, To Determine Corrective Action Complete with Controls at the Mixed Waste Landfill (NMED February 2016) became effective, granting the Class 3 Permit Modification to reflect that the MWL is Corrective Action Complete with Controls. The MWL Long-Term Monitoring and Maintenance Plan (LTMMP) (SNL/NM March 2012), which became effective on January 8, 2014 (Blaine January 2014), defines all monitoring, inspection, maintenance/repair, and reporting requirements for the MWL. This tenth MWL Annual Long-Term Monitoring & Maintenance Report documents monitoring, inspection, maintenance, and repair activities conducted at the MWL during the April 1, 2022 through March 31, 2023 reporting period.

Sampling activities for this reporting period included two semiannual monitoring events each for groundwater and radon. As part of the second semiannual groundwater monitoring event conducted in October 2022, perfluoroalkyl and polyfluoroalkyl substances (PFAS), including perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorooctanoic acid (PFOA), were added to the groundwater monitoring event. These constituents were included to address the New Mexico Environment Department (NMED) request (NMED July 2021) to evaluate toxic pollutants added to Subsection T of 20.6.2.7 NMAC since January 2014 (i.e., since NMED-approval of the MWL LTMMP). Soil-vapor monitoring was transitioned to an annual frequency in accordance with the LTMMP during the reporting period and was conducted in October 2022. Annual soil-moisture monitoring was conducted in April 2022, annual tritium surface soil sampling was conducted in June 2022, and annual biota sampling was conducted in September 2022. All monitoring activities were conducted in accordance with LTMMP requirements and no monitoring results exceeded LTMMP trigger levels. All monitoring results were consistent with historical MWL monitoring data.

Inspections of the MWL final cover system, storm-water diversion structures, compliance monitoring systems, and security fence were performed in accordance with LTMMP requirements. Required maintenance and repairs were minor and completed during or within 60 days of the inspections.

The Evapotranspirative Cover continues to meet successful revegetation criteria and is in good condition with even coverage of mature, native perennial grasses. Minor maintenance was performed during the reporting period as best practice to promote the health of the desired native grass species by reducing competition with annual weedy species for limited moisture and nutrients.

Regulatory activities during the reporting period included submittal of the nineth MWL Annual Long-Term Monitoring & Maintenance Report, April 2021 - March 2022 (SNL/NM June 2022) that was approved by the NMED (Shean August 2022). Two submittals of various updated reference documents cited in the LTMMP SAPs were completed within 30 days of the document effective dates (Hauck May 2022 and November 2022) and were received and acknowledged by the NMED (Shean June 2022 and January 2023). The second LTMMP modification request to decommission groundwater monitoring well MWL-MW4 was also submitted to the NMED during this reporting period (Hauck March 2023).

All LTMMP requirements have been met for the April 1, 2022 through March 31, 2023 reporting period. Based upon monitoring, inspection, and maintenance results, the Evapotranspirative Cover and monitoring systems are functioning as designed and site conditions remain protective of human health and the environment.

TABLE OF CONTENTS

		RY	
ACRONYMS	S AND AE	BREVIATIONS	x
1.0 INTROD	UCTION.		1-1
1.1	Purpos	se and Scope	1-4
1.2		Organization	
2.0 MONITO	ORING AN	ID INSPECTION REQUIREMENTS	2-1
2.1	Monito	ring Requirements	2-1
2.2	Inspec	tion, Maintenance, and Repair Requirements	2-1
	2.2.1	ET Cover	2-6
	2.2.2	ET Cover Biology Inspection	
	2.2.3	ET Cover Surface and Physical Controls Inspection	
	2.2.4	Monitoring Networks and Sampling Equipment	
3.0 RADON	MONITO	RING RESULTS	3-1
3.1	Radon	Sampling Field Activities	3-1
	3.1.1	Radon Monitoring Detector Deployment and Collection	3-4
	3.1.2	Field Quality Control	3-4
	3.1.3	Waste Management	3-4
3.2	Labora	tory Results	3-4
	3.2.1	Environmental Sample Results	3-4
	3.2.2	Field Quality Control Sample Results	3-5
	3.2.3	Data Quality	
	3.2.4	Variances	3-5
3.3	Data E	valuation and Monitoring Trigger Level	3-5
4.0 TRITIUN	I SURFA	CE SOIL MONITORING RESULTS	4-1
4.1	Tritium	Surface Soil Monitoring Field Activities	4-1
	4.1.1 4.1.2	Field Quality Control	

TABLE OF CONTENTS (Continued)

4.2	Labora	atory Results	4-3
	4.2.1 4.2.2 4.2.3 4.2.4	Environmental Sample ResultsField Quality Control Sample ResultsLaboratory Quality Control and Data QualityVariances	4-3 4-3
4.3	Data E	Evaluation and Monitoring Trigger Level	4-4
5.0 SOIL-VA	POR MO	NITORING RESULTS	5-1
5.1	Soil-Va	apor Monitoring Field Activities	5-1
	5.1.1 5.1.2 5.1.3	Well PurgingField Quality Control	5-3
5.2	Labora	atory Results and Trigger Level Evaluation	5-3
	5.2.1 5.2.2 5.2.3 5.2.4	Environmental Sample ResultsField Quality Control Sample ResultsLaboratory Quality Control and Data QualityVariances	5-5 5-5
5.3	Historio	cal Data Evaluation	5-7
6.0 SOIL-MO	DISTURE	MONITORING RESULTS	6-1
6.1	Soil-Mo	oisture Monitoring Field Activities	6-1
	6.1.1 6.1.2	Field Quality ControlWaste Management	
6.2	Monito	ring Results	6-3
	6.2.1	Variances	6-3
6.3	Data E	valuation and Monitoring Trigger Level	6-3
7.0 GROUN	DWATER	R MONITORING RESULTS	7-1
7.1	Enviror	nmental Sampling Field Activities	7-1
	7.1.1 7.1.2 7.1.3	Well PurgingField Quality Control	7-3

TABLE OF CONTENTS (Continued)

7.2	Labora	atory Results	7-4
	7.2.1 7.2.2 7.2.3 7.2.4	Environmental Sample ResultsField Quality Control Sample ResultsLaboratory Quality Control and Data QualityVariances and Non-Conformances	7-1 ²
7.3	Hydrog	geologic Assessment	7-20
8.0 BIOTA N	MONITOR	RING RESULTS	8-1
8.1	Biota N	Monitoring Field Activities	8-1
	8.1.1 8.1.2	Field Quality Control	8-1
8.2	Labora	atory Results	8-3
	8.2.1 8.2.2 8.2.3 8.2.4	Environmental Sample ResultsField Quality Control Sample ResultsLaboratory Quality Control Data QualityVariances	8-3 8-7
8.3	Data E	Evaluation and Monitoring Trigger Level	8-8
9.0 INSPEC	TION, MA	AINTENANCE, AND REPAIR RESULTS	9-1
9.1	Final C	Cover System	9-1
	9.1.1 9.1.2	Biology Inspection ET Cover System/Surface Inspection	
9.2 9.3 9.4 9.5 9.6 9.7	Soil-Va Soil-Mo Ground Securi	Water Diversion Structure Inspection apor Monitoring Network Inspection oisture Monitoring Network Inspection dwater Monitoring Well Network Inspection ty Fence Inspection ver Maintenance and Supplemental Watering	9-3 9-3 9-3
10.0 REGUI	_ATORY .	ACTIVITIES	10-1
10.1 10.2		Regulatory Submittals	

TABLE OF CONTENTS (Concluded)

11.1	Monitoring Activities	11-1
11.2	Inspections/Maintenance/Repairs Activities	11-2
	Regulatory Activities	
	Conclusions	

LIST OF FIGURES

Figure		Page
1-1	Location of the Mixed Waste Landfill with Respect to Kirtland Air Force Base and the City of Albuquerque	1-2
1-2	Location of the Mixed Waste Landfill within Technical Area-III	1-3
2-1	Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover Layers	s2-7
2-2	Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover and How it Works	2-8
2-3	Mixed Waste Landfill Engineered Storm-Water Drainage Swale	2-9
3-1	Mixed Waste Landfill Radon Detector Locations	3-2
4-1	Mixed Waste Landfill Tritium Surface Soil Sampling Locations	4-2
5-1	Mixed Waste Landfill Soil-Vapor Monitoring Well Locations	5-2
5-2	PCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports	5-11
5-3	PCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports	5-12
5-4	PCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports	5-13
5-5	PCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports	5-14
5-6	TCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports	5-15
5-7	TCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports	5-16
5-8	TCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports	5-17
5-9	TCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports	5-18

LIST OF FIGURES (Concluded)

Figure		Page
5-10	Total VOCs Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports	5-19
5-11	Total VOCs Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports	5-20
5-12	Total VOCs Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports	5-21
5-13	Total VOCs Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports	5-22
6-1	Mixed Waste Landfill Soil-Moisture Monitoring Locations	6-2
6-2	Mixed Waste Landfill MWL-VZ-1 Soil-Moisture Monitoring Results	6-4
6-3	Mixed Waste Landfill MWL-VZ-2 Soil-Moisture Monitoring Results	6-5
6-4	Mixed Waste Landfill MWL-VZ-3 Soil-Moisture Monitoring Results	6-6
7-1	Mixed Waste Landfill Groundwater Monitoring Well Locations	7-2
7-2	Nickel Concentrations vs. Time, Mixed Waste Landfill Groundwater Monitoring Wells	7-15
7-3	Uranium Concentrations vs. Time, Mixed Waste Landfill Groundwater Monitoring Wells	7-16
7-4	Gross Alpha Activity vs. Time, Mixed Waste Landfill Groundwater Monitoring Wells	7-17
7-5	Groundwater Level Elevations at Mixed Waste Landfill Groundwater Monitoring Wells	7-21
7-6	Localized Potentiometric Surface of the Regional Aquifer at the Mixed Waste Landfill, October 2022	7-23
8-1	Mixed Waste Landfill Biota Sampling Locations	8-2

LIST OF TABLES

Table		Page
2-1	Mixed Waste Landfill Monitoring Parameters, Frequencies, and Methods	2-2
2-2	Mixed Waste Landfill Inspection, Maintenance, and Repair Requirements	2-4
3-1	Summary of Radon Results, Mixed Waste Landfill Air Monitoring, Calendar Year 2022	3-3
4-1	Summary of Tritium Results (EPA Method 906.0), Mixed Waste Landfill Surface Soil Monitoring, June 2022	4-4
5-1	Summary of Detected VOCs (EPA Method TO-15), Mixed Waste Landfill Soil-Vapor Monitoring, October 2022	5-25
5-2	Summary of Duplicate Samples, Mixed Waste Landfill Soil-Vapor Monitoring, October 2022	5-6
5-3	Summary of Historical PCE Concentrations, Mixed Waste Landfill Soil-Vapor Monitoring	5-8
5-4	Summary of Historical TCE Concentrations, Mixed Waste Landfill Soil-Vapor Monitoring	5-9
5-5	Summary of Historical Total VOCs Concentrations, Mixed Waste Landfill Soil-Vapor Monitoring	5-10
7-1	Summary of Method Detection Limits for Volatile Organic Compounds (EPA M 8260D) and Perfluoroalkyl and Polyfluoroalkyl Substances (Method 537.1), Mixed Waste Landfill Groundwater Monitoring, May and October 2022	
7-2	Summary of Detected Volatile Organic Compound Results (EPA Method 8260 Mixed Waste Landfill Groundwater Monitoring, Sandia National Laboratories, Mexico, May and October 2022	l éw
7-3	Summary of Cadmium, Chromium, Nickel, and Uranium Results (EPA Method 6020B), Mixed Waste Landfill Groundwater Monitoring, May and October 2022	
7-4	Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results, Mixed Waste Landfill Groundwater Monitoring, May and October 2022	7-11

LIST OF TABLES (Concluded)

Table		Page
7-5	Summary of Field Water Quality Measurements, Mixed Waste Landfill Groundwater Monitoring, May and October 2022	7-13
7-6	Summary of Duplicate Sample Results, Mixed Waste Landfill Groundwater Monitoring, May and October 2022	7-18
8-1	Summary of Metals Results (EPA Method 6010D/7471B), Mixed Waste Landfil Biota Monitoring, September 2022	
8-2	Summary of Gamma Spectroscopy Results (EPA Method 901.1), Mixed Waste Landfill Biota Monitoring, September 2022	8-6
8-3	Summary of Duplicate Sample Results, Mixed Waste Landfill Biota Monitoring, September 2022	8-7
9-1	Inspection Frequency and Dates Performed, Mixed Waste Landfill, April 2022 – March 2023 Reporting Period	9-2
10-1	Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan Document Submittals, April 2022 through March 2023 Reporting Period	.10-1
	LIST OF ANNEXES	
Annex		
Annex A	Mixed Waste Landfill Radon Monitoring Forms and Reports, January – December 2022	
Annex B	Mixed Waste Landfill Surface Soil Tritium and Biota Monitoring Forms and Reports, April 2022 – March 2023	
Annex C	Mixed Waste Landfill Soil-Vapor Monitoring Forms and Reports, April 2022 – March 2023	
Annex D	Mixed Waste Landfill Soil-Moisture Monitoring Forms, April 2022 – March 20	23
Annex E	Mixed Waste Landfill Groundwater Monitoring Forms and Reports, April 2022 – March 2023	
Annex F	Mixed Waste Landfill Inspection Forms, April 2022 – March 2023	
Annex G	Mixed Waste Landfill Biology Report, April 2022 – March 2023	

ACRONYMS AND ABBREVIATIONS

ABCWUA Albuquerque Bernalillo County Water Utility Authority

AOP Administrative Operating Procedure AR/COC Analysis Request/Chain-of-Custody

CFR Code of Federal Regulations

CY calendar year

DQO data quality objective

EPA U.S. Environmental Protection Agency

ET evapotranspirative

FLUTeTM Flexible Liner Underground Technology, Ltd.TM

FOP Field Operating Procedure feet below ground surface GEL GEL Laboratories, LLC. gpm gallons per minute

HWB Hazardous Waste Bureau KAFB Kirtland Air Force Base

LTMM Long-Term Monitoring & Maintenance

LTMMP Long-Term Monitoring and Maintenance Plan

MDA minimum detectable activity
MDL method detection limit
mg/L milligrams per liter
MWL Mixed Waste Landfill

NMAC New Mexico Administrative Code NMED New Mexico Environment Department

PCE tetrachloroethene

PFAS Perfluoroalkyl and polyfluoroalkyl substances

PFHxS Perfluorohexane sulfonic acid (
PFOS perfluorooctane sulfonic acid

PFOA perfluorooctanoic acid pCi/L picocuries per liter

Permit RCRA Facility Operating Permit for Sandia National Laboratories,

EPA ID No. NM5890110518

PPE personal protective equipment ppmv parts per million by volume PQL practical quantitation limit

QC quality control

RCRA Resource Conservation and Recovery Act

RPD relative percent difference
SAP Sampling and Analysis Plan
SME subject matter expert

Subject matter expert

SNL/NM Sandia National Laboratories, New Mexico

SWMU solid waste management unit

TCE trichloroethene

VOC volatile organic compound

This page intentionally left blank.

1.0 INTRODUCTION

Sandia National Laboratories, New Mexico (SNL/NM) is a multimission laboratory owned by the U.S. Department of Energy/National Nuclear Security Administration. SNL/NM is managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc. Primary SNL/NM operations are located within the boundaries of Kirtland Air Force Base (KAFB), southeast of the City of Albuquerque in Bernalillo County, New Mexico (Figure 1-1). The Mixed Waste Landfill (MWL) is located 4 miles south of SNL/NM central facilities and 5 miles southeast of the Albuquerque International Sunport, in the north-central portion of Technical Area-III (Figure 1-2).

The MWL disposal area comprises 2.6 acres. From March 1959 to December 1988, the MWL accepted low-level radioactive waste, hazardous waste, and mixed waste from SNL/NM research facilities and off-site U.S. Department of Energy and U.S. Department of Defense generators. More specific information regarding the MWL inventory and past disposal practices is presented in the MWL Phase 2 Resource Conservation and Recovery Act (RCRA) Facility Investigation Report (Peace et al. September 2002) and the extensive MWL Administrative Record.

All monitoring, inspection, and maintenance/repair requirements are defined in the MWL Long-Term Monitoring and Maintenance Plan (LTMMP) (SNL/NM March 2012) and have been met for the April 1, 2022 through March 31, 2023 reporting period. This tenth MWL Annual Long-Term Monitoring & Maintenance (LTMM) Report documents all activities and results as required by Section 4.8.1 of the LTMMP. Based upon monitoring, inspection, and maintenance results, the MWL Evapotranspirative (ET) Cover and all monitoring systems are functioning as designed and site conditions remain protective of human health and the environment. No monitoring trigger levels were exceeded. Industrial land use is being maintained for the MWL consistent with LTMMP requirements.

The MWL is a solid waste management unit (SWMU 76) that underwent corrective action in accordance with the following regulatory criteria:

- New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) Final Order No. HWB 04-11(M), State of New Mexico Before the Secretary of the Environment in the Matter of Request for a Class 3 Permit Modification for Corrective Measures for the Mixed Waste Landfill, Sandia National Laboratories, Bernalillo County, New Mexico, EPA ID# 5890110518 (NMED May 2005)
- Compliance Order on Consent (NMED April 2004)
- SNL/NM RCRA Permit
 - Module IV of RCRA Permit No. NM5890110518 (EPA August 1993)
 - Facility Operating Permit U.S. Environmental Protection Agency (EPA) Identification No. NM5890110518 (Permit) (NMED January 2015)
- New Mexico Administrative Code (NMAC), Title 20, Chapter 4, Part 1, Section 500 (20.4.1.500 NMAC) incorporating Title 40 of the Code of Federal Regulations (CFR), Part 264.101 (40 CFR 264.101)

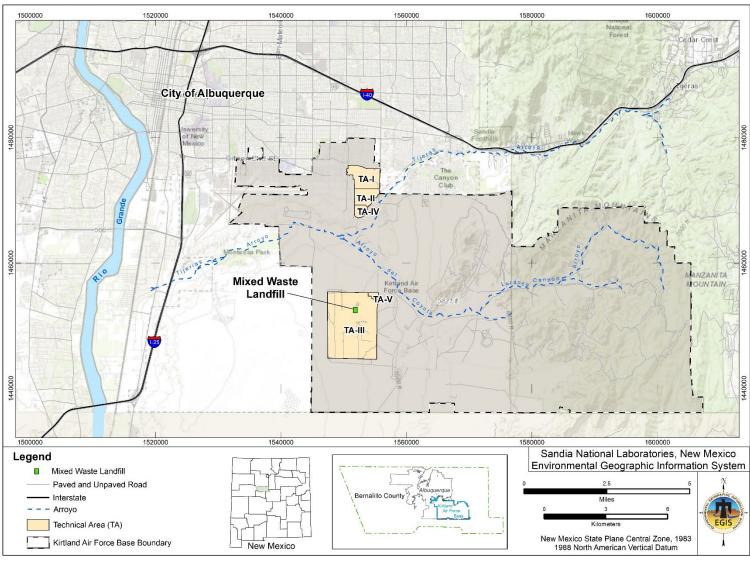


Figure 1-1 Location of the Mixed Waste Landfill with Respect to Kirtland Air Force Base and the City of Albuquerque

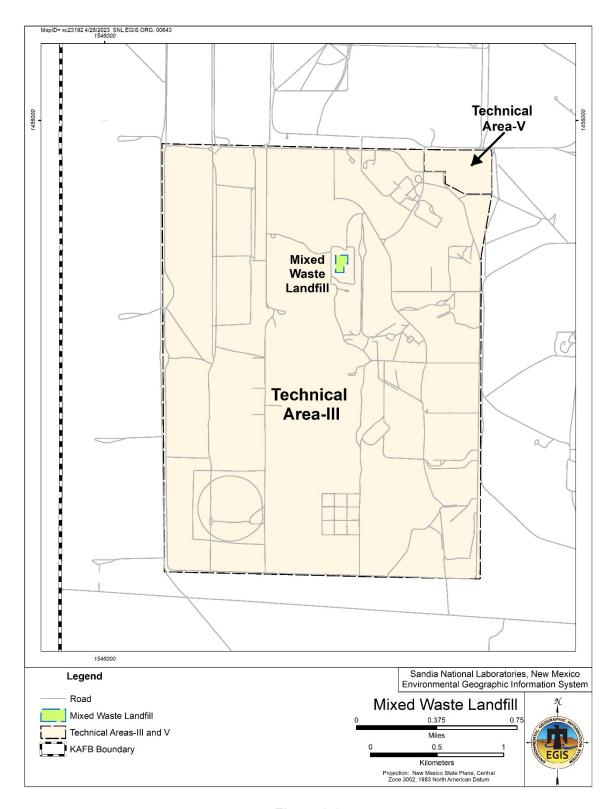
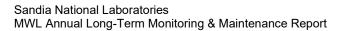


Figure 1-2
Location of the Mixed Waste Landfill within Technical Area-III

On February 12, 2016, the NMED issued the *Final Order No. HWB 15-18 (P), State of New Mexico Before the Secretary of the Environment in the Matter of Proposed Permit Modification for Sandia National Laboratories, EPA ID #5890110518, To Determine Corrective Action Complete with Controls at the Mixed Waste Landfill (NMED February 2016).* As of March 13, 2016, the February 2016 Final Order became effective, granting the Class 3 Permit Modification to reflect that the MWL is Corrective Action Complete with Controls. All controls required for the MWL are defined in the LTMMP that was approved by the NMED on January 8, 2014 (Blaine January 2014) and is included by reference in Attachment M of the Permit (Kieling February 2016). Long-term monitoring and maintenance activities are conducted in accordance with the Permit (NMED January 2015, with all approved modifications).

1.1 Purpose and Scope

The purpose and scope of this Annual LTMM Report is to document monitoring, inspection, maintenance, and repair activities conducted during the April 1, 2022 through March 31, 2023 annual reporting period, as required by Section 4.8.1 of the LTMMP.


1.2 **Report Organization**

This report is organized as follows:

- Chapter 1 presents background information, purpose and scope, and report organization.
- Chapter 2 presents LTMMP monitoring and inspection requirements.
- Chapter 3 presents radon monitoring activities and results.
- Chapter 4 presents tritium surface soil monitoring activities and results.
- Chapter 5 presents vadose zone soil-vapor monitoring activities and results.
- Chapter 6 presents vadose zone soil-moisture monitoring activities and results.
- Chapter 7 presents groundwater monitoring activities and results.
- Chapter 8 presents biota monitoring activities and results.
- Chapter 9 presents inspection, maintenance, and repair activities and results.
- Chapter 10 summarizes regulatory activities.
- Chapter 11 presents a general summary and conclusions for the reporting period.
- Chapter 12 lists the references cited in this report.

Annexes to this report provide supporting information as follows:

- Annex A Radon Monitoring Forms and Reports
- Annex B Surface Soil Tritium and Biota Monitoring Forms and Reports
- Annex C Soil-Vapor Monitoring Forms and Reports
- Annex D Soil-Moisture Monitoring Forms
- Annex E Groundwater Monitoring Forms and Reports
- Annex F Inspection Forms
- Annex G Biology Report

April 2022 - March 2023

This page intentionally left blank.

2.0 MONITORING AND INSPECTION REQUIREMENTS

Monitoring, inspection, maintenance, and repair requirements are defined in Chapters 3 and 4 of the MWL LTMMP (SNL/NM March 2012) and are briefly summarized in this chapter. Monitoring requirements are described in Section 2.1 and resulting empirical data are evaluated to assess site conditions. Inspection requirements are described in Section 2.2 and include requirements to perform maintenance and/or repairs. These activities ensure the physical controls at the MWL are maintained, perform as designed, and provide the information needed to assess ET Cover performance and site conditions.

2.1 Monitoring Requirements

The primary objective of MWL monitoring activities is to ensure that the ET Cover and site conditions are protective of human health and the environment. Monitoring activities include sampling and analysis of air, surface soil, vadose zone soil moisture and soil vapor, groundwater, and biota. The multi-media monitoring program is summarized in Table 2-1, which presents information for each monitoring activity, including the sampling media, monitoring parameters, frequency, number of samples, locations, and monitoring methods. Radon monitoring is performed over two six-month periods instead of one twelve-month period due to time exposure limitations of the detectors. Vadose zone soil-vapor monitoring was transitioned to an annual frequency this reporting period after an extended period of semiannual sampling (eight years instead of three years) as a best practice (i.e., higher frequency than required) to help keep the sample port and tubing clear (Section 5.1).

The data quality objective (DQO) of all monitoring activities is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective. The DQO is accomplished through implementation of standard operating procedures and current analytical procedures/methods, including quality assurance measures, quality control (QC) samples, and data evaluation protocols. Monitoring results are compared to trigger levels defined in LTMMP Section 5.2 and historical MWL monitoring results.

Sampling and Analysis Plans (SAPs) for each monitoring activity are included in the LTMMP, Appendices C through G. Results for monitoring activities conducted at the MWL during the April 1, 2022 through March 31, 2023 reporting period are presented in Chapters 3 through 8.

2.2 Inspection, Maintenance, and Repair Requirements

The primary objective of MWL inspection, maintenance, and repair activities is to ensure that the ET Cover, other physical controls at the site (e.g., surface-water diversion features and perimeter security fence), and the monitoring systems (groundwater and vadose zone networks) perform as designed.

Inspection parameters, specifications, frequency, and repair requirements are detailed in Chapter 4 of the LTMMP and summarized in Table 2-2. Repair work is initiated, as needed, based upon the results of the inspections and tracked to completion on the respective

Table 2-1
Mixed Waste Landfill Monitoring Parameters, Frequencies, and Methods

Sampling Media	Monitoring Parameters ^a / Constituents of Concern	Monitoring Frequency ^a	Number of Samples Per Event	Monitoring Locations	Monitoring Method ^b	Comments
Air	Radon-222	Year 1 – Quarterly Year 2 – Quarterly Year 3 – Semiannual Year 4 – Semiannual Year 5 and subsequent years – Annual	17	10 detectors placed at corners and midpoints of perimeter fence 5 detectors placed on completed cover 2 detectors at background locations	Radon detectors (at breathing zone height) capable of long exposure periods; sampling and analysis per LTMMP Appendix C	Samples are time- weighted average and will be collected over a 3-month to 1-year period. The first quarterly monitoring period begins in January of each year.
Surface Soil	Tritium	Annual	4	One sample collected from each corner of the ET Cover	Grab samples of soil collected; moisture extracted and analyzed for tritium using liquid scintillation per LTMMP Appendix G	Samples collected from the MWL ground surface at the four corners of the ET Cover.
Vadose Zone	VOCs in soil vapor	Year 1 – Semiannual Year 2 – Semiannual Year 3 – Semiannual Year 4 and subsequent years – Annual	17	Samples collected from 2 single-port soil-vapor monitoring points installed through the ET Cover (MWL-SV01 and MWL-SV02) and 3 perimeter multi-port FLUTe™ wells (MWL-SV03, MWL-SV04, and MWL-SV05)	Sampling and analysis of soil vapor per LTMMP Appendix D	MWL-SV01 and MWL-SV02 have a sampling port approximately 35 ft below the original ground surface. MWL-SV03, MWL-SV04, and MWL-SV05 have sampling ports at depths of approximately 50, 100, 200, 300, and 400 ft bgs.
Vadose Zone	Moisture content beneath the ET Cover	Year 1 – Semiannual Year 2 – Semiannual Year 3 and subsequent years – Annual	171	3 soil-moisture monitoring access tubes Measurements obtained at 1-ft increments from 4 ft to 25 ft bgs, then 5-ft increments to total depth of the access tube (200 linear ft)	Soil-moisture monitoring per LTMMP Appendix E	Moisture content in vadose zone beneath the cover is measured using a neutron probe to evaluate moisture infiltration through the ET Cover.

Refer to footnotes at end of table.

Table 2-1 (Concluded) Mixed Waste Landfill Monitoring Parameters, Frequencies, and Methods

Sampling Media	Monitoring Parameters ^a / Constituents of Concern	Monitoring Frequency ^a	Number of Samples Per Event	Monitoring Locations	Monitoring Method ^b	Comments
Groundwater	VOCs, metals ^c , tritium, radon, gamma- emitting radionuclides ^d , and gross alpha/beta activity	Semiannual	4	MWL compliance groundwater monitoring well network: MWL-BW2, MWL-MW7, MWL-MW8, and MWL-MW9	Sampling and analysis of groundwater samples per LTMMP Appendix F	Monitoring wells MWL-MW4, MWL-MW5, and MWL-MW6 retained for monitoring groundwater elevation only.
Biota – Surface Soil	Metals ^e and gamma- emitting radionuclides ^f	Annual	Up to 4 (2 each, if they exist)	Variable - ant hills and animal burrows on the ET Cover located during ET Cover inspections, if present	Grab sampling and analysis of surface soil at animal burrow and/or ant hill features per LTMMP Appendix G	If no features are identified, no samples will be collected.
Biota – Cover Vegetation	Gamma- emitting radionuclides ^f in vegetation	Annual	Up to 2 if they exist	Variable - potentially deep-rooted vegetation overlying former disposal areas located during ET Cover inspections, if present	Grab sampling and analysis of vegetation, including the plant and root system per LTMMP Appendix G	If no potentially deep- rooted plants are present, no samples will be collected.

Notes:

fRadionuclide results reported for biota include cesium-137, cobalt-60, radium-226, thorium-232, uranium-235, and uranium-238.

bgs = Below ground surface. LTMMP = Long-Term Monitoring and Maintenance Plan.

ET = Evapotranspirative. MWL = Mixed Waste Landfill.

FLUTe™ = Flexible Liner Underground Technologies, Ltd.™ RCRA = Resource Conservation and Recovery Act.

ft = Foot (feet). VOC = Volatile organic compound.

^aMonitoring parameters and frequency will be reevaluated every five years in the Five-Year Report. Frequency may be more conservative than required (e.g., Year 5 and subsequent years for radon air monitoring can be quarterly or semiannual versus annual).

^bSampling and Analysis Plans and sampling requirements are provided in appendices of the MWL LTMMP (SNL/NM March 2012).

^cRequired metals analyses include cadmium, chromium, nickel, and uranium (SNL/NM March 2012).

^dRadionuclide results reported for groundwater include americium-241, cesium-137, and cobalt-60.

eRequired metals analyses include RCRA metals plus copper, nickel, vanadium, zinc, cobalt, and beryllium (SNL/NM March 2012).

Table 2-2
Mixed Waste Landfill Inspection, Maintenance, and Repair Requirements

MWL System to be Inspected	Inspection Frequency/ Performed by	Inspection Parameters	Maintenance Implementation	Maintenance/ Repair Frequency ^a
ET Cover Surface	Quarterly until vegetation is established, annually	Vegetation Inventory	Soil augmentations and/or reseeding	Within 60 days of discovery of needed
Biology Inspection	thereafter by a staff biologist ^b	Contiguous areas of no vegetation >200 ft ²	Revegetate barren areas that exceed prescribed limits	repairs. Reseeding repairs
(Cover vegetation and signs of animal activity)		Animal intrusion burrows in excess of 4 inches in diameter	Repair cover system damage that exceeds prescribed limits	may be delayed to wait for the appropriate growing season.
ET Cover System (Surface)	Quarterly by a field technician	Settlement of cover surface in excess of 6 inches	Repair cover system damage that exceeds prescribed limits	Within 60 days of discovery of needed
		Erosion of cover soil in excess of 6 inches deep		repairs. Reseeding repairs
		Ponding of water on the ET Cover surface in excess of 100 ft ²		may be delayed to wait for the
		Animal intrusion burrows in excess of 4 inches in diameter		appropriate growing season.
		Contiguous areas of no vegetation >200 ft ^{2 c}	Revegetate barren areas that exceed prescribed limits ^c	Within 60 days of discovery of needed repairs.
ET Cover Surface-Water (Storm water) Drainage Features	Quarterly by a field technician	Channel or sidewall erosion in excess of 6 inches deep	Repair erosion that exceeds prescribed limits	Within 60 days of discovery of needed
		Accumulations of sediment in excess of 6 inches deep or debris that blocks more than 1/3 of the channel width	Remove sediment and debris accumulations that exceed prescribed limits	repairs.
Soil-Vapor Monitoring Wells, Soil- Moisture Monitoring Access	Groundwater and Vadose Zone Network	Concrete pads, stanchions, and protective casings	Maintain, clean, repair, replace, re-label, as appropriate	Within 60 days of discovery of needed
Tubes, and Groundwater Monitoring Wells	Components: Field technician to inspect at	Well cover caps and Swagelok® (or equivalent) dust caps		repairs.
Worldwing Wells	same frequency/time that	Monitoring wells and soil-vapor		
	monitoring occurs	sampling port labels Locks		
		Sampling pumps and tubing		
		Neutron probe and cable system	1	

Refer to footnotes at end of table.

Table 2-2 (Concluded) Mixed Waste Landfill Inspection, Maintenance, and Repair Requirements

MWL System to be Inspected	Inspection Frequency/ Performed by	Inspection Parameters	Maintenance Implementation	Maintenance/ Repair Frequency ^a
ET Cover Physical Controls	Quarterly by a field technician	Presence of windblown plants and debris Condition of fence wires, posts, gates, gate locks, warning signs, and survey monuments in the local area	Remove windblown plants and debris Repair broken wire sections and posts, repair/oil gates, clean/replace locks, repair/replace warning signs, clear dirt/debris from monuments	Within 60 days of discovery of needed repairs.

Notes:

> = Greater than. ET = Evapotranspirative.

ft² = Square feet.

MWL = Mixed Waste Landfill.

^aMaintenance/repairs will be performed as necessary, based upon the results of inspections.

^bThe transition from quarterly to annual inspections by a staff biologist is based upon meeting successful revegetation criteria as determined by the staff biologist (SNL/NM March 2012), which occurred as of the August 2014 growing season inspection.

^cBarren areas exceeding >200 ft² will not require corrective action after ET Cover vegetation is determined to have met successful revegetation criteria if they are the result of relatively short-term climate stresses (e.g., severe short-term drought), and the staff biologist determines they will naturally fill in over time. However, these areas will be noted and tracked during inspections and reviewed annually by the staff biologist to determine whether action is required based upon comparison to surrounding vegetation.

inspection forms. Example long-term monitoring inspection checklists/forms are contained in the LTMMP, Appendix I. Results of inspection activities conducted at the MWL during the subject reporting period are presented in Chapter 9. The following sections provide additional background information on the ET Cover, inspections, and associated maintenance/repairs.

2.2.1 ET Cover

The ET Cover consists of four main layers: Compacted Subgrade, Rock Biointrusion, Compacted Native Soil, and Topsoil Layers (Figure 2-1). A thin soil layer was placed on top of the Biointrusion Layer to fill void space and create an even surface upon which the Native Soil Layer was constructed. The Compacted Subgrade varies in thickness from 0 to 3.3 feet and the combined average thickness of the overlying ET Cover layers is 5.37 feet. The Topsoil Layer was seeded with native grasses to mitigate surface erosion and promote evapotranspiration. The native grass species were selected based upon biological assessments of Technical Area-III (Sullivan and Knight 1992; Peace et al. November 2004). As shown in Figure 2-1, the as-constructed thickness of the ET Cover layers exceeds as-designed thicknesses, resulting in a more protective ET Cover. A conceptual schematic profile of the ET Cover and how it works is provided in Figure 2-2.

The ET Cover surface slopes gently to the west (2 percent slope) and sheds surface-water runoff to the west and down the side slopes. An engineered drainage swale located immediately east, north, and south of the ET Cover diverts surface-water run-on from the east (upgradient) side of the ET Cover and run-off from the side slopes around the northern and southern ends of the ET Cover to the west (Figure 2-3). As documented in the June 2017 MWL Annual LTMM Report, from November 2016 through February 2017 the site access road was improved. The surface of the road was raised, road ditches were installed on each side, and culverts were installed (SNL/NM June 2017). These improvements provide additional site drainage control, intercepting surface water and channeling it away from the ET Cover area.

2.2.2 ET Cover Biology Inspection

ET Cover vegetation monitoring was accomplished in two phases. The first phase of quarterly inspections by the staff biologist focused on establishing native vegetation on the ET Cover such that successful revegetation criteria were met as defined in Section 4.1 of the LTMMP. The August 2014 Biology Inspection was the last quarterly inspection conducted as part of the first phase. After completion of the first phase, the second phase of annual inspections began that are performed near the end of the growing season (August–September) to determine the coverage of living plants. The staff biologist documents the flora coverage and signs of animal and insect activity during these annual inspections.

Damage to cover vegetation that exceeds the criteria listed in Section 4.2.2 of the LTMMP is noted on the Biology Inspection Checklist/Form and appropriate maintenance/repairs must be completed within 60 days of the inspection. Reseeding repairs may be delayed until the appropriate time during the growing season (Table 2-2).

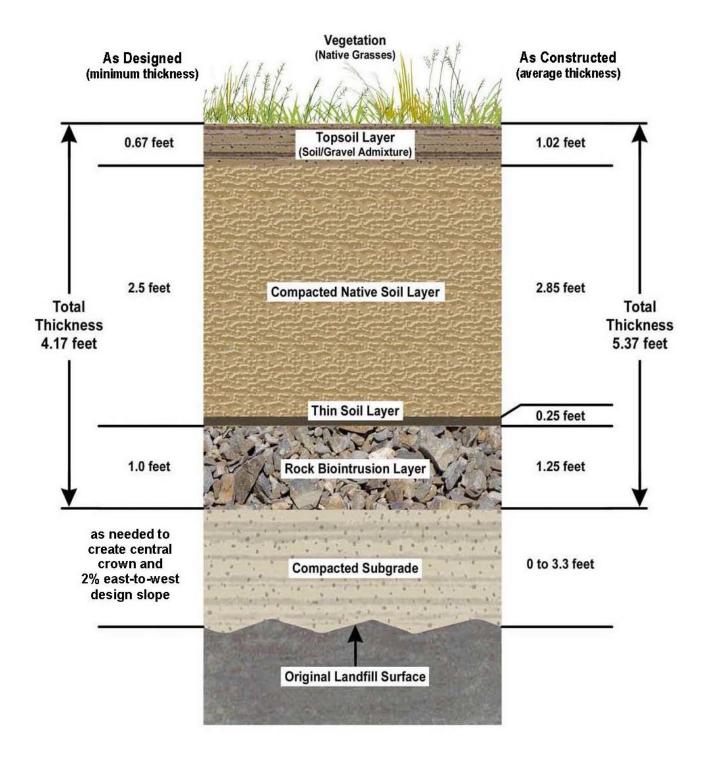


Figure 2-1
Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover Layers

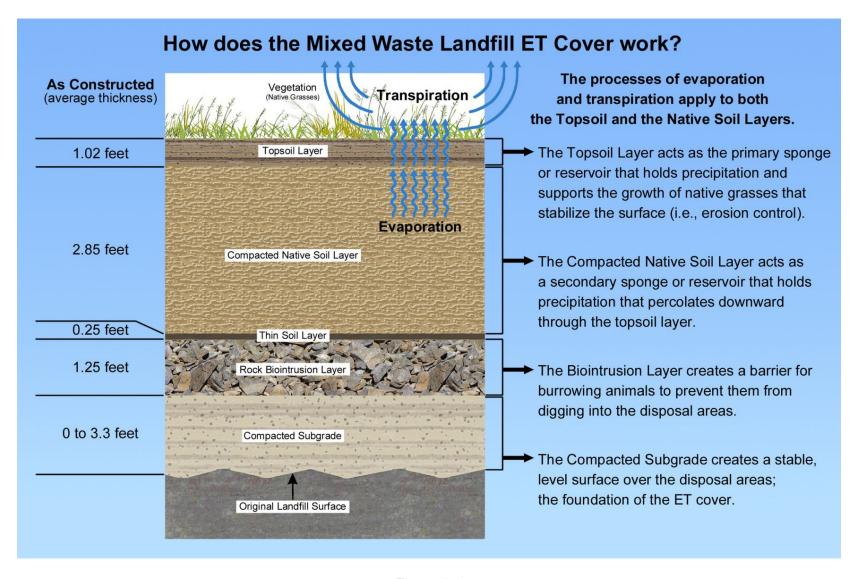


Figure 2-2
Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover and How it Works

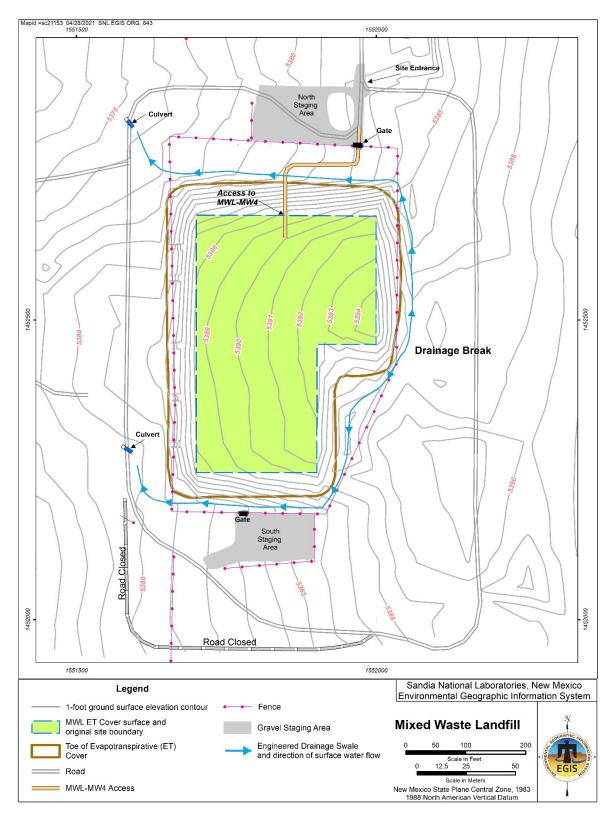


Figure 2-3
Mixed Waste Landfill Engineered Storm-Water Drainage Swale

At the end of each reporting year, the staff biologist summarizes the results of the annual inspection, presents local climate trends, and makes recommendations in a summary Biology Report included in the Annual LTMM Report (Annex G). The annual Biology Inspection Checklist/Form is also included in the Annual LTMM Report (Annex F).

2.2.3 ET Cover Surface and Physical Controls Inspection

The ET Cover surface, side slopes, and physical controls (i.e., storm-water drainage swale, security fence, locks, gates, signs, and survey monuments) are inspected by a field technician on a quarterly basis. Inspection parameters, specifications, frequency, and required maintenance/repair activities for the ET Cover are summarized in Table 2-2. Documentation of animal burrows more than four inches in diameter and contiguous areas lacking vegetation in excess of 200 square feet are noted on both the quarterly Cover Inspection and annual Biology Inspection Checklists/Forms. If inspection item specifications are exceeded, they will be noted on the Cover Inspection Checklist/Form and appropriate maintenance/repairs will be completed within 60 days of the inspection. Reseeding repairs may be delayed until the appropriate time during the growing season (Table 2-2).

2.2.4 Monitoring Networks and Sampling Equipment

Groundwater monitoring wells, soil-vapor monitoring wells, soil-moisture monitoring access tubes, and associated sampling/monitoring equipment are inspected during each monitoring event (i.e., they are inspected at the same frequency as the required monitoring). All inspection parameters, specifications, and required maintenance/repair activities are detailed in Table 2-2. The inspections and any associated maintenance and repair activities are documented on monitoring network-specific inspection checklists/forms. There is a separate inspection checklist/form for each of the three monitoring networks and associated sampling/monitoring equipment.

If conditions are observed that require maintenance, repair, or replacement, they will be noted on the associated Monitoring Network Inspection Checklist/Form and appropriate actions will be completed within 60 days (Table 2-2).

3.0 RADON MONITORING RESULTS

This chapter presents radon monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.2.1 and Appendix C (SNL/NM March 2012). The monitoring objective is to collect data to evaluate radon gas flux (i.e., movement of radon-222) to the atmosphere at the MWL. This monitoring provides an early warning detection system for changing conditions so that timely action can be taken, if necessary. The trigger level, defined in LTMMP Section 5.2.1, applies only to results from the monitoring stations located along the perimeter security fence (locations RN1 through RN10).

Radon monitoring field activities are described in Section 3.1, analytical laboratory results and a discussion of data quality are presented in Section 3.2, and data evaluation requirements and a comparison of results to the trigger level are presented in Section 3.3. A summary of radon monitoring activities and results is provided in Section 11.1.

3.1 Radon Sampling Field Activities

Monitoring was conducted covering calendar year (CY) 2022, fulfilling the LTMMP minimum requirement of annual monitoring. Radon monitoring presented for this April 1, 2022 through March 31, 2023 reporting period covers the period January 17, 2022 through January 16, 2023.

The radon air measurements were obtained using alpha-track radon gas detectors manufactured by Radonova (formerly Landauer® Nordic). Radonova introduced Radtrak3® detectors in CY 2022 that replaced the older model Radtrak2® detectors. The Radtrak3® detectors are more sensitive (i.e., lower detection limit) than the Radtrak2® detectors. Radtrak2® detectors were used for the first six-month monitoring event and Radtrak3® detectors were used for the second six-month monitoring event during CY 2022.

Radon sampling locations are designated as RN1 through RN17 and are shown in Figure 3-1. Locations RN1 through RN10 are located on the perimeter security fence and are the compliance locations to which the trigger level applies. Locations RN11 through RN15 are located on the ET Cover surface directly above pits and trenches with known sealed radium-226 sources. Radon is generated by the decay of radium-226, so results from these locations provide an early warning if sealed sources degrade. Locations RN16 and RN17 are background locations established away from the MWL, but in the general vicinity. Table 3-1 presents the dates of deployment and collection, location number, time-weighted average radon air concentrations in picocuries per liter (pCi/L) for each six-month period, and the CY 2022 range of radon air concentrations.

Radon monitoring results were reviewed and evaluated by an SNL/NM Health Physics subject matter expert (SME) and documented in a data evaluation memorandum. The SME data evaluation memoranda, which include the Analysis Request/Chain-of-Custody form (AR/COCs), the laboratory report, and a map showing all monitoring locations, are provided in Annex A. The results of CY 2022 radon monitoring are summarized in Section 3.2.1.

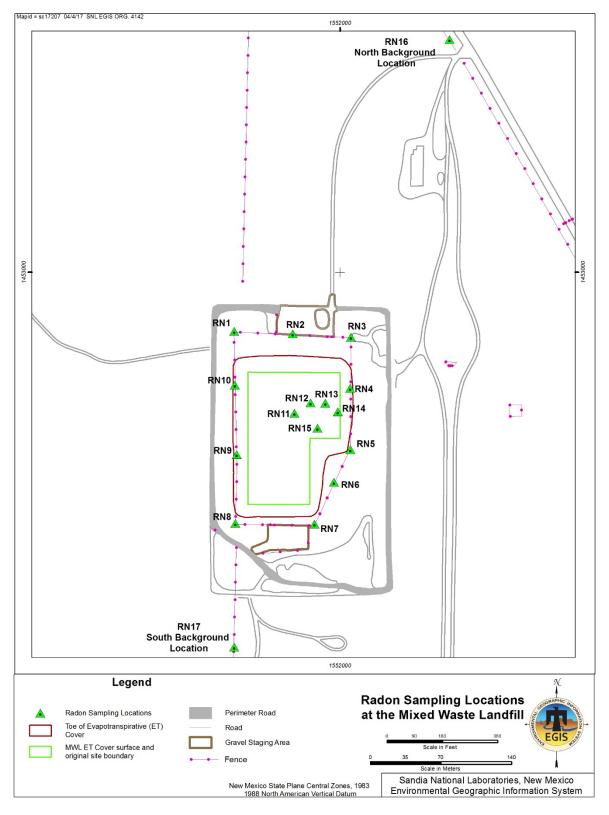


Figure 3-1
Mixed Waste Landfill Radon Detector Locations

Table 3-1 Summary of Radon Results Mixed Waste Landfill Air Monitoring Calendar Year 2022

	1st Half CY 2022		2 nd Half CY 2022			
	Detector Deployment	Detector	Detector Deployment	Detector		
	Date	Collection Date	Date	Collection Date	CY 2022	
	1/17/2022	7/18/2022	7/18/2022	1/16/2023	Radon Air Concentration	Trigger Level
Sample Location ^a	Semiannual Tir	ne-Weighted Averag	ge Radon Air Concentration (pCi/L)		Range (pCi/L)	(pCi/L)
RN1	<0.3 ^b		0.3 ± 0.2		<0.3 to 0.3	4
RN2	0.3 ± 0.1		0.4 ± 0.1		0.3 to 0.4	4
RN3	0.4 ± 0.2		0.3 ± 0.2		0.3 to 0.4	4
RN4	0.3 ± 0.2		0.4 ± 0.1		0.3 to 0.4	4
RN5	0.2 ± 0.1		0.5 ± 0.2		0.2 to 0.5	4
RN6	0.2 ± 0.1		0.4 ± 0.2		0.2 to 0.4	4
RN7	0.4 ± 0.2		0.4 ± 0.2		0.4	4
RN8	0.2 ± 0.1		0.5 ± 0.2		0.2 to 0.5	4
RN9	0.2 ± 0.1		0.5 ± 0.2		0.2 to 0.5	4
RN10	<0.2 ^b		0.4 ± 0.2		<0.2 to 0.4	4
RN11	<0.2 ^b		0.4 ± 0.2		<0.2 to 0.4	NA
RN12	0.6 ± 0.2		0.3 ± 0.2		0.3 to 0.6	NA
RN13	0.6 ± 0.2		0.3 ± 0.2		0.3 to 0.6	NA
RN14	0.2 ± 0.1		0.4 ± 0.2		0.2 to 0.4	NA
RN15	0.3 ± 0.2		0.4 ± 0.2		0.3 to 0.4	NA
RN16	0.2 ± 0.2		0.3 ± 0.2		0.2 to 0.3	NA
RN17	0.4 ± 0.2		0.3 ± 0.2		0.3 to 0.4	NA
RNTB	<0.2 ^b		<0.3 ^b		<0.2 to <0.3	NA

Notes:

< = Less than.
CY = Calendar year.
NA = Not applicable.

pCi/L = Picocuries per liter.

RNTB = Trip blank.

^aBolded sample locations are the compliance locations where the trigger level applies.

^bNot detected, result is less than the minimum detectable activity.

3.1.1 Radon Monitoring Detector Deployment and Collection

The Radtrak2® (first six-month period) and Radtrak3® (second six-month period) radon detectors were deployed and collected on a semiannual or six-month schedule in CY 2022 at the 17 monitoring locations. The results correspond to the time periods mid-January through mid-July 2022 and mid-July 2022 through mid-January 2023 (Table 3-1). During the months between deployment and collection, inspections were conducted as a best practice to ensure the deployed detectors and associated protective housing were in good condition. All detectors were observed in good condition during the monitoring period and at the times of collection. Minor maintenance to remove spider webs and maintain the protective housing at each monitoring location was performed at the time of the inspections. Deployment/collection and monthly inspection forms are included in Annex A.

3.1.2 Field Quality Control

Field QC measures associated with each monitoring period include two types of samples, one field control sample (trip blank) and two field background samples (RN16 and RN17). The trip blank sample is used to confirm detectors were not contaminated during storage and shipment to the analytical laboratory. Two field background samples were collected at areas outside of the MWL, but within Technical Area-III, to confirm natural radon activities in the vicinity of the MWL (Figure 3-1). The two field background sample results were compared to results from detectors located immediately above the disposal areas (RN11 through RN15) and around the perimeter (RN1 through RN10).

3.1.3 Waste Management

No waste is generated during radon monitoring field activities.

3.2 Laboratory Results

This section summarizes radon air monitoring results for CY 2022. The detectors were submitted to Radonova for analysis. Laboratory reports and contract verification reviews are filed in the SNL/NM Record Center and included in Annex A.

3.2.1 Environmental Sample Results

The compiled semiannual monitoring results are presented in Table 3-1. The CY 2022 range of results for all monitoring locations was less than 0.2 (i.e., not detected) to 0.6 pCi/L. The background location results were 0.2 to 0.3 pCi/L (at RN16) and 0.3 to 0.4 pCi/L (at RN17). No sample locations exceeded the trigger level of 4 pCi/L and all results confirm low levels of radon consistent with natural background levels and historical results.

3.2.2 Field Quality Control Sample Results

A trip blank (designated as RNTB in Table 3-1) was submitted with the detectors collected at the end of each semiannual sampling period. For the two six-month monitoring periods, the trip blank results were non-detections (Table 3-1). These results indicate the other detectors were not exposed to radon during shipping and/or at the laboratory.

The two field background sample results (RN16 and RN17) for the two six-month monitoring periods were similar to the semiannual monitoring results for detectors RN1 through RN15 and confirm radon activities in air at the MWL are equivalent to background conditions.

3.2.3 Data Quality

There were no data quality issues associated with the two semiannual or six-month monitoring periods. All data were determined to be acceptable and met the DQOs.

3.2.4 Variances

There were no variances from the LTMMP radon monitoring requirements.

3.3 Data Evaluation and Monitoring Trigger Level

The trigger level for radon in air is 4 pCi/L (time-weighted average), which applies to detectors RN1 through RN10 located on the perimeter fence. The trigger level of 4 pCi/L is the same as the EPA-recommended action level for radon in households. There was no exceedance of the 4 pCi/L trigger level at any of the radon monitoring locations during CY 2022. The highest reported CY 2022 result was 0.6 pCi/L at locations RN12 and RN13 (first six-month monitoring period) located on the ET Cover. These results were similar to the background location results and confirm low levels of radon activity in air at the MWL consistent with natural background levels and historical results. These results indicate there were no releases of radon gas associated with sealed radium-226 sources in the disposal areas.

April 2022 - March 2023

This page intentionally left blank.

4.0 TRITIUM SURFACE SOIL MONITORING RESULTS

This chapter presents tritium monitoring field activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.3 and Appendix G (SNL/NM March 2012). The monitoring objective is to collect data to evaluate tritium flux (i.e., movement) to the atmosphere from soil moisture in surface soil at the MWL. This monitoring provides an early warning detection system for changing conditions so that timely action can be taken, if necessary. Results are compared to the trigger level defined in LTMMP Section 5.2.2.1.

Tritium surface soil monitoring field activities are described in Section 4.1, analytical laboratory results and a discussion of data quality are presented in Section 4.2, and data evaluation and a comparison of results to the trigger level are presented in Section 4.3. A summary of tritium surface soil monitoring activities and results is provided in Section 11.1.

4.1 Tritium Surface Soil Monitoring Field Activities

Surface soil samples were collected at the four ET Cover corner monitoring locations on June 23, 2022, fulfilling the annual monitoring requirement (Figure 4-1). Samples were collected during the New Mexico monsoon season to ensure adequate soil moisture for analysis. Monitoring results were reviewed and evaluated by an SNL/NM Health Physics SME. Annex B contains the data evaluation memoranda prepared by the Health Physics SME, contract verification and data validation reviews, and AR/COC forms. The June 2022 results are presented in the following sections.

4.1.1 Field Quality Control

A field QC sample (environmental duplicate soil sample) was collected as part of the June 23, 2022 tritium sampling event in accordance with the Tritium and Biota SAP (Appendix G, Table G-4.2-1 of the LTMMP), which requires that one environmental and environmental-duplicate sample pair be collected for every 20 environmental samples or 1 per sample batch sent to the laboratory. The environmental-duplicate sample pair for the June 2022 sampling event was collected at the northeast corner of the ET Cover, tritium monitoring location MWL TS-2NE (Figure 4-1).

4.1.2 Waste Management

Waste generated during sampling activities, which included personal protective equipment (PPE) (i.e., gloves) and decontamination wipes, was managed in accordance with all applicable requirements. Process knowledge and sampling event analytical results were used to characterize the waste. Based upon this information, the waste was managed as non-hazardous solid waste.

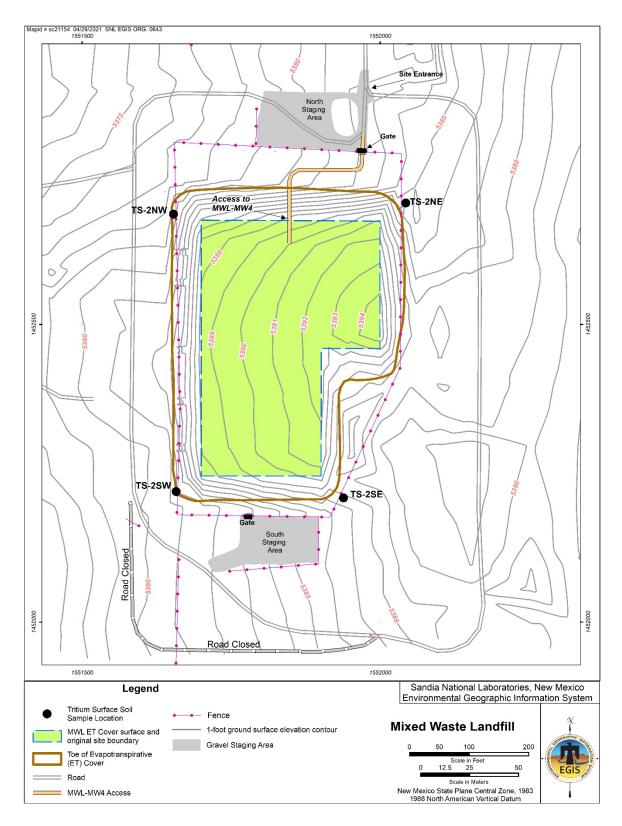


Figure 4-1
Mixed Waste Landfill Tritium Surface Soil Sampling Locations

4.2 Laboratory Results

Soil samples and field QC samples were submitted to GEL Laboratories, LLC. (GEL) for analyses. Samples were analyzed by liquid scintillation in accordance with EPA Method 906.0. Tritium activity is measured in water extracted from the soil sample, so analytical results are sensitive to in-situ moisture content. Analytical results that are below the minimum detectable activity (MDA) are qualified with a "U" and are considered non-detections. Analytical laboratory reports, including certificates of analyses, analytical methods, sample results, dates of analyses, results of QC analyses, and data validation reports are filed in the SNL/NM Record Center.

4.2.1 Environmental Sample Results

Table 4-1 summarizes the tritium surface soil results for the June 2022 sampling event. Similar to previous years, tritium was not detected in any of the samples. Reported activities were all below the MDA. All samples had good soil-moisture content, ranging from 6.11 to 9.29 percent by mass, and the MDA ranged from 145 pCi/L to 206 pCi/L. The results are consistent with historical results and are below the trigger level of 20,000 pCi/L.

4.2.2 Field Quality Control Sample Results

The relative percent difference (RPD) between the environmental sample and corresponding environmental duplicate result is calculated if both samples have results greater than the MDA. Tritium was not detected above the MDA in the environmental-duplicate sample pair; therefore, an RPD value was not calculated.

4.2.3 Laboratory Quality Control and Data Quality

Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and the EPA method. These included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All radiochemical data were reviewed and qualified in accordance with SNL/NM Administrative Operating Procedure (AOP) AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2020).

Based upon data validation and review criteria, all tritium results were determined to be acceptable and met the DQOs. Laboratory QC sample results comply with analytical method and laboratory procedure requirements. Annex B includes data validation and contract verification reviews.

4.2.4 Variances

There were no variances from the LTMMP tritium monitoring requirements.

Table 4-1 Summary of Tritium Results (EPA Method 906.0a) Mixed Waste Landfill Surface Soil Monitoring June 2022

Sample Location	Result (pCi/L)	Percent Soil Moisture	MDA (pCi/L)	Laboratory Qualifier ^b	Validation Qualifier ^b	Trigger Level (pCi/L)
MWL TS-2NW	100	8.54	206	U	BD, FR3	
MWL TS-2SW	106	9.29	145	U	BD, FR3	
MWL TS-2SE	64.9	8.56	145	U	BD, FR3	20,000
MWL TS-2NE	58.9	8.45	148	U	BD, FR3	20,000
MWL TS-2NE (Duplicate)	37.6	6.11	159	U	BD, FR3	

Notes:

^aEPA, 1980. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^bLaboratory/Validation Qualifier

Laboratory Qualifier

= Analyte activity is below the detection limit.

Validation Qualifier

BD = Result that is not statistically different from zero.

FR3 = Result is less than the MDA or less than the 2-sigma total propagated uncertainty.

EPA = U.S. Environmental Protection Agency.

MDA = Minimum detectable activity.

MWL = Mixed Waste Landfill. pCi/L = Picocuries per liter.

4.3 **Data Evaluation and Monitoring Trigger Level**

The trigger level for tritium as measured in soil moisture from surface soil samples is 20,000 pCi/L. No June 2022 sample results exceeded the trigger level.

Tritium is the primary contaminant of concern and the most mobile radionuclide at the MWL. Surface soil sampling for tritium has been conducted at the MWL since August 1985 at various locations at and around the perimeter of the MWL. The tritium sampling being performed under the LTMMP is a continuation of this monitoring effort. The June 2022 results are consistent with historical data and reflect very low levels of tritium activity that are below the laboratory MDA. The results are consistent with the short half-life of tritium (12.30 years), indicate tritium is decaying over time, and that there are no new releases from the disposal areas.

5.0 SOIL-VAPOR MONITORING RESULTS

This chapter presents soil-vapor monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.4.1 and Appendix D (SNL/NM March 2012). The soil-vapor monitoring objective is to provide spatial and temporal concentration data for volatile organic compounds (VOCs) in the soil vapor at various depths throughout the approximately 500-foot-thick vadose zone (i.e., unsaturated soil and sediments above the Regional Aquifer) beneath the MWL. These monitoring data serve as an early warning detection system for the protection of groundwater so that timely action can be taken, if necessary. Results from the deepest sampling ports of the deepest soil-vapor wells are compared to trigger levels defined in LTMMP Section 5.2.3.1.

Soil-vapor monitoring field activities are described in Section 5.1; analytical laboratory results, a comparison of results to monitoring trigger levels, and a discussion of data quality are presented in Section 5.2; and historical data evaluation is presented in Section 5.3. A summary of soil-vapor monitoring activities and results is provided in Section 11.1.

5.1 Soil-Vapor Monitoring Field Activities

MWL-SV01 and MWL-SV02 are single-sampling-port wells installed through the ET Cover; each has one sampling port at depths of 42.5 and 41.5 feet below ground surface (ft bgs), respectively. MWL-SV03, MWL-SV04, and MWL-SV05 are Flexible Liner Underground Technology, Ltd.TM (FLUTeTM) multi-sampling-port wells. Each has 5 sampling ports at depths of approximately 50, 100, 200, 300, and 400 ft bgs. The locations of these five soil-vapor monitoring wells are shown in Figure 5-1.

One soil-vapor monitoring event was conducted on October 28, 2022 meeting the LTMMP annual monitoring requirement for the April 1, 2022 through March 31, 2023 reporting period. Soil-vapor samples were collected from all monitoring well sampling ports. Environmental duplicate samples were collected from two MWL-SV05 sampling ports (100 and 300 ft bgs). Field forms and documentation that address well evacuation, purge volumes, and vacuum pressure readings for each sample container are provided in Annex C.

A semiannual frequency was maintained from 2014 through 2021 (eight years of semiannual events) to ensure all sampling ports remained open and capable of providing representative samples. More frequent purging and sampling helps keep the sample ports and related tubing clear. In accordance with Table 3.1-1 of the LTMMP, three years of semiannual sampling are required prior to transitioning to annual sampling. The transition to annual sampling occurred during this April 1, 2022 through March 31, 2023 reporting period.

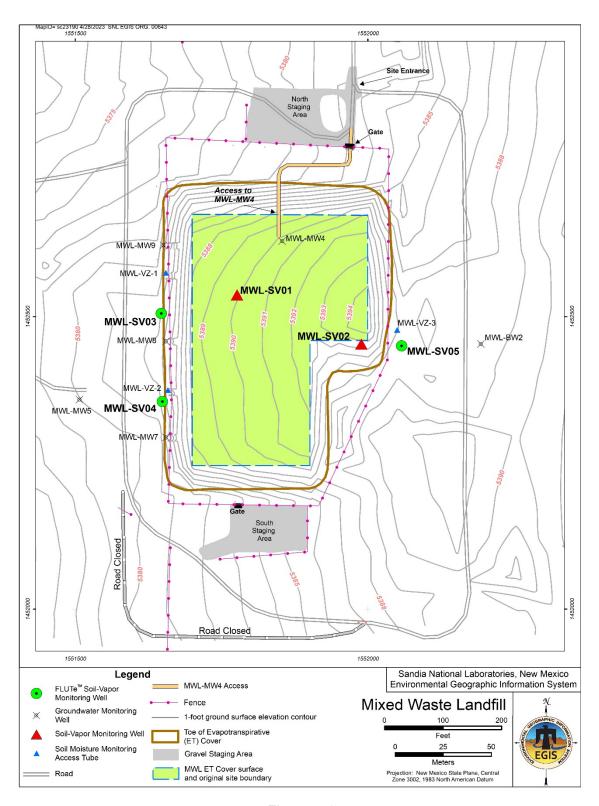


Figure 5-1
Mixed Waste Landfill Soil-Vapor Monitoring Well Locations

5.1.1 Well Purging

Purging removes stagnant air from each sampling port and associated sample tubing and draws representative soil vapor from the soil/sediment pore space surrounding the sampling port in the subsurface. All wells were purged to remove a minimum of three tubing volumes of air prior to sampling in accordance with procedures described in field operating procedure (FOP) FOP 08-22, "Soil-Vapor Monitoring" (SNL/NM October 2022) and LTMMP Appendix D. All wells were purged using a dedicated MWL vacuum pump.

5.1.2 Field Quality Control

Field QC samples include environmental duplicate samples (two per monitoring event) and field blank samples. Field QC samples were submitted for analysis with the environmental soil-vapor samples and analytical results are presented in Section 5.2.2 and Annex C. The environmental-duplicate sample pairs were collected simultaneously using a split-stream sampling manifold system (i.e., the duplicate samples were collected at the same time) to reduce variability caused by time and/or sampling mechanics.

Field blank samples were prepared in the field during sampling activities by collecting an ultrapure grade nitrogen gas sample at each monitoring well. Results were used to assess whether contamination of the samples may have resulted from ambient field conditions and/or during shipment and analysis at the laboratory.

The field QC sampling protocol for the October 2022 sampling event included the collection of an environmental-duplicate sample pair from monitoring well MWL-SV05 (sampling ports located at 100 ft bgs and 300 ft bgs). A total of five QC field blank samples were associated with the environmental samples and submitted for analysis. Field QC sample results are presented in Section 5.2.2.

5.1.3 Waste Management

A small volume of solid waste (e.g., PPE that does not come into contact with contaminants) was generated during the soil-vapor monitoring event. This waste was combined with solid waste generated during groundwater monitoring activities and managed as non-hazardous solid waste as described in Section 7.1.3.

5.2 Laboratory Results and Trigger Level Evaluation

Environmental and field QC soil-vapor samples were submitted to Eurofins TestAmerica for analyses. Samples were analyzed in accordance with EPA Method TO-15. Analytical laboratory reports, including certificates of analyses, analytical methods, method detection limits (MDLs), reporting limits, dates of analyses, and data validation reports are filed in the SNL/NM Record Center.

As defined in the LTMMP Section 5.2.3.1, trigger levels for VOCs in soil vapor are 20 parts per million by volume (ppmv) for tetrachloroethene (PCE), 20 ppmv for trichloroethene (TCE), and

25 ppmv for Total VOCs (i.e., the sum of validated detected VOC concentrations). The trigger levels apply only to samples collected from the deepest sampling port (i.e., 400 ft bgs port) in each of the three FLUTeTM multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05).

All VOC concentrations for the three deepest sampling ports are below the trigger levels. The PCE maximum concentration was 0.300 ppmv and the TCE maximum concentration was 0.190 ppmv; both from the MWL-SV03-400 environmental sample. The maximum Total VOCs concentration was 0.59960 ppmv, also from the MWL-SV03-400 environmental sample. The October 2022 VOC soil-vapor results (i.e., detections reported by the laboratory) are presented in Table 5-1 at the end of this section. Laboratory certificates of analysis that include all analytical results for environmental and field QC samples are provided in Annex C.

5.2.1 Environmental Sample Results

This section summarizes soil-vapor monitoring results for the October 28, 2022 sampling event. A summary of compounds detected is provided below and a summary of historical data (i.e., soil-vapor results collected since implementation of the LTMMP in January 2014) is presented in Section 5.3.

A total of 14 compounds were detected in October 2022 environmental samples after data validation. All of these VOCs, except chloromethane, were also detected in the November 2021 samples. The VOCs acetone and methylene chloride were reported by the laboratory as low-concentration detections above their respective MDLs but were qualified as not detected during validation due to field QC results (Section 5.2.2).

Benzene 1,1-Dichloroethene
Carbon Disulfide cis-1,2-Dichloroethene
Carbon Tetrachloride Tetrachloroethene (PCE)
Chloroform 1,1,2-Trichloro-1,2,2-trifluoroethane
Chloromethane 1,1,1-Trichloroethane
Dichlorodifluoromethane Trichloroethene (TCE)
1,1-Dichloroethane Trichlorofluoromethane

PCE and TCE are the primary VOCs of concern, exhibit the highest concentrations, and were reported at low concentrations in all environmental samples from all sampling ports. PCE was detected at concentrations ranging from 0.034 ppmv (MWL-SV02-41.5) to 0.300 ppmv (MWL-SV03-400). TCE concentrations ranged from 0.027 ppmv (MWL-SV02-41.5) to 0.200 ppmv (MWL-SV05-200). Total VOCs concentrations ranged from 0.19082 ppmv (MWL-SV04-50) to 0.70205 ppmv (MWL-SV05-200). Other VOCs detected in all monitoring wells, generally at lower concentrations, included chloroform; dichlorodifluoromethane; 1,1-dichloroethane; 1,1-dichloroethane; 1,1-dichloroethane; 1,1-dichloroethane. The highest sample port VOC concentration was the PCE result of 0.300 ppmv from MWL-SV03-400.

For the three deepest sampling ports of MWL-SV03, MWL-SV04, and MWL-SV05, PCE concentrations ranged from 0.080 ppmv (MWL-SV04-400) to 0.300 ppmv (MWL-SV03-400). TCE concentrations ranged from 0.045 ppmv (MWL-SV04-400) to 0.190 ppmv (MWL-SV03-400).

400). Total VOCs concentrations ranged from 0.22992 ppmv (MWL-SV04-400) to 0.59960 ppmv (MWL-SV03-400).

5.2.2 Field Quality Control Sample Results

As described in Section 5.1.2, the field QC sampling protocol for the October 2022 sampling event included the collection and analysis of environmental-duplicate sample pairs and field blank samples. Field QC sample results met the sampling DQOs and validated the field sampling procedures and protocol. The analytical results for each field QC sample type are presented in this section.

Table 5-2 summarizes results of environmental-duplicate sample pair analyses and the calculated RPD values for the October 2022 sample pairs. An RPD was calculated when compounds were reported in both environmental and duplicate samples at concentrations greater than or equal to five times the laboratory RL. The environmental-duplicate sample pair results and QC field blank results are summarized below.

The two environmental-duplicate sample pairs collected during the October 2022 sampling event were analyzed for all analytical parameters. The calculated RPDs show good agreement for the environmental-duplicate sample pairs, ranging from less than 1 to 14. An RPD of 50 or less demonstrates acceptable precision of the sampling and analytical processes in accordance with Appendix D of the LTMMP.

A total of five field blank samples were submitted for analysis with the October 2022 environmental samples. Validated VOC detections in field blank samples at very low concentrations include: acetone (4 samples); benzene (1 sample); 2-butanone (3 samples); ethylbenzene (1 sample); 2-hexanone (1 sample); methylene chloride (5 samples); 4-methyl-, 2-pentanone (1 sample); toluene (5 samples); TCE (1 sample); trichlorofluoromethane (1 sample); m,p-xylene (1 sample); and o-xylene (1 sample). No corrective action was required for benzene, 2-butanone, ethylbenzene, 2-hexanone, 4-methyl-, 2-pentanone, toluene, TCE, trichlorofluoromethane, m,p-xylene, or o-xylene since these compounds were not detected in associated environmental samples or were detected at concentrations greater than 5 times the field blank concentration. Acetone results for MWL-SV04-200 and MWL-SV04-400 and the methylene chloride result for MWL-SV05-200 were qualified as not detected during data validation since the environmental sample concentrations were less than the associated field blank QC sample results.

5.2.3 Laboratory Quality Control and Data Quality

Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These samples included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, surrogate spikes samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All laboratory control sample results comply with the analytical method requirements.

Table 5-2 Summary of Duplicate Samples Mixed Waste Landfill Soil-Vapor Monitoring October 2022

	Environmental Sample (R ₁)	Duplicate Sample (R ₂)	RPD ^a
Well ID/Parameter	(p)	omv)	(%)
Environmental-Duplicate Sample Pair Re	sults	·	
MWL-SV05-100			
Dichlorodifluoromethane	0.068	0.067	1
1,1-Dichloroethene	0.012	0.012	< 1
Tetrachloroethene	0.081	0.081	< 1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.070	0.069	1
1,1,1-Trichloroethane	0.0096	0.0096	< 1
Trichloroethene	0.10	0.099	1
Trichlorofluoromethane	0.14	0.14	< 1
MWL-SV05-300			
Dichlorodifluoromethane	0.038	0.040	5
1,1-Dichloroethene	0.013	0.014	7
Tetrachloroethene	0.089	0.091	2
1,1,2-Trichloro-1,2,2-trifluoroethane	0.093	0.093	< 1
Trichloroethene	0.071	0.082	14
Trichlorofluoromethane	0.026	0.030	14

Notes:

^aRPD = Relative percent difference is calculated with the following equation and rounded to nearest whole number.

$$RPD = \frac{|R_I - R_2|}{[(R_I + R_2)/2]} \times 100$$

where:

R₁ = Analysis result.

R₂ = Duplicate analysis result.

% = Percent. < = Less than. ID = Identification.

MWL-SV = Mixed Waste Landfill-soil vapor well.

ppmv = Parts per million by volume.

All chemical data were reviewed and qualified in accordance with SNL/NM AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2020). Corrective action was implemented in accordance with the data validation procedure and included qualification of specific results as documented in Table 5-1 and the data validation reviews. The October 2022 environmental sample analytical data were determined to be acceptable and meet the DQOs. Data validation reviews that include AR/COC forms, contract verification reviews, and certificates of analysis are provided in Annex C.

5.2.4 Variances

There were no variances from requirements in the LTMMP identified for the October 2022 soil-vapor monitoring activities.

5.3 **Historical Data Evaluation**

Tables 5-3, 5-4, and 5-5 summarize the 2022 and historical results for PCE, TCE, and Total VOCs, respectively, which are graphically presented in Figures 5-2 through 5-13. Trigger levels are not shown on the figures due to scale. Each table presents results for the 16 semiannual monitoring events and one annual event conducted since implementation of the LTMMP in 2014. Key points from the evaluation of the 2014 through 2022 soil-vapor monitoring results are summarized below.

- All individual VOC and Total VOC results for all monitoring well sampling ports are low concentrations (less than 0.600 and 1.150 ppmv, respectively).
- Concentrations throughout the 500-foot-thick vadose zone are relatively consistent; shallow results do not vary considerably from deeper results.
- The soil-vapor monitoring results are consistent with an old source that has slowly dissipated throughout the vadose zone through diffusion.
- The distribution of concentrations in the vadose zone indicates the VOC soil-vapor plume is stable, with no evidence of new releases from the disposal area.
- Results for the three deepest sampling ports of MWL-SV03 through MWL-SV05 (400 ft bgs) are stable and below the trigger levels.
- The VOC concentrations are generally stable or decreasing over time and indicate the VOC soil-vapor plume is not a threat to groundwater.

Table 5-3 Summary of Historical PCE Concentrations Mixed Waste Landfill Soil-Vapor Monitoring

Well ID & Sample Port Depth ^a	Sept. 2014 ^b (ppmv)	Oct. 2014 ^b (ppmv)	April 2015 ^b (ppmv)	Oct. 2015 ^b (ppmv)	April 2016 ^b (ppmv)	Oct. 2016 ^b (ppmv)	May 2017 ^b (ppmv)	Oct. 2017 ^b (ppmv)	April 2018 ^b (ppmv)	Oct. 2018 ^b (ppmv)	May 2019⁵ (ppmv)	Oct. 2019 ^b (ppmv)	May 2020 ^b (ppmv)	Nov. 2020 ^b (ppmv)	May 2021 ^b (ppmv)	Nov. 2021 ^b (ppmv)	Oct. 2022 ^b (ppmv)
MWL-SV01-42.5	0.560	0.400	0.460	0.470	0.410	0.450	0.300	0.420	0.370	0.370	0.470	0.210	0.450	0.380	0.260	0.310	0.240
MWL-SV02-41.5	0.086	0.067	0.075	0.068	0.068	0.070	0.071	0.072	0.059	0.059	0.090	0.062	0.081	0.055	0.048	0.061	0.034
MWL-SV03-50	0.140	0.120	0.150	0.110	0.170	0.140	0.100	0.140	0.130	0.130	0.210	0.150	0.160	0.150	0.140	0.100	0.120
MWL-SV03-100	0.210	0.230	0.240	0.220	0.240	0.240	0.160	0.220	0.210	0.170	0.280	0.210	0.210	0.210	0.210	0.140	0.120
MWL-SV03-200	0.300	0.320	0.310	0.290	0.270	0.270	0.210	0.260	0.240	0.210	0.280	0.180	0.230	0.260	0.230	0.170	0.150
MWL-SV03-300	0.290	0.320	0.290	0.370	0.310	0.300	0.220	0.280	0.270	0.200	0.310	0.190	0.180	0.250	0.200	0.210	0.210
MWL-SV03-400	0.390	0.400	0.420	0.450	0.430	0.440	0.390	0.310	0.370	0.320	0.450	0.230	0.320	0.240	0.320	0.140	0.300
MWL-SV04-50	0.072	0.076	0.076	0.074	0.078	0.077	0.052	0.063	0.062	0.060	0.076	0.073	0.020	0.059	0.055	0.053	0.054
MWL-SV04-100	0.130	0.120	0.120	0.120	0.130	0.130	0.089	0.110	0.110	0.120	0.110	0.073	0.100	0.120	0.100	0.100	0.096
MWL-SV04-200	0.180	0.180	0.170	0.150	0.180	0.150	0.110	0.130	0.120	0.120	0.130	0.094	0.130	0.110	0.110	0.120	0.120
MWL-SV04-300	0.110	0.130	0.110	0.120	0.130	0.130	0.095	0.120	0.098	0.110	0.130	0.110	0.110	0.110	0.110	0.110	0.089
MWL-SV04-400	0.110	0.140	0.120	0.140	0.150	0.130	0.100	0.110	0.120	0.120	0.130	0.083	0.120	0.150	0.110	0.097	0.080
MWL-SV05-50	0.052	0.048	0.055	0.040	0.060	0.045	0.044	0.021	0.045	0.040	0.050	0.047	0.035	0.039	0.042	0.042	0.038
MWL-SV05-100	0.092	0.096	0.100	0.077	0.099	0.095	0.089	0.070	0.085	0.075	0.091	0.082	0.079	0.065	0.069	0.070	0.081
MWL-SV05-200	0.140	0.170	0.150	0.120	0.170	0.140	0.140	0.100	0.130	0.120	0.150	0.140	0.120	0.140	0.110	0.110	0.150
MWL-SV05-300	0.090	0.120	0.097	0.110	0.100	0.110	0.110	0.091	0.098	0.091	0.099	0.099	0.110	0.077	0.081	0.110	0.091
MWL-SV05-400	0.100	0.110	0.080	0.120	0.110	0.110	0.100	0.092	0.092	0.081	0.100	0.110	0.098	0.084	0.080	0.089	0.097

All concentrations are not rounded so they match the reported concentrations in corresponding data tables; in some cases, a zero is added to maintain significant digit consistency. ^aPort depth is the last number in the Well ID and is in feet below ground surface.

blf an environmental duplicate sample was collected, then the maximum concentration of the environmental-duplicate sample pair is shown.

= Identification.

MWL-SV = Mixed Waste Landfill-soil vapor well.

PCE = Tetrachloroethene.

ppmv = Parts per million by volume.

Table 5-4 Summary of Historical TCE Concentrations Mixed Waste Landfill Soil-Vapor Monitoring

Well ID & Sample Port Depth ^a	Sept. 2014 ^b (ppmv)	Oct. 2014 ^b (ppmv)	April 2015 ^b (ppmv)	Oct. 2015 ^b (ppmv)	April 2016 ^b (ppmv)	Oct. 2016 ^b (ppmv)	May 2017⁵ (ppmv)	Oct. 2017 ^b (ppmv)	April 2018 ^b (ppmv)	Oct. 2018 ^b (ppmv)	May 2019⁵ (ppmv)	Oct. 2019 ^b (ppmv)	May 2020⁵ (ppmv)	Nov. 2020 ^b (ppmv)	May 2021 ^b (ppmv)	Nov. 2021 ^b (ppmv)	Oct. 2022 ^b (ppmv)
MWL-SV01-42.5	0.110	0.090	0.099	0.110	0.091	0.100	0.071	0.086	0.081	0.070	0.100	0.045	0.084	0.081	0.057	0.063	0.042
MWL-SV02-41.5	0.075	0.058	0.067	0.065	0.063	0.065	0.070	0.067	0.056	0.050	0.073	0.054	0.068	0.055	0.044	0.050	0.027
MWL-SV03-50	0.100	0.082	0.097	0.080	0.140	0.110	0.098	0.120	0.110	0.100	0.170	0.120	0.120	0.120	0.100	0.090	0.091
MWL-SV03-100	0.190	0.190	0.200	0.200	0.210	0.210	0.130	0.180	0.190	0.150	0.240	0.170	0.180	0.160	0.180	0.130	0.110
MWL-SV03-200	0.300	0.300	0.290	0.310	0.250	0.270	0.250	0.230	0.240	0.190	0.260	0.180	0.200	0.220	0.220	0.160	0.140
MWL-SV03-300	0.190	0.210	0.170	0.260	0.200	0.220	0.200	0.210	0.190	0.140	0.180	0.130	0.170	0.170	0.140	0.170	0.130
MWL-SV03-400	0.290	0.280	0.260	0.350	0.300	0.320	0.250	0.230	0.270	0.230	0.330	0.170	0.220	0.190	0.180	0.120	0.190
MWL-SV04-50	0.061	0.059	0.060	0.066	0.070	0.067	0.054	0.058	0.055	0.051	0.062	0.058	0.035	0.048	0.045	0.041	0.046
MWL-SV04-100	0.130	0.120	0.120	0.130	0.140	0.150	0.120	0.120	0.110	0.110	0.110	0.080	0.096	0.120	0.100	0.096	0.094
MWL-SV04-200	0.210	0.210	0.190	0.200	0.220	0.200	0.180	0.170	0.170	0.140	0.160	0.120	0.160	0.140	0.160	0.140	0.150
MWL-SV04-300	0.076	0.091	0.064	0.093	0.081	0.097	0.087	0.094	0.067	0.076	0.091	0.075	0.089	0.063	0.079	0.084	0.056
MWL-SV04-400	0.075	0.096	0.060	0.097	0.070	0.091	0.085	0.081	0.087	0.072	0.081	0.055	0.080	0.110	0.080	0.053	0.045
MWL-SV05-50	0.067	0.061	0.064	0.052	0.074	0.058	0.049	0.042	0.055	0.051	0.058	0.059	0.047	0.049	0.048	0.047	0.043
MWL-SV05-100	0.140	0.130	0.130	0.120	0.130	0.130	0.110	0.100	0.110	0.099	0.120	0.110	0.100	0.084	0.087	0.096	0.100
MWL-SV05-200	0.200	0.240	0.210	0.200	0.210	0.200	0.190	0.150	0.190	0.170	0.210	0.210	0.180	0.220	0.160	0.160	0.200
MWL-SV05-300	0.100	0.130	0.082	0.120	0.096	0.120	0.120	0.120	0.110	0.120	0.097	0.110	0.130	0.110	0.088	0.130	0.082
MWL-SV05-400	0.094	0.100	0.066	0.120	0.089	0.100	0.087	0.097	0.089	0.077	0.089	0.100	0.090	0.083	0.067	0.088	0.083

Notes:

All concentrations are not rounded so they match the reported concentrations in corresponding data tables; in some cases, a zero is added to maintain significant digit consistency. aPort depth is the last number in the Well ID and is in feet below ground surface.

blf an environmental duplicate sample was collected, then the maximum concentration of the environmental-duplicate sample pair is shown.

ID = Identification.

MWL-SV = Mixed Waste Landfill-soil vapor well.

ppmv = Parts per million by volume.

TCE = Trichloroethene.

Table 5-5
Summary of Historical Total VOCs Concentrations
Mixed Waste Landfill Soil-Vapor Monitoring

Well ID & Sample Port Depth ^a	Sept. 2014 ^b (ppmv)	Oct. 2014 ^b (ppmv)	April 2015 ^b (ppmv)	Oct. 2015 ^b (ppmv)	April 2016 ^b (ppmv)	Oct. 2016 ^b (ppmv)	May 2017 ^b (ppmv)	Oct. 2017 ^b (ppmv)	April 2018 ^b (ppmv)	Oct. 2018 ^b (ppmv)	May 2019 ^b (ppmv)	Oct. 2019 ^b (ppmv)	May 2020 ^b (ppmv)	Nov. 2020 ^b (ppmv)	May 2021 ^b (ppmv)	Nov. 2021 ^b (ppmv)	Oct. 2022 ^b (ppmv)
MWL-SV01-42.5	1.14010	1.00870	1.11670	1.03620	0.93510	0.97570	0.74072	0.89810	0.82938	0.76617	0.98919	0.53118	0.97060	0.82923	0.58583	0.64320	0.51628
MWL-SV02-41.5	0.71822	0.67880	0.76470	0.69150	0.71030	0.70780	0.62944	0.67594	0.62856	0.58550	0.73830	0.55429	0.67467	0.60661	0.51844	0.49784	0.37140
MWL-SV03-50	0.36957	0.31750	0.37076	0.30743	0.48016	0.42248	0.34860	0.42918	0.37492	0.37254	0.55177	0.421459	0.44393	0.43056	0.35810	0.31554	0.31085
MWL-SV03-100	0.61151	0.63820	0.69490	0.74420	0.73270	0.73682	0.53366	0.62881	0.64167	0.51641	0.79405	0.61022	0.61274	0.61284	0.59904	0.43953	0.37330
MWL-SV03-200	0.91906	0.94754	0.99016	0.93230	0.84151	0.87920	0.78555	0.78590	0.75426	0.63905	0.82572	0.58767	0.69157	0.73170	0.68124	0.49996	0.46050
MWL-SV03-300	0.64917	0.67835	0.59506	0.83120	0.68678	0.74430	0.61278	0.71640	0.64246	0.51890	0.69218	0.47090	0.56427	0.60664	0.47783	0.54864	0.50265
MWL-SV03-400	0.87270	0.81410	0.85950	0.95920	0.8798	0.89730	0.69654	0.62930	0.77359	0.67374	0.95564	0.49530	0.65647	0.51541	0.55690	0.30104	0.59960
MWL-SV04-50	0.25949	0.26359	0.28424	0.28232	0.30064	0.29728	0.23286	0.25573	0.23944	0.22375	0.25427	0.26788	0.20406	0.21711	0.19377	0.19307	0.19082
MWL-SV04-100	0.45631	0.42879	0.44346	0.46616	0.50930	0.53785	0.40932	0.43340	0.42102	0.40980	0.39089	0.287837	0.38758	0.42548	0.35855	0.36890	0.34923
MWL-SV04-200	0.68361	0.66935	0.64340	0.63160	0.72689	0.66068	0.56579	0.56287	0.58006	0.52679	0.53017	0.433208	0.57680	0.50409	0.51862	0.49749	0.49515
MWL-SV04-300	0.26624	0.32355	0.27345	0.34519	0.32831	0.37126	0.32319	0.35562	0.31116	0.30295	0.34700	0.32013	0.34070	0.30656	0.33209	0.32207	0.27477
MWL-SV04-400	0.25031	0.3246	0.26702	0.35374	0.35148	0.38251	0.31282	0.32932	0.33570	0.31229	0.32006	0.25402	0.33832	0.40556	0.31586	0.25685	0.22992
MWL-SV05-50	0.36547	0.31833	0.33990	0.30406	0.37770	0.35609	0.29951	0.26189	0.32248	0.28946	0.30571	0.299856	0.27950	0.30139	0.29754	0.28619	0.27230
MWL-SV05-100	0.56578	0.54556	0.57169	0.53248	0.59430	0.61891	0.54760	0.51172	0.52584	0.47217	0.52797	0.51177	0.52332	0.44824	0.44363	0.47678	0.48618
MWL-SV05-200	0.70237	0.82115	0.73680	0.65830	0.80567	0.73190	0.69410	0.57349	0.68820	0.60710	0.72360	0.73212	0.65330	0.73969	0.54869	0.57280	0.70205
MWL-SV05-300	0.35628	0.42371	0.33576	0.44336	0.36421	0.46092	0.47695	0.44050	0.41957	0.40427	0.35226	0.40869	0.46383	0.39804	0.35572	0.46944	0.35413
MWL-SV05-400	0.54096	0.39521	0.25075	0.45245	0.30765	0.40839	0.29962	0.29543	0.29875	0.30373	0.29021	0.33322	0.36440	0.27466	0.23766	0.32208	0.29633
Notos:																	

Notes:

Some concentrations are rounded and/or a zero is added to maintain significant digit consistency, so they may not exactly match the reported concentrations in corresponding data tables.

ID = Identification.

MWL-SV = Mixed Waste Landfill-soil vapor well.

ppmv = Parts per million by volume.
VOC = Volatile organic compound.

^a Port depth is the last number in the Well ID and is in feet below ground surface.

^b If an environmental duplicate sample was collected, then the maximum concentration of the environmental-duplicate sample pair is shown.

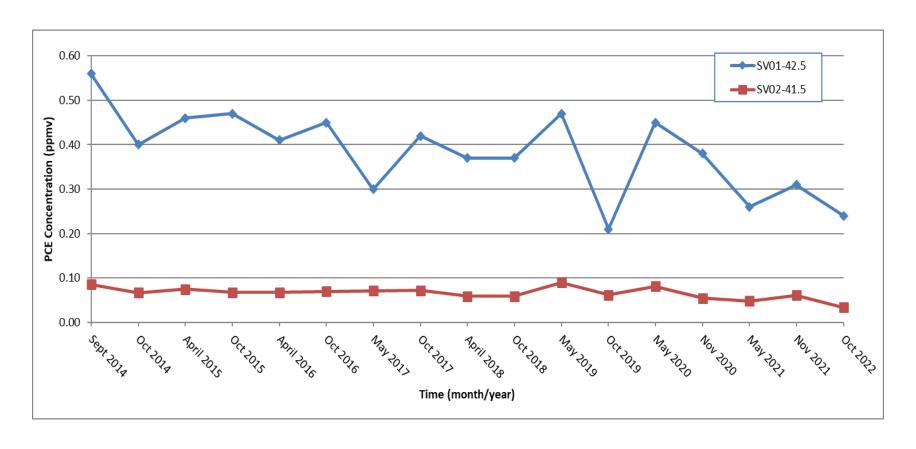


Figure 5-2
PCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports

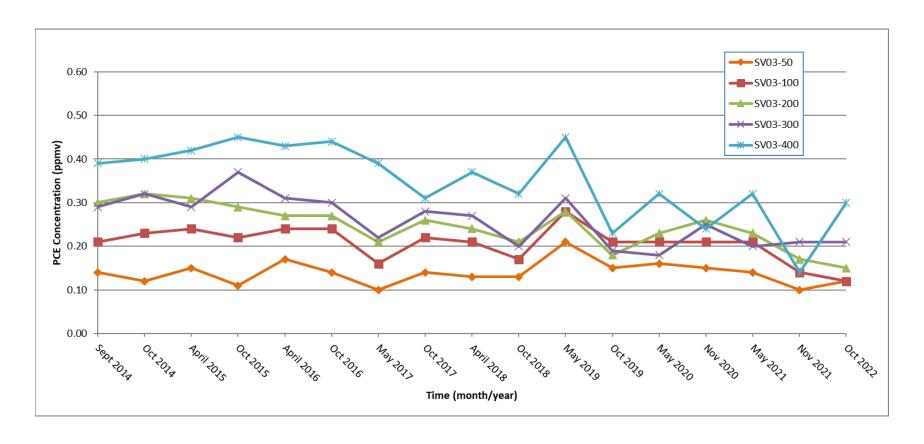


Figure 5-3
PCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports

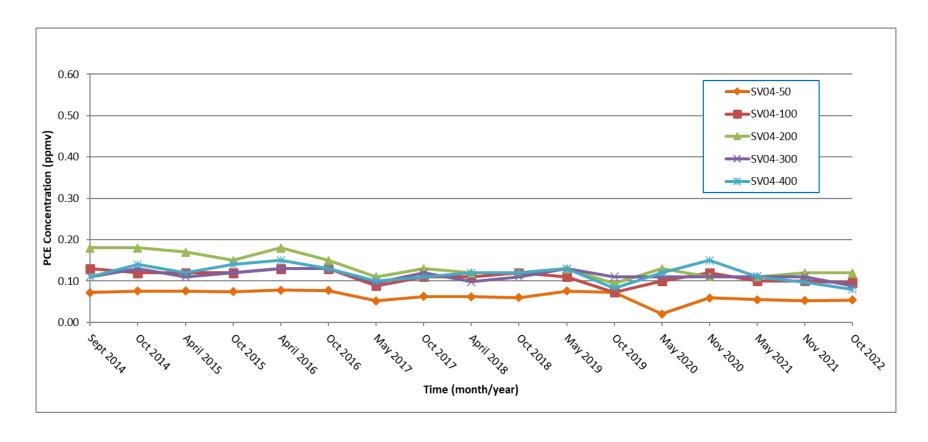


Figure 5-4
PCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports

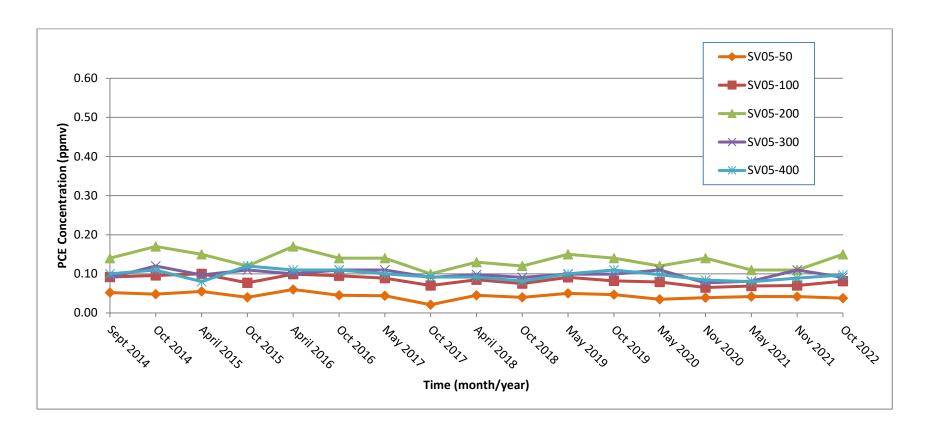


Figure 5-5
PCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports

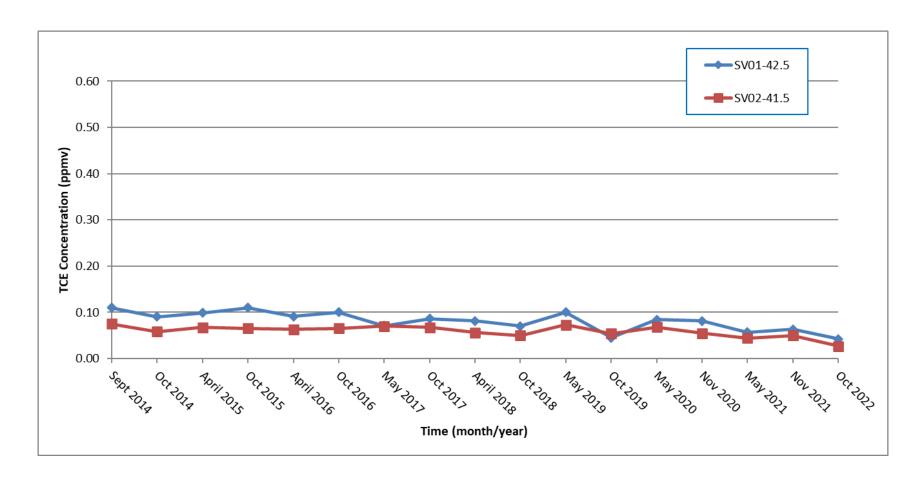


Figure 5-6
TCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports

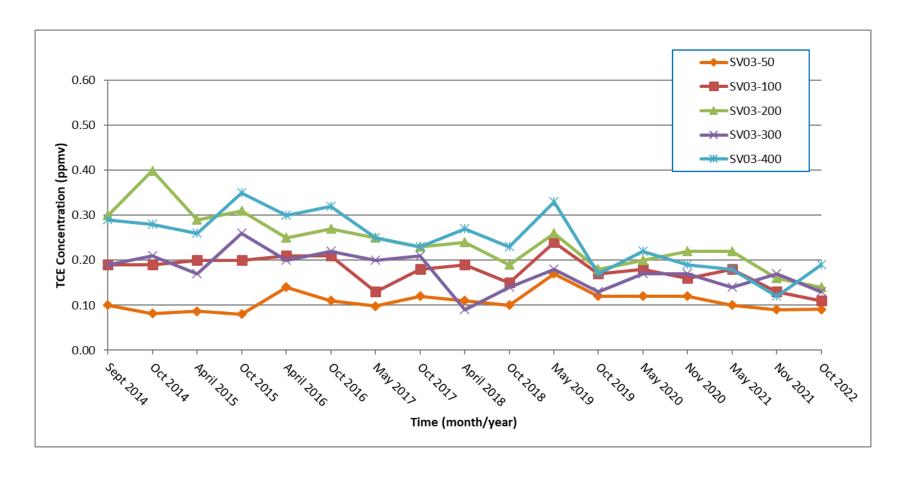


Figure 5-7
TCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports

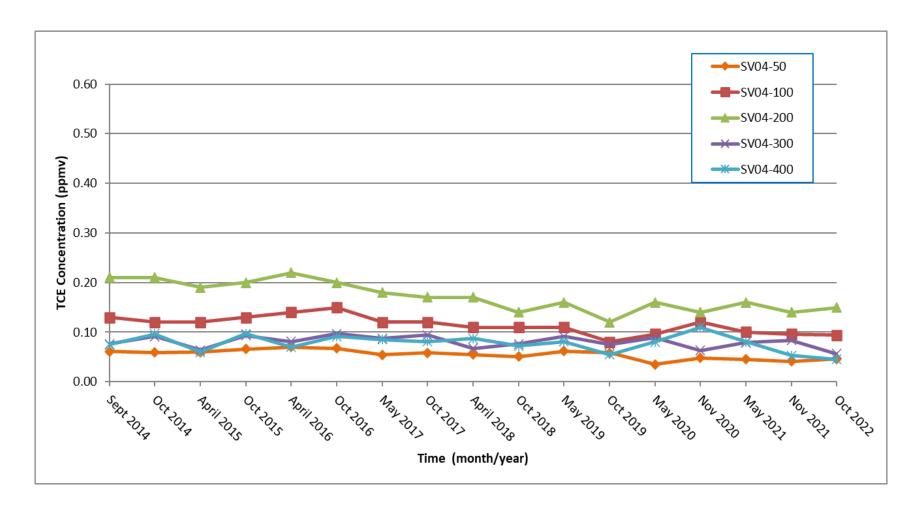


Figure 5-8
TCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports

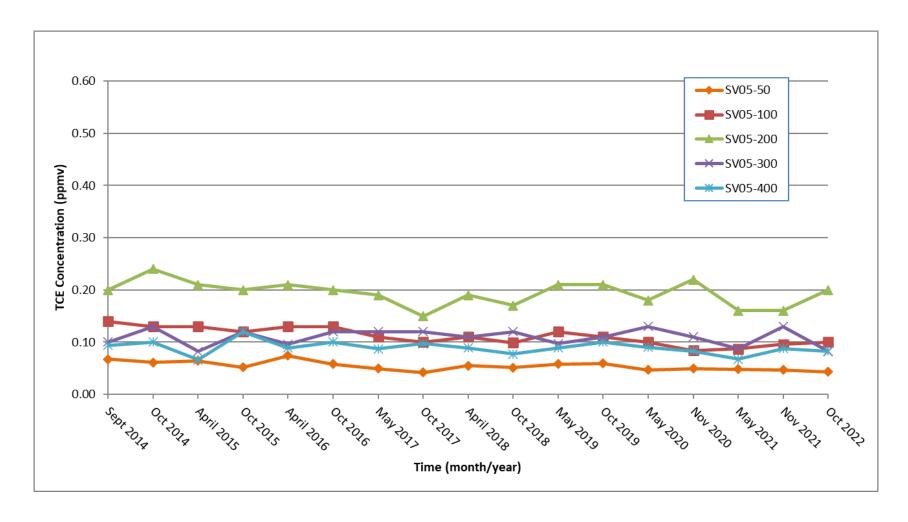


Figure 5-9
TCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports

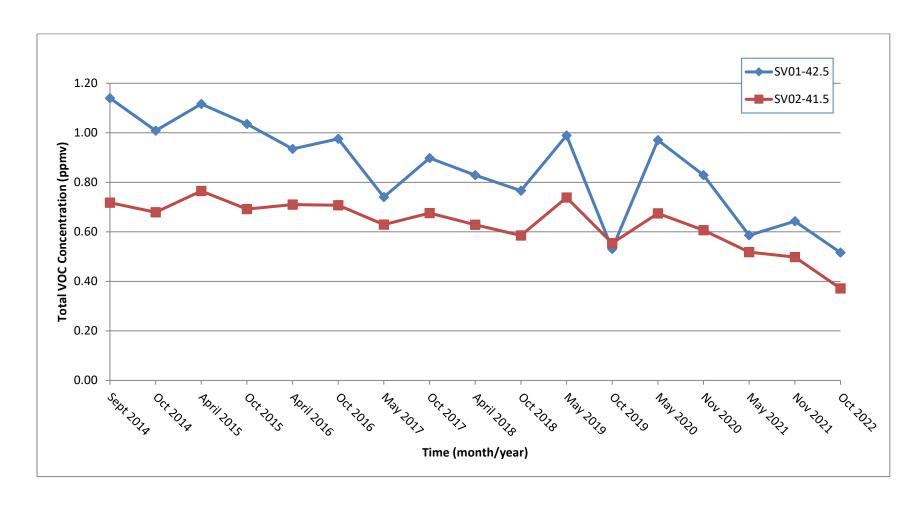


Figure 5-10
Total VOCs Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports

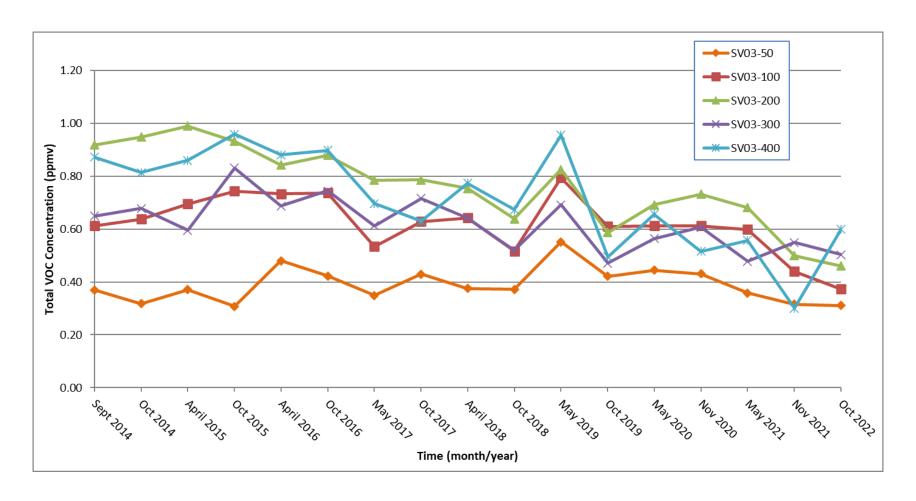


Figure 5-11
Total VOCs Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports

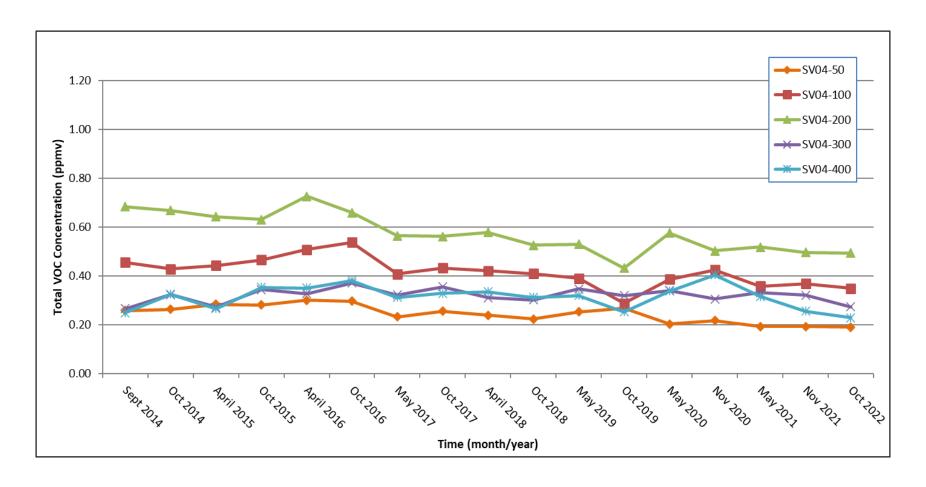


Figure 5-12
Total VOCs Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports

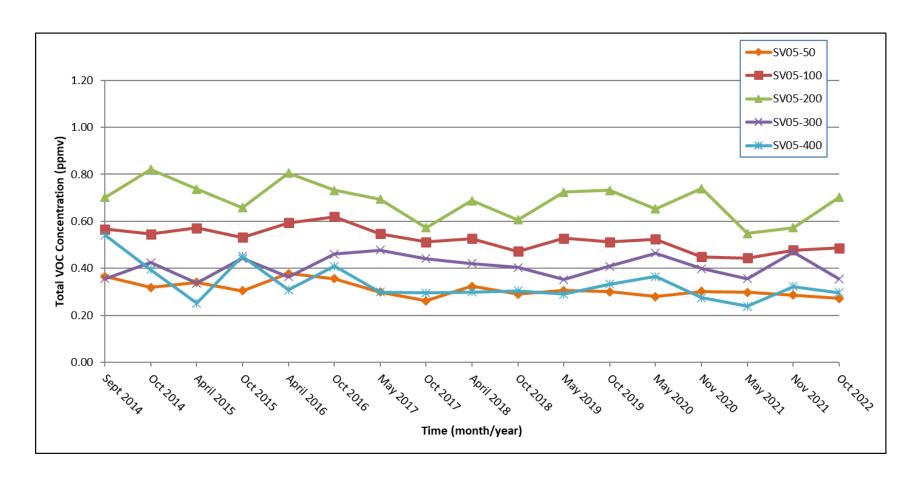
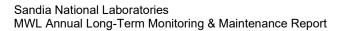



Figure 5-13
Total VOCs Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports

Table 5-1 Summary of Detected VOCs – October 2022

April 2022 - March 2023

This page intentionally left blank.

Table 5-1
Summary of Detected VOCs (EPA Method TO-15^a)
Mixed Waste Landfill Soil-Vapor Monitoring
October 2022

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV01-42.5	Chloroform	0.0097	0.00057	0.0032		
28-Oct-22	Dichlorodifluoromethane	0.057	0.00057	0.0032		
	1,1-Dichloroethane	0.0013	0.00045	0.0032	J	
	1,1-Dichloroethene	0.0028	0.00053	0.0032	J	
	cis-1,2-Dichloroethene	0.00048	0.00041	0.0032	J	
	Tetrachloroethene	0.24	0.00049	0.0032		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.037	0.00041	0.0032		
	1,1,1-Trichloroethane	0.016	0.0012	0.0032		
	Trichloroethene	0.042	0.00053	0.0016		
	Trichlorofluoromethane	0.11	0.00045	0.0032		
	Total Organics ^d	0.51628	NA	NA	NA	NA
MWL-SV02-41.5	Chloroform	0.0018	0.00058	0.0033	J	
28-Oct-22	Dichlorodifluoromethane	0.059	0.00058	0.0033		
	1,1-Dichloroethane	0.0010	0.00045	0.0033	J	
	1,1-Dichloroethene	0.0036	0.00054	0.0033		
	Tetrachloroethene	0.034	0.00050	0.0033		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.025	0.00041	0.0033		
	1,1,1-Trichloroethane	0.030	0.0012	0.0033		
	Trichloroethene	0.027	0.00054	0.0017		
ı	Trichlorofluoromethane	0.19	0.00045	0.0033		
1	Total Organics ^d	0.3714	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-50	Benzene	0.00023	0.00022	0.0013	J	
28-Oct-22	Carbon tetrachloride	0.00022	0.00022	0.0013	J	
	Chloroform	0.0015	0.00024	0.0013		
	Dichlorodifluoromethane	0.021	0.00024	0.0013		
	1,1-Dichloroethane	0.0024	0.00018	0.0013		
	1,1-Dichloroethene	0.0067	0.00022	0.0013		
	cis-1,2-Dichloroethene	0.0012	0.00017	0.0013	J	
	Tetrachloroethene	0.12	0.00020	0.0013		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.044	0.00017	0.0013		
	1,1,1-Trichloroethane	0.0016	0.00049	0.0013		
	Trichloroethene	0.091	0.00022	0.00067		
	Trichlorofluoromethane	0.021	0.00018	0.0013		
	Total Organics ^d	0.31085	NA	NA	NA	NA
MWL-SV03-100	Chloroform	0.0019	0.00046	0.0026	J	
28-Oct-22	Dichlorodifluoromethane	0.029	0.00046	0.0026		
	1,1-Dichloroethane	0.0034	0.00036	0.0026		
	1,1-Dichloroethene	0.0087	0.00043	0.0026		
	cis-1,2-Dichloroethene	0.0014	0.00033	0.0026	J	
	Tetrachloroethene	0.12	0.00040	0.0026		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.068	0.00033	0.0026		
	1,1,1-Trichloroethane	0.0019	0.00096	0.0026	J	
	Trichloroethene	0.11	0.00043	0.0013		
	Trichlorofluoromethane	0.029	0.00036	0.0026		
	Total Organics ^d	0.3733	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^c (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-200	Chloroform	0.0019	0.00046	0.0026	J	-
28-Oct-22	Dichlorodifluoromethane	0.035	0.00046	0.0026		-
	1,1-Dichloroethane	0.0042	0.00036	0.0026		-
	1,1-Dichloroethene	0.012	0.00043	0.0026		-
	cis-1,2-Dichloroethene	0.0020	0.00033	0.0026	J	-
	Tetrachloroethene	0.15	0.00040	0.0026		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.085	0.00033	0.0026		-
	1,1,1-Trichloroethane	0.0014	0.00096	0.0026	J	-
	Trichloroethene	0.14	0.00043	0.0013		-
	Trichlorofluoromethane	0.029	0.00036	0.0026		
	Total Organics ^d	0.4605	NA	NA	NA	NA
MWL-SV03-300	Chloroform	0.0011	0.00044	0.0025	J	-
28-Oct-22	Dichlorodifluoromethane	0.037	0.00044	0.0025		-
	1,1-Dichloroethane	0.0018	0.00034	0.0025	J	-
	1,1-Dichloroethene	0.010	0.00041	0.0025		
	cis-1,2-Dichloroethene	0.00075	0.00031	0.0025	J	
	Tetrachloroethene	0.21	0.00037	0.0025		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.093	0.00031	0.0025		
	Trichloroethene	0.13	0.00041	0.0012		
	Trichlorofluoromethane	0.019	0.00034	0.0025		
	Total Organics ^d	0.50265	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^c (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-400	Carbon disulfide	0.0057	0.0011	0.0064	J	
28-Oct-22	Chloroform	0.0016	0.00045	0.0026	J	
	Dichlorodifluoromethane	0.022	0.00045	0.0026		
	1,1-Dichloroethane	0.0022	0.00035	0.0026	J	
	1,1-Dichloroethene	0.0097	0.00042	0.0026		
<u> Trigger Levels</u>	cis-1,2-Dichloroethene	0.0014	0.00032	0.0026	J	
Tetrachloroethene = 20 ppmv	Tetrachloroethene	0.30	0.00038	0.0026		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.055	0.00032	0.0026		
Trichlolorethene = 20 ppmv	Trichloroethene	0.19	0.00042	0.0013		
	Trichlorofluoromethane	0.012	0.00035	0.0026		
Total Organics = 25 ppmv	Total Organics ^d	0.5996	NA	NA	NA	NA
MWL-SV04-50	Benzene	0.00028	0.00013	0.00083	J	
28-Oct-22	Carbon tetrachloride	0.00022	0.00013	0.00083	J	
	Chloroform	0.0017	0.00015	0.00083		
	Dichlorodifluoromethane	0.015	0.00015	0.00083		
	1,1-Dichloroethane	0.0011	0.00011	0.00083		
	1,1-Dichloroethene	0.0038	0.00013	0.00083		
	cis-1,2-Dichloroethene	0.00032	0.00010	0.00083	J	
	Tetrachloroethene	0.054	0.00012	0.00083		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.037	0.00010	0.00083		-
	1,1,1-Trichloroethane	0.0064	0.00030	0.00083		-
	Trichloroethene	0.046	0.00013	0.00042		
	Trichlorofluoromethane	0.025	0.00011	0.00083		
	Total Organics ^d	0.19082	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^a (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-100	Carbon disulfide	0.0020	0.00060	0.0034	J	
28-Oct-22	Carbon tetrachloride	0.00033	0.00022	0.0014	J	
	Chloroform	0.0020	0.00024	0.0014	-	
	Dichlorodifluoromethane	0.029	0.00024	0.0014	-	
	1,1-Dichloroethane	0.0026	0.00019	0.0014	-	
	1,1-Dichloroethene	0.0099	0.00022	0.0014	-	
	cis-1,2-Dichloroethene	0.0011	0.00017	0.0014	J	
	Tetrachloroethene	0.096	0.00021	0.0014	-	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.067	0.00017	0.0014	-	
	1,1,1-Trichloroethane	0.0053	0.00050	0.0014		
	Trichloroethene	0.094	0.00022	0.00068	-	
	Trichlorofluoromethane	0.040	0.00019	0.0014	-	
	Total Organics ^d	0.34923	NA	NA	NA	NA
MWL-SV04-200	Acetone	0.010	0.0095	0.033	J	0.033U
28-Oct-22	Benzene	0.00033	0.00022	0.0013	J	
	Carbon tetrachloride	0.00052	0.00022	0.0013	J	
	Chloroform	0.0016	0.00023	0.0013	-	
	Dichlorodifluoromethane	0.043	0.00023	0.0013	-	
	1,1-Dichloroethane	0.0045	0.00018	0.0013		
	1,1-Dichloroethene	0.019	0.00022	0.0013		
	cis-1,2-Dichloroethene	0.0024	0.00017	0.0013	-	
	Tetrachloroethene	0.12	0.00020	0.0013	-	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.11	0.00017	0.0013	-	-
	1,1,1-Trichloroethane	0.0018	0.00048	0.0013		
	Trichloroethene	0.15	0.00022	0.00066	-	
	Trichlorofluoromethane	0.042	0.00018	0.0013	-	
	Total Organics ^d	0.49515	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL⁵ (ppmv)	RL ^c (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-300	Benzene	0.00031	0.00022	0.0014	J	
28-Oct-22	Carbon tetrachloride	0.00029	0.00022	0.0014	J	
	Chloroform	0.00069	0.00024	0.0014	J	
	Chloromethane	0.0028	0.0011	0.0034	J	
	Dichlorodifluoromethane	0.030	0.00024	0.0014		
	1,1-Dichloroethane	0.00062	0.00019	0.0014	J	
	1,1-Dichloroethene	0.0082	0.00022	0.0014	-	
	cis-1,2-Dichloroethene	0.00033	0.00017	0.0014	J	
	Tetrachloroethene	0.089	0.00021	0.0014		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.069	0.00017	0.0014		
	1,1,1-Trichloroethane	0.00053	0.00050	0.0014	J	-
	Trichloroethene	0.056	0.00022	0.00068		-
	Trichlorofluoromethane	0.017	0.00019	0.0014		
	Total Organics ^d	0.27477	NA	NA	NA	NA
MWL-SV04-400	Acetone	0.013	0.0092	0.032	J	0.032U
28-Oct-22	Benzene	0.00049	0.00021	0.0013	J	
	Carbon disulfide	0.0012	0.00056	0.0032	J	
	Chloroform	0.00044	0.00023	0.0013	J	
	Dichlorodifluoromethane	0.023	0.00023	0.0013		
	1,1-Dichloroethane	0.00058	0.00018	0.0013	J	
	1,1-Dichloroethene	0.0054	0.00021	0.0013		
<u> Frigger Levels</u>	cis-1,2-Dichloroethene	0.00034	0.00016	0.0013	J	
Tetrachloroethene = 20 ppmv	Tetrachloroethene	0.080	0.00019	0.0013		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.059	0.00016	0.0013		
	1,1,1-Trichloroethane	0.00047	0.00047	0.0013	J	
Frichlolorethene = 20 ppmv	Trichloroethene	0.045	0.00021	0.00064		
	Trichlorofluoromethane	0.014	0.00018	0.0013		
Total Organics = 25 ppmv	Total Organics ^d	0.22992	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL⁵ (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c	
MWL-SV05-50	Carbon disulfide	0.0017	0.00051	0.0029	J		
28-Oct-22	Carbon tetrachloride	0.00023	0.00019	0.0012	J		
	Chloroform	0.0011	0.00020	0.0012	J		
	Dichlorodifluoromethane	0.042	0.00020	0.0012			
	1,1-Dichloroethane	0.0011	0.00016	0.0012	J		
	1,1-Dichloroethene	0.0053	0.00019	0.0012			
	cis-1,2-Dichloroethene	0.00037	0.00015	0.0012	J		
	Tetrachloroethene	0.038	0.00018	0.0012			
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.033	0.00015	0.0012			
	1,1,1-Trichloroethane	0.0085	0.00042	0.0012			
	Trichloroethene	0.043	0.00019	0.00058			
	Trichlorofluoromethane	0.098	0.00016	0.0012			
	Total Organics ^d	0.2723	NA	NA	NA	NA	
MWL-SV05-100	Carbon tetrachloride	0.00050	0.00020	0.0012	J		
28-Oct-22	Chloroform	0.0018	0.00021	0.0012			
	Dichlorodifluoromethane	0.068	0.00021	0.0012			
	1,1-Dichloroethane	0.0024	0.00017	0.0012			
	1,1-Dichloroethene	0.012	0.00020	0.0012	-		
	cis-1,2-Dichloroethene	0.00088	0.00015	0.0012	J		
	Tetrachloroethene	0.081	0.00018	0.0012			
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.070	0.00015	0.0012			
	1,1,1-Trichloroethane	0.0096	0.00044	0.0012			
	Trichloroethene	0.10	0.00020	0.00060			
	Trichlorofluoromethane	0.14	0.00017	0.0012			
	Total Organics ^d	0.48618	NA	NA	NA	NA	

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c	
MWL-SV05-100 (Duplicate)	Carbon tetrachloride	0.00042	0.00020	0.0012	J		
28-Oct-22	Chloroform	0.0019	0.00021	0.0012			
	Dichlorodifluoromethane	0.067	0.00021	0.0012			
	1,1-Dichloroethane	0.0024	0.00017	0.0012			
	1,1-Dichloroethene	0.012	0.00020	0.0012	-		
	cis-1,2-Dichloroethene	0.00083	0.00015	0.0012	J		
	Tetrachloroethene	0.081	0.00018	0.0012			
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.069	0.00015	0.0012			
	1,1,1-Trichloroethane	0.0096	0.00044	0.0012			
	Trichloroethene	0.099	0.00020	0.00060			
	Trichlorofluoromethane	0.14	0.00017	0.0012			
	Total Organics ^d	0.48315	NA	NA	NA	NA	
MWL-SV05-200	Benzene	0.00023	0.00019	0.0012	J		
28-Oct-22	Carbon tetrachloride	0.00082	0.00019	0.0012	J		
	Chloroform	0.0020	0.00020	0.0012	-		
	Dichlorodifluoromethane	0.075	0.00020	0.0012			
	1,1-Dichloroethane	0.0043	0.00016	0.0012			
	1,1-Dichloroethene	0.025	0.00019	0.0012			
	cis-1,2-Dichloroethene	0.0015	0.00015	0.0012			
	Methylene chloride	0.0029	0.0020	0.0012	J	0.0058U	
	Tetrachloroethene	0.15	0.00018	0.0012			
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.14	0.00015	0.0012			
	1,1,1-Trichloroethane	0.0032	0.00042	0.0012			
	Trichloroethene	0.20	0.00019	0.00058			
	Trichlorofluoromethane	0.10	0.00016	0.0012			
	Total Organics ^d	0.70205	NA	NA	NA	NA	

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c	
MWL-SV05-300	Carbon tetrachloride	0.00069	0.00020	0.0012	J	-	
28-Oct-22	Chloroform	0.00063	0.00021	0.0012	J	-	
	Dichlorodifluoromethane	0.038	0.00021	0.0012		-	
	1,1-Dichloroethane	0.0010	0.00017	0.0012	J	-	
	1,1-Dichloroethene	0.013	0.00020	0.0012			
	cis-1,2-Dichloroethene	0.00036	0.00015	0.0012	J		
	Tetrachloroethene	0.089	0.00018	0.0012		-	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.093	0.00015	0.0012			
	1,1,1-Trichloroethane	0.00071	0.00044	0.0012	J		
	Trichloroethene	0.071	0.00020	0.00060			
	Trichlorofluoromethane	0.026	0.00017	0.0012			
	Total Organics ^d	0.33339	NA	NA	NA	NA	
MWL-SV05-300 (Duplicate)	Carbon tetrachloride	0.00065	0.00020	0.0012	J		
28-Oct-22	Chloroform	0.00080	0.00021	0.0012	J		
	Dichlorodifluoromethane	0.040	0.00021	0.0012			
	1,1-Dichloroethane	0.0012	0.00017	0.0012			
	1,1-Dichloroethene	0.014	0.00020	0.0012			
	cis-1,2-Dichloroethene	0.00038	0.00015	0.0012	J		
	Tetrachloroethene	0.091	0.00018	0.0012			
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.093	0.00015	0.0012			
	1,1,1-Trichloroethane	0.0011	0.00044	0.0012	J		
	Trichloroethene	0.082	0.00020	0.00060			
	Trichlorofluoromethane	0.030	0.00017	0.0012			
	Total Organics ^d	0.35413	NA	NA	NA	NA	

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-400	Benzene	0.00027	0.00019	0.0012	J	
28-Oct-22	Carbon disulfide	0.00069	0.00052	0.0030	J	
	Carbon tetrachloride	0.00058	0.00019	0.0012	J	
	Chloroform	0.00075	0.00021	0.0012	J	
	Dichlorodifluoromethane	0.023	0.00021	0.0012		
	1,1-Dichloroethane	0.0016	0.00016	0.0012		
	1,1-Dichloroethene	0.010	0.00019	0.0012		
<u> Frigger Levels</u>	cis-1,2-Dichloroethene	0.00054	0.00015	0.0012	J	
Tetrachloroethene = 20 ppmv	Tetrachloroethene	0.097	0.00018	0.0012		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.045	0.00015	0.0012		
	1,1,1-Trichloroethane	0.0019	0.00043	0.0012		
Trichlolorethene = 20 ppmv	Trichloroethene	0.083	0.00019	0.00060		
	Trichlorofluoromethane	0.032	0.00016	0.0012		
Total Organics = 25 ppmv	Total Organicsd	0.29633	NA	NA	NA	NA

Notes:

^aEPA, 1999. "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15, Determination of Volatile Organic Compounds In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^bResults, MDL, and RL are reported in ppmv.

^cLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

J = Result is greater than the MDL but less than the RL; the concentration is an approximate value.

Validation Qualifier

U = The analyte was reported as a detection by the laboratory but was qualified during data validation as not detected. The associated numerical value is the revised sample quantitation limit (i.e., RL) in units of ppmv, in accordance with the data validation process.

^dTotal Organics or Total VOCs - Sum of validated detected organic analytes (i.e., results for analytes qualified during data validation as not detected are not included in the total).

EPA = U.S. Environmental Protection Agency.

ID = Identification.

MWL-SV = Mixed Waste Landfill-soil vapor well.

MDL = Method detection limit. The minimum concentration that can be measured and reported with 99 percent confidence that the analyte is present (i.e., greater than zero).

NA = Not applicable.

ppmv = Parts per million by volume.

RL = Reporting limit. Minimum concentration that can be reported with a statistically established degree of confidence.

VOC = Volatile organic compound.

This page intentionally left blank.

6.0 SOIL-MOISTURE MONITORING RESULTS

This chapter presents soil-moisture monitoring activities (i.e., data collection and evaluation) in accordance with MWL LTMMP Section 3.4.2 and Appendix E (SNL/NM March 2012). The monitoring objective is to establish soil-moisture trends in the vadose zone beneath the MWL to evaluate ET Cover performance. The soil-moisture monitoring system functions as an early warning detection system for water percolation and infiltration through the ET Cover and disposal area so that timely action can be taken, if necessary. Results for the depth range of 8.7 to 86.6 ft bgs for each soil-moisture access tube are compared to the trigger level defined in LTMMP Section 5.2.3.2.

Soil-moisture monitoring field activities and results are described in Sections 6.1 and 6.2, respectively. Data evaluation and comparison of results to the monitoring trigger level are presented in Section 6.3. A summary of soil-moisture monitoring activities and results is provided in Section 11.1.

6.1 Soil-Moisture Monitoring Field Activities

One annual soil-moisture monitoring event was conducted during the April 1, 2022 through March 31, 2023 reporting period fulfilling the LTMMP annual monitoring requirement. The monitoring event was conducted on April 14 and 21, 2022. Figure 6-1 shows the soil-moisture monitoring locations MWL-VZ-1, MWL-VZ-2, and MWL-VZ-3, which are angled boreholes (60 degrees from the horizontal ground surface) that project beneath the MWL. Soil-moisture monitoring field forms and tables that compare soil-moisture content values to baseline values for the three access tubes are provided in Annex D.

Neutron count data collected in the field were correlated to percent soil-moisture content by volume as described in LTMMP Section 3.4.2 and Appendix E (SNL/NM March 2012). Baseline for soil-moisture content was determined for each access tube prior to the ET Cover subgrade work in September 2006 by averaging data collected during ten monitoring events conducted between May 27, 2004 and August 8, 2006.

6.1.1 Field Quality Control

The CPN 503DR neutron probe was operated in accordance with the FOP and the manufacturer's operating manual. A standard count was taken on the days of the monitoring event, prior to the moisture logging, to ensure the instrument was functioning properly and to confirm measurement accuracy. The results of the standard counts are provided on the MWL Neutron Logging Data Field Form provided in Annex D.

6.1.2 Waste Management

No wastes were generated from soil-moisture monitoring activities.

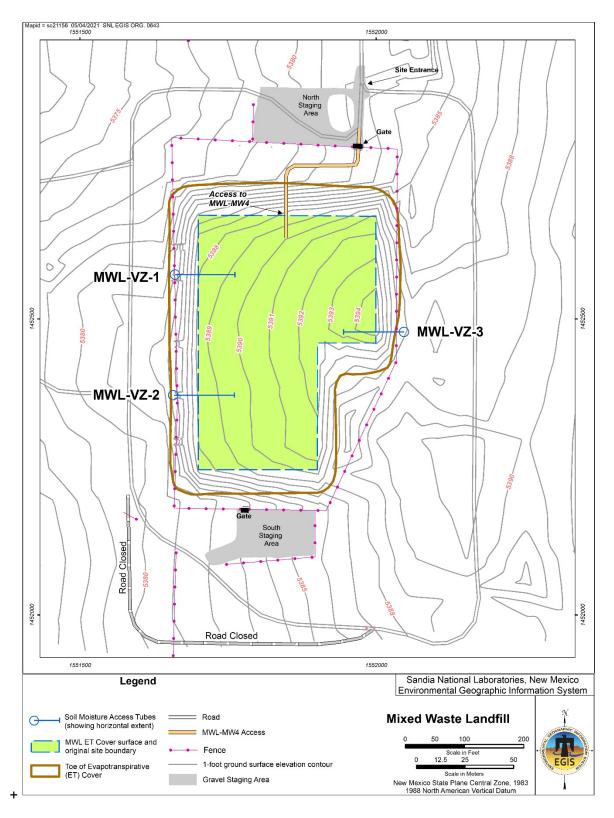


Figure 6-1
Mixed Waste Landfill Soil-Moisture Monitoring Locations

6.2 Monitoring Results

Soil-moisture monitoring data for this reporting period are documented on the MWL Neutron Logging Data Field Form provided in Annex D and presented in Figures 6-2, 6-3, and 6-4 for MW-VZ-1, MWL-VZ-2, and MWL-VZ-3, respectively. The results for the April 2022 annual monitoring event are plotted on these figures along with the baseline soil-moisture content and the trigger level for comparison. The April 2022 results track very closely with the established soil-moisture baseline for the three access tubes and indicate a dry (i.e., low soil-moisture content) vadose zone.

6.2.1 Variances

There were no variances from the LTMMP soil-moisture monitoring requirements.

6.3 Data Evaluation and Monitoring Trigger Level

Soil-moisture data collected during the reporting period did not exceed the trigger level and tracked closely to baseline soil-moisture data, indicating the ET Cover is performing as designed (Figures 6-2, 6-3, and 6-4). The trigger level is 23 percent soil moisture by volume and applies to the depth range of 8.7 to 86.6 ft bgs beneath the ET Cover.

During this reporting period, the soil-moisture content measurements for the trigger level depth interval at MWL-VZ-1 ranged from 1.9 to 4.4 percent, compared to 1.7 to 5.6 percent baseline. At MWL-VZ-2 the soil-moisture content ranged from 2.1 to 4.9 percent, compared to 2.1 to 5.5 percent baseline. At MWL-VZ-3 the soil-moisture content ranged from 1.4 to 5.2 percent, compared to 1.8 to 4.5 percent baseline.

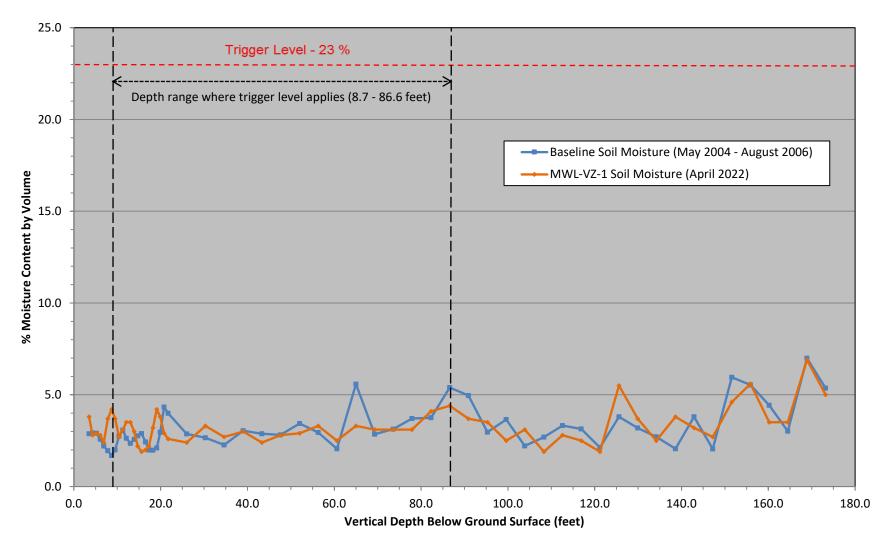


Figure 6-2
Mixed Waste Landfill MWL-VZ-1 Soil-Moisture Monitoring Results

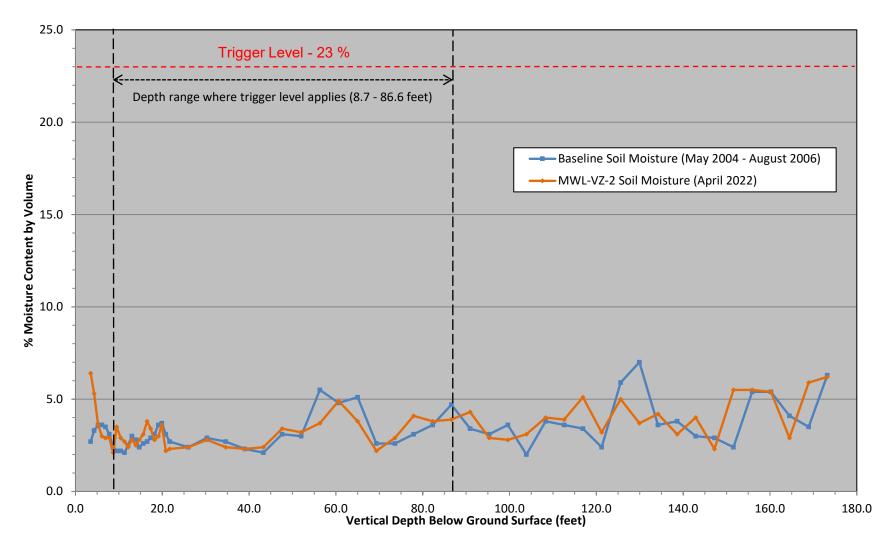


Figure 6-3
Mixed Waste Landfill MWL-VZ-2 Soil-Moisture Monitoring Results

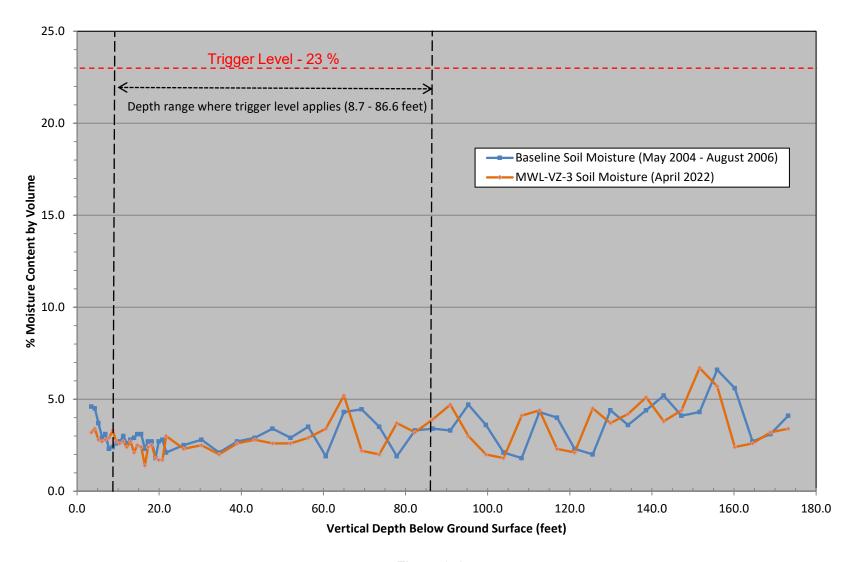


Figure 6-4
Mixed Waste Landfill MWL-VZ-3 Soil-Moisture Monitoring Results

7.0 GROUNDWATER MONITORING RESULTS

This chapter presents groundwater monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.5 and Appendix F (SNL/NM March 2012). The monitoring objective is to obtain groundwater analytical results representative of the uppermost part of the Regional Aquifer beneath the MWL and compare them to the trigger levels defined in Table 5.2.4-1 of the LTMMP. Groundwater monitoring, combined with soil-vapor monitoring, functions as an early warning detection system for changing conditions so that timely action can be taken, if necessary.

Groundwater sampling field activities are described in Section 7.1, analytical laboratory results are presented and compared to trigger levels in Section 7.2, followed by a discussion of data quality and data evaluation results. Hydrogeologic information on the Regional Aquifer is presented in Section 7.3. A summary of groundwater monitoring activities and results is provided in Section 11.1.

7.1 Environmental Sampling Field Activities

Two groundwater monitoring events were conducted during the April 1, 2022 through March 31, 2023 reporting period, fulfilling the LTMMP semiannual monitoring requirement. Environmental samples were collected from monitoring wells MWL-BW2, MWL-MW7, MWL-MW8, and MWL-MW9. Well locations are shown in Figure 7-1. The samples were analyzed for VOCs, metals (cadmium, chromium, nickel, and uranium), gamma-emitting radionuclides (americium-241, cesium-137, and cobalt-60), gross alpha and beta activity, tritium, and radon-222. In addition, samples were collected during the October 2022 sampling event for three perfluoroalkyl and polyfluoroalkyl substances (PFAS), including perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorooctanoic acid (PFOA). These constituents were added to the MWL October 2022 groundwater monitoring event to address the NMED request (NMED July 2021) to evaluate toxic pollutants added to Subsection T of 20.6.2.7 NMAC since January 2014 (i.e., since NMED-approval of the MWL LTMMP). Field forms and documentation that address calibration of equipment, well purging, water quality measurements, and equipment decontamination activities are provided in Annex E.

The first sampling event was conducted between May 12 and 18, 2022. An environmental-duplicate sample pair was collected from MWL-BW2.

The second sampling event was conducted between October 20 and 26, 2022. An environmental-duplicate sample pair was collected from MWL-MW7 and additional field QC samples were collected to support the PFAS sampling and analysis effort.

7.1.1 Well Purging

Purging removes stagnant water from the well so that a representative environmental sample can be obtained. In accordance with LTMMP Appendix F, the minimum purge requirement is

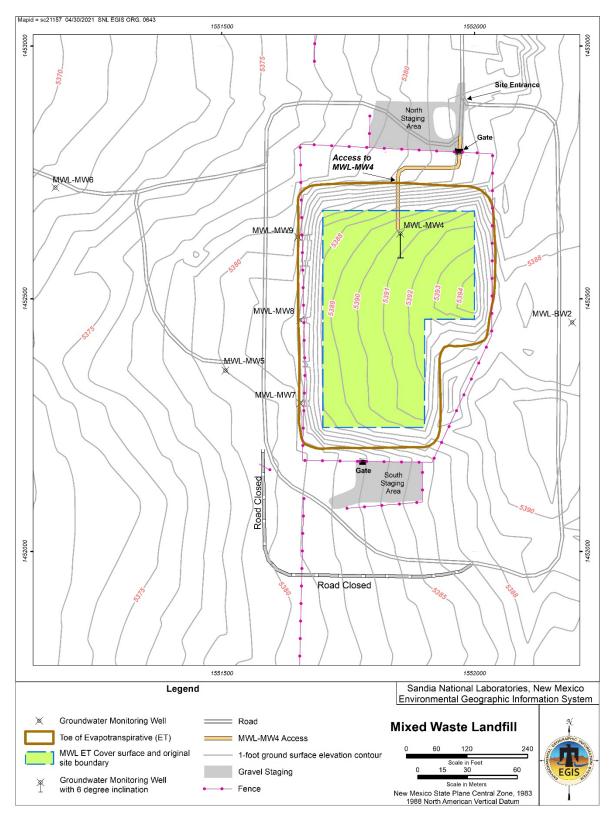


Figure 7-1
Mixed Waste Landfill Groundwater Monitoring Well Locations

one saturated screen volume. Purging continued beyond the minimum purge volume until four stable field measurements for temperature, specific conductivity, potential of hydrogen, and turbidity were obtained. Field measurements for water quality parameters were collected using an In-Situ Incorporated Aqua TROLL® 600 Multiparameter Water Quality Sonde and a HACHTM Model 2100Q portable turbidity meter. Additional water quality measurements included oxidation-reduction potential and dissolved oxygen.

A portable BennettTM groundwater sampling system was used to collect environmental samples from all wells. Purge requirements were satisfied at all monitoring wells. In accordance with LTMMP Appendix F requirements designed to decrease the purging flow rate as low as possible for wells that potentially purge dry, the portable BennettTM groundwater sampling system was equipped with a flow meter valve located along the discharge line and with small diameter tubing (1/4-inch inner diameter). The average flow rates ranged from 0.100 gallons per minute (gpm) at MWL-MW8 to 0.229 gpm at MWL-BW2 for the May 2022 sampling event. The average flow rates ranged from 0.132 gpm at MWL-MW8 to 0.219 gpm at MWL-BW2 for the October 2022 sampling event.

7.1.2 Field Quality Control

Field QC samples were collected as part of each sampling event and included duplicate, equipment blank, field blank, and trip blank samples. The sampling pump and tubing bundle used to collect environmental samples were decontaminated prior to sampling each monitoring well.

Environmental duplicate samples were collected and analyzed to evaluate the overall precision and reproducibility of the sampling and analytical process. The duplicate samples were collected immediately after the environmental samples to reduce variability caused by time and/or sampling mechanics. Duplicate samples were analyzed for the same constituents as the environmental samples.

Equipment blank (also referred to as rinsate blank) samples were collected after equipment decontamination to verify effectiveness of the decontamination process. Equipment blank samples consisted of deionized water that was pumped through the sampling system and analyzed for the same constituents as the environmental samples.

Field blank samples were collected and analyzed for VOCs to detect potential sample contamination resulting from ambient field conditions. The field blanks were prepared by pouring deionized water into sample containers at the sample point (i.e., inside the sampling truck at each monitoring well) to simulate the transfer of environmental samples from the sampling system to the sample container.

Trip blank samples consist of laboratory reagent-grade water with hydrochloric acid preservative. They are prepared by the analytical laboratory and accompany the sample containers from the laboratory, through sampling activities, and are shipped back to the laboratory with the environmental samples. Trip blank samples were submitted with environmental samples collected for analysis of VOCs to assess whether contamination of the samples occurred during sampling, transportation, analysis, and/or storage.

The field QC samples were submitted for analysis with the environmental samples. A brief explanation of the field QC sampling protocol for the May and October 2022 sampling events is provided below. Analytical results are presented in Section 7.2.

First Sampling Event – May 12-18, 2022

One environmental duplicate sample was collected at MWL-BW2. One equipment blank sample was collected prior to sampling monitoring well MWL-BW2. Five field blank samples were collected, one at each monitoring well location, and one was collected from the source water used for the equipment decontamination process. Six trip blank samples were submitted with the environmental samples for VOC analysis.

Second Sampling Event – October 20-26, 2022

One environmental duplicate sample was collected at MWL-MW7. Four equipment blank samples were collected prior to sampling each of the four compliance monitoring wells (MWL-BW2, MWL-MW7, MWL-MW8, and MWL-MW9). Five field blank samples were collected, one at each monitoring well location and one from the source water used for the equipment decontamination process. Four additional field blank samples were collected using laboratory reagent-grade (ultra-pure water supplied by the laboratory) for PFAS analyses only. Nine trip blank samples were submitted with the environmental samples for analysis of VOCs.

7.1.3 Waste Management

Purge and decontamination wastewater generated from sampling activities was collected in 55-gallon containers and stored at the Environmental Resources Field Office waste accumulation area. All wastewater was managed as non-hazardous waste based upon historical sample results and process knowledge of monitoring well locations. All wastewater was discharged to the sanitary sewer in accordance with Albuquerque Bernalillo County Water Utility Authority (ABCWUA) requirements after characterization data were compared to discharge limits. Approximately 229 gallons of wastewater were generated during the May and October 2022 sampling events, for a total of 458 gallons.

PPE and other solid waste generated during May and October 2022 soil-vapor and groundwater monitoring activities were managed in accordance with all applicable requirements. Analytical data from the sampling events were used to supplement the waste management process. Based on historical data and sampling results, all solid waste was managed as non-hazardous solid waste.

7.2 Laboratory Results

Environmental and field QC samples were submitted to GEL for analyses. Samples were analyzed in accordance with applicable EPA analytical methods. For comparison, trigger levels are included in the analytical results tables in this Annual LTMM Report. Both analytical laboratory and data validation qualifiers are included in the groundwater data tables presented in this section. Analytical laboratory reports, including certificates of analyses, analytical

methods, MDLs, practical quantitation limits (PQLs), dates of analyses, results of QC analyses, and data validation reports are filed in the SNL/NM Record Center.

7.2.1 Environmental Sample Results

This section summarizes groundwater monitoring results for the reporting period. Groundwater monitoring results were compared to historical MWL groundwater monitoring results and LTMMP trigger levels. All results were below applicable LTMMP trigger levels and were comparable to historical MWL groundwater monitoring results. After the general summary provided below, environmental and field QC sample results are presented for the two semiannual monitoring events.

Radionuclide activity in groundwater samples is determined through specific radiological analyses as presented in Table 7-4. In addition, gross alpha and beta activities are measured to screen for indications of other radionuclides (i.e., radiological anomalies). Gross alpha activity values are corrected by subtracting naturally occurring uranium in accordance with 40 CFR 141. Uranium is measured independently and results are presented in Table 7-3.

Trigger levels provide early detection of potentially changing conditions that require additional testing and further investigation (SNL/NM March 2012). Groundwater radiological trigger levels for tritium (4 millirem per year), radon (1,000 pCi/L), gross alpha activity (15 pCi/L), and gross beta activity (4 millirem per year) are shown in Table 7-4. The units for the tritium and gross beta triggers relate to a dose rate and not a specific activity per volume (pCi/L) measurement. For tritium, the approximate equivalent activity is 20,000 pCi/L, assuming an onsite resident using the groundwater underlying the MWL as their primary drinking water source.

Gross alpha and beta results are used as a broad radiological screening tool to look for other potential radionuclides besides tritium, radon, and the radionuclides already addressed by gamma spectroscopy analysis (i.e., the radionuclides of concern). The screening analyses do not provide radionuclide-specific identification necessary to calculate a dose. If the gross alpha trigger is exceeded, additional radiological analysis may be required to identify the specific radionuclide(s) that are contributing to the gross alpha result. Gross beta results are compared to the extensive SNL/NM groundwater monitoring data set to determine if there are indications of radiological anomalies. In other words, the gross beta activity is compared to natural background beta activity. If there are indications of radiological anomalies, additional analysis may be required to identify the specific radionuclide that is causing the anomalous beta activity. Once the specific radionuclide is identified, the corresponding dose to a human receptor can be calculated and compared to the trigger of 4 millirem per year. Additional analysis based on elevated gross alpha or gross beta screening results would only be required if the results are not explained by the other radionuclide-specific results. In summary, the screening and evaluation process ensures that if radiological contamination is present, it will be detected, evaluated, and appropriate follow-up actions will be taken.

Table 7-1 summarizes the laboratory MDLs for VOCs and the three PFAS included in the October 2022 analyses. Environmental samples were collected for PFAS for the first time in October 2022. There were no detections of PFHxS, PFOS, and PFOA in the October 2022 environmental samples.

Table 7-1

Summary of Method Detection Limits for Volatile Organic Compounds (EPA Method 8260Da) and Perfluoroalkyl and Polyfluoroalkyl Substances (Method 537.1b) Mixed Waste Landfill Groundwater Monitoring

May and October 2022

Analyte	Method Detection Limit
Volatile Organic Compounds	(μg/L)
1,1,1-Trichloroethane	0.333
1,1,2,2-Tetrachloroethane	0.333
1,1,2-Trichloroethane	0.333
1,1-Dichloroethane	0.333
1,1-Dichloroethene	0.333
1,2-Dichloroethane	0.333
1,2-Dichloropropane	0.333
2-Butanone	1.67
2-Hexanone	1.67
4-Methyl-2-pentanone	1.67
Acetone	1.74
Benzene	0.333
Bromodichloromethane	0.333
Bromoform	0.333
Bromomethane	0.337
Carbon disulfide	1.67
Carbon tetrachloride	0.333
Chlorobenzene	0.333
Chloroethane	0.333
Chloroform	0.333
Chloromethane	0.333
Dibromochloromethane	0.333
Dichlorodifluoromethane	0.355
Ethylbenzene	0.333
Methylene chloride	0.500
Styrene	0.333
Tetrachloroethene	0.333
Toluene	0.333
Trichloroethene	0.333
Vinyl acetate	1.67
Vinyl chloride	0.333
Xylene	1.00
cis-1,2-Dichloroethene	0.333
cis-1,3-Dichloropropene	0.333
trans-1,2-Dichloroethene	0.333
trans-1,3-Dichloropropene	0.333
Perfluoroalkyl & Polyfluoroalkyl Substance	s (PFAS) (ng/L)
Perfluorohexane sulfonic acid (PFHxS)	0.619 - 0.661
Perfluorooctane sulfonic acid (PFOS)	0.713 - 0.761
Perfluorooctanoic acid (PFOA)	0.619 - 0.661

Notes:

^aEPA, November 1986 (and updates). "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response, EPA, Washington, D.C. bEPA, March 2020. "Method 537.1, Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)," EPA/600/R-20/006, Version 2.0, U.S. Environmental Protection Agency, Washington, D.C. EPA = U.S. Environmental Protection Agency. μg/L = Micrograms per liter. ng/L = nanograms per liter.

The May and October 2022 VOC results are presented in Table 7-2; the cadmium, chromium, nickel, and uranium results are presented in Table 7-3; and the radionuclide, gross alpha, gross beta, tritium, and radon-222 results are presented in Table 7-4. Table 7-5 summarizes field water quality measurements taken prior to environmental groundwater sample collection.

First Sampling Event - May 12-18, 2022

There were no validated VOC detections in the environmental samples. Methylene chloride was reported at very low concentrations below the PQL in the MWL-BW2 environmental duplicate sample and the MWL-MW7 environmental sample. These results were qualified during data validation as non-detections due to associated trip blank results. There were no other reported detections of VOCs.

Cadmium and chromium were not detected above the associated MDLs. Nickel was detected above the MDL but below the PQL in the MWL-BW2 environmental-duplicate sample pair. Uranium was detected below the LTMMP trigger level in all environmental samples. Uranium concentrations ranged from 0.00713 milligrams per liter (mg/L) at MWL-BW2 (environmental duplicate sample) to 0.00933 mg/L at MWL-MW9. All metals results are consistent with historical MWL groundwater monitoring results and below LTMMP trigger levels.

MWL environmental samples were screened for gamma-emitting radionuclides, gross alpha activity, gross beta activity, tritium, and radon-222. There were no detections of gamma-emitting radionuclides (as determined by gamma spectroscopy) or tritium (as determined by liquid scintillation counting). Gross alpha activity was detected below the LTMMP trigger level of 15 pCi/L in all samples ranging from 4.35 pCi/L (MWL-MW9) to 7.12 pCi/L (MWL-BW2 environmental duplicate sample). Gross beta activity ranged from 5.40 pCi/L (MWL-MW8) to 9.14 pCi/L (MWL-BW2 environmental duplicate sample); results are consistent with background levels. Radon-222 was detected in all samples below the LTMMP trigger level of 1,000 pCi/L, with activities ranging from 95.4 pCi/L (MWL-MW7) to 470 pCi/L (MWL-BW2 environmental sample).

All radiological results were reviewed by an SNL/NM Health Physics SME to screen for potential indications of radiological contamination; there were no indications of radiological anomalies in the groundwater sample results. Results are consistent with historical results and background activities for MWL groundwater, and below LTMMP trigger levels.

Second Sampling Event - October 20-26, 2022

Toluene was the only VOC detected in the validated environmental sample results. Acetone and methylene chloride were reported in MWL-BW2 environmental sample and acetone was reported in the MWL-MW7 environmental duplicate sample at very low concentrations below the PQL. These results were qualified as not detected during data validation due to associated trip and field blank sample results, respectively. Toluene was reported in all October 2022 environmental samples at low concentrations. The toluene result for the MWL-MW8 environmental sample was qualified as not detected during data validation due to a similar result in the associated trip blank sample. The toluene results for the other environmental samples were all very low detections between the MDL and PQL and well below the trigger level.

Table 7-2
Summary of Detected Volatile Organic Compound Results (EPA Method 8260Da),
Mixed Waste Landfill Groundwater Monitoring, Sandia National Laboratories, New Mexico
May and October 2022

Well ID	Analyte	Result (μg/L)	MDL (μg/L)	PQL (μg/L)	Trigger Level (μg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
May 2022 Sampling Event							
MWL-BW2 (Duplicate) 12-May-2022	Methylene chloride	0.560	0.500	5.00	3	J	5.0U
MWL-MW7 16-May-2022	Methylene chloride	0.730	0.500	5.00	3	J	5.0U
October 2022 Sampling Even	ent						
MWL-BW2 20-Oct-2022	Acetone Methylene chloride Toluene	2.09 0.860 0.880	1.74 0.500 0.333	5.00 5.00 1.00	3000 3 1000	J J J	5.0U 5.0UJ
MWL-MW7 24-Oct-2022	Toluene	0.880	0.333	1.00	1000	J	
MWL-MW7 (Duplicate)	Acetone	2.11	1.74	5.00	3000	J	5.0U
24-Oct-2022	Toluene	0.870	0.333	1.00	1000	J	
MWL-MW8 26-Oct-2022	Toluene	7.93	0.333	1.00	1000		7.93U
MWL-MW9 25-Oct-2022	Toluene	0.840	0.333	1.00	1000	J	

Notes:

Laboratory Qualifier

J = Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL

Validation Qualifier

- U = The analyte was reported as a detection by the laboratory but was qualified during data validation as not detected. The associated numerical value is the revised sample quantitation limit in accordance with the data validation process.
- UJ = The analyte was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise".

ID = Identification.

MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99 percent confidence that the analyte is greater than zero, analyte is matrix-specific.

μg/L = Micrograms per liter.

MWL = Mixed Waste Landfill.

PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

^aU.S. Environmental Protection Agency (EPA), November 1986 (and updates). "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

bLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Table 7-3
Summary of Cadmium, Chromium, Nickel, and Uranium Results (EPA Method 6020Ba)
Mixed Waste Landfill Groundwater Monitoring
May and October 2022

Well ID	Analyte	Result (mg/L)	MDL (mg/L)	PQL (mg/L)	Trigger Level (mg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
May 2022 Sam	pling Event						
MWL-BW2	Cadmium	ND	0.0003	0.001	0.0025	U	
12-May-2022	Chromium	ND	0.003	0.010	0.043	U	
-	Nickel	0.000736	0.0006	0.002	0.050	J	-
	Uranium	0.00726	0.000067	0.0002	0.015		-
MWL-BW2	Cadmium	ND	0.0003	0.001	0.0025	U	-
(Duplicate)	Chromium	ND	0.003	0.010	0.043	U	-
12-May-2022	Nickel	0.000720	0.0006	0.002	0.050	J	-
•	Uranium	0.00713	0.000067	0.0002	0.015		-
MWL-MW7	Cadmium	ND	0.0003	0.001	0.0025	U	-
16-May-2022	Chromium	ND	0.003	0.010	0.043	U	-
	Nickel	ND	0.0006	0.002	0.050	U	-
	Uranium	0.00738	0.000067	0.0002	0.015		-
MWL-MW8	Cadmium	ND	0.0003	0.001	0.0025	U	-
18-May-2022	Chromium	ND	0.003	0.010	0.043	U	-
	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00752	0.000067	0.0002	0.015		-
MWL-MW9	Cadmium	ND	0.0003	0.001	0.0025	U	
17-May-2022	Chromium	ND	0.003	0.010	0.043	U	
	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00933	0.000067	0.0002	0.015		

Table 7-3 (Concluded) Summary of Cadmium, Chromium, Nickel, and Uranium Results (EPA Method 6020Ba) Mixed Waste Landfill Groundwater Monitoring May and October 2022

Well ID	Analyte	Result (mg/L)	MDL (mg/L)	PQL (mg/L)	Trigger Level (mg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
October 2022 Sa	ampling Event						
	Cadmium	ND	0.0003	0.001	0.0025	U	
MWL-BW2	Chromium	ND	0.003	0.010	0.043	U	
20-Oct-2022	Nickel	0.000787	0.0006	0.002	0.050	J	
	Uranium	0.00687	0.000067	0.0002	0.015		
	Cadmium	ND	0.0003	0.001	0.0025	U	
MWL-MW7	Chromium	0.00319	0.003	0.010	0.043	J	
24-Oct-2022	Nickel	0.00186	0.0006	0.002	0.050	J	0.002U
	Uranium	0.00721	0.000067	0.0002	0.015		
MWL-MW7	Cadmium	ND	0.0003	0.001	0.0025	U	
(Duplicate)	Chromium	0.00311	0.003	0.010	0.043	J	
24-Oct-2022	Nickel	0.00192	0.0006	0.002	0.050	J	0.002U
24-001-2022	Uranium	0.00711	0.000067	0.0002	0.015		
	Cadmium	ND	0.0003	0.001	0.0025	U	
MWL-MW8	Chromium	ND	0.003	0.010	0.043	U	
26-Oct-2022	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00754	0.000067	0.0002	0.015		
	Cadmium	ND	0.0003	0.001	0.0025	U	
MWL-MW9	Chromium	ND	0.003	0.010	0.043	U	
25-Oct-2022	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00932	0.000067	0.0002	0.015		

Notes:

^aEPA, November 1986 (and updates). "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response, EPA, Washington, D.C.

^bLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

- J = Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- U = Analyte was not detected.

Validation Qualifier

- The analyte was reported as a detection by the laboratory but was qualified during data validation as not detected. The associated numerical value is the revised sample quantitation limit (i.e., PQL) in units of ppmv, in accordance with the data validation process.
- EPA = U.S. Environmental Protection Agency.
- ID = Identification.
- MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99 percent confidence that the analyte is greater than zero, analyte is matrix-specific.
- mg/L = Milligrams per liter.
- MWL = Mixed Waste Landfill.
- ND = Not detected (at MDL).
- PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

Table 7-4
Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results
Mixed Waste Landfill Groundwater Monitoring
May and October 2022

		Resulta	MDA ^b	Trigger	Laboratory	Validation	Analytical
Well ID	Analyte	(pCi/L)	(pCi/L)	Level	Qualifier	Qualifier	Method
May 2022 Sampli		(ро.: 2)	(602)	2010.	- Quantito	Quannon	illouriou .
MWL-BW2	Americium-241	-4.66 ± 7.38	11.1	NE	U	BD	EPA 901.1
12-May-2022	Cesium-137	0.779 ± 1.74	2.80	NE	U	BD	EPA 901.1
•	Cobalt-60	-0.287 ± 1.67	3.03	NE	U	BD	EPA 901.1
	Gross Alpha	6.74	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	7.73 ± 0.997	1.32	4 mrem/yr			EPA 900.0
	Tritium ^f	13.0 ± 75.8	138	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	470 ± 128	90.3	1,000 pCi/L	H	J	SM7500-Rn B
MWL-BW2	Americium-241	8.64 ± 15.3	25.3	NE	U	BD	EPA 901.1
(Duplicate)	Cesium-137	1.13 ± 3.13	2.95	NE	Ü	BD	EPA 901.1
12-May-2022	Cobalt-60	-0.813 ± 2.09	3.53	NE	Ü	BD	EPA 901.1
,	Gross Alpha	7.12	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	9.14 ± 1.17	1.52	4 mrem/yr			EPA 900.0
	Tritium ^f	-3.77 ± 74.5	139	4 mrem/yr	U	BD	EPA 906.0M
			90.5		Н	J	SM7500-Rn B
MWL-MW7	Radon-222	438 ± 122		1,000 pCi/L	U		
16-May-2022	Americium-241	1.68 ± 9.51	15.6	NE		BD	EPA 901.1
10-11/1ay-2022	Cesium-137	-5.87 ± 4.80	3.26	NE	U	BD	EPA 901.1
	Cobalt-60	0.0379 ± 1.73	3.22	NE 15 01"	U	BD	EPA 901.1
	Gross Alpha	5.66	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	6.99 ± 1.07	1.44	4 mrem/yr			EPA 900.0
	Tritium ^f	69.9 ± 82.7	137	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	95.4 ± 61.1	92.1	1,000 pCi/L		J	SM7500-Rn B
MWL-MW8	Americium-241	1.68 ± 10.2	17.0	NE	U	BD	EPA 901.1
18-May-2022	Cesium-137	0.537 ± 2.13	3.74	NE	U	BD	EPA 901.1
	Cobalt-60	0.676 ± 2.10	3.91	NE	U	BD	EPA 901.1
	Gross Alpha	4.43	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	5.40 ± 0.811	1.01	4 mrem/yr			EPA 900.0
	Tritium ^f	24.3 ± 78.3	140	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	158 ± 56.7	64.4	1,000 pCi/L		J	SM7500-Rn B
MWL-MW9	Americium-241	-2.41 ± 18.3	30.0	NE	U	BD	EPA 901.1
17-May-2022	Cesium-137	0.403 ± 2.14	3.83	NE	U	BD	EPA 901.1
	Cobalt-60	-0.320 ± 2.19	4.00	NE	U	BD	EPA 901.1
	Gross Alpha	4.35	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	6.28 ± 0.979	1.33	4 mrem/yr			EPA 900.0
	Tritium ^f	68.8 ± 85.0	142	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	421 ± 112	77.5	1,000 pCi/L			SM7500-Rn B
October 2022 Sa	mpling Event						
MWL-BW2	Americium-241	-1.17 ± 15.2	23.2	NE	U	BD	EPA 901.1
20-Oct-2022	Cesium-137	1.75 ± 3.69	3.27	NE	U	BD	EPA 901.1
	Cobalt-60	-1.84 ± 2.53	3.44	NE	U	BD	EPA 901.1
	Gross Alpha	6.60	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	9.05 ± 1.17	1.42	4 mrem/yr			EPA 900.0
	Tritium ^f	52.1 ± 90.8	157	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	345 ± 100	84.1	1,000 pCi/L			SM7500-Rn B
MWL-MW7	Americium-241	0.571 ± 7.64	13.3	NE	U	BD	EPA 901.1
24-Oct-2022	Cesium-137	0.327 ± 1.47	2.59	NE	Ü	BD	EPA 901.1
	Cobalt-60	-1.19 ± 1.63	2.63	NE	U	BD	EPA 901.1
	Gross Alpha	2.95	NA	15 pCi/L	NA NA	None	EPA 900.0
	Gross Beta ^e	6.98 ± 0.909	1.17	4 mrem/yr			EPA 900.0
	Tritium ^f	16.4 ± 87.8	159	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	142 ± 57.4	70.6	1,000 pCi/L		J	SM7500-Rn B
	nd of table	174 ± 01.4	7 0.0	1,000 POI/L	L		SIVIT SOUTINI D

Table 7-4 (Concluded)

Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results Mixed Waste Landfill Groundwater Monitoring May and October 2022

Well ID	Analyte	Result ^a (pCi/L)	MDA ^b (pCi/L)	Trigger Level	Laboratory Qualifier ^c	Validation Qualifier ^c	Analytical Method ^d
October 2022 Sa	mpling Event (conti	nued)					
MWL-MW7	Americium-241	-0.263 ± 5.29	9.19	NE	U	BD	EPA 901.1
(Duplicate)	Cesium-137	-0.444 ± 1.59	2.57	NE	U	BD	EPA 901.1
26-Oct-2022	Cobalt-60	0.617 ± 1.47	2.75	NE	U	BD	EPA 901.1
	Gross Alpha	3.81	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	5.39 ± 0.805	0.988	4 mrem/yr			EPA 900.0
	Tritium ^f	55.9 ± 92.2	158	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	109 ± 52.2	70.8	1,000 pCi/L		J	SM7500-Rn B
MWL-MW8	Americium-241	-1.51 ± 9.47	14.1	NE	U	BD	EPA 901.1
26-Oct-2022	Cesium-137	0.385 ± 3.06	2.93	NE	U	BD	EPA 901.1
	Cobalt-60	0.843 ± 1.68	3.10	NE	U	BD	EPA 901.1
	Gross Alpha	4.50	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	5.79 ± 0.872	1.19	4 mrem/yr		NJ+	EPA 900.0
	Tritium ^f	63.1 ± 94.0	160	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	153 ± 57.2	66.3	1,000 pCi/L		J	SM7500-Rn B
MWL-MW9	Americium-241	-0.0705 ± 12.9	20.2	NE	U	BD	EPA 901.1
25-Oct-2022	Cesium-137	0.308 ± 1.71	2.98	NE	U	BD	EPA 901.1
	Cobalt-60	1.04 ± 1.61	3.03	NE	U	BD	EPA 901.1
	Gross Alpha	4.06	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	5.64 ± 0.948	1.24	4 mrem/yr			EPA 900.0
	Tritium ^f	59.4 ± 93.0	159	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	421 ± 107	59.1	1,000 pCi/L			SM7500-Rn B

Notes:

^aGross alpha activity measurements were corrected by subtracting the total uranium activity from the total gross alpha result (Title 40 Code of Federal Regulations Parts 9, 141, and 142, Table I-4). Negative numbers indicate the sample count or result was less than the instrument background.

^bMDA is the minimal detectable activity or minimum measured activity in a sample required to ensure 95 percent probability that the measured activity is accurately quantified above the critical level.

^cLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

H = Analytical holding time was exceeded.

NA = Not applicable because the gross alpha result shown is adjusted for naturally occurring uranium.

U = Analyte was below detection limit.

Validation Qualifier

BD = Result is not statistically different from zero.

J = The associated value is an estimated quantity.

NJ+ = Presumptive evidence of the presence of the material at an estimated quantity with a suspected positive bias.

None = No data validation for corrected gross alpha activity.

^dAnalytical Methods EPA 900.0, EPA 901.1, and EPA 906.0M:

- EPA, 1980. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

Analytical Method SM7500-Rn B:

- Ámerican Public Health Association, American Water Works Association, and Water Environment Federation, 1988. "Standard Methods for the Examination of Water and Wastewater," SM7500-Rn B Method, 22nd Edition, published jointly by American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, D.C., 1988.
 *Refer to Section 7.2.1 for an explanation of the gross beta trigger level.

The approximate equivalent activity for the 4 mrem/yr tritium trigger level is 20,000 pCi/L.

EPA = U.S. Environmental Protection Agency.

ID = Identification.

MWL = Mixed Waste Landfill.

mrem/yr = Millirem per year.

NE = Not established.

pCi/L = Picocuries per liter.

SM = Standard method.

Table 7-5 Summary of Field Water Quality Measurements^a Mixed Waste Landfill Groundwater Monitoring May and October 2022

Well ID	Temperature (°C)	SC (µmhos/cm)	ORP (mV)	На	Turbidity (NTU)	DO (% Sat)	DO (mg/L)
May 2022 Sampling		(риноз/сии)	(1114)	рп	(1410)	(/o Jat)	(IIIg/L)
MWL-BW2	21.41	703.61	153.1	7.37	2.27	26.24	2.16
MWL-MW7	22.96	614.43	176.9	7.54	0.28	75.07	6.06
MWL-MW8	23.14	605.81	169.1	7.49	0.34	40.91	3.11
MWL-MW9	23.85	628.31	143.3	7.45	0.71	14.95	1.17
October 2022 Sampl	ing Event						
MWL-BW2	21.94	694.20	95.2	7.34	1.55	36.75	2.70
MWL-MW7	16.72	463.99	108.6	7.52	0.70	73.02	6.10
MWL-MW8	18.05	483.09	124.6	7.49	0.32	35.31	2.81
MWL-MW9	16.95	470.64	96.1	7.45	0.54	10.53	0.87

Notes:

^aField measurements collected prior to sampling.

°C = Degrees Celsius.
% Sat = Percent saturation.
DO = Dissolved oxygen.
ID = Identification.
mg/L = Milligrams per liter.
MWL = Mixed Waste Landfill.
µmho/cm = Micromhos per centimeter.

mV = Millivolts.

NTU = Nephelometric turbidity units.
ORP = Oxidation-reduction potential.

pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).

SC = Specific conductivity.

Toluene is a ubiquitous chemical and common laboratory contaminant that has been sporadically detected at very low concentrations in environmental samples from the MWL and other SNL/NM sites. From 2008 through early 2010, SNL/NM personnel performed a comprehensive toluene investigation (SNL/NM October 2010) that was approved by the NMED (Bearzi January 2011). The extensive data and information presented in the report indicated the MWL and other SNL/NM sites were not the source of the toluene detected in environmental samples, which were like those reported in the October 2022 samples. Since groundwater monitoring began under the LTMMP in 2014 there have been no detections of toluene in MWL environmental samples until the October 2022 data set.

Cadmium was not detected above the MDL in any of the environmental samples. Chromium was only detected at low concentrations below the PQL in the MWL-MW7 environmental-duplicate sample pair. Nickel was detected in the MWL-BW2 (environmental sample) and MWL-MW7 (environmental and environmental duplicate samples) at low concentrations between the MDL and PQL. Uranium was detected in all samples at concentrations ranging from 0.00687 mg/L (MWL-BW2) to 0.00932 mg/L (MWL-MW9). All metals results are consistent with historical MWL groundwater monitoring results and are below LTMMP trigger levels.

MWL environmental samples were screened for gamma-emitting radionuclides, gross alpha activity, gross beta activity, tritium, and radon-222. There were no detections of gamma-emitting

radionuclides (as determined by gamma spectroscopy) or tritium (as determined by liquid scintillation counting). Gross alpha activity was detected below the LTMMP trigger level of 15 pCi/L in all samples ranging from 2.95 pCi/L (MWL-MW7 environmental sample) to 6.60 pCi/L (MWL-BW2). Gross beta activity was detected in all samples ranging from 5.39 pCi/L (MWL-MW7 environmental duplicate sample) to 9.05 pCi/L (MWL-BW2)); results are consistent with background levels. Radon-222 was detected in all samples below the LTMMP trigger level of 1,000 pCi/L, with activities ranging from 109 pCi/L (MWL-MW7 environmental duplicate sample) to 421 pCi/L (MWL-MW9).

All radiological results were reviewed by an SNL/NM Health Physics SME to screen for potential indications of radiological contamination; there were no indications of radiological anomalies in the groundwater sample results. Results are consistent with historical results and background activities for MWL groundwater, and below LTMMP trigger levels.

Nickel and Uranium Concentration and Gross Alpha Activity Plots

Concentrations or activities over time of nickel, uranium, and gross alpha activity are presented in Figures 7-2 through 7-4, respectively for all groundwater monitoring events conducted since implementation of the LTMMP in 2014. Trigger levels are shown at the top of these plots and have not been exceeded. For non-detect results the MDL or MDA was used, and for environmental-duplicate sample pairs only the highest result was used. Variation shown in these plots reflects natural background variation in the concentration of these constituents within the Regional Aquifer. The superposition of concentration lines in Figure 7-2 reflects mostly non-detection results for nickel in the environmental samples from all four compliance monitoring wells.

7.2.2 Field Quality Control Sample Results

Field QC sample results met the sampling DQOs and validated the field sampling procedures and protocol. The analytical results for each field QC sample type are presented in this section.

Table 7-6 summarizes results of environmental-duplicate sample pair results and the calculated RPD values for the May and October 2022 data sets. RPDs were calculated for constituents that exceeded the MDL in the sample pairs. Calculated RPDs show good agreement (i.e., RPD values less than or equal to 20 for VOCs and less than or equal to 35 for metals per LTMMP Appendix F, Section 2.2) for both sampling events, ranging from 1 to 3.

A discussion of equipment, field, and trip blank results for the May and October 2022 sampling events is provided below.

First Sampling Event - May 12-18, 2022

The equipment blank sample for the May 2022 sampling event was analyzed for all constituents. Acetone, bromodichloromethane, bromoform, chloroform, dibromochloromethane and methylene chloride were detected above laboratory MDLs. No corrective action was necessary since these compounds were not detected in the MWL-BW2 environmental-duplicate sample pair. The equipment blank methylene chloride result was qualified as not detected during data validation since it was reported in the associated trip blank sample at a similar

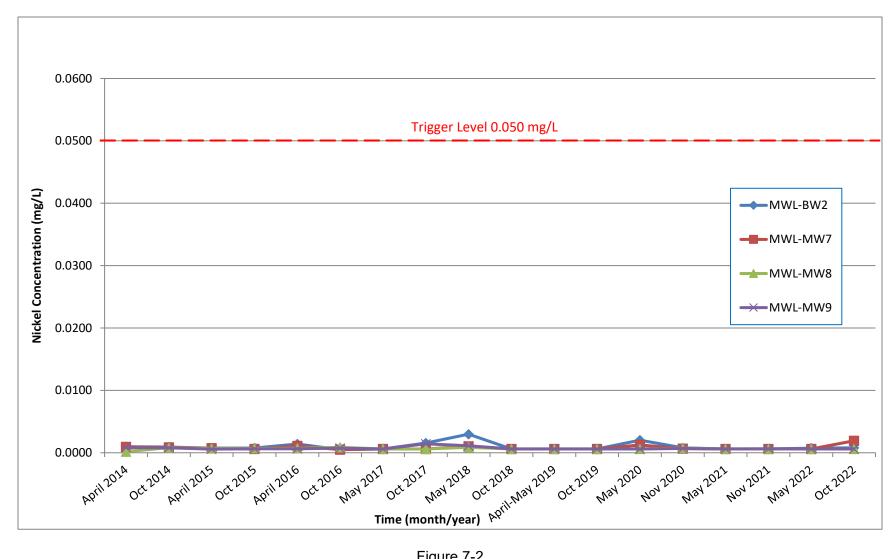


Figure 7-2
Nickel Concentrations vs. Time
Mixed Waste Landfill Groundwater Monitoring Wells

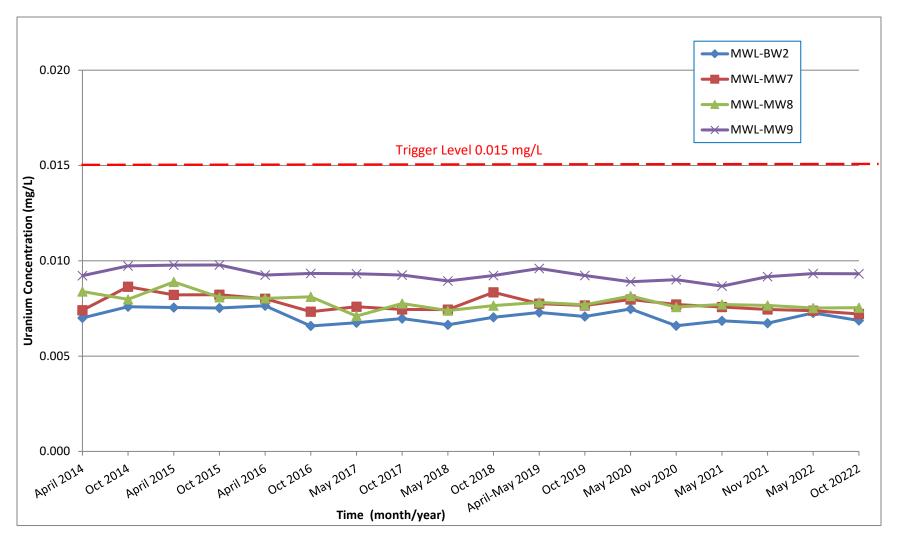


Figure 7-3
Uranium Concentrations vs. Time
Mixed Waste Landfill Groundwater Monitoring Wells

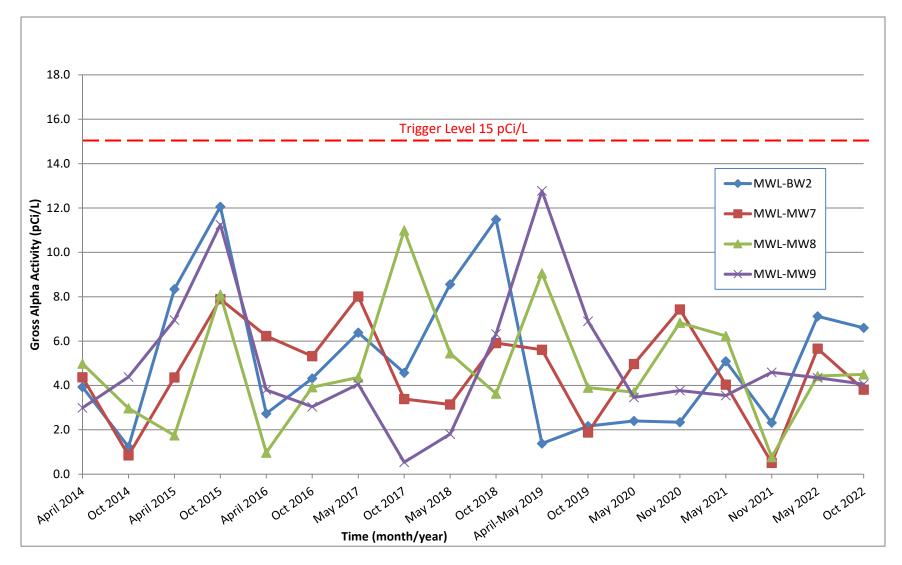


Figure 7-4
Gross Alpha Activity vs. Time
Mixed Waste Landfill Groundwater Monitoring Wells

Table 7-6 Summary of Duplicate Sample Results Mixed Waste Landfill Groundwater Monitoring May and October 2022

Well ID/Parameter	Environmental Sample (R ₁)	Duplicate Sample (R ₂)	RPD ^a (%)
May 2022 Sampling Event			
MWL-BW2			
Nickel (mg/L)	0.000736	0.000720	2
Uranium (mg/L)	0.00726	0.00713	2
October 2022 Sampling Event			
MWL-MW7			
Toluene (µg/L)	0.880	0.870	1
Chromium (mg/L)	0.00319	0.00311	3
Nickel (mg/L)	0.00186	0.00192	3
Uranium (mg/L)	0.00721	0.00711	1

Notes:

^aRPD = Relative percent difference is calculated with the following equation and rounded to the nearest whole number.

$$RPD = \frac{|R_I - R_2|}{[(R_I + R_2)/2]} \times 100$$

where: R₁ = Environmental sample result. R₂ = Duplicate sample result.

% = Percent.
ID = Identification.

µg/L = Micrograms per liter.

mg/L = Milligrams per liter.

MWL = Mixed Waste Landfill.

concentration. Due to a shipping delay, the equipment blank VOC sample was received by the laboratory outside the analytical method temperature criteria. All VOC results that were detections above the MDLs were qualified as estimated values with a negative bias and all non-detections (i.e., less than the associated MDLs) were qualified as not usable during data validation. No corrective action was required as there were no VOCs reported above MDLs in the associated environmental samples (i.e., MWL-BW2 environmental-duplicate sample pair). Also due to the shipping delay, the radon-222 equipment blank sample was analyzed outside the analytical method holding time. A second equipment blank sample was collected for radon-222 only on May 17, 2022 prior to sampling MWL-MW9. Radon-222 was reported below the MDA in both equipment blank samples.

Five field blank samples were collected and submitted for VOC analysis during the May 2022 sampling event. Acetone, bromodichloromethane, bromoform, chloroform, dibromochloromethane, and methylene chloride were detected in the field blank samples. No corrective action was necessary since these compounds were not detected in the associated environmental samples. The one field blank methylene chloride result was qualified as not detected during data validation as explained below.

Methylene chloride was the only VOC detected above the MDL in the six trip blank samples. Methylene chloride was reported below the PQL in the trip blank samples associated with the MWL-BW2 and MWL-MW7 environmental samples and the associated field QC samples (i.e., MWL-BW2 environmental duplicate sample, two field blank samples and one equipment blank sample). In the environmental and field QC samples with reported detections, methylene chloride was qualified as not detected during data validation since the reported concentrations were similar to the trip blank sample concentrations.

Second Sampling Event – October 20-26, 2022

The four equipment blank samples collected prior to sampling each monitoring well were analyzed for all constituents. 1,2-dichloroethane, acetone, bromodichloromethane, 2-butanone, chloroform, dibromochloromethane, methylene chloride, nickel, and gross beta were detected above MDLs or MDA for gross beta. No corrective action was necessary for 1,2-dichloroethane, acetone, bromodichloromethane, 2-butanone, chloroform, dibromochloromethane, methylene chloride, and gross beta since these constituents were not detected in associated environmental samples or were detected at a concentration greater than five times the associated equipment blank concentration or activity. One exception was the MWL-MW8 gross beta result that was a detection greater than the MDA but less than five times the equipment blank activity; it was qualified during data validation as an estimated value with a suspected positive bias. Nickel results for the MWL-MW7 environmental-duplicate sample pair were qualified as not detected during data validation since nickel was reported in both environmental-duplicate sample pair and the equipment blank sample at low concentrations between the MDL and PQL.

Five field blank samples were collected and submitted for VOC and PFAS analysis. Four additional reagent field blank samples (i.e., using water supplied by the laboratory versus the deionized water supplied by a local vendor) were also collected at each well location and analyzed for the three PFAS only (PFHxS, PFOS, and PFOA). The compounds detected in field blank samples that were not qualified as non-detections during data validation due to associated trip blank results included 1,2-dichloroethane, acetone, bromodichloromethane, chloroform, dibromochloromethane, and PFOS. No corrective action was necessary for 1,2-dichloroethane, bromodichloromethane, chloroform, dibromochloromethane, and PFOS since these compounds were not detected in the associated environmental samples. Acetone in the MWL-MW7 environmental duplicate sample was qualified as not detected during data validation since acetone was reported at similar concentrations in the environmental duplicate and field blank samples. The one PFOS detection was in the field blank sample associated with MWL-MW9 (i.e., not the reagent field blank sample).

Acetone was reported in the trip blank samples associated with MWL-BW2 and three equipment blank samples. Methylene chloride was reported below the PQL in trip blank samples associated with MWL-BW2, MWL-MW8, two equipment blank samples, and two field blank samples. Toluene was reported in the trip blank samples associated with MWL-MW8 and two field blank samples. Acetone, methylene chloride, and toluene were qualified as not detected in these environmental and field QC samples during data validation since reported concentrations were either below the PQL or less than two times the trip blank concentrations.

7.2.3 Laboratory Quality Control and Data Quality

Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These samples included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, surrogate spike samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. Reported laboratory QC sample results comply with analytical method and laboratory procedure requirements.

All chemical data were reviewed and qualified in accordance with SNL/NM AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2020). Corrective action was implemented in accordance with the data validation procedure and included the qualification of results as detailed in the previous sections and the data validation reviews. All environmental sample analytical data were determined to be acceptable and meet the DQOs. Data validation reviews that include AR/COCs and contract verification reviews are provided in Annex E.

7.2.4 Variances and Non-Conformances

Variances and non-conformances are defined in the LTMMP Appendix F, Section 6 for groundwater monitoring. There were no variances or non-conformances from LTMMP requirements for groundwater monitoring during the May and October 2022 sampling events.

7.3 Hydrogeologic Assessment

A detailed conceptual site model is provided in the MWL Phase 2 RCRA Facility Investigation Report (Peace et al. September 2002) and the Mixed Waste Landfill Groundwater Report, 1990 through 2001 (Goering et al. December 2002). An update to the conceptual site model integrating the findings from the current groundwater monitoring well network installed in 2008 is presented in the Mixed Waste Landfill Annual Groundwater Monitoring Report, Calendar Year 2009 (SNL/NM June 2010).

The upper surface of the Regional Aquifer at the MWL is contained within the interfingering, unconsolidated, fine-grained alluvial-fan deposits of the Santa Fe Group. The more transmissive, coarser-grained Ancestral Rio Grande sediments underlie the fine-grained alluvial deposits beneath the MWL. The depth to water is approximately 500 ft bgs and groundwater flows generally westward, away from the Manzanita Mountains and towards the Rio Grande. Several production wells operated by KAFB and the ABCWUA have profoundly modified the natural groundwater flow regime near the MWL by creating a trough in the water table in the western and northern portions of KAFB. As a result, water levels at the MWL have historically declined since monitoring began in 1990.

Figure 7-5 shows the change in groundwater elevation at MWL groundwater monitoring wells for the time period 2000 through 2022. Since about 2010, the rate of groundwater elevation decline in all wells has been relatively slow and some wells on the west side of the MWL have shown very small increases in groundwater elevations. The rate of groundwater elevation decline in the

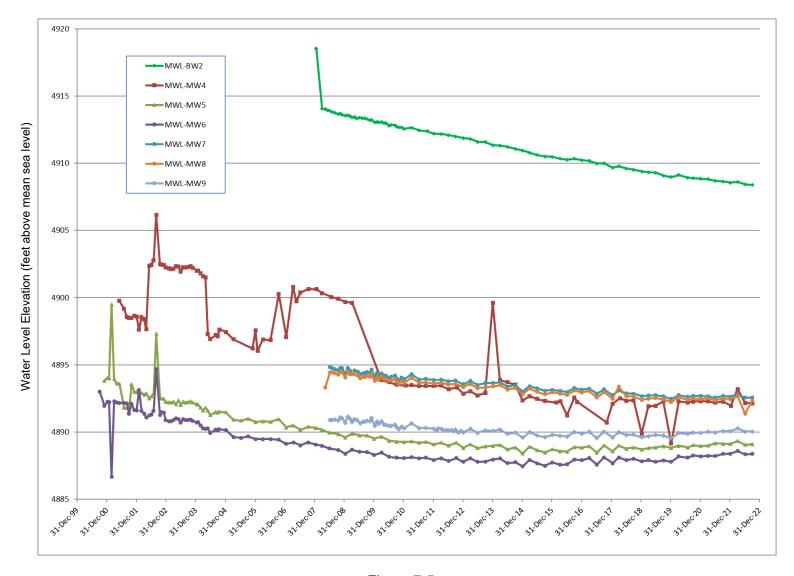


Figure 7-5
Groundwater Level Elevations at Mixed Waste Landfill Groundwater Monitoring Wells

upper screen interval of MWL-MW4 has generally stabilized since April 2010; this well shows more variation due to the strong downward gradient in the Regional Aquifer beneath the MWL and the presence of an inflatable packer between the upper (across the water table) and lower (at least partially within the Ancestral Rio Grande sediments) screen intervals. The overall decline in MWL-BW2, located on the east side of the MWL, reflects a higher rate of decline than observed in the other wells on the western side of the MWL. Monitoring wells on the west side of the MWL (MWL-MW5 through MWL-MW9) have shown a slight increase in the groundwater elevation over the past three years. From October 2021 to October 2022, the groundwater elevation declined in all MWL compliance wells, ranging from -0.26 feet at MWL-BW2 to -0.04 feet at MWL-MW9. Changes were smaller at the other three monitoring wells with different well completions; MWL-MW4 and MWL-MW5 showed a slight decline (-0.05 feet and -0.03 feet, respectively) and MWL-MW6 showed no change. In contrast to more significant decreases observed in the past, these subtle changes are likely due to decreased pumping of ABCWUA production wells to the north.

Recharge from infiltration of direct precipitation at the MWL is negligible due to high evapotranspiration, low precipitation, the thick sequence of unsaturated Santa Fe Group deposits above the water table, and the presence of the ET Cover. Regional recharge has been affected by extended drought conditions that continued in 2022. Groundwater recharge of the Regional Aquifer occurs primarily by the infiltration of precipitation in the Manzanita Mountains located approximately 5 miles to the east.

Figure 7-6 shows the October 2022 potentiometric surface of the Regional Aquifer beneath the MWL. Based upon the potentiometric contours, the hydraulic gradient is to the west-northwest. Measured orthogonally from the potentiometric surface contours, the horizontal gradient for October 2022 ranges from approximately 0.03 to 0.08 feet per foot. Groundwater velocities in the alluvial-fan sediments were calculated using the current potentiometric surface gradient, the average hydraulic conductivity obtained from slug testing of the four compliance monitoring wells, and an effective porosity of 25 percent. The calculated 2022 groundwater velocity remains consistent with previous years, and ranges from 0.02 to 0.06 feet per day; the average is 0.04 feet per day. These very low values and the general position of the groundwater elevation contours have not significantly changed over the past nine years and are consistent with previous estimates for horizontal groundwater flow at the water table in the MWL vicinity.

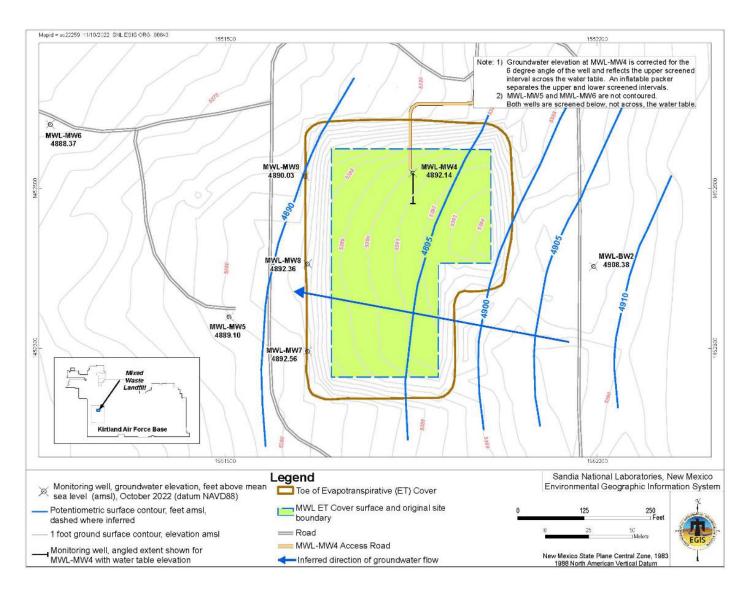


Figure 7-6
Localized Potentiometric Surface of the Regional Aquifer at the Mixed Waste Landfill, October 2022

This page intentionally left blank.

8.0 BIOTA MONITORING RESULTS

This chapter presents biota monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.6 and Appendix G (SNL/NM March 2012). The monitoring objective is to provide data to evaluate biotic mobilization of contaminants (i.e., metals and radionuclides) from the subsurface to surface. Sampling of surface soil from animal burrows and ant hills and potentially deep-rooted vegetation is performed if these features are identified during the annual ET Cover Biology Inspection. Biota monitoring functions as an early warning detection system so that timely action can be taken, if necessary. Results are compared to trigger levels and background levels defined in LTMMP Section 5.2.2.2.

Biota monitoring field activities are described in Section 8.1, analytical laboratory results and a discussion of data quality are presented in Section 8.2, and data evaluation and a comparison of results to monitoring trigger levels are presented in Section 8.3. A summary of biota monitoring activities and results is provided in Section 11.1.

8.1 **Biota Monitoring Field Activities**

One biota sampling event was conducted during the April 1, 2022 through March 31, 2023 reporting period, fulfilling the LTMMP annual monitoring requirement. The biota sampling locations were identified during the annual ET Cover Biology Inspection performed on August 22, 2022. The two ant hill sampling locations (MWL AHSS-01-2022 and MWL AHSS-02-2022) are shown in Figure 8-1. There were no animal burrows or potentially deep-rooted plants identified on the ET Cover during the Biology Inspection. The two ant hill locations selected for surface soil sampling on the ET Cover were active and provided different locations relative to last year's biota sample locations. Surface soil samples were collected at these locations on September 22, 2022 and were analyzed for metals and gamma emitting radionuclides by gamma spectroscopy.

8.1.1 Field Quality Control

In accordance with the Tritium and Biota SAP (LTMMP Appendix G, Table G-4.2-1), one field QC sample (duplicate sample) was collected at MWL AHSS-01-2022.

8.1.2 Waste Management

Waste generated during sampling activities included PPE (i.e., gloves) and decontamination wipes. Historical data and analytical results from the sampling event were used to characterize the waste; it was determined to be non-hazardous solid waste and was managed accordingly.

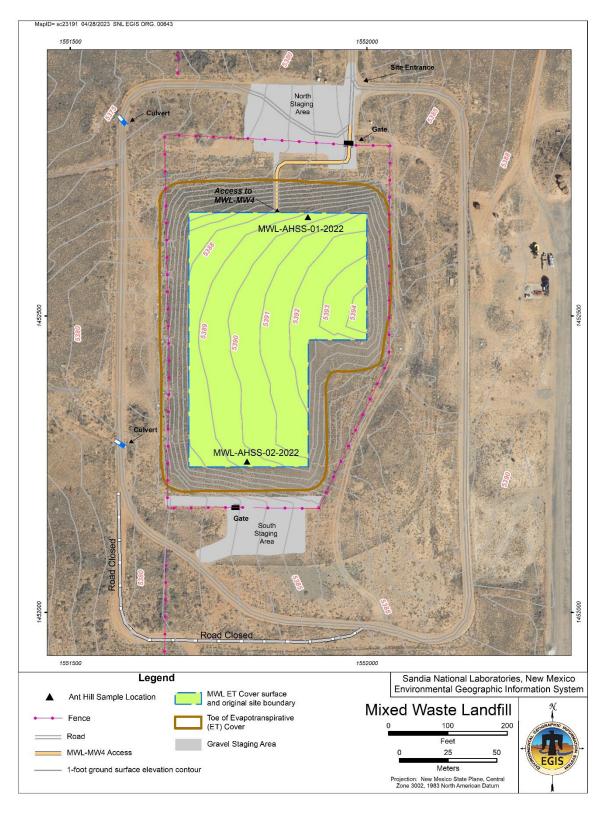


Figure 8-1
Mixed Waste Landfill Biota Sampling Locations

8.2 Laboratory Results

Biota surface soil samples and the duplicate sample were submitted to GEL for analyses. Samples were analyzed in accordance with applicable EPA analytical methods. Results that are below the MDL (metals) or MDA (gamma spectroscopy) are qualified with a "U" and are designated as not detected. Both laboratory and data validation qualifiers are included in the data tables presented in this section. Analytical laboratory reports, including certificates of analyses, analytical methods, MDAs and MDLs, sample results, dates of analyses, and results of QC analyses, are filed in the SNL/NM Record Center.

8.2.1 Environmental Sample Results

Table 8-1 summarizes metals results and Table 8-2 summarizes gamma spectroscopy results for the two ant hill surface soil sample locations. LTMMP trigger levels are included in Table 8-1 and NMED-approved background concentrations and activities (Dinwiddie September 1997) are provided in both Tables 8-1 and 8-2 for comparison.

All metals results were below the respective trigger levels and NMED-approved background concentrations.

All gamma spectroscopy radionuclide activities were low, below the respective NMED-approved background activities. Six of the 18 results were non-detects. The gamma spectroscopy results were reviewed by an SNL/NM Health Physics SME to screen for potential indications of radiological contamination; there were no indications of radiological anomalies in the biota soil sample results.

8.2.2 Field Quality Control Sample Results

Table 8-3 summarizes results of the environmental-duplicate sample pair and the calculated RPD values. An RPD was calculated when metals concentrations in both the environmental and duplicate sample were greater than the reporting limit, and when radionuclides were reported in both the environmental and duplicate samples at activities greater than the MDA. Calculated RPDs for metals and radiological constituents show reasonable agreement for background concentrations, ranging from 2 to 21 for metals and 2 to 41 for radiological constituents (only 1 out of 12 RPD values exceeded 21). As explained in Sections 2.3 and 4.2.1, Appendix G of the LTMMP, more variation in RPD values is expected with a soil matrix and natural variation of background concentrations (metals) and activities (radionuclides). The range of RPDs is acceptable given the very low concentration/activity results that are consistent with background.

Table 8-1 Summary of Metals Results (EPA Method 6010D/7471Ba) Mixed Waste Landfill Biota Monitoring September 2022

Sample Location	Parameter	Result (mg/kg)	MDL (mg/kg)	Reporting Limit (mg/kg)	NMED Background ^b (mg/kg)	Trigger Level (mg/kg)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL AHSS-01-2022	Arsenic	2.39	0.474	2.85	5.6	17.7	J	
22-Sep-2022	Barium	72.3	0.0949	0.474	130	100,000	N	
	Beryllium	0.287	0.0949	0.474	0.65	2,260	J	
	Cadmium	ND	0.0949	0.474	<1	897	U	
	Chromium	7.17	0.142	0.949	17.3	63.1	*	
	Cobalt	2.41	0.142	0.474	5.2	20,500		
	Copper	5.69	0.285	1.90	15.4	45,400		
	Lead	5.30	0.313	1.90	21.4	800	BN	
	Mercury	0.00735	0.00684	0.0204	<0.25	73.6	J	J+,C2
	Nickel	4.92	0.142	0.474	11.5	22,500	В	
	Selenium	ND	0.474	2.85	<1	5,680	U	
	Silver	ND	0.0949	0.474	<1	5,680	U	
	Vanadium	14.3	0.0949	0.474	20.4	5,680		
	Zinc	18.4	0.380	1.90	62	100,000		
MWL AHSS-01-2022	Arsenic	2.53	0.475	2.85	5.6	17.7	J	
(Duplicate)	Barium	65.9	0.0951	0.475	130	100,000	N	
22-Sep-2022	Beryllium	0.276	0.0951	0.475	0.65	2,260	J	
	Cadmium	0.121	0.0951	0.475	<1	897	J	
	Chromium	5.85	0.143	0.951	17.3	63.1	*	
	Cobalt	2.53	0.143	0.475	5.2	20,500		
	Copper	4.96	0.285	1.90	15.4	45,400		
	Lead	4.30	0.314	1.90	21.4	800	BN	
	Mercury	0.00815	0.00728	0.0217	<0.25	73.6	J	
	Nickel	5.20	0.143	0.475	11.5	22,500	В	
	Selenium	0.955	0.475	2.85	<1	5,680	BJ	2.85U, B
	Silver	ND	0.0951	0.475	<1	5,680	U	
	Vanadium	12.5	0.0951	0.475	20.4	5,680		
	Zinc	18.8	0.380	1.90	62	100,000		
MWL AHSS-02-2022	Arsenic	2.83	0.483	2.90	5.6	17.7	J	
22-Sep-2022	Barium	76.0	0.0965	0.483	130	100,000	N	
	Beryllium	0.327	0.0965	0.483	0.65	2,260	J	
	Cadmium	ND	0.0965	0.483	<1	897	U	
	Chromium	7.11	0.145	0.965	17.3	63.1	*	
	Cobalt	2.86	0.145	0.483	5.2	20,500		
	Copper	6.38	0.290	1.93	15.4	45,400		
	Lead	5.14	0.319	1.93	21.4	800	BN	
	Mercury	0.00699	0.00679	0.0203	<0.25	73.6	J	J+, C2
	Nickel	5.73	0.145	0.483	11.5	22,500	В	-
	Selenium	ND	0.483	2.90	<1	5,680	U	
	Silver	ND	0.0965	0.483	<1	5,680	U	
	Vanadium	16.6	0.0965	0.483	20.4	5,680		
	Zinc	21.5	0.386	1.93	62	100,000		

Table 8-1 (Concluded) Summary of Metals Results (EPA Method 6010D/7471Ba) Mixed Waste Landfill Biota Monitoring September 2022

Notes:

^aEPA, November 1986 (and updates). "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

^bDinwiddie, September 1997. Letter from R.S. Dinwiddie (NMED) to M.J. Zamorski (DOE), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB," dated September 24, 1997. ^cLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

- = Recovery or RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective practical quantitation limit.
- B = The analyte was found in the method blank above the effective MDL.
- BJ = The analyte was found in the method blank above the effective MDL and the concentration is an estimated value greater than the MDL but less than the Reporting Limit.
- BN = The analyte was found in the method blank above the effective MDL and the result associated with a spike analysis that was outside control limits.
- I = Estimated value, the analyte concentration is greater than the MDL but less than the Reporting Limit.
- N = Results associated with a spike analysis that was outside control limits.
- U = Result less than the MDL.

Validation Qualifier

- B = Method blank contamination at concentration greater than the MDL.
- C2 = Continuing calibration percent difference failed high.
- J+ = The associated numerical value is an estimated quantity with a suspected positive bias.
- U = The analyte was reported as a detection by the laboratory but was qualified during data validation as not detected. The associated numerical value is the revised sample quantitation limit (i.e., Reporting Limit) in units of mg/kg, in accordance with the data validation process.
- < = Less than.
- DOE = U.S. Department of Energy.
- EPA = U.S. Environmental Protection Agency.
- MDL = Method detection limit.
 mg/kg = Milligrams per kilogram.
 MWL = Mixed Waste Landfill.
- ND = Not detected above the MDL.
- NMED = New Mexico Environment Department.
- RPD = Relative percent difference.
- SNL/KAFB = Sandia National Laboratories/Kirtland Air Force Base.

Table 8-2 Summary of Gamma Spectroscopy Results (EPA Method 901.1a) Mixed Waste Landfill Biota Monitoring September 2022

			MDA	NMED Background ^b	Laboratory	Validation
Sample Location	Parameter	Result (pCi/g)	(pCi/g)	(pCi/g)	Qualifier ^c	Qualifier ^c
MWL AHSS-01-2022	Cesium-137	0.0732 ± 0.0275	0.0240	1.5		
22-Sep-2022	Cobalt-60	0.00333 ± 0.0145	0.0278	NA	U	BD, FR3
	Radium-226	0.740 ± 0.111	0.0452	2.7		
	Thorium-232d	0.913 ± 0.0952	0.0376	1.5		
	Uranium-235	0.139 ±0.157	0.141	0.18	U	BD, FR3
	Uranium-238	1.64 ± 1.13	0.790	2.3		J,FR7
MWL AHSS-01-2022	Cesium-137	0.0628 ± 0.0211	0.0176	1.5		
(Duplicate)	Cobalt-60	0.00170 ± 0.0106	0.0187	NA	U	BD, FR3
22-Sep-2022	Radium-226	0.684 ± 0.0798	0.0314	2.7		
	Thorium-232d	0.895 ± 0.116	0.0232	1.5		
	Uranium-235	0.0331 ± 0.0847	0.0804	0.18	U	BD, FR3
	Uranium-238	1.08 ± 0.451	0.225	2.3		
MWL AHSS-02-2022	Cesium-137	0.562 ± 0.0666	0.0287	1.5		
22-Sep-2022	Cobalt-60	-0.00641 ± 0.0162	0.0285	NA	U	BD, FR3
	Radium-226	0.789 ± 0.106	0.0555	2.7		
	Thorium-232d	0.962 ± 0.101	0.0392	1.5		
	Uranium-235	0.0422 ± 0.0894	0.157	0.18	U	BD, FR3
	Uranium-238	0.916 ± 0.958	0.869	2.3	Х	J,FR7

Notes:

Negative numbers indicate the sample count or result was less than the instrument background.

^aEPA, Novmber 1986 (and updates). "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

^bDinwiddie, September 1997. Letter from R.S. Dinwiddie (NMED) to M.J. Zamorski (DOE), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB," dated September 24, 1997. Cobalt-60 is not naturally occurring; therefore, it does not have a listed background activity.

^cLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

U = Analyte is below detection limit.

X = Uncertain identification for gamma spectroscopy.

Validation Qualifier

BD = Result is not statistically different from zero.

FR3 = Result is less than the MDA or less than 2-sigma the total propagated uncertainty.

FR7 = Result is greater than or equal to the MDA and less than 3 times the MDA.

= The associated value is an estimated quantity.

^dThorium-232 activity is quantified and reported using the daughter isotope Lead-212 results.

DOE = U.S. Department of Energy.

EPA = U.S. Environmental Protection Agency.

MDA = Minimum detectable activity.

MWL = Mixed Waste Landfill.

NA = Not applicable.

NMED = New Mexico Environment Department.

pCi/g = Picocuries per gram.

SNL/KAFB = Sandia National Laboratories/Kirtland Air Force Base.

Table 8-3 Summary of Duplicate Sample Results Mixed Waste Landfill Biota Monitoring September 2022

Sample Location	Environmental Sample (R ₁)	Duplicate Sample (R ₂)	RPD ^a (%)						
MWL AHSS-01-2022 – Metals (mg/kg)									
Barium	72.3	65.9	9						
Chromium	7.17	5.85	5						
Cobalt	2.41	2.53	5						
Copper	5.69	4.96	14						
Lead	5.30	4.30	21						
Nickel	4.92	5.20	6						
Vanadium	14.3	12.5	14						
Zinc	18.4	18.8	2						
MWL AHSS-01-2022 - Rad	ionuclides (pCi/g)								
Cesium-137	0.0732	0.0628	15						
Radium-226	0.740	0.684	8						
Thorium-232	0.913	0.895	2						
Uranium-238	1.64	1.08	41						

Notes:

^aRPD = Relative percent difference is calculated with the following equation and rounded to the nearest whole

$$RPD = \frac{|R_1 - R_2|}{[(R_1 + R_2)/2]} \times 100$$

where: R_1 = Environmental sample result. R_2 = Duplicate sample result.

% = Percent.

mg/kg = Milligrams per kilogram.

MWL = Mixed Waste Landfill.

pCi/g = Picocuries per gram.

8.2.3 Laboratory Quality Control Data Quality

Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA analytical methods. These included laboratory control samples, method blanks, matrix spike, and replicate samples for the metals analyses. For the radiological analyses, method blanks, laboratory control samples, and replicate samples were analyzed with the environmental samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. Laboratory QC sample results comply with analytical method and laboratory procedure requirements except as noted below.

The selenium result for MWL AHSS-01-2022 (environmental duplicate sample) was qualified as not detected during data validation detection due to contamination in the method blank above the MDL. Mercury results for environmental samples MWL AHSS-01-2022 (environmental duplicate sample not impacted) and MWL AHSS-02-2022 were qualified with a suspected positive bias due to the continuing calibration percent difference failing high.

All metals and gamma spectroscopy data were reviewed and qualified in accordance with SNL/NM AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2020). Corrective action was implemented in accordance with the data validation procedure and included qualification of specific results as documented in Tables 8-1 and 8-2 and the data validation reviews. All environmental sample analytical data were determined to be acceptable and to meet the DQOs. Data validation reviews that include AR/COC forms and contract verification reviews are provided in Annex B.

8.2.4 Variances

There were no variances from the LTMMP biota monitoring requirements.

8.3 Data Evaluation and Monitoring Trigger Level

Trigger levels for metals in biota surface soil samples are included in Table 8-1. No surface soil metals results exceeded the trigger levels.

There are no trigger levels established for radionuclides. In accordance with LTMMP Section 5.2.2.2, the gamma spectroscopy results are compared with NMED-approved background activity levels (Dinwiddie September 1997), but the background activities are not considered trigger levels. All radionuclide results for biota surface soil samples were below the NMED-approved background activity levels. No deep-rooted vegetation was identified for sampling.

These results indicate contaminants from the disposal areas are not being mobilized to the surface by plant or animal activity.

9.0 INSPECTION, MAINTENANCE, AND REPAIR RESULTS

This chapter presents a summary of inspection, maintenance, and repair activities conducted in accordance with requirements in MWL LTMMP Section 4.0 (SNL/NM March 2012). Inspection requirements are summarized in Table 2-2 of this Annual LTMM Report. Table 9-1 lists the date each type of inspection was performed during the April 1, 2022 through March 31, 2023 reporting period. Inspection results are presented in the following sections and documented on the inspection forms/checklists listed in Table 9-1 and provided in Annex F. A summary of inspection activities and results is provided in Section 11.2.

9.1 Final Cover System

The final cover system includes the ET Cover vegetation and ET Cover surface (note the term ET Cover includes the side slopes). ET Cover vegetation is inspected annually by an SNL/NM staff biologist, documented on the Biology Inspection Checklist/Form for the MWL Cover, and summarized in Section 9.1.1. The ET Cover surface is inspected quarterly by a field technician, documented on the Cover Inspection Checklist/Form, and summarized in Section 9.1.2. During the quarterly inspections, the field technician also inspects the storm-water diversion structures, security fence and access controls, and survey monuments, which are summarized in Sections 9.2 and 9.6.

9.1.1 Biology Inspection

One ET Cover Biology Inspection was performed by the staff biologist on August 22, 2022, fulfilling the requirement for an annual Biology Inspection during the reporting period growing season (Table 9-1). The ET Cover vegetation continues to meet all LTMMP criteria for successful revegetation. The approximate foliar coverage on the ET Cover was 43 percent, of which 99 percent was native vegetation. The foliar coverage is dominated by native grasses, with Galleta grass comprising approximately 35 percent of the total foliar coverage. There were no contiguous areas without vegetation exceeding 200 square feet in size and no plants capable of developing deep root systems were identified. No small animal burrows were identified on the ET Cover. Seventeen active ant hills and one inactive ant hill were observed, mostly on the side slopes. No action or repairs were required based on the Biology Inspection.

Overall, the ET Cover vegetation and surface is in good condition with even coverage of mature, native perennial grasses. Additional information is provided on the August 22, 2022 Biology Inspection Checklist/Form (Annex F) and in the Biology Report (Annex G). The Biology Report summarizes ET Cover background information, local climate trends, and recommendations for the ET Cover based upon inspections performed during the reporting period. Although only the annual Biology Inspection is required, the staff biologist performed biology verification inspections to support the quarterly ET Cover surface inspections performed by a field technician (Section 9.1.2) in June 2022, December 2022, and March 2023 as best practice. These verification inspections are documented in memorandums included in Annex F with the quarterly site/cover inspection forms.

Table 9-1 Inspection Frequency and Dates Performed Mixed Waste Landfill April 2022 – March 2023 Reporting Period

Inspection Type	Frequency	Checklist/Form ^a	Date Performed
ET Cover Biology Inspection	Annual ^b	Biology Inspection Checklist/Form	August 22, 2022
			June 1, 2022
ET Cover Surface	Quarterly	Cover Inspection	August 31, 2022
Inspection	Quarterly	Checklist/Form	December 1, 2022
			March 6, 2023
			June 1, 2022
Storm-Water Diversion	Quarterly	Cover Inspection	August 31, 2022
Structure Inspection ^c	Quarterly	Checklist/Form	December 1, 2022
			March 6, 2023
Soil-Vapor Monitoring Network Inspection	Annual ^d	Soil-Vapor Monitoring Network Checklist/Form	October 28, 2022
Soil-Moisture Monitoring Network Inspection	Annual ^d	Soil-Moisture Monitoring Network Checklist/Form	April 14 & 21, 2022
Groundwater Monitoring	Semiannual ^d	Groundwater Monitoring	May 12, 2022
Network Inspection	Semannual	Network Checklist/Form	October 20, 2022
			June 1, 2022
Security Fence	Quarterly	Cover Inspection	August 31, 2022
Inspection ^c	Quarterly	Checklist/Form	December 1, 2022
			March 6, 2023

Notes:

ET = Evapotranspirative.

LTMMP = Long-Term Monitoring and Maintenance Plan.

9.1.2 ET Cover System/Surface Inspection

Four ET Cover surface inspections were performed by a field technician during the reporting period fulfilling the LTMMP quarterly inspection requirement (Table 9-1). As previously mentioned, three of the quarterly inspections were supported by the staff biologist as best practice and the August 2022 quarterly inspection was performed during the same general time period as the Annual ET Cover Biology Inspection. There were no inspection items that required maintenance or repairs, although some minor best practice maintenance was performed as discussed in Section 9.7.

9.2 Storm-Water Diversion Structure Inspection

Storm-water diversion structure inspections were combined with the quarterly ET Cover System/Surface Inspections during the reporting period, fulfilling the LTMMP quarterly

^aAll reporting period LTMMP-required inspection forms are provided in Annex F. Best practice monthly supplemental radon monitoring location inspections are provided in Annex A.

^bTransition from quarterly to annual inspection frequency based upon meeting successful revegetation criteria as determined by the staff biologist during the August 14, 2014 growing season Biology Inspection.

^cThese inspections, conducted at the same time as the ET Cover Surface Inspection, include access controls (gates, locks, signs) and survey monuments, and are documented on the same inspection form.

^dMonitoring network inspections are performed at the same frequency and at the same time as the associated monitoring.

inspection requirement (Table 9-1). These inspections were documented on the same Cover Inspection Checklist/Form and addressed the storm-water diversion swale on the north, east, and south sides of the ET Cover (just beyond the toe of the cover side slopes). The site access road culverts (on the west side of the site), which are shown in Figure 2-3, were also inspected as best practice. The road drainage culverts were cleared of debris during the June 1, 2022 inspection and within 60 days of the March 6, 2023 inspection. No other inspection items required follow-up actions.

9.3 Soil-Vapor Monitoring Network Inspection

One inspection of the soil-vapor monitoring network was performed as part of the annual soil-vapor monitoring event conducted during the reporting period, fulfilling the LTMMP inspection requirement (Table 9-1). No inspection items required follow-up actions.

9.4 Soil-Moisture Monitoring Network Inspection

One inspection of the soil-moisture monitoring network was performed as part of the annual monitoring event conducted during the reporting period, fulfilling the LTMMP inspection requirement (Table 9-1). No inspection items required follow-up actions.

9.5 **Groundwater Monitoring Well Network Inspection**

Two inspections of the groundwater monitoring well network were performed as part of the semiannual monitoring events conducted during the reporting period, fulfilling the LTMMP inspection requirement (Table 9-1). No inspection items required follow-up actions.

9.6 **Security Fence Inspection**

Perimeter security fence inspections were combined with the four quarterly ET Cover System/Surface Inspections during the reporting period, fulfilling the LTMMP inspection requirement (Table 9-1). The inspections addressed the security fence, access controls (gates, locks, signs), and survey monuments, and were documented on the same Cover Inspection Checklist/Form. Results of the quarterly inspections are provided below.

June 1, 2022 Inspection

Accumulation of dead, windblown tumbleweeds was identified along the perimeter fence. The plant debris was removed by the field technicians at the time of the inspection. One warning sign on the security fence was faded. The sign was replaced by the field technicians on June 2, 2022.

August 31, 2022 Inspection

No inspection items required follow-up actions.

December 1, 2022 Inspection

Accumulation of dead, windblown tumbleweeds was identified along the perimeter fence. The plant debris was removed by the field technicians within 60 days of the inspection.

March 6, 2023 Inspection

Accumulation of dead, windblown tumbleweeds was identified along the perimeter fence. The plant debris was removed within 60 days of the inspection by the ET Cover Maintenance contractor under the supervision of SNL/NM personnel.

9.7 ET Cover Maintenance and Supplemental Watering

Efforts completed since ET Cover construction in 2009 to establish self-sustaining, native grasses on the ET Cover have been successful as verified through inspections. Supplemental watering was not conducted during this reporting period and only minimal ET Cover maintenance was needed.

Two minor weed control events were conducted during this reporting period that included live and dead, windblown weed removal as well as selective herbicide sterilant application (April 2022 event) to control weed growth in the North and South Staging Areas (Figure 2-3). All removed weed material was loaded in a trailer and disposed offsite by the ET Cover Maintenance contractor. The objective of this best practice work is to promote the health of the existing native grasses on the ET Cover and perimeter area by reducing competition with weedy species for limited moisture and nutrients and to minimize future maintenance. This ET Cover maintenance work was performed by the ET Cover Maintenance contractor under the supervision of SNL/NM personnel.

April 6-7, 2022

Live and dead weeds were removed from the ET Cover, the perimeter fence and 3-foot area outside the fence, the area between the north toe of the ET Cover and the north fence, the western perimeter area between the fence and access road, the area surrounding all perimeter monitoring well erosion control features, and the perimeter drainage (i.e., swale on the east, north, and south sides of the ET Cover). Debris and weeds were also cleared from all the access road drainage culvert inlets and outlets. A total of approximately 9 cubic yards of weed material was removed. In addition, the herbicide sterilant Hyvar® was applied to the MWL North and South Staging Areas in a water-herbicide mixture following the manufacturer's instructions. This annual application of Hyvar® has proven to be very effective at minimizing weed growth in the perimeter staging areas.

September 15-16, 2022

Live and dead weeds were removed from the ET Cover, the perimeter fence and 3-foot area outside the fence, the area between the north toe of the ET Cover and the north fence, the western perimeter area between the fence and access road, the area surrounding all perimeter monitoring well erosion control features, and the perimeter drainage (i.e., swale on the east, north, and south sides of the ET Cover). Debris and weeds were also cleared from all the access road drainage culvert inlets and outlets. A total of approximately 14 cubic yards of weed material was removed.

April 2022 - March 2023

This page intentionally left blank.

10.0 REGULATORY ACTIVITIES

On January 8, 2014, the NMED approved the MWL LTMMP (Blaine January 2014). All MWL regulatory submittals that occurred during this April 1, 2022 through March 31, 2023 reporting period are summarized in Section 10.1. A summary of LTMMP modification requests since NMED-approval and implementation in January 2014 are summarized in Section 10.2.

10.1 MWL Regulatory Submittals

Regulatory submittals during this reporting period included the nineth MWL Annual LTMM Report, April 2021 – March 2022 (SNL/NM June 2022) that was approved by the NMED (Shean August 2022). There were also two submittals of various updated reference documents cited in the LTMMP SAPs (Hauck May 2022 and November 2022) that were received and acknowledged by the NMED (Shean June 2022 and January 2023). These updates were made to keep the cited reference documents (field, laboratory, and AOPs) current and to reflect ongoing modifications and improvement to support MWL monitoring. These two submittals were made within 30 days of the effective date for the updated reference documents.

All MWL regulatory submittals that occurred during the April 1, 2022 through March 31, 2023 reporting period are summarized in Table 10-1. A summary of regulatory submittals associated with full implementation of the LTMMP is presented in the MWL Annual LTMM Report, April 2014 – March 2015 (SNL/NM June 2015).

Table 10-1
Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan Document Submittals
April 2022 through March 2023 Reporting Period

Date of Submittal ^a	LTMMP Requirement	Description of Submittal				
June 16, 2022	Section 4.8.1	MWL Annual LTMM Report, April 2021 – March 2022 • Approved in August 2022				
May 17, 2022	Appendix C, D, E, F, and G	Updates to three reference documents used by SNL/NM personnel to conduct soil-moisture monitoring, sample management, and contract laboratory quality control activities.				
November 10, 2022 Appendix C, D, F, and G		Updates to two reference documents used by SNL/NM personnel to conduct soil-vapor monitoring and sample management activities.				
March 30, 2023	Section 1.4.6	Request for Modification 23-024 to the Resource Conservation and Recovery Act Facility Operating Permit, SNL/NM (Second LTMMP Modification).				

Notes:

^aDate represents the date stamp on the DOE transmittal letter for the submittal.

DOE = U.S. Department of Energy.

LTMM = Long-Term Monitoring and Maintenance. LTMMP = Long-Term Monitoring and Maintenance Plan.

MWL = Mixed Waste Landfill.

SNL/NM = Sandia National Laboratories/New Mexico.

10.2 MWL LTMMP Modifications

The first LTMMP modification request was submitted to, and approved by, the NMED during the previous reporting period (Hauck December 2021 and Shean February 2022). The Class 1 Permit Modification request included minor changes to monitoring, analytical laboratory QC, inspection forms, and reference documents that update, improve, and streamline monitoring and inspection activities and removed unnecessary documents from the lists of operating procedures in the various LTMMP SAPs. Changes were also made to update descriptions to current conditions (e.g., name change for SNL/NM management and operating contractor). This first MWL LTMMP permit modification request took effect upon approval, which was granted on February 16, 2023.

The second LTMMP modification request was submitted to the NMED during this reporting period (Table 10-1 and Hauck March 2023). The Class 2 Permit Modification request included a request to decommission groundwater monitoring well MWL-MW4. Groundwater monitoring well MWL-MW4 was drilled and installed in late 1992/early 1993 and was an important part of the Phase 2 RCRA Facility Investigation (Peace et al. September 2002). As documented in the MWL LTMMP, MWL-MW4 was retained for informational purposes and has been used only to obtain periodic groundwater elevation measurements to support the preparation of MWL potentiometric surface maps presented in these annual reports. The U.S. Department of Energy /National Nuclear Security Administration and SNL/NM personnel propose to decommission groundwater monitoring well MWL-MW4 by plugging and abandoning the well in place because the well is no longer needed for compliance monitoring, is not needed for establishing the potentiometric surface of the Regional Aquifer, and may potentially act as a conduit for the downward movement of VOC soil vapor beneath the site. Decommissioning groundwater monitoring well MWL-MW4 does not substantially alter the Permit conditions and does not reduce the protection of human health and the environment. This change was discussed with staff of the NMED on February 9, 2023 prior to submittal at the end of March 2023.

11.0 SUMMARY AND CONCLUSIONS

This chapter presents a summary of MWL LTMMP monitoring, inspection, and maintenance/repair activities performed during the April 1, 2022 through March 31, 2023 reporting period, followed by conclusions based upon these activities and results.

11.1 Monitoring Activities

All monitoring activities for the April 1, 2022 through March 31, 2023 reporting period were completed in accordance with LTMMP requirements. The results for each monitoring activity are summarized as follows.

Radon Monitoring

The radon air monitoring minimum frequency is annual and was performed over two six-month periods covering CY 2022. The range of radon activity for all monitoring locations was less than 0.2 to 0.6 pCi/L, and the background location results (RN16 and RN17) ranged from 0.2 to 0.4 pCi/L. No sample locations exceeded the trigger level of 4 pCi/L and all results confirm low levels of radon consistent with natural background levels and historical results. There were no indications of releases of radon gas from the disposal areas.

Tritium Surface Soil Monitoring

The tritium surface soil monitoring frequency is annual. Soil samples were collected on June 23, 2022. Reported tritium activities were all non-detections below the MDA, consistent with historical data, and below the trigger level of 20,000 pCi/L. There were no indications of new releases of tritium from the disposal areas.

Soil-Vapor Monitoring

The vadose zone soil-vapor monitoring frequency is annual. Soil-vapor samples were collected in October 2022. A total of 14 VOCs were detected during the October 2022 sampling event. Results for PCE, TCE, and Total VOCs from the deepest sampling port of wells MWL-SV03, MWL-SV04, and MWL-SV05 (400 ft bgs) were below the 20 ppmv trigger levels for PCE and TCE, and the 25 ppmv trigger level for Total VOCs. The maximum concentrations detected for PCE and TCE at the 400 ft bgs sampling ports for this reporting period were 0.300 ppmv and 0.190 ppmv, respectively. The maximum concentration for Total VOCs at the 400 ft bgs sampling ports was 0.59960 ppmv. All maximum values were from MWL-SV03-400. Soil-vapor monitoring results indicate a relatively uniform distribution of low concentration VOCs throughout the 500-foot-thick vadose zone that are not a threat to groundwater. This distribution is consistent with an old source that has dissipated throughout the vadose zone and indicates the VOC soil-vapor plume is stable and slowly diffusing with no new releases from the disposal area.

Soil-Moisture Monitoring

The vadose zone soil-moisture monitoring frequency is annual. Soil-moisture measurements were collected on April 14 & 21, 2022. The trigger level for soil moisture applies to the shallow depth interval of 8.7 to 86.6 ft bgs at the three monitoring locations. The soil-moisture content by volume for this depth interval at all three locations ranged from 1.4 to 5.2 percent, below the 23 percent soil-moisture content by volume trigger level. Soil-moisture monitoring results are consistent with baseline results established prior to ET Cover construction and indicate the ET Cover is performing as designed.

Groundwater Monitoring

The groundwater monitoring frequency is semiannual. environmental samples were collected in May and October 2022. No constituents were detected in groundwater at concentrations exceeding trigger levels and the results are consistent with background levels and historical MWL groundwater monitoring results. Soil-vapor and groundwater monitoring results indicate the Regional Aquifer beneath the MWL is protected.

Biota Monitoring

Biota monitoring frequency is annual. Soil samples were collected on September 22, 2022 at two active ant hill locations on the ET Cover. No animal burrows or potentially deep-rooted plants were identified for sampling during the August 22, 2022 Biology Inspection. All metals and radionuclide results were below respective NMED-approved background levels and trigger levels. There were no indications of biotic mobilization of contaminants to the surface.

11.2 Inspections/Maintenance/Repairs Activities

The annual ET Cover Biology Inspection was performed on August 22, 2022 during the reporting period growing season. The ET Cover continues to meet LTMMP successful revegetation criteria. Efforts completed since ET Cover construction in 2009 to establish selfsustaining, native grasses on the ET Cover have been successful. As a result, minimal maintenance and no repairs or supplemental watering were needed. The ET Cover vegetation is in good condition and no issues requiring maintenance or repairs were identified.

The ET Cover System/Surface Inspections were performed quarterly and no issues requiring maintenance or repairs were identified. Inspections of the engineered storm-water drainage swale, perimeter security fence and access controls (i.e., gates, locks, signs), and survey monuments were performed at the same time and frequency. A faded warning sign was identified during the June 1, 2022 inspection and replaced within 60 days of the inspection. The perimeter fence and site access road drainage culverts were cleared of windblown vegetation either during or with 60 days of the inspections. No other issues were identified requiring maintenance or repairs.

Inspections of the soil-vapor monitoring network, soil-moisture monitoring network, groundwater monitoring network, and associated sampling equipment were performed at required frequencies (i.e., concurrent with each monitoring event) and no issues requiring repairs or

maintenance were identified. Routine equipment checks and preventive maintenance are performed by monitoring personnel as best practice throughout the monitoring process.

Two minor weed control events were conducted in April and September 2022 as a best practice for the ET Cover vegetation during the reporting period. These events included removal of live and dead weeds from the ET Cover and perimeter area, and removal of windblown tumbleweeds from the perimeter fence, drainage swale, and site access road ditch culverts. In addition, an approved herbicide sterilant was applied to the North and South Staging Areas during the April 2022 maintenance event. These actions were performed as best practice to control annual invasive weed growth and promote the health of the desired native grass species by reducing competition with weedy species for limited moisture and nutrients.

11.3 Regulatory Activities

Regulatory activities during the April 1, 2022 through March 31, 2023 reporting period included submittal of the nineth MWL Annual LTMM Report, April 2021 – March 2022 (SNL/NM June 2022) that was approved by the NMED (Shean August 2022). Two submittals of various updated reference documents cited in the LTMMP SAPs were completed within 30 days of the document effective dates (Hauck May 2022 and November 2022) and were received and acknowledged by the NMED (Shean June 2022 and January 2023). The second LTMMP modification request to decommission groundwater monitoring well MWL-MW4 was also submitted to the NMED during this reporting period (Hauck March 2023).

11.4 Conclusions

All required LTMMP monitoring, inspection, and maintenance/repair activities for the April 1, 2022 through March 31, 2023 reporting period were performed and documented in this tenth Annual LTMM Report, which meets the requirements of the LTMMP, Section 4.8.1 (SNL/NM March 2012).

The monitoring and inspection results indicate the final remedy, which includes the ET Cover, monitoring systems, and related physical controls, is performing as designed. Institutional controls related to the MWL continue to be maintained. No monitoring trigger levels were exceeded and all monitoring results are consistent with historical MWL monitoring data. Based upon monitoring and inspection results, site conditions continue to be protective of human health and the environment.

April 2022 - March 2023

This page intentionally left blank.

12.0 REFERENCES

American Public Health Association American Water Works Association, and Water Environment Federation, 1988. "Standard Methods for the Examination of Water and Wastewater," SM7500-Rn B Method, 22nd Edition, published jointly by American Public Health Association, American Water Works Association, and Water Environment Federation. Washington, D.C., 1988.

Bearzi, J.P. (New Mexico Environment Department), January 2011. Letter to P. Wagner (U.S. Department of Energy NNSA/Sandia Site Office), and J. Hruby (Sandia National Laboratories/New Mexico), "Notice of Approval, Mixed Waste Landfill Toluene Investigation Report, Revised October 2010, Sandia National Laboratories, EPA ID# NM5890110518. HWB-SNL-10-011." January 13, 2011.

Blaine, T. (New Mexico Environment Department), January 2014. Letter to G.L. Beausoleil (U.S. Department of Energy NNSA/Sandia Site Office) and S. Andrew Orrell (Sandia National Laboratories/New Mexico), "Approval, Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan, March 2012, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-12-007," January 8, 2014.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB," September 24, 1997.

EPA, see U.S. Environmental Protection Agency.

Goering, T.J., G.M. Haggerty, D. Van Hart, and J.L. Peace, December 2002. "Mixed Waste Landfill Groundwater Report, 1990 through 2001, Sandia National Laboratories, Albuquerque, New Mexico," SAND2002-4098, Sandia National Laboratories, Albuquerque, New Mexico.

Hauck, D.J., December 2021. Letter to Mr. Rick Shean (New Mexico Environment Department), "Request for Modification 21-019 to Resource Conservation and Recovery Act (RCRA) Facility Operating Permit, Sandia National Laboratories/New Mexico (SNL/NM), Environmental Protection Identification Number NM5890110518," December 16, 2021.

Hauck, D.J., May 2022. Letter to Mr. Rick Shean (New Mexico Environment Department), "Submittal of Updated Mixed Waste Landfill (MWL) Field Operating Procedure (FOP) 10-07, Laboratory Operating Procedure (LOP) 94-03, and Sample Management Office (SMO) 05-03 in the MWL Long-Term Monitoring and Maintenance Plan, Sandia National Laboratories, New Mexico (SNL/NM), Environmental Protection Agency Identification Number NM5890110518," May 17, 2022.

Hauck, D.J., November 2022. Letter to Mr. Rick Shean (New Mexico Environment Department), "Submittal of Revised Field Operating Procedure (FOP) 08-22 and Administrative Operating Procedure (AOP) 95-16 referenced in the Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan, Sandia National Laboratories, New Mexico (SNL/NM), Environmental Protection Agency Identification Number NM5890110518," November 10, 2022.

Hauck, D.J., March 2023. Letter to Mr. David Cobrain (New Mexico Environment Department), "Request for Modification No. 23-024 to Resource Conservation and Recovery Act (RCRA) Facility Operating Permit, Sandia National Laboratories/New Mexico, Environmental Protection Identification Number NM5890110518," March 27, 2023.

Kieling, J.E. (New Mexico Environment Department), February 2016. Letter to J.P. Harrell (U.S. Department of Energy NNSA/Sandia Field Office) and P.B. Davies (Sandia National Laboratories, New Mexico), "Approval, Final Decision on Proposal to Grant Corrective Action Complete with Controls Status for Mixed Waste Landfill, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-14-014," February 18, 2016.

New Mexico Environment Department (NMED), April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act § 74-4-10," prepared by the New Mexico Environment Department in the matter of Respondents U.S. Department of Energy and Sandia Corporation, Sandia National Laboratories, Bernalillo County, New Mexico, April 29, 2004.

New Mexico Environment Department (NMED), May 2005. "Final Order No. HWB 04-11(M), State of New Mexico Before the Secretary of the Environment in the Matter of Request for a Class 3 Permit Modification for Corrective Measures for the Mixed Waste Landfill, Sandia National Laboratories, Bernalillo County, New Mexico, EPA ID# 5890110518," May 26, 2005.

New Mexico Environment Department (NMED), January 2015 with all approved modifications. "Resource Conservation and Recovery Act Facility Operating Permit EPA ID Number NM5890110518 Issued to the U.S. Department of Energy/Sandia Corporation for the Sandia National Laboratories Hazardous and Mixed Waste Treatment and Storage Units and Post-Closure Care of the Corrective Action Management Unit," January 27, 2015.

New Mexico Environment Department (NMED), February 2016. "Final Order No. HWB 15-18 (P), State of New Mexico Before the Secretary of the Environment in the Matter of Proposed Permit Modification for Sandia National Laboratories, EPA ID #5890110518, To Determine Corrective Action Complete with Controls at the Mixed Waste Landfill," New Mexico Environment Department, Santa Fe, New Mexico, February 12, 2016.

New Mexico Environment Department (NMED), July 2021. Letter from Chris Catechis (NMED) to J. Harrell (U.S. Department of Energy NNSA/Sandia Field Office) and P. Shoemaker (Sandia National Laboratories, New Mexico), "Approval, Mixed Waste Landfill Five-Year Report, January 2019, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-19-001," New Mexico Environment Department, Santa Fe, New Mexico, July 9, 2021.

NMED, see New Mexico Environment Department.

Peace, J.L., T.J. Goering, M.D. McVey, September 2002. "Report of the Mixed Waste Landfill Phase 2 RCRA Facility Investigation, Sandia National Laboratories, Albuquerque, New Mexico," SAND2002-2997, Sandia National Laboratories, Albuquerque, New Mexico.

Peace, J.L., P.J. Knight, T.S. Ashton, and T.J. Goering, November 2004. "Vegetation Study in Support of the Design and Optimization of Vegetative Soil Covers, Sandia National Laboratories, Albuquerque, New Mexico," SAND2004-6144, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2010. "Mixed Waste Landfill Groundwater Monitoring Report, Calendar Year 2009," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), October 2010. "Mixed Waste Landfill Toluene Investigation Report," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), March 2012. "Long-Term Monitoring and Maintenance Plan for the Mixed Waste Landfill," Environmental Restoration Operations, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2015. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, April 2014 – March 2015," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2017. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, April 2016 – March 2017," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2020. "Data Validation Procedure for Chemical and Radiochemical Data, AOP 00-03, Revision 5," Sample Management Office, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2022. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, April 2021 – March 2022," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), October 2022. "Field Operating Procedure, Soil Vapor Monitoring, Revision 06," SNL/NM FOP 08-22, Long-Term Stewardship Department, Sandia National Laboratories, Albuquerque, New Mexico.

Shean, R. (New Mexico Environment Department), February 2022. Letter to D. Hauck (U.S. Department of Energy NNSA/Sandia Field Office) and J. Huff (Sandia National Laboratories, New Mexico), "Approval, Class 1 Permit Modification (With Prior Approval), Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-21-016," February 16, 2022.

Shean, R. (New Mexico Environment Department), June 2022. Letter to D. Hauck (U.S. Department of Energy NNSA/Sandia Field Office) and P. Shoemaker (Sandia National Laboratories, New Mexico), "Acknowledgement of Receipt, Updated Reference Documents Cited in the Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan for Sandia National Laboratories, May 2022; Updated Reference Documents Cited in the Chemical Waste Landfill Post-Closure Care Permit for Sandia National Laboratories, May 2022; Updated Reference Documents Cited in the RCRA Facility Operating Permit for Sandia National Laboratories, May 2022; Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-22-MISC," June 9, 2022.

Shean, R. (New Mexico Environment Department), August 2022. Letter to D. Hauck (U.S. Department of Energy NNSA/Sandia Field Office) and P. Shoemaker (Sandia National Laboratories, New Mexico), "Approval, Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, April 2021-March 2022, June 2022, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-22-010," August 8, 2022.

Shean, R. (New Mexico Environment Department), January 2023. Letter to D. Hauck (U.S. Department of Energy NNSA/Sandia Field Office) and P. Shoemaker (Sandia National Laboratories, New Mexico), "Acknowledgement of Receipt, Updated Reference Documents, November 2022, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-22-MISC," January 6, 2023.

SNL/NM, see Sandia National Laboratories, New Mexico.

Sullivan, R.M., and P.J. Knight, 1992. "Biological Assessment for the Sandia National Laboratories Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico," Special Technical Report 1 (Contract AB4892), Physical Sciences Laboratory, Las Cruces, New Mexico.

- U.S. Environmental Protection Agency (EPA), 1980. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA), November 1986 (and updates). "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd Edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), August 1993. "Module IV. Special Conditions Pursuant to the 1984 Hazardous and Solid Waste Amendments (HSWA) to RCRA for Sandia National Laboratories/New Mexico, EPA I.D. Number NM 5890880518," U.S. Environmental Protection Agency, Region VI, Dallas, Texas. August 26, 1993.
- U.S. Environmental Protection Agency (EPA), January 1999. "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15, Determination of Volatile Organic Compounds in Air Collected in Specially-Prepared Canisters and Analyzed By Gas Chromatography/Mass Spectrometry," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA), March 2020, "Method 537.1, Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)", EPA/600/R-20/006, Version 2.0, U.S. Environmental Protection Agency, Washington, D.C.

ANNEX A

Mixed Waste Landfill Radon Monitoring Forms and Reports

January-December 2022

Data Evaluation Memos

Field Forms

Contract Verification Forms

Radon Detector Inspection Forms

Mixed Waste Landfill Radon Monitoring

January-June 2022 Monitoring Period

Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia, LLC.

Albuquerque, New Mexico 87185-0651

date: August 15, 2022

to: Mike Mitchell (8888), Robert Ziock (8888), and Bonnie Little (8888)

from: Kelly Green (0618) kagreen@sandia.gov

subject: Review of MWL Radon Air Data - January through June 2022 Semiannual Monitoring Period

The purpose of this memo is to document my review of the radon air monitoring results for the January through June 2022 semiannual monitoring period. My review includes evaluation of the results and supporting documentation relative to the data quality objective (DQO) and monitoring objectives specified in the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (Appendix C, *Air Sampling and Analysis Plan for the Mixed Waste Landfill*). The DQO for this monitoring is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective.

Kelly Treen

Radon air monitoring measurements during this semiannual period were obtained using Radtrak2® detectors. The detectors were deployed at each monitoring location (Figure 1) on January 17, 2022 and were collected on July 18, 2022. The protective casing and mounting hardware were inspected during the collection effort and repairs were made if needed. The detectors remained in the field for approximately six months and were submitted to the analytical laboratory, RADONOVA, for analysis on Analysis Request/Chain of Custody (AR/COC) #622684 along with a trip blank detector (RNTB). RNTB was received at the same time as the other deployed detectors and was stored in a hermetically sealed protective bag at the Environmental Resource Field Office.

The results for this semiannual period indicate very low activities of radon in the air at the MWL, consistent with historical results and background radon activity. Results ranged from <0.2 picocuries per liter ([pCi/L], i.e., non-detect, at RN10 and RN11) to 0.6 pCi/L (at RN12 and RN13); note that the minimum detectable activity for this data set ranged from <0.2 to <0.3 pCi/L. There were twelve other detections ranging from 0.2 to 0.4 pCi/L. The detectors from the two background locations, RN16 and RN17, had results of 0.2 pCi/L and 0.4 pCi/L, respectively. The trigger level of 4 pCi/L, which applies only to the results from the perimeter locations RN1 through RN10, was not exceeded by any of the individual sample results. A non-detect result of <0.2 pCi/L was reported for the trip blank (RNTB) indicating the other detectors were not exposed during shipping and/or at the laboratory.

KAG, 0618

Attachments:

Analysis Request/Chain of Custody #622684 RADONOVA Radon Monitoring Report 6069747:3 (analytical laboratory results for Radtrak2® detectors) Figure 1. Location of the Alpha Track Detectors at the MWL

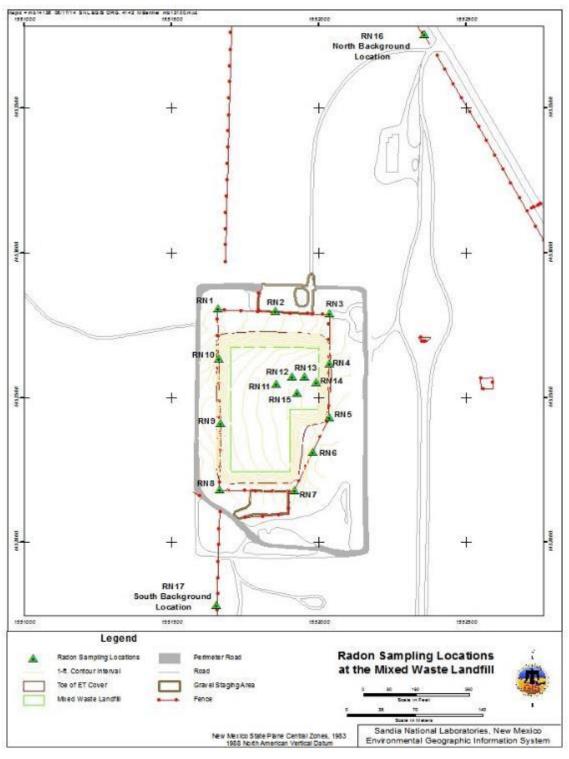


Figure 1. Location of Radon Detectors at the MWL

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab																	Page 1	of 2
Batch No.					SMO Ușe				i.		1				AF	NCOC	62	2684
Project Name	e:	MWL RADON MONITORIN	Date Sample	s Shipped:	7/19	1/202		SMO AL	thorization:	C			П	Waste (Charac	terization		
			Carner/Wayb	the second second	35		1	SMO Co	ntact Phone	e: .			1 🗖	RMA				
Project/Task	Number:	195122.10.11.08	Lab Contact		Steve Leslie				Wendy Pa	alencia/505	-844-3132		ΙĦ	Release	ed by C	OC No.		
Service Orde		CF378-22	Lab Destinati	on:	RADON			Send Re	port to SMC):			1 -		•		1	4º Celsius
	•		Contract No.:		1776616				Stephanie N		05-284-255	3	Bill to:	Sandia	Nationa	al Laborato	ries (Acco	unts Payable),
Tech Area:							A ROLL TO MANTE SOURCE A		- top//dimo//	-101710110101				3ox 5800			(, 1000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		D	0	1 0:4-														
Building:	T	Room:	Operationa		Date/	r:	Sample		ntainer	D	Collection	Sample	-			185-0154 & Metho	. al	Lab
Cample Na	Frantian	Sample Location D	etell .	Depth (ft)	Colle		Matrix	Type	Volume	ative	Method	Type				ested	ıa	Sample ID
Sample No.	Fraction	Sample Location D	etan	(11)	Colle	cieu	Mauix	Type	Volume	auve	wethod	Type	-	-	Nequ	esteu		Sample
116289	001 🗸	RN1/Radtrak2 154087-1		: N/A	7/18/22	08:34	AF	N	0 NA	NONE	С	SA	RADO					
116290	001√	RN2/Radtrak2 459640-9		N/A	7/18/22	08:35	AF	N ·	0 NA	NONE	С	SA	RADO	N				
116291	001 1	RN3/Radtrak2 719397-2		N/A	7/18/22	08:08	AF	N	0 NA	NONE	С	SA	RADO	N				
116292	001	RN4/Radtrak2 920766-3		N/A	7/18/22	08:10	AF	N	0 NA	NONE	С	SA	RADO	N				
116293	001 🗸	RN5/Radtrak2 268834-9		N/A	7/18/22	08:12	AF	N	0 NA	NONE	С	SA	RADO	N				
116294	001 ✓	RN6/Radtrak2 541695-3		N/A	7/18/22	08:14	AF	N	0 NA	NONE	С	SA	RADO	N				
116295	001 ✓	RN7/Radtrak2 920899-2		N/A	7/18/22	08:17	AF	N	0 NA	NONE	С	SA	RADO	N				
116296	001 🗸	RN8/Radtrak2 591227-4		N/A	7/18/22	08:28	AF	N	0 NA	NONE	С	SA	RADO	N				
116297	001 🗸	RN9/Radtrak2 750909-4		N/A	7/18/22	08:27	AF	N .	0 NA	NONE	С	SA	RADO	N				
116298	001	RN10/Radtrak2 464855-	6	N/A	7/18/22	08:29	AF	N	0 NA	NONE	С	SA	RADO	N		- NWA		
Last Chain	:	Yes		Sample	Tracking		SMO) Use	Special Ins	structions	QC Requir	rements:					Conc	litions on
Validation	Req'd:	✓ Yes		Date En	tered:				EDD		✓ Yes						R	eceipt
Backgroun	d:	Yes		Entered	by:				Turnaroun	d Time	7-Day	* .	15-D	ay*	4	30-Day		
Confirmato	rv:	Yes		QC inits.					Negotiated	TAT								
Sample		lame Signatu	ıre	Init.	Company	//Organizat	ion/Phone	e/Cell	Sample Dis	sposal	Return	to Client	i i	7	Pispos	al by Lab		
Team	Danielle		1	dmm	SNL/08854/				Return Sar	nples By:					•			
	D 1			rz	SNL/08888/			-	Comments			oved 1/17	/2022	to 7/18/	2022:	182		
Members	- toboltz			-	ON 1000001	05-04-04			days. See		and the same of th	-					2.7	
	Caitlin La	aChance Cubilly	11	cl	SNL/00641/	05-845-99	119		100									
1	- T	Serial Policy Control of the Control			CHECOTIA	300 0 10 00	7.10				_		141				1.	b Use
Relinquished by Org. 253 Date 7/18/22 Time 1025 Relinquished by Org. Date 4/22/22 Time 5P																		
Received by	11/1/1/	Colo Colonia	Org. 0(/8					Receive				Org.			ate	7176	Time	
Relinguishee	the state of	aller Charles Aller	Org. Olef		110	7 Time /		Relingui				Org.			ate	+1 50/	Time	
Received by	7	The state of the s			7/22/2			Receive				Org.			ate		Time	
	9	ith SMO required for 7 and			7/640	P LINE 3	Port	I VECEIVE	u by			Olg.			, aic		THIC	

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

Page 2 of 2

									_			AR/COC	622684
Project Name	Đ:	MWL RADON MONITORIN Projec	t/Task Mana	ger:	Robert Zio	ck		Project/Ta	sk No.:	195122	.10.11.08		
ech Area: Building:		Room:											
Junumy.		INCOM.	Depth Date/Time Sample Container Preserv- Collection Sample		Sample	Parameter & Method	Lab use						
Sample No.	Fraction 1	Sample Location Detail	(ft)	Colle		Matrix	Туре	Volume	ative	Method	Type	Requested	Sample II
116299	001	RN11/Radtrak2 477949-2	N/A	7/18/22	08:40	AF	N	0 NA	NONE	С		RADON	
116300	001√	RN12/Radtrak2 807259-7	N/A	7/18/22	08:46	AF	N	0 NA	NONE	С	SA	RADON	
116301	001 🗸	RN13/Radtrak2 467176-4	N/A	7/18/22	08;43	AF	N	0 NA	NONE	С	SA	RADON	
116302	001 🗸	RN14/Radtrak2 521499-4	N/A	7/18/22	08:39	AF	N	0 NA	NONE	С	SA	RADON	
116303	001 🗸	RN15/Radtrak2 575013-8	N/A	7/18/22	08:45	AF	N	0 NA	NONE	С		RADON	6 10 11 12
116304	001 🗸	RN16/Radtrak2 298513-3	N/A	7/18/22	09:08	AF	N	0 NA	NONE	С		RADON	
116305	001 🗸	RN17/Radtrak2 924855-0	N/A	7/18/22	08:22	AF	N	0 NA	NONE	С	SA	RADON	
116306	001 🗸	RNTB/Radtrak2 728966-3	N/A	7/18/22	09:30	AF	N	0 NA	NONE	С	SA	RADON	
													WAY STAN
													MISSE
	,								1				Jan Kara

Note: Page 3 of this report is not included. It provides general information only and does not include any results. REPORT NUMBER 6069747:3 REPORT PAGE 1 of 3 08/10/2022

PRINT DATE 08/10/2022

OWN ID AR/COC 622684

> BY NTESS, LLC

REPORT RECEIVER(S) wjpalen@sandia.gov

NTESS Mixed Waste Landfill

RADON MONITORING REPORT

Description of the measurement

The measurement was performed with a closed alpha-track detector (Radtrak 2) following the quality guidance in EPA 402-R-95-012.

The detector(s) arrived to Radonova Laboratories **07/22/2022**. They were measured **07/29/2022**.

Test data have been given by Robert Ziock

Property data and address

MEASURE SITE ADDRESS
AR/COC 622684

BUILDING ID

Test results

DETECTOR	MEASUREMENT PERIOD	DESCRIPTION / LOCATION	FLOOR	RADON RESULT
154087-1 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN1		< 0.3 pCi/L
523392-9 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN2		0.3 ± 0.1 pCi/L
719397-2 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN3		0.4 ± 0.2 pCi/L
920766-3 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN4		0.3 ± 0.2 pCi/L
268834-9 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN5		0.2 ± 0.1 pCi/L
541695-3 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN6		0.2 ± 0.1 pCi/L
920899-2 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN7		0.4 ± 0.2 pCi/L
591227-4 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN8		0.2 ± 0.1 pCi/L
750909-4 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN9		0.2 ± 0.1 pCi/L
464855-6 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN10		< 0.2 pCi/L

Comment to the results

This report replaces 6069747:2. Reason: The RNTB detector (728966-3) was originally reported without a start time. Corrected description from "RNTB**" to "RNTB"

Tryggve Rönnqvist (Electronically signed)

Signature Radonova Laboratories Laboratory Measurement Specialist

This report may only be reproduced in full, unless issuing laboratory has given prior written approval.

RADONOVA INC.

REPORT NUMBER 6069747:3 REPORT PAGE

2 of 3

08/10/2022

PRINT DATE 08/10/2022

OWN ID AR/COC 622684

NTESS, LLC

REPORT RECEIVER(S) wjpalen@sandia.gov

NTESS Mixed Waste Landfill

RADON MONITORING REPORT

Description of the measurement

The measurement was performed with a closed alpha-track detector (Radtrak 2 ®) following the quality guidance in EPA 402-R-95-012.

The detector(s) arrived to Radonova Laboratories **07/22/2022**. They were measured **07/29/2022**.

Test data have been given by Robert Ziock

Property data and address

MEASURE SITE ADDRESS
AR/COC 622684

BUILDING ID

DETECTOR	MEASUREMENT PERIOD	DESCRIPTION / LOCATION	FLOOR	RADON RESULT
477949-2 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN11		< 0.2 pCi/L
807259-7 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN12		0.6 ± 0.2 pCi/L
467176-4 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN13		0.6 ± 0.2 pCi/L
521499-4 [Radtrak ² ®]	01/17/2022 - 07/18/2022	RN14		0.2 ± 0.1 pCi/L
575013-8 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN15		0.3 ± 0.2 pCi/L
298513-3 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN16		0.2 ± 0.2 pCi/L
924855-0 [Radtrak ^{2®}]	01/17/2022 - 07/18/2022	RN17		0.4 ± 0.2 pCi/L
728966-3 [Radtrak ^{2®}]	01/17/2022 – 07/18/2022	RNTB		< 0.2 pCi/L

Comment to the results

This report replaces 6069747:2. Reason: The RNTB detector (728966-3) was originally reported without a start time. Corrected description from "RNTB**" to "RNTB"

Tryggve Rönnqvist (Electronically signed)

Signature Radonova Laboratories Laboratory Measurement Specialist

This report may only be reproduced in full, unless issuing laboratory has given prior written approval.

Mixed Waste Landfill Radon Detector Deployment/Collection Form

Name: Danielle Michel	Signature:	<u></u>	Activity (check Deployment	all that apply)
Name: Robert Ziock	Signature:	L	Deployment	
Name: Mike Mitchell Cartlin hacken	Signature:		Deployment	Collection
ARCOC #: 622684 Det	ector Type: Radtrak2	No. of E	Exposure Days:	182

Sampling Location	Sample N	umber	Detector Serial Number	Deployment Date	Deployment Time	Collection Date	Collection Time	Notes* Y/N Date(s) of Notes
RN1	116289	ſ	154087-1	1/17/2000	1412	7/18/22	0834	Date(s) of Notes
RN2	116290	•	459640 9 523392-9	1/17/2022	408	7/18/22	1	10
RN3	116291	F	719397-2	1/17/2022	1346	7/18/22	0808	
RN4	116292	ì	920766-3	1/17/2022	1349	7/18/22	0810	10
RN5	116293	41	268834-9	1/17/2022	1350	7/8/22	0812	
RN6	116294	E	541695-3	1/17/2012	1352	7/18/22	0814	1
RN7	116295	ı,	920899-2	1/17/2022	1354	7/18/22	0817	
RN8	116296	٨	591227-4	117/2022	1359	7/18/22	0828	Al
RN9	116297	9	750909-4	1/17/2022	1406	7/18/22	0827	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
RN10	116298	ι	464855-6	1/17/2022	1405	7/18/22	0829	
RN11	116299	٠	477949-2	417/2022		7/18/22	0840	Y- 7/10/22
RN12	116300	,	807259-7	1/17/2022		71822	0846	Y-7/18/22
RN13	116301	4	467176-4	1/17/2022	1424	1 1	0843	1
RN14	116302	. !	521499-4	1/17/2012	1422	7/10/22	0839	70
RN15	116303	. !	575013-8	417/2022		2111	9845	70
RN16	116304	, 2		417/2022	1432		5900	1
RN17	116305	, 9		1/17/2022		11 1	1822	1
	116306		728966-3	NA			0930	B

^{*}NOTES are documented on LTS RDN-2012-002 MWL Radon Detector Collection Inspection Form.

Send copy of this form with AR/COC.

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

^{**}Document deployment date/time even though trip blank is not actually deployed and stays in sealed bag during sample detector deployment. Collection date/time is when sealed bag is opened and trip blank detector is placed in zip top sample bag for analysis.

SMO-2022-CVR (4-2022) SMO-05-03

Contract Verification Form (CVR)

Project Leader ZIOCK

Project Name MWL RADON MONITORING

Project/Task No. 195122_10.11.08

ARCOC No. 622684

Analytical Lab RADONOVA

SDG No. 6069747-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	Χ		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	N/A		
1.4	Preservative correct for analyses requested	N/A		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Χ		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line No.	Item			If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	N/A		
2.4	Matrix spike/matrix spike duplicate data provided	N/A		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622684 1 of 5

SMO-2022-CVR (4-2022)

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, explaiii
2.6	QC batch numbers provided	N/A		
2.7	Dilution factors provided and all dilution levels reported	N/A		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	N/A		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Χ		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	N/A		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	N/A		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		

ARCOC No. 622684 2 of 5

SMO-2022-CVR (4-2022)

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	N/A		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 622684 3 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) lon abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		

ARCOC No. 622684 4 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	N/A		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	N/A		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

- 0			
	Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Based on the review, this data package is complete. f C Yes $\bf C$ No

Reviewed by: Wendy Palencia Date: 08-03-2022 12:10:00

Closed by: Wendy Palencia Date: 08-03-2022 12:10:00

ARCOC No. 622684 5 of 5

Mixed Waste Landfill Radon Monitoring

July-December 2022 Monitoring Period

Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia, LLC.

Albuquerque, New Mexico 87185-0651

date: February 13, 2023

to: Mike Mitchell (8888), Robert Ziock (8888), and Bonnie Little (8888)

from: Kelly Green (0618) kagreen@sandia.gov

subject: Review of MWL Radon Air Data – July through December 2022 Semiannual Monitoring Period

The purpose of this memo is to document my review of the radon air monitoring results for the July through December 2022 semiannual monitoring period. My review includes evaluation of the results and supporting documentation relative to the data quality objective (DQO) and monitoring objectives specified in the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (Appendix C, *Air Sampling and Analysis Plan for the Mixed Waste Landfill*). The DQO for this monitoring is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective.

Kelly Green

Radon air monitoring measurements during this semiannual period were obtained using Radtrak3® detectors. The detectors were deployed at each monitoring location (Figure 1) on July 18, 2022 and were collected on January 16, 2023. The protective casing and mounting hardware were inspected during the collection effort and repairs were made if needed. The detectors remained in the field for approximately six months and were submitted to the analytical laboratory, RADONOVA, for analysis on Analysis Request/Chain of Custody (AR/COC) #623449 along with a trip blank detector (RNTB). RNTB was received at the same time as the other deployed detectors and was stored in a hermetically sealed protective bag at the Environmental Resource Field Office.

The results for this semiannual period indicate very low activities of radon in the air at the MWL, consistent with historical results and background radon activity. Results ranged from 0.3 picocuries per liter (pCi/L) to 0.5 pCi/L. The detectors from the two background locations, RN16 and RN17, had results of 0.3 pCi/L respectively. The trigger level of 4 pCi/L, which applies only to the results from the perimeter locations RN1 through RN10, was not exceeded by any of the individual sample results. A result of <0.3 pCi/L was reported for the trip blank (RNTB) indicating the other detectors were not exposed to radon during shipping and/or at the laboratory.

KAG, 0618

Attachments:

Figure 1. Location of the Alpha Track Detectors at the MWL Analysis Request/Chain of Custody #623449

RADONOVA Radon Monitoring Report 6365682:2 (analytical laboratory results for Radtrak3® detectors)

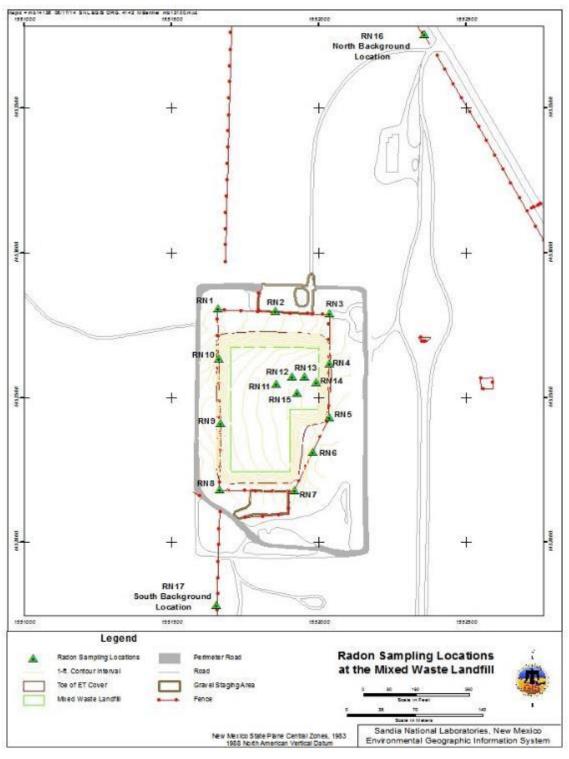


Figure 1. Location of Radon Detectors at the MWL

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

	3	5 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	SMO U	se ,	1						ARCOC	page 1 of 2
MONITORING Project Manag P/T No: 19512	er: Robert Ziock 2.10.11.08	SNL S Lab C Lab D	Samples Shippe Shipper #:	66778 2/331-814-220 DON	25	SMO	Authorizat Contact Ph ly Palencia	tion: (1) none: /505.844.31	32	Waste Char RMA: No 4° Celsius:	racterization: No	025447
TA: TA3 Bldg			Chain: No ation Req'd: No			Turn; EDD	around Tim	e: 30 days		SDG #:		
Sample No Fraction	Sample Location Detail	Depth (ft)	Date/Time Collected	Sample Matrix	Type	ontainer Volume	Preserv-	Collection Method	Sample	Parameter &	Method Requested	Lab
118101 🗸 001	RN1/RADTRAK2	NA	01/16/23 09:35	AF	NA	0 NA	None	C	Type SA	RADON		Sample Id
	RN2/RADTRAK2	1	01/16/23 09:39	AF	NA	0 NA	None	С	SA I	RADON		
118103 🗸 001	RN3/RADTRAK2		01/16/23 09:07	AF	NA	0 NA	None	С		RADON		
118104 / 001	RN4		01/16/23 09:09	AF	NA	0 NA	None	С		RADON		
118105 / 001	RN5		01/16/23 09:11	AF	NA	0 NA	None	С		RADON		
118106 🗸 001	RN6		01/16/23 09:13	AF	NA	0 NA	None	С		RADON		
118107 🗸 001	RN7		01/16/23 09:15	AF	NA	0 NA	None	С		RADON		Maria de la companya della companya della companya della companya de la companya della companya
118108 / 001			01/16/23 09:26	AF	NA	0 NA	None	С		RADON		
118109 🗸 001	RN9		01/16/23 09:30	AF	NA	0 NA	None	С	Total Control of the	RADON		
118110 🗸 001	RN10	1/2	01/16/23 09:33	AF	NA	0 NA	None	С		RADON		
Members Wer Rob	ne Signaturielle Michel Signaturielle Michel Signaturielle Michel Signaturielle Min Valhane	ire	W w	(Com	iments:				osme 7	/10/22 to 1/	10/23
Relinquished by	Colle Org. 8	888 I	Date 1/6/23 T	ime 10 <	-	Relingu	ished by		Ora	Dota	70.	
	Con Org. C	CARI	Date 1/16/23 T	ime 105	53	Receive	-		Org.	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLU	Time Time	
Relinquished by	677700	The second secon		ime //	10		ished by		Org.		Time	
Received by	Org.	I	Date T	ime		Receive	d by		Org.	Date	Time	

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

18112 ✓ 0 18113 ✓ 0 18114 ✓ 0 18115 ✓ 0 18116 ✓ 0 18117 ✓ 0	001 001 001 001 001	RN13 RN14 RN15 RN16 RN17	Au	01/16/23 09:54 01/16/23 09:42 01/16/23 09:45 01/16/23 09:48 01/16/23 09:51 01/16/23 09:59	AF AF	NA NA NA	Ontainer Volume O NA O NA O NA	None None None	Method C C	SA SA	Parameter & Method Requested RADON RADON RADON	La Sami
18113 ✓ 0 18114 ✓ 0 18115 ✓ 0 18116 ✓ 0 18117 ✓ 0	001 001 001 001 001	RN13 RN14 RN15 RN16 RN17		01/16/23 09:45 01/16/23 09:48 01/16/23 09:51	AF AF	NA NA	0 NA		С	SA	RADON	3.3
18114√ 0 18115 √ 0 18116 √ 0 18117 √ 0	001 001 001 001	RN14 RN15 RN16 RN17		01/16/23 09:48 01/16/23 09:51	AF	NA						77.
18115 ✓ 0 18116 ✓ 0 18117 ✓ 0	001 001 001	RN15 RN16 RN17		01/16/23 09:51			0 NA			DA		
18116 ✓ 0 18117 ✓ 0	001	RN16 RN17			AF			None				
18117 🗸 0	001	RN17	1		7 11	NA	0 NA		С	SA	RADON	- 1- 1 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1
			++		AF			None	С	SA	RADON	
			1	01/16/23 09:22		NA	0 NA	None	С	SA	RADON	
		RNT	N.	-		NA	0 NA	None	С	SA	RADON	→ 1 * 1
			V	C 1024	AF	NA	0 NA	None	FB	FB	RADON	2
												F - 1
			*2									22 A 12
		V										
								-				, t
						ļ	-					
			+									
The second second	5/4-1-	Ar	100000000000000000000000000000000000000									1 F (1 - 1)

Mixed Waste Landfill NTESS, LLC

REPORT NUMBER 6365682:3 REPORT PAGE 1 of 3

03/16/2023 PRINT DATE 03/16/2023

REPORT DATE

OWN ID N/A

BY NTESS, LLC

REPORT RECEIVER(S)
Mixed Waste Landfill

RADON MONITORING REPORT

Description of the measurement

The measurement was performed with a closed alpha-track detector (Radtrak^{2®}/Radtrak^{3®}) following the measurement protocols given by AARST/ANSI.

The detector(s) arrived to Radonova Laboratories **01/17/2023**. They were measured **01/25/2023**.

Test data have been given by NTESS, LLC

Property data and address

MEASURE SITE ADDRESS

BUILDING ID ARCOC # 623449

Test results

DETECTOR	MEASUREMENT PERIOD	DESCRIPTION / LOCATION	DETECTOR TYPE	FLOOR	RADON RESULT
103 143 699 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN1, 118101			0.3 ± 0.2 pCi/L
103 148 219 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN2, 118102			0.4 ± 0.1 pCi/L
103 148 300 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN3, 118103			0.3 ± 0.2 pCi/L
103 159 422 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN4, 118104			0.4 ± 0.1 pCi/L
103 153 458 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN5, 118105			0.5 ± 0.2 pCi/L
103 146 072 [Radtrak³®]	07/18/2022 - 01/16/2023	RN6, 118106			$0.4 \pm 0.2 \text{ pCi/L}$
103 155 735 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN7, 118107			0.4 ± 0.2 pCi/L
103 189 429 [Radtrak³®]	07/18/2022 - 01/16/2023	RN8, 118108			0.5 ± 0.2 pCi/L
103 147 583 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN9, 118109			0.5 ± 0.2 pCi/L
103 160 172 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN10, 118110			$0.4 \pm 0.2 \text{ pCi/L}$
103 147 203 [Radtrak³®]	07/18/2022 - 01/16/2023	RN11, 118111			0.4 ± 0.2 pCi/L

Comment to the results

This report replaces 6365682:1. Reason: corrected dates for detector 103148946 Reported results are for detectors delivered with AR/COC # 623449

Tryggve Rönnqvist (Electronically signed)

Signature Radonova Laboratories Laboratory Measurement Specialist

This report may only be reproduced in full, unless issuing laboratory has given prior written approval.

RADONOVA INC.

Mixed Waste Landfill NTESS, LLC

REPORT NUMBER 6365682:3 REPORT PAGE 2 of 3

03/16/2023 PRINT DATE 03/16/2023

REPORT DATE

OWN ID N/A

BY NTESS, LLC

REPORT RECEIVER(S) Mixed Waste Landfill

RADON MONITORING REPORT

Description of the measurement

The measurement was performed with a closed alpha-track detector (Radtrak^{2®}/Radtrak^{3®}) following the measurement protocols given by AARST/ANSI.

The detector(s) arrived to Radonova Laboratories 01/17/2023. They were measured 01/25/2023.

Test data have been given by NTESS, LLC

Property data and address

MEASURE SITE ADDRESS

BUILDING ID ARCOC # 623449

DETECTOR	MEASUREMENT PERIOD	DESCRIPTION / LOCATION	DETECTOR TYPE	FLOOR	RADON RESULT
103 149 241 [Radtrak ^{3®}]	07/18/2022 – 01/16/2023	RN12, 118112			0.3 ± 0.2 pCi/L
103 148 938 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN13, 118113			0.3 ± 0.2 pCi/L
103 158 606 [Radtrak³®]	07/18/2022 - 01/16/2023	RN14, 118114			0.4 ± 0.2 pCi/L
103 147 252 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN15, 118115			0.4 ± 0.2 pCi/L
103 159 802 [Radtrak³®]	07/18/2022 - 01/16/2023	RN16, 118116			0.3 ± 0.2 pCi/L
103 160 065 [Radtrak ^{3®}]	07/18/2022 - 01/16/2023	RN17, 118117			$0.3 \pm 0.2 \text{ pCi/L}$
103 148 946 [Radtrak³®]	07/18/2022 - 01/16/2023	RNTB, 118118			< 0.3 pCi/L

Comment to the results

This report replaces 6365682:1. Reason: corrected dates for detector 103148946 Reported results are for detectors delivered with AR/COC # 623449

Tryggve Rönnqvist (Electronically signed)

Signature Radonova Laboratories Laboratory Measurement Specialist This report may only be reproduced in full, unless issuing laboratory has given prior written approval.

RADONOVA INC.

REPORT NUMBER 6365682:3

REPORT DATE 03/16/2023

REPORT PAGE

3 of 3

PRINT DATE 03/16/2023

OWN ID

Measurement method: Closed alpha-track detector

The radon measurement was performed with a closed alpha-track detector following the quality assurance guidance given in the AARST/ANSI Measurement Protocols. The detector container is manufactured from electrically conducting plastic. Through a small slit (filter), radon gas enters the detector. The track-detecting material (film) inside the detector is hit by alpha particles generated by the radon entering the container and the decay products formed from it. On the film, the alpha particles make small tracks which are enlarged through chemical etching and later counted in a microscope in order to determine the radon exposure. Radonova Laboratories (P.O. Box 6522, SE-751 38 Uppsala, Sweden) is accredited (no. 1489) by SWEDAC to conduct radon-gas measurements using the closed alpha-track detector method. The analysis equipment is checked daily and the detectors are calibrated at regular intervals. NRPP Licenses: 107831 AL, 107830 RT

Measured radon concentrations

For each detector, the measured value of the radon concentration is provided. For each value an uncertainty associated with the measurement to a 95% confidence level is also provided. For example a measurement result of 4.0 ± 0.5 pCi/L means that the radon concentration is most likely contained in the range 3.5 - 4.5 pCi/L. If the start or end date of the measurement has not been provided, the radon concentration cannot be calculated. In such cases, the total exposure in pCi*days/L will be reported. The reported measured values are related to the detectors as received by Radonova Laboratories. Detector deployment is not performed by Radonova Laboratories. Measurement information such as monitoring period (dates) and placement location is provided to Radonova Laboratories by the end user.

Codes on non-reportable detectors

DNR Not Reported – Detector Not Returned
VTW Not Reported – Visibly Tampered With
FBD Not Reported – Film Broken or Damaged

LIL Not Reported – Lost in Lab
DTO Not Reported – Detector Too Old

Measurement method versions used when the report was created

ANSI/AARST MAH-2019, Protocol for Conducting Measurements of Radon and Radon Decay Products in Homes
ANSI/AARST MAMF-2017, rev. 1/2021, Protocol for Conducting Measurements of Radon and Radon Decay Products in Multifamily Buildings
ANSI/AARST MALB-2014, rev. 1/2021, Prot. for Conducting Measurements of Radon and Radon Decay Products In Schools and Large Buildings

Radon measurements in Multifamily Buildings, Schools and Large Buildings

The United States Environmental Protection Agency (EPA) recommends remediation if the results of one long-term test or the average of two short-term tests conducted in an occupied room are 4.0 pCi/L or higher. The average yearly residential indoor radon level in the US is estimated to be around 1.3 pCi/L. Long-term tests are conducted for more than 90 days. Short-term tests are conducted between 2 and 90 days and should be performed under closed building conditions.

If an initial short-term test result is less than 4 pCi/L, a follow-up measurement is probably not needed.

If an initial short-term test result is between 4 pCi/L and 8 pCi/L, a long-term or a short-term follow-up measurement is recommended.

If an initial short-term test result is greater than 8 pCi/L, a short term follow-up measurement is recommended in order to get a fast result.

More information about radon measurements and mitigation can be found in the ANSI/AARST publications:

- ANSI/AARST Protocol for Conducting Measurements of Radon and Radon-Decay Products in Schools and Large Buildings.
- ANSI/AARST Protocol for Conducting Radon and Radon Decay Product Measurements in Multifamily Buildings.
- ANSI/AARST Radon Mitigation Standards for Schools and Large Buildings.
- ANSI/AARST Radon Mitigation Standards for Multifamily Buildings.

For more information about the interpretation of your test results or about other radon related issues we suggest contacting your state radon office.

Signature on the report

With the signature on the report, the person responsible for the radon analysis at Radonova Laboratories hereby certifies that the measurement procedures follows the guidance in accordance with the ANSI/AARST Measurement Protocols and that the demands from SWEDAC are fulfilled.

Measurement information displayed in italics on report has been provided by the customer.

Certification no:

107831-AL, 107830-RT, NRSB ARL1904, NY ELAP ID: 12042,

Mixed Waste Landfill Radon Detector Deployment/Collection Form

Name: Danielle Michel	_ Signature:	Activity (check all that apply): Deployment Collection
Name: Robert Ziock	_ Signature:	Deployment Collection
Name: Callin Lachance	_ Signature:	Deployment Collection
ARCOC #: 623449	Detector Type: Radtrak3	No. of Exposure Days:

Sampling Location	Sample Number	Detector Serial Number	Deployment Date	Deployment Time	Collection Date	Collection Time	Notes* Y/N Date(s) of Notes
RN1	118101	103143699	7/15/02	0834	1/16/23	0935	104585559
RN2	118102	103148219	')	0835	1/16/23	0939	105692321
RN3	118103	103148300		0808	1/16/23	0907	104588058
RN4	118104	103159422		0310	1/10/23	0909	104589353
RN5	118105	103153458		0812		0911	1049916558
RN6	118106	103146072		0814		0913	14596820
RN7	118107	103155735		0817		0915	14587787
RN8	118108	103189429		0328		0926	104560727
RN9	118109	103147583		0327		0930	1045104281
RN10	118110	103160172		0829		0933	104590914
RN11	118111	103147203		0840	0954	09432	104592498
RN12	118112	103149241		0846		0942	104586177
RN13	118113	103148938		0843		M45	104557616
RN14	118114	103158606		0839		0948	1045/13322
RN15	118115	103147252		0845		0951	14506722
RN16	118116	103159802		6969		0959	104593421
RN17	118117	103160065		0822	V	0922	104594957
RNTB**	118118	103148946	AL		1/16/23	1024	2

^{*}NOTES are documented on LTS RDN-2012-002 MWL Radon Detector Collection Inspection Form.

Send copy of this form with AR/COC.

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

^{**}Document deployment date/time even though trip blank is not actually deployed and stays in sealed bag during sample detector deployment. Collection date/time is when sealed bag is opened and trip blank detector is placed in zip top sample bag for analysis.

Mixed Waste Landfill Radon Detector Deployment/Collection Form

Name: Danielle Michel	_ Signature:	Activity (check all that apply): Deployment Collection
Name: Robert Ziock	_ Signature:	Deployment Collection
Name: Callin Lachance	_ Signature:	Deployment Collection
ARCOC #: 623449	Detector Type: Radtrak3	No. of Exposure Days:

Sampling Location	Sample Number	Detector Serial Number	Deployment Date	Deployment Time	Collection Date	Collection Time	Notes* Y/N Date(s) of Notes
RN1	118101	103143699	7/15/02	0834	1/16/23	0935	104585559
RN2	118102	103148219	')	0835	1/16/23	0939	105692321
RN3	118103	103148300		0808	1/16/23	0907	104588058
RN4	118104	103159422		0310	1/10/23	0909	104589353
RN5	118105	103153458		0812		0911	1049916558
RN6	118106	103146072		0814		0913	14596820
RN7	118107	103155735		0817		0915	14587787
RN8	118108	103189429		0328		0926	104560727
RN9	118109	103147583		0327		0930	1045104281
RN10	118110	103160172		0829		0933	104590914
RN11	118111	103147203		0840	0954	09432	104592498
RN12	118112	103149241		0846		0942	104586177
RN13	118113	103148938		0843		M45	104557616
RN14	118114	103158606		0839		0948	1045/13322
RN15	118115	103147252		0845		0951	14506722
RN16	118116	103159802		6969		0959	104593421
RN17	118117	103160065		0822	V	0922	104594957
RNTB**	118118	103148946	AL		1/16/23	1024	2

^{*}NOTES are documented on LTS RDN-2012-002 MWL Radon Detector Collection Inspection Form.

Send copy of this form with AR/COC.

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

^{**}Document deployment date/time even though trip blank is not actually deployed and stays in sealed bag during sample detector deployment. Collection date/time is when sealed bag is opened and trip blank detector is placed in zip top sample bag for analysis.

SMO-2022-CVR (4-2022) SMO-05-03

Contract Verification Form (CVR)

Project Leader ZIOCK

Project Name MWL RADON MONITORING

Project/Task No. 195122_10.11.08

ARCOC No. 623449

Analytical Lab RADONOVA

SDG No. 6365682-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	item		No	ii iio, expiaiii
1.1	All items on ARCOC complete	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	N/A		
1.4	Preservative correct for analyses requested	N/A		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item –		plete?	If no, explain
No.			No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	N/A		
2.4	Matrix spike/matrix spike duplicate data provided	N/A		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623449

SMO-2022-CVR (4-2022)

Line	Item		olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	N/A		
2.7	Dilution factors provided and all dilution levels reported	N/A		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	N/A		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	N/A		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	N/A		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		

ARCOC No. 623449 2 of 5

SMO-2022-CVR (4-2022)

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	N/A		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 623449 3 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		

ARCOC No. 623449 4 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	N/A		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	N/A		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

- 1			
	Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? € Yes € No

Reviewed by: Wendy Palencia Date: 02-13-2023 11:31:00

Closed by: Wendy Palencia Date: 02-13-2023 11:31:00

ARCOC No. 623449 5 of 5

January-December 2022 Monitoring Period

Name: Cartin Lachance		Signatu Signatu	1		le	De		V		١	-						
				$\overline{}$										47			
Are detectors being collected? Yes	No																
Detector Type: Rodfrold	Ra	don N	lonito	ring I	Freque	ency:	0	Quarte	erly	S_Se	miann	ually		Annual	ly		
																	ž.
			Ins		n Mon												
	RN1	RN2	RN3		RN5			RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	У	Y	Y	Y	Y	٧.
1b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
2a. Radon detector condition (in enclosure or after collection).	Y	Y.	Y	Y	Y	Y	Y	Y	y	Y	Y	Y	Y	Y.	Y	y	Y
2b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
3a. Radon detector enclosure securely fastened to post (fence or free standing).	Y	Y	Y	Y	X	4	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
4a. Radon detector enclosure and internal attachment components.	Y	Y	Y:	Y	Y	Y	Y.	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
4b. Action Required.	N	N	N	N	IN	N	N	N	N	N	N	N	N	N	N	N	N
5a Radon detector enclosure interior clean of	DVI 60	1	11		150		1	. ,	1 1	NI	11	1 1		11	1	1	(C) (S)

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

5b. Action Required.

debris (dirt, insects, spider webs, etc.).

Page 1 of 2

Location	Action Required (Note any action required and date resolved, otherwise note "None")
ŖN1	None any action required and date resolved, otherwise note "None")
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	
RN10	
RN11	
RN12	
RN13	
RN14	
RN15	
RN16	
RN17	

Date: 2 2022	
Name: Daviel & Michel	Signature
Name: Robert Zieck	Signature: Halm High but

Are detectors hein	g collected? Yes	No			
	Radtake	Radon Monitoring Frequency:	□ Quarterly	Semiannually	□ Annually

*			Ins	Rador pection	Moni Parai	toring meters	Locati (Yes o	on r No)							- 2		
	RNI	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
la. Monitoring location identification labeling.	VES	Yes	yes	yes	yes	yes	yes	409	yes	405	YES	YES	YES	YES	YES	Yes	405
1b. Action Required.	NO	NO	No	16	186	No	16	106	16	No	No	No	po	wo	NO	NO	No
 Radon detector condition (in enclosure or after collection). 	YES	XES	ves	405	yes	405	yes	409	Ye5	yes	485	456	YE5	YES	488	YES	yes
2b. Action Required.	No	No	Wo	1/16	No	No	No	10	20	NO	NO	. 20	M	Po	no	10	No
3a. Radon detector enclosure securely fastened to post (fence or free standing).	YES	YES	ye5	485	465	469	yes	yes	yes	yes	YES	165	485	YE 5	YES	YES	yes
3b. Action Required.	NO	NO	VNO	1/10	No	No	110	11/10	1 NO	No	NO	w	No	No	NJ	ND	IN
4a. Radon detector enclosure and internal attachment components.	YES	Yes	yes	yes.	yes	yes	yes	yes	yes	yes	YES	YEG	485	YES	YES	YES	409
4b. Action Required.	00	NO.	M	No	We	NO	1NO	Mo	16	100	Ma	No	NO	NO	No	100	No
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	YES	YES	yes,	45	yes	140	404	yes	yes	yes	185	YES	YES	VES	YES	tes	ye
5b. Action Required.	NO	NO	100	10	1/1/0	VNo	VNO	1/10	1/10	No	NO	NO	10	no	MO	NO	IN

Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center

Page 1 of 2

Location					(N	ote any ac	ction re	Ac equired ar	ction Red	quired esolved o	therwise	note "No	ne")				, =	
RN1	Non	F.			717	Yadi							- 11	1.1	-	. 0 -	1,82	
RN2		-T/2	-00	<	-01	J-I	1	111			ora i		-	44				
RN3					26	18					-	1	70		Ú			
RN4						36	1	3			111211		W.	-			407	
RN5				-	- 51-			A. 5							- 10.	340	-	
RN6					J.E.	To a				a V F	7	FILE		× 1		-		
RN7							.01	,									1000	_
RN8						180	1	4 1			- 1 - V	70						
RN9				- 100				A st		- 7					-			_
RN10								- 11	77	-	A					-		
RN11			-															
RN12																		
RN13																•		_
RN14																		_
RN15		4											,					
RN16																		
RN17	2	10																_

Page 2 of 2

Date: 3/1/2022		T. A.	
Name: DILLE (E VICLE)	Signature:		
Paillin La Moun ()	(0) 10000		
Name: Callin Laurania	Signature:		
Robert tiock	mine you		
Are detectors being collected? Yes N	0		
Detector Type: Rad - al 2	Radon Monitoring Frequency:	□ Quarterly Semiannually	□ Annually

	Radon Monitoring Location																
		1.0	Ins	pection	Parai	meters	(Yes o	r No)									
47.32.	-RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	425	yes	485	yes	yes	yes	yes	405	yes	405	ues	yes	yes	yes	425	709	yes
1b. Action Required.	No	116	No	18	No	No	16	No	No	1No	NO	ONO	ONO.	No	No.	No	No
2a. Radon detector condition (in enclosure or after collection).	yes	405	yes	yes	yes	yes	705	yes	483	485	yes						
2b. Action Required.	16	116	No	15	No	No	16	No	No	No	No	No	No	No	No	No	No
3a. Radon detector enclosure securely fastened to post (fence or free standing).	yes	yes	yes	yes	yes	yes	485	yes	yes	185	ues	yes	yes	yes	yes	485	yes
3b. Action Required.	No	116	No	16	No	No	No	16	Wo	116	ONO	100	ONO	900	No	10	No
4a. Radon detector enclosure and internal attachment components.	405	425	yes	yes	yes	4es	yes	yes	485	yes	yes	yes	yes	Ups	yes	yes	yes
4b. Action Required.	INO	110	No	16	No	100	No	16	Wo	No	900	96	ano	NO	900	No	No
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	403	yes	yes	yes	yes	yes	425	yes	yes	yes	ijes	Yes	yes	yes	425	yes	yes
5b. Action Required.	No	No	No	16	16	No	No	Wo	VNO	No	190	PNO	1900	1900	9/10	No	1/10

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Location	(Note any action required and date resolved, otherwise note "None")
RN1	None
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	
RN10	
RN11	
RN12	
RN13	
RN14	
RN15	
RN16	
RN17	

Vame: DOWIELE WICKE		Si	gnatur	@:) a		a l	M	M.	nos.		_							
Name: Robert tick		Si	gnatur	re:	R	ch	X	9	100	1									
					. 1														
Are detectors being collected? Yes	No			The second second															
Detector Type:	T		don M	lonito	ring F	reque	ency:	0 (Quarte	erly	S Se	miannı	ually		Annual	ly			
That Han				and promote promote \$	name of the second						Charles To						Mention and the comment of the		read
				Tour		n Mon													
	RN	11	RN2	RN3	4	RN5				RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17	7
1a. Monitoring location identification labeling.	4		Y	Y	y	Y	Y	Y	1	4.	4	Y	Y	Y	Y	Y	7	Y	SHEET STATES
1b. Action Required.	N		N	IN	N	N	N	N	N	N	N	N	N	N.	N	N	N	12	Section 1
2a. Radon detector condition (in enclosure or after collection).	1		Y	Y.	Y	Y.	Y	Y	7	Y	Y	4	Y	14	Y	4	7	4	
2b. Action Required.	N		1	N	M	IN	N	N	N	N	N	N	N	N	N	IN	N	N	
3a. Radon detector enclosure securely fastened to post (fence or free standing).	4		4	Y.	Y	Υ.	Y	1	4	1	Y	14	Y.	1	Y	1	14.	4	
3b. Action Required.	N		7	N	N	N	17	N	N	N	IN	N	N	N	N	N	N	M	
4a. Radon detector enclosure and internal attachment components.	Y	1	H	Y.	14	14.	Y.	14	Y	Y	Y	Y	1	Y	1 Y	Y	14	14	
4b. Action Required.	N		N	IN	N	N	N	N	N	IN	IN	N	N	IN	IN	N	N	N	_
5a. Radon detector enclosure interior clean of	V	1	V	IV	TY	V	V	4	14	11	V	1.1	111	11	V	141	V	V	

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

5b. Action Required.

debris (dirt, insects, spider webs, etc.).

Page 1 of 2

Location	Action Required (Note any action required and date resolved, otherwise note "None")	
RN1	(Note any action required and date resolved, otherwise note "None")	-
RN2	D WW	
RN3		-
RN4		
RN5		
RN6		
RN7		
RN8		
RN9		
RN10		
RN11		-
RN12		
RN13		
RN14		
RN15		
RN16		
RN17		

Page 2 of 2

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

Date: 5/2/2000	
Name: THE TOTAL	Signature:
Name: Robert Liock	Signature: Into years

Are detectors being collected? Yes	No.				
Detector Type: Radit Old 2	Radon Monitoring Frequency:	□ Quarterly	Semiannually	□ Annually	

				Radon	Moni	toring	Locati	on									
Inspection Parameters (Yes or No)																	
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	yes	yes	405	yes	4ES	yes	yes	yes	70)	yes	yes	yes	405	yes	yes	Yes	yes
1b. Action Required.	No	Mo.	No	No	No	No	No	No	No	16	16	16.	16	16	No	NO	No
2a. Radon detector condition (in enclosure or after collection).	485	405	Yes	yes	405	yes	yes	yes	yes	yes	yes	yes	yes	Yes	405	YES	yes
2b. Action Required.	No	No	16	No	No	No	No	No.	16	No	10	16	No	116	16	NO	No
3a. Radon detector enclosure securely fastened to post (fence or free standing).	yes	yes	yes	405	YES	yes	465	425	485	yes	405	yes	485	yes	yes	YES	yes
3b. Action Required.	No	116	No	10	No	1.10	No	Wo	No	No	No	1/2	No	No	No	NO.	No
4a. Radon detector enclosure and internal attachment components.	yes	yes	ye5	yes	yes	yes	405	yes	yes	ves	yes	yes	res	yes	yes	YES	405
4b. Action Required.	No	No	1/6	116	No	No	No	116	No	No	No	No	No	No	No	NB	No
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	485	465	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	YES	yes
5b. Action Required.	No	116	116	116	No	No	10	No	NO	No	Wo	No	16	No	No	NO	INO

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Location		Action Required (Note any action required and date resolved, otherwise note "None")
RN1	NOVE	(Note any action required and date resolved, otherwise note "None")
RN2		
RN3		
RN4		
RN5		
RN6		
RN7		
RN8		
RN9		
RN10		
RN11		
RN12		
RN13		
RN14	1	
RN15		
RN16		
RN17		

Name: Robert Ziock		ignatur ignatur	-)Q	Su			102			-						
Are detectors being collected? Yes	No																
Detector Type:		don M	onito	ring F	reque	ncy:	0 (Quarte	erly	Se Se	miannı	ally	_ A	Annual	ly		
			Ins				Locati (Yes o							-	u .		
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	X	Y.	4.	4	4	4	Y	4	Y.	7	4	1	X	7	Y	7
1b. Action Required.	N	N	N	N	N	N	N	N	N	N	2	N	7	N	N	N	1
2a. Radon detector condition (in enclosure or after collection).	Y	7	Y	Y	Y	7.	4	4	4.	Y.	Y	7.	4	Y	Y	7	Y
2b. Action Required.	N	N	N	N	N	N	N	N	N	N		N	N	N	N	N	N
3a. Radon detector enclosure securely fastened to post (fence or free standing).	4	Y	14.	14	14	Y.	Y.	1	4.	7	Y	Y.	Y	4	4	7.	Y
3b. Action Required.	N	N	17	N	N	N	N	17	12	IN	N	17	N	N	N	N	N
4a. Radon detector enclosure and internal attachment components.	Y.	Y	Y:	7	Y	4	1	14	Y.	1	Y	7	Y	Y.	X	Y	4
4b. Action Required.	N	N	N	N	N	N	N	N	12	N	N	N	N	N	N	N	N
5a. Radon detector enclosure interior clean of debris (dirt. insects, spider webs, etc.).	4.	4	Y	Y,	TY.	17	4.	Y.	14	14,	14,	11	1	14	4.	1X	Y

Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center

5b. Action Required.

Location		Action Required (Note any action required and date resolved, otherwise note "None")	
RN1	NOVE	(xote thy action required and date resolved, otherwise note "None")	
RN2			
RN3	A May a series of the series o		
RN4			
RN5			
RN6			
RN7			
RN8			
RN9			
RN10			
RN11			
RN12			
10.7			
RN13			
RN14			
RN15			
RN16			
RN17			

Page 2 of 2

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

Date: 7 18 2002 Name: Davie GE Miche	Signature: Doll M				
Name: Robert Egel	Signature Kalta year	KE -	· .		
Cattin LaChance		lo			
Are detectors being collected?	No				
Detector Type: Radtrak3	Radon Monitoring Frequency:	□ Quarterly	Semiannually	□ Annually	C .

			Ins		n Moni n Parai												
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
la. Monitoring location identification labeling.	Y	Y	Y	Y	Y	Y,	Y	Y	Y	Y	Y	Y	Y	Y	Y	7	Y
1b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
2a. Radon detector condition (in enclosure or after collection).	Y	Y	Y	Y	Y	Y	У	Y	У	Y	Y	Y	У	У	Y	4	Y
2b. Action Required.	N	IN	N	N	N	N	N	N	N	IN	N	N	10	N	N		N
3a. Radon detector enclosure securely fastened to post:(fence or free standing).	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	7.	Y
3b. Action Required.	N	IN	N	N	N	N	N	N	N	N	N	N	N	N	N	IN	N
4a, Radon detector enclosure and internal attachment components.	À	У	у.	Y		Y	4-	Y	У	Y	X	Y	Y	У	Y	7,	Y
4b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	IŃ	N	N	N
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	X	Y	Y	Y	Y	Y	X	Y	Y	Y.	Y	Y	Y	Y	Y	Y,	Y
5b. Action Required.	N	M	N	N	N	N	N	N	N	N	N	IN	10	N	N	N	N

Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center

Location			(Note any action requ	Action Required and date res	uired solved, other	vise note "None	,,,,		
RN1	Non	l				The state of the s		The Control of the Co	
RN2									
RN3						H H			
RN4									***************************************
RN5									
RN6					*				
RN7		*							-
RN8	0								
RN9			And the second s						
RN10		V							
RN11	Cob	uebs observed	and removed						
RN12	No	NO				J*		*	
RN13									
RN14									
RN15									
RN16							•		<u> </u>
RN17	1	1							

arne: DiviElE Michel		ignatur		01	0	ess (5		7						V	
ame: Robert Eoch	S	ignatur	e:			-	5/			4	•						
				To								1					-
Are detectors being collected? Yes	No									,				-			
Detector Type: Padl 72 3	Ra	don M	onito	ring F	reque	ncy:	- C	Quarte	rly	Sei	miannı	ally	□ A	nnual	y		
TEACHTOSE							11							6	,		
				Rador	t Moni	toring	Locati	on	-					-			
V				pection	t Para	meters	(Yes o	r No)				-	DATE	marr 4	DATE.	RN16	RN17
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	KINIS	MIAIO	MIVI
la. Monitoring location identification labeling.	Y	Y	Y	Y	Y	14	7.	7	Y	Y	7	1	1	Y	7	Y	1
1b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	7	2	N	2	N	N
2a. Radon detector condition (in enclosure or after collection).	Y	Y	Y.	Y	Y	Y.	Y	Y	Y	14	Y	7	4	7	1/4	1	Y
2b. Action Required.	N	N	IN	N	IN	M	N	N	N	N	N	N	12	N	12	10	17
3a. Radon detector enclosure securely fastened to post (fence or free standing).	Y	Y.	Y	Y	Y	Y.	7	Y	14.	Y	7	1	4	1	1	1/	14
3b. Action Required.	N	IN	N	N	12	10	N	N	N	N	N	N	N	N	N	N	P
4a. Radon detector enclosure and internal attachment components.	Y	14	7	A.	Y	Y	Y	14.	17	1×	4	14	X	17	1	14	17
4b. Action Required.	N	N	N	N	N	N	N	N	N	N	12	IN	M	10	114	12	17
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	Y	Y,	14	Y	1Y	Y	X	14	Y	17	14	14	14	14	14	17	13
5b. Action Required.	N	N	N	IN	IN	N	12	N	12	IN	IN	N	IN	10	IN	N	1

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Page 1 of 2

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	None
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	
RN10	
RN11	
RN12	
RN13	
RN14	
RN15	
RN16	
RN17	

Page 2 of 2

Vame: Danielle Michel	S	ignatur	re:	Doe	U	11	M										
Name: Robert Zock		ignatu		1/2	ade		3	los	1	7	2						
Caithin La Chance					X	00	C.			r							
Are detectors being collected? Yes	No		The same of the same of		open de la commo					1	The second second second					ner et au attendice versie	
Detector Type: Raat-al3	Ra	don M	lonito	ring F	reque	ency:	0	Quarte	rly	Se	miann	ually		Annual	lly		2 2
			ama addini di marija. Vilmay ka pag									entropy a south or a south of the		,			
			Ins			itoring meters								-			
	RN1	RN2	RN3	RN4		RN6			RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	4	Y	Y	7	Y	7	4	X	Y.	7	7	7	Y	Y	4	7
1b. Action Required.	7	N	N	N	N	N	N	N	N	N	N	N	N.	N	N	N	N
2a. Radon detector condition (in enclosure or after collection).	À	X	Y	Y	4	4	4	4	Y	Y.	Y	Y	Y	Y	Y	7	Y
2b. Action Required.	N	N	N	N	N	N	N	N	N	N	2	N	N	N	N	N	N
3a. Radon detector enclosure securely fastened to post (fence or free standing).	Y	Y	Y.	Y	7	4	7	4	Y	Y.	Y	Y.	Y	Y	Y	Y	γ.
3b. Action Required.	N	N	N	N	N	N	N	N	N	N	17	17	N	N	N	17	N
4a. Radon detector enclosure and internal attachment components.	Y	17,	Y.	4	17	Y	Y.	17	1	Y	Y	Y	Y	Y	7	Y	X
4b. Action Required.	N	12	N	M	N	M	N	IN.	N	N	12	N	12	N	N	N	N
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	X	X	Y	4	X	Y	Y.	Y.	Y	4.	7	14,	Y.	14	17	71	4.
5b. Action Required.	N	11	NF	M	N	N	N	12	IN	IN	12	IN	N	M	N	IN	N

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Location	10 m	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	None	2
RN2		
RN3		
RN4		
RN5		
RN6		
RN7		
RN8		
RN9		
RN10		
RN11		
RN12		
RN13		
RN14		
RN15		
RN16		
RN17		

Page 2 of 2

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

Name:					Kad	on L	etect	or In	spect	on F	orm								
Date: D Detector Type: G D Detector Type: Detector Det	Name: Ray los de Chief							1	Name:	•									, , ,
Detector Type: Radon Monitoring Frequency: Quarterly Semiannually Annually Annually Radon Monitoring Frequency: Radon Monitoring Location Inspection Parameters (Ves or No) Radon Monitoring Location Radon Radon Monitoring Location Radon Monitoring Locati								1	lame:										
1a. Monitoring location identification labeling. 1b. Action Required. 2a. Radon detector condition (in enclosure or after collection). 2b. Action Required. 3a. Radon detector enclosure securely fastened to post (fence or free standing). 3b. Action Required. 3c. Radon detector enclosure and internal attachment components. 4c. Radon detector enclosure interior clean of eleris (dirt, insects, spider webs, etc.)			Ra	adon N	Monito	oring	Frequ	Liency								□ Annu	ally		
1a. Monitoring location identification labeling. 15. Action Required. 26. Radon detector condition (in enclosure or after collection). 27. A STANDARD STA						Dad	16												
1a. Monitoring location identification labeling. 1b. Action Required. 2a. Radon detector condition (in enclosure or after collection). 2b. Action Required. 3a. Radon detector enclosure securely fastened to cost (fence or free standing). 3b. Action Required. 3a. Radon detector enclosure and internal tachment components. 4					Ins	Naa Spectio	on Mo. on Par	nitorir am <i>oto</i>	ig Loca	ation									
1b. Action Required. 2a. Radon detector condition (in enclosure or after collection). 2b. Action Required. 3a. Radon detector enclosure securely fastened to yost (fence or free standing). 3b. Action Required. a. Radon detector enclosure and internal ttachment components. b. Action Required. a. Radon detector enclosure interior clean of ebris (dirt, insects, spider webs, etc.)	1a. Monitoring location identification lab.	+R	NI.	RN2	RN3	RN4	RNS	RN	6 RN	or No.		VO DAV	10 D						
2a. Radon detector condition (in enclosure or Annual Annua	1b. Action Required	17	/	7	Y	Y	1X	4	Y	V	Y	1 V	IU KA	II RNI	2 RN13	RN14	RN15	RN16	S RN1
2b. Action Required. 3a. Radon detector enclosure securely fastened to cost (fence or free standing). 3b. Action Required. 4a. Radon detector enclosure and internal ttachment components. 4b. Action Required. 5c. Action Required. 5c. Action Required. 6c. Action	2a. Radon detector condition (1		N	17	7	17	N	M	th	1/	1	1	17	17	Y	Y	14	Y
Ba. Radon detector enclosure securely fastened to y y y y y y y y y y y y y y y y y y	- salection).	1		Y	Y	Y	V	V	Ty.	14	10	110	1	N	N	N	N	1	1
b. Action Required. a. Radon detector enclosure and internal ttachment components. b. Action Required. a. Radon detector enclosure interior clean of ebris (dirt, insects, spider webs, etc.)	32 Pador I.	N				1	1-1	1-4	+/-	14	1	17	17	IY	Y	Y	V	V	V
a. Radon detector enclosure and internal ttachment components. b. Action Required. a. Radon detector enclosure interior clean of ebris (dirt, insects, spider webs, etc.)	oost (fence or free standing)	V		1	10	17	N	N	N	N	N	M	N	N	N	1	1		14
ttachment components. b. Action Required. a. Radon detector enclosure interior clean of ebris (dirt, insects, spider webs, etc.)	b. Action Required.	H	4	1	4	1	Y	Y	1	17	Y	Y	Y	V	1	3	12	2	N
b. Action Required. a. Radon detector enclosure interior clean of ebris (dirt, insects, spider webs, etc.)	a. Radon detector enclosure and internal	17	6442 GI	12	N	N	N	N	N	7	N	1	1	1	/	1	1	Y	4
a. Radon detector enclosure interior clean of ebris (dirt, insects, spider webs, etc.)	b. Action Required	1	\perp	Y	7	7	7	Y	Y	Y	Y	V	17	110	N	N	N	N	N
D. Action Required.	a. Radon detector enclosure into	77		2	N	7	N	N	7	N	7	12	15	17	H	Y	7	X	7,
IN I	b. Action Required.	1	+		XII	1	7	4.	Y,	Y	Y	Y	4	Y	4	1	2	7	7
		2		7	19	N	N	N	N	N	N		1			1	1	4	1

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

ocation	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	None
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	
RN10	
RN11	
RN12	
RN13	
RN13	
RN15	
RN16	

Name: Davielle Michel Name: Robert Ziock		Name: Cairlin ha Chance Name:															
2004 21000						11101											
Date: 11 2 22						Det	ectors	being	g colle	ected:	□ Yes	; % 1	No				
Detector Type: Radtral 3	Ra	idon M	lonito:	ring F	reque	ency:		Quart	erly	SS	miann	ually		Annua	lly		
*,						s.											
			Ins			itoring meters											
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	Y	*	4	Y	Y	4	4	Y	Y	7	Y	Y	Y	V	X	Y
1b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	7	N	N	1	N
2a. Radon detector condition (in enclosure or after collection).	Y	.À	Y	Y	Y	Y	7	Y	Y	Y	Y	Y	4	Y	4	Y	Y
2b. Action Required.	N	N	N	N	N	N	N	N	N	N	Ń	N	N	N	N		N
3a. Radon detector enclosure securely fastened to post (fence or free standing).	Y	Y	Y	Y	7	Y	Y	Y	Y	Y	Y	Y	Y	y	Y	Υ.	Y
3b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	17	N
4a. Radon detector enclosure and internal attachment components.	Y	4.	Y	X	Y	Y	4	Y	Y	Y	Y	Y	Y	Y	1	Y	Y
4b. Action Required.	N	N	M	N	N	N	N	N	N	N	N	N	N	N	N		N
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	4	4	4	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
5b. Action Required.	N	N	17	1	N	N	N	N	N	N	N	N	N	N	N	N	N

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	NOVE
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	
RN10	
RN11	
RN12	
RN13	
RN14	
RN15	
RN16	
RN17	

Name DruELE MICHE						Nar	ne:										
Name: 20 pro 1 216Cl.						Nar	ne:										
Date: (2/6/22						Det	ectors	being	g coll	ected:	□ Yes	s & l	No			,	
Detector Type: Padtral 3	Ra	idon M	Ionito	ring F	reque	ency:		Quart	erly	8-80	emiann	ually		Annua	lly		
						i								- 1			51
			Ins			itoring meters											
	RN1	RN2	RN3	RN4	RN5			RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	Y	Y	7	Y	7	Y	7	7	Y	4	4	Y	4	Y	X	4
1b. Action Required.	N	N	N	7	N	N	N	7	N	N	7	7	N	N	N	N	1
2a. Radon detector condition (in enclosure or after collection).	Y	7	7	7	4	Y	Y	Y.	Y.	X	Y	7	Y	Y	4	X	Y
2b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	M		N		N	M
3a. Radon detector enclosure securely fastened to post (fence or free standing).	Y	Y	4	7	Y	Y	X	γ.	7	Y	Y	4	4	Y	Y	4	Y
3b. Action Required.	N	N	N	7	N	N	N	N	N	N	N	N	N	N	N	N	1
4a. Radon detector enclosure and internal attachment components.	Y	γ.	Y	Y	Y	Y	Y	γ,	X	X	Y	Y	Y	Y	4	7.	Y
4b. Action Required.	7	N	17	17	N	B	N	7	N	N	N	N	N	N		N	N
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	4.	Y	Y	7	4.	У	7.	7.	Y.	7	4.	Y	Y	Υ,	Y	4	4
5h Action Required	\sim			N	IN	1/1			N		12				(N	N

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	None
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	
RN10	
RN11	
RN12	
RN13	
RN14	
RN15	
RN16	
RN17	

ANNEX B

Mixed Waste Landfill Surface Soil Tritium and Biota Monitoring Forms and Reports

April 2022-March 2023

Data Evaluation Memo (tritium monitoring only)

Data Validation Reports

Contract Verification Forms

Mixed Waste Landfill Surface Soil Tritium Monitoring June 2022 Sampling Event

Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia. LLC.

Albuquerque, New Mexico 87185-0101

date: January 26, 2023

to: Mike Mitchell (8888), Robert Ziock (8888), and Bonnie Little (8888)

from: Kelly Green (0618) kagreen@sandia.gov Kelly Luu

subject: Review of Tritium-in-Soil Results for LTMMP Monitoring at the Mixed Waste Landfill

The purpose of this memo is to document my review of the surface soil tritium monitoring results for the June 23, 2022 sample event. My review includes evaluation of the results and supporting documentation relative to the data quality objective (DQO) and monitoring objectives specified in the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (Appendix G, *Tritium and Biota Sampling and Analysis Plan for the Mixed Waste Landfill*). All data was reviewed and qualified in accordance with AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data." All data are determined as acceptable and reported quality control measures appear adequate.

Summary of Tritium Results (EPA Method 906.0^a) Mixed Waste Landfill Surface Soil Monitoring June 23, 2022

Sample Location	Result (pCi/L)	MDA (pCi/L)	Percent Soil Moisture	Laboratory Qualifier	Validation Qualifier	Trigger Level (pCi/L)
MWL TS-2NW	100 ± 123	206	8.54	U	BD, FR3	
MWL TS-2SW	106 ± 90.8	145	9.29	U	BD, FR3	
MWL TS-2SE	-31.1 ± 73.5	145	8.56	U	BD, FR3	20,000
MWL TS-2NE	58.9 ± 86.5	148	8.45	U	BD, FR3	,
MWL TS-2NE (Duplicate)	37.6 ± 89.6	159	6.11	U	BD, FR3	

Notes:

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

BD = Result is below the MDA.

EPA = U.S. Environmental Protection Agency.

FR3 = Result is < the MDA / MDL or < the 2- σ TPU (reason code).

MDA = Minimum detectable activity.

MDL = Method detection limit.

MWL = Mixed Waste Landfill.

pCi/L = Picocuries per liter.

TPU = Total Propagated Uncertainty.

U = Analyzed for but undetected.

The June 2022 results were all non-detections below the minimum detectable activity, which is consistent with the August 2021 monitoring results (MWL Annual LTMM Report, June 2022), historical MWL surface soil tritium results, and below the trigger level of 20,000 picocuries per liter.

cc: CFRC

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: January 26, 2023

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623478 SDG: 584626 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Five samples were prepared and analyzed with approved procedures using method GL-RAD-A-002 (tritium). Problems were identified with the data package that resulted in the qualification of data.

1. The sample results were < the associated 2-sigma TPU and/or < the associated MDA and will be **qualified BD,FR3**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS met QC acceptance criteria.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

<u>Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)</u>

The LCS met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits (DLs) were met.

Other QC

A field duplicate pair was submitted on ARCOC 623478. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 01/26/2023

Sample Findings Summary

AR/COC: 623478 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
GL-RAD-A-002			
	118174-001/MWL TS-2NW	Tritium (10028-17-8)	BD, FR3
	118175-001/MWL TS-2SW	Tritium (10028-17-8)	BD, FR3
	118176-001/MWL TS-2SE	Tritium (10028-17-8)	BD, FR3
	118177-001/MWL TS-2NE	Tritium (10028-17-8)	BD, FR3
	118178-001/MWL TS-2NE	Tritium (10028-17-8)	BD, FR3

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

							•		,			
ARCOC#: 623478		Site/Projec	et: MWL LTMMF	•	Validation Date: 01/26/23							
SDG #: 584626		Laboratory	y: GEL Laborator	es, LLC Validator: Linda Thal								
Matrix: Soil		# of Samp	les: 5	CVR present: Yes								
ARCOC(s) present: Yes		Sample Co	ontainer Integrity:	OK								
Analysis Type:												
☐ Organic ☐ Metals	☐ Gencl											
Requested Analyses Not Reported												
Client Sample ID Lab Sample ID Analysis Comments												
None												
			Hold Time/	Duosomyotid	on Outlines							
CIL 1 C I ID		- ID			Collection	Preparation	Analysis	Analysis	Analysis			
Client Sample ID	Lab Sample	e ID	Analysis	Pres.	Date	Date	Date	<2X HT	≥2X HT			
None												
		l	<u>l</u>		•							
Comments: Collected: 06/23/202	Comments: Collected: 06/23/2022											
Validated by:	Mal											
varidated by.												

Sandia Radiochemistry Worksheet

ARCOC #(s): 623478 SDG #: 584626 Matrix: Soil									
Laboratory Sample IDs: 584626 – see below									
Method/Batch #s: GL-RAD-A-002 (Tritium)/2285454 Samples -001 though -005									
Method/Batch #s: ASTM D 2216 Modified (%M)/2284753									
Method/Batch #s:									

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDA	LCS %R	LCSD %R	LCS/ LCSD RPD	I o	MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER	MS/ MSD RPD	
None														
	Tracer/Carrier Recovery Outliers													
Sample ID	Tracer/Ca	rrier %R		Sample ID		Tracer/				Sample ID		Tracer/Carrier		%R
NA														
			I											1

Comments: HTs OK

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Tritium: DUP/MS on -001

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Project Manager: Fimmie-Jackson P/T No: 195122.10.11.08 Subject Shipped: Shipp			//		SMO U						21	AR	COC 623478
Validation Req'd: No EDD: Yes SDG #. SPU (24	Project M P/T No: 1	anag 9512	ger: Fimmie Jackson 22.10.11.08 Robert Zio K	SNL Lab C Lab E	Shipper #: 3 Contact: zachary w Destination: GE	<i>5025</i> orsham/ 843-30 L	7	☐ SMO	Contact Pl	none:	132	Waste Characterization RMA: No	
Sample No Fraction Sample Location Detail Depth (fit) Date/Time (collected Matrix Type Volume Preservative Method Sample Matrix Type No Method No Method Type No Method Type No Method Type No Method Type No Method No Method Type No No Method Type No No Method Type No No Method Type No No No No No No No N										e: 30 days		SDG #: 584 621	4
118174 001 MWL TS-2NW	-	tion				Sample Matrix	Type	ntainer Volume		Collection Method	Sample Type		sted Lab
118175 001 MWL TS-2SW		ļ		NA	6/23/2022 10:3	SOIL	Р	2x1 L	None	G	· · · · · · · · · · · · · · · · · · ·	TRITIUM (EPA 906)	
118176 001 MWL TS-2SE		ļ					Р	2x1 L	None	G	SA	TRITIUM (EPA 906)	
118177					10:22	SOIL	Р	2x1 L	None	G	SA	TRITIUM (EPA 906)	
Sample Name Signature 1 1					10:10	1	Р	2x1 L	None	G	SA	TRITIUM (EPA 906)	
Sample Name Signature 1 1 Comments:	118178	001	MWL TS-2NE	W	10:10	SOIL	Р	2x1 L	None	G	DU	TRITIUM (EPA 906)	0.000.000.000.000.000.000.000.000.000
Sample Name Signature 1 1				×									- 29-
Sample Name Signature 1 1 Comments:													
Sample Name Signature 1 1													
Sample Name Signature 1 1				*									
Sample Name Signature 11. Comments:		pierwayne											
Team Members Michael Mitchell Robert Ziock Team Michael Mitchell Robert Ziock Team Michael Mitchell Robert Ziock	Team	Dar Mic	nielle Michel Chael Mitchell	Tre M	Mens		Comn	nents:					
Relinquished by Org. Org. Date Time Relinquished by Org. Date Time			Dally Org.	QC3I	Date/123/20T	ime 104	5	Relingui	shed by		Org.	. Date Time	
Received by Def Org. Org. Org. Date Time 1045 Received by Org. Date Time		49,000	Experience Organ	16/8 I	Date 6 23 22T	ime 104	15			#			
Relinquished by Org. Org. Org. Oct State (Sala Time O 800) Relinquished by Org. Date Time	A				The second live and the second								
Received by 1084 College. Date 1/22 Time 9.05 Received by Org. Date Time	Keceived b	yy	asa 'Yaku Grg.		Date // 1/22 T	ime 9	:00 l	Received	l by		Org.	Date Time	

SMO-2022-CVR (4-2022) SMO-05-03

Contract Verification Form (CVR)

Project Leader Robert Ziock

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623478 Analytical Lab GEL SDG No. 584626

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	N/A		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item	Complete?		If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623478 1 of 5

SMO-2022-CVR (4-2022)

Line	Item		olete?	If no, explain
No.	item	Yes	No	ii iio, expiairi
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623478 2 of 5

SMO-2022-CVR (4-2022)

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	N/A		
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 623478 3 of 5

SMO-2022-CVR (4-2022)

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		

ARCOC No. 623478 4 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	N/A		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

- 0			
	Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Reviewed by: Daniel John Ferraro Date: 07-28-2022 09:11:00

Closed by: Daniel John Ferraro Date: 07-28-2022 09:11:00

ARCOC No. 623478 5 of 5

Mixed Waste Landfill

Biota Monitoring

September 2022 Sampling Event

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: October 25, 2022

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623669 SDG: 594227 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three soil samples were prepared and analyzed with approved procedures using methods EPA 6010D (ICP-AES) and EPA 7471B (Hg-CVAA). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

ICP-AES:

1. Se was detected at ≤ the PQL in the MB. The associated result for sample 594227006 was a detect ≤ the PQL and will be **qualified 2.85U,B**; non-detect at the PQL.

CVAA:

1. In a CCV associated with samples -002 and -004, the %D was >110% but ≤125% for Hg. The associated sample results were detects and will be **qualified J+,C2**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

ICP-MS Instrument Tune

An instrument tune was not a method requirement.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria except as noted above in the Summary section.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section and as follows.

ICP-AES:

Pb, Ni and Se were detected at \leq the PQL in the MB. The associated sample results for Pb and Ni were detects > the PQL and >5X the MB value and will not be qualified. The Se results for samples -002 and -004 were non-detect and will not be qualified.

Ni and Ag were detected at ≤ the PQL in a bracketing CCB. The associated sample results for Ni were detects > the PQL and >5X the CCB value and will not be qualified. The associated sample results for Ag were non-detect and will not be qualified.

ICP -MS Internal Standards

Internal standards were not a method requirement.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicates met all QC acceptance criteria. The replicate RPD was >20% for Cr. Because the samples were soils, an RPD limit of 35% was used to evaluate the results based on professional judgment.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted

ICP Interference Check Sample (ICS A and AB)

Results of the ICP-AES ICS A and AB analyses were not evaluated because the sample concentrations for Al, Ca, Fe and Mg were < those in the ICS solutions.

ICP Serial Dilution

The serial dilutions met all QC criteria.

Other QC

One set of field duplicate samples was submitted on the ARCOC. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 10/26/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date: October 26, 2022

To: File

From: Mary Donivan

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623669 SDG: 594227 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three soil samples were prepared and analyzed with approved procedures using method DOE HASL 300, 4.5.2.3/Ga-01-R (gamma spec). Problems were identified with the data package that resulted in the qualification of data.

Gamma spec:

- 1. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3**.
- 2. The Th-234 and U-238 results for sample 594227003 were rejected by the laboratory due to the peaks not meeting identification criteria and will be **qualified R,Z2**.
- 3. The Ra-224 results for all samples were rejected by the laboratory due to interference and will be **qualified R.Z2**.
- 4. The sample results that were \geq the MDA but <3X the MDA will be **qualified J,FR7.**

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike (MS)

An MS is not required for gamma spec.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Laboratory Control Sample (LCS)

The LCS met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

One set of field duplicate samples was submitted on the ARCOC. There are no "required" review criteria for field duplicate or triplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 10/26/2022

Sample Findings Summary

AR/COC: 623669 Page 1 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
DOE HASL 300, 4.5.2.3/Ga-			
	118591-001/MWL AHSS-01- 2022	Americium-241 (14596-10-2)	BD, FR3
	118591-001/MWL AHSS-01- 2022	Beryllium-7 (13966-02-4)	BD, FR3
	118591-001/MWL AHSS-01- 2022	Bismuth-212 (14913-49-6)	J, FR7
	118591-001/MWL AHSS-01- 2022	Cobalt-60 (10198-40-0)	BD, FR3
	118591-001/MWL AHSS-01- 2022	Neptunium-237 (13994-20-2)	BD, FR3
	118591-001/MWL AHSS-01- 2022	Radium-223 (15623-45-7)	BD, FR3
	118591-001/MWL AHSS-01- 2022	Radium-224 (13233-32-4)	R, Z2
	118591-001/MWL AHSS-01- 2022	Sodium-22 (13966-32-0)	BD, FR3
	118591-001/MWL AHSS-01- 2022	Thorium-227 (15623-47-9)	BD, FR3
	118591-001/MWL AHSS-01- 2022	Thorium-231 (14932-40-2)	BD, FR3
	118591-001/MWL AHSS-01- 2022	Thorium-234 (15065-10-8)	J, FR7
	118591-001/MWL AHSS-01- 2022	Uranium-235 (15117-96-1)	BD, FR3
	118591-001/MWL AHSS-01- 2022	Uranium-238 (7440-61-1)	J, FR7
	118592-001/MWL AHSS-02- 2022	Americium-241 (14596-10-2)	BD, FR3
	118592-001/MWL AHSS-02- 2022	Beryllium-7 (13966-02-4)	J, FR7

AR/COC: 623669 Page 2 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	118592-001/MWL AHSS-02- 2022	Cobalt-60 (10198-40-0)	BD, FR3
	118592-001/MWL AHSS-02- 2022	Neptunium-237 (13994-20-2)	BD, FR3
	118592-001/MWL AHSS-02- 2022	Radium-223 (15623-45-7)	BD, FR3
	118592-001/MWL AHSS-02- 2022	Radium-224 (13233-32-4)	R, Z2
	118592-001/MWL AHSS-02- 2022	Sodium-22 (13966-32-0)	BD, FR3
	118592-001/MWL AHSS-02- 2022	Thorium-227 (15623-47-9)	BD, FR3
	118592-001/MWL AHSS-02- 2022	Thorium-231 (14932-40-2)	BD, FR3
	118592-001/MWL AHSS-02- 2022	Thorium-234 (15065-10-8)	R, Z2
	118592-001/MWL AHSS-02- 2022	Uranium-235 (15117-96-1)	BD, FR3
	118592-001/MWL AHSS-02- 2022	Uranium-238 (7440-61-1)	R, Z2
	118593-001/MWL AHSS-01- 2022	Americium-241 (14596-10-2)	BD, FR3
	118593-001/MWL AHSS-01- 2022	Beryllium-7 (13966-02-4)	J, FR7
	118593-001/MWL AHSS-01- 2022	Cobalt-60 (10198-40-0)	BD, FR3
	118593-001/MWL AHSS-01- 2022	Neptunium-237 (13994-20-2)	BD, FR3
	118593-001/MWL AHSS-01- 2022	Radium-223 (15623-45-7)	BD, FR3
	118593-001/MWL AHSS-01- 2022	Radium-224 (13233-32-4)	R, Z2
	118593-001/MWL AHSS-01- 2022	Sodium-22 (13966-32-0)	BD, FR3
	118593-001/MWL AHSS-01- 2022	Thorium-227 (15623-47-9)	BD, FR3

AR/COC: 623669 Page 3 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	118593-001/MWL AHSS-01- 2022	Thorium-231 (14932-40-2)	BD, FR3
	118593-001/MWL AHSS-01- 2022	Uranium-235 (15117-96-1)	BD, FR3
SW846 3050B/6010D			
	118593-002/MWL AHSS-01- 2022	Selenium (7782-49-2)	2.85U, B
SW846 7471B			
	118591-002/MWL AHSS-01- 2022	Mercury (7439-97-6)	J+, C2
	118592-002/MWL AHSS-02- 2022	Mercury (7439-97-6)	J+, C2

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 623669		Site/Proje	et: MWL LTMM	 P			Validation I	Date: 10/25/202	2			
SDG #: 594227		_	y: GEL Laborator					Iary Donivan				
Matrix: Soil		# of Samp	·	CVR preser	nt: Yes							
ARCOC(s) present: Yes		_	ontainer Integrity:									
Analysis Type:		Sample C	ontainer integrity.	. OK								
Organic Metals	☐ Gencl	nem	⊠ Rad									
			D	A I NI	4 D4 - 1							
Cliant Samula ID	I ah Cama	ıl. ID	Requested		ot Keportea	Con						
Client Sample ID None	Lab Samp	ne ID	Analysis			Cor	nments					
None												
			1	<u> </u>								
			Hold Time	/Preservation	on Outliers							
Client Sample ID	Lab Sample	e ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT			
None												
Comments: Collected: 09/22/202	22											
Validated by:												
	,											
Mary W.	Donivan	<u> </u>										

Sandia Inorganic Metals Worksheet

ARCOC #	#(s): 623	669							SDG	#(s): 5942	227			Matri	Matrix: Soil			
Laborator	Laboratory Sample IDs: 594227002, -004, -006																	
Method/B	Method/Batch #s: 3050B/6010D 2321049(prep)/2321050 7471B 2325774(prep)/2325777																	
CPMS Mas	CPMS Mass Cal: Pass Fail NA ICPMS Resolution: Pass Fail NA																	
Calibration Analyte			MB	MB 5X Blank	LCS	MS	l Ken		ICS AB	ICS A ±MDL	LLCCV	PS av P	5X CCB					
(outliers)	Int. μg/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/kg	mg/kg mg/kg	%R	%R	RPD	%D	%R	ug/L (x50)	%R	%R	ug/L	
Pb	NA	✓	✓	✓	✓	✓	0.389J	1.95	✓	√	✓	✓	NA	NA	✓	NA	NA	
Ni	NA	\	✓	✓	✓	2.04J	0.170J	0.85	✓	✓	✓	✓	NA	NA	✓	NA	10.2	
Se	NA	✓	✓	✓	✓	✓	0.680J	3.4	✓	✓	✓	✓	NA	NA	✓	NA	NA	
Ag	NA	✓	✓	✓	✓	1.26J	✓	NA	✓	✓	✓	✓	NA	NA	✓	NA	6.3	
Cr	NA	✓	✓	✓	✓	✓	✓	NA	✓	✓	32.5	✓	NA	NA	✓	NA	NA	
Hg	✓	✓	✓	117¹	✓	✓	✓	NA	✓	✓	✓	NA	NA	NA	✓	NA	NA	

	IS Outliers	60-125%		IS Outliers 80-120%					
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery		
NA				NA					

Comments: HTs OK. MS/DUP/SD performed on -002

Al, Ca, Fe and Mg < ICSA in all samples ¹Associated with samples -002 and -004

Sandia Radiochemistry Worksheet

ARCOC #(s): 623669	SDG #:594227	Matrix: Soil					
Laboratory Sample IDs: 594227 – see below							
Method/Batch #s: GL-RAD-A-021 REV#24 (dry soil prep)/ DOE HASL 300,	4.5.2.3/Ga-01-R (gamma spec), 2320755(prep).	/2321284 Samples 594227001, -003, -005					

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	M	AS/ ISD ER	Lab Rep. RER				
None														
				Tracer/Ca	rrier Rec	overy Outl	iers							
Sample ID	Tracer/Ca	rrier %F	₹ .	Sample ID		Tracer/Carrier		%R		Sample	ID	Trac	er/Carrier	%R
NA														

Comments: HTs OK.

DUP on -001.

Data rejected due to peaks not meeting identification criteria: Th-234 and U-238 -003, Am-241 DUP, U-235 MB Data rejected because results considered a false positive due to interference: Ra-224 -001, -003, -005, DUP

SDG: 594227

Team

Members

Martin Baea Caitlin LaChance

Danielle Michel

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

page 1 of 1 SMO Use ARCOC 623669 9/22/22 Project Name: MWL LTMMP Date Samples Shipped: SMO Authorization: Waste Characterization: No SNL Shipper #: 35 499 Project Manager: Mike Mitchell SMO Contact Phone: RMA: No P/T No: 195122.10.11.08 Lab Contact: Zachary Worsham/ 843-300-4224 Wendy Palencia/505.844.3132 4° Celsius: Yes Lab Destination: GEL Contract No.:1983530 TA: TA3 Bldg: Room: Last Chain: No Turnaround Time: 30 days SDG#: Validation Reg'd: Yes EDD: Yes Sample No Frac-Sample Location Detail Date/Time Sample Container Preserv-Collection Sample Lab Parameter & Method Requested tion Collected (ft) Type Matrix Volume ative Method Type Sample Id 9/20/22000 118591 001 MWL AHSS-01-2022 SOIL P 250 ml GAMMA SPEC (EPA 901) None G SA 100 118591 002 MWL AHSS-01-2022 P SOIL 250 ml None G SA METALS, RCRA (SW846-6020/7470)+Be, Co, 002 Cu, Ni, V, Zn 118592 001 MWL AHSS-02-2022 P 250 ml SOIL G GAMMA SPEC (EPA 901) 0,027 None SA 003 118592 002 MWL AHSS-02-2022 METALS, RCRA (SW846-6020/7470)+Be, Co, SOIL 250 ml None G SA 004 Cu, Ni, V, Zn 118593 001 MWL AHSS-01-2022 SOIL 250 ml G DU None GAMMA SPEC (EPA 901) 005 118593 002 MWL AHSS-01-2022 SOIL 250 ml None G DU METALS, RCRA (SW846-6020/7470)+Be, Co, Cu. Ni. V. Zn 006 Sample Name Signature

Robert Ziock Relinquished by 2000 Date 9/22/27 Time Relinquished by 150 Org. Date Time Received by Received by (Org. Ocas Date 9/20/2 Time Org. Date Time Relinquished by Relinquished by Org 106/8 Date 9/22 2)Time 09 Date 20 Org. Time Received by 22 Time Received by Org. Org. Date 9/23 Date Time

Comments:

SMO-2022-CVR (4-2022) SMO-05-03

Contract Verification Form (CVR)

Project Leader Mike Mitchell

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623669 Analytical Lab GEL

SDG No. 594227

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	Χ		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	N/A		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Χ		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623669 1 of 5

SMO-2022-CVR (4-2022)

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples		X	1205200208 (118591-002DUP) Chromium 32.5% (0%-20%). Data reported and qualified appropriately.

ARCOC No. 623669 2 of 5

SMO-2022-CVR (4-2022)

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples		X	1205200206 (MB) Lead 0.389 mg/kg, Nickel 0.170 mg/kg, and Selenium 0.680 mg/kg. Data reported and qualified appropriately.
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	N/A		
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 623669 3 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) lon abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623669 4 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Reviewed by: Daniel John Ferraro Date: 10-25-2022 13:33:00

Closed by: Daniel John Ferraro Date: 10-25-2022 13:33:00

ARCOC No. 623669 5 of 5

ANNEX C

Mixed Waste Landfill Soil-Vapor Monitoring Forms and Reports

April 2022-March 2023

Field Forms

Sample Summary Sheet

Data Validation Reports

Contract Verification Forms

Certificates of Analysis

Field Sampling Forms Mixed Waste Landfill Long-Term Monitoring and Maintenance

Soil-Vapor Monitoring

Form Title	Corresponding Procedure
Soil Vapor Sampling Form	FOP 08-22
Analysis Request and Chain of Custody*	LOP 94-03 / AOP 95-16

^{*}Completed AR/COC forms are provided in the Data Validation Section of this Annex.

Field Sampling Forms October 2022 Soil-Vapor Monitoring

Location	Date	Time	Canister#	Flow Rate (cuft)	Initial Canister Vacuum (PSI)	Ending Canister Vacuum (PSI)	Comments ARIOL 623813
MWL-FB1	10/28/22	1137	34000690	NA	-25	-6	UPN 1/896
MWL-SV01-42.5	10/28/22	1201	NA	10,0	NA	NA	
		1	J	- 1	1	1	
14		1203	09976	NA	-26	-6	118 907
							ARCOL 623814
MWL-FB2	10/28/22	1141	34001/32	NA	-26	-6	UPN 118908
MWL-SV02-41.5	10/28/22	1153	NA	10.0	NA	NA	
	1	1		1		Ì	
504	1	1154	34000009	NA NA	-26	-6	118909
							NMED Split Sampling All SVM We

guitace clevation ~ 5390 fams/

Location	Date	Time	Canister #	Flow Rate	Initial Canister Vacuum (PSI)	Ending Canister Vacuum (PSI)	Comments Ancoc = 623815
MWL-FB3	10/28/22	0832	09839	NA	(PSI) 27-23	-6	UPN 114910
MWL-SV03-50	10/28/22	0839	NA	8,0	NA	NA	
		0839	\downarrow	1	1		
54	1	0840	11195	NA	-24	-6	1/891)
MWL-SV03-100	10/28/22	0913	NA	10,0	NA	NA	***
	1	1		1	1	1	
		2844	1	J	Ţ	J	
54	1	0845	34002107	NA	-25	-0	118912
MWL-SV03-200	10/28/22	0849	NA	10,0	NA	NA	
	1	1	Ĭ.	1	1	1	
		0849	J	1	1	J	
5 <i>A</i>	J	0850	34002027	NA	-24	-6	118 913
MWL-SV03-300	10/28/22	2853	NA	20,0	NA	NA	
		7	1	1	1	1	
		0953	1	7	1		
SA	J	0856	7 463	NA	-24	-6	118 914
MWL-SV03-400	10/28/22	0402	NA	20.0	NA	NA	
		L)	j	1		
		0403	J	1	Ţ	1	
34	7	0919	34000257	NA	-24	-6	5/ow 118915

Surface elevation: 5381.8 fams1

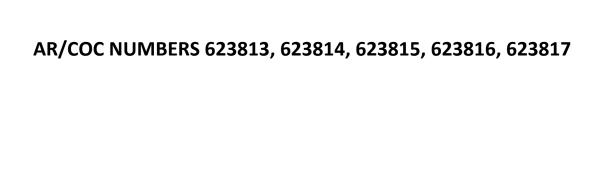
Location	Date	Time	Canister#	Flow Rate	Initial Canister Vacuum (PSI)	Ending Canister Vacuum (PSI)	Comments ARCOL 6238	316
MWL-FB4	10/28/22	0950	12207	NA	-23	-6	UPN //89/	6
MWL-SV04-50	10/28/22	0955	NA	8,0	NA	NA		
		0456	J			1		
54	1	1008	12221	NA	-24	-6	3/0w 3A Fill 11891	7
MWL-SV04-100	10/28/22	, 0/2	MA	10,0	NA	NA		
		7		1	1			
		1013	Ψ,	1	1	7		
3/1	J	1015	10968	NA	-24	-6	11891	9
MWL-SV04-200	10/28/22	1016	NA	15,0	NA	NA		
		4		i i	1)		
		1017	1	<i>\\</i>	1	J		
54	1	1025	11973	NA	-23	-6	510- 50 E.11 11891	9
MWL-SV04-300	10/28/22	1029	NA	15.0	NA	NA		
	,	1	1					
		1030	+	1	Ţ	٦		
5A	7	1032	09592	NA	-24	-6	11892	ت
MWL-SV04-400	10/28/22	1034	NA	15,0	NA	NA		
		L			- 1			
		1035	Ţ	J	1	* *		
5.A	1	1037	11221	NA	-75	-6	118921	1

Sustace elevation ~ 5382 fams)

Location	Date	Time	Canister #	Flow Rate (cuft)	Initial Canister Vacuum (PSI)	Ending Canister Vacuum (PSI)		Comments 4RCOC	623817
MWL-FB5	10/28/22	1053	12109	NA	-24	-6	UPN		118922
MWL-SV05-50	10/28/22	1058	~ P	10,0	NA	NA			
		1059		1	1	1			
54	7	1100	34002008	NA	-26	-6			118923
MWL-SV05-100	10/28/22	1102	NA	15.0	NA	NA			
	}	1103		1	1	1			
		1105	8259	NA	-25	-6	SA		118924
	J	1105	1041)	NA	-25	-6	DU		118925
MWL-SV05-200	10/28/22	1108	NA	15,0	NA	NA			
		1109		1	1	J			
	\downarrow	1//1	34000896	NA	-26	-6			118926
MWL-SV05-300	10/28/22	1115	WA	15,0	NA	NA			
	1	1	J	1					
		1116	12219	NA	-26	-6	SA		118927
		1118	8130	NA	-26	-6	DU		114924

surface elevation ~ 5389 fansl

Location	Date	Time	Canister #	Flow Rate	Initial Canister Vacuum (PSI)	Ending Canister Vacuum (PSI)	Comments ARCOL 623917
MWL-SV05-400	10/28/22	1122	NA	15,0	NA	NA	
	i	1	J	<u> </u>	1		
	\downarrow	1124	34000426	NA	-26	-6	118929


Sulface elevation ~ 5389 fams1

SUMMARY SHEET FOR OCTOBER 2022 SOIL-VAPOR SAMPLES

Sample Summary for MWL Soil Vapor Monitoring FY23 1st Quarter

			SUMMA		Sample		Associated Field Blank	
Well ID	Sample Date	Sample ID / Port	Number	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	Comments
Mixed Waste	Landfill Soil \	/apor Monitoring: Project	Task Number	195122.10.1	11.08 / Servi	ce Order Numb	er CF 01-23	
MWL-SV01	28-Oct-22	MWL-SV01-42.5	09976	623813	118907	Environmental	623813 / 118906	
WWVL-3VUT	26-001-22	MWL-FB 1	34000690	023013	118906	Field QC	n/a	Ultra Pure N2
MWL-SV02	28-Oct-22	MWL-SV02-41.5	34000009	623814	118909	Environmental	623814 / 118908	
WWL-3VUZ	20-001-22	MWL-FB 2	34001132	023014	118908	Field QC	n/a	Ultra Pure N2
		MWL-SV03-50	11195		118911	Environmental		
		MWL-SV03-100	34002107		118912	Environmental		
MWL-SV03	28-Oct-22	MWL-SV03-200	34002027	623815	118913	Environmental	623815 / 118910	
WWVL-SV05	20 001 22	MWL-SV03-300	7963	023013	118914	Environmental		
		MWL-SV03-400	34000257		118915	Environmental		
		MWL-FB 3	09839		118910	Field QC		Ultra Pure N2
		MWL-SV04-50	12221		118917	Environmental	623816 / 118916	
		MWL-SV04-100	10968	623816	118918	Environmental		
MWL-SV04	28-Oct-22	MWL-SV04-200	11973		118919	Environmental		
111112-0104	20 001 22	MWL-SV04-300	09592		118920	Environmental		
		MWL-SV04-400	11221		118921	Environmental		
		MWL-FB 4	12207		118916	Field QC	n/a	Ultra Pure N2
		MWL-SV05-50	34002008		118923	Environmental		
		MWL-SV05-100	8259		118924	Environmental		
		MWL-SV05-100	10411		118925	Duplicate		
MWL-SV05	28-Oct-22	MWL-SV05-200	34000896	623817	118926	Environmental	623817 / 118922	
101VVL-3V03	20-001-22	MWL-SV05-300	12219	023017	118927	Environmental		
		MWL-SV05-300	8130		118928	Duplicate		
		MWL-SV05-400	34000426		118929	Environmental		
		MWL-FB 5	12109		118922	Field QC	n/a	Ultra Pure N2

DATA VALIDATION REPORTS FOR ENVIRONMENTAL SAMPLES MIXED WASTE LANDFILL SOIL-VAPOR MONITORING OCTOBER 2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.againc.net

Memorandum

Date: November 29, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623813, 623814, 623815, 623816 and 623817

SDG: 140-29549

Laboratory: Eurofins Knoxville Project/Task: 195122.10.11.08 Analysis: VOCs by method TO-15

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Twenty-four samples were prepared and analyzed with accepted procedures using method EPA TO-15 (Determination of VOCs in Air collected in specially prepared canisters and analyzed by GC-MS). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. Acetone was detected at > the PQL in FB4, sample 140-29549-11 associated with samples -12 through -16. The associated results for samples -14 and -16 were detects ≤ the PQL and will be **qualified U,B2**; non-detect at their associated PQLs.
- 2. Methylene chloride was detected at > the PQL in FB5, sample -17 associated with samples -18 through -24. The associated result for sample -21 was a detect ≤ the PQL and will be **qualified** U,B2; non-detect at its associated PQL.

Data are acceptable except as noted above and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as follows.

For the initial calibration associated with samples -2, -4, -7, -8, -9, -10 and -18 thru -23, the intercept was > the MDL and positive for bromoform. The associated sample results were non-detect and will not be qualified.

For the CCV associated with samples -1, -3, -5, -6, -11 through -17 and -24, the CCV %D was >20% and positive for vinyl acetate. The associated sample results were non-detect and will not be qualified.

For the CCV associated with samples -2, -4, -7, -8, -9 and -10, the %Ds were >20% and positive for bromomethane, chloroethane, chloromethane, vinyl chloride and 1,2-dichloro-1,1,2,2-tetrafluoroethane. The associated sample results were non-detect and will not be qualified.

For the CCV associated with samples -18 through -23, the %Ds were >20% and positive for hexachlorobutadiene, bromomethane, chloroethane, chloromethane, vinyl chloride and 1,2-dichloro-1,1,2,2-tetrafluoroethane. The associated sample results were non-detect and will not be qualified.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section and as follows.

Benzene, 2-butanone, ethylbenzene, trichloroethene, trichlorofluoromethane, m,p-xylene and o-xylene were detected at \leq the PQL and acetone, methylene chloride and toluene were detected at > the PQL in FB1, sample -1 associated with sample -2. The trichloroethene and trichlorofluoromethane results for sample -2 were > the PQL and >5X the FB values and will not be qualified. All remaining associated sample results were non-detect and will not be qualified.

Methylene chloride and toluene were detected at \leq the PQL in FB2, sample -3 associated with sample -4. The associated sample results were non-detect and will not be qualified.

Acetone, methylene chloride and toluene were detected at \leq the PQL in FB3, sample -5 associated with samples -6 through -10. The associated sample results were non-detect and will not be qualified.

Toluene and 4-methyl-2-pentanone were detected at \leq the PQL and acetone, 2-butanone, 2-hexanone and methylene chloride were detected at > the PQL in FB4, sample -11 associated with samples -12 through -16. All associated sample results, *except* the acetone results for samples -14 and -16, were non-detect and will not be qualified. `

Toluene and 2-butanone were detected at \leq the PQL and acetone and methylene chloride were detected at > the PQL in FB5, sample -17 associated with samples -18 through -24. All associated sample results, except the methylene chloride result for sample\s -21, were non-detect and will not be qualified.

Surrogates

All surrogate acceptance criteria were met.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS/MSD was not performed.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD)

The LCS/LCSD for all batches met QC acceptance criteria for accuracy and precision with the following exceptions.

For the LCS/LCSD associated with samples -2, -4, -7, -8, -9 and -10, the %Rs were > the upper acceptance limit for bromomethane, chloroethane, chloromethane, vinyl chloride and 1,2-dichloro-1,1,2,2-tetrafluoroethane. The associated sample results were non-detect and will not be qualified.

For the LCS and/or LCSD associated with samples -18 through -23, the %Rs were > the upper acceptance limit for benzyl chloride; 1,2-dichlorobenzene; 1,2,4-trimethylbenzene; hexachlorobutadiene; bromomethane; chloroethane; chloromethane; vinyl chloride and 1,2-dichloro-1,1,2,2-tetrafluoroethane. The associated sample results were non-detect and will not be qualified.

Laboratory Replicate

The laboratory replicates met QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported and correctly adjusted for summa canister dilutions. The following canister dilutions were performed for all target analytes.

```
Sample -1 (1.77X); -2 (1.62X); -3 (1.63X); -4 (1.65X): -5 (1.75X); -6 (1.68X); -7 (1.65X); -8 (1.65X); -9 (1.56X); -10 (1.60X); -11 (1.67X); -12 (1.66X); -13 (1.71X); -14 (1.66X); -15 (1.71X); -16 (1.61); -17 (1.62X); -18 (1.46X); -19 (1.50X); -20 (1.51X); -21 (1.46X); -22 (1.50X); -23 (1.50X) and -24 (1.49X).
```

MDLs, PQLs and sample results were further adjusted for sample volume used during analysis.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Mass spectra acceptability were verified during data validation and met QC acceptance criteria. Sample results < the PQL with missing ions or poor ratios were **qualified J** by the laboratory and were not further qualified during data validation.

Five FBs were submitted, one for each ARCOC.

Two field duplicate pairs were submitted with ARCOC 623817. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result. No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 11/30/2022

Sample Findings Summary

AR/COC: 623813, 623814, 623815, 623816, 623817

Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
TO15_LL_PF			
	118919-001/MWL-SV04-200	ACETONE (67-64-1)	0.033U, B2
	118921-001/MWL-SV04-400	ACETONE (67-64-1)	0.032U, B2
	118926-001/MWL-SV05-200	METHYLENE CHLORIDE (75-09-2)	0.0058U, B2

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 623813, 623814, 6238 and 623817	315, 623816	Site/Project	t: MWL LTMMP	,			Validation I	Date: 11/28/2022	2	
SDG #: 140-29549		Laboratory	: Eurofins Knoxv	ille			Validator: L	inda Thal		
Matrix: Air		# of Sample	es: 24	CVR preser	t: Yes					
ARCOC(s) present: Yes		Sample Co	ntainer Integrity:	OK						
Analysis Type: ☑Organic ☐Metals ☐Go	enchem	□Rad								
			-	Analyses Not	Reported					
Client Sample ID	Lab Samp	le ID	Analysis			Com	ments			
None										
			Hold Time	/Preservatio	n Outliers					
Client Sample ID	Lab Sample	e ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT	
None										
S										
Comments: Collected 10/28/2022	2									
Validated by:	Validated by: X /hal									

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623813, 623814, 623815, 623816 and 623817	SDG: 140-29549		Matrix: Air
Laboratory Sample IDs: 140-29549 -1 through -24			
Method/Batch #s: TO-15 /67335 (samples -1, -3, -5; -6, -11 thru -17, -24); 67336(samples -2, -4, -7, -8, -9, -10); 67370 (samples -18 thru -23)	Tuning (pass/fail): pass	TICs Required?	(yes/no): no

		Calib	ration										
Analyte (outliers)	Int.	RF/ Slope	RSD/ r ²	(ICV)/ CCV %D	MB ppm v/v	5X (10X) MB	LCS/ LCSD %R	Lab. REP RPD	FB 1 -1	FB 2 -3	FB 3 -5	FB 4 -11	FB 5 -17
MR 67335 samples -1, -3, -5; -6,	-11 thru -17, -							-6					
Vinyl acetate	NA	✓	✓	+39	✓	NA	✓	✓	✓	✓	✓	✓	✓
Acetone	NA	✓	✓	✓	✓	NA	✓	✓	0.0026	✓	0.0012J	0.026	0.0031
Benzene	NA	✓	✓	✓	✓	NA	✓	✓	0.000019J	✓	✓	✓	✓
2-Butanone	NA	✓	✓	✓	✓	NA	✓	✓	0.0004J	✓	✓	0.0025	0.0003J
2-Hexanone	NA	✓	✓	✓	✓	NA	✓	✓	√	✓	✓	0.00025	✓
4-Methyl-2-pentanone	NA	✓	✓	✓	✓	NA	✓	✓	√	✓	✓	0.00011J	✓
Ethylbenzene	NA	✓	✓	✓	✓	NA	✓	✓	0.000016J	✓	✓	✓	✓
Methylene chloride	NA	✓	✓	✓	✓	NA	✓	✓	0.00086	0.0004J	0.0002J	0.00043	0.00046
Toluene	NA	✓	✓	✓	✓	NA	✓	✓	0.00038	0.000024J	0.000062J	0.000045J	0.000027J
Trichloroethene	NA	✓	✓	✓	✓	NA	✓	✓	0.000017J	√	✓	√	✓
Trichlorofluoromethane	NA	✓	✓	✓	✓	NA	✓	✓	0.000026J	✓	✓	✓	✓
m,p-Xylene	NA	✓	✓	✓	✓	NA	✓	✓	0.000057J	√	✓	√	✓
o-Xylene	NA	✓	✓	✓	✓	NA	✓	✓	0.000025J	✓	✓	✓	√
MG 67336 samples -2, -4, -7, -8,	-9, -10							-2					
Bromomethane	NA	✓	✓	+65	✓	NA	165/163	✓					
Chloroethane	NA	✓	✓	+50	✓	NA	150/148	✓					
Chloromethane	NA	✓	✓	+44	✓	NA	144/155	✓					
1,2-Dichloro-1,1,2,2- tetrafluoroethane	NA	✓	✓	+50	✓	NA	150/159	✓					
Vinyl chloride	NA	✓	✓	+53	✓	NA	153/157	✓					
Bromoform	+0.000076	✓	✓	✓	✓	NA	✓	✓					
MG 67370 (samples -18 thru -23))							-23					
Bromoform	+0.000076	✓	✓	✓	✓	NA	✓	✓					
Benzyl chloride	✓	✓	✓	✓	✓	NA	√ /131	✓					
1,2-Dichlorobenzene	NA	✓	✓	✓	✓	NA	√ /132	✓					
1,2,4-Trimethylbenzene	NA	✓	✓	✓	✓	NA	√ /133	✓					
Hexachlorobutadiene	NA	✓	✓	+40	✓	NA	√ /145	✓					
Bromomethane	NA	✓	✓	+89	✓	NA	189/183	✓					
Chloroethane	NA	✓	✓	+54	✓	NA	153/151	✓					

Chloromethane		NA	✓	✓	+59	✓	NA	159/154	✓			
1,2-Dichloro-1,1,2,2 tetrafluoroethane	2-	NA	✓	✓	+86	✓	NA	186/173	✓			
Vinyl chloride		NA	✓	✓	+61	✓	NA	161/156	✓			
					S	urrogate	Recovery	Outliers				
Sample ID	BFB %R											
None												
						IS	Outliers					
	CBM	[DFBZ	Z	(Chl-d5					
Sample ID	Area	RT	Are	a	RT	Area	RT					
None												

<u>Comments</u>: HTs OK. 24-hour tune check. ICAL/ICV/CCV 30%. LCS limits - lab limits. RPD 25% MB detects compared to on-column results. FB detects compared to final results.

67335: MB, LCS/LCSD, -6 DUP, samples -1, -3, -5; -6, -11 thru -17, -24. ICAL MR 11/07-08/2022. All linear

67336: MB, LCS/LCSD, -2 DUP, samples -2, -4, -7, -8, -9, -10. ICAL MG 11/09/2022 Linear: Bromoform; 1,3,5-trimethylbenzene < mdl. QuadF: Benzyl chloride

67370: MB, LCS/LCSD, -23 DUP, samples -18 thru -23 (FDs -19/-20 and -22/-23). ICAL MG 11/09/2022

Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by Eurofins Knoxville.

Page 1812 of 1825

11/21/2022 8:38 AM

					SMO Us	se				~	_			ARCO	page 1 of 1 C 623813
Project M	lanag	: MWL LTMMP ger: Timmie Jacksor 22.10.11.08	1	SNL S Lab Co Lab Do	Samples Shipped Shipper #: 39 Contact: Jamie McKi Destination: EK Act No.:1636780	5C 9C8 inney/ 865-291 X		SMO	Authorizat Contact Ph dy Palencia		132	I	Waste Chara RMA: No 1º Celsius: Y	acterization: No	
TA: Bldg	;: Ro	om:			Chain: Yes ation Req'd: Yes	s		Turna EDD:	around Tim : Yes	e: 30 days		S	SDG #:		
	tion)etail	Depth (ft)	Collected	Sample Matrix		ntainer Volume	Preserv- ative	Collection Method	Sample Type		Parameter & N	Tethod Requested	Lab Sample Id
118906 🗸	001	MWL-FB 1		0	10/28/22 11:37	UPN	SUMN	6 L	None	G	FB	VOC (TO-15)		Sample
118907 🗸	001	MWL-SV01-42.5		42.5	10/28/22 12:03	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
												Rac	e ambie	nt	
												noc	wated 1	Seal	
	-											I	cxes Po		
	 											Free	X# 40411	3917 1353	
Sample Team Members	Rob Zac	me Siliam Gibson bert Lynch chary Tenorio nmie Jackson	Signati C	ire	Jelen Jelen	<u></u>	Command S.	nents: El ample N	levation and	d Ambient paed forms.	pressure	provi		ched forms. Car	nister No.
Relinquish					Date 16 3[-27Ti			Relinqu	ished by		Org	<u>.</u>	Date	Time	
Received b		Medde Cour	Org.	X/8 D	Date 10/31/23 Ti	ime Os	50	Receive	d by		Org		Date	Time	
		y Classolo Oliver	Org.		Date 10/3/22 Ti		15	Relinqui			Org		Date	Time	
Received b	y		Org.	D	Date Ti	ime		Receive	d by	3	⊃ Orį	3.F T4	enzDate 11.0	S.22 Time Co	730

140-29549 Chain of Custody

Page 1813 of 1825

11/21/2022 8:38 AM

				SMO U	se						ARCO	page 1 of 1 C 623814
Project M	anag	MWL LTMMP er: Timmie Jackson 2.10.11.08	Lab C Lab D	Samples Shippe Shipper #: 3 Contact: Jamie McK Destination: EK2 act No.:1636780	57968 inney/ 865-291	3/202 -3006	SMO	Authoriza Contact Pl y Palencia	tion:	132	Waste Characterization: No RMA: No 4° Celsius: Yes	
TA: Bldg				Chain: No ation Req'd: Ye s	s		Turna EDD:	round Tim	ne: 30 days		SDG #:	
Sample No	tion	•	Depth (ft)	Collected	Sample Matrix	Type Con	<u>l</u> tainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab
118908 🗸	1	MWL-FB 2	0	10/28/22 11:41	UPN	SUMN	S L	None	G	FB	VOC (TO-15)	Sample Id
118909 🗸	001	MWL-SV02-41.5	41.5	10/28/22 11:55	SG	SUMN	ß L	None	G	SA	VOC (TO-15)	
			-									
<u> </u>												An arith
Sample Team Members	Rob Zac	ne Signath liam Gibson ert Lynch hary Tenorio mie Jackson	are	i 4 des		Comm and Sa	ents: Ele mple Ne	evation and o. on attack	d Ambient pred forms.	oressure	provided on attached forms. Ca	nister No.
Relinquish			886 D	ate 10/31/22Ti	me 8:5	s F	Relinqui	shed by		Org	Date Time	
Received b	1	Char Org.	16/8 D	ate 10/3//22 Ti	me 0850	7 F	Received			Org	1 1110	
Relinquishe		Chrose Chan Org.	X18 D	ate 10/3/22 Ti	me ///		Relinquis	shed by		Org		
Received b	<u>y</u>	Org.	D	ate Ti	me		Received		0		Date 11.98.27 Time 06	124

Page 1814 of 1825

11/21/2022 8:38 AM

Project No	omo:	MWL LTMMP		SMO Us	TO CONTRACTOR AND ADDRESS OF THE PARTY OF TH	AND AND				1			ARCOC	623815
Project M	anag	ger: Timmie Jackson	ISNL S	amples Shippe hipper #: 35 ontact: Jamie McKi	2908	31/23	SMO	Authorizat Contact Ph	none:	0		Waste Characte RMA: No		
			Lab D	estination: EKX	\	-3006	wend	iy Palencia	/505.844.31	.32	ľ	4º Celsius: Yes		
TA: Bldg	: Ro	oom:		hain: No tion Req'd: Yes	6		Turna EDD:	round Tim	e: 30 days		1	SDG #:		
	Frac- tion	•	Depth (ft)	Date/Time Collected	Sample Matrix		itainer Volume	Preserv- ative	Collection Method	Sample Type		Parameter & Meth	od Requested	Lab
	r	MWL-FB 3	0	10/28/22 08:32	UPN	SUMN	6 L	None	G	FB	VOC (TO-15)		Sample 1
	001	MWL-SV03-50	50	10/28/22 08:40	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
	-	MWL-SV03-100	100	10/28/22 08:45	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
118913 🗸	001	MWL-SV03-200	200	10/28/22 08:50	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
118914 🗸	001	MWL-SV03-300	300	10/28/22 08:56	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
118915 🗸	001	MWL-SV03-400	400	10/28/22 09:19	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
- 11														
							· · · · · · · · · · · · · · · · · · ·					·		
C 1														
Sample Team Members	Rob Zac	ne Signat liam Gibson pert Lynch hary Tenorio mie Jackson	erre	Jalia -	<u> </u>	Command Sa	nents: El ample N	evation and o. on attach	d Ambient pred forms.	oressure	provi	ded on attache	d forms. Cani	ster No.
Relinquish				ate 16/31/22Ti			Relinqui			Org		Date	Time	
elinguishe		Charles Clay Org.	06/8D	ate 10/3/64Ti	me Os		Receive			Org		Date	Time	
жинины	ou by	Country Clay Org.	(121)	ate 19/3/22 Ti	me ///	5	Relinqui	shed by		Org		Date	Time	

Page 1815 of 1825

11/21/2022 8:38 AM

Project M P/T No: 1	anag 9512	MWL LTMMP er: Timmie Jackson 2.10.11.08	SNL S Lab C Lab D	SMO Use Samples Shippe Shipper #: 35 ontact: Jamie McKiestination: EKX act No.:1636780	d: // C9G8 inney/ 865-291	1-3006	SMO	Authorizat Contact Pl dy Palencia	tion: none: /505.844.31	32	Waste Characteriz RMA: No 4° Celsius: Yes	ARCOC Zation: No	623816
TA: Bldg		om:		hain: No tion Req'd: Yes	5		Turna EDD	around Tim : Yes	e: 30 days		SDG #:		
Sample No	tion	Sample Location Detail	Depth (ft)	Date/Time Collected	Sample Matrix	Cor Type	 Itainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method	Requested	Lab
/		MWL-FB 4	0	10/28/22 09:50	UPN	SUMN	6 L	None	G	FB	VOC (TO-15)		Sample I
		MWL-SV04-50	50	10/28/22 10:08	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
-		MWL-SV04-100	100	10/28/22 10:15	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
118919 🗸	001	MWL-SV04-200	200	10/28/22 10:25	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
118920 🏑	001	MWL-SV04-300	300	10/28/22 10:32	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
118921 🗸	001	MWL-SV04-400	400	10/28/22 10:37	SG	SUMN	6 L	None	G	SA	VOC (TO-15)		
Sample Team Members	Zacl Rob	5151199	Are What have the second	in fill	1	Command Sa	nents: El umple N	evation and o. on attach	Ambient pred form.	oressure	provided on attached for	orms. Canist	ter No.
Relinquishe Received by		5.6.		ate /6/3//2/Ti			Relinqui	ished by		Org		Time	
Relinquishe				ate /6/3/22 Ti		_		shed by		Org Org		Time	
eceived by	v	Org.			me		Receive				Date U. UR. 27	Time	

Page 1816 of 1825

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

page 1 of 1 **SMO** Use ARCOC 623817 Project Name: MWL LTMMP Date Samples Shipped: SMO Authorization: Waste Characterization: No. Project Manager: Timmie Jackson SNL Shipper #: 357,908 SMO Contact Phone: RMA: No P/T No: 195122.10.11.08 Lab Contact: Jamie McKinney/ 865-291-3006 Wendy Palencia/505.844.3132 4º Celsius: Yes Lab Destination: EKX Contract No.:1636780 TA: Bldg: Room: Last Chain: No. Turnaround Time: 30 days SDG #: Validation Req'd: Yes EDD: Yes Sample No Frac-Sample Location Detail Depth Date/Time Sample Container Preserv-Collection Sample Parameter & Method Requested Lab tion Collected Type | Volume Matrix ative Method Type Sample Id 118922 ~ 001 MWL-FB 5 10/28/22 10:53 UPN ISUMN6 L None G VOC (TO-15) FB 118923 001 MWL-SV05-50 10/28/22 11:00 50 SG SUMN6 L None G SA VOC (TO-15) 118924 001 MWL-SV05-100 100 10/28/22 11:05 SG SUMN6 L G None SA VOC (TO-15) 118925 |001 |MWL-SV05-100 10/28/22 11:05 100 SG SUMN 6 L G None lου VOC (TO-15) 118926 🗸 MWL-SV05-200 10/28/22 11:11 200 SG SUMN6 L G None SA VOC (TO-15) 118927 🗸 001 MWL-SV05-300 10/28/22 11:18 300 SG SUMN 6 L None G SA VOC (TO-15) 118928 🗸 MWL-SV05-300 10/28/22 11:18 300 SUMN6 L None G DU VOC (TO-15) 118929 001 MWL-SV05-400 400 10/28/22 11:25 SUMN6 L None G SA VOC (TO-15) Sample Name Signature Comments: Elevation and Ambient pressure provided on attached forms. Canister No. Team William Gibson and Sample No, on attached forms. Members Robert Lynch Zachary Tenorio Timmie Jackson Relinguished by Org. 8888 Date 16/31/22 Time 8:50 Relinguished by Org. Date Time Received by Org. 18 Date 10/3/12 Time 0850 Received by Org. Date Time Relinquished by Org. 06/8 Date 10/3/22 Time ///5 Relinguished by Org. Date Time Received by Org. Date Time Received by Orge TAKW Date 11.08.72 Time 09 30

CONTRACT VERIFICATION REVIEW FORMS

Mixed Waste Landfill Soil-Vapor Monitoring

October 2022

Note: The forms in this section include AR/COC numbers for environmental and quality control samples; the AR/COC forms are provided in the Data Validation Reports in this annex.

AR/COC Number	Sample Type
623813	Environmental & Quality Control
623814	Environmental & Quality Control
623815	Environmental & Quality Control
623816	Environmental & Quality Control
623817	Environmental & Quality Control

SMO-2022-CVR (4-2022) SMO-05-03

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL-LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623813, 623814, 623815, 623816 & 623817

Analytical Lab EKX

SDG No. 140-29549-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	N/A		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

SMO-2022-CVR (4-2022)

Line	ltem	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Χ		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		Х	Bromomethane, chloroethane, chloromethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane and vinyl chloride failed recover limits for LCS/LCD (batch140-67336). Benzyl chloride, bromomethane, chloroethane, chloromethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, 1,2-dichlorobenzene, 1,2,4-trimethylbenzene, vinyl chloride and hexachlorobutadiene failed recover limits for LCS/LCD (batch140-67370).
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
	c) Matrix spike recovery data reported and met	N/A		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		Sample duplicates reported and met for each batch

SMO-2022-CVR (4-2022)

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Several analytes detected in FBs
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		Several analytes recovered above the upper control limit in the CCV (batch 67336 and 67370)
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

SMO-2022-CVR (4-2022)

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	N/A		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	N/A		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? € Yes € No

Reviewed by: Wendy Palencia Date: 11-28-2022 12:40:00

Closed by: Wendy Palencia Date: 11-28-2022 12:40:00

Certificates of Analysis

Mixed Waste Landfill
October 2022 Soil-Vapor Samples

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118906-001/MWL-FB1

Lab Sample ID: 140-29549-1 Matrix: Air

Date Collected: 10/28/22 11:37 Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		Prepared	Analyzed	Dil Fa
Acetone	0.0026		0.0022	0.00063	ppm v/v		11/14/22 18:19	1.7
Benzene	0.000019	J	0.000089	0.000014	ppm v/v		11/14/22 18:19	1.7
Benzyl chloride	ND		0.00018	0.000042	ppm v/v		11/14/22 18:19	1.7
Bromodichloromethane	ND		0.000089	0.000020	ppm v/v		11/14/22 18:19	1.7
Bromoform	ND		0.000089	0.000030	ppm v/v		11/14/22 18:19	1.7
Bromomethane	ND		0.000089	0.000024	ppm v/v		11/14/22 18:19	1.7
2-Butanone (MEK)	0.00040	J	0.00044	0.000081	ppm v/v		11/14/22 18:19	1.7
Carbon disulfide	ND		0.00022	0.000039	ppm v/v		11/14/22 18:19	1.7
Carbon tetrachloride	ND		0.000089	0.000014	ppm v/v		11/14/22 18:19	1.7
Chlorobenzene	ND		0.000089	0.000024	ppm v/v		11/14/22 18:19	1.7
Chloroethane	ND		0.000089	0.000035	ppm v/v		11/14/22 18:19	1.7
Chloroform	ND		0.000089	0.000015	ppm v/v		11/14/22 18:19	1.7
Chloromethane	ND		0.00022	0.000073	ppm v/v		11/14/22 18:19	1.7
Dibromochloromethane	ND		0.000089	0.000015	ppm v/v		11/14/22 18:19	1.7
1,2-Dibromoethane (EDB)	ND		0.000089	0.000013	ppm v/v		11/14/22 18:19	1.7
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.000089	0.000013	ppm v/v		11/14/22 18:19	1.7
1,2-Dichlorobenzene	ND		0.000089	0.000034	ppm v/v		11/14/22 18:19	1.7
1,3-Dichlorobenzene	ND		0.000089	0.000018	ppm v/v		11/14/22 18:19	1.7
1,4-Dichlorobenzene	ND		0.000089	0.000018	ppm v/v		11/14/22 18:19	1.7
Dichlorodifluoromethane	ND		0.000089	0.000015	ppm v/v		11/14/22 18:19	1.7
1,1-Dichloroethane	ND		0.000089	0.000012	ppm v/v		11/14/22 18:19	1.7
1,2-Dichloroethane	ND		0.000089	0.000011	ppm v/v		11/14/22 18:19	1.7
1,1-Dichloroethene	ND		0.000089	0.000014	ppm v/v		11/14/22 18:19	1.7
cis-1,2-Dichloroethene	ND		0.000089	0.000011	ppm v/v		11/14/22 18:19	1.7
trans-1,2-Dichloroethene	ND		0.000089	0.000014	ppm v/v		11/14/22 18:19	1.7
1,2-Dichloropropane	ND		0.000089	0.000011	ppm v/v		11/14/22 18:19	1.7
cis-1,3-Dichloropropene	ND		0.000089	0.000021	ppm v/v		11/14/22 18:19	1.7
trans-1,3-Dichloropropene	ND		0.000089	0.000022	ppm v/v		11/14/22 18:19	1.7
Ethylbenzene	0.000016	J	0.000089	0.000014	ppm v/v		11/14/22 18:19	1.7
4-Ethyltoluene	ND		0.00018	0.000023	ppm v/v		11/14/22 18:19	1.7
Hexachlorobutadiene	ND		0.00044	0.000035	ppm v/v		11/14/22 18:19	1.7
2-Hexanone	ND		0.00022	0.000060	ppm v/v		11/14/22 18:19	1.7
4-Methyl-2-pentanone (MIBK)	ND		0.00022	0.000060	ppm v/v		11/14/22 18:19	1.7
Methylene Chloride	0.00086		0.00044	0.00015	ppm v/v		11/14/22 18:19	1.7
Styrene	ND		0.000089	0.000027	ppm v/v		11/14/22 18:19	1.7
1,1,2,2-Tetrachloroethane	ND		0.000089	0.000015	ppm v/v		11/14/22 18:19	1.7
Tetrachloroethene	ND		0.000089	0.000013	ppm v/v		11/14/22 18:19	1.7
Toluene	0.00038		0.00013	0.000025	ppm v/v		11/14/22 18:19	1.7
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000089	0.000011	ppm v/v		11/14/22 18:19	1.7
1,2,4-Trichlorobenzene	ND		0.00044	0.000039	ppm v/v		11/14/22 18:19	1.7
1,1,1-Trichloroethane	ND		0.000089	0.000032	ppm v/v		11/14/22 18:19	1.7
1,1,2-Trichloroethane	ND		0.000089	0.000017	ppm v/v		11/14/22 18:19	1.7
Trichloroethene	0.000017	J	0.000044	0.000014	ppm v/v		11/14/22 18:19	1.7
Trichlorofluoromethane	0.000026	J	0.000089	0.000012	ppm v/v		11/14/22 18:19	1.7
1,2,4-Trimethylbenzene	ND		0.000089	0.000022	ppm v/v		11/14/22 18:19	1.7
1,3,5-Trimethylbenzene	ND		0.00018	0.000072			11/14/22 18:19	1.7
Vinyl acetate	ND		0.00044	0.000031			11/14/22 18:19	1.77
Vinyl chloride	ND		0.000044	0.000029			11/14/22 18:19	1.7

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118906-001/MWL-FB1

Lab Sample ID: 140-29549-1 Date Collected: 10/28/22 11:37 **Matrix: Air**

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	0.000057	J	0.000089	0.000032	ppm v/v			11/14/22 18:19	1.77
o-Xylene	0.000025	J	0.000089	0.000017	ppm v/v			11/14/22 18:19	1.77
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		60 - 140					11/14/22 18:19	1.77

Client Sample ID: 118907-001/MWL-SV01-42.5

Lab Sample ID: 140-29549-2

Matrix: Air

Date Collected: 10/28/22 12:03

Sample Container: Summa Canister 6L

Date Received: 11/08/22 09:30

Method: EPA TO 15 LL - Volatile Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.081	0.023	ppm v/v		-	11/12/22 16:52	1.62
Benzene	ND		0.0032	0.00053	ppm v/v			11/12/22 16:52	1.62
Benzyl chloride	ND		0.0065	0.0015	ppm v/v			11/12/22 16:52	1.62
Bromodichloromethane	ND		0.0032	0.00073	ppm v/v			11/12/22 16:52	1.62
Bromoform	ND		0.0032	0.0011	ppm v/v			11/12/22 16:52	1.62
Bromomethane	ND	*+	0.0032	0.00089	ppm v/v			11/12/22 16:52	1.62
2-Butanone (MEK)	ND		0.016	0.0030	ppm v/v			11/12/22 16:52	1.62
Carbon disulfide	ND		0.0081	0.0014	ppm v/v			11/12/22 16:52	1.62
Carbon tetrachloride	ND		0.0032	0.00053	ppm v/v			11/12/22 16:52	1.62
Chlorobenzene	ND		0.0032	0.00089	ppm v/v			11/12/22 16:52	1.62
Chloroethane	ND	*+	0.0032	0.0013	ppm v/v			11/12/22 16:52	1.62
Chloroform	0.0097		0.0032	0.00057	ppm v/v			11/12/22 16:52	1.62
Chloromethane	ND	*+	0.0081	0.0027	ppm v/v			11/12/22 16:52	1.62
Dibromochloromethane	ND		0.0032	0.00057	ppm v/v			11/12/22 16:52	1.62
1,2-Dibromoethane (EDB)	ND		0.0032	0.00049	ppm v/v			11/12/22 16:52	1.62
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0032	0.00049	ppm v/v			11/12/22 16:52	1.62
1,2-Dichlorobenzene	ND		0.0032	0.0013	ppm v/v			11/12/22 16:52	1.62
1,3-Dichlorobenzene	ND		0.0032	0.00065	ppm v/v			11/12/22 16:52	1.62
1,4-Dichlorobenzene	ND		0.0032	0.00065	ppm v/v			11/12/22 16:52	1.62
Dichlorodifluoromethane	0.057		0.0032	0.00057	ppm v/v			11/12/22 16:52	1.62
1,1-Dichloroethane	0.0013	J	0.0032	0.00045	ppm v/v			11/12/22 16:52	1.62
1,2-Dichloroethane	ND		0.0032	0.00041	ppm v/v			11/12/22 16:52	1.62
1,1-Dichloroethene	0.0028	J	0.0032	0.00053	ppm v/v			11/12/22 16:52	1.62
cis-1,2-Dichloroethene	0.00048	J	0.0032	0.00041	ppm v/v			11/12/22 16:52	1.62
trans-1,2-Dichloroethene	ND		0.0032	0.00053	ppm v/v			11/12/22 16:52	1.62
1,2-Dichloropropane	ND		0.0032	0.00041	ppm v/v			11/12/22 16:52	1.62
cis-1,3-Dichloropropene	ND		0.0032	0.00077	ppm v/v			11/12/22 16:52	1.62
trans-1,3-Dichloropropene	ND		0.0032	0.00081	ppm v/v			11/12/22 16:52	1.62
Ethylbenzene	ND		0.0032	0.00053	ppm v/v			11/12/22 16:52	1.62
4-Ethyltoluene	ND		0.0065	0.00085	ppm v/v			11/12/22 16:52	1.62
Hexachlorobutadiene	ND		0.016	0.0013	ppm v/v			11/12/22 16:52	1.62
2-Hexanone	ND		0.0081	0.0022	ppm v/v			11/12/22 16:52	1.62
4-Methyl-2-pentanone (MIBK)	ND		0.0081	0.0022	ppm v/v			11/12/22 16:52	1.62
Methylene Chloride	ND		0.016	0.0057	ppm v/v			11/12/22 16:52	1.62
Styrene	ND		0.0032	0.00097	ppm v/v			11/12/22 16:52	1.62
1,1,2,2-Tetrachloroethane	ND		0.0032	0.00057	ppm v/v			11/12/22 16:52	1.62

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118907-001/MWL-SV01-42.5 Lab Sample ID: 140-29549-2

Date Collected: 10/28/22 12:03 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.24		0.0032	0.00049	ppm v/v	:		11/12/22 16:52	1.62
Toluene	ND		0.0049	0.00093	ppm v/v			11/12/22 16:52	1.62
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.037		0.0032	0.00041	ppm v/v			11/12/22 16:52	1.62
1,2,4-Trichlorobenzene	ND		0.016	0.0014	ppm v/v			11/12/22 16:52	1.62
1,1,1-Trichloroethane	0.016		0.0032	0.0012	ppm v/v			11/12/22 16:52	1.62
1,1,2-Trichloroethane	ND		0.0032	0.00061	ppm v/v			11/12/22 16:52	1.62
Trichloroethene	0.042		0.0016	0.00053	ppm v/v			11/12/22 16:52	1.62
Trichlorofluoromethane	0.11		0.0032	0.00045	ppm v/v			11/12/22 16:52	1.62
1,2,4-Trimethylbenzene	ND		0.0032	0.00081	ppm v/v			11/12/22 16:52	1.62
1,3,5-Trimethylbenzene	ND		0.0065	0.0026	ppm v/v			11/12/22 16:52	1.62
Vinyl acetate	ND		0.016	0.0011	ppm v/v			11/12/22 16:52	1.62
Vinyl chloride	ND	*+	0.0016	0.0011	ppm v/v			11/12/22 16:52	1.62
m,p-Xylene	ND		0.0032	0.0012	ppm v/v			11/12/22 16:52	1.62
o-Xylene	ND		0.0032	0.00061	ppm v/v			11/12/22 16:52	1.62
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		60 - 140			-		11/12/22 16:52	1.62

Client Sample ID: 118908-001/MWL-FB2

Date Collected: 10/28/22 11:41 Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Lab Sample ID: 140-29549-3

Matrix: Air

Analyte	Result Qual	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	0.0020	0.00058	ppm v/v			11/14/22 19:10	1.63
Benzene	ND	0.000082	0.000013	ppm v/v			11/14/22 19:10	1.63
Benzyl chloride	ND	0.00016	0.000039	ppm v/v			11/14/22 19:10	1.63
Bromodichloromethane	ND	0.000082	0.000018	ppm v/v			11/14/22 19:10	1.63
Bromoform	ND	0.000082	0.000028	ppm v/v			11/14/22 19:10	1.63
Bromomethane	ND	0.000082	0.000022	ppm v/v			11/14/22 19:10	1.63
2-Butanone (MEK)	ND	0.00041	0.000074	ppm v/v			11/14/22 19:10	1.63
Carbon disulfide	ND	0.00020	0.000036	ppm v/v			11/14/22 19:10	1.63
Carbon tetrachloride	ND	0.000082	0.000013	ppm v/v			11/14/22 19:10	1.63
Chlorobenzene	ND	0.000082	0.000022	ppm v/v			11/14/22 19:10	1.63
Chloroethane	ND	0.000082	0.000033	ppm v/v			11/14/22 19:10	1.63
Chloroform	ND	0.000082	0.000014	ppm v/v			11/14/22 19:10	1.63
Chloromethane	ND	0.00020	0.000067	ppm v/v			11/14/22 19:10	1.63
Dibromochloromethane	ND	0.000082	0.000014	ppm v/v			11/14/22 19:10	1.63
1,2-Dibromoethane (EDB)	ND	0.000082	0.000012	ppm v/v			11/14/22 19:10	1.63
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.000082	0.000012	ppm v/v			11/14/22 19:10	1.63
1,2-Dichlorobenzene	ND	0.000082	0.000032	ppm v/v			11/14/22 19:10	1.63
1,3-Dichlorobenzene	ND	0.000082	0.000016	ppm v/v			11/14/22 19:10	1.63
1,4-Dichlorobenzene	ND	0.000082	0.000016	ppm v/v			11/14/22 19:10	1.63
Dichlorodifluoromethane	ND	0.000082	0.000014	ppm v/v			11/14/22 19:10	1.63
1,1-Dichloroethane	ND	0.000082	0.000011	ppm v/v			11/14/22 19:10	1.63
1,2-Dichloroethane	ND	0.000082	0.000010	ppm v/v			11/14/22 19:10	1.63
1,1-Dichloroethene	ND	0.000082	0.000013	ppm v/v			11/14/22 19:10	1.63

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118908-001/MWL-FB2 Lab Sample ID: 140-29549-3

Date Collected: 10/28/22 11:41 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		0.000082	0.000010	ppm v/v			11/14/22 19:10	1.63
trans-1,2-Dichloroethene	ND		0.000082	0.000013	ppm v/v			11/14/22 19:10	1.63
1,2-Dichloropropane	ND		0.000082	0.000010	ppm v/v			11/14/22 19:10	1.63
cis-1,3-Dichloropropene	ND		0.000082	0.000019	ppm v/v			11/14/22 19:10	1.63
trans-1,3-Dichloropropene	ND		0.000082	0.000020	ppm v/v			11/14/22 19:10	1.63
Ethylbenzene	ND		0.000082	0.000013	ppm v/v			11/14/22 19:10	1.63
4-Ethyltoluene	ND		0.00016	0.000021	ppm v/v			11/14/22 19:10	1.63
Hexachlorobutadiene	ND		0.00041	0.000033	ppm v/v			11/14/22 19:10	1.63
2-Hexanone	ND		0.00020	0.000055	ppm v/v			11/14/22 19:10	1.63
4-Methyl-2-pentanone (MIBK)	ND		0.00020	0.000055	ppm v/v			11/14/22 19:10	1.63
Methylene Chloride	0.00040	J	0.00041	0.00014	ppm v/v			11/14/22 19:10	1.63
Styrene	ND		0.000082	0.000024	ppm v/v			11/14/22 19:10	1.63
1,1,2,2-Tetrachloroethane	ND		0.000082	0.000014	ppm v/v			11/14/22 19:10	1.63
Tetrachloroethene	ND		0.000082	0.000012	ppm v/v			11/14/22 19:10	1.63
Toluene	0.000024	J	0.00012	0.000023	ppm v/v			11/14/22 19:10	1.63
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000082	0.000010	ppm v/v			11/14/22 19:10	1.63
1,2,4-Trichlorobenzene	ND		0.00041	0.000036	ppm v/v			11/14/22 19:10	1.63
1,1,1-Trichloroethane	ND		0.000082	0.000030	ppm v/v			11/14/22 19:10	1.63
1,1,2-Trichloroethane	ND		0.000082	0.000015	ppm v/v			11/14/22 19:10	1.63
Trichloroethene	ND		0.000041	0.000013	ppm v/v			11/14/22 19:10	1.63
Trichlorofluoromethane	ND		0.000082	0.000011	ppm v/v			11/14/22 19:10	1.63
1,2,4-Trimethylbenzene	ND		0.000082	0.000020	ppm v/v			11/14/22 19:10	1.63
1,3,5-Trimethylbenzene	ND		0.00016	0.000066	ppm v/v			11/14/22 19:10	1.63
Vinyl acetate	ND		0.00041	0.000029	ppm v/v			11/14/22 19:10	1.63
Vinyl chloride	ND		0.000041	0.000026	ppm v/v			11/14/22 19:10	1.63
m,p-Xylene	ND		0.000082	0.000030	ppm v/v			11/14/22 19:10	1.63
o-Xylene	ND		0.000082	0.000015	ppm v/v			11/14/22 19:10	1.63
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		60 - 140				-	11/14/22 19:10	1.63

Client Sample ID: 118909-001/MWL-SV02-41.5

Lab Sample ID: 140-29549-4 Date Collected: 10/28/22 11:55 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.083	0.024	ppm v/v			11/12/22 17:42	1.65
Benzene	ND		0.0033	0.00054	ppm v/v			11/12/22 17:42	1.65
Benzyl chloride	ND		0.0066	0.0016	ppm v/v			11/12/22 17:42	1.65
Bromodichloromethane	ND		0.0033	0.00074	ppm v/v			11/12/22 17:42	1.65
Bromoform	ND		0.0033	0.0011	ppm v/v			11/12/22 17:42	1.65
Bromomethane	ND	*+	0.0033	0.00091	ppm v/v			11/12/22 17:42	1.65
2-Butanone (MEK)	ND		0.017	0.0030	ppm v/v			11/12/22 17:42	1.65
Carbon disulfide	ND		0.0083	0.0014	ppm v/v			11/12/22 17:42	1.65
Carbon tetrachloride	ND		0.0033	0.00054	ppm v/v			11/12/22 17:42	1.65
Chlorobenzene	ND		0.0033	0.00091	ppm v/v			11/12/22 17:42	1.65
Chloroethane	ND	*+	0.0033	0.0013	ppm v/v			11/12/22 17:42	1.65

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118909-001/MWL-SV02-41.5 Lab Sample ID: 140-29549-4

Date Collected: 10/28/22 11:55 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fac
Chloroform	0.0018		0.0033	0.00058			11/12/22 17:42	1.65
Chloromethane	ND	*+	0.0083	0.0027	ppm v/v		11/12/22 17:42	1.65
Dibromochloromethane	ND		0.0033	0.00058	ppm v/v		11/12/22 17:42	1.65
1,2-Dibromoethane (EDB)	ND		0.0033	0.00050	ppm v/v		11/12/22 17:42	1.65
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0033	0.00050	ppm v/v		11/12/22 17:42	1.65
1,2-Dichlorobenzene	ND		0.0033		ppm v/v		11/12/22 17:42	1.65
1,3-Dichlorobenzene	ND		0.0033	0.00066	ppm v/v		11/12/22 17:42	1.65
1,4-Dichlorobenzene	ND		0.0033	0.00066	ppm v/v		11/12/22 17:42	1.65
Dichlorodifluoromethane	0.059		0.0033	0.00058	ppm v/v		11/12/22 17:42	1.65
1,1-Dichloroethane	0.0010	J	0.0033	0.00045	ppm v/v		11/12/22 17:42	1.65
1,2-Dichloroethane	ND		0.0033	0.00041	ppm v/v		11/12/22 17:42	1.65
1,1-Dichloroethene	0.0036		0.0033	0.00054	ppm v/v		11/12/22 17:42	1.65
cis-1,2-Dichloroethene	ND		0.0033	0.00041	ppm v/v		11/12/22 17:42	1.65
trans-1,2-Dichloroethene	ND		0.0033	0.00054	ppm v/v		11/12/22 17:42	1.65
1,2-Dichloropropane	ND		0.0033	0.00041	ppm v/v		11/12/22 17:42	1.65
cis-1,3-Dichloropropene	ND		0.0033	0.00078	ppm v/v		11/12/22 17:42	1.65
trans-1,3-Dichloropropene	ND		0.0033	0.00083	ppm v/v		11/12/22 17:42	1.65
Ethylbenzene	ND		0.0033	0.00054	ppm v/v		11/12/22 17:42	1.65
4-Ethyltoluene	ND		0.0066	0.00087			11/12/22 17:42	1.65
Hexachlorobutadiene	ND		0.017		ppm v/v		11/12/22 17:42	1.65
2-Hexanone	ND		0.0083		ppm v/v		11/12/22 17:42	1.65
4-Methyl-2-pentanone (MIBK)	ND		0.0083		ppm v/v		11/12/22 17:42	1.65
Methylene Chloride	ND		0.017		ppm v/v		11/12/22 17:42	1.65
Styrene	ND		0.0033	0.00099			11/12/22 17:42	1.65
1,1,2,2-Tetrachloroethane	ND		0.0033	0.00058			11/12/22 17:42	1.65
Tetrachloroethene	0.034		0.0033	0.00050			11/12/22 17:42	1.65
Toluene	ND		0.0050	0.00095			11/12/22 17:42	1.65
1,1,2-Trichloro-1,2,2-trifluoroetha	0.025		0.0033	0.00041			11/12/22 17:42	1.65
1,2,4-Trichlorobenzene	ND		0.017	0.0014	ppm v/v		11/12/22 17:42	1.65
1,1,1-Trichloroethane	0.030		0.0033		ppm v/v		11/12/22 17:42	1.65
1,1,2-Trichloroethane	ND		0.0033	0.00062			11/12/22 17:42	1.65
Trichloroethene	0.027		0.0017	0.00054			11/12/22 17:42	1.65
Trichlorofluoromethane	0.19		0.0033	0.00045			11/12/22 17:42	1.65
1,2,4-Trimethylbenzene	ND		0.0033	0.00083			11/12/22 17:42	1.65
1,3,5-Trimethylbenzene	ND		0.0066		ppm v/v		11/12/22 17:42	1.65
Vinyl acetate	ND		0.017		ppm v/v		11/12/22 17:42	1.65
Vinyl chloride	ND	*+	0.0017		ppm v/v		11/12/22 17:42	1.65
m,p-Xylene	ND		0.0033		ppm v/v		11/12/22 17:42	1.65
o-Xylene	ND		0.0033	0.00062			11/12/22 17:42	1.65
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118910-001/MWL-FB3 Lab Sample ID: 140-29549-5

Date Collected: 10/28/22 08:32 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		Prepared	Analyzed	Dil Fa
Acetone	0.0012	J	0.0022	0.00062	• •		11/14/22 20:02	1.7
Benzene	ND		0.000088	0.000014			11/14/22 20:02	1.7
Benzyl chloride	ND		0.00018	0.000042			11/14/22 20:02	1.7
Bromodichloromethane	ND		0.000088	0.000020			11/14/22 20:02	1.7
Bromoform	ND		0.000088	0.000030			11/14/22 20:02	1.7
Bromomethane	ND		0.000088	0.000024	ppm v/v		11/14/22 20:02	1.7
2-Butanone (MEK)	ND		0.00044	0.000080	ppm v/v		11/14/22 20:02	1.7
Carbon disulfide	ND		0.00022	0.000038	ppm v/v		11/14/22 20:02	1.7
Carbon tetrachloride	ND		0.000088	0.000014	ppm v/v		11/14/22 20:02	1.7
Chlorobenzene	ND		0.000088	0.000024	ppm v/v		11/14/22 20:02	1.7
Chloroethane	ND		0.000088	0.000035	ppm v/v		11/14/22 20:02	1.7
Chloroform	ND		0.000088	0.000015	ppm v/v		11/14/22 20:02	1.7
Chloromethane	ND		0.00022	0.000072	ppm v/v		11/14/22 20:02	1.7
Dibromochloromethane	ND		0.000088	0.000015	ppm v/v		11/14/22 20:02	1.7
1,2-Dibromoethane (EDB)	ND		0.000088	0.000013			11/14/22 20:02	1.7
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.000088	0.000013			11/14/22 20:02	1.7
1,2-Dichlorobenzene	ND		0.000088	0.000034			11/14/22 20:02	1.7
1,3-Dichlorobenzene	ND		0.000088	0.000018	ppm v/v		11/14/22 20:02	1.7
1,4-Dichlorobenzene	ND		0.000088	0.000018			11/14/22 20:02	1.7
Dichlorodifluoromethane	ND		0.000088	0.000015			11/14/22 20:02	1.7
1,1-Dichloroethane	ND		0.000088	0.000012	ppm v/v		11/14/22 20:02	1.7
1,2-Dichloroethane	ND		0.000088	0.000011			11/14/22 20:02	1.7
1,1-Dichloroethene	ND		0.000088	0.000014	ppm v/v		11/14/22 20:02	1.7
cis-1,2-Dichloroethene	ND		0.000088	0.000011			11/14/22 20:02	1.7
trans-1,2-Dichloroethene	ND		0.000088	0.000014	• •		11/14/22 20:02	1.7
1,2-Dichloropropane	ND		0.000088	0.000011			11/14/22 20:02	1.7
cis-1,3-Dichloropropene	ND		0.000088	0.000021	• •		11/14/22 20:02	1.7
trans-1,3-Dichloropropene	ND		0.000088	0.000022			11/14/22 20:02	1.7
Ethylbenzene	ND		0.000088	0.000014	• •		11/14/22 20:02	1.7
4-Ethyltoluene	ND		0.00018	0.000023	• •		11/14/22 20:02	1.7
Hexachlorobutadiene	ND		0.00044	0.000035	. 		11/14/22 20:02	1.7
2-Hexanone	ND		0.00022	0.000059	• •		11/14/22 20:02	1.7
4-Methyl-2-pentanone (MIBK)	ND		0.00022	0.000059	• •		11/14/22 20:02	1.7
Methylene Chloride	0.00020		0.00044		ppm v/v		11/14/22 20:02	1.7
Styrene	ND	•	0.000088	0.000026	• •		11/14/22 20:02	1.7
1,1,2,2-Tetrachloroethane	ND		0.000088	0.000015			11/14/22 20:02	1.7
Tetrachloroethene	ND		0.000088	0.000013			11/14/22 20:02	1.7
Toluene	0.000062		0.00013	0.000016			11/14/22 20:02	1.7
1,1,2-Trichloro-1,2,2-trifluoroethane	0.000002 ND	3	0.00013	0.000023	• •		11/14/22 20:02	1.7
1,2,4-Trichlorobenzene	ND		0.00044	0.000011			11/14/22 20:02	1.7
1,1,1-Trichloroethane	ND		0.000044	0.000032			11/14/22 20:02	1.7
1,1,2-Trichloroethane	ND		0.000088	0.000032	• •		11/14/22 20:02	1.7
Trichloroethene	ND		0.000088	0.000016			11/14/22 20:02	1.7
Trichlorofluoromethane	ND ND		0.000044	0.000014	• •		11/14/22 20:02	1.7
	ND ND		0.000088	0.000012			11/14/22 20:02	1.7
1,2,4-Trimethylbenzene			0.00008	0.000022				
1,3,5-Trimethylbenzene	ND				• •		11/14/22 20:02	1.7
Vinyl acetate Vinyl chloride	ND ND		0.00044 0.000044	0.000031 0.000028			11/14/22 20:02 11/14/22 20:02	1.7 1.7

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118910-001/MWL-FB3

Lab Sample ID: 140-29549-5 Date Collected: 10/28/22 08:32 **Matrix: Air**

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Method: EPA TO 15 LL - Volatile Organic	Compounds in Ambient Air, Low (Concentration (GC/MS) (Continued)
---	---------------------------------	-----------------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.000088	0.000032	ppm v/v			11/14/22 20:02	1.75
o-Xylene	ND		0.000088	0.000016	ppm v/v			11/14/22 20:02	1.75
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		60 - 140					11/14/22 20:02	1.75

Client Sample ID: 118911-001/MWL-SV03-50 Lab Sample ID: 140-29549-6

Date Collected: 10/28/22 08:40

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Matrix: Air

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	<u> </u>	0.034	0.0096	ppm v/v			11/14/22 22:28	1.68
Benzene	0.00023	J	0.0013	0.00022	ppm v/v			11/14/22 22:28	1.68
Benzyl chloride	ND		0.0027	0.00064	ppm v/v			11/14/22 22:28	1.68
Bromodichloromethane	ND		0.0013	0.00030	ppm v/v			11/14/22 22:28	1.68
Bromoform	ND		0.0013	0.00045	ppm v/v			11/14/22 22:28	1.68
Bromomethane	ND		0.0013	0.00037	ppm v/v			11/14/22 22:28	1.68
2-Butanone (MEK)	ND		0.0067	0.0012	ppm v/v			11/14/22 22:28	1.68
Carbon disulfide	ND		0.0034	0.00059	ppm v/v			11/14/22 22:28	1.68
Carbon tetrachloride	0.00022	J	0.0013	0.00022	ppm v/v			11/14/22 22:28	1.68
Chlorobenzene	ND		0.0013	0.00037	ppm v/v			11/14/22 22:28	1.68
Chloroethane	ND		0.0013	0.00054	ppm v/v			11/14/22 22:28	1.68
Chloroform	0.0015		0.0013	0.00024	ppm v/v			11/14/22 22:28	1.68
Chloromethane	ND		0.0034	0.0011	ppm v/v			11/14/22 22:28	1.68
Dibromochloromethane	ND		0.0013	0.00024	ppm v/v			11/14/22 22:28	1.68
1,2-Dibromoethane (EDB)	ND		0.0013	0.00020	ppm v/v			11/14/22 22:28	1.68
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0013	0.00020	ppm v/v			11/14/22 22:28	1.68
1,2-Dichlorobenzene	ND		0.0013	0.00052	ppm v/v			11/14/22 22:28	1.68
1,3-Dichlorobenzene	ND		0.0013	0.00027	ppm v/v			11/14/22 22:28	1.68
1,4-Dichlorobenzene	ND		0.0013	0.00027	ppm v/v			11/14/22 22:28	1.68
Dichlorodifluoromethane	0.021		0.0013	0.00024	ppm v/v			11/14/22 22:28	1.68
1,1-Dichloroethane	0.0024		0.0013	0.00018	ppm v/v			11/14/22 22:28	1.68
1,2-Dichloroethane	ND		0.0013	0.00017	ppm v/v			11/14/22 22:28	1.68
1,1-Dichloroethene	0.0067		0.0013	0.00022	ppm v/v			11/14/22 22:28	1.68
cis-1,2-Dichloroethene	0.0012	J	0.0013	0.00017	ppm v/v			11/14/22 22:28	1.68
trans-1,2-Dichloroethene	ND		0.0013	0.00022	ppm v/v			11/14/22 22:28	1.68
1,2-Dichloropropane	ND		0.0013	0.00017	ppm v/v			11/14/22 22:28	1.68
cis-1,3-Dichloropropene	ND		0.0013	0.00032	ppm v/v			11/14/22 22:28	1.68
trans-1,3-Dichloropropene	ND		0.0013	0.00034	ppm v/v			11/14/22 22:28	1.68
Ethylbenzene	ND		0.0013	0.00022	ppm v/v			11/14/22 22:28	1.68
4-Ethyltoluene	ND		0.0027	0.00035	ppm v/v			11/14/22 22:28	1.68
Hexachlorobutadiene	ND		0.0067	0.00054	ppm v/v			11/14/22 22:28	1.68
2-Hexanone	ND		0.0034	0.00091				11/14/22 22:28	1.68
4-Methyl-2-pentanone (MIBK)	ND		0.0034	0.00091				11/14/22 22:28	1.68
Methylene Chloride	ND		0.0067		ppm v/v			11/14/22 22:28	1.68
Styrene	ND		0.0013	0.00040				11/14/22 22:28	1.68
1,1,2,2-Tetrachloroethane	ND		0.0013	0.00024				11/14/22 22:28	1.68

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118911-001/MWL-SV03-50 Lab Sample ID: 140-29549-6

Date Collected: 10/28/22 08:40 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.12		0.0013	0.00020	ppm v/v			11/14/22 22:28	1.68
Toluene	ND		0.0020	0.00039	ppm v/v			11/14/22 22:28	1.68
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.044		0.0013	0.00017	ppm v/v			11/14/22 22:28	1.68
1,2,4-Trichlorobenzene	ND		0.0067	0.00059	ppm v/v			11/14/22 22:28	1.68
1,1,1-Trichloroethane	0.0016		0.0013	0.00049	ppm v/v			11/14/22 22:28	1.68
1,1,2-Trichloroethane	ND		0.0013	0.00025	ppm v/v			11/14/22 22:28	1.68
Trichloroethene	0.091		0.00067	0.00022	ppm v/v			11/14/22 22:28	1.68
Trichlorofluoromethane	0.021		0.0013	0.00018	ppm v/v			11/14/22 22:28	1.68
1,2,4-Trimethylbenzene	ND		0.0013	0.00034	ppm v/v			11/14/22 22:28	1.68
1,3,5-Trimethylbenzene	ND		0.0027	0.0011	ppm v/v			11/14/22 22:28	1.68
Vinyl acetate	ND		0.0067	0.00047	ppm v/v			11/14/22 22:28	1.68
Vinyl chloride	ND		0.00067	0.00044	ppm v/v			11/14/22 22:28	1.68
m,p-Xylene	ND		0.0013	0.00049	ppm v/v			11/14/22 22:28	1.68
o-Xylene	ND		0.0013	0.00025	ppm v/v			11/14/22 22:28	1.68
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140			-		11/14/22 22:28	1.68

Client Sample ID: 118912-001/MWL-SV03-100

Date Collected: 10/28/22 08:45

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.066	0.019	ppm v/v			11/12/22 19:21	1.65
Benzene	ND		0.0026	0.00043	ppm v/v			11/12/22 19:21	1.65
Benzyl chloride	ND		0.0053	0.0013	ppm v/v			11/12/22 19:21	1.65
Bromodichloromethane	ND		0.0026	0.00059	ppm v/v			11/12/22 19:21	1.65
Bromoform	ND		0.0026	0.00089	ppm v/v			11/12/22 19:21	1.65
Bromomethane	ND	*+	0.0026	0.00073	ppm v/v			11/12/22 19:21	1.65
2-Butanone (MEK)	ND		0.013	0.0024	ppm v/v			11/12/22 19:21	1.65
Carbon disulfide	ND		0.0066	0.0012	ppm v/v			11/12/22 19:21	1.65
Carbon tetrachloride	ND		0.0026	0.00043	ppm v/v			11/12/22 19:21	1.65
Chlorobenzene	ND		0.0026	0.00073	ppm v/v			11/12/22 19:21	1.65
Chloroethane	ND	*+	0.0026	0.0011	ppm v/v			11/12/22 19:21	1.65
Chloroform	0.0019	J	0.0026	0.00046	ppm v/v			11/12/22 19:21	1.65
Chloromethane	ND	*+	0.0066	0.0022	ppm v/v			11/12/22 19:21	1.65
Dibromochloromethane	ND		0.0026	0.00046	ppm v/v			11/12/22 19:21	1.65
1,2-Dibromoethane (EDB)	ND		0.0026	0.00040	ppm v/v			11/12/22 19:21	1.65
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0026	0.00040	ppm v/v			11/12/22 19:21	1.65
1,2-Dichlorobenzene	ND		0.0026	0.0010	ppm v/v			11/12/22 19:21	1.65
1,3-Dichlorobenzene	ND		0.0026	0.00053	ppm v/v			11/12/22 19:21	1.65
1,4-Dichlorobenzene	ND		0.0026	0.00053	ppm v/v			11/12/22 19:21	1.65
Dichlorodifluoromethane	0.029		0.0026	0.00046	ppm v/v			11/12/22 19:21	1.65
1,1-Dichloroethane	0.0034		0.0026	0.00036	ppm v/v			11/12/22 19:21	1.65
1,2-Dichloroethane	ND		0.0026	0.00033	ppm v/v			11/12/22 19:21	1.65
1,1-Dichloroethene	0.0087		0.0026	0.00043	ppm v/v			11/12/22 19:21	1.65

Eurofins Knoxville

Lab Sample ID: 140-29549-7

Matrix: Air

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118912-001/MWL-SV03-100 Lab Sample ID: 140-29549-7

Date Collected: 10/28/22 08:45 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0014	J	0.0026	0.00033	ppm v/v	_	11/12/22 19:21	1.65
trans-1,2-Dichloroethene	ND		0.0026	0.00043	ppm v/v		11/12/22 19:21	1.65
1,2-Dichloropropane	ND		0.0026	0.00033	ppm v/v		11/12/22 19:21	1.65
cis-1,3-Dichloropropene	ND		0.0026	0.00063	ppm v/v		11/12/22 19:21	1.65
trans-1,3-Dichloropropene	ND		0.0026	0.00066	ppm v/v		11/12/22 19:21	1.65
Ethylbenzene	ND		0.0026	0.00043	ppm v/v		11/12/22 19:21	1.65
4-Ethyltoluene	ND		0.0053	0.00069	ppm v/v		11/12/22 19:21	1.65
Hexachlorobutadiene	ND		0.013	0.0011	ppm v/v		11/12/22 19:21	1.65
2-Hexanone	ND		0.0066	0.0018	ppm v/v		11/12/22 19:21	1.65
4-Methyl-2-pentanone (MIBK)	ND		0.0066	0.0018	ppm v/v		11/12/22 19:21	1.65
Methylene Chloride	ND		0.013	0.0046	ppm v/v		11/12/22 19:21	1.65
Styrene	ND		0.0026	0.00079	ppm v/v		11/12/22 19:21	1.65
1,1,2,2-Tetrachloroethane	ND		0.0026	0.00046	ppm v/v		11/12/22 19:21	1.65
Tetrachloroethene	0.12		0.0026	0.00040	ppm v/v		11/12/22 19:21	1.65
Toluene	ND		0.0040	0.00076	ppm v/v		11/12/22 19:21	1.65
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.068		0.0026	0.00033	ppm v/v		11/12/22 19:21	1.65
1,2,4-Trichlorobenzene	ND		0.013	0.0012	ppm v/v		11/12/22 19:21	1.65
1,1,1-Trichloroethane	0.0019	J	0.0026	0.00096	ppm v/v		11/12/22 19:21	1.65
1,1,2-Trichloroethane	ND		0.0026	0.00050	ppm v/v		11/12/22 19:21	1.65
Trichloroethene	0.11		0.0013	0.00043	ppm v/v		11/12/22 19:21	1.65
Trichlorofluoromethane	0.029		0.0026	0.00036	ppm v/v		11/12/22 19:21	1.65
1,2,4-Trimethylbenzene	ND		0.0026	0.00066	ppm v/v		11/12/22 19:21	1.65
1,3,5-Trimethylbenzene	ND		0.0053	0.0021	ppm v/v		11/12/22 19:21	1.65
Vinyl acetate	ND		0.013	0.00092	ppm v/v		11/12/22 19:21	1.65
Vinyl chloride	ND	*+	0.0013	0.00086	ppm v/v		11/12/22 19:21	1.65
m,p-Xylene	ND		0.0026	0.00096	ppm v/v		11/12/22 19:21	1.65
o-Xylene	ND		0.0026	0.00050	ppm v/v		11/12/22 19:21	1.65
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		60 - 140				11/12/22 19:21	1.65

Client Sample ID: 118913-001/MWL-SV03-200

Lab Sample ID: 140-29549-8 Date Collected: 10/28/22 08:50 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	· RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND ND	0.066	0.019	ppm v/v			11/12/22 20:11	1.65
Benzene	ND	0.0026	0.00043	ppm v/v			11/12/22 20:11	1.65
Benzyl chloride	ND	0.0053	0.0013	ppm v/v			11/12/22 20:11	1.65
Bromodichloromethane	ND	0.0026	0.00059	ppm v/v			11/12/22 20:11	1.65
Bromoform	ND	0.0026	0.00089	ppm v/v			11/12/22 20:11	1.65
Bromomethane	ND *+	0.0026	0.00073	ppm v/v			11/12/22 20:11	1.65
2-Butanone (MEK)	ND	0.013	0.0024	ppm v/v			11/12/22 20:11	1.65
Carbon disulfide	ND	0.0066	0.0012	ppm v/v			11/12/22 20:11	1.65
Carbon tetrachloride	ND	0.0026	0.00043	ppm v/v			11/12/22 20:11	1.65
Chlorobenzene	ND	0.0026	0.00073	ppm v/v			11/12/22 20:11	1.65

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118913-001/MWL-SV03-200

Lab Sample ID: 140-29549-8 Date Collected: 10/28/22 08:50 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	ND	*+	0.0026	0.0011	ppm v/v			11/12/22 20:11	1.65
Chloroform	0.0019	J	0.0026	0.00046	ppm v/v			11/12/22 20:11	1.65
Chloromethane	ND	*+	0.0066	0.0022	ppm v/v			11/12/22 20:11	1.65
Dibromochloromethane	ND		0.0026	0.00046	ppm v/v			11/12/22 20:11	1.65
1,2-Dibromoethane (EDB)	ND		0.0026	0.00040	ppm v/v			11/12/22 20:11	1.65
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0026	0.00040	ppm v/v			11/12/22 20:11	1.65
1,2-Dichlorobenzene	ND		0.0026	0.0010	ppm v/v			11/12/22 20:11	1.65
1,3-Dichlorobenzene	ND		0.0026	0.00053	ppm v/v			11/12/22 20:11	1.65
1,4-Dichlorobenzene	ND		0.0026	0.00053	ppm v/v			11/12/22 20:11	1.65
Dichlorodifluoromethane	0.035		0.0026	0.00046	ppm v/v			11/12/22 20:11	1.65
1,1-Dichloroethane	0.0042		0.0026	0.00036	ppm v/v			11/12/22 20:11	1.65
1,2-Dichloroethane	ND		0.0026	0.00033	ppm v/v			11/12/22 20:11	1.65
1,1-Dichloroethene	0.012		0.0026	0.00043	ppm v/v			11/12/22 20:11	1.65
cis-1,2-Dichloroethene	0.0020	J	0.0026	0.00033	ppm v/v			11/12/22 20:11	1.65
trans-1,2-Dichloroethene	ND		0.0026	0.00043	ppm v/v			11/12/22 20:11	1.65
1,2-Dichloropropane	ND		0.0026		ppm v/v			11/12/22 20:11	1.65
cis-1,3-Dichloropropene	ND		0.0026		ppm v/v			11/12/22 20:11	1.65
trans-1,3-Dichloropropene	ND		0.0026		ppm v/v			11/12/22 20:11	1.65
Ethylbenzene	ND		0.0026		ppm v/v			11/12/22 20:11	1.65
4-Ethyltoluene	ND		0.0053		ppm v/v			11/12/22 20:11	1.65
Hexachlorobutadiene	ND		0.013		ppm v/v			11/12/22 20:11	1.65
2-Hexanone	ND		0.0066		ppm v/v			11/12/22 20:11	1.65
4-Methyl-2-pentanone (MIBK)	ND		0.0066		ppm v/v			11/12/22 20:11	1.65
Methylene Chloride	ND		0.013		ppm v/v			11/12/22 20:11	1.65
Styrene	ND		0.0026		ppm v/v			11/12/22 20:11	1.65
1,1,2,2-Tetrachloroethane	ND		0.0026		ppm v/v			11/12/22 20:11	1.65
Tetrachloroethene	0.15		0.0026		ppm v/v			11/12/22 20:11	1.65
Toluene	ND		0.0040		ppm v/v			11/12/22 20:11	1.65
1,1,2-Trichloro-1,2,2-trifluoroetha	0.085		0.0026		ppm v/v			11/12/22 20:11	1.65
ne	3.000								
1,2,4-Trichlorobenzene	ND		0.013	0.0012	ppm v/v			11/12/22 20:11	1.65
1,1,1-Trichloroethane	0.0014	J	0.0026	0.00096	ppm v/v			11/12/22 20:11	1.65
1,1,2-Trichloroethane	ND		0.0026	0.00050	ppm v/v			11/12/22 20:11	1.65
Trichloroethene	0.14		0.0013	0.00043	ppm v/v			11/12/22 20:11	1.65
Trichlorofluoromethane	0.029		0.0026	0.00036	ppm v/v			11/12/22 20:11	1.65
1,2,4-Trimethylbenzene	ND		0.0026	0.00066	ppm v/v			11/12/22 20:11	1.65
1,3,5-Trimethylbenzene	ND		0.0053	0.0021	ppm v/v			11/12/22 20:11	1.65
Vinyl acetate	ND		0.013	0.00092	ppm v/v			11/12/22 20:11	1.65
Vinyl chloride	ND	*+	0.0013	0.00086	ppm v/v			11/12/22 20:11	1.65
m,p-Xylene	ND		0.0026		ppm v/v			11/12/22 20:11	1.65
o-Xylene	ND		0.0026		ppm v/v			11/12/22 20:11	1.65
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		60 - 140			_		11/12/22 20:11	1.65

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118914-001/MWL-SV03-300 Lab Sample ID: 140-29549-9

Date Collected: 10/28/22 08:56 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fa
Acetone	ND		0.062	0.018	ppm v/v		11/12/22 21:00	1.5
Benzene	ND		0.0025	0.00041	ppm v/v		11/12/22 21:00	1.5
Benzyl chloride	ND		0.0050	0.0012	ppm v/v		11/12/22 21:00	1.5
Bromodichloromethane	ND		0.0025	0.00056	ppm v/v		11/12/22 21:00	1.5
Bromoform	ND		0.0025	0.00084	ppm v/v		11/12/22 21:00	1.5
Bromomethane	ND	*+	0.0025	0.00069	ppm v/v		11/12/22 21:00	1.5
2-Butanone (MEK)	ND		0.012	0.0023	ppm v/v		11/12/22 21:00	1.5
Carbon disulfide	ND		0.0062	0.0011	ppm v/v		11/12/22 21:00	1.5
Carbon tetrachloride	ND		0.0025	0.00041	ppm v/v		11/12/22 21:00	1.5
Chlorobenzene	ND		0.0025	0.00069	ppm v/v		11/12/22 21:00	1.5
Chloroethane	ND	*+	0.0025	0.0010	ppm v/v		11/12/22 21:00	1.5
Chloroform	0.0011	J	0.0025	0.00044	ppm v/v		11/12/22 21:00	1.5
Chloromethane	ND	*+	0.0062	0.0021	ppm v/v		11/12/22 21:00	1.5
Dibromochloromethane	ND		0.0025	0.00044	ppm v/v		11/12/22 21:00	1.5
1,2-Dibromoethane (EDB)	ND		0.0025	0.00037	ppm v/v		11/12/22 21:00	1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0025	0.00037			11/12/22 21:00	1.5
1,2-Dichlorobenzene	ND		0.0025	0.00097			11/12/22 21:00	1.5
1,3-Dichlorobenzene	ND		0.0025	0.00050			11/12/22 21:00	1.5
1,4-Dichlorobenzene	ND		0.0025				11/12/22 21:00	1.5
Dichlorodifluoromethane	0.037		0.0025	0.00044			11/12/22 21:00	1.5
1.1-Dichloroethane	0.0018	J	0.0025				11/12/22 21:00	1.5
1,2-Dichloroethane	ND		0.0025	0.00031	ppm v/v		11/12/22 21:00	1.5
1,1-Dichloroethene	0.010		0.0025	0.00041	ppm v/v		11/12/22 21:00	1.5
cis-1,2-Dichloroethene	0.00075	J	0.0025	0.00031	ppm v/v		11/12/22 21:00	1.5
trans-1,2-Dichloroethene	ND	· -	0.0025	0.00041	ppm v/v		11/12/22 21:00	1.5
1,2-Dichloropropane	ND		0.0025	0.00031	ppm v/v		11/12/22 21:00	1.5
cis-1,3-Dichloropropene	ND		0.0025	0.00059	• •		11/12/22 21:00	1.5
trans-1,3-Dichloropropene	ND		0.0025	0.00062	. 		11/12/22 21:00	1.5
Ethylbenzene	ND		0.0025	0.00041			11/12/22 21:00	1.5
4-Ethyltoluene	ND		0.0050	0.00066			11/12/22 21:00	1.5
Hexachlorobutadiene	ND		0.012		ppm v/v		11/12/22 21:00	1.5
2-Hexanone	ND		0.0062		ppm v/v		11/12/22 21:00	1.5
4-Methyl-2-pentanone (MIBK)	ND		0.0062		ppm v/v		11/12/22 21:00	1.5
Methylene Chloride	ND		0.012		ppm v/v		11/12/22 21:00	1.5
Styrene	ND		0.0025	0.00075			11/12/22 21:00	1.5
1,1,2,2-Tetrachloroethane	ND		0.0025	0.00044	• •		11/12/22 21:00	1.5
Tetrachloroethene	0.21		0.0025	0.00037			11/12/22 21:00	1.5
Toluene	ND		0.0020	0.00072			11/12/22 21:00	1.5
1,1,2-Trichloro-1,2,2-trifluoroetha	0.093		0.0025	0.00072			11/12/22 21:00	1.5
1,2,4-Trichlorobenzene	ND		0.012	0.0011	ppm v/v		11/12/22 21:00	1.5
1,1,1-Trichloroethane	ND		0.0025	0.00090			11/12/22 21:00	1.5
1,1,2-Trichloroethane	ND		0.0025	0.00047			11/12/22 21:00	1.5
Trichloroethene	0.13		0.0012	0.00041			11/12/22 21:00	1.5
Trichlorofluoromethane	0.019		0.0012	0.00041			11/12/22 21:00	1.5
1,2,4-Trimethylbenzene	ND		0.0025	0.00062			11/12/22 21:00	1.5
1,3,5-Trimethylbenzene	ND		0.0023		ppm v/v		11/12/22 21:00	1.5
Vinyl acetate	ND		0.0030	0.0020			11/12/22 21:00	1.5
Vinyl chloride	ND	*.	0.012	0.00087			11/12/22 21:00	1.5

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118914-001/MWL-SV03-300

Lab Sample ID: 140-29549-9

Date Collected: 10/28/22 08:56 Date Received: 11/08/22 09:30

11/08/22 09:30

Sample Container: Summa Canister 6L

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.0025	0.00090	ppm v/v			11/12/22 21:00	1.56
o-Xylene	ND		0.0025	0.00047	ppm v/v			11/12/22 21:00	1.56
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		60 - 140					11/12/22 21:00	1.56

Client Sample ID: 118915-001/MWL-SV03-400

Lab Sample ID: 140-29549-10 Matrix: Air

Date Collected: 10/28/22 09:19 Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.064	0.018	ppm v/v			11/12/22 21:50	1.6
Benzene	ND		0.0026	0.00042	ppm v/v			11/12/22 21:50	1.6
Benzyl chloride	ND		0.0051	0.0012	ppm v/v			11/12/22 21:50	1.6
Bromodichloromethane	ND		0.0026	0.00058	ppm v/v			11/12/22 21:50	1.6
Bromoform	ND		0.0026	0.00086	ppm v/v			11/12/22 21:50	1.6
Bromomethane	ND	*+	0.0026	0.00070	ppm v/v			11/12/22 21:50	1.6
2-Butanone (MEK)	ND		0.013	0.0023	ppm v/v			11/12/22 21:50	1.6
Carbon disulfide	0.0057	J	0.0064	0.0011	ppm v/v			11/12/22 21:50	1.6
Carbon tetrachloride	ND		0.0026	0.00042	ppm v/v			11/12/22 21:50	1.6
Chlorobenzene	ND		0.0026	0.00070	ppm v/v			11/12/22 21:50	1.6
Chloroethane	ND	*+	0.0026	0.0010	ppm v/v			11/12/22 21:50	1.6
Chloroform	0.0016	J	0.0026	0.00045	ppm v/v			11/12/22 21:50	1.6
Chloromethane	ND	*+	0.0064	0.0021	ppm v/v			11/12/22 21:50	1.6
Dibromochloromethane	ND		0.0026	0.00045	ppm v/v			11/12/22 21:50	1.6
1,2-Dibromoethane (EDB)	ND		0.0026	0.00038	ppm v/v			11/12/22 21:50	1.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0026	0.00038	ppm v/v			11/12/22 21:50	1.6
1,2-Dichlorobenzene	ND		0.0026	0.00099	ppm v/v			11/12/22 21:50	1.6
1,3-Dichlorobenzene	ND		0.0026	0.00051	ppm v/v			11/12/22 21:50	1.6
1,4-Dichlorobenzene	ND		0.0026	0.00051	ppm v/v			11/12/22 21:50	1.6
Dichlorodifluoromethane	0.022		0.0026	0.00045	ppm v/v			11/12/22 21:50	1.6
1,1-Dichloroethane	0.0022	J	0.0026	0.00035	ppm v/v			11/12/22 21:50	1.6
1,2-Dichloroethane	ND		0.0026	0.00032	ppm v/v			11/12/22 21:50	1.6
1,1-Dichloroethene	0.0097		0.0026	0.00042	ppm v/v			11/12/22 21:50	1.6
cis-1,2-Dichloroethene	0.0014	J	0.0026	0.00032	ppm v/v			11/12/22 21:50	1.6
trans-1,2-Dichloroethene	ND		0.0026	0.00042	ppm v/v			11/12/22 21:50	1.6
1,2-Dichloropropane	ND		0.0026	0.00032	ppm v/v			11/12/22 21:50	1.6
cis-1,3-Dichloropropene	ND		0.0026	0.00061	ppm v/v			11/12/22 21:50	1.6
trans-1,3-Dichloropropene	ND		0.0026	0.00064	ppm v/v			11/12/22 21:50	1.6
Ethylbenzene	ND		0.0026	0.00042	ppm v/v			11/12/22 21:50	1.6
4-Ethyltoluene	ND		0.0051	0.00067	ppm v/v			11/12/22 21:50	1.6
Hexachlorobutadiene	ND		0.013	0.0010	ppm v/v			11/12/22 21:50	1.6
2-Hexanone	ND		0.0064	0.0017	ppm v/v			11/12/22 21:50	1.6
4-Methyl-2-pentanone (MIBK)	ND		0.0064	0.0017	ppm v/v			11/12/22 21:50	1.6
Methylene Chloride	ND		0.013	0.0045	ppm v/v			11/12/22 21:50	1.6
Styrene	ND		0.0026	0.00077	ppm v/v			11/12/22 21:50	1.6
1,1,2,2-Tetrachloroethane	ND		0.0026		ppm v/v			11/12/22 21:50	1.6

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 118915-001/MWL-SV03-400 Lab Sample ID: 140-29549-10

Date Collected: 10/28/22 09:19 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.30		0.0026	0.00038	ppm v/v			11/12/22 21:50	1.6
Toluene	ND		0.0038	0.00074	ppm v/v			11/12/22 21:50	1.6
1,1,2-Trichloro-1,2,2-trifluoroetha	0.055		0.0026	0.00032	ppm v/v			11/12/22 21:50	1.6
ne									
1,2,4-Trichlorobenzene	ND		0.013	0.0011	ppm v/v			11/12/22 21:50	1.6
1,1,1-Trichloroethane	ND		0.0026	0.00093	ppm v/v			11/12/22 21:50	1.6
1,1,2-Trichloroethane	ND		0.0026	0.00048	ppm v/v			11/12/22 21:50	1.6
Trichloroethene	0.19		0.0013	0.00042	ppm v/v			11/12/22 21:50	1.6
Trichlorofluoromethane	0.012		0.0026	0.00035	ppm v/v			11/12/22 21:50	1.6
1,2,4-Trimethylbenzene	ND		0.0026	0.00064	ppm v/v			11/12/22 21:50	1.6
1,3,5-Trimethylbenzene	ND		0.0051	0.0021	ppm v/v			11/12/22 21:50	1.6
Vinyl acetate	ND		0.013	0.00090	ppm v/v			11/12/22 21:50	1.6
Vinyl chloride	ND	*+	0.0013	0.00083	ppm v/v			11/12/22 21:50	1.6
m,p-Xylene	ND		0.0026	0.00093	ppm v/v			11/12/22 21:50	1.6
o-Xylene	ND		0.0026	0.00048	ppm v/v			11/12/22 21:50	1.6
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		60 - 140			•		11/12/22 21:50	1.6

Client Sample ID: 118916-001/MWL-FB4

Date Collected: 10/28/22 09:50

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.026		0.0021	0.00059	ppm v/v			11/14/22 20:53	1.67
Benzene	ND	0	.000084	0.000014	ppm v/v			11/14/22 20:53	1.67
Benzyl chloride	ND		0.00017	0.000040	ppm v/v			11/14/22 20:53	1.67
Bromodichloromethane	ND	0	.000084	0.000019	ppm v/v			11/14/22 20:53	1.67
Bromoform	ND	0	.000084	0.000028	ppm v/v			11/14/22 20:53	1.67
Bromomethane	ND	0	.000084	0.000023	ppm v/v			11/14/22 20:53	1.67
2-Butanone (MEK)	0.0025		0.00042	0.000076	ppm v/v			11/14/22 20:53	1.67
Carbon disulfide	ND		0.00021	0.000037	ppm v/v			11/14/22 20:53	1.67
Carbon tetrachloride	ND	0	.000084	0.000014	ppm v/v			11/14/22 20:53	1.67
Chlorobenzene	ND	0	.000084	0.000023	ppm v/v			11/14/22 20:53	1.67
Chloroethane	ND	0	.000084	0.000033	ppm v/v			11/14/22 20:53	1.67
Chloroform	ND	0	.000084	0.000015	ppm v/v			11/14/22 20:53	1.67
Chloromethane	ND		0.00021	0.000069	ppm v/v			11/14/22 20:53	1.67
Dibromochloromethane	ND	0	.000084	0.000015	ppm v/v			11/14/22 20:53	1.67
1,2-Dibromoethane (EDB)	ND	0	.000084	0.000013	ppm v/v			11/14/22 20:53	1.67
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0	.000084	0.000013	ppm v/v			11/14/22 20:53	1.67
1,2-Dichlorobenzene	ND	0	.000084	0.000032	ppm v/v			11/14/22 20:53	1.67
1,3-Dichlorobenzene	ND	0	.000084	0.000017	ppm v/v			11/14/22 20:53	1.67
1,4-Dichlorobenzene	ND	0	.000084	0.000017	ppm v/v			11/14/22 20:53	1.67
Dichlorodifluoromethane	ND	0	.000084	0.000015	ppm v/v			11/14/22 20:53	1.67
1,1-Dichloroethane	ND	0	.000084	0.000011	ppm v/v			11/14/22 20:53	1.67
1,2-Dichloroethane	ND	0	.000084	0.000010	ppm v/v			11/14/22 20:53	1.67
1,1-Dichloroethene	ND	0	.000084	0.000014	ppm v/v			11/14/22 20:53	1.67

Eurofins Knoxville

Job ID: 140-29549-1

Lab Sample ID: 140-29549-11

Matrix: Air

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118916-001/MWL-FB4

Lab Sample ID: 140-29549-11 Date Collected: 10/28/22 09:50 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		0.000084	0.000010	ppm v/v			11/14/22 20:53	1.67
trans-1,2-Dichloroethene	ND		0.000084	0.000014	ppm v/v			11/14/22 20:53	1.67
1,2-Dichloropropane	ND		0.000084	0.000010	ppm v/v			11/14/22 20:53	1.67
cis-1,3-Dichloropropene	ND		0.000084	0.000020	ppm v/v			11/14/22 20:53	1.67
trans-1,3-Dichloropropene	ND		0.000084	0.000021	ppm v/v			11/14/22 20:53	1.67
Ethylbenzene	ND		0.000084	0.000014	ppm v/v			11/14/22 20:53	1.67
4-Ethyltoluene	ND		0.00017	0.000022	ppm v/v			11/14/22 20:53	1.67
Hexachlorobutadiene	ND		0.00042	0.000033	ppm v/v			11/14/22 20:53	1.67
2-Hexanone	0.00025		0.00021	0.000056	ppm v/v			11/14/22 20:53	1.67
4-Methyl-2-pentanone (MIBK)	0.00011	J	0.00021	0.000056	ppm v/v			11/14/22 20:53	1.67
Methylene Chloride	0.00043		0.00042	0.00015	ppm v/v			11/14/22 20:53	1.67
Styrene	ND		0.000084	0.000025	ppm v/v			11/14/22 20:53	1.67
1,1,2,2-Tetrachloroethane	ND		0.000084	0.000015	ppm v/v			11/14/22 20:53	1.67
Tetrachloroethene	ND		0.000084	0.000013	ppm v/v			11/14/22 20:53	1.67
Toluene	0.000045	J	0.00013	0.000024	ppm v/v			11/14/22 20:53	1.67
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000084	0.000010	ppm v/v			11/14/22 20:53	1.67
1,2,4-Trichlorobenzene	ND		0.00042	0.000037	ppm v/v			11/14/22 20:53	1.67
1,1,1-Trichloroethane	ND		0.000084	0.000030	ppm v/v			11/14/22 20:53	1.67
1,1,2-Trichloroethane	ND		0.000084	0.000016	ppm v/v			11/14/22 20:53	1.67
Trichloroethene	ND		0.000042	0.000014	ppm v/v			11/14/22 20:53	1.67
Trichlorofluoromethane	ND		0.000084	0.000011	ppm v/v			11/14/22 20:53	1.67
1,2,4-Trimethylbenzene	ND		0.000084	0.000021	ppm v/v			11/14/22 20:53	1.67
1,3,5-Trimethylbenzene	ND		0.00017	0.000068	ppm v/v			11/14/22 20:53	1.67
Vinyl acetate	ND		0.00042	0.000029	ppm v/v			11/14/22 20:53	1.67
Vinyl chloride	ND		0.000042	0.000027	ppm v/v			11/14/22 20:53	1.67
m,p-Xylene	ND		0.000084	0.000030	ppm v/v			11/14/22 20:53	1.67
o-Xylene	ND		0.000084	0.000016	ppm v/v			11/14/22 20:53	1.67
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		60 - 140					11/14/22 20:53	1.67

Client Sample ID: 118917-001/MWL-SV04-50

Lab Sample ID: 140-29549-12 Date Collected: 10/28/22 10:08 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.021	0.0059	ppm v/v			11/14/22 23:54	1.66
Benzene	0.00028	J	0.00083	0.00013	ppm v/v			11/14/22 23:54	1.66
Benzyl chloride	ND		0.0017	0.00039	ppm v/v			11/14/22 23:54	1.66
Bromodichloromethane	ND		0.00083	0.00019	ppm v/v			11/14/22 23:54	1.66
Bromoform	ND		0.00083	0.00028	ppm v/v			11/14/22 23:54	1.66
Bromomethane	ND		0.00083	0.00023	ppm v/v			11/14/22 23:54	1.66
2-Butanone (MEK)	ND		0.0042	0.00076	ppm v/v			11/14/22 23:54	1.66
Carbon disulfide	ND		0.0021	0.00036	ppm v/v			11/14/22 23:54	1.66
Carbon tetrachloride	0.00022	J	0.00083	0.00013	ppm v/v			11/14/22 23:54	1.66
Chlorobenzene	ND		0.00083	0.00023	ppm v/v			11/14/22 23:54	1.66
Chloroethane	ND		0.00083	0.00033	ppm v/v			11/14/22 23:54	1.66

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118917-001/MWL-SV04-50

Date Collected: 10/28/22 10:08 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Chloroform	0.0017		0.00083	0.00015	ppm v/v			11/14/22 23:54	1.66
Chloromethane	ND		0.0021	0.00068	ppm v/v			11/14/22 23:54	1.66
Dibromochloromethane	ND		0.00083	0.00015	ppm v/v			11/14/22 23:54	1.66
1,2-Dibromoethane (EDB)	ND		0.00083	0.00012	ppm v/v			11/14/22 23:54	1.66
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00083	0.00012	ppm v/v			11/14/22 23:54	1.66
1,2-Dichlorobenzene	ND		0.00083	0.00032	ppm v/v			11/14/22 23:54	1.66
1,3-Dichlorobenzene	ND		0.00083	0.00017	ppm v/v			11/14/22 23:54	1.66
1,4-Dichlorobenzene	ND		0.00083	0.00017	ppm v/v			11/14/22 23:54	1.66
Dichlorodifluoromethane	0.015		0.00083	0.00015	ppm v/v			11/14/22 23:54	1.66
1,1-Dichloroethane	0.0011		0.00083	0.00011	ppm v/v			11/14/22 23:54	1.66
1,2-Dichloroethane	ND		0.00083	0.00010	ppm v/v			11/14/22 23:54	1.66
1,1-Dichloroethene	0.0038		0.00083	0.00013	ppm v/v			11/14/22 23:54	1.66
cis-1,2-Dichloroethene	0.00032	J	0.00083	0.00010	ppm v/v			11/14/22 23:54	1.66
trans-1,2-Dichloroethene	ND		0.00083	0.00013	ppm v/v			11/14/22 23:54	1.66
1,2-Dichloropropane	ND		0.00083		ppm v/v			11/14/22 23:54	1.66
cis-1,3-Dichloropropene	ND		0.00083	0.00020	ppm v/v			11/14/22 23:54	1.66
trans-1,3-Dichloropropene	ND		0.00083		ppm v/v			11/14/22 23:54	1.66
Ethylbenzene	ND		0.00083		ppm v/v			11/14/22 23:54	1.66
4-Ethyltoluene	ND		0.0017		ppm v/v			11/14/22 23:54	1.66
Hexachlorobutadiene	ND		0.0042		ppm v/v			11/14/22 23:54	1.66
2-Hexanone	ND		0.0021		ppm v/v			11/14/22 23:54	1.66
4-Methyl-2-pentanone (MIBK)	ND		0.0021		ppm v/v			11/14/22 23:54	1.66
Methylene Chloride	ND		0.0042		ppm v/v			11/14/22 23:54	1.66
Styrene	ND		0.00083		ppm v/v			11/14/22 23:54	1.66
1,1,2,2-Tetrachloroethane	ND		0.00083		ppm v/v			11/14/22 23:54	1.66
Tetrachloroethene	0.054		0.00083		ppm v/v			11/14/22 23:54	1.66
Toluene	ND		0.0012		ppm v/v			11/14/22 23:54	1.66
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.037		0.00083		ppm v/v			11/14/22 23:54	1.66
1,2,4-Trichlorobenzene	ND		0.0042	0.00036	ppm v/v			11/14/22 23:54	1.66
1,1,1-Trichloroethane	0.0064		0.00083	0.00030	ppm v/v			11/14/22 23:54	1.66
1,1,2-Trichloroethane	ND		0.00083	0.00016	ppm v/v			11/14/22 23:54	1.66
Trichloroethene	0.046		0.00042	0.00013	ppm v/v			11/14/22 23:54	1.66
Trichlorofluoromethane	0.025		0.00083	0.00011	ppm v/v			11/14/22 23:54	1.66
1,2,4-Trimethylbenzene	ND		0.00083	0.00021	ppm v/v			11/14/22 23:54	1.66
1,3,5-Trimethylbenzene	ND		0.0017	0.00067	ppm v/v			11/14/22 23:54	1.66
Vinyl acetate	ND		0.0042	0.00029	ppm v/v			11/14/22 23:54	1.66
Vinyl chloride	ND		0.00042	0.00027	ppm v/v			11/14/22 23:54	1.66
m,p-Xylene	ND		0.00083		ppm v/v			11/14/22 23:54	1.66
o-Xylene	ND		0.00083		ppm v/v			11/14/22 23:54	1.66
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		60 - 140			-		11/14/22 23:54	1.66

Lab Sample ID: 140-29549-12

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118918-001/MWL-SV04-100

Lab Sample ID: 140-29549-13 Date Collected: 10/28/22 10:15 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result Q		MDL	-	D Prepared	Analyzed	Dil Fac
Acetone	ND	0.034	0.0097	ppm v/v		11/15/22 00:37	1.7
Benzene	ND	0.0014	0.00022	ppm v/v		11/15/22 00:37	1.7
Benzyl chloride	ND	0.0027	0.00065	ppm v/v		11/15/22 00:37	1.7
Bromodichloromethane	ND	0.0014	0.00031	ppm v/v		11/15/22 00:37	1.7
Bromoform	ND	0.0014	0.00046	ppm v/v		11/15/22 00:37	1.7
Bromomethane	ND	0.0014	0.00038	ppm v/v		11/15/22 00:37	1.7
2-Butanone (MEK)	ND	0.0068	0.0012	ppm v/v		11/15/22 00:37	1.7
Carbon disulfide	0.0020 J	0.0034	0.00060	ppm v/v		11/15/22 00:37	1.7
Carbon tetrachloride	0.00033 J	0.0014	0.00022	ppm v/v		11/15/22 00:37	1.7
Chlorobenzene	ND	0.0014	0.00038	ppm v/v		11/15/22 00:37	1.7
Chloroethane	ND	0.0014	0.00055	ppm v/v		11/15/22 00:37	1.7
Chloroform	0.0020	0.0014	0.00024	ppm v/v		11/15/22 00:37	1.7
Chloromethane	ND	0.0034	0.0011	ppm v/v		11/15/22 00:37	1.7
Dibromochloromethane	ND	0.0014	0.00024	ppm v/v		11/15/22 00:37	1.7
1,2-Dibromoethane (EDB)	ND	0.0014	0.00021	ppm v/v		11/15/22 00:37	1.7
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.0014	0.00021	ppm v/v		11/15/22 00:37	1.7
1,2-Dichlorobenzene	ND	0.0014	0.00053	• •		11/15/22 00:37	1.7
1,3-Dichlorobenzene	ND	0.0014	0.00027	ppm v/v		11/15/22 00:37	1.7
1,4-Dichlorobenzene	ND	0.0014	0.00027			11/15/22 00:37	1.7
Dichlorodifluoromethane	0.029	0.0014	0.00024			11/15/22 00:37	1.7
1,1-Dichloroethane	0.0026	0.0014	0.00019			11/15/22 00:37	1.7
1,2-Dichloroethane	ND	0.0014	0.00017			11/15/22 00:37	1.7
1,1-Dichloroethene	0.0099	0.0014	0.00022			11/15/22 00:37	1.7
cis-1,2-Dichloroethene	0.0011 J	0.0014	0.00017			11/15/22 00:37	1.7
trans-1,2-Dichloroethene	ND	0.0014	0.00022			11/15/22 00:37	1.7
1,2-Dichloropropane	ND	0.0014	0.00017			11/15/22 00:37	1.7
cis-1,3-Dichloropropene	ND	0.0014	0.00032			11/15/22 00:37	1.7
trans-1,3-Dichloropropene	ND	0.0014	0.00034			11/15/22 00:37	1.7
Ethylbenzene	ND	0.0014	0.00022			11/15/22 00:37	1.7
4-Ethyltoluene	ND	0.0027	0.00036			11/15/22 00:37	1.7
Hexachlorobutadiene	ND	0.0068	0.00055			11/15/22 00:37	1.7
2-Hexanone	ND	0.0034	0.00092			11/15/22 00:37	1.7
4-Methyl-2-pentanone (MIBK)	ND	0.0034	0.00092			11/15/22 00:37	1.7
Methylene Chloride	ND	0.0068		ppm v/v		11/15/22 00:37	1.7
Styrene	ND	0.0014	0.00041	• •		11/15/22 00:37	1.7
1,1,2,2-Tetrachloroethane	ND	0.0014	0.00041			11/15/22 00:37	1.7
Tetrachloroethene		0.0014	0.00024			11/15/22 00:37	1.7
Toluene	0.096 ND	0.0014	0.00021			11/15/22 00:37	1.7
1,1,2-Trichloro-1,2,2-trifluoroetha	0.067	0.0021	0.00039			11/15/22 00:37	1.7
ne 1,2,4-Trichlorobenzene	ND	0.0068	0.00060	ppm v/v		11/15/22 00:37	1.7
1,1,1-Trichloroethane	0.0053	0.0014	0.00050			11/15/22 00:37	1.7
1,1,2-Trichloroethane	ND	0.0014	0.00026			11/15/22 00:37	1.7
Trichloroethene	0.094	0.00068	0.00022			11/15/22 00:37	1.7
Trichlorofluoromethane	0.040	0.0014	0.00019			11/15/22 00:37	1.7
1,2,4-Trimethylbenzene	0.040 ND	0.0014	0.00019			11/15/22 00:37	1.7
1,3,5-Trimethylbenzene	ND	0.0014		ppm v/v		11/15/22 00:37	1.7
Vinyl acetate	ND	0.0027	0.0011			11/15/22 00:37	1.7
Vinyl chloride	ND ND	0.0008		ppm v/v		11/15/22 00:37	1.7 1.7

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118918-001/MWL-SV04-100 Lab Sample ID: 140-29549-13

Date Collected: 10/28/22 10:15

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.0014	0.00050	ppm v/v			11/15/22 00:37	1.71
o-Xylene	ND		0.0014	0.00026	ppm v/v			11/15/22 00:37	1.71
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			60 - 140					11/15/22 00:37	1.71

Client Sample ID: 118919-001/MWL-SV04-200 Lab Sample ID: 140-29549-14

Date Collected: 10/28/22 10:25 Date Received: 11/08/22 09:30

1,1,2,2-Tetrachloroethane

Sample Container: Summa Canister 6L

Matrix: Air

Method: EPA TO 15 LL - Volatil Analyte	_	Qualifier	RL		Unit D Prepare	•	Dil Fac
Acetone	0.010	J	0.033	0.0095	ppm v/v	11/15/22 01:19	1.66
Benzene	0.00033	J	0.0013	0.00022	ppm v/v	11/15/22 01:19	1.66
Benzyl chloride	ND		0.0027	0.00063	ppm v/v	11/15/22 01:19	1.66
Bromodichloromethane	ND		0.0013	0.00030	ppm v/v	11/15/22 01:19	1.66
Bromoform	ND		0.0013	0.00045	ppm v/v	11/15/22 01:19	1.66
Bromomethane	ND		0.0013	0.00037	ppm v/v	11/15/22 01:19	1.66
2-Butanone (MEK)	ND		0.0066	0.0012	ppm v/v	11/15/22 01:19	1.66
Carbon disulfide	ND		0.0033	0.00058	ppm v/v	11/15/22 01:19	1.66
Carbon tetrachloride	0.00052	J	0.0013	0.00022	ppm v/v	11/15/22 01:19	1.66
Chlorobenzene	ND		0.0013	0.00037	ppm v/v	11/15/22 01:19	1.66
Chloroethane	ND		0.0013	0.00053	ppm v/v	11/15/22 01:19	1.66
Chloroform	0.0016		0.0013	0.00023	ppm v/v	11/15/22 01:19	1.66
Chloromethane	ND		0.0033	0.0011	ppm v/v	11/15/22 01:19	1.66
Dibromochloromethane	ND		0.0013	0.00023	ppm v/v	11/15/22 01:19	1.66
1,2-Dibromoethane (EDB)	ND		0.0013	0.00020	ppm v/v	11/15/22 01:19	1.66
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0013	0.00020	ppm v/v	11/15/22 01:19	1.66
1,2-Dichlorobenzene	ND		0.0013	0.00051	ppm v/v	11/15/22 01:19	1.66
1,3-Dichlorobenzene	ND		0.0013	0.00027	ppm v/v	11/15/22 01:19	1.66
1,4-Dichlorobenzene	ND		0.0013	0.00027	ppm v/v	11/15/22 01:19	1.66
Dichlorodifluoromethane	0.043		0.0013	0.00023	ppm v/v	11/15/22 01:19	1.66
1,1-Dichloroethane	0.0045		0.0013	0.00018	ppm v/v	11/15/22 01:19	1.66
1,2-Dichloroethane	ND		0.0013	0.00017	ppm v/v	11/15/22 01:19	1.66
1,1-Dichloroethene	0.019		0.0013	0.00022	ppm v/v	11/15/22 01:19	1.66
cis-1,2-Dichloroethene	0.0024		0.0013	0.00017	ppm v/v	11/15/22 01:19	1.66
trans-1,2-Dichloroethene	ND		0.0013	0.00022	ppm v/v	11/15/22 01:19	1.66
1,2-Dichloropropane	ND		0.0013	0.00017	ppm v/v	11/15/22 01:19	1.66
cis-1,3-Dichloropropene	ND		0.0013	0.00032	ppm v/v	11/15/22 01:19	1.66
trans-1,3-Dichloropropene	ND		0.0013	0.00033	ppm v/v	11/15/22 01:19	1.66
Ethylbenzene	ND		0.0013	0.00022	ppm v/v	11/15/22 01:19	1.66
4-Ethyltoluene	ND		0.0027	0.00035	ppm v/v	11/15/22 01:19	1.66
Hexachlorobutadiene	ND		0.0066	0.00053	ppm v/v	11/15/22 01:19	1.66
2-Hexanone	ND		0.0033	0.00090	ppm v/v	11/15/22 01:19	1.66
4-Methyl-2-pentanone (MIBK)	ND		0.0033	0.00090	ppm v/v	11/15/22 01:19	1.66
Methylene Chloride	ND		0.0066	0.0023	ppm v/v	11/15/22 01:19	1.66
Styrene	ND		0.0013		ppm v/v	11/15/22 01:19	1.66

Eurofins Knoxville

11/15/22 01:19

ND

0.0013 0.00023 ppm v/v

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118919-001/MWL-SV04-200

Date Collected: 10/28/22 10:25 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.12		0.0013	0.00020	ppm v/v			11/15/22 01:19	1.66
Toluene	ND		0.0020	0.00038	ppm v/v			11/15/22 01:19	1.66
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.11		0.0013	0.00017	ppm v/v			11/15/22 01:19	1.66
1,2,4-Trichlorobenzene	ND		0.0066	0.00058	ppm v/v			11/15/22 01:19	1.66
1,1,1-Trichloroethane	0.0018		0.0013	0.00048	ppm v/v			11/15/22 01:19	1.66
1,1,2-Trichloroethane	ND		0.0013	0.00025	ppm v/v			11/15/22 01:19	1.66
Trichloroethene	0.15		0.00066	0.00022	ppm v/v			11/15/22 01:19	1.66
Trichlorofluoromethane	0.042		0.0013	0.00018	ppm v/v			11/15/22 01:19	1.66
1,2,4-Trimethylbenzene	ND		0.0013	0.00033	ppm v/v			11/15/22 01:19	1.66
1,3,5-Trimethylbenzene	ND		0.0027	0.0011	ppm v/v			11/15/22 01:19	1.66
Vinyl acetate	ND		0.0066	0.00046	ppm v/v			11/15/22 01:19	1.66
Vinyl chloride	ND		0.00066	0.00043	ppm v/v			11/15/22 01:19	1.66
m,p-Xylene	ND		0.0013	0.00048	ppm v/v			11/15/22 01:19	1.66
o-Xylene	ND		0.0013	0.00025	ppm v/v			11/15/22 01:19	1.66
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140					11/15/22 01:19	1.66

Client Sample ID: 118920-001/MWL-SV04-300

Lab Sample ID: 140-29549-15 Date Collected: 10/28/22 10:32 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.034	0.0097	ppm v/v			11/15/22 02:01	1.71
Benzene	0.00031	J	0.0014	0.00022	ppm v/v			11/15/22 02:01	1.71
Benzyl chloride	ND		0.0027	0.00065	ppm v/v			11/15/22 02:01	1.71
Bromodichloromethane	ND		0.0014	0.00031	ppm v/v			11/15/22 02:01	1.71
Bromoform	ND		0.0014	0.00046	ppm v/v			11/15/22 02:01	1.71
Bromomethane	ND		0.0014	0.00038	ppm v/v			11/15/22 02:01	1.71
2-Butanone (MEK)	ND		0.0068	0.0012	ppm v/v			11/15/22 02:01	1.71
Carbon disulfide	ND		0.0034	0.00060	ppm v/v			11/15/22 02:01	1.71
Carbon tetrachloride	0.00029	J	0.0014	0.00022	ppm v/v			11/15/22 02:01	1.71
Chlorobenzene	ND		0.0014	0.00038	ppm v/v			11/15/22 02:01	1.71
Chloroethane	ND		0.0014	0.00055	ppm v/v			11/15/22 02:01	1.71
Chloroform	0.00069	J	0.0014	0.00024	ppm v/v			11/15/22 02:01	1.71
Chloromethane	0.0028	J	0.0034	0.0011	ppm v/v			11/15/22 02:01	1.71
Dibromochloromethane	ND		0.0014	0.00024	ppm v/v			11/15/22 02:01	1.71
1,2-Dibromoethane (EDB)	ND		0.0014	0.00021	ppm v/v			11/15/22 02:01	1.71
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0014	0.00021	ppm v/v			11/15/22 02:01	1.71
1,2-Dichlorobenzene	ND		0.0014	0.00053	ppm v/v			11/15/22 02:01	1.71
1,3-Dichlorobenzene	ND		0.0014	0.00027	ppm v/v			11/15/22 02:01	1.71
1,4-Dichlorobenzene	ND		0.0014	0.00027	ppm v/v			11/15/22 02:01	1.71
Dichlorodifluoromethane	0.030		0.0014	0.00024	ppm v/v			11/15/22 02:01	1.71
1,1-Dichloroethane	0.00062	J	0.0014	0.00019	ppm v/v			11/15/22 02:01	1.71
1,2-Dichloroethane	ND		0.0014	0.00017	ppm v/v			11/15/22 02:01	1.71
1,1-Dichloroethene	0.0082		0.0014	0.00022				11/15/22 02:01	1.71

Lab Sample ID: 140-29549-14

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118920-001/MWL-SV04-300 Lab Sample ID: 140-29549-15

Date Collected: 10/28/22 10:32 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00033	J	0.0014	0.00017	ppm v/v			11/15/22 02:01	1.71
trans-1,2-Dichloroethene	ND		0.0014	0.00022	ppm v/v			11/15/22 02:01	1.71
1,2-Dichloropropane	ND		0.0014	0.00017	ppm v/v			11/15/22 02:01	1.71
cis-1,3-Dichloropropene	ND		0.0014	0.00032	ppm v/v			11/15/22 02:01	1.71
trans-1,3-Dichloropropene	ND		0.0014	0.00034	ppm v/v			11/15/22 02:01	1.71
Ethylbenzene	ND		0.0014	0.00022	ppm v/v			11/15/22 02:01	1.71
4-Ethyltoluene	ND		0.0027	0.00036	ppm v/v			11/15/22 02:01	1.71
Hexachlorobutadiene	ND		0.0068	0.00055	ppm v/v			11/15/22 02:01	1.71
2-Hexanone	ND		0.0034	0.00092	ppm v/v			11/15/22 02:01	1.71
4-Methyl-2-pentanone (MIBK)	ND		0.0034	0.00092	ppm v/v			11/15/22 02:01	1.71
Methylene Chloride	ND		0.0068	0.0024	ppm v/v			11/15/22 02:01	1.71
Styrene	ND		0.0014	0.00041	ppm v/v			11/15/22 02:01	1.71
1,1,2,2-Tetrachloroethane	ND		0.0014	0.00024	ppm v/v			11/15/22 02:01	1.71
Tetrachloroethene	0.089		0.0014	0.00021	ppm v/v			11/15/22 02:01	1.71
Toluene	ND		0.0021	0.00039	ppm v/v			11/15/22 02:01	1.71
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.069		0.0014	0.00017	ppm v/v			11/15/22 02:01	1.71
1,2,4-Trichlorobenzene	ND		0.0068	0.00060	ppm v/v			11/15/22 02:01	1.71
1,1,1-Trichloroethane	0.00053	J	0.0014	0.00050	ppm v/v			11/15/22 02:01	1.71
1,1,2-Trichloroethane	ND		0.0014	0.00026	ppm v/v			11/15/22 02:01	1.71
Trichloroethene	0.056		0.00068	0.00022	ppm v/v			11/15/22 02:01	1.71
Trichlorofluoromethane	0.017		0.0014	0.00019	ppm v/v			11/15/22 02:01	1.71
1,2,4-Trimethylbenzene	ND		0.0014	0.00034	ppm v/v			11/15/22 02:01	1.71
1,3,5-Trimethylbenzene	ND		0.0027	0.0011	ppm v/v			11/15/22 02:01	1.71
Vinyl acetate	ND		0.0068	0.00048	ppm v/v			11/15/22 02:01	1.71
Vinyl chloride	ND		0.00068	0.00044	ppm v/v			11/15/22 02:01	1.71
m,p-Xylene	ND		0.0014	0.00050	ppm v/v			11/15/22 02:01	1.71
o-Xylene	ND		0.0014	0.00026	ppm v/v			11/15/22 02:01	1.71
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		60 - 140					11/15/22 02:01	1.71

Client Sample ID: 118921-001/MWL-SV04-400

Lab Sample ID: 140-29549-16 Date Collected: 10/28/22 10:37 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.013	J	0.032	0.0092	ppm v/v			11/15/22 02:44	1.61
Benzene	0.00049	J	0.0013	0.00021	ppm v/v			11/15/22 02:44	1.61
Benzyl chloride	ND		0.0026	0.00061	ppm v/v			11/15/22 02:44	1.61
Bromodichloromethane	ND		0.0013	0.00029	ppm v/v			11/15/22 02:44	1.61
Bromoform	ND		0.0013	0.00043	ppm v/v			11/15/22 02:44	1.61
Bromomethane	ND		0.0013	0.00035	ppm v/v			11/15/22 02:44	1.61
2-Butanone (MEK)	ND		0.0064	0.0012	ppm v/v			11/15/22 02:44	1.61
Carbon disulfide	0.0012	J	0.0032	0.00056	ppm v/v			11/15/22 02:44	1.61
Carbon tetrachloride	ND		0.0013	0.00021	ppm v/v			11/15/22 02:44	1.61
Chlorobenzene	ND		0.0013	0.00035	ppm v/v			11/15/22 02:44	1.61

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118921-001/MWL-SV04-400

Lab Sample ID: 140-29549-16 Date Collected: 10/28/22 10:37 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	D Prepared	Analyzed	Dil Fac
Chloroethane	ND		0.0013	0.00052	ppm v/v		11/15/22 02:44	1.61
Chloroform	0.00044	J	0.0013	0.00023	ppm v/v		11/15/22 02:44	1.61
Chloromethane	ND		0.0032		ppm v/v		11/15/22 02:44	1.61
Dibromochloromethane	ND		0.0013	0.00023	ppm v/v		11/15/22 02:44	1.61
1,2-Dibromoethane (EDB)	ND		0.0013	0.00019	ppm v/v		11/15/22 02:44	1.61
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0013	0.00019	ppm v/v		11/15/22 02:44	1.61
1,2-Dichlorobenzene	ND		0.0013	0.00050	ppm v/v		11/15/22 02:44	1.61
1,3-Dichlorobenzene	ND		0.0013	0.00026	ppm v/v		11/15/22 02:44	1.61
1,4-Dichlorobenzene	ND		0.0013		ppm v/v		11/15/22 02:44	1.61
Dichlorodifluoromethane	0.023		0.0013	0.00023	ppm v/v		11/15/22 02:44	1.61
1,1-Dichloroethane	0.00058	J	0.0013	0.00018	ppm v/v		11/15/22 02:44	1.61
1,2-Dichloroethane	ND		0.0013	0.00016	ppm v/v		11/15/22 02:44	1.61
1,1-Dichloroethene	0.0054		0.0013	0.00021	ppm v/v		11/15/22 02:44	1.61
cis-1,2-Dichloroethene	0.00034	J	0.0013	0.00016	ppm v/v		11/15/22 02:44	1.61
trans-1,2-Dichloroethene	ND		0.0013	0.00021	ppm v/v		11/15/22 02:44	1.61
1,2-Dichloropropane	ND		0.0013	0.00016	ppm v/v		11/15/22 02:44	1.61
cis-1,3-Dichloropropene	ND		0.0013		ppm v/v		11/15/22 02:44	1.61
trans-1,3-Dichloropropene	ND		0.0013	0.00032	ppm v/v		11/15/22 02:44	1.61
Ethylbenzene	ND		0.0013	0.00021	ppm v/v		11/15/22 02:44	1.61
4-Ethyltoluene	ND		0.0026		ppm v/v		11/15/22 02:44	1.61
Hexachlorobutadiene	ND		0.0064		ppm v/v		11/15/22 02:44	1.61
2-Hexanone	ND		0.0032	0.00087	ppm v/v		11/15/22 02:44	1.61
4-Methyl-2-pentanone (MIBK)	ND		0.0032	0.00087	ppm v/v		11/15/22 02:44	1.61
Methylene Chloride	ND		0.0064	0.0023	ppm v/v		11/15/22 02:44	1.61
Styrene	ND		0.0013	0.00039	ppm v/v		11/15/22 02:44	1.61
1,1,2,2-Tetrachloroethane	ND		0.0013		ppm v/v		11/15/22 02:44	1.61
Tetrachloroethene	0.080		0.0013		ppm v/v		11/15/22 02:44	1.61
Toluene	ND		0.0019		ppm v/v		11/15/22 02:44	1.61
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.059		0.0013		ppm v/v		11/15/22 02:44	1.61
1,2,4-Trichlorobenzene	ND		0.0064		ppm v/v		11/15/22 02:44	1.61
1,1,1-Trichloroethane	0.00047	J	0.0013	0.00047	ppm v/v		11/15/22 02:44	1.61
1,1,2-Trichloroethane	ND		0.0013	0.00024	ppm v/v		11/15/22 02:44	1.61
Trichloroethene	0.045		0.00064	0.00021	ppm v/v		11/15/22 02:44	1.61
Trichlorofluoromethane	0.014		0.0013	0.00018	ppm v/v		11/15/22 02:44	1.61
1,2,4-Trimethylbenzene	ND		0.0013		ppm v/v		11/15/22 02:44	1.61
1,3,5-Trimethylbenzene	ND		0.0026		ppm v/v		11/15/22 02:44	1.61
Vinyl acetate	ND		0.0064		ppm v/v		11/15/22 02:44	1.61
Vinyl chloride	ND		0.00064	0.00042	ppm v/v		11/15/22 02:44	1.61
m,p-Xylene	ND		0.0013	0.00047	ppm v/v		11/15/22 02:44	1.61
o-Xylene	ND		0.0013	0.00024	ppm v/v		11/15/22 02:44	1.61
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		60 - 140				11/15/22 02:44	1.61

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118922-001/MWL-FB5

Lab Sample ID: 140-29549-17 Date Collected: 10/28/22 10:53 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fac
Acetone	0.0031	0.0020		ppm v/v			11/14/22 21:46	1.62
Benzene	ND	0.000081	0.000013				11/14/22 21:46	1.62
Benzyl chloride	ND	0.00016	0.000038				11/14/22 21:46	1.62
Bromodichloromethane	ND	0.000081	0.000018				11/14/22 21:46	1.62
Bromoform	ND	0.000081	0.000027				11/14/22 21:46	1.62
Bromomethane	ND	0.000081	0.000022				11/14/22 21:46	1.62
2-Butanone (MEK)	0.00030 J	0.00041	0.000074	ppm v/v			11/14/22 21:46	1.62
Carbon disulfide	ND	0.00020	0.000035	ppm v/v			11/14/22 21:46	1.62
Carbon tetrachloride	ND	0.000081	0.000013	ppm v/v			11/14/22 21:46	1.62
Chlorobenzene	ND	0.000081	0.000022	ppm v/v			11/14/22 21:46	1.62
Chloroethane	ND	0.000081	0.000032	ppm v/v			11/14/22 21:46	1.62
Chloroform	ND	0.000081	0.000014	ppm v/v			11/14/22 21:46	1.62
Chloromethane	ND	0.00020	0.000067	ppm v/v			11/14/22 21:46	1.62
Dibromochloromethane	ND	0.000081	0.000014	ppm v/v			11/14/22 21:46	1.62
1,2-Dibromoethane (EDB)	ND	0.000081	0.000012	ppm v/v			11/14/22 21:46	1.62
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.000081	0.000012	ppm v/v			11/14/22 21:46	1.62
1,2-Dichlorobenzene	ND	0.000081	0.000031	ppm v/v			11/14/22 21:46	1.62
1,3-Dichlorobenzene	ND	0.000081	0.000016	ppm v/v			11/14/22 21:46	1.62
1,4-Dichlorobenzene	ND	0.000081	0.000016	ppm v/v			11/14/22 21:46	1.62
Dichlorodifluoromethane	ND	0.000081	0.000014	ppm v/v			11/14/22 21:46	1.62
1,1-Dichloroethane	ND	0.000081	0.000011	ppm v/v			11/14/22 21:46	1.62
1,2-Dichloroethane	ND	0.000081	0.000010	ppm v/v			11/14/22 21:46	1.62
1,1-Dichloroethene	ND	0.000081	0.000013				11/14/22 21:46	1.62
cis-1,2-Dichloroethene	ND	0.000081	0.000010				11/14/22 21:46	1.62
trans-1,2-Dichloroethene	ND	0.000081	0.000013				11/14/22 21:46	1.62
1,2-Dichloropropane	ND	0.000081	0.000010				11/14/22 21:46	1.62
cis-1,3-Dichloropropene	ND	0.000081	0.000019				11/14/22 21:46	1.62
trans-1,3-Dichloropropene	ND	0.000081	0.000020				11/14/22 21:46	1.62
Ethylbenzene	ND	0.000081	0.000013				11/14/22 21:46	1.62
4-Ethyltoluene	ND	0.00016	0.000021				11/14/22 21:46	1.62
Hexachlorobutadiene	ND	0.00041	0.000032				11/14/22 21:46	1.62
2-Hexanone	ND	0.00020	0.000055				11/14/22 21:46	1.62
4-Methyl-2-pentanone (MIBK)	ND	0.00020	0.000055				11/14/22 21:46	1.62
Methylene Chloride	0.00046	0.00041		ppm v/v			11/14/22 21:46	1.62
Styrene	ND	0.000081	0.000024	ppm v/v			11/14/22 21:46	1.62
1,1,2,2-Tetrachloroethane	ND	0.000081	0.000014				11/14/22 21:46	1.62
Tetrachloroethene	ND	0.000081	0.000012				11/14/22 21:46	1.62
Toluene	0.000027 J	0.00012	0.000023				11/14/22 21:46	1.62
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.000081	0.000010				11/14/22 21:46	1.62
1,2,4-Trichlorobenzene	ND	0.00041	0.000035				11/14/22 21:46	1.62
1,1,1-Trichloroethane	ND	0.000041	0.000029				11/14/22 21:46	1.62
1,1,2-Trichloroethane	ND	0.000081	0.000015				11/14/22 21:46	1.62
Trichloroethene	ND	0.000041	0.000013				11/14/22 21:46	1.62
Trichlorofluoromethane	ND	0.000041	0.000013				11/14/22 21:46	1.62
1,2,4-Trimethylbenzene	ND	0.000081	0.000011				11/14/22 21:46	1.62
1,3,5-Trimethylbenzene	ND	0.00016	0.000020	. 			11/14/22 21:46	1.62
Vinyl acetate	ND	0.00010	0.000008				11/14/22 21:46	1.62
Vinyl acetate Vinyl chloride	ND	0.00041	0.000028				11/14/22 21:46	1.62

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118922-001/MWL-FB5

Date Collected: 10/28/22 10:53 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.000081	0.000029	ppm v/v			11/14/22 21:46	1.62
o-Xylene	ND		0.000081	0.000015	ppm v/v			11/14/22 21:46	1.62
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		60 - 140					11/14/22 21:46	1.62

Client Sample ID: 118923-001/MWL-SV05-50 Lab Sample ID: 140-29549-18

RL

MDL Unit

Date Collected: 10/28/22 11:00

Method: EPA TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Result Qualifier

ND

ND

ND

ND

Date Received: 11/08/22 09:30

Analyte

Styrene

Methylene Chloride

4-Methyl-2-pentanone (MIBK)

1,1,2,2-Tetrachloroethane

Sample Container: Summa Canister 6L

Allulyto	rtosuit	Qualifici		11100	01.110	puicu	Analyzou	Dii i ao
Acetone	ND		0.029	0.0083	ppm v/v		11/15/22 20:36	1.46
Benzene	ND		0.0012	0.00019	ppm v/v		11/15/22 20:36	1.46
Benzyl chloride	ND	*+	0.0023	0.00055	ppm v/v		11/15/22 20:36	1.46
Bromodichloromethane	ND		0.0012	0.00026	ppm v/v		11/15/22 20:36	1.46
Bromoform	ND		0.0012	0.00039	ppm v/v		11/15/22 20:36	1.46
Bromomethane	ND	*+	0.0012	0.00032	ppm v/v		11/15/22 20:36	1.46
2-Butanone (MEK)	ND		0.0058	0.0011	ppm v/v		11/15/22 20:36	1.46
Carbon disulfide	0.0017	J	0.0029	0.00051	ppm v/v		11/15/22 20:36	1.46
Carbon tetrachloride	0.00023	J	0.0012	0.00019	ppm v/v		11/15/22 20:36	1.46
Chlorobenzene	ND		0.0012	0.00032	ppm v/v		11/15/22 20:36	1.46
Chloroethane	ND	*+	0.0012	0.00047	ppm v/v		11/15/22 20:36	1.46
Chloroform	0.0011	J	0.0012	0.00020	ppm v/v		11/15/22 20:36	1.46
Chloromethane	ND	*+	0.0029	0.00096	ppm v/v		11/15/22 20:36	1.46
Dibromochloromethane	ND		0.0012	0.00020	ppm v/v		11/15/22 20:36	1.46
1,2-Dibromoethane (EDB)	ND		0.0012	0.00018	ppm v/v		11/15/22 20:36	1.46
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012	0.00018	ppm v/v		11/15/22 20:36	1.46
1,2-Dichlorobenzene	ND	*+	0.0012	0.00045	ppm v/v		11/15/22 20:36	1.46
1,3-Dichlorobenzene	ND		0.0012	0.00023	ppm v/v		11/15/22 20:36	1.46
1,4-Dichlorobenzene	ND		0.0012	0.00023	ppm v/v		11/15/22 20:36	1.46
Dichlorodifluoromethane	0.042		0.0012	0.00020	ppm v/v		11/15/22 20:36	1.46
1,1-Dichloroethane	0.0011	J	0.0012	0.00016	ppm v/v		11/15/22 20:36	1.46
1,2-Dichloroethane	ND		0.0012	0.00015	ppm v/v		11/15/22 20:36	1.46
1,1-Dichloroethene	0.0053		0.0012	0.00019	ppm v/v		11/15/22 20:36	1.46
cis-1,2-Dichloroethene	0.00037	J	0.0012	0.00015	ppm v/v		11/15/22 20:36	1.46
trans-1,2-Dichloroethene	ND		0.0012	0.00019	ppm v/v		11/15/22 20:36	1.46
1,2-Dichloropropane	ND		0.0012	0.00015	ppm v/v		11/15/22 20:36	1.46
cis-1,3-Dichloropropene	ND		0.0012	0.00028	ppm v/v		11/15/22 20:36	1.46
trans-1,3-Dichloropropene	ND		0.0012	0.00029	ppm v/v		11/15/22 20:36	1.46
Ethylbenzene	ND		0.0012	0.00019	ppm v/v		11/15/22 20:36	1.46
4-Ethyltoluene	ND		0.0023	0.00031	ppm v/v		11/15/22 20:36	1.46
Hexachlorobutadiene	ND	*+	0.0058	0.00047	ppm v/v		11/15/22 20:36	1.46
2-Hexanone	ND		0.0029	0.00079	ppm v/v		11/15/22 20:36	1.46

Eurofins Knoxville

1.46

1.46

1.46

1.46

11/15/22 20:36

11/15/22 20:36

11/15/22 20:36

11/15/22 20:36

Lab Sample ID: 140-29549-17

Prepared

Matrix: Air

Dil Fac

Analyzed

0.0029

0.0058

0.0012

0.0012

0.00079 ppm v/v

0.0020 ppm v/v

0.00035 ppm v/v

0.00020 ppm v/v

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118923-001/MWL-SV05-50

Lab Sample ID: 140-29549-18 Date Collected: 10/28/22 11:00 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.038		0.0012	0.00018	ppm v/v			11/15/22 20:36	1.46
Toluene	ND		0.0018	0.00034	ppm v/v			11/15/22 20:36	1.46
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.033		0.0012	0.00015	ppm v/v			11/15/22 20:36	1.46
1,2,4-Trichlorobenzene	ND		0.0058	0.00051	ppm v/v			11/15/22 20:36	1.46
1,1,1-Trichloroethane	0.0085		0.0012	0.00042	ppm v/v			11/15/22 20:36	1.46
1,1,2-Trichloroethane	ND		0.0012	0.00022	ppm v/v			11/15/22 20:36	1.46
Trichloroethene	0.043		0.00058	0.00019	ppm v/v			11/15/22 20:36	1.46
Trichlorofluoromethane	0.098		0.0012	0.00016	ppm v/v			11/15/22 20:36	1.46
1,2,4-Trimethylbenzene	ND	*+	0.0012	0.00029	ppm v/v			11/15/22 20:36	1.46
1,3,5-Trimethylbenzene	ND		0.0023	0.00095	ppm v/v			11/15/22 20:36	1.46
Vinyl acetate	ND		0.0058	0.00041	ppm v/v			11/15/22 20:36	1.46
Vinyl chloride	ND	*+	0.00058	0.00038	ppm v/v			11/15/22 20:36	1.46
m,p-Xylene	ND		0.0012	0.00042	ppm v/v			11/15/22 20:36	1.46
o-Xylene	ND		0.0012	0.00022	ppm v/v			11/15/22 20:36	1.46
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		60 - 140					11/15/22 20:36	1.46

Client Sample ID: 118924-001/MWL-SV05-100

Lab Sample ID: 140-29549-19 Date Collected: 10/28/22 11:05 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.030	0.0086	ppm v/v			11/15/22 21:25	1.5
Benzene	ND		0.0012	0.00020	ppm v/v			11/15/22 21:25	1.5
Benzyl chloride	ND	*+	0.0024	0.00057	ppm v/v			11/15/22 21:25	1.5
Bromodichloromethane	ND		0.0012	0.00027	ppm v/v			11/15/22 21:25	1.5
Bromoform	ND		0.0012	0.00041	ppm v/v			11/15/22 21:25	1.5
Bromomethane	ND	*+	0.0012	0.00033	ppm v/v			11/15/22 21:25	1.5
2-Butanone (MEK)	ND		0.0060	0.0011	ppm v/v			11/15/22 21:25	1.5
Carbon disulfide	ND		0.0030	0.00053	ppm v/v			11/15/22 21:25	1.5
Carbon tetrachloride	0.00050	J	0.0012	0.00020	ppm v/v			11/15/22 21:25	1.5
Chlorobenzene	ND		0.0012	0.00033	ppm v/v			11/15/22 21:25	1.5
Chloroethane	ND	*+	0.0012	0.00048	ppm v/v			11/15/22 21:25	1.5
Chloroform	0.0018		0.0012	0.00021	ppm v/v			11/15/22 21:25	1.5
Chloromethane	ND	*+	0.0030	0.00099	ppm v/v			11/15/22 21:25	1.5
Dibromochloromethane	ND		0.0012	0.00021	ppm v/v			11/15/22 21:25	1.5
1,2-Dibromoethane (EDB)	ND		0.0012	0.00018	ppm v/v			11/15/22 21:25	1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012	0.00018	ppm v/v			11/15/22 21:25	1.5
1,2-Dichlorobenzene	ND	*+	0.0012	0.00047	ppm v/v			11/15/22 21:25	1.5
1,3-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/15/22 21:25	1.5
1,4-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/15/22 21:25	1.5
Dichlorodifluoromethane	0.068		0.0012	0.00021	ppm v/v			11/15/22 21:25	1.5
1,1-Dichloroethane	0.0024		0.0012	0.00017	ppm v/v			11/15/22 21:25	1.5
1,2-Dichloroethane	ND		0.0012	0.00015	ppm v/v			11/15/22 21:25	1.5
1,1-Dichloroethene	0.012		0.0012	0.00020	ppm v/v			11/15/22 21:25	1.5

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118924-001/MWL-SV05-100 Lab Sample ID: 140-29549-19

Date Collected: 10/28/22 11:05 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00088	J	0.0012	0.00015	ppm v/v			11/15/22 21:25	1.5
trans-1,2-Dichloroethene	ND		0.0012	0.00020	ppm v/v			11/15/22 21:25	1.5
1,2-Dichloropropane	ND		0.0012	0.00015	ppm v/v			11/15/22 21:25	1.5
cis-1,3-Dichloropropene	ND		0.0012	0.00029	ppm v/v			11/15/22 21:25	1.5
trans-1,3-Dichloropropene	ND		0.0012	0.00030	ppm v/v			11/15/22 21:25	1.5
Ethylbenzene	ND		0.0012	0.00020	ppm v/v			11/15/22 21:25	1.5
4-Ethyltoluene	ND		0.0024	0.00032	ppm v/v			11/15/22 21:25	1.5
Hexachlorobutadiene	ND	*+	0.0060	0.00048	ppm v/v			11/15/22 21:25	1.5
2-Hexanone	ND		0.0030	0.00081	ppm v/v			11/15/22 21:25	1.5
4-Methyl-2-pentanone (MIBK)	ND		0.0030	0.00081	ppm v/v			11/15/22 21:25	1.5
Methylene Chloride	ND		0.0060	0.0021	ppm v/v			11/15/22 21:25	1.5
Styrene	ND		0.0012	0.00036	ppm v/v			11/15/22 21:25	1.5
1,1,2,2-Tetrachloroethane	ND		0.0012	0.00021	ppm v/v			11/15/22 21:25	1.5
Tetrachloroethene	0.081		0.0012	0.00018	ppm v/v			11/15/22 21:25	1.5
Toluene	ND		0.0018	0.00035	ppm v/v			11/15/22 21:25	1.5
1,1,2-Trichloro-1,2,2-trifluoroetha	0.070		0.0012	0.00015	ppm v/v			11/15/22 21:25	1.5
ne									
1,2,4-Trichlorobenzene	ND		0.0060		ppm v/v			11/15/22 21:25	1.5
1,1,1-Trichloroethane	0.0096		0.0012	0.00044				11/15/22 21:25	1.5
1,1,2-Trichloroethane	ND		0.0012	0.00023				11/15/22 21:25	1.5
Trichloroethene	0.10		0.00060	0.00020	ppm v/v			11/15/22 21:25	1.5
Trichlorofluoromethane	0.14		0.0012	0.00017				11/15/22 21:25	1.5
1,2,4-Trimethylbenzene	ND	*+	0.0012	0.00030	ppm v/v			11/15/22 21:25	1.5
1,3,5-Trimethylbenzene	ND		0.0024	0.00098				11/15/22 21:25	1.5
Vinyl acetate	ND		0.0060	0.00042	ppm v/v			11/15/22 21:25	1.5
Vinyl chloride	ND	*+	0.00060	0.00039	ppm v/v			11/15/22 21:25	1.5
m,p-Xylene	ND		0.0012	0.00044				11/15/22 21:25	1.5
o-Xylene	ND		0.0012	0.00023	ppm v/v			11/15/22 21:25	1.5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		60 - 140					11/15/22 21:25	1.5

Client Sample ID: 118925-001/MWL-SV05-100

Date Collected: 10/28/22 11:05

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Lab Sample	ID: 140-29549-20	
	Matrix: Air	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.030	0.0086	ppm v/v			11/15/22 22:14	1.51
Benzene	ND		0.0012	0.00020	ppm v/v			11/15/22 22:14	1.51
Benzyl chloride	ND	*+	0.0024	0.00057	ppm v/v			11/15/22 22:14	1.51
Bromodichloromethane	ND		0.0012	0.00027	ppm v/v			11/15/22 22:14	1.51
Bromoform	ND		0.0012	0.00041	ppm v/v			11/15/22 22:14	1.51
Bromomethane	ND	*+	0.0012	0.00033	ppm v/v			11/15/22 22:14	1.51
2-Butanone (MEK)	ND		0.0060	0.0011	ppm v/v			11/15/22 22:14	1.51
Carbon disulfide	ND		0.0030	0.00053	ppm v/v			11/15/22 22:14	1.51
Carbon tetrachloride	0.00042	J	0.0012	0.00020	ppm v/v			11/15/22 22:14	1.51
Chlorobenzene	ND		0.0012	0.00033	ppm v/v			11/15/22 22:14	1.51

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118925-001/MWL-SV05-100

Lab Sample ID: 140-29549-20 Date Collected: 10/28/22 11:05 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		D Pre	pared	Analyzed	Dil Fac
Chloroethane	ND	*+	0.0012	0.00048	ppm v/v			11/15/22 22:14	1.51
Chloroform	0.0019		0.0012	0.00021	ppm v/v			11/15/22 22:14	1.51
Chloromethane	ND	*+	0.0030	0.0010	ppm v/v			11/15/22 22:14	1.51
Dibromochloromethane	ND		0.0012	0.00021	ppm v/v			11/15/22 22:14	1.51
1,2-Dibromoethane (EDB)	ND		0.0012	0.00018	ppm v/v			11/15/22 22:14	1.51
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012	0.00018	ppm v/v			11/15/22 22:14	1.51
1,2-Dichlorobenzene	ND	*+	0.0012	0.00047	ppm v/v			11/15/22 22:14	1.51
1,3-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/15/22 22:14	1.51
1,4-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/15/22 22:14	1.51
Dichlorodifluoromethane	0.067		0.0012	0.00021	ppm v/v			11/15/22 22:14	1.51
1,1-Dichloroethane	0.0024		0.0012	0.00017	ppm v/v			11/15/22 22:14	1.51
1,2-Dichloroethane	ND		0.0012	0.00015	ppm v/v			11/15/22 22:14	1.51
1,1-Dichloroethene	0.012		0.0012	0.00020	ppm v/v			11/15/22 22:14	1.51
cis-1,2-Dichloroethene	0.00083	J	0.0012	0.00015	ppm v/v			11/15/22 22:14	1.51
trans-1,2-Dichloroethene	ND		0.0012	0.00020	ppm v/v			11/15/22 22:14	1.51
1,2-Dichloropropane	ND		0.0012	0.00015	ppm v/v			11/15/22 22:14	1.51
cis-1,3-Dichloropropene	ND		0.0012	0.00029	ppm v/v			11/15/22 22:14	1.51
trans-1,3-Dichloropropene	ND		0.0012	0.00030	ppm v/v			11/15/22 22:14	1.51
Ethylbenzene	ND		0.0012	0.00020	ppm v/v			11/15/22 22:14	1.51
4-Ethyltoluene	ND		0.0024	0.00032	ppm v/v			11/15/22 22:14	1.51
Hexachlorobutadiene	ND	*+	0.0060	0.00048	ppm v/v			11/15/22 22:14	1.51
2-Hexanone	ND		0.0030	0.00082	ppm v/v			11/15/22 22:14	1.51
4-Methyl-2-pentanone (MIBK)	ND		0.0030	0.00082	ppm v/v			11/15/22 22:14	1.51
Methylene Chloride	ND		0.0060	0.0021	ppm v/v			11/15/22 22:14	1.51
Styrene	ND		0.0012	0.00036	ppm v/v			11/15/22 22:14	1.51
1,1,2,2-Tetrachloroethane	ND		0.0012	0.00021	ppm v/v			11/15/22 22:14	1.51
Tetrachloroethene	0.081		0.0012	0.00018	ppm v/v			11/15/22 22:14	1.51
Toluene	ND		0.0018	0.00035	ppm v/v			11/15/22 22:14	1.51
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.069		0.0012	0.00015	ppm v/v			11/15/22 22:14	1.51
1,2,4-Trichlorobenzene	ND		0.0060	0.00053	ppm v/v			11/15/22 22:14	1.51
1,1,1-Trichloroethane	0.0096		0.0012	0.00044	ppm v/v			11/15/22 22:14	1.51
1,1,2-Trichloroethane	ND		0.0012	0.00023	ppm v/v			11/15/22 22:14	1.51
Trichloroethene	0.099		0.00060	0.00020	ppm v/v			11/15/22 22:14	1.51
Trichlorofluoromethane	0.14		0.0012	0.00017	ppm v/v			11/15/22 22:14	1.51
1,2,4-Trimethylbenzene	ND	*+	0.0012		ppm v/v			11/15/22 22:14	1.51
1,3,5-Trimethylbenzene	ND		0.0024	0.00098	ppm v/v			11/15/22 22:14	1.51
Vinyl acetate	ND		0.0060	0.00042	ppm v/v			11/15/22 22:14	1.51
Vinyl chloride	ND	*+	0.00060		ppm v/v			11/15/22 22:14	1.51
m,p-Xylene	ND		0.0012		ppm v/v			11/15/22 22:14	1.51
o-Xylene	ND		0.0012	0.00023	ppm v/v			11/15/22 22:14	1.51
Surrogate	%Recovery	Qualifier	Limits			Pre	pared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		60 - 140					11/15/22 22:14	1.51

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118926-001/MWL-SV05-200

Lab Sample ID: 140-29549-21 Date Collected: 10/28/22 11:11 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fa
Acetone	ND		0.029	0.0083	ppm v/v		11/15/22 23:03	1.4
Benzene	0.00023	J	0.0012	0.00019	ppm v/v		11/15/22 23:03	1.4
Benzyl chloride	ND	*+	0.0023	0.00055	ppm v/v		11/15/22 23:03	1.4
Bromodichloromethane	ND		0.0012	0.00026	ppm v/v		11/15/22 23:03	1.4
Bromoform	ND		0.0012	0.00039	ppm v/v		11/15/22 23:03	1.4
Bromomethane	ND	*+	0.0012	0.00032	ppm v/v		11/15/22 23:03	1.4
2-Butanone (MEK)	ND		0.0058	0.0011	ppm v/v		11/15/22 23:03	1.4
Carbon disulfide	ND		0.0029	0.00051	ppm v/v		11/15/22 23:03	1.4
Carbon tetrachloride	0.00082	J	0.0012	0.00019	ppm v/v		11/15/22 23:03	1.4
Chlorobenzene	ND		0.0012	0.00032	ppm v/v		11/15/22 23:03	1.4
Chloroethane	ND	*+	0.0012	0.00047	ppm v/v		11/15/22 23:03	1.4
Chloroform	0.0020		0.0012	0.00020	ppm v/v		11/15/22 23:03	1.4
Chloromethane	ND	*+	0.0029	0.00096	ppm v/v		11/15/22 23:03	1.4
Dibromochloromethane	ND		0.0012	0.00020	ppm v/v		11/15/22 23:03	1.4
1,2-Dibromoethane (EDB)	ND		0.0012	0.00018	ppm v/v		11/15/22 23:03	1.4
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012		ppm v/v		11/15/22 23:03	1.4
1,2-Dichlorobenzene	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
1,3-Dichlorobenzene	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
1,4-Dichlorobenzene	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
Dichlorodifluoromethane	0.075		0.0012		ppm v/v		11/15/22 23:03	1.4
1,1-Dichloroethane	0.0043		0.0012		ppm v/v		11/15/22 23:03	1.4
1,2-Dichloroethane	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
1,1-Dichloroethene	0.025		0.0012		ppm v/v		11/15/22 23:03	1.4
cis-1,2-Dichloroethene	0.0015		0.0012		ppm v/v		11/15/22 23:03	1.4
trans-1,2-Dichloroethene	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
1,2-Dichloropropane	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
cis-1,3-Dichloropropene	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
trans-1,3-Dichloropropene	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
Ethylbenzene	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
4-Ethyltoluene	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
Hexachlorobutadiene	ND	*+	0.0023		ppm v/v		11/15/22 23:03	1.4
2-Hexanone	ND	•	0.0029		ppm v/v		11/15/22 23:03	1.4
4-Methyl-2-pentanone (MIBK)	ND		0.0029		ppm v/v		11/15/22 23:03	1.4
Methylene Chloride			0.0029		ppm v/v		11/15/22 23:03	1.4
•	0.0029 ND	J	0.0038		ppm v/v		11/15/22 23:03	1.4
Styrene	ND		0.0012		ppm v/v			
1,1,2,2-Tetrachloroethane			0.0012		ppm v/v		11/15/22 23:03	1.4
Tetrachloroethene	0.15						11/15/22 23:03	
Toluene 1,1,2-Trichloro-1,2,2-trifluoroetha	ND 0.14		0.0018 0.0012		ppm v/v ppm v/v		11/15/22 23:03 11/15/22 23:03	1.4 1.4
ne 1,2,4-Trichlorobenzene	ND		0.0058	0.00051	ppm v/v		11/15/22 23:03	1.4
1,1,1-Trichloroethane	0.0032		0.0012		ppm v/v		11/15/22 23:03	1.4
1,1,2-Trichloroethane	ND		0.0012		ppm v/v		11/15/22 23:03	1.4
Trichloroethene	0.20		0.00058		ppm v/v		11/15/22 23:03	1.4
Trichlorofluoromethane	0.20		0.00036		ppm v/v		11/15/22 23:03	1.4
1,2,4-Trimethylbenzene	0.10 ND	*_	0.0012		ppm v/v		11/15/22 23:03	1.4
		т	0.0012					1.4
1,3,5-Trimethylbenzene	ND				ppm v/v		11/15/22 23:03	
Vinyl acetate Vinyl chloride	ND ND		0.0058 0.00058	0.00041	ppm v/v		11/15/22 23:03 11/15/22 23:03	1.4 1.4

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 118926-001/MWL-SV05-200

Date Collected: 10/28/22 11:11 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	ittodait	Qualifier	RL	MDL	Unit	U	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.0012	0.00042	ppm v/v			11/15/22 23:03	1.46
o-Xylene	ND		0.0012	0.00022	ppm v/v			11/15/22 23:03	1.46
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery	Qualifier	Limits 60 140				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		60 - 140						15/22 23:03

Client Sample ID: 118927-001/MWL-SV05-300 Lab Sample ID: 140-29549-22

Date Collected: 10/28/22 11:18 Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Lab	Sample	ID.	140-23343-22
			Matrix: Air

Lab Sample ID: 140-29549-21

Job ID: 140-29549-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.030	0.0086	ppm v/v			11/15/22 23:52	1.5
Benzene	ND		0.0012	0.00020	ppm v/v			11/15/22 23:52	1.5
Benzyl chloride	ND	*+	0.0024	0.00057	ppm v/v			11/15/22 23:52	1.5
Bromodichloromethane	ND		0.0012	0.00027	ppm v/v			11/15/22 23:52	1.5
Bromoform	ND		0.0012	0.00041	ppm v/v			11/15/22 23:52	1.5
Bromomethane	ND	*+	0.0012	0.00033	ppm v/v			11/15/22 23:52	1.5
2-Butanone (MEK)	ND		0.0060	0.0011	ppm v/v			11/15/22 23:52	1.5
Carbon disulfide	ND		0.0030	0.00053	ppm v/v			11/15/22 23:52	1.5
Carbon tetrachloride	0.00069	J	0.0012	0.00020	ppm v/v			11/15/22 23:52	1.5
Chlorobenzene	ND		0.0012	0.00033	ppm v/v			11/15/22 23:52	1.5
Chloroethane	ND	*+	0.0012	0.00048	ppm v/v			11/15/22 23:52	1.5
Chloroform	0.00063	J	0.0012	0.00021	ppm v/v			11/15/22 23:52	1.5
Chloromethane	ND	*+	0.0030	0.00099	ppm v/v			11/15/22 23:52	1.5
Dibromochloromethane	ND		0.0012	0.00021	ppm v/v			11/15/22 23:52	1.5
1,2-Dibromoethane (EDB)	ND		0.0012	0.00018	ppm v/v			11/15/22 23:52	1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012	0.00018	ppm v/v			11/15/22 23:52	1.5
1,2-Dichlorobenzene	ND	*+	0.0012	0.00047	ppm v/v			11/15/22 23:52	1.5
1,3-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/15/22 23:52	1.5
1,4-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/15/22 23:52	1.5
Dichlorodifluoromethane	0.038		0.0012	0.00021	ppm v/v			11/15/22 23:52	1.5
1,1-Dichloroethane	0.0010	J	0.0012	0.00017	ppm v/v			11/15/22 23:52	1.5
1,2-Dichloroethane	ND		0.0012	0.00015	ppm v/v			11/15/22 23:52	1.5
1,1-Dichloroethene	0.013		0.0012	0.00020	ppm v/v			11/15/22 23:52	1.5
cis-1,2-Dichloroethene	0.00036	J	0.0012	0.00015	ppm v/v			11/15/22 23:52	1.5
trans-1,2-Dichloroethene	ND		0.0012	0.00020	ppm v/v			11/15/22 23:52	1.5
1,2-Dichloropropane	ND		0.0012	0.00015	ppm v/v			11/15/22 23:52	1.5
cis-1,3-Dichloropropene	ND		0.0012	0.00029	ppm v/v			11/15/22 23:52	1.5
trans-1,3-Dichloropropene	ND		0.0012	0.00030	ppm v/v			11/15/22 23:52	1.5
Ethylbenzene	ND		0.0012	0.00020	ppm v/v			11/15/22 23:52	1.5
4-Ethyltoluene	ND		0.0024	0.00032	ppm v/v			11/15/22 23:52	1.5
Hexachlorobutadiene	ND	*+	0.0060	0.00048	ppm v/v			11/15/22 23:52	1.5
2-Hexanone	ND		0.0030	0.00081	ppm v/v			11/15/22 23:52	1.5
4-Methyl-2-pentanone (MIBK)	ND		0.0030	0.00081	ppm v/v			11/15/22 23:52	1.5
Methylene Chloride	ND		0.0060	0.0021	ppm v/v			11/15/22 23:52	1.5
Styrene	ND		0.0012	0.00036	ppm v/v			11/15/22 23:52	1.5
1,1,2,2-Tetrachloroethane	ND		0.0012	0.00021	ppm v/v			11/15/22 23:52	1.5

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118927-001/MWL-SV05-300

Date Collected: 10/28/22 11:18 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.089		0.0012	0.00018	ppm v/v	:		11/15/22 23:52	1.5
Toluene	ND		0.0018	0.00035	ppm v/v			11/15/22 23:52	1.5
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.093		0.0012	0.00015	ppm v/v			11/15/22 23:52	1.5
1,2,4-Trichlorobenzene	ND		0.0060	0.00053	ppm v/v			11/15/22 23:52	1.5
1,1,1-Trichloroethane	0.00071	J	0.0012	0.00044	ppm v/v			11/15/22 23:52	1.5
1,1,2-Trichloroethane	ND		0.0012	0.00023	ppm v/v			11/15/22 23:52	1.5
Trichloroethene	0.071		0.00060	0.00020	ppm v/v			11/15/22 23:52	1.5
Trichlorofluoromethane	0.026		0.0012	0.00017	ppm v/v			11/15/22 23:52	1.5
1,2,4-Trimethylbenzene	ND	*+	0.0012	0.00030	ppm v/v			11/15/22 23:52	1.5
1,3,5-Trimethylbenzene	ND		0.0024	0.00098	ppm v/v			11/15/22 23:52	1.5
Vinyl acetate	ND		0.0060	0.00042	ppm v/v			11/15/22 23:52	1.5
Vinyl chloride	ND	*+	0.00060	0.00039	ppm v/v			11/15/22 23:52	1.5
m,p-Xylene	ND		0.0012	0.00044	ppm v/v			11/15/22 23:52	1.5
o-Xylene	ND		0.0012	0.00023	ppm v/v			11/15/22 23:52	1.5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		60 - 140			-		11/15/22 23:52	1.5

Client Sample ID: 118928-001/MWL-SV05-300

Lab Sample ID: 140-29549-23 Date Collected: 10/28/22 11:18 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.030	0.0086	ppm v/v			11/16/22 08:12	1.5
Benzene	ND		0.0012	0.00020	ppm v/v			11/16/22 08:12	1.5
Benzyl chloride	ND	*+	0.0024	0.00057	ppm v/v			11/16/22 08:12	1.5
Bromodichloromethane	ND		0.0012	0.00027	ppm v/v			11/16/22 08:12	1.5
Bromoform	ND		0.0012	0.00041	ppm v/v			11/16/22 08:12	1.5
Bromomethane	ND	*+	0.0012	0.00033	ppm v/v			11/16/22 08:12	1.5
2-Butanone (MEK)	ND		0.0060	0.0011	ppm v/v			11/16/22 08:12	1.5
Carbon disulfide	ND		0.0030	0.00053	ppm v/v			11/16/22 08:12	1.5
Carbon tetrachloride	0.00065	J	0.0012	0.00020	ppm v/v			11/16/22 08:12	1.5
Chlorobenzene	ND		0.0012	0.00033	ppm v/v			11/16/22 08:12	1.5
Chloroethane	ND	*+	0.0012	0.00048	ppm v/v			11/16/22 08:12	1.5
Chloroform	0.00080	J	0.0012	0.00021	ppm v/v			11/16/22 08:12	1.5
Chloromethane	ND	*+	0.0030	0.00099	ppm v/v			11/16/22 08:12	1.5
Dibromochloromethane	ND		0.0012	0.00021	ppm v/v			11/16/22 08:12	1.5
1,2-Dibromoethane (EDB)	ND		0.0012	0.00018	ppm v/v			11/16/22 08:12	1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012	0.00018	ppm v/v			11/16/22 08:12	1.5
1,2-Dichlorobenzene	ND	*+	0.0012	0.00047	ppm v/v			11/16/22 08:12	1.5
1,3-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/16/22 08:12	1.5
1,4-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/16/22 08:12	1.5
Dichlorodifluoromethane	0.040		0.0012	0.00021	ppm v/v			11/16/22 08:12	1.5
1,1-Dichloroethane	0.0012		0.0012	0.00017	ppm v/v			11/16/22 08:12	1.5
1,2-Dichloroethane	ND		0.0012	0.00015	ppm v/v			11/16/22 08:12	1.5
1,1-Dichloroethene	0.014		0.0012	0.00020	ppm v/v			11/16/22 08:12	1.5

Eurofins Knoxville

Lab Sample ID: 140-29549-22

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118928-001/MWL-SV05-300 Lab Sample ID: 140-29549-23

Date Collected: 10/28/22 11:18 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00038	J	0.0012	0.00015	ppm v/v	:		11/16/22 08:12	1.5
trans-1,2-Dichloroethene	ND		0.0012	0.00020	ppm v/v			11/16/22 08:12	1.5
1,2-Dichloropropane	ND		0.0012	0.00015	ppm v/v			11/16/22 08:12	1.5
cis-1,3-Dichloropropene	ND		0.0012	0.00029	ppm v/v			11/16/22 08:12	1.5
trans-1,3-Dichloropropene	ND		0.0012	0.00030	ppm v/v			11/16/22 08:12	1.5
Ethylbenzene	ND		0.0012	0.00020	ppm v/v			11/16/22 08:12	1.5
4-Ethyltoluene	ND		0.0024	0.00032	ppm v/v			11/16/22 08:12	1.5
Hexachlorobutadiene	ND	*+	0.0060	0.00048	ppm v/v			11/16/22 08:12	1.5
2-Hexanone	ND		0.0030	0.00081	ppm v/v			11/16/22 08:12	1.5
4-Methyl-2-pentanone (MIBK)	ND		0.0030	0.00081	ppm v/v			11/16/22 08:12	1.5
Methylene Chloride	ND		0.0060	0.0021	ppm v/v			11/16/22 08:12	1.5
Styrene	ND		0.0012	0.00036	ppm v/v			11/16/22 08:12	1.5
1,1,2,2-Tetrachloroethane	ND		0.0012	0.00021	ppm v/v			11/16/22 08:12	1.5
Tetrachloroethene	0.091		0.0012	0.00018	ppm v/v			11/16/22 08:12	1.5
Toluene	ND		0.0018	0.00035	ppm v/v			11/16/22 08:12	1.5
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.093		0.0012	0.00015	ppm v/v			11/16/22 08:12	1.5
1,2,4-Trichlorobenzene	ND		0.0060	0.00053	ppm v/v			11/16/22 08:12	1.5
1,1,1-Trichloroethane	0.0011	J	0.0012	0.00044	ppm v/v			11/16/22 08:12	1.5
1,1,2-Trichloroethane	ND		0.0012	0.00023	ppm v/v			11/16/22 08:12	1.5
Trichloroethene	0.082		0.00060	0.00020	ppm v/v			11/16/22 08:12	1.5
Trichlorofluoromethane	0.030		0.0012	0.00017	ppm v/v			11/16/22 08:12	1.5
1,2,4-Trimethylbenzene	ND	*+	0.0012	0.00030	ppm v/v			11/16/22 08:12	1.5
1,3,5-Trimethylbenzene	ND		0.0024	0.00098	ppm v/v			11/16/22 08:12	1.5
Vinyl acetate	ND		0.0060	0.00042	ppm v/v			11/16/22 08:12	1.5
Vinyl chloride	ND	*+	0.00060	0.00039	ppm v/v			11/16/22 08:12	1.5
m,p-Xylene	ND		0.0012	0.00044	ppm v/v			11/16/22 08:12	1.5
o-Xylene	ND		0.0012	0.00023	ppm v/v			11/16/22 08:12	1.5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		60 - 140					11/16/22 08:12	1.5

Client Sample ID: 118929-001/MWL-SV05-400

Date Collected: 10/28/22 11:25 Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Lab Sample ID: 140-29549-24

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.030	0.0085	ppm v/v			11/15/22 03:28	1.49
Benzene	0.00027	J	0.0012	0.00019	ppm v/v			11/15/22 03:28	1.49
Benzyl chloride	ND		0.0024	0.00057	ppm v/v			11/15/22 03:28	1.49
Bromodichloromethane	ND		0.0012	0.00027	ppm v/v			11/15/22 03:28	1.49
Bromoform	ND		0.0012	0.00040	ppm v/v			11/15/22 03:28	1.49
Bromomethane	ND		0.0012	0.00033	ppm v/v			11/15/22 03:28	1.49
2-Butanone (MEK)	ND		0.0060	0.0011	ppm v/v			11/15/22 03:28	1.49
Carbon disulfide	0.00069	J	0.0030	0.00052	ppm v/v			11/15/22 03:28	1.49
Carbon tetrachloride	0.00058	J	0.0012	0.00019	ppm v/v			11/15/22 03:28	1.49
Chlorobenzene	ND		0.0012	0.00033	ppm v/v			11/15/22 03:28	1.49

Client: Sandia National Laboratories Job ID: 140-29549-1

Project/Site: MWL LTMMP

Client Sample ID: 118929-001/MWL-SV05-400

Lab Sample ID: 140-29549-24 Date Collected: 10/28/22 11:25 Matrix: Air

Date Received: 11/08/22 09:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	D Prepared	Analyzed	Dil Fac
Chloroethane	ND		0.0012		ppm v/v		11/15/22 03:28	1.49
Chloroform	0.00075	J	0.0012		ppm v/v		11/15/22 03:28	1.49
Chloromethane	ND		0.0030		ppm v/v		11/15/22 03:28	1.49
Dibromochloromethane	ND		0.0012		ppm v/v		11/15/22 03:28	1.49
1,2-Dibromoethane (EDB)	ND		0.0012		ppm v/v		11/15/22 03:28	1.49
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0012		ppm v/v		11/15/22 03:28	1.49
1,2-Dichlorobenzene	ND		0.0012		ppm v/v		11/15/22 03:28	1.49
1,3-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v		11/15/22 03:28	1.49
1,4-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v		11/15/22 03:28	1.49
Dichlorodifluoromethane	0.023		0.0012		ppm v/v		11/15/22 03:28	1.49
1,1-Dichloroethane	0.0016		0.0012		ppm v/v		11/15/22 03:28	1.49
1,2-Dichloroethane	ND		0.0012		ppm v/v		11/15/22 03:28	1.49
1,1-Dichloroethene	0.010		0.0012		ppm v/v		11/15/22 03:28	1.49
cis-1,2-Dichloroethene	0.00054	J	0.0012	0.00015	ppm v/v		11/15/22 03:28	1.49
trans-1,2-Dichloroethene	ND		0.0012		ppm v/v		11/15/22 03:28	1.49
1,2-Dichloropropane	ND		0.0012	0.00015	ppm v/v		11/15/22 03:28	1.49
cis-1,3-Dichloropropene	ND		0.0012	0.00028	ppm v/v		11/15/22 03:28	1.49
trans-1,3-Dichloropropene	ND		0.0012	0.00030	ppm v/v		11/15/22 03:28	1.49
Ethylbenzene	ND		0.0012	0.00019	ppm v/v		11/15/22 03:28	1.49
4-Ethyltoluene	ND		0.0024	0.00031	ppm v/v		11/15/22 03:28	1.49
Hexachlorobutadiene	ND		0.0060	0.00048	ppm v/v		11/15/22 03:28	1.49
2-Hexanone	ND		0.0030	0.00080	ppm v/v		11/15/22 03:28	1.49
4-Methyl-2-pentanone (MIBK)	ND		0.0030	0.00080	ppm v/v		11/15/22 03:28	1.49
Methylene Chloride	ND		0.0060	0.0021	ppm v/v		11/15/22 03:28	1.49
Styrene	ND		0.0012	0.00036	ppm v/v		11/15/22 03:28	1.49
1,1,2,2-Tetrachloroethane	ND		0.0012	0.00021	ppm v/v		11/15/22 03:28	1.49
Tetrachloroethene	0.097		0.0012	0.00018	ppm v/v		11/15/22 03:28	1.49
Toluene	ND		0.0018	0.00034	ppm v/v		11/15/22 03:28	1.49
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.045		0.0012	0.00015	ppm v/v		11/15/22 03:28	1.49
1,2,4-Trichlorobenzene	ND		0.0060	0.00052	ppm v/v		11/15/22 03:28	1.49
1,1,1-Trichloroethane	0.0019		0.0012	0.00043	ppm v/v		11/15/22 03:28	1.49
1,1,2-Trichloroethane	ND		0.0012	0.00022	ppm v/v		11/15/22 03:28	1.49
Trichloroethene	0.083		0.00060	0.00019	ppm v/v		11/15/22 03:28	1.49
Trichlorofluoromethane	0.032		0.0012	0.00016	ppm v/v		11/15/22 03:28	1.49
1,2,4-Trimethylbenzene	ND		0.0012	0.00030	ppm v/v		11/15/22 03:28	1.49
1,3,5-Trimethylbenzene	ND		0.0024	0.00097	ppm v/v		11/15/22 03:28	1.49
Vinyl acetate	ND		0.0060	0.00042	ppm v/v		11/15/22 03:28	1.49
Vinyl chloride	ND		0.00060	0.00039	ppm v/v		11/15/22 03:28	1.49
m,p-Xylene	ND		0.0012	0.00043	ppm v/v		11/15/22 03:28	1.49
o-Xylene	ND		0.0012	0.00022	ppm v/v		11/15/22 03:28	1.49
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		60 - 140				11/15/22 03:28	1.49

ANNEX D

Mixed Waste Landfill Soil-Moisture Monitoring Forms

April 2022-March 2023

Field Forms and Tables

Mixed Waste Landfill Soil-Moisture Monitoring

Soil-Moisture Monitoring Field Forms

Mixed Waste Landfill Neutron Logging Data Field Form

Name: Robert	Fiock		nt: 6701/6539	Chi:/, 303/0.	
Name: Junielle	Millel	Previous Coun	1411	Count Time: 3	
Notes: Cartlin	Lathane	2nd Stand	and count tax	Ken on 4/14/2	1/2022
Vertical Depth Below Ground	Linear Depth Along	Winch Counter	VZ-3 Counts (E Side)	VZ-2 Counts (SW Corner)	VZ-1 Counts (NW Corner)
Surface (ft)	Casing (ft)	Reading (ft)	Date/Time	Date/Time 4-21-22/09:40	Date/Time
0.0	0	0	845	2093	2240
0.9	1	9999	2373	2723	2326
1.7	2	9998	2701	3073	2205
2.6	3	9997	2694	2852	2200
3.5	4	9996	1987	3110	2176
4.3	5	9995	2083	2715	1809
5.2	6	9994	1853	2/06	1826
6.1	7	9993	1806	1875	1786
6.9	8	9992	1835	1836	1639
7.8	9	9991	1870	1824	214
8.7	10	9990	2024	1547	2278
9.5	11	9989	18/3	2049	2116
10.4	12	9988	1758	1824	1767
11.3	13	9987	1806	1751	1712
12.1	14	9986	1693	1642	1055
13.0	15	9985	1817	1812	2043
13.9	16	9984	1563	1704	1364
14.7	17	9983	1723	1790	1561
15.6	18	9982	1681	1917	1451
16.5	19	9981	1304	7187	1511
17.3	20	9980	1704	2005	1587
18.2	21	9979	1723	1798	1953
19.1	22	9978	1453	1889	2330
19.9	23	9977	1438	2085	2186
20.8	24	9976	1430	1596	1820
21.7	25	9975	1930	1615	1750

Mixed Waste Landfill Neutron Logging Data Field Form

	Mixed Waste Landfill Neutron Logging Data Field Form							
Vertical Depth Below Ground Surface (ft)	Linear Depth Along Casing (ft)	Winch Counter Reading (ft)	VZ-3 Counts (E Side)	VZ-2 Counts (SW Corner)	VZ-1 Counts (NW Corner)			
26.0	30	9970	1641	1615114	1669			
30.3	35	9965	1214	17.67	1993			
34.6	40	9960	1531	1667	1768			
39.0	45	9955	1770	1614	1881			
43.3	50	9950	1837	1650	1648			
47.6	55	9945	17-51	2005	1798			
52.0	60	9940	1771	7946	1619			
56.3	65	9935	1865	2/4/	1995			
60.6	70	9930	2077	2559	11,82			
65.0	75	9925	2737	2156	1967			
69.3	80	9920	1598	1570	1977			
73.6	85	9915	1527	1828	1900			
77.9	90	9910	2168	2268	1907			
82.3	95	9905	1997	2187	2787			
86.6	100	9900	2241	2717	7394			
90.9	105	9895	2554	2347	2176			
95.3	110	9890	1898	1849	2045			
99.6	115	9885	1523	1799	1692			
103.9	120	9880	1455	1914	1912			
108.3	125	9875	2344	2225	1457			
112.6	130	9870	2454	2197	1816			
116.9	135	9865	1661	2661	1707			
121.2	140	9860	1575	1949	1483			
125.6	145	9855	247/	2596	2864			
129.9	150	9850	2192	2/33	2117			
134.2	155	9845	2366	2300	1685			
138.6	160	9840	2724	1909	2153			
142.9	165	9835	2/98	2234	1947			
147.2	170	9830	2459	1633	1761.			
151.6	175	9825	3304	2803	2454			
155.9	180	9820	2938	2808	2838			
160.2	185	9815	1686	2766	2065			
164.5	190	9810	1755	1830	2057			
168.9	195	9805	1995	2934	3329			
173.2	200	9800	2078	3059	2613			

Mixed Waste Landfill Soil-Moisture Monitoring

Soil-Moisture Monitoring Results Tables

Table D-1 VZ-1 Soil-Moisture Monitoring Results April 2022

Vertical Depth Below Ground	Linear Depth	Collection Period April 2022	Baseline Average (2004-2006)	Difference between Baseline Average & April 2022	Soil-Moisture
Surface	Along		Soil-Moisture		Trigger Level
(ft)	Casing (ft)		(% content by volu	me)	(% content by volume)
3.5	4	3.8	2.9	0.9	NA
4.3	5	2.8	2.9	-0.1	NA
5.2	6	2.9	2.9	0.0	NA
6.1	7	2.8	2.6	0.2	NA
6.9	8	2.4	2.2	0.2	NA
7.8	9	3.7	1.9	1.8	NA
8.7	10	4.2	1.7	2.5	23
9.5	11	3.7	2.0	1.7	23
10.4	12	2.7	2.7	0.0	23
11.3	13	3.1	3.1	0.0	23
12.1	14	3.5	2.6	0.9	23
13.0	15	3.5	2.4	1.1	23
13.9	16	3.0	2.6	0.4	23
14.7	17	2.2	2.8	-0.6	23
15.6	18	1.9	2.9	-1.0	23
16.5	19	2.0	2.4	-0.4	23
17.3	20	2.2	2.0	0.2	23
18.2	21	3.2	2.0	1.2	23
19.1	22	4.2	2.1	2.1	23
19.9	23	3.8	3.0	0.8	23
20.8	24	2.9	4.3	-1.4	23
21.7	25	2.6	4.0	-1.4	23
26.0	30	2.4	2.9	-0.5	23
30.3	35	3.3	2.7	0.6	23
34.6	40	2.7	2.3	0.4	23
39.0	45	3.0	3.0	0.0	23
43.3	50	2.4	2.9	-0.5	23
47.6	55	2.8	2.8	0.0	23
52.0	60	2.9	3.4	-0.5	23
56.3	65	3.3	2.9	0.4	23

Table D-1 (Concluded) VZ-1 Soil-Moisture Monitoring Results April 2022

				T	
Vertical Depth Below Ground Surface	Linear Depth Along Casing	Collection Period April 2022	Baseline Average (2004-2006) Soil-Moisture	Difference between Baseline Average & April 2022	Soil-Moisture Trigger Level
(ft)	(ft)		(% content by volu		(% content by volume)
60.6	70	2.5	2.1	0.4	23
65.0	75	3.3	5.6	-2.3	23
69.3	80	3.1	2.8	0.3	23
73.6	85	3.1	3.1	0.0	23
77.9	90	3.1	3.7	-0.6	23
82.3	95	4.1	3.7	0.4	23
86.6	100	4.4	5.4	-1.0	23
90.9	105	3.7	5.0	-1.3	NA
95.3	110	3.5	3.0	0.5	NA
99.6	115	2.5	3.6	-1.1	NA
103.9	120	3.1	2.2	0.9	NA
108.3	125	1.9	2.7	-0.8	NA
112.6	130	2.8	3.3	-0.5	NA
116.9	135	2.5	3.1	-0.6	NA
121.2	140	1.9	2.1	-0.2	NA
125.6	145	5.5	3.8	1.7	NA
129.9	150	3.7	3.2	0.5	NA
134.2	155	2.5	2.7	-0.2	NA
138.6	160	3.8	2.1	1.7	NA
142.9	165	3.2	3.8	-0.6	NA
147.2	170	2.7	2.0	0.7	NA
151.6	175	4.6	6.0	-1.4	NA
155.9	180	5.6	5.5	0.1	NA
160.2	185	3.5	4.4	-0.9	NA
164.5	190	3.5	3.0	0.5	NA
168.9	195	6.9	7.0	-0.1	NA
173.2	200	5.0	5.4	-0.4	NA
	Average	3.3	3.2		

Note: Shaded area represents depths where 23% soil moisture trigger applies.

NA = Not applicable.

Table D-2 VZ-2 Soil-Moisture Monitoring Results April 2022

Vertical Depth Below Ground Surface (ft)	Linear Depth Along Casing (ft)	Collection Period April 2022	Baseline Average (2004-2006) Soil-Moisture (% content by volu		Soil-Moisture Trigger Level (% content by volume)
3.5	4	6.4	2.7	3.7	NA
4.3	5	5.3	3.3	2.0	NA
5.2	6	3.6	3.6	0.0	NA
6.1	7	3.0	3.6	-0.6	NA
6.9	8	2.9	3.5	-0.6	NA
7.8	9	2.9	3.1	-0.2	NA
8.7	10	2.1	2.4	-0.3	23
9.5	11	3.5	2.2	1.3	23
10.4	12	2.9	2.2	0.7	23
11.3	13	2.7	2.1	0.6	23
12.1	14	2.4	2.5	-0.1	23
13.0	15	2.8	3.0	-0.2	23
13.9	16	2.5	2.8	-0.3	23
14.7	17	2.8	2.4	0.4	23
15.6	18	3.1	2.6	0.5	23
16.5	19	3.8	2.7	1.1	23
17.3	20	3.4	2.9	0.5	23
18.2	21	2.8	3.1	-0.3	23
19.1	22	3.0	3.6	-0.6	23
19.9	23	3.6	3.7	-0.1	23
20.8	24	2.2	3.1	-0.9	23
21.7	25	2.3	2.7	-0.4	23
26.0	30	2.4	2.4	0.0	23
30.3	35	2.8	2.9	-0.1	23
34.6	40	2.4	2.7	-0.3	23
39.0	45	2.3	2.3	0.0	23
43.3	50	2.4	2.1	0.3	23
47.6	55	3.4	3.1	0.3	23
52.0	60	3.2	3.0	0.2	23
56.3	65	3.7	5.5	-1.8	23

Table D-2 (Concluded) VZ-2 Soil-Moisture Monitoring Results April 2022

				1	
Vertical Depth Below Ground Surface (ft)	Linear Depth Along Casing (ft)	Collection Period April 2022	Baseline Average (2004-2006) Soil-Moisture (% content by volu	Difference between Baseline Average & April 2022	Soil-Moisture Trigger Level (% content by volume)
60.6	70	4.9	4.8	0.1	23
65.0	75	3.8	5.1	-1.3	23
69.3	80	2.2	2.6	-0.4	23
73.6	85	2.9	2.6	0.3	23
77.9	90	4.1	3.1	1.0	23
82.3	95	3.8	3.6	0.2	23
86.6	100	3.9	4.7	-0.8	23
90.9	105	4.3	3.4	0.9	NA
95.3	110	2.9	3.1	-0.2	NA
99.6	115	2.8	3.6	-0.8	NA
103.9	120	3.1	2.0	1.1	NA
108.3	125	4.0	3.8	0.2	NA
112.6	130	3.9	3.6	0.3	NA
116.9	135	5.1	3.4	1.7	NA
121.2	140	3.2	2.4	0.8	NA
125.6	145	5.0	5.9	-0.9	NA
129.9	150	3.7	7.0	-3.3	NA
134.2	155	4.2	3.6	0.6	NA
138.6	160	3.1	3.8	-0.7	NA
142.9	165	4.0	3.0	1.0	NA
147.2	170	2.3	2.9	-0.6	NA
151.6	175	5.5	2.4	3.1	NA
155.9	180	5.5	5.4	0.1	NA
160.2	185	5.4	5.4	0.0	NA
164.5	190	2.9	4.1	-1.2	NA
168.9	195	5.9	3.5	2.4	NA
173.2	200	6.2	6.3	-0.1	NA
	Average	3.5	3.4		

Note: Shaded area represents depths where 23% soil moisture trigger applies.

NA = Not applicable.

Table D-3 VZ-3 Soil-Moisture Monitoring Results April 2022

Vertical Depth Below Ground	Linear Depth Along	Collection Period April 2022	Baseline Average (2004-2006)	Difference between Baseline Average & April 2022	Soil-Moisture
Surface (ft)	Casing (ft)		Soil-Moisture (% content by volu	ume)	Trigger Level (% content by volume)
3.5	4	3.2	4.6	-1.4	NA
4.3	5	3.4	4.5	-1.1	NA
5.2	6	2.8	3.7	-0.9	NA
6.1	7	2.7	2.9	-0.2	NA
6.9	8	2.8	3.1	-0.3	NA
7.8	9	2.9	2.3	0.6	NA
8.7	10	3.3	2.4	0.9	23
9.5	11	2.7	2.6	0.1	23
10.4	12	2.6	2.7	-0.1	23
11.3	13	2.7	3.0	-0.3	23
12.1	14	2.4	2.6	-0.2	23
13.0	15	2.7	2.8	-0.1	23
13.9	16	2.1	2.9	-0.8	23
14.7	17	2.5	3.1	-0.6	23
15.6	18	2.4	3.1	-0.7	23
16.5	19	1.4	2.3	-0.9	23
17.3	20	2.4	2.7	-0.3	23
18.2	21	2.5	2.7	-0.2	23
19.1	22	1.8	1.8	0.0	23
19.9	23	1.7	2.7	-1.0	23
20.8	24	1.7	2.8	-1.1	23
21.7	25	3.0	2.1	0.9	23
26.0	30	2.3	2.5	-0.2	23
30.3	35	2.5	2.8	-0.3	23
34.6	40	2.0	2.1	-0.1	23
39.0	45	2.6	2.7	-0.1	23
43.3	50	2.8	2.9	-0.1	23
47.6	55	2.6	3.4	-0.8	23
52.0	60	2.6	2.9	-0.3	23
56.3	65	2.9	3.5	-0.6	23

Table D-3 (Concluded) VZ-3 Soil-Moisture Monitoring Results April 2022

Vertical Depth Below Ground	Linear Depth Along	Collection Period April 2022	Baseline Average (2004-2006)	Difference between Baseline Average & April 2022	Soil-Moisture
Surface (ft)	Casing (ft)	(Soil-Moisture % content by volu	me)	Trigger Level (% content by volume)
60.6	70	3.4	1.9	1.5	23
65.0	75	5.2	4.3	0.9	23
69.3	80	2.2	4.5	-2.3	23
73.6	85	2.0	3.5	-1.5	23
77.9	90	3.7	1.9	1.8	23
82.3	95	3.2	3.3	-0.1	23
86.6	100	3.9	3.4	0.5	23
90.9	105	4.7	3.3	1.4	NA
95.3	110	3.0	4.7	-1.7	NA
99.6	115	2.0	3.6	-1.6	NA
103.9	120	1.8	2.1	-0.3	NA
108.3	125	4.1	1.8	2.3	NA
112.6	130	4.4	4.3	0.1	NA
116.9	135	2.3	4.0	-1.7	NA
121.2	140	2.1	2.3	-0.2	NA
125.6	145	4.5	2.0	2.5	NA
129.9	150	3.7	4.4	-0.7	NA
134.2	155	4.2	3.6	0.6	NA
138.6	160	5.1	4.4	0.7	NA
142.9	165	3.8	5.2	-1.4	NA
147.2	170	4.4	4.1	0.3	NA
151.6	175	6.7	4.3	2.4	NA
155.9	180	5.7	6.6	-0.9	NA
160.2	185	2.4	5.6	-3.2	NA
164.5	190	2.6	2.7	-0.1	NA
168.9	195	3.2	3.1	0.1	NA
173.2	200	3.4	4.1	-0.7	NA
	Average	3.0	3.2		

Note: Shaded area represents depths where 23% soil moisture trigger applies.

NA = Not applicable.

ANNEX E

Mixed Waste Landfill Groundwater Monitoring Forms and Reports

April 2022-March 2023

Field Forms

Sample Summary Sheet

Data Validation Reports

Contract Verification Forms

Field Sampling Forms

Mixed Waste Landfill

Long-Term Monitoring and Maintenance

Groundwater Monitoring

Form Title	Corresponding Procedure
Field Measurement Log For Groundwater Sample Collection	FOP 05-01
Groundwater Sample Collection Field Equipment Check Log	FOP 05-02
Portable Pump and Tubing/Water Level Indicator Decontamination Log Form	FOP 05-03
Analysis Request and Chain of Custody*	LOP 94-03 / AOP 95-16

^{*}Completed AR/COC forms are provided in the Data Validation Reports in this Annex.

Field Sampling Forms May 2022 Groundwater Monitoring

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

SNL/NM Project Name: MWL		
Well ID: MWL-BW2	Date: 05/12/22	Date:
Pump Method: Portable	Pump Depth: 496'	

PURGE MEASUREMENTS

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
481.93	0835	Start							
484.22	0908	5	20.03	687.97	149.1	7.32	0.47	14.17	1.20
485.04	0928	10	20.18	683.21	136.2	7.33	1.67	11.08	0.94
486.34	0949	15	21.01	700.59	127.7	7.37	2.16	10-12	0.84
487.09	1001	18	20.91	702.62	127.4	7.32	1.97	12.93	1.08
487.65	1010	20	21.11	70470	141.3	7.32	1.98	14.85	1.23
488.14	1019	22	21.30	709.99	13).5	7.33	2.52	17.37	1.44
4188.69	1028	24	21.48	681.56	137.8	7.34	2.65	24.81	2.05
48891	1037	26	2408	701.57	138.1	7.35	2.45	25,99	2.17
489.35	1041	27	21.30	706.19	135.3	7.35	2.24	28.94	2.39
489.54	1046	28	21.21	704.43	136.0	7.37	2.30	2998	2-49
439.69	1051	29	21.38	705,02	134.1	7.36	2.05	28,03	
4189,88	1056	30	21.41	703.61	1531	7.37	2.27	26.24	2:16
	1057		SAn	poliny	2-				
					0				

Comments:

~ 1.5 gals purged from tubing @ 0845

FB LOT# 041422

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

SNL/NM Project Name: MWL		
Well ID: MWL-MW7	Date: 05/16/22	Date:
Pump Method: Portable	Pump Depth: 496'	

PURGE MEASUREMENTS

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
490.12	0833	Start							
491,29	0904	2	22.03	595.05	A3.0	7.53	0.75	75.30	6.20
491.54	0918	4	22.54	598.43	190.4	7.53	0,30	75.32	6.13
491.66	0925	5	22.81	604.44	188.8	7.53	0.27	76.12	6-16
491.71	0932	6	23.19	610.54	184.8	7.53	0.28	76.05	6.12
491.72	0939	7	23.13	602.01	182.0	7,53	0.40	75.90	6.12
491,75	0946	8	23.01	611.35	178.6	7.53	0.36	75.69	6.17
491.77	0953	9	23.61	621.69	177.2	7.53	0.30	7545	6.02
491.81	0959	10	23.48	614.76	175.4	7.53	0.31	75.03	6.01
4(91.85	1006	11	22.96	614.43	176.9	7.54	0.28	75.07	6.06
	1007		SAW	11000					->
				1)				

Comments:

~ 1.5 gals purged from tubing @ <u>0852</u>

smokey and hazy due to wild fires.

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

SNL/NM Project Name: MWL		
Well ID: MWL-MW9	Date: 05/17/22	Date:
Pump Method: Portable	Pump Depth: 497'	

PURGE MEASUREMENTS

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
49/21	0833	Start							
49326	0906	2	22.24	503.69	171.7	7.45	0.27	26.38	2.12
494.05	0922	4	22.12	597.56	177.3	7.45	0.34	20.24	
494,37	0930	5	22.33	597.34	166.1	7.45	0,30	18.62	1.49
494.68	0938	6	22.22	595,14	162-4	7.45	0.37	17.29	1.39
49491	0947	7	22.75	598.49	152.5	7.46	0.35	17.12	1.36
49511	0954	8	22.90	604.21	152.5	7.46	0.45	15.23	1.21
495.32	1003	9	23.82	602-93	149.6	7.45	0.69	15.10	1.20
495.36	1013	10	24.07	625.59	1451	7.45	0.60	14.06	1.09
495,36	1023	11	24.01	622.62	14/6.1	7.44	0.92	12.04	0.94
49537	1026	11,25	24.08	626.79	145,2	7.45	0.89	15.48	1.18
495,38	1029	11.50	24.03	620.97	143.1	7.45	0.91	16.94	1.32
4195.39	1032	11.75	23.85	62831	143.3	7.45	0.71	14.95	1.17
	1033		SAW	plina					
)				
					===				

Comments:

~ 1.5 gals purged from tubing @ 1849

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

SNL/NM Project Name: MWL					
Well ID: MWL-MW8	Date: 05/18/22	Date:			
Pump Method: Portable	Pump Depth: 497'				

PURGE MEASUREMENTS

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	pН	Turbidity (NTU)	DO (%)	DO (mg/L)
491.71	0831	Start						******	
492.96	0855	1	22.99	603.36	170.9	7.51	0.31	54.53	4.15
493,33	0906	2	22.93	591.62	169.4	7.52	0.38	54.83	4.19
493.65	0916	3	22.82	597.75	176.0	7.52	0.38	54.65	4.16
493.90	0927	4	23.41	598.27	171.9	7.52	0.61	54-11	4.06
494.12	0938	5	23.42	599.42	169.6	7.50	0.40	53.91	41.06
494.31	0949	6	2357	1.00.72	167.5	7.51	0,40	51.32	3.86
49457	0959	7	23.21	600.14	165.8	7.50	0,25	47.08	3.56
494.81	009	8	22.91	1.06:49	170.2	7.50	0.27	42.56	3,24
494,99	1017	9	23.14	1,05,81	169.1	7.49	0.34	40.91	3.11
	1018		SAY	nplin	0				~>
Comments:									

Comments:

~ 1.5 gals purged from tubing @ <u>n847</u>

495.38 @ 1032

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MWL						
Calibrations done by: R Lynch			Date: 05/1	2/22		
Make & Model: In-Situ Aqua Troll 600 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: 571025 Other (SN): NA						
		pH Cali	bration/Check			=
pH Calibrated to (std): NA			pH sloped to (std): N A		
Reference value:	4.(00	7	.00	10	.00
	Value	Temp	Value	Temp	Value	Temp
1. Time (24 hr): 0629	41.00	23.84	7.00	23.84	10.00	23.87
2. Time (24 hr): 1315	4.01	24.38	6.99	24.42	10.01	24.34
3. Time (24 hr):						
4. Time (24 hr):						
Standard Lot No.:	1GK093	3	1GK095		1GI516	
Expiration Date.:	NOV/23		NOV/23		SEP/23	
SC Calibr	ration/Check		ORP Calibration/Check			
Reference Value: 1413 uS	3/cm @ 25 C		Reference Value: 220 mV			
	Value	Temp			Value	Temp
1. Time (24 hr): 06 25	1379,5	23.78	1. Time (24 hr):	0635	220.0	23.80
2. Time (24 hr): 13 14	1381.7	24.40	2. Time (24 hr):	1321	219.8	23.97
3. Time (24 hr):			3. Time (24 hr):			
4. Time (24 hr):			4. Time (24 hr):			
Standard Lot No.: 1GJ701	Expiration Date.:	OCT/22	Standard Lot No	.: _1GL278	Expiration Date.:	SEP/22
		DO Cali	bration/Check			
Calibration Value: 81% air saturation @ 5200 ft.				Atmospheric	Pressure in Hg	
1. Time (24 hr): 0622	81.59			27.63		
2. Time (24 hr): 15 13 13	81,			27.70		
3. Time: (24 hr)						
4. Time (24 hr):						

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWL						
Calibration done by: R Lynch			Date: 05/	12/22		
		TURBI	DIMETER			
Make & Model: HACH	2100Q		Serial No. S/I	√ 21090D000519		
Reference Value	10		20	100	800	
Standard Lot No.	A1215R	А	.1215R	A1205	A1243	
1. Time (24 hr):	10.1	1	9.8	101	813	
2. Time (24 hr): 13/2	10.2		19.9	100	815	
3. Time (24 hr):						
4. Time (24 hr):						
Comments:						

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MVVL							
Calibrations done by: R L	Date: 05/16/22						
Make & Model: In-Situ Sonde (S/N) with DO, Ec, pH, OF			1025		_		
Other (SN): NA					=======================================		
		pH Cal	ibration/Check				
pH Calibrated to (std): NA			pH sloped to (sto	i): NA			
Reference value:	4.	00	7	7.00	10	0.00	
	Value	Temp	Value	Temp	Value	Temp	
1. Time (24 hr): 0630	4.01	23.82	7.00	23.79	10.01	23.61	
2. Time (24 hr): 1252	4.02	2440	7.01	24.39	10.03	24.45	
3. Time (24 hr):							
4. Time (24 hr):							
Standard Lot No.:	1GK09	3	1GK095		1GI516		
Expiration Date.:	NOV/23	3	NOV/23 SEP/23				
SC Calib	ration/Check		ORP Calibration/Check				
Reference Value: 1413 us	S/cm @ 25 C		Reference Value: 220 mV				
	Value	Temp			Value	Temp	
1. Time (24 hr): (24 hr):	1369.8	23.71	1. Time (24 hr):	0628	219.5	23.65	
2. Time (24 hr): 257	1371.5	24.35	2. Time (24 hr):	1257	219.8	24.34	
3. Time (24 hr):			3. Time (24 hr):				
4. Time (24 hr):			4. Time (24 hr):				
Standard Lot No.: 1GJ701	Expiration Date.:	OCT/22	Standard Lot No	i: 1GL278	Expiration Date.	SEP/22	
		DO Ca	libration/Check				
Calibration Value: 81% air saturation @ 5200 ft.		、 Atmospheric Pressure in Hg					
1. Time (24 hr): 0627 81.75		28.27					
2. Time (24 hr): 1250	81.8	0		28.2	0		
3. Time: (24 hr)							
4. Time (24 hr):							

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name:	MWL				
Calibration done by: R Lynch			Date: 05/	16/22	
		TURBI	DIMETER		
Make & Model: HACH	2100Q		Serial No. S/	√ 21090D000519	
Reference Value	10		20	100	800
Standard Lot No.	A1215R	А	1215R	A1205	A1243
1. Time (24 hr):	10.1		20.3	102	817
2. Time (24 hr):	10.0	į	20.2	loj	819
3. Time (24 hr):					
4. Time (24 hr):					
Comments:	M)				<u> </u>

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MWL						
Calibrations done by: R L	Date: 05/17/22					
Make & Model: In-Situ Aqua Troll 600 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: 571025 Other (SN): NA						
		pH Cali	bration/Check			
pH Calibrated to (std): NA			pH sloped to (std): NA		
Reference value:	4.0	00	7	.00	10	.00
	Value	Temp	Value	Temp	Value	Temp
1. Time (24 hr): 0634	4.00	23.69	7.02	23.60	10.00	23.66
2. Time (24 hr): 309	4.01	24.51	7-01	24.49	10-01	24.58
3. Time (24 hr):						
4. Time (24 hr):						
Standard Lot No.:	1GK093	3	1GK095		1GI516	
Expiration Date.:	NOV/23		NOV/23 SEP/23			
SC Calib	ration/Check		ORP Calibration/Check			
Reference Value: 1413 uS	3/cm @ 25 C		Reference Value: 220 mV			
	Value	Temp			Value	Temp
1. Time (24 hr): 0631	1387.3	23.57	1. Time (24 hr):	0630	221-1	23.46
2. Time (24 hr): 1308	1390.1	24-40	2. Time (24 hr):	1316	220.8	24.64
3. Time (24 hr):	,		3. Time (24 hr):		12 = 4	200
4. Time (24 hr):			4. Time (24 hr):			
Standard Lot No.: 1GJ701	Expiration Date.:	OCT/22	Standard Lot No	.: 1GL278	Expiration Date.:	SEP/22
	<u> </u>	DO Cali	ibration/Check			
Calibration Value: 81% air saturation @ 5200 ft.			Atmospheric	Pressure in Hg		
1. Time (24 hr): 8629 81.6		27.80				
2. Time (24 hr): 1307	81.11	0		28.02	-	
3. Time: (24 hr)						
4. Time (24 hr):						

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWL					
Calibration done by: R Lynch Date: 05/17/22					
		TURBIL	DIMETER		
Make & Model: HACH	2100Q		Serial No. S/I	N 21090D000519	
Reference Value	10		20	100	800
Standard Lot No.	A1215R	A ²	1215R	A1205	A1243
1. Time (24 hr): 66 JB	10.0		19.9	102	818
2. Time (24 hr):	9,99	G	20.1	100	816
3. Time (24 hr):					
4. Time (24 hr):					
Comments:	-				

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MWL							
Calibrations done by: R Lynch			Date: 05/18/22				
Make & Model:In-Situ Aqua Troll 600 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes:571025							
Other (SN): NA					_		
		pH Cali	bration/Check				
pH Calibrated to (std): NA			pH sloped to (std): NA			
Reference value:	4.0	00	7.	00	10.	00	
	Value	Temp	Value	Temp	Value	Temp	
1. Time (24 hr): 0634	4.01	23.51	7.02	23.88	10.03	23.92	
2. Time (24 hr): 1353	4.00	24.90	7.01	24.85	10.04	24.96	
3. Time (24 hr):							
4. Time (24 hr):							
Standard Lot No.:	1GK093	3	1GK095	5	1GI516		
Expiration Date.:	NOV/23		NOV/23 SEP/23				
SC Calib	ration/Check		ORP Calibration/Check				
Reference Value: 1413 uS	6/cm @ 25 C		Reference Value: 220 mV				
	Value	Temp			Value	Temp	
1. Time (24 hr): 0633	1389.6	23.80	1. Time (24 hr):	0632	220.8	23.95	
2. Time (24 hr): 1352	1397.4	24.83	2. Time (24 hr):	1359	219.6	24.89	
3. Time (24 hr):			3. Time (24 hr):				
4. Time (24 hr);			4. Time (24 hr):				
Standard Lot No.: 1GJ701	Expiration Date.:	OCT/22	Standard Lot No.	: _1GL278	Expiration Date.:	SEP/22	
		DO Cali	bration/Check				
Calibration Value:	81% air satura	tion @ 5200 ft.		Atmospheric	Pressure in Hg		
1. Time (24 hr): 063	Time (24 hr): 063\ 81.19			26-65			
2. Time (24 hr): \35	81.3	S		16.67			
3. Time: (24 hr)							
4. Time (24 hr):							

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWL						
Calibration done by:	R Lynch	Date: 05/	Date: 05/18/22			
		TURBIDIMETER				
Make & Model: HACH	2100Q	Serial No. S/	N 21090D000519)		
Reference Value	10	20	100	800		
Standard Lot No.	A1215R	A1215R	A1205	A1243		
1. Time (24 hr):	9.98	20.2	100	816		
2. Time (24 hr):	10.0	20-1	101	818		
3. Time (24 hr):						
4. Time (24 hr):						
Comments:						

LTS GW-2019-003 (7-2019)

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL Pre Decon	Date: 5/11/2022 Date:						
The following equipment was	The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.							
Pump and Tubing Bundle ID #: 1807B-950	Water Level Indicator ID #: 362721	WAS THE RESERVE OF THE PERSON						
	Personnel Performing Decontamination:							
Zach Tenorio	34							
Print Name:	Initial:							
Denisha Sanchez								
Print Name:	Initial:							
Condition of Equipment Pump:Excellent								
	List of Decontamination Materials							
Deionized Water	HNO ₃	Detergent						
Source: Culligan	Grade: NA	Manufacturer: Liqunox						
Lot Number: 03/02/22 - 4/14/22 UN #: NA Lot Number: L1L0								
	Manufacturer: NA Expiration Date: 11/22							
	Lot Number: NA							

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-BW2	Date: 5/12/2022 Date:						
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.								
Pump and Tubing Bundle ID #: 1807B-950	Water Level Indicator ID #: 362721							
	Personnel Performing Decontamination:							
Robert Lynch	<u>4</u>							
Print Name:	Initial:							
Denisha Sanchez								
Print Name:	Initial:							
	Condition of Equipment							
Pump:ExcellentTub	oing Bundle: Excellent Water	Level Indicator: Excellent						
	List of Decontamination Materials							
Deionized Water	HNO₃	Detergent						
Source: Culligan	Grade: NA	Manufacturer: liquinox						
Lot Number: <u>04/14/22</u>	UN #: NA	Lot Number: L1L0						
	Manufacturer: NA	Expiration Date: 11/22						
	Lot Number: NA							

LTS GW-2019-003 (7-2019) FOP 05-03

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #:_MWL-MW7	Date: 5/16/2022 Date:				
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.						
Pump and Tubing Bundle ID #: 1807B-950	Water Level Indicator ID #: 362721					
	Personnel Performing Decontamination:					
Robert Lynch Print Name: Denisha Sance\hez Print Name: Initial:						
Pump: Excellent Tub	Condition of Equipment sing Bundle:ExcellentWater	Level Indicator: Excellent				
	List of Decontamination Materials					
Deionized Water	HNO ₃	Detergent				
Source: Culligan	Grade: NA	Manufacturer: Liquinox				
Lot Number: 04/14/22	UN #: NA	Lot Number: L1L0				
	Manufacturer: NA	Expiration Date: 11/22				
8	Lot Number: NA					

LTS GW-2019-003 (7-2019)

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-MW9	Date: 5/17/2022 Date:				
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.						
Pump and Tubing Bundle ID #: $\underline{1807B-950}$	Pump and Tubing Bundle ID #: 1807B-950 Water Level Indicator ID #: 362721					
Robert Lynch Print Name: Denisha Sanchez Print Name: Initial: Initial:						
Pump: Excellent Tul	Condition of Equipment bing Bundle:Excellent Water	Level Indicator: Excellent				
	List of Decontamination Materials					
Deionized Water	HNO ₃	Detergent				
Source: Culligan	Grade: NA	Manufacturer: Liquinox				
Lot Number: <u>04/14/22</u>	UN #: NA	Lot Number: L1F9				
	Manufacturer: NA Lot Number: NA	Expiration Date: 06/21				

LTS GW-2019-003 (7-2019)

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-MW8	Date: 5/18/2022 Date:				
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.						
Pump and Tubing Bundle ID #: 1807B-950	Water Level Indicator ID #: 362721					
Robert Lynch Print Name: Denisha Sanchez Print Name: Initial:						
Pump: Excellent Tul	Condition of Equipment ping Bundle: Excellent Water	Level Indicator:Excellent				
	List of Decontamination Materials					
Deionized Water	HNO ₃	Detergent				
Source: Culligan	Grade: NA	Manufacturer: Liquinox				
Lot Number: <u>04/14/22 - 05/07/22</u>	UN #: NA	Lot Number: L1F9				
· · ·	Manufacturer: NA Lot Number: NA	Expiration Date: 06/21				

Summary Sheet For May 2022 Groundwater Samples

Sample Summary for Mixed Waste Landfill Groundwater Monitoring May 2022

					Associated Equipment	Associated Trip	Associated Field	
	Sample		Sample		Blank	Blank (ARCOC # /	Blank (ARCOC #/	
Sample ID	Date	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	Sample #)	Sample #)	Comments
GEL Analytic	al Data: Projed	ct Task # 195	5122.10.11.0	8, Service Order #	CF01-22			
MWL-BW2	12-May-22	623291	117658	Environmental	623290 / 117655	623291 / 117660	623291 / 117657	
MWL-BW2	12-May-22	623291	117659	Duplicate	623290 / 117655	623291 / 117660	623291 / 117657	
MWL-MW7	16-May-22	623292	117662	Environmental	n/a	623292 / 117663	623292 / 117661	
MWL-MW8	18-May-22	623295	117667	Environmental	n/a	623295 / 117668	623295 / 117666	
MWL-MW9	17-May-22	623294	117670	Environmental	623294 / 118054	623294 / 117671	623294 / 117669	Equipment blank sample - radon only
MWL-EB1	11-May-22	623290	117655	Equipment Blank	n/a	623290 / 117656	n/a	Equipment blank sample prior to MWL-BW2.
MWL-EB2	17-May-22	623294	118054	Equipment Blank	n/a	n/a	n/a	Equipment blank sample prior to MWL-MW9. Radon only.
MWL-FB1	12-May-22	623291	117657	Field Blank	n/a	623291 / 117660	n/a	at MWL-BW2
MWL-FB2	16-May-22	623292	117661	Field Blank	n/a	623292 / 117663	n/a	at MWL-MW7
MWL-FB3	17-May-22	623294	117669	Field Blank	n/a	623294 / 117671	n/a	at MWL-MW9
MWL-FB4	18-May-22	623295	117666	Field Blank	n/a	623295 / 117668	n/a	at MWL-MW8
MWL-DIWQC	17-May-22	623293	117664	Field Blank	n/a	623293 / 117665	n/a	DI source water for equipment decontamination

Data Validation Reports For Environmental Samples Groundwater Monitoring May 2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: June 22, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623290 SDG: 579613 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The samples were received at a temperature >10° C. The associated sample results that were detects will be **qualified J-,TP3** and those that were non-detect will be **qualified R,TP3**.
- 2. The initial calibration RRF was <0.050 but ≥0.010 for 2-butanone. The associated sample results were non-detect and will be **qualified UJ,14**.
- 3. The initial calibration %RSD was >15% but ≤40% for bromoform. The associated result for sample 579613001 was a detect and will be **qualified J.13**.
- 4. Methylene chloride was detected at ≤ the PQL in TB 1, sample -007, associated with sample -001. The associated sample result was a detect ≤ the PQL and will be qualified 5.0U,B1; non-detect at the PQL.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved except as noted above in the Summary section.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The initial calibration %RSD was >15% but ≤40% for bromoform. The associated result for sample -007 was non-detect and since no other calibration infractions occurred, will not be qualified.

The CCV %D was >20% with positive bias for vinyl acetate. The associated sample results were non-detect and will not be qualified.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Bromoform was detected at \leq the PQL and acetone, bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in EB 1, sample -001 submitted on ARCOC 623290 in this SDG and associated with samples on ARCOC 623291 submitted in another SDG. No data from this SDG will be qualified.

Methylene chloride was also detected at \leq the PQL in EB 1 but the EB result was qualified non-detect due to TB contamination and will not be applied to the associated field sample result.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

It should be noted that the MS/MSD analyses were performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

A TB was submitted on ARCOC 623290. EB 1 was submitted on ARCOC 623290 in this SDG and was associated with the samples on ARCOC 623291 submitted in another SDG.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/22/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: June 22, 2022

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623290 SDG: 579613 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

It should be noted that the MS analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

Laboratory Replicate

The replicate met all QC acceptance criteria.

It should be noted that the replicate analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Al, Mg, Fe and Ca were < those in the ICS solutions.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

It should be noted that the serial dilution was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

Other QC

EB 1 was submitted on ARCOC 623290 in this SDG and was associated with the sample on ARCOC 623291 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/22/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: June 22, 2022

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623290 SDG: 579613 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

All analyses:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3.**

Rn-222:

1. The sample was analyzed >1X but \leq 2X past the method specified holding time. The associated sample result was < the associated MDA and will be **qualified BD,H1**.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times except as noted above in the Summary section and was properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria. It should be noted that the MS and/or MSD for tritium and gross alpha/beta were performed on an SNL sample of similar matrix from another SDG. No sample results will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met. It should be noted that the replicate analyses for all target analytes were performed on an SNL sample of similar matrix from another SDG. No sample results will be qualified.

<u>Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)</u>

The LCS and/or LCSD met QC acceptance criteria.

Detection Limits/Dilutions

The sample was not diluted. All required detection limits were met.

Other QC

EB 1 was submitted on ARCOC 623290 in this SDG and was associated with the samples on ARCOC 623291 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/22/2022

Sample Findings Summary

AR/COC: 623290 Page 1 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 900.0/SW846 9310			
	117655-004/MWL-EB 1	ALPHA (12587-46-1)	BD, FR3
	117655-004/MWL-EB 1	BETA (12587-47-2)	BD, FR3
EPA 901.1			
	117655-003/MWL-EB 1	Americium-241 (14596-10-2)	BD, FR3
	117655-003/MWL-EB 1	Cesium-137 (10045-97-3)	BD, FR3
	117655-003/MWL-EB 1	Cobalt-60 (10198-40-0)	BD, FR3
	117655-003/MWL-EB 1	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	117655-005/MWL-EB 1	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	117655-006/MWL-EB 1	Radon-222 (14859-67-7)	BD, H1,FR3
SW846 8260D	117655 001/MANU 50.1	1.1.1 Trichlereethans (71.55.6)	D TD2
	117655-001/MWL-EB 1	1,1,1-Trichloroethane (71-55-6)	R, TP3
	117655-001/MWL-EB 1	1,1,2,2-Tetrachloroethane (79-34-5)	R, TP3
	117655-001/MWL-EB 1	1,1,2-Trichloroethane (79-00-5)	R, TP3
	117655-001/MWL-EB 1	1,1-Dichloroethane (75-34-3)	R, TP3
	117655-001/MWL-EB 1	1,1-Dichloroethylene (75-35-4)	R, TP3
	117655-001/MWL-EB 1	1,2-Dichloroethane (107-06-2)	R, TP3
	117655-001/MWL-EB 1	1,2-Dichloropropane (78-87-5)	R, TP3
	117655-001/MWL-EB 1	2-Butanone (78-93-3)	R, TP3,I4
	117655-001/MWL-EB 1	2-Hexanone (591-78-6)	R, TP3
	117655-001/MWL-EB 1	4-Methyl-2-pentanone (108-10-1)	R, TP3
	117655-001/MWL-EB 1	Acetone (67-64-1)	J-, TP3
	117655-001/MWL-EB 1	Benzene (71-43-2)	R, TP3
	117655-001/MWL-EB 1	Bromodichloromethane (75-27-4)	J-, TP3

AR/COC: 623290 Page 2 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	117655-001/MWL-EB 1	Bromoform (75-25-2)	J-, TP3,I3
	117655-001/MWL-EB 1	Bromomethane (74-83-9)	R, TP3
	117655-001/MWL-EB 1	Carbon disulfide (75-15-0)	R, TP3
	117655-001/MWL-EB 1	Carbon tetrachloride (56-23-5)	R, TP3
	117655-001/MWL-EB 1	Chlorobenzene (108-90-7)	R, TP3
	117655-001/MWL-EB 1	Chloroethane (75-00-3)	R, TP3
	117655-001/MWL-EB 1	Chloroform (67-66-3)	J-, TP3
	117655-001/MWL-EB 1	Chloromethane (74-87-3)	R, TP3
	117655-001/MWL-EB 1	cis-1,2-Dichloroethylene (156-59-2)	R, TP3
	117655-001/MWL-EB 1	cis-1,3-Dichloropropylene (10061-01-5)	R, TP3
	117655-001/MWL-EB 1	Dibromochloromethane (124-48-1)	J-, TP3
	117655-001/MWL-EB 1	Dichlorodifluoromethane (75-71-8)	R, TP3
	117655-001/MWL-EB 1	Ethylbenzene (100-41-4)	R, TP3
	117655-001/MWL-EB 1	Methylene chloride (75-09-2)	5.0UJ, TP3,B1
	117655-001/MWL-EB 1	Styrene (100-42-5)	R, TP3
	117655-001/MWL-EB 1	Tetrachloroethylene (127-18-4)	R, TP3
	117655-001/MWL-EB 1	Toluene (108-88-3)	R, TP3
	117655-001/MWL-EB 1	trans-1,2-Dichloroethylene (156-60-5)	R, TP3
	117655-001/MWL-EB 1	trans-1,3-Dichloropropylene (10061-02-6)	R, TP3
	117655-001/MWL-EB 1	Trichloroethylene (79-01-6)	R, TP3
	117655-001/MWL-EB 1	Vinyl acetate (108-05-4)	R, TP3
	117655-001/MWL-EB 1	Vinyl chloride (75-01-4)	R, TP3
	117655-001/MWL-EB 1	Xylenes (total) (1330-20-7)	R, TP3
	117656-001/MWL-TB 1	1,1,1-Trichloroethane (71-55-6)	R, TP3
	117656-001/MWL-TB 1	1,1,2,2-Tetrachloroethane (79-34-5)	R, TP3
	117656-001/MWL-TB 1	1,1,2-Trichloroethane (79-00-5)	R, TP3
	117656-001/MWL-TB 1	1,1-Dichloroethane (75-34-3)	R, TP3

AR/COC: 623290 Page 3 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	117656-001/MWL-TB 1	1,1-Dichloroethylene (75-35-4)	R, TP3
	117656-001/MWL-TB 1	1,2-Dichloroethane (107-06-2)	R, TP3
	117656-001/MWL-TB 1	1,2-Dichloropropane (78-87-5)	R, TP3
	117656-001/MWL-TB 1	2-Butanone (78-93-3)	R, TP3,I4
	117656-001/MWL-TB 1	2-Hexanone (591-78-6)	R, TP3
	117656-001/MWL-TB 1	4-Methyl-2-pentanone (108-10-1)	R, TP3
	117656-001/MWL-TB 1	Acetone (67-64-1)	R, TP3
	117656-001/MWL-TB 1	Benzene (71-43-2)	R, TP3
	117656-001/MWL-TB 1	Bromodichloromethane (75-27-4)	R, TP3
	117656-001/MWL-TB 1	Bromoform (75-25-2)	R, TP3
	117656-001/MWL-TB 1	Bromomethane (74-83-9)	R, TP3
	117656-001/MWL-TB 1	Carbon disulfide (75-15-0)	R, TP3
	117656-001/MWL-TB 1	Carbon tetrachloride (56-23-5)	R, TP3
	117656-001/MWL-TB 1	Chlorobenzene (108-90-7)	R, TP3
	117656-001/MWL-TB 1	Chloroethane (75-00-3)	R, TP3
	117656-001/MWL-TB 1	Chloroform (67-66-3)	R, TP3
	117656-001/MWL-TB 1	Chloromethane (74-87-3)	R, TP3
	117656-001/MWL-TB 1	cis-1,2-Dichloroethylene (156-59-2)	R, TP3
	117656-001/MWL-TB 1	cis-1,3-Dichloropropylene (10061-01-5)	R, TP3
	117656-001/MWL-TB 1	Dibromochloromethane (124-48-1)	R, TP3
	117656-001/MWL-TB 1	Dichlorodifluoromethane (75-71-8)	R, TP3
	117656-001/MWL-TB 1	Ethylbenzene (100-41-4)	R, TP3
	117656-001/MWL-TB 1	Methylene chloride (75-09-2)	J-, TP3
	117656-001/MWL-TB 1	Styrene (100-42-5)	R, TP3
	117656-001/MWL-TB 1	Tetrachloroethylene (127-18-4)	R, TP3
	117656-001/MWL-TB 1	Toluene (108-88-3)	R, TP3
	117656-001/MWL-TB 1	trans-1,2-Dichloroethylene (156-60-5)	R, TP3

AR/COC: 623290 Page 4 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC		
	117656-001/MWL-TB 1	trans-1,3-Dichloropropylene (10061-02-6)	R, TP3		
	117656-001/MWL-TB 1	Trichloroethylene (79-01-6)	R, TP3		
	117656-001/MWL-TB 1	Vinyl acetate (108-05-4)	R, TP3		
	117656-001/MWL-TB 1	Vinyl chloride (75-01-4)	R, TP3		
	117656-001/MWL-TB 1	Xylenes (total) (1330-20-7)	R, TP3		

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 623290		Site/Project: MWL LTMMF		Validation Date: 06/22/2022				
SDG #: 579613		Laboratory: GEL Laboratori	ies, LLC	Validator: Linda Thal				
Matrix: Aqueous		# of Samples: 7	CVR present: Yes					
ARCOC(s) present: Yes		Sample Container Integrity:	OK					
Analysis Type: ☑ Organic ☑ Metals ☐] Gencl	nem 🛚 🖂 Rad						

Requested Analyses Not Reported										
Client Sample ID	Lab Sample ID	Analysis	Comments							
None										

Hold Time/Preservation Outliers												
Client Sample ID	Lab Sample ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT				
117655-001 MWL-EB 1	579613001	8260D	11° C	05/11/2022	05/18/2022	05/18/2022	Yes	No				
117656-001 MWL-TB 1	579613007	8260D	11° C	05/11/2022	05/18/2022	05/18/2022	Yes	No				
117655-006 MWL-EB 1	579613006	SM7500 Rn B	✓	05/11/2022	05/17/2022	05/17/2022	Yes	No				

Comments: Collected: 05/11/2022

The ARCOC noted that the trip blank vials were received from the lab with headspace.

EB 1 was submitted on ARCOC 623290 in this SDG and was associated with samples on ARCOC 623291 submitted in another SDG

Validated by:

Validated by:

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623290	SDG: 579613	Matrix: Aqueous
Laboratory Sample IDs: 579613001, -007		
Method/Batch #s: 8260D 2267654	Tuning (pass/fail): pass	TICs Required? (yes/no): no

Analyte (outliers)		Calibration															
		Int.	RF/ Slope	RSD/ r ²	(ICV)/CO %D	CV MB		5X (10X) MB		LCS %R		MSD %R	MS/ MSD RPD	TB 1 -007	5X (10X) TB	EB 1 -001	5X (10X) EB
Acetone		✓ ✓ ✓		✓	✓		✓			✓	✓	✓	✓	✓	✓	6.27	(62.7)
Methylene chloride	;	✓	✓	✓	✓		✓	/ NA		✓	✓	✓	✓	1.23J	(12.3)	0.84J	NA
Bromodichloromet	hane	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	✓	5.45	27.3
Bromoform		NA	✓	17	✓		✓	NA		✓	✓	✓	✓	✓	✓	0.82J	4.1
Chloroform		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	✓	23.6	118
Dibromochloromet	hane	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	✓	3.75	18.8
2-Butanone		NA	0.027	✓	✓		✓	NA		✓	✓	✓	✓	✓	✓	✓	NA
Vinyl acetate		NA	✓	✓	+28		✓	NA		✓	✓	✓	√	✓	✓	✓	NA
						Surrogate	Recov	ery Outli	iers								
Sample ID	1,2-DCA-d4 %	R T	oluene-d8	oluene-d8 %R BFB %R			;	Sample ID		1,2-DCA-d4 %R		%R	Toluene-d8 %R		BFB %R		
None																	
						I	S Outli	iers									
FBZ Chl-d5		1,4-	-DCB-c	14													
Sample ID	Area	RT	Are	ea	RT A		ì	RT									
None																	

Comments: HTs OK. Temp >10° C
MS/MSD on SNL sample 579819002
ICAL VOA6.I 03/07/22 Linear: Acetone, Methylene chloride

Sandia Inorganic Metals Worksheet

ARCOC	£ #(s): 623	290							SDG #(s	s): 57961	3			Matrix:	Aqueous		
Laborato	ory Sampl	e IDs:	579613	002										•			
Method/	Batch #s:	3005 A	A/6020E	3 :226574	19/2265	750											
CPMS Ma	ıss Cal: 🛭	Pass	s 🗌 1	Fail	□ NA	A ICF	MS Reso	lution: 🛛 Pas	SS	☐ Fail		□ NA					
Analyte			Calik	oration			МВ	5X Blank	LCS	MS	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL	LLCCV	EB 1	
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/L	mg/L	%R	%R	RPD	%D	%R	ug/L (x50)	%R	-002	
none																	
																	+ +
			I	S Outli	ers 60-1	25%							IS C	outliers 80-12	20%		
San	ıple ID		%R	ecovery	7	%Reco	very	%Recovery	y	CCV/C	CB ID		%Recove	ry	%Recovery	%F	Recovery
none										noi	ne						
Comments ICPMS: M ICS NA			rmed on	SNL sam	ple 5798	319003.											

Sandia Radiochemistry Worksheet

ARCOC #(s): 623290 SDG #: 579613 Matrix: Aqueous

Laboratory Sample IDs: 579613— see below

Method/Batch #s: EPA 901.1 (gamma spec)/2266013 Sample -003

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2270710 Sample -004

Method/Batch #s: SM 7500 Rn B (Rn-222)/2265971 Sample -006

Method/Batch #s: EPA 906.0 Modified (Tritium)/2270478 Sample -005

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	LCSD %R	LCS/ LCSD RPD		MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER	Rep RPD	EB 1
none														
				Tracer/Ca	rrier Rec	overy Outl	iers							
Sample ID	Tracer/Ca	arrier %l	R	Sample ID			Carrier	%R		Sample II)	Tracei	r/Carrier	%R
NA										<u>'</u>				

Comments: HTs OK except Rn-222 > 96 hours but <192 hours

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on SNL 579819005. Parent sample 151mL; DUP 150ml; MS/MSD 50.2/51ml; 3X dilution.

GS: DUP on SNL sample 579819004

Rn-222: LCS/LCSD, DUP on SNL sample 579819007.

Tritium: DUP/MS on SNL 579819006

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

				SMO Us	se ,		01	ARCO	page 1 of 1 C 623290			
Project Na Project Ma P/T No: 19	anage	MWL LTMMP or: Timmie Jackson 2.10.11.08	SNL S Lab C Lab D	amples Shipped hipper #: ontact: zachary Wo estination: GEL act No.:1983530	3476 rsham/843-300	09	SMO	Authorizat Contact Ph ly Palencia/	ion 2 2 ione: 505.844.31	32	Waste Characterization: N RMA: No 4° Celsius: Yes	
TA: Bldg	: Ro	om:		hain: No tion Req'd: Yes	s		Turna EDD:	round Time Yes	e: 30 days		SDG#: 579 613	
Sample No	Frac- tion	Sample Location Detail	Depth (ft)	Date/Time Collected	Sample Matrix		ntainer Volume	Preserv- Collection Sample ative Method Type			Parameter & Method Requested	Lab Sample Id
117655 √	001	MWL-EB1	0	05/11/22 09:30	DIW	G	3x40 ml	HCI	G .	EB '	VOC-LTMMP (SW846-8260D)	<u>160 </u>
117655 🗸	002	MWL-EB1	0	05/11/22 09:31	DIW	Р	500 ml	НИО3	G	EB	METALS, LTMMP - Cd, Cr, Ni, U	<u>302</u>
117655 🗸	003	MWL-EB1	0	05/11/22 09:32	DIW	Р	1 L	НИО3	G		GAMMA SPEC, SHORT LIST (EPA 901)	003
117655 🗸	004	MWL-EB1	0	05/11/22 09:34	DIW	Р	1 L	HNO3	G	EB	GROSS-ALPHA/BETA (EPA 900)	704
117655 √	005	MWL-EB1	0		DIW	AG	250 ml	None	G	EB	TRITIUM (EPA 906)	705
117655 √	906	MWL-EB1	0	05/11/22 09:36	DIW	G	2x40 ml	None	G	EB	RADON (SM7500 Rn B)	NO
117656 🗸	001	MWL-TB1	0	05/11/22 09:30	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	<u>(1) 7</u>
								THE PERSON NAMED AND ADDRESS OF THE PERSON NAMED AND ADDRESS O				
Sample Team Members	Rol Der	ne Signat liam Gibson pert Lynch nisha Sanchez hary Tenorio	ure	Agel Jack		Com	ments: T	rip blanks r	eceived fro	m lab wi	th headspace.	
Relinquish				Date 5/1/22 T			<u> </u>	iished by		Org		
Received b				Date 5/1/22 T			Receive			Org Org		
Relinquish			Org. 06/8 Date 5/11/2 z Time 1/05									
Received 1	My y	azia Jatuu Org.	I	Date 5/13/22_T	ime (52	Receive	ea by		Org	. Date Time	

www.againc.net

Memorandum

Date: June 27, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623291 SDG: 579819 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Four samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration RRF was < 0.050 but ≥ 0.010 for 2-butanone. The associated sample results were non-detect and will be **qualified UJ,14**.
- 2. The initial calibration %RSD was >15% but ≤40% for bromoform. The associated result for sample 579819001 was a detect and will be **qualified J,I3**.
- 3. Methylene chloride was detected at ≤ the PQL in TB2, sample -014, associated with samples -001, -002 and -008. The associated result for sample -008 was a detect ≤ the PQL and will be **qualified 5.0U,B1**; non-detect at the PQL.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The initial calibration %RSD was >15% but ≤40% for bromoform. All associated sample results, *except* the result for sample -001, were non-detect and since no other calibration infractions occurred for this compound, will not be qualified.

The CCV %D was >20% with positive bias for vinyl acetate. The associated sample results were non-detect and will not be qualified.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Bromoform and acetone were detected at ≤ the PQL and bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in FB1, sample -001, associated with samples -002 and -008. The associated sample results were non-detect and will not be qualified.

Methylene chloride was detected at \leq the PQL in TB2, sample -014, associated with samples -001, -002 and -008. The associated results for samples -001 and -002 were non-detect and will not be qualified.

Bromoform was detected at ≤ the PQL and acetone, bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in EB 1, sample 579613001 submitted on ARCOC 623290 in another SDG and associated with samples on ARCOC 623291 submitted in this SDG. The associated sample results were non-detect and will not be qualified.

Methylene chloride was also detected at \leq the PQL in EB 1 but the EB result was qualified non-detect due to TB contamination and will not be applied to the associated field sample results.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

A TB and an FB were submitted on ARCOC 623291 and were associated with the samples on the same ARCOC. EB 1 was submitted on ARCOC 623290 in another SDG and was associated with the samples on ARCOC 623291 submitted in this SDG. A field duplicate pair was submitted on ARCOC 623291. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

www.againc.net

Memorandum

Memorandum

Date: June 28, 2022

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623291 SDG: 579819 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Al, Mg, Fe and Ca were < those in the ICS solutions.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

EB 1 was submitted on ARCOC 623290 in another SDG and was associated with the samples on ARCOC 623291 submitted in this SDG. A field duplicate pair was submitted on ARCOC 623291. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

www.againc.net

Memorandum

Date: June 28, 2022

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623291 SDG: 579819 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec - short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

Gamma spec:

- 1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3.**
- 2. The K-40 result for sample 579819004 was \geq the MDA but <3X the MDA and will be qualified J,FR7.

Tritium:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3.**

Rn-222:

1. The samples were analyzed >1X but \leq 2X past the method specified holding time. The associated sample results were \geq the MDA and will be **qualified J,H1**.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved except as noted above in the Summary section.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS and/or LCSD met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

EB 1 was submitted on ARCOC 623290 in another SDG and was associated with the samples on ARCOC 623291 submitted in this SDG. A field duplicate pair was submitted on ARCOC 623291. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Sample Findings Summary

AR/COC: 623291 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC		
EPA 901.1					
	117658-003/MWL-BW2	Americium-241 (14596-10-2)	BD, FR3		
	117658-003/MWL-BW2	Cesium-137 (10045-97-3)	BD, FR3		
	117658-003/MWL-BW2	Cobalt-60 (10198-40-0)	BD, FR3		
	117658-003/MWL-BW2	Potassium-40 (13966-00-2)	J, FR7		
	117659-003/MWL-BW2	Americium-241 (14596-10-2)	BD, FR3		
	117659-003/MWL-BW2	Cesium-137 (10045-97-3)	BD, FR3		
	117659-003/MWL-BW2	Cobalt-60 (10198-40-0)	BD, FR3		
	117659-003/MWL-BW2	Potassium-40 (13966-00-2)	BD, FR3		
EPA 906.0 Modified					
	117658-005/MWL-BW2	Tritium (10028-17-8)	BD, FR3		
	117659-005/MWL-BW2	Tritium (10028-17-8)	BD, FR3		
SM 7500 Rn B					
	117658-006/MWL-BW2	Radon-222 (14859-67-7)	J, H1		
	117659-006/MWL-BW2	Radon-222 (14859-67-7)	J, H1		
SW846 8260D					
	117657-001/MWL-FB1	2-Butanone (78-93-3)	UJ, 14		
	117657-001/MWL-FB1	Bromoform (75-25-2)	J, I3		
	117658-001/MWL-BW2	2-Butanone (78-93-3)	UJ, 14		
	117659-001/MWL-BW2	2-Butanone (78-93-3)	UJ, 14		
	117659-001/MWL-BW2	Methylene chloride (75-09-2)	5.0U, B1		
	117660-001/MWL-TB2	2-Butanone (78-93-3)	UJ, 14		

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 623291			Site/Project: MWL LTMMF		Validation Date: 06/27/2022						
SDG #: 579819			Laboratory: GEL Laboratori	ies, LLC	Validator: Linda Thal						
Matrix: Aqueous			# of Samples: 14	CVR present: Yes							
ARCOC(s) present:	Yes		Sample Container Integrity:	OK							
Analysis Type: ☑ Organic ☑ Metals ☐ Genc			nem 🛚 🖂 Rad								
Analysis Type:		☐ Gench		OK							

	Requested Analyses Not Reported														
Client Sample ID Lab Sample ID Analysis Comments															
None															

	Hold Time/Preservation Outliers														
Client Sample ID	Lab Sample ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT							
117658-006 MWL-BW2	579819007	SM 7500 Rn B	✓	5/12/22 10:59	5/17/22 06:25	5/17/22 06:25	Yes	No							
117659-006 MWL-BW2	579819013	SM 7500 Rn B	✓	5/12/22 11:00	5/17/22 06:41	5/17/22 06:41	Yes	No							

Comments:	Collected:	05/12/2022
Committee.	Concetta.	03/12/2022

The ARCOC noted that the trip blank vials were received from the lab with headspace.

EB 1 was submitted on ARCOC 623290 in another SDG and was associated with samples on ARCOC 623291 submitted in this SDG

Validated by: X /hal

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623291	SDG: 579819		Matrix: Aqueous						
Laboratory Sample IDs: 579819001, -002, -008, -014									
Method/Batch #s: 8260D 2267654	Tuning (pass/fail): pass	TICs Required?	(yes/no): no						

			(Calibratio	on												
Analyte (outliers)]	Int.	RF/ Slope	RSD/ r ²	(ICV)/CC %D	CV	MB	5X (10X) MB		LCS %R	MS %R	MSD %R	MS/ MSD RPD	FB1 -001	TB2 -014	EB 1 579613 -001	5X (10X) EB
Acetone		✓	✓	✓	✓		✓	NA		✓	✓	✓	✓	3.13J	✓	6.27	(62.7)
Methylene chloride		✓	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	0.76J	0.84J	NA
Bromodichloromethane		NA	✓	✓	· · · · · · · · · · · · · · · · · · ·		✓	NA		✓	✓	✓	✓	6.28	✓	5.45	27.3
Bromoform	•	NA	✓	17	<u> </u>		✓	NA		✓	✓	✓	✓	0.9J	✓	0.82J	4.1
Chloroform		NA	✓	✓			√	NA		✓	✓	✓	✓	28.3	✓	23.6	118
Dibromochloromethane		NA	✓	✓	· ·	•		NA		✓	✓	✓	✓	3.89	✓	3.75	18.8
2-Butanone	•	NA	0.027	✓	<u> </u>		✓	NA		✓	✓	✓	✓	✓	✓	✓	NA
Vinyl acetate		NA	√	✓	+28		√	NA		✓	√	✓	✓	✓	✓	√	NA
	l l		l		l	Surroga	te Recov	ery Outl	iers				ı	l	L	I.	
Sample ID 1,2-DCA	-d4 %R	Te	oluene-d8	%R	BFB %R			Sample I	D	1,2-DCA-d4 %R		%R	Toluene-d8 %R		BFB %	óR	
None																	
							IS Outl	iers									
FBZ Chl-d5						1,	4-DCB-	d4									
Sample ID Are	a	RT	Arc	ea	RT	Arc	ea	RT									
None																	

Comments: HTs OK.
MS/MSD on -002
ICAL VOA6.I 03/07/22 Linear: Acetone, Methylene chloride

Sandia Inorganic Metals Worksheet

ARCOC	£ #(s): 623	291							SDG #(s	s): 57981	9			Matrix:	Aqueous		
Laborate	ory Sampl	e IDs:	579819	003, -00)9									1			
Method	Batch #s:	3005 A	A/6020E	B : 22657	49/2265	5750											
CPMS Ma	ıss Cal: 🛭	Pass	s 🔲 1	Fail	□ NA	A ICF	MS Reso	olution: 🛛 Pa	SS	☐ Fail		□ NA					
Analyte			Calik	oration			MB		LCS	MS	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL	LLCCV	EB 1 579613	
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/I	mg/L	%R	%R	RPD	%D	%R	ug/L (x50)	%R	-002	
none																	
			I	S Outli	ers 60-1	25%							IS C	outliers 80-12	20%		
San	ıple ID		%R	ecovery	7	%Reco	very	%Recover	y	CCV/C	CB ID		%Recove	ry 0	6Recovery	%R	ecovery
none										noi	ne						
Comments ICPMS: M ICS NA			rmed on	-003													

Sandia Radiochemistry Worksheet

ARCOC #(s): 623291 SDG #: 579819 Matrix: Aqueous

Laboratory Sample IDs: 579819– see below

Method/Batch #s: EPA 901.1 (gamma spec)/2266013 Samples -004, -010

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2270710 Samples -005, -011

Method/Batch #s: SM 7500 Rn B (Rn-222)/2265971 Samples -007, -013

LCS/ MS/ 5X Blank Lab **Analyte** Method LCS **LCSD MSD EB 1** Control Control MS Rep **LCSD** MSD Rep. or Freq. Eval. Blank %R %R %R %R **RPD** 579613 (outliers) 5X MDC RER RER **RPD** none

Sample ID Tracer/Carrier | %R | Sample ID Tracer/Carrier | %R

Comments: HTs OK except Rn-222 > 96 hours but <192 hours

Method/Batch #s: EPA 906.0 Modified (Tritium)/2270478 Samples -006, -012

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD -005. Parent sample 151mL; DUP 150ml; MS/MSD 50.2/51ml; 3X dilution.

GS: DUP on -004

Rn-222: LCS/LCSD, DUP on -007.

Tritium: DUP/MS on -006

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

¥		₩H		SMO Us	e .	į.		82 88		10 11	ARCO	page 1 of 2 OC 623291
Project M	Project Name: MWL LTMMP Project Manager: Timmie Jackson P/T No: 195122.10.11.08			samples Shipped Shipper #: 3 ontact: zachary Wo estination: GEL act No.:1983530	d:5/12/ 476 rsham/ 843-30	2022 15 10-4224	SMO SMO Wend	Authorizat Contact Ph ly Palencia	ione:	Waste Characterization: N RMA: No 4° Celsius: Yes		
TA: Bldg	TA: Bldg: Room:			hain: No tion Req'd: Yes			Turna EDD	around Tim : Yes	e: 30 days	SDG#:579810	Ì	
Sample No	Frac-	Sample Location Detail	Depth (ft)	Date/Time Collected	Sample Matrix	Cor Type	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	l Lab Sample Id
117657 ✓	-	MWL-FB1	0	05/12/22 10:21	DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260D)	100
117658 🗸	001	MWL-BW2	496	05/12/22 10:57	GW	G	3x40 ml	HCI	G	SA	VOC-LTMMP (SW846-8260D)	002
117658 🗸	002	MWL-BW2	496	05/12/22 11:01	GW	Р	500 ml	HNO3	G	SA	METALS, LTMMP - Cd, Cr, Ni, U	003
117658√	,003	MWL-BW2	496	05/12/22 11:03	GW	Р	1 L	HNO3	G	SA	GAMMA SPEC, SHORT LIST (EPA 901)	004
117658 ✓	904	MWL-BW2	496	05/12/22 11:05	GW	Р	1 L	HNO3	G	SA	GROSS-ALPHA/BETA (EPA 900)	105
117658 🏑	005	MWL-BW2	496	05/12/22 11:07	GW	AG	250 ml	None	G	SA	TRITIUM (EPA 906)	006
117658 🗸	006	MWL-BW2	496	05/12/22 10:59	GW	G	2x40 ml	None	G	SA	RADON (SM7500 Rn B)	087
117659 🗸	901	MWL-BW2	496	05/12/22 10:58	GW	G	3x40 ml	HCI	G	DU	VOC-LTMMP (SW846-8260D)	800
117659 🗸	002	MWL-BW2	496	05/12/22 11:02	GW	Р	500 ml	HNO3	G	DU	METALS, LTMMP - Cd, Cr, Ni, U	009
117659√	003	MWL-BW2	496	05/12/22 11:04	GW	Р	1 L	HNO3	G	DU	GAMMA SPEC, SHORT LIST (EPA 901)	010
Sample Team Members	Rol Der	ne Signar Iliam Gibson pert Lynch nisha Sanchez hary Tenorio	ure Influ Slu	Bill Sand		Com	ments: T	rip blanks r	eceived fro	m lab wi	th headspace.	
Relinquish	ed by	Durche and reg	1838	DateS-E-ZT	ime <i>[140</i>	5		ished by		Org	Date Time	
Received 1		assect any Org.	06/8 1	Date 5/13/22 T	ime //4	Ø	Receive			Org. Date Time		
	linquished by 16 4 fg Org. Ob 18 Date 5/12/77 Time 16						-	ished by		Org		
Received 1	Received by / Date 5//3					35	Receive	ed by		Org	Date Time	

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

page 2 of 2 ARCOC **623291**

Sample No	Frac- tion	Sample Location Detail	Depth (ft)	Date/Time Collected		Со Туре	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample
17659 √	004	MWL-BW2	496	05/12/22 11:06	GW	Р	1 L	HNO3	G	DU	GROSS-ALPHA/BETA (EPA 900)	011
17659 🗸	905	MWL-BW2	496	05/12/22 11:08	GW	AG	250 ml	None	G	DU	TRITIUM (EPA 906)	0,2
17659 🗸	006	MWL-BW2	496	05/12/22 11:00	GW	G	2x40 ml	None	G	DU	RADON (SM7500 Rn B)	013
17660,	001	MWL-TB2	0	05/12/22 10:21	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	DIL
		A.										
						,						
				1								
									U			
			*									

Page 6 of 457 SDG: 579819

www.againc.net

Memorandum

Date: June 28, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623292 SDG: 580112 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration RRF was <0.050 but ≥0.010 for 2-butanone. The associated sample results were non-detect and will be **qualified UJ,14**.
- 2. The initial calibration %RSD was >15% but ≤40% for bromoform. The associated result for sample 580112001 was a detect and will be **qualified J,I3**.
- 3. Methylene chloride was detected at ≤ the PQL in TB3, sample -008, associated with samples -001 and -002. The associated sample results were detects ≤ the PQL and will be **qualified 5.0U,B1**; non-detect at the PQL.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The initial calibration %RSD was >15% but ≤40% for bromoform. The associated results for samples -002 and -008 were non-detect and since no other calibration infractions occurred for this compound, will not be qualified.

The CCV %D was >20% with positive bias for vinyl acetate. The associated sample results were non-detect and will not be qualified.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Bromoform and acetone were detected at ≤ the PQL and bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in FB2, sample -001 associated with sample -002. The associated sample results were non-detect and will not be qualified.

Methylene chloride was also detected at \leq the PQL in FB2 but the FB result was qualified non-detect due to TB contamination and will not be applied to the associated field sample result.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

It should be noted that the MS/MSD analyses were performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

A TB was submitted on ARCOC 623292. FB2 was submitted on ARCOC 623292 and was associated with the field sample on the same ARCOC.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

www.againc.net

Memorandum

Date: June 28, 2022

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623292 SDG: 580112 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Al, Mg, Fe and Ca were < those in the ICS solutions.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

No other specific issues that affect data quality were identified.

www.aqainc.net

Memorandum

Date: June 28, 2022

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623292 SDG: 580112 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

Gamma spec and Tritium:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3.**

Rn-222:

1. The sample result was \geq the associated MDA but \leq 3X the MDA and will be **qualified J,FR7.**

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria. It should be noted that the MS and/or MSD for tritium and gross alpha/beta were performed on an SNL sample of similar matrix from another SDG. No sample results will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met. It should be noted that the replicate analyses for all target analytes *except* gamma spec were performed on SNL samples of similar matrix from other SDGs. No sample results will be qualified.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS and/or LCSD met QC acceptance criteria.

Detection Limits/Dilutions

The sample was not diluted. All required detection limits were met.

Other QC

No other specific issues that affect data quality were identified.

Sample Findings Summary

AR/COC: 623292 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 901.1			
	117662-003/MWL-MW7	Americium-241 (14596-10-2)	BD, FR3
	117662-003/MWL-MW7	Cesium-137 (10045-97-3)	BD, FR3
	117662-003/MWL-MW7	Cobalt-60 (10198-40-0)	BD, FR3
	117662-003/MWL-MW7	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	117662-005/MWL-MW7	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	117662-006/MWL-MW7	Radon-222 (14859-67-7)	J, FR7
SW846 8260D			
	117661-001/MWL-FB2	2-Butanone (78-93-3)	UJ, 14
	117661-001/MWL-FB2	Bromoform (75-25-2)	J, 13
	117661-001/MWL-FB2	Methylene chloride (75-09-2)	5.0U, B1
	117662-001/MWL-MW7	2-Butanone (78-93-3)	UJ, 14
	117662-001/MWL-MW7	Methylene chloride (75-09-2)	5.0U, B1
	117663-001/MWL-TB3	2-Butanone (78-93-3)	UJ, 14

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 623292		Site/Project	t: MWL LTMMI)			Validation I	Date: 06/28/202	2			
SDG #: 580112		Laboratory	: GEL Laborator	ies, LLC			Validator: L	inda Thal				
Matrix: Aqueous		# of Sample	es: 8	CVR preser	nt: Yes							
ARCOC(s) present: Yes		Sample Co	ntainer Integrity:	OK								
Analysis Type: ☐ Organic ☐ Metals	☐ Gench	nem	⊠ Rad									
			Requested A	Analyses No	ot Reported							
Client Sample ID	Lab Samp	le ID	Analysis		<u> </u>	Con	nments					
None												
			Hold Time/	Preservatio	on Outliers							
Client Sample ID	Lab Sample	e ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT			
None												
						1						
Comments: Collected: 05/16/202	2											
The ARCOC noted that the trip bl	Comments: Collected: 05/16/2022 The ARCOC noted that the trip blank vials were received from the lab with headspace.											
Validated by:	alidated by: X Mal											

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623292	SDG: 580112		Matrix: Aqueous
Laboratory Sample IDs: 580112001, -002, -008			
Method/Batch #s: 8260D 2267654	Tuning (pass/fail): pass	TICs Required? ((yes/no): no

			(Calibratio	on												
Analyte (outliers)		Int.	RF/ Slope	RSD/ r ²	(ICV)/CC %D	CV	MB	5X (10X) MB		LCS %R	MS %R	MSD %R	MS/ MSD RPD	FB2 -001	5X (10X) FB	TB3 -008	5X (10X) TB
Acetone		✓	✓	✓	✓		✓	NA		✓	✓	✓	✓	3.43J	(34.3)	✓	NA
Methylene chloride		✓	✓	✓	✓		✓	NA		✓	✓	✓	✓	0.77J	NA	0.84J	(8.4)
Bromodichloromethane	Bromodichloromethane N		✓	✓	✓		✓	NA		✓	✓	✓	✓	5.52	27.6	✓	NA
Bromoform		NA	✓	17	✓		✓	NA		✓	✓	✓	✓	0.86J	4.3	✓	NA
Chloroform		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	24.8	124	✓	NA
Dibromochloromethan	ie	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	3.87	19.4	✓	NA
2-Butanone		NA	0.027	✓	✓		✓	NA		✓	✓	✓	✓	✓	✓	✓	NA
Vinyl acetate		NA	√	✓ ————————————————————————————————————	+28		√	NA		√	√	√	✓	✓	✓ 	√	NA
						Surrogate	o Dogov	Out Dutli	OMS								
Sample ID	1,2-DCA-d4 %I	R T	oluene-d8	%R	BFB %R	Surrogati		Sample I		1,2-D	CA-d4	%R	Toluene-	-d8 %R	BFB %	R	
None																	
]	S Outli	iers									
	FBZ			Chl-d	15	1,4	-DCB-c	14									
Sample ID	Sample ID Area RT Area RT		Are	a	RT												
None																	

Comments: HTs OK.
MS/MSD on SNL sample 579819002
ICAL VOA6.I 03/07/22 Linear: Acetone, Methylene chloride

Sandia Inorganic Metals Worksheet

ARCOC	#(s): 623	292							SDG #(s	s): 58011	2			Matrix:	Aqueous		
Laborato	ory Sampl	le IDs:	580112	2003				•						•			
Method/	Batch #s:	3005 A	A/6020E	3 : 22674	27/2267	7428											
CPMS Ma	ss Cal: 🛭	☑ Pass	s 🔲 1	Fail	□ NA	A ICI	MS Res	olution: 🛛 Pas	ss	☐ Fail		□NA					
Analyte			Calik	oration			MB		LCS		MS Lab %R Rep RPD	Serial Dil.	ICS AB	ICS A ±MDL	LLCCV		
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/I	mg/L	%R	%R		%D		ug/L (x50)	%R		
none																	
																-	
			I	S Outli	ers 60-1	125%							IS C	utliers 80-1.	20%		
San	ple ID		%R	ecovery	7	%Reco	very	%Recover	y	CCV/C	CB ID	•	%Recove	ry	%Recovery	%F	Recovery
n	one									noi	ne						
Comments ICPMS: M ICS NA			rmed on	-003.													

Sandia Radiochemistry Worksheet

ARCOC #(s): 623292 SDG #: 580112 Matrix: Aqueous

Laboratory Sample IDs: 580112- see below

Method/Batch #s: EPA 901.1 (gamma spec)/2268362 Sample -004

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2270710 Sample -005

Method/Batch #s: SM 7500 Rn B (Rn-222)/2267570 Sample -007

Method/Batch #s: EPA 906.0 Modified (Tritium)/2270478 Sample -006

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	LCSD %R	LCS/ LCSD RPD		MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER	Rep RPD	
none														
Tracer/Carrier Recovery Outliers														
Sample ID	Tracer/Ca	arrier %I	₹	Sample ID)	Tracer/	Carrier	%R		Sample ID)	Tracei	r/Carrier	%R
NA														
			1											

Comments: HTs OK

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on SNL 579819005. Parent sample 151mL; DUP 150ml; MS/MSD 50.2/51ml; 3X dilution.

GS: DUP on -004.

Rn-222: LCS/LCSD, DUP on SNL sample $580227010\,$

Tritium: DUP/MS on SNL 579819006

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

page 1 of 1 ARCOC 623292 **SMO Use** Date Samples Shipped: SMO Authorization: Waste Characterization: No Project Name: MWL LTMMP RMA: No SNL Shipper #: 347806 SMO Contact Phone: Project Manager: Timmie Jackson Lab Contact: Zachary Worsham/ 843-300-4224 4° Celsius: Yes P/T No: 195122.10.11.08 Wendy Palencia/505.844.3132 Lab Destination: GEL Contract No.:1983530 Turnaround Time: 30 days SDG#: TA: Bldg: Room: Last Chain: No 580112 Validation Reg'd: Yes EDD: Yes Date/Time Sample Parameter & Method Requested Lab Sample No Frac-Sample Location Detail Depth Sample Container Preserv-Collection Collected Matrix Type Volume ative Method Type Sample Id (ft) tion 05/16/22 09:47 VOC-LTMMP (SW846-8260D) 117661 √ DIW 3x40 ml HCI G FB 001 MWL-FB2 001 05/16/22 10:07 VOC-LTMMP (SW846-8260D) GW lG HCI G 496 3x40 ml SA 117662 √ 001 MWL-MW7 002 05/16/22 10:09 METALS, LTMMP - Cd, Cr, Ni, U P G 496 GW 500 ml HNO3 SA 117662 ./ 002 MWL-MW7 05/16/22 10:10 G SA GAMMA SPEC, SHORT LIST (EPA 901) GW 1 L HNO3 003 MWL-MW7 496 117662 ./ 05/16/22 10:11 GROSS-ALPHA/BETA (EPA 900) GW 1 L G SA 117662√ 004 MWL-MW7 496 HNO3 05/16/22 10:12 GW 250 ml G SA TRITIUM (EPA 906) AG None 117662 √ 005 MWL-MW7 496 05/16/22 10:08 SA RADON (SM7500 Rn B) None G 496 GW G 2x40 ml 117662 √ 006 MWL-MW7 05/16/22 09:47 lDIW lG 3x40 ml HCI G TB VOC-LTMMP (SW846-8260D) 001 MWL-TB3 117663 ./ Comments: Trip blanks received from lab with headspace. Name Sample Robert Lynch Team Denisha Sanchez Members Drg8888 Date 5-16-27Time 1045 Relinquished by Time Relinguished by Org. Date Received by Chan Org. OG/8 Date 5/10/2) Time 1045 Org. Date Time Received by 1130 Relinquished by Org. 06/8 Date 5/16/22 Time Date Time Org. Relinguished by Received by 19-100Fime 910 Received by Org. Date Time Date

www.againc.net

Memorandum

Date: June 22, 2022

To: File

From: Mary Donivan

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623293 and 623294

SDG: 580227 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Five samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. For the initial calibration associated with all samples *except* sample 580227005, the intercepts were negative with absolute values > the MDL but ≤3X the MDL for acetone, chloromethane and methylene chloride. The associated sample results were non-detect and will be **qualified UJ,15**.
- 2. For the ICAL associated with sample -005, the intercept was negative with an absolute value > the MDL but ≤3X the MDL for methylene chloride. The associated sample result was non-detect and will be **qualified UJ,15**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

For the ICAL calibration associated with all samples *except* sample -005, the intercepts were positive and > the MDL for bromodichloromethane; cis-1,3-dichloropropylene; trans-1,3-dichloropropylene; 2-hexanone; dibromochloromethane; styrene and bromoform. The associated sample results were either non-detect or detects >3X the value of the intercept and will not be qualified.

For the ICAL calibration associated with sample -005, the intercepts were positive and > the MDL for trans-1,3-dichloropropylene; 2-hexanone; dibromochloromethane and bromoform. The associated sample results were non-detect and will not be qualified.

For the CCV associated with sample -005, the %D was >20% with positive bias for bromomethane. The associated sample result was non-detect and will not be qualified.

Blanks

No target analytes were detected in any of the blanks except as follows.

Bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in the DIWQC sample, sample -001. No field sample results were qualified.

Bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in FB3, sample -004, associated with sample -005. The associated sample results were non-detect and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

TBs were submitted on both ARCOCs. A DIWQC sample was submitted on ARCOC 623293 and was the DI source water for equipment decontamination. FB3 was submitted on ARCOC 623294 and was associated with the field sample on the same ARCOC.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

www.againc.net

Memorandum

Date: June 23, 2022

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623293 and 623294

SDG: 580227 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks except as follows. U was detected at \leq the PQL in a CCB bracketing the samples. The associated sample results were either non-detect or a detect > the PQL and >5X the CCB value and will not be qualified.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Al, Mg, Fe and Ca were < those in the ICS solutions.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

A DIWQC sample was submitted on ARCOC 623293 and was the DI source water for equipment decontamination.

No other specific issues that affect data quality were identified.

www.againc.net

Memorandum

Date: June 23, 2022

To: File

From: Mary Donivan

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623294 SDG: 580227 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/SW846 9310 (gross alpha/beta) and EPA 906.0 modified (tritium) and two samples were prepared and analyzed with approved procedures using method SM 7500 Rn B (Rn-222). Problems were identified with the data package that resulted in the qualification of data.

Gamma spec, Tritium and Rn-222:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3.**

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria. It should be noted that the MS and/or MSD for tritium and gross alpha/beta were performed on an SNL sample of similar matrix from another SDG. No sample results will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met. It should be noted that the replicate analyses for all target analytes *except* Rn-222 were performed on SNL samples of similar matrix from other SDGs. No sample results will be qualified.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS and/or LCSD met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

EB2 was submitted for Rn-222 analysis on ARCOC 623294 and was associated with sample 580227010 on the same ARCOC.

No other specific issues that affect data quality were identified.

Sample Findings Summary

AR/COC: 623293, 623294 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 901.1			
	117670-003/MWL-MW9	Americium-241 (14596-10-2)	BD, FR3
	117670-003/MWL-MW9	Cesium-137 (10045-97-3)	BD, FR3
	117670-003/MWL-MW9	Cobalt-60 (10198-40-0)	BD, FR3
	117670-003/MWL-MW9	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	117670-005/MWL-MW9	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	118054-001/MWL-EB2	Radon-222 (14859-67-7)	BD, FR3
SW846 8260D			
	117664-001/MWL-DIWQC	Acetone (67-64-1)	UJ, 15
	117664-001/MWL-DIWQC	Chloromethane (74-87-3)	UJ, 15
	117664-001/MWL-DIWQC	Methylene chloride (75-09-2)	UJ, 15
	117665-001/MWL-TB4	Acetone (67-64-1)	UJ, 15
	117665-001/MWL-TB4	Chloromethane (74-87-3)	UJ, 15
	117665-001/MWL-TB4	Methylene chloride (75-09-2)	UJ, 15
	117669-001/MWL-FB3	Acetone (67-64-1)	UJ, 15
	117669-001/MWL-FB3	Chloromethane (74-87-3)	UJ, 15
	117669-001/MWL-FB3	Methylene chloride (75-09-2)	UJ, 15
	117670-001/MWL-MW9	Methylene chloride (75-09-2)	UJ, 15
	117671-001/MWL-TB5	Acetone (67-64-1)	UJ, 15
	117671-001/MWL-TB5	Chloromethane (74-87-3)	UJ, 15
	117671-001/MWL-TB5	Methylene chloride (75-09-2)	UJ, 15

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 623293 and 623294		Site/Proje	et: MWL LTMMI)			Validation D	Date: 06/22/2022	2
SDG #: 580227		Laborator	y: GEL Laborator	ies, LLC			Validator: M	Iary Donivan	
Matrix: Aqueous		# of Samp	les: 12	CVR presen	t: Yes				
ARCOC(s) present: Yes		Sample Co	ontainer Integrity:	OK					
Analysis Type: ☑ Organic ☑ Metals	☐ Gench	em	⊠ Rad						
			Requested A	Analyses No	t Reported				
Client Sample ID	Lab Samp	le ID	Analysis			Con	nments		
None									
			Hold Time	Preservatio	n Outliers				
Client Sample ID	Lab Sample	ID		Pres.	Collection	Preparation	Analysis	Analysis	Analysis
_	Lab Sample	110	Analysis	ries.	Date	Date	Date	<2X HT	≥2X HT
None									
Comments: Collected: 05/17/20	22								
The ARCOCs noted that the trip	blank vials were	received fro	m the lab with he	adspace.					
EB2 was submitted on ARCOC	623294 for Rn-22	2 analysis c	only and was assoc	ciated with the	e field sample on	the same ARCOC	··		
Validated by:	-								
Mary A.	Donivan	<u>)</u>							

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623293 and 623294	SDG: 580227	Matrix: Aqueous
Laboratory Sample IDs: 580227001, -003, -004, -005*, -011		
Method/Batch #s: 8260D 2268130	Tuning (pass/fail): pass	TICs Required? (yes/no): no

			. (alibratio	on	1							TB 4			
Analyt (outlier		Int.	RF/ Slope	RSD/ r ²	(ICV)/CC %D	ev	MB	5X (10X) MB	LCS %R	MS %R	MSD %R	MS/ MSD RPD	-003 TB5 -011	DIW QC -001	FB3 -004	5X (10X) FB3
ICAL VOA2.I 03/3	1/22															
Bromodichlorometha	ane	+0.51	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	5.44	5.24	26.2
Chloroform		NA	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	23.8	23.2	116
Dibromochlorometh	ane	+0.70	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	3.55	3.53	17.4
Chloromethane		-0.85	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	✓	✓	NA
Acetone		-4.81	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	✓	✓	NA
Methylene chloride		-1.15	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	✓	✓	NA
cis-1,3-Dichloroprop	ylene	+0.50	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	✓	✓	NA
trans-1,3-Dichloropr	opylene	+0.46	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	✓	✓	NA
2-Hexanone		+2.78	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	✓	✓	NA
Styrene		+0.65	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	✓	✓	NA
Bromoform		+1.00	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	✓	✓	NA
*ICAL VOA2.I 05/	21/22															
Methylene chloride		-0.52	✓	✓	✓		✓	NA	✓	✓	✓	✓				
trans-1,3-Dichloropr	opylene	+0.37	✓	✓	✓		✓	NA	✓	✓	✓	✓				
2-Hexanone		+1.94	✓	✓	✓		✓	NA	✓	✓	✓	✓				
Dibromochlorometh	ane	+0.37	✓	✓	✓		✓	NA	✓	✓	✓	✓				
Bromoform		+0.82	✓	✓	✓		✓	NA	✓	✓	✓	✓				
Bromomethane		NA	✓	✓	+22		✓	NA	✓	✓	✓	✓				
						Surrogate	Recov	very Outli	ers							
Sample ID	1,2-DCA-d4 %	R	oluene-d8	%R	BFB %R			Sample II	1,2	-DCA-d4	%R	Toluene-	-d8 %R	BFB %	%R	
None																
]	S Outl	iers								
	FBZ			Chl-d	15	1,4	-DCB-	d4								
Sample ID	Area	RT	Arc	ea	RT	Are	a	RT								
None																

Comments: HTs OK.

MS/MSD on sample -005
Samples -001, -003, -004 and -011 - ICAL VOA2.I 03/31/22 Linear: Dichlorodifluoromethane; Chloromethane; Acetone; Methylene chloride; Bromodichloromethane; cis-1,3-Dichloropropylene; trans-1,3-Dichloropropylene; 2-Hexanone; Dibromochloromethane; Styrene; Bromoform

Sample -005, MS, MSD - ICAL VOA2.I 05/21/22 Linear: Dichlorodifluoromethane; Vinyl chloride; Acetone; Methylene chloride; trans-1,3-Dichloropropylene; 2-Hexanone; Dibromochloromethane; Bromoform

Sandia Inorganic Metals Worksheet

ARCOC	C#(s): 623	293 ar	nd 62329	94				5	SDG #(s): 58022	7			Matrix:	Aqueous		
Laborato	ory Sampl	e IDs:	580227	002, -00)6			<u> </u>									
Method	Batch #s:	3005 A	A/6020E	3 :226758	39/2267	590											
CPMS Ma	ıss Cal: 🛭	Pas	s 🔲 1	Fail	□ NA	A ICPN	MS Resoluti	on: 🛛 Pass		☐ Fail		□ NA					
Analyte			Calil	bration			МВ	5X Blank	LCS	MS	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL	LLCCV	DIWQC	
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/L	mg/L	%R	%R	RPD	%D	%R	ug/L (x50)	%R	-002	
U	NA	✓	✓	✓	✓	0.146J	✓	0.0007	✓	✓	✓	✓	NA	NA	✓	✓	
			I	S Outli	ers 60-1	25%							IS C	outliers 80-1	20%		
San	nple ID		%R	ecovery	7	%Recov	rery	%Recovery		CCV/C	CB ID	•	%Recove	ery	%Recovery	%Ro	ecovery
r	none									nor	ne						
Comments ICPMS: M ICS NA	s: HTs OK IS/DUP/SD		rmed on	sample -(006.		•		•			•		•			

Sandia Radiochemistry Worksheet

ARCOC #(s): 623294 SDG #: 580227

Laboratory Sample IDs: 580227– see below

Method/Batch #s: EPA 901.1 (gamma spec)/2268362 Sample -007

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2270710 Sample -008

Method/Batch #s: SM 7500 Rn B (Rn-222)/2267570 Samples -010, -012

Method/Batch #s: EPA 906.0 Modified (Tritium)/2270478 Sample -009

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	LCSD %R	LCS/ LCSD RPD		MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER	Rep RPD	EB2 -012
none														
				Tracer/Ca	rrier Rec	overy Outl	iers							
Sample ID	Tracer/Ca	arrier %R	2	Sample ID)	Tracer/	Carrier	%R		Sample II)	Tracei	r/Carrier	%R
NA														

Comments: HTs OK.

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on SNL 579819005. Parent sample 151mL; DUP 150ml; MS/MSD 50.2/51ml; 3X dilution.

GS: DUP on SNL sample 580112004

Rn-222: LCS/LCSD, DUP on sample -010

Tritium: DUP/MS on SNL 579819006

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

					SMO Us	e .	ŧ				- 12		ARCOC	page 1 of 1 623293
Project Ma	anag	MWL LTMMP er: Timmie Jackson 2.10.11.08	l	SNL S Lab Co Lab Do	amples Shipped hipper #:	(478 7 rsham/ 843-30	8	☐ SMO	Authorizat Contact Ph y Palencia		32	Waste Character RMA: No 4° Celsius: Yes	ization: No	
TA: Bldg	: Ro	om:		Last Chain: No Validation Req'd: Yes				Turnaround Time: 30 days EDD: Yes				SDG#: 580	0227	
Sample No	Frac- tion	Sample Location D	etail	Depth (ft)	Date/Time Collected	Sample Matrix	Type Co	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Metho	d Requested	Lab Sample Id
117664 🗸	001	MWL-DIWQC		0		DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260D)	001
117664 🗸	002	MWL-DIWQC				DIW	Р	500 ml	HNO3	G	FB	METALS, LTMMP - Cd, Cr, N	, U	002
117665 🏑	001	MWL-TB4		0	05/17/22 09;08	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	003
						-								
Sample Team Members Name Robert Lynch Denisha Sanchez Signature Comments: Trip blanks received from lab with head space.														
Relinquish		and the same of th		The second second)ate 5-17-22T		30	Relinqu		***************************************	Org		Time	
Received b	 				Date 5/17/22 T		3Ø	Receive			Org		Time	
Relinquish		and the second s			Date 5/17/22 T	***************************************	_	Relinqu		***************************************	Org	**************************************	Time	
Received b	У	11-12-4	Org.	L	Date 5/18/22 T	ime 9	30	Receive	d by		Org.	. Date	Time	

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

				SMO Us						0	ARCOC	page 1 of 1 623294
Project Ma	Project Name: MWL LTMMP Project Manager: Timmie Jackson P/T No: 195122.10.11.08 Date Samples Shipped: 5 / 17 SNL Shipper #: 3 / 2 / 3 / 3 / 3 / 3 / 3 / 3 / 3 / 3 /							Authorizat Contact Ph dy Palencia	Waste Characterization: No RMA: No 4° Celsius: Yes			
TA: Bldg	: Ro	om:		Chain: No ation Req'd: Yes	S		Turna EDD	around Time : Yes	e: 30 days		SDG#: 580227	7
Sample No	Frac- tion		Depth (ft)	Collected	Sample Matrix		ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample Id
117669 ✓	001	MWL-FB3		05/17/22 09:11	DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260D)	004
117670 🗸	001	MWL-MW9		05/17/22 09:13	GW	G	3x40 ml	HCI	G	SA	VOC-LTMMP (SW846-8260D)	005
117670√	002	MWL-MW9		05/17/22 09:14	GW	Р	500 ml	HNO3	G	SA	METALS, LTMMP - Cd, Cr, Ni, U	006
117670√	003	MWL-MW9	497	05/17/22 09:15	GW	Р	1L	HNO3	G	SA	GAMMA SPEC, SHORT LIST (EPA 901)	007
117670√	004	MWL-MW9	497	05/17/22 09:16	GW	Р	1 L	HNO3	G	SA	GROSS-ALPHA/BETA (EPA 900)	008
117670 🗸	005	MWL-MW9	497	05/17/22 09:17	GW	AG	250 ml	None	G	SA	TRITIUM (EPA 906)	009
117670 ✓	006	MWL-MW9	497	05/17/22 09:12	GW	G	2x40 ml	None	G	SA	RADON (SM7500 Rn B)	010
117671√	001	MWL-TB5	0	05/17/22 09:11	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	011
118054 √	001	MWL-EB2	0	05/17/22 08:40	DIW	G	2x40 ml	None	G	EB	RADON (SM7500 Rn B)	0/2
Sample Team Members		me Signat bert Lynch nisha Sanchez	we for	Tynch Sung		Com	ments: T	rip blanks r	eceived fro	m lab wi	th head space.	
Relinquish		A Company of the Committee of the Commit		Date 8-17-22T				ished by		Org	g. Date Time	
Received b				Date 5 / 17/22 T		30	Receive			Org		THE OWNER OF THE OWNER OWN
				Date 5/17/50 T				ished by		Org		
Received b)y	Slavy Boon Org.	1	Date <i>5/18/22</i> T	ime Ys	<u> </u>	Receive	d by		Org	g. Date Time	**************************************

www.againc.net

Memorandum

Date: June 23, 2022

To: File

From: Mary Donivan

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623295 SDG: 580366 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration RRF was <0.050 but ≥0.010 for 2-butanone. The associated sample results were non-detect and will be **qualified UJ,14**.
- 2. The initial calibration %RSD was >15% but ≤40% for bromoform. The associated result for sample 580366001 was a detect and will be **qualified J,I3**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The initial calibration %RSD was >15% but ≤40% for bromoform. The associated results for samples -002 and -008 were non-detect and since no other calibration infractions occurred for these compounds, will not be qualified.

The CCV %D was >20% with positive bias for vinyl acetate. The associated sample results were non-detect and will not be qualified.

Blanks

No target analytes were detected in any of the blanks except as follows.

Bromoform was detected at ≤ the PQL and bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in FB4, sample -001, associated with sample-002. The associated sample results were non-detect and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

A TB was submitted on ARCOC 623295. FB4 was submitted on ARCOC 623295 and was associated with the field sample on the same ARCOC.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

www.againc.net

Memorandum

Date: June 23, 2022

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623295 SDG: 580366 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Al, Mg, Fe and Ca were < those in the ICS solutions.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

No other specific issues that affect data quality were identified.

www.aqainc.net

Memorandum

Date: June 23, 2022

To: File

From: Mary Donivan

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623295 SDG: 580366 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

Gamma spec and Tritium:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3.**

Rn-222:

1. The associated result for sample 580366007 was \geq the MDA but <3X the MDA and will be qualified J,FR7.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria. It should be noted that the MS and/or MSD for tritium and gross alpha/beta were performed on an SNL sample of similar matrix from another SDG. No sample results will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met. It should be noted that the replicate analyses for all target analytes were performed on SNL samples of similar matrix from other SDGs. No sample results will be qualified.

<u>Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)</u>

The LCS and/or LCSD met QC acceptance criteria.

Detection Limits/Dilutions

The sample was not diluted. All required detection limits were met.

Other QC

No other specific issues that affect data quality were identified.

Sample Findings Summary

AR/COC: 623295 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 901.1			
	117667-003/MWL-MW8	Americium-241 (14596-10-2)	BD, FR3
	117667-003/MWL-MW8	Cesium-137 (10045-97-3)	BD, FR3
	117667-003/MWL-MW8	Cobalt-60 (10198-40-0)	BD, FR3
	117667-003/MWL-MW8	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	117667-005/MWL-MW8	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	117667-006/MWL-MW8	Radon-222 (14859-67-7)	J, FR7
SW846 8260D			
	117666-001/MWL-FB4	2-Butanone (78-93-3)	UJ, 14
	117666-001/MWL-FB4	Bromoform (75-25-2)	J, 13
	117667-001/MWL-MW8	2-Butanone (78-93-3)	UJ, I4
	117668-001/MWL-TB6	2-Butanone (78-93-3)	UJ, 14

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

							•			
ARCOC#: 623295		Site/Projec	et: MWL LTMMI)			Validation D	Date: 06/23/2022	2	
SDG #: 580366		Laboratory	y: GEL Laborator	ies, LLC			Validator: M	Iary Donivan		
Matrix: Aqueous		# of Samp	les: 8	CVR presen	t: Yes					
ARCOC(s) present: Yes		Sample Co	ontainer Integrity:	OK						
Analysis Type: ☑ Organic ☑ Metals	Gench	em	⊠ Rad							
Requested Analyses Not Reported										
Client Sample ID Lab Sample ID Analysis Comments										
None										
Hold Time/Preservation Outliers										
CIL 4 C 1 ID		ID			Collection	Preparation	Analysis	Analysis	Analysis	
Client Sample ID	Lab Sample	ID	Analysis	Pres.	Date	Date	Date	<2X HT	≥2X HT	
None										
Comments: Collected: 05/18/2022										
The ARCOC noted that the trip blank vials were received from the lab with headspace.										
Validated by:	Validated by:									
Mary A. Donivar										

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623295	SDG: 580366	Matrix: Aqueous
Laboratory Sample IDs: 580366001, -002, -008		
Method/Batch #s: 8260D 2269597	Tuning (pass/fail): pass	TICs Required? (yes/no): no

				alibratio	on			5X									
Analyte (outliers)		Int.	RF/ Slope	RSD/ r ²	(ICV)/CC %D	CV	MB			LCS %R	MS %R	MSD %R	MS/ MSD RPD	TB6 -008	FB4 -001	5X (10X) EB	
Bromodichloromethane		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	3.00	15.0	
Bromoform		NA	✓	17	✓		✓	NA		✓	✓	✓	✓	✓	0.38J	1.9	
Chloroform		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	9.46	47.3	
Dibromochloromethane		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	2.22	11.1	
2-Butanone		NA	0.027	✓	✓		✓	NA		✓	✓	✓	✓	✓	✓	NA	
Vinyl acetate		NA	✓	✓	+21		✓	NA		✓	✓	✓	✓	✓	✓	NA	
						Surrogate						1					
Sample ID 1,2-DCA	-d4 %R	T	oluene-d8	%R	BFB %R			Sample I	D	1,2-D	CA-d4 9	∕₀R	Toluene-	d8 %R	BFB %	δR	
None																	
						. 1	S Outli	iers									
	FBZ			Chl-d	5	1,4	-DCB-c	14									
Sample ID Area	ı	RT	Are	ea	RT	Area	a	RT									
None																	

Comments: HTs OK.
MS/MSD on sample -002
ICAL VOA6.I 03/07/22 Linear: Acetone, Methylene chloride

Sandia Inorganic Metals Worksheet

ARCOC	#(s): 623	295							SDG #(s	s): 58036	6			Matrix:	Aqueous		
Laborate	ory Sampl	le IDs:	580366	0003										1			
Method	Batch #s:	3005A	A/6020E	3 :226798	88/2267	989											
CPMS Ma	ıss Cal: 🏻	Z Pass	s 🗌 1	Fail	□ NA	A ICF	MS Res	olution: 🛛 Pa	ss	☐ Fail		□NA					
Analyte			Calik	oration			МВ		LCS	MS	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL	LLCCV		
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/I	mg/L	%R	%R	RPD	%D	%R	ug/L (x50)	%R		
none																	
			I	S Outli	ers 60-1	125%							IS O	utliers 80-1	20%		
San	ıple ID		%R	ecovery	7	%Reco	very	%Recover	y	CCV/C	CB ID	•	%Recove	ry	%Recovery	%R	ecovery
1	none									noi	ne						
Comments ICPMS: M ICS NA			rmed on	sample -(003.												

Sandia Radiochemistry Worksheet

ARCOC #(s): 623295 SDG #: 580366 Matrix: Aqueous

Laboratory Sample IDs: 580366- see below

Method/Batch #s: EPA 901.1 (gamma spec)/2268362 Sample -004

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2270710 Sample -005

Method/Batch #s: SM 7500 Rn B (Rn-222)/2267570 Sample -007

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	LCSD %R	LCS/ LCSD RPD	MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER	Rep RPD	
none													

			Tracer/Carrier Reco	very Outliers				
Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R
NA								

Comments: HTs OK.

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on SNL 579819005. Parent sample 151mL; DUP 150ml; MS/MSD 50.2/51ml; 3X dilution.

GS: DUP on SNL sample 580112004

Rn-222: LCS/LCSD, DUP on SNL sample 580227010

Method/Batch #s: EPA 906.0 Modified (Tritium)/2270478 Sample -006

Tritium: DUP/MS on SNL 579819006

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

-				SMO U	se/	/			1	Λ	ARCOC	page 1 of 623295
Project M	lanag	: MWL LTMMP ger: Timmie Jackson 22.10.11.08	SNL S Lab C Lab D	Samples Shippe Shipper #: 34 Contact: zachary wo Destination: GEI act No.:1983530	<i>7977 (</i> orsham/ 843-30 L		SMO) Authorizat) Contact Ph dy Palencia	tion: 16 k hone: 17 k 17 k 17 505.844.31	132	Waste Characterization: No RMA: No 4° Celsius: Yes	
TA: Bldg: Room:				Chain: Yes ation Req'd: Ye s	S		Turnaround Time: 30 days EDD: Yes SDG #: 50					
Sample No	tion		Depth (ft)	(it) Collected Matrix Type Volume ative Method Type		Sample Type		Lab Sample Id				
117666	001	MWL-FB4	0	05/18/22 09:51	DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260D)	001
117667	001	MWL-MW8	497	05/18/22 10:18	GW	G	3x40 ml	нсі	G	SA	VOC-LTMMP (SW846-8260D)	902
117667	002	MWL-MW8	497	05/18/22 10:20	GW	Р	500 ml	HNO3	G	SA	METALS, LTMMP - Cd, Cr, Ni, U	903
117667	003	MWL-MW8	497	05/18/22 10:21	GW	Р	1 L	HNO3	G	SA	GAMMA SPEC, SHORT LIST (EPA 901)	
117667	004	MWL-MW8	497	05/18/22 10:22	GW	Р	1 L	HNO3	G	SA	GROSS-ALPHA/BETA (EPA 900)	604
117667	005	MWL-MW8	497	05/18/22 10:23	GW	AG	250 ml	None	G	SA	TRITIUM (EPA 906)	006
117667	006	MWL-MW8	497	05/18/22 10:19	GW	G	2x40 ml	None	G	SA	RADON (SM7500 Rn B)	007
117668	001	MWL-TB6	0	05/18/22 09:51	DIW	G	3x40 ml	нсі	G	ТВ	VOC-LTMMP (SW846-8260D)	008
						1	 	 				0.0
					1		1					
Sample Team Members		me Signati bert Lynch nisha Sanchez	are	nel		Com	ments: Ti	rip blanks r	eceived from	m lab wi	ith head space.	
Relinquish	ed by	Durk Son Org &	7 888c	Date 5 - 18 - 22 Ti	ime ///9/		Relingu	ished by		Org	g. Date Time	
Received by One of Congob 8 Date 5-18-72 Time 1000						Receive		Material en	-	Org. Date Time		
Relinquished by March Org. Oct & Date 5/18/22 Time 1200						Relinqu	ished by	The supplied of the supplied o	Org		DANIE WAS AND ADDRESS OF THE PARTY.	
Received by Org. Dates/19/22 Time 725						Receive	d by	Org. Date Time				

Contract Verification Review Forms Mixed Waste Landfill Groundwater Monitoring May 2022

AR/COC Number	Sample Type
623290	Quality Control
623291	Environmental & Quality Control
623292	Environmental & Quality Control
623293	Quality Control
623294	Environmental & Quality Control
623295	Environmental & Quality Control

Note: The forms in this section include AR/COC numbers for environmental and quality control samples; the AR/COC forms are provided in the Data Validation Reports in this Annex.

SMO-2022-CVR (4-2022) SMO-05-03

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623290

Analytical Lab GEL

SDG No. 579613

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Χ		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		Samples received at lab out of temperature specs due to FedEx delay

2.0 Analytical Laboratory Report

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623290 1 of 5

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Χ		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met		Χ	Radon sample 117655-006 analyzed past holding time
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623290 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Acetone, bromodichloromethane, bromoform, chloroform, dibromochloromethane and methylene chloride detected in MWL-EB 1. Methylene chloride detected in MWL-TB 1.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623290 3 of 5

Line No.	Item	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) lon abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623290 4 of 5

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Based on the review, this data package is complete. f C Yes $\bf C$ No

Reviewed by: Wendy Palencia Date: 06-21-2022 08:23:00

Closed by: Wendy Palencia Date: 06-21-2022 08:23:00

ARCOC No. 623290 5 of 5

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623291

Analytical Lab GEL

SDG No. 579819

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item	Complete?		If no, explain
No.	iteiii	Yes	No	ii iio, expiairi
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623291 1 of 5

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, explaili
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met		Χ	Radon samples 117658-006, 117659-006 and sample duplicate analyzed past holding time
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623291 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Acetone, bromodichloromethane, bromoform, chloroform and dibromochloromethane detected in MWL-FB 1. Methylene chloride detected in MWL-TB2.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	×		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Χ		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623291 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623291 4 of 5

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Reviewed by: Wendy Palencia Date: 06-21-2022 09:57:00

Closed by: Wendy Palencia Date: 06-21-2022 09:57:00

ARCOC No. 623291 5 of 5

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623292

Analytical Lab GEL

SDG No. 580112

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiairi
1.1	All items on ARCOC complete	Х		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line	Item	Complete?		If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623292

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Χ		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623292 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Acetone, bromodichloromethane, bromoform, chloroform, dibromochloromethane and methylene chloride detected in MWL-FB 2. Methylene chloride detected in MWL-TB3.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623292 3 of 5

Line No.	Item	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) lon abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623292 4 of 5

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

- 0			
	Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Based on the review, this data package is complete. f C Yes $\bf C$ No

Reviewed by: Wendy Palencia Date: 06-21-2022 10:52:00

Closed by: Wendy Palencia Date: 06-21-2022 10:52:00

ARCOC No. 623292 5 of 5

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623293 & 623294

Analytical Lab GEL

SDG No. 580227

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	п по, ехріані
1.1	All items on ARCOC complete	X		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiairi
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623293 & 623294

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623293 & 623294 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	Bromodichloromethane, chloroform and dibromochloromethane detected in MWL-DIWQC and MWL-FB3
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Χ		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623293 & 623294 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623293 & 623294 4 of 5

Line No.	ltem	Yes	No	Comments
	e) Instrument run logs provided	X		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

- 0			
	Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? € Yes € No

Reviewed by: Wendy Palencia Date: 06-21-2022 14:34:00

Closed by: Wendy Palencia Date: 06-21-2022 14:34:00

ARCOC No. 623293 & 623294 5 of 5

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623295

Analytical Lab GEL

SDG No. 580366

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	п по, ехріані
1.1	All items on ARCOC complete	X		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623295

Line	Item		olete?	If no, explain	
No.	item	Yes	No	ii iio, expiaiii	
2.6	QC batch numbers provided	Х			
2.7	Dilution factors provided and all dilution levels reported	Х			
2.8	Data reported in appropriate units and using correct significant figures	Х			
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х			
2.10	Narrative provided	Х			
2.11	TAT met	Х			
2.12	Holding times met	Х			
2.13	Contractual qualifiers provided	Х			
2.14	All requested result and TIC (if requested) data provided	Х			

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	Х		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		

ARCOC No. 623295 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Bromodichloromethane, bromoform, chloroform, dibromochloromethane detected in MWL-FB4
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623295 3 of 5

Line No.	Item	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) lon abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623295 4 of 5

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

- 1			
	Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ⊙ No

Reviewed by: Wendy Palencia Date: 06-21-2022 14:54:00

Closed by: Wendy Palencia Date: 06-21-2022 14:54:00

ARCOC No. 623295 5 of 5

Field Sampling Forms October 2022 Groundwater Monitoring

SNL/NM Project Name: MWL	
Well ID: MWL-BW2	Date: 10/20/22 Date:
Pump Method: Portable	Pump Depth: 496'

PURGE MEASUREMENTS

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
482.68	0835	Start							
485.06	0903	5	19,35	658.77	142.7	7.30	0.38	10.77	0.84
4186.04	0923	10	19,75	661.90	131.7	7.31	0.50	10.49	0.81
	0944	15	20.49	677.41	99.9	7.30	0.90	11.04	0.84
488.20	0957	18	20.63	679.98	97.4	7.30	1.47	16.49	1.25
488.68	1006	20	20.74	680.10	104.2	7.31	1.93	20.82	1.58
489.02	1015	22	21.08	684.68	106.0	7.32	2.90	28.73	2.15
489.31	1027	24	21.32	686.70	109.4	7.33	2.97	35.46	2.65
489.55	1038	26	21.50	687.69	107.8	7.34	1.83	35.10	2.60
4189,62	1044	27	21.25	682.06	101.7	7.34	1.59	34.22	2.55
418970	1050	28	21.47	685.19	98.6	7.35	1.33	36.71	2.73
489.78	1056	29	21.78	690.93	96.5	7.35	1.31	36.79	2.72
489.81	1102	30	21.94	694.20	95.2	7.34	1.55	36.75	2.70
	1103		SAM						-
				1 ()					

Comments:

~1.5 gals purged from tubing @ <u>\$845</u>

SNL/NM Project Name: MWL								
Well ID: MWL-MW7	Date: 10/24/22	Date:						
Pump Method: Portable Pump Depth: 496'								

PURGE MEASUREMENTS

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
490.31	0839	Start							
19129	0900	1	14.22	435.73	187.7	7.28	2.41	70.94	6.24
191.49	0906	2	15.42	450.28	159.9	7.35	1.92	73.71	6.31
191.78	0911	3	15.82	451.30	141.0	7.42	1.24	73.09	6.21
191.96	0916	4	16.01	456.82	127.7	7.45	1.82	73.43	6.22
192.12	0921	5	16.53	461.53	121.4	7.48	1.58	73.67	6.17
19224	0925	6	16-91	467.86	106.5	7.49	1.23	74,24	6.17
19237	0930	7	17.09	469.24	113.2	7.50	1.17	74.14	6.14
192.41	0935	8	17.04	469.28	111.4	7.51	0.98	73.82	6.12
192.46	0940	9	16.96	468.59	109-6	7.52	1.05	73.58	6.11
192.57	0945	10	14.72	463.99	108.6	7,52	0.70	73.02	6.10
	0946		SAM	pling.					->
				7					

Comments:

~1.5 gals purged from tubing @0854

SNL/NM Project Name: MWL						
Well ID: MWL-MW9	Date: 10/25/22	Date:				
Pump Method: Portable	Pump Depth: 497'					

PURGE MEASUREMENTS

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	pН	Turbidity (NTU)	DO (%)	DO (mar/L)
491.72	0838	Start	(0)	(µ3/ciii)			(N10)	(70)	(mg/L)
493.32	0857	1	17.75	474.11	160.8	7.33	0.37	18.91	1.53
493.81	0905	2	17.97	471.62	138.4	7,39	0.49	18,25	148
494.28	09/2	3	17.85	472.52	129.1	7.41	0.37	19.08	1.55
494.69	0919	4	17.10	463.77	122.8	7.42	0.48	19.22	1.58
495.11	0925	5	16.84	461.58	114.3	7.43	14.0	17.14	1.42
495,44	0933	6	16.52	459.03	110.8	7.44	0.46	14.94	1.25
495.67	0941	7	16.68	461.87	108.1	7.44	0.76	14.88	1.24
495.89	0949	8	17.31	473.65	104.5	7.44	0.76	13.08	1.07
496.04	0957	9	16.68	467.67	100.7	7.44	1.03	10.62	1.00
496.18	1005	10	16.95	470.64	96.1	7.45	0.54	10.53	0.87
	1006		SAM	pping					->
)				

Comments:

~1.5 gals purged from tubing @0852

SNL/NM Project Name: MWL						
Well ID: MWL-MW8	Date: 10/26/22	Date:				
Pump Method: Portable	Pump Depth: 497'					

PURGE MEASUREMENTS

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
192.03	0843	Start							
193.48	0904	1	18.84	477.78	154.1	7.46	0.36	51.67	4.07
19391	0911	2	19.32	481.00	147.6	7.51	0.33	53.47	4.17
194,28	0916	3	19.08	474.12	142.6	7.53	0.38	55.68	4.38
19465	0924	4	18.80	470.98	139.0	7.54	0.43	56.39	4.45
194.95	0932	5	18.56	472.97	136.6	7.52	0.33	5297	4.20
195.23	0940	6	18.54	476.20	1343	7.51	0.35	50.07	3.99
195.47	0949	7	18.42	480.39	131-2	7.50	0.33	44.74	3.56
195.63	0958	8	18.48	486.49	127.6	7.49	0.27	39.00	3.10
195.81	1006	9	18.05	483.09	124.6	7.49	0.32	35.31	2.81
	1007		SAM	Plidy				-	
				0					
				·					

Comments:

~1.5 gals purged from tubing@_0858

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MWL									
Calibrations done by:	ynch		Date: 10/20/22						
Make & Model: In-Situ	Aqua Troll 60	0							
Sonde (S/N) with DO, Ec, pH, OR	P, and temperature	probes: 57111	1		_				
Other (SN): NA									
pH Calibration/Check									
pH Calibrated to (std): NA			pH sloped to (std)	: NA					
Reference value:	4.0	00	7.	00	10	00			
	Value	Temp	Value	Temp	Value	Temp			
1. Time (24 hr): 0634	4.00	2150	7.02	21.33	10,05	21.36			
2. Time (24 hr): 13 5 2	3,99	21.62	7,01	21.42	10.04	21.69			
3. Time (24 hr):									
4. Time (24 hr):									
Standard Lot No.:	2GF467		2GG910		2GG708				
Expiration Date.:	JUN/24		JUL/24 JUL/24						
SC Calib	ration/Check		ORP Calibration/Check						
Reference Value: 1413 uS	S/cm @ 25 C		Reference Value: 220 mV						
	Value	Temp			Value	Temp			
1. Time (24 hr): 0632	13207	21.65	1. Time (24 hr):	0631	220.0	21.61			
2. Time (24 hr): 13 58	1322.4	21,70	2. Time (24 hr):	1359	219.9	21.70			
3. Time (24 hr):			3. Time (24 hr):						
4. Time (24 hr):			4. Time (24 hr):						
Standard Lot No.: 2GF1263	Expiration Date.:	JUN/23	Standard Lot No.: 2GG952		Expiration Date.: APR/23				
	111	DO Cali	bration/Check						
Calibration Value:	Atmospheric Pressure in Hg								
1. Time (24 hr): 06 4	25.36								
2. Time (24 hr): 3 5 \$5 . 8				25.54					
3. Time: (24 hr)									
4. Time (24 hr):									

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name:	MWL			_			
Calibration done by:	R Lynch		Date: 10/2	0/22			
		TURBI	DIMETER				
Make & Model: HACH 2100Q Serial No. S/N 21090D000589							
Reference Value	10		20	100	800		
Standard Lot No.	A1215R	215R A		A1205	A1243		
1. Time (24 hr):	10.1	20.2		10)	798		
2. Time (24 hr):	10.0		20.1	10.2	799		
3. Time (24 hr):							
4. Time (24 hr):							
Comments:	L						

1. Time (24 hr):

Time (24 hr):
 Time: (24 hr)
 Time (24 hr):

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project Name: MWL Calibrations done by: R Lynch Date: 10/24/22 Make & Model: In-Situ Aqua Troll 600 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: 571114 Other (SN): NA pH Calibration/Check pH Calibrated to (std): pH sloped to (std): NA NA Reference value: 4.00 7.00 10.00 Value Value Temp Value Temp Temp 1.02 1. Time (24 hr): 4,00 2. Time (24 hr): 3. Time (24 hr): 4. Time (24 hr): 2GG910 Standard Lot No .: 2GF467 2GG708 Expiration Date .: JUN/24 JUL/24 JUL/24 SC Calibration/Check ORP Calibration/Check 220 mV 1413 uS/cm @ 25 C Reference Value: Reference Value: Value Temp Value Temp 8.5 1. Time (24 hr): 1. Time (24 hr): 21.10 2. Time (24 hr): 2. Time (24 hr): 355 220.5 3. Time (24 hr): 3. Time (24 hr): 4. Time (24 hr): 4. Time (24 hr): Standard Lot No.: 2GG952 Expiration Date.: APR/23 Standard Lot No.: 2GF1263 Expiration Date.: JUN/23 DO Calibration/Check 81% air saturation @ 5200 ft. Atmospheric Pressure in Hg Calibration Value:

84.45

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWL								
R Lynch	Date:	Date: 10/24/22						
TURBIDIMETER								
Make & Model: HACH 2100Q Serial No. S/N 21090D000589								
10	20	100	800					
A1215R	A1215R	A1205	A1243					
9.99	20,2	99-9	801					
10.0	20.1	161	799					
	2100Q 10 A1215R	Date:	TURBIDIMETER 2100Q Serial No. S/N 21090D000588 10 20 100 A1215R A1215R A1205 9.99 20.0 99-9					

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MWL							
Calibrations done by: R L	ynch		Date: 10/25/2	22			
Make & Model: In-Situ	Aqua Troll 60	0					
Sonde (S/N) with DO, Ec, pH, OF	RP, and temperature	probes: 57111	4				
Other (SN): NA					_		
		pH Cal	ibration/Check				
pH Calibrated to (std): NA			pH sloped to (std): NA			
Reference value:	4.0	00	7.	.00	10	.00	
	Value	Temp	Value	Temp	Value	Temp	
1. Time (24 hr): 6630	3,98	2148	7.01	21.50	10.03	21.54	
2. Time (24 hr): 1303	3.98	21.51	7.02	21.61	10.04	21,70	
3. Time (24 hr):						3	
4. Time (24 hr):							
Standard Lot No.:	2GF467		2GG910				
Expiration Date.:	JUN/24		JUL/24	JUL/24 JUL/24			
SC Calib	ration/Check			ORP Calibration/Check			
Reference Value: 1413 uS	S/cm @ 25 C		Reference Value:	Reference Value: 220 mV			
	Value	Temp			Value	Temp	
1. Time (24 hr): 0/28	1319.7	21.44	1. Time (24 hr):	06,27	219.8	23.64	
2. Time (24 hr): 1302	1322.0	21.47	2. Time (24 hr):	1309	220.3	20.99	
3. Time (24 hr):			3. Time (24 hr):				
4. Time (24 hr):			4. Time (24 hr):				
Standard Lot No.: 2GF1263	Expiration Date.:	JUN/23	Standard Lot No.: 2GG952 Expiration Date.: APR/			APR/23	
		DO Cal	ibration/Check				
Calibration Value:	Atmospheric Pressure in Hg						
1. Time (24 hr): 0626 04.47			25.75				
2. Time (24 hr): 30 86. 58				25.3	4		
3. Time: (24 hr)							
4. Time (24 hr):							

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name:	MWL				
Calibration done by:	R Lynch	Date: 10/2	Date: 10/25/22		
		TURBIDIMETER			
Make & Model: HACH 2100Q Serial No. S/N 21090D000589					
Reference Value	10	20	100	800	
Standard Lot No.	A1215R	A1215R	A1205	A1243	
1. Time (24 hr):	10.1	20.2	101	297	
2. Time (24 hr):	10.0	20.2	100	796	
3. Time (24 hr):					
4. Time (24 hr):					
Comments:		ļ		<u></u>	

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MVVL									
Calibrations done by:	Calibrations done by: R Lynch				Date: 10/26/22				
Make & Model:In-Situ	Aqua Troll 600)							
Sonde (S/N) with DO, Ec, pH, OR	P, and temperature p	probes: <u>57111</u>	4		- e1				
Other (SN): NA									
	pH Calibration/Check								
pH Calibrated to (std): NA			pH sloped to (std	: NA					
Reference value:	4.0	00	7.	00	10.	00			
	Value	Temp	Value	Temp	Value	Temp			
1. Time (24 hr): 0620	3,98	21.49	7.02	21.55	10.03	21.47			
2. Time (24 hr): 125 M	4.00	21.82	7.01	21.77	10.02	21.80			
3. Time (24 hr):		5							
4. Time (24 hr):									
Standard Lot No.:	2GF467		2GG910		2GG708				
Expiration Date.:	JUN/24		JUL/24 JUL/24						
SC Caliba	ation/Check		ORP Calibration/Check						
Reference Value: 1413 uS	/cm @ 25 C		Reference Value: 220 mV						
	Value	Temp			Value	Temp			
1. Time (24 hr): 06 9	1339.4	22.41	1. Time (24 hr):	0628	220.6	22.46			
2. Time (24 hr): 1256	1320.1	21.76	2. Time (24 hr):	1306	2203	21.75			
3. Time (24 hr):			3. Time (24 hr):			1			
4. Time (24 hr):			4. Time (24 hr):						
Standard Lot No.: 2GF1263	Expiration Date.:	JUN/23	Standard Lot No.	2GG952	Expiration Date.:	APR/23			
		DO Cal	ibration/Check						
Calibration Value:	81% air saturat	ion @ 5200 ft.		Atmospheric	Pressure in Hg				
1. Time (24 hr): 06/9	83.9	16		25.4	9				
2. Time (24 hr): 1255	84.	36		25.0	6				
3. Time: (24 hr)									
4. Time (24 hr):									

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name:	MWL					
Calibration done by:	R Lynch		Date: 10/26/22			
		TURBII	DIMETER			
Make & Model: HACH 2100Q Serial No. S/N 21090D000589						
Reference Value	10		20	100	800	
Standard Lot No.	A1215R	А	1215R	A1205	A1243	
1. Time (24 hr);	10.1	l	9.9	101	802	
2. Time (24 hr): 1254	10.0	20.1		99.9	799	
3. Time (24 hr):						
4. Time (24 hr):						
Comments:						

FOP 05-03

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL Pre Decon and Prep Date: 10/19/2022 Date:							
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.								
Pump and Tubing Bundle ID #: 1806BP-10	Water Level Indicator ID #: 518985							
	Personnel Performing Decontamination:							
Denisha Sanchez								
Print Name:	Initial:							
Zach Tenorio	31							
Print Name:	Initial: \							
	Condition of Equipment							
Pump: Excellent Tul	bing Bundle: Excellent Water	Level Indicator:Excellent						
List of Decontamination Materials								
Deionized Water	HNO ₃	Detergent						
Source: Culligan	Grade: NA	Manufacturer: Liqunox						
Lot Number: 08/28/22	UN #: NA	Lot Number: L2C2						
Manufacturer: NA Expiration Date: 03/24								
	Lot Number: NA							

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-BW2	Date: 10/20/2022 Date:						
The following equipment was	The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.							
Pump and Tubing Bundle ID #: 1806BP-10	Water Level Indicator ID #: 518985							
Robert Lynch Print Name: William Gibson Print Name: Initial: Initial:								
Condition of Equipment Pump:Excellent								
	List of Decontamination Materials							
Deionized Water Source: Culligan Lot Number: 09/23/22 .	HNO ₃ Grade: NA UN #: NA Manufacturer: NA Lot Number: NA	Detergent Manufacturer: Liquinox Lot Number: L2C2 Expiration Date: 03/24						

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

SNL/NM , Project Name: MWL	Monitoring Well ID #: MWL-MW7	Date: 10/24/2022 Date:					
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.							
Pump and Tubing Bundle ID #: 1806BP-10	Water Level Indicator ID #: 518985						
Personnel Performing Decontamination: William Gibson Print Name: Denisha Sanchez Print Name: Initial:							
Condition of Equipment Pump:Excellent Tubing Bundle:Excellent Water Level Indicator:Excellent							
List of Decontamination Materials							
Deionized Water	HNO ₃	Detergent					
Source: Culligan	Grade: NA	Manufacturer: Liquinox					
Lot Number: <u>09/23/22</u>	UN #: _NA	Lot Number: L2C2					
	Manufacturer: NA Lot Number: NA	Expiration Date: 03/24					

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-MW9	Date: 10/25/2022 Date:						
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.								
Pump and Tubing Bundle ID #: 1807BP-10	Water Level Indicator ID #: 518985							
	Personnel Performing Decontamination:							
Robert Lynch								
Print Name:	Initial:							
Zach Tenorio								
Print Name:	Initial:							
	Condition of Equipment							
Pump: Excellent Tul	oing Bundle:Excellent Water	Level Indicator: Excellent						
List of Decontamination Materials								
Deionized Water	HNO ₃	Detergent						
Source: Culligan	Grade: NA	Manufacturer: Liquinox						
Lot Number: 09/23/22	UN #: NA	Lot Number: L2C2						
	Manufacturer: NA							
5	Lot Number: NA							

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-MW8	Date: 10/26/2022 Date:					
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.							
Pump and Tubing Bundle ID #: 1807Bਸੰ-10	Water Level Indicator ID #: 518985						
William Gibson Print Name: Zach Tenorio Print Name: Initial:							
Pump: Excellent Tul	Condition of Equipment ping Bundle:ExcellentWater	Level Indicator: Excellent					
List of Decontamination Materials							
Deionized Water	HNO ₃	Detergent					
Source: Culligan Grade: NA Manufacturer: Liquinox							
Lot Number: 09/23/22 UN #: NA Lot Number: L2C2							
	Manufacturer: NA Lot Number: NA	Expiration Date: 03/24					

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

Summary Sheet For October 2022 Groundwater Samples

Sample Summary for Mixed Waste Landfill Groundwater Monitoring October 2022

					Associated Equipment	Associated Trip	Associated VOC Field Blank	Associated PFAS Field Blank	Associated PFAS Field Reagent	
	Sample		Sample		Blank .	Blank (ARCOC #/	(ARCOC #/	(ARCOC #/	Blank (ARCOC # /	
Sample ID	Date	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	Sample #)	Sample #)	Sample #)	Sample #)	Comments
GEL Analytic	GEL Analytical Data: Project Task # 195122.10.11.08, Service Order # CF01-22									
MWL-BW2	20-Oct-22	623820	118933	Environmental	623819 / 118931	623820 / 118935	623820 / 118934	623820 / 118934	623820 / 118936	
MWL-MW7	24-Oct-22	623822	118941	Environmental	623821 / 118937	623822 / 118943	623822 / 118939	623822 / 118939	623822 / 118940	
MWL-MW7	24-Oct-22	623822	118942	Duplicate	623821 / 118937	623822 / 118943	623822 / 118939	623822 / 118939	623822 / 118940	
MWL-MW8	26-Oct-22	623827	118956	Environmental	623825 / 118950	623827 / 118957	623827 / 118954	623827 / 118954	623827 / 118955	
MWL-MW9	25-Oct-22	623824	118948	Environmental	623823 / 118944	623824 / 118949	623824 / 118946	623824 / 118946	623824 / 118947	
MWL-EB 1	19-Oct-22	623819	118931	Equipment Blank	n/a	623819 / 118932	n/a	n/a	n/a	Equipment blank sample prior to MWL-BW2.
MWL-EB2	20-Oct-22	623821	118937	Equipment Blank	n/a	623821 / 118938	n/a	n/a	n/a	Equipment blank sample prior to MWL-MW7.
MWL-EB 3	24-Oct-22	623823	118944	Equipment Blank	n/a	623823 / 118945	n/a	n/a	n/a	Equipment blank sample prior to MWL-MW9.
MWL-EB 4	25-Oct-22	623825	118950	Equipment Blank	n/a	623825 / 118951	n/a	n/a	n/a	Equipment blank sample prior to MWL-MW8.
MWL-FB1	20-Oct-22	623820	118934	VOC Field Blank	n/a	623820 / 118935	n/a	n/a	n/a	at MWL-BW2.
MWL-FB2	20-Oct-22	623820	118934	PFAS Field Blank	n/a	n/a	n/a	n/a	n/a	at MWL-BW2.
MWL-FB 3	24-Oct-22	623822	118939	VOC Field Blank	n/a	623822 / 118943	n/a	n/a	n/a	at MWL-MW7
MWL-FB 4	24-Oct-22	623822	118939	PFAS Field Blank	n/a	n/a	n/a	n/a	n/a	at MWL-MW7
MWL-FB 5	25-Oct-22	623824	118946	VOC Field Blank	n/a	623824 / 118949	n/a	n/a	n/a	at MWL-MW9
MWL-FB 6	25-Oct-22	623824	118946	PFAS Field Blank	n/a	n/a	n/a	n/a	n/a	at MWL-MW9
MWL-FB 7	26-Oct-22	623827	118954	VOC Field Blank	n/a	623827 / 118957	n/a	n/a	n/a	at MWL-MW8
MWL-FB 8	26-Oct-22	623827	118954	PFAS Field Blank	n/a	n/a	n/a	n/a	n/a	at MWL-MW8
MWL-FRB 1	20-Oct-22	623820	118936	Field Reagent Blank	n/a	n/a	n/a	n/a	n/a	at MWL-BW2
MWL-FRB 2	24-Oct-22	623822	118940	Field Reagent Blank	n/a	n/a	n/a	n/a	n/a	at MWL-MW7
MWL-FRB 3	25-Oct-22	623824	118947	Field Reagent Blank	n/a	n/a	n/a	n/a	n/a	at MWL-MW9
MWL-FRB 4	26-Oct-22	623827	118955	Field Reagent Blank	n/a	n/a	n/a	n/a	n/a	at MWL-MW8
MWL-DIWQC	26-Oct-22	623826	118952	Field Blank	n/a	623826 / 118953	n/a	n/a	n/a	DI source water for equipment decontamination

Data Validation Reports For Environmental Samples Groundwater Monitoring October 2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: November 22, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623819 SDG: 597547 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration RRF was < 0.050 but ≥0.010 for 2-butanone. The associated result for sample 597547001 was a detect and will be **qualified J,I4**. The associated result for sample -008 was non-detect and will be **qualified UJ,I4**.
- 2. The initial calibration %RSD was >15% but ≤40% for methylene chloride. The associated sample results were detects and will be **qualified J.I3**.
- 3. Methylene chloride and acetone were detected at ≤ the PQL in TB 1, sample -008, associated with sample -001. The methylene chloride result for sample -001 was a detect ≤ the PQL and will be **qualified 5.0U,B1**; non-detect at the PQL. The acetone result for sample -001 was a detect > the PQL but ≤10X the TB value and will be **qualified J+,B1**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Bromodichloromethane; dibromochloromethane; 1,2-dichloroethane and 2-butanone were detected at \leq the PQL and acetone and chloroform were detected at > the PQL in EB 1, sample -001 submitted on ARCOC 623819 in this SDG and associated with the samples on ARCOC 623820 submitted in another SDG. No sample results from this SDG will be qualified.

Methylene chloride was also detected at \leq the PQL in the EB but was qualified non-detect due to TB contamination and will not be applied to the associated sample results.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

It should be noted that the MS/MSD analyses were performed on an SNL sample from another SDG. No data will be qualified.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the TB and EB. The LCS met QC acceptance criteria and no data will be qualified.

There was no matrix-specific replicate analysis for the TB and EB. However, based on professional judgement, no sample results will be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

A TB was submitted on the ARCOC EB 1 was submitted on ARCOC 623819 in this SDG and was associated with the samples on ARCOC 623820 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/16/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: December 1, 2022

To: File

From: Linda Thal

Subject: LC/MS/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623819 SDG: 597547 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: PFAS

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with accepted procedures using method EPA 537.1 (PFAS, drinking water). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

1. The recoveries for surrogates 13C2-PFHxA and 13C3-PFPrOPrA were <70% but ≥10% for sample 597547002. The associated sample results were non-detect and will be **qualified UJ,S2**,

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was extracted and analyzed within the prescribed holding times and as properly preserved.

Instrument Performance Checks

All instrument mass calibration verifications were within QC acceptance criteria.

Ion Transitions

The ion transitions specified in QSM Table B-15 were used for analysis. It should be noted that an ion transition summary was not provided in the data package. The ion transitions provided in the raw data were reviewed for validation.

Calibration

All initial and continuing calibration acceptance criteria were met.

Instrument Sensitivity Check (ISC)/Limit of Quantitation (LOQ) Check

All ISC/LOQ recoveries met QC acceptance criteria.

Ion Ratios

All ion ratios were within QC acceptance limits. It should be noted that an ion ratio summary was not provided for the standards or QC samples in the data package. The ion ratios provided in the raw data were reviewed for validation.

Extracted Internal Standards

All extracted internal standards met QC acceptance criteria.

Surrogates

All surrogate recoveries were within QC acceptance limits except as noted above in the Summary section.

Blanks

No target analytes were detected in any of the blanks.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS analyses met QC acceptance criteria. The analysis of the LCS serves as a matrix-specific measure of accuracy for the EB in this SDG.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were not performed with the sample in this data package. An LCS/LCSD pair was analyzed to provide precision data. Since the sample was a blank, no data will be qualified.

Reporting Limits (RLs)

All limits of quantitation (LOQs) and detection limits (DLs) were properly reported. The sample was not diluted.

Other QC

The client was notified that the samples were analyzed by EPA 537.1 (PFAS, drinking water) instead of method EPA 537.1 Modified.

EB 1 was submitted on ARCOC 623918 and was associated with the sample on ARCOC 623820.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/16/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date: November 22, 2022

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623819 SDG: 597547 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

An MS was not analyzed. Since the sample was an EB, no data will be qualified.

Laboratory Replicate

A replicate was not analyzed. The LCS/LCSD was assessed for precision.

Laboratory Control Sample (LCS)

The LCS/LCSD met QC acceptance criteria for accuracy and precision.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Al, Mg and Fe were < the ICS values.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

EB 1 was submitted on ARCOC 623819 in this SDG and was associated with the samples on ARCOC 623820 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/16/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: November 22, 2022 and December 15, 2022

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623819

SDG: 597547 and 602159

Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec - short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Radon-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

Gross alpha/beta:

1. The original results for sample 597547005 were reported with values > the MDA for gross alpha and gross beta. At the client's request the sample was re-logged and reanalyzed as 602159001 and the original results were not confirmed. The results for sample 602159001 will be used for data validation and the original sample results will be **qualified R,X1**.

Gamma Spec:

1. The Cs-137 result for sample -004 was rejected by the laboratory due to the peak not meeting identification criteria and will be **qualified R,Z2**.

All analyses:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3**.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria.

It should be noted that the original MS/MSD analyses for gross alpha/beta and the MS for tritium were performed on an SNL sample from another SDG. No sample results will be qualified.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the EB. The LCS met QC acceptance criteria and no data will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

It should be noted that the replicate analyses for all target analytes were performed on SNL samples from other SDGs. No sample results will be qualified.

For all target analytes *except* Rn-22 and the re-analysis for gross alpha-beta, there was no matrix-specific replicate analysis for the EB. However, based on professional judgement, no sample results will be qualified.

A sample replicate was not reported for Rn-222. The LCS/LCSD was assessed for precision.

The LCS/LCSD met precision criteria for the re-analysis for gross alpha/beta.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and precision.

Detection Limits/Dilutions

The sample was not diluted. All required detection limits (DLs) were met.

Other QC

EB 1 was submitted on ARCOC 623819 in this SDG and was associated with the samples on ARCOC 623820 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/16/2022

Sample Findings Summary

AR/COC: 623819 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 537.1			
	118931-002/MWL-EB 1	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118931-002/MWL-EB 1	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118931-002/MWL-EB 1	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
EPA 900.0/SW846 9310			
	118931-005/MWL-EB 1	ALPHA (12587-46-1)	R, X1
	118931-005/MWL-EB 1	BETA (12587-47-2)	R, X1
	118931-R05/MWL-EB 1	ALPHA (12587-46-1)	BD, FR3
	118931-R05/MWL-EB 1	BETA (12587-47-2)	BD, FR3
EPA 901.1			
	118931-004/MWL-EB 1	Americium-241 (14596-10-2)	BD, FR3
	118931-004/MWL-EB 1	Cesium-137 (10045-97-3)	R, Z2
	118931-004/MWL-EB 1	Cobalt-60 (10198-40-0)	BD, FR3
	118931-004/MWL-EB 1	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	118931-006/MWL-EB 1	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	118931-007/MWL-EB 1	Radon-222 (14859-67-7)	BD, FR3
SW846 8260D	440004 004 / 1044 50 4	2.0.1	1.14
	118931-001/MWL-EB 1	2-Butanone (78-93-3)	J, 14
	118931-001/MWL-EB 1	Acetone (67-64-1)	J+, B1
	118931-001/MWL-EB 1	Methylene chloride (75-09-2)	5.0UJ, B1,I3
	118932-001/MWL-TB 1	2-Butanone (78-93-3)	UJ, 14
	118932-001/MWL-TB 1	Methylene chloride (75-09-2)	J, 13
All other analyses met QC acc	ceptance criteria; no further data sh	nould be qualified.	

Sandia Data Validation Summary Worksheet

ARCOC#: 623819		Site/Projec	t: MWL LTMM	1P			Validation I	Date: 11/22/2022	2
SDG #: 597547 and 602159 (gros only)	ss alpha/beta	Laboratory	: GEL Laborato	ories, LLC			Validator: L	inda Thal	
Matrix: Aqueous		# of Sampl	es: 8	CVR pı	resent: Yes				
ARCOC(s) present: Yes		Sample Co	ntainer Integrity	y: OK					
Analysis Type: ☑ Organic ☑ Metals	☐ Gencl	nem	⊠ Rad	\boxtimes	Other: PFAS				
			Requested	Analyses	s Not Reported				
Client Sample ID	Lab Samp	ole ID	Analysi	s		Coi	mments		
None								_	
			Hold Time	a /D-10000-1	ation Outliers				
					Collection	Preparation	Analysis	Analysis	Analysis
Client Sample ID	Lab Sample	\$ ID	Analysis	Pres.	Date	Date	Date	<2X HT	≥2X HT
None									
Comments: Collected: 10/19/202	22								
The ARCOC noted that the trip b	lank vials were r	eceived from	the lab with he	eadspace.					
EB 1 was submitted on ARCOC	623819 in this SI	OG and was a	associated with	the sample	es on ARCOC 623820	submitted in ano	ther SDG.		
Sample 118931-002 was submitted		•				•			
Sample 118931-005 was re-logge	ed and reanalyzed	l as sample 1	18931-R05 in S	SDG 60215	59 for gross alpha/beta	a, per client reque	st.		
Validated by:	Mal	-							

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623819	SDG: 597547	Matrix: Aqueous
Laboratory Sample IDs: 597547001, -008		
Method/Batch #s: 8260D 2335788	Tuning (pass/fail): pass	TICs Required? (yes/no): no

			Ca	alibratio	on			- 37					MEGI		537		5V
Analyte (outliers)		Int.	RF/ Slope	RSD /r ²	(ICV)/C0 %D	CV	MB	5X (10X) MB		CS 6R	MS %R	MSD %R	MS/ MSD RPD	EB 1 -001	5X (10X) EB	TB 1 -008	5X (10X) TB
1,2-Dichloroethane		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	0.56J	2.8	✓	NA
2-Butanone		NA	0.021				✓	NA		✓	✓	✓	✓	2.58J	(25.8)	✓	NA
Acetone		NA	✓	✓	✓	✓		NA		✓	✓	✓	✓	6.23	(62.3)	2.23J	(22.3)
Bromodichloromethane		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	0.95J	4.75	✓	NA
Chloroform		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	3.8	19	✓	NA
Dibromochloromethane		NA	✓	✓	✓	✓		NA		✓	√	✓	√	0.75J	3.75	✓	NA
Methylene chloride		NA	✓	18	✓		✓	NA	_	✓	✓	✓	✓	0.82J	NA	1.05J	(10.5)
						-											
					<u> </u>	urroge	to Dogo	very Out	liore								
						urroga											
Sample ID 1,2-	-DCA-d4 %F	R To	luene-d8	%R	BFB %R			Sample I	D	1,2-D	CA-d4	%R	Toluene	-d8 %R	BFB %	R	
None																	
								iers									
	FBZ	Chl-d5			1	,4-DCB-	d4										
Sample ID	Area	RT	Are	a	RT		rea	RT									
None																	

Comments: HTs OK. MWL LTMMP TAL. MS/MSD on SNL sample 597711001 ICAL VOA2.I 10/26/22 All avg RF

SNL LCMSMS Worksheet (PFAS)

ARCOC: 623	819 SD	G: 597547	Meth	od: E	: EPA 537.1 Drinking water Matrix: Aqueous Lab Sample IDs: 597547002											02		
Batch #s: 2330	Batch #s: 2336913 (prep)/ 2336916																	
Mass Calibration:	Ass Calibration: Pass Fail Acquisition Rate: Pass Fail Ion Transitions: Pass Fail ENVI-Carb Cleanup: Yes No																	
	Calibration (QSM)																	
Analyte (outliers)		RS r ≤20 ≥0.	2	Cal. Std Rec'y 70- 130%	RTs Set	ISC (LOQ) %D ±30%	ICV/ CCV %D ±30%	Inst Blanks (\le 1/2 LOQ)	Method Blank (≤1/2 LOQ)	52 Bla		LCS %R	LCSD %R	LC RI	CS/ CSD PD 0%	EB 1 -002		
None																		
															<u> </u>			
															<u> </u>			
		Ion Ratio	Aah limi	ts on 5	50 1509/)				FIS/Iso	tono Dilu	tion (I	DA)	Outliors	Aah limits a	ov 50 1	500/ a	and within () Amin)
Sample	Compo		Ratio	is or 5	10-130/0)				EIS/Isotope Dilution (IDA) C Sample ID IDA				%R	(tab timits c	W 30-1	3070 u	na wiinin (7.4min)
None	Compo	, unu							None				,011					
Signal to	Noise Or	itlions (Sta	το Δ) (~1)	O for a	want iona	and >2 fo	u conficu	a)		DT outlie	ova (St	· o o o	1) (+0.4 m	inutes of IC	AI mis	Incient	or CCV)	
Sample ID	Compou	ıtliers (Sta	S/N) jor q	nuani ions	una ≥3 jo	r conj ion	s)	Sample ID		oound	Ť	RT	unuies of IC	AL mia	іроіні (or ccv)	
NA NA	Compor	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						NA	Comp	Journa		111					
							Si	ırrogates	(70-130%)					·				
Sample ID	13C2	2-PFHxA		13C2-PFDA d5-NEtFOSAA			13C3- PFPrOP											
-002		29			✓		✓		32									

Comments: HTs OK. PF 0.01995

ICAL LCMSMS9 11/02/22 All linear through zero, Isotope Dilution

No Ion Transition Summary; ion transitions on quant reports

No Ion Ratio Summary; ion ratios reported on quant reports, but not calculated

Sandia Inorganic Metals Worksheet

ARCOC #	(s): 62381	19							SDG #((s): 5975	547			Mat	rix: Aqu	eous		
Laborator	y Sample 1	IDs: 5	975470	03					•					•				
Method/B	atch #s: 30	005A/	6020B:2	2331871	/2331872													
ICPMS Ma	ss Cal: 🗵	Pass	s 🔲 I	Fail	□NA	ICPM	S Resolut	ion: 🛛 Pa	iss	☐ F	ail	□NA						
Analyte	ers) Int. R ² ICV CCV ICB CCB mg				MB 5X Blank	LCS	MS	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL	LL CCV	PS N/P	EB 1 -003				
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/L	mg/L	%R	%R	RPD	%D	%R	ug/L (x50)	%R	%R	-003	
none																		

	IS Outliers 60)-125%		IS Outliers 80-120%							
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery				
none				CCB 18:17	Sc 79.5%						
					(Cr, Ni)						

Comments:	HTs	OK.

ICPMS: LCS/LCSD, SD on -003.

Ca, Mg, Al, Fe < ICSA.

Sandia Radiochemistry Worksheet

ARCOC #(s): 623819 SDG #: 597547 and 602159¹ Matrix: Aqueous

Laboratory Sample IDs: 597547 and 602159¹ – see below

Method/Batch #s: EPA 901.1 (gamma spec)/2336537 Sample -004

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2334732 and 12349364 Sample 597547005 and 1602159001

Method/Batch #s: EPA 906.0 Modified (Tritium)/2336102 Sample -006

Method/Batch #s: SM 7500 Rn B (Rn-222)/2332005 Sample -007

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDA	LCS %R	LCSD %R	LCS/ LCSD RPD	MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER	MS/ MSD RPD	EB 1
Gross alpha	NA	NA	✓	NA	√	NA	NA	✓	✓	✓	✓	NA	2.27
Gross beta	NA	NA	✓	NA	✓	NA	NA	✓	✓	✓	✓	NA	1.73
Gross beta ¹	NA	NA	✓	NA	✓	✓	10.3	NA	NA	NA	1.03	NA	✓
				Tracer/Ca	rrier Rec	overy Outl	iers						·

	Tracer/Carrier Recovery Outliers													
Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R						
NA														

Comments: HTs OK

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on SNL 597711005. Parent sample 152mL; DUP 150ml; MS/MSD 54.2/53ml; 2.8X dilution.

Sample -007 did not meet required DL for gross alpha/beta due to low sample volume.

¹Sample 597547005 was re-analyzed as 602159001 for gross A/B due to results > the MDA in the original analysis. The re-analyzed sample results were accepted for data validation. LCS/LCSD. RER met acceptance criteria of <1.0. The samples were not flamed. The gross alpha results were < the MDA and will not be qualified.

GS: DUP on SNL 597711004. Cs-137 result for sample -004 considered a false positive due to the peak not meeting the identification criteria.

Tritium: DUP/MS on SNL 597711006

Rn-222: LCS/LCSD

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

page 1 of 1 **SMO Use** ARCOC 623819 Date Samples Shipped: 10/19/2022 SMO Authorization: Project Name: MWL LTMMP Waste Characterization: No Project Manager: Timmie Jackson SNL Shipper #: 35635 SMO Contact Phone: RMA: No P/T No: 195122.10.11.08 Lab Contact: Zachary Worsham/ 843-300-4224 Wendy Palencia/505.844.3132 4º Celsius: Yes Lab Destination: GEL Contract No.:1983530 SDG#: 597547 TA: Bldg: Room: Turnaround Time: 30 days Last Chain: No Validation Req'd: Yes EDD: Yes Date/Time Lab Sample No Frac-Sample Location Detail Sample Container Preserv-Collection Sample Parameter & Method Requested (ft) Collected Matrix Type Volume ative Method Type Sample Id tion 10/19/22 09:03 VOC-LTMMP (SW846-8260D) 118931 001 MWL-EB 1 DIW G 3x40 ml HCI EB 100 10/19/22 09:02 DIW P 2x250 ml None G lΕΒ PFAS (EPA 537 Mod) 118931 002 MWL-EB 1 002 10/19/22 09:04 P METALS, LTMMP - Cd, Cr, Ni, U DIW HNO3 G EB 118931 003 MWL-EB 1 500 ml 003 10/19/22 09:05 DIW P 1 L HNO3 G EB GAMMA SPEC, SHORT LIST (EPA 901) 118931 004 MWL-EB 1 MOY 10/19/22 09:06 G GROSS-ALPHA/BETA (EPA 900) DIW 1 L HNO3 EB 118931 005 MWL-EB 1 005 10/19/22 09:07 TRITIUM (EPA 906) 118931 006 MWL-EB 1 DIW AG 250 ml None G EΒ 006 10/19/22 09:08 DIW G 2x40 ml None G EB RADON (SM7500 Rn B) 118931 007 MWL-EB 1 500 10/19/22 09:03 HCI G TB VOC-LTMMP (SW846-8260D) 118932 001 MWL-TB 1 DIW G 3x40 ml 800 Comments: Report three PFAS compounds (PFHxS, PFOS, and PFOA) on COA. Trip Sample Name Signature blanks received from lab with head space. Team William Gibson Members Robert Lynch Denisha Sanchez Zachary Tenorio Org. 5588 Date 10/19/22 Time 0940 Relinquished by Date Time Org. Relinguished by Org. 06/8 Date/0/19/2-Time 0940 Received by Org. Date Time Received by Relinquished by Date Time Relinquished by Org. 06/8 Date 10/19/2 Time 1040 Org. Datero 20/22 Time Time Received by Date Received by Org. 750 Org.

Memorandum

Date: December 1, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623820 and 623821

SDG: 597711 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Five samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration RRF was < 0.050 but ≥0.010 for 2-butanone. The associated sample results were non-detect and will be **qualified UJ,I4**.
- 2. The initial calibration %RSD was >15% but ≤40% for methylene chloride. The associated sample results were detects and will be **qualified J.I3**.
- 3. Methylene chloride and acetone were detected at ≤ the PQL in TB 2, sample 597711010, associated with samples -001 and -008. The associated sample results were detects ≤ the PQL and will be **qualified** 5.0U,B1; non-detect at the PQL.
- 4. Methylene chloride and acetone were detected at ≤ the PQL in TB 3, sample -019, associated with sample -012. The methylene chloride result for sample -012 was a detect ≤ the PQL and will be **qualified 5.0U,B1**; non-detect at the PQL. The acetone result for sample -012 was a detect > the PQL but <10X the TB value and will be **qualified J+,B1**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Bromodichloromethane, dibromochloromethane and 1,2-dichloroethane were detected at ≤ the PQL and chloroform was detected at > the PQL in FB 1, sample -008 associated with the sample -001. The associated sample results were non-detect and will not be qualified.

Methylene chloride and acetone were also detected at \leq the PQL in FB 1 but were qualified non-detect due to TB contamination and will not be applied to the associated field sample result.

Bromodichloromethane; dibromochloromethane 1,2-dichloroethane and 2-butanone were detected at \leq the PQL and chloroform was detected at > the PQL in EB 1, sample 597547001 submitted on ARCOC 623819 in another SDG and associated with the sample -001 in this SDG. The associated sample results were non-detect and will not be qualified.

Acetone was also detected at > the PQL in EB 1. The associated result for sample -001 was already qualified non-detect due to TB contamination and will not be further qualified.

Methylene chloride was also detected at ≤ the PQL in EB 1 but was qualified non-detect due to TB contamination and will not be applied to the associated sample result.

Bromodichloromethane and dibromochloromethane were detected at ≤ the PQL and chloroform and acetone were detected at > the PQL in EB2, sample -012 submitted on ARCOC 623821 in this SDG and associated with the samples on ARCOC 623822 submitted in another SDG. No data from this SDG will be qualified.

Methylene chloride was also detected at \leq the PQL in EB2 but was qualified non-detect due to TB contamination and will not be applied to the associated field sample results.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the FB, TBs and EB. The LCS met QC acceptance criteria and no data will be qualified.

There was no matrix-specific replicate analysis for the FB, TBs and EB. However, based on professional judgement, no data will be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

A TB was submitted on each ARCOC. FB 1 was submitted on ARCOC 623820 and was associated with the sample on the same ARCOC. EB 1 was submitted on ARCOC 623819 in another SDG and was associated with the samples on ARCOC 623820 submitted in this SDG. EB2 was submitted on ARCOC 623821 in this SDG and was associated with the samples on ARCOC 623822 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/16/2022

Memorandum

Date: December 2, 2022

To: File

From: Linda Thal

Subject: LC/MS/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623820 and 623821

SDG: 597547 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: PFAS

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Four samples were prepared and analyzed with accepted procedures using method EPA 537.1 (PFAS, drinking water). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The recoveries for surrogates 13C2-PFHxA and 13C3-PFPrOPrA were <70% but ≥10% for samples 597711009, -011 and -013. The associated sample results were non-detect and will be **qualified UJ,S2**.
- 2. An MS/MSD was not performed due to limited sample volume. The associated results for sample -002 were non-detect and should be **qualified UJ,MS1** due to lack of matrix-specific accuracy data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were extracted and analyzed within the prescribed holding times and were properly preserved.

Instrument Performance Checks

All instrument mass calibration verifications were within QC acceptance criteria.

Ion Transitions

The ion transitions specified in QSM Table B-15 were used for analysis. It should be noted that an ion transition summary was not provided in the data package. The ion transitions provided in the raw data were reviewed for validation.

Calibration

All initial and continuing calibration acceptance criteria were met.

Instrument Sensitivity Check (ISC)/Limit of Quantitation (LOQ) Check

All ISC/LOQ recoveries met QC acceptance criteria.

Ion Ratios

All ion ratios were within QC acceptance limits. It should be noted that an ion ratio summary was not provided for the standards or QC samples in the data package. The ion ratios provided in the raw data were reviewed for validation.

Extracted Internal Standards

All extracted internal standards met QC acceptance criteria.

Surrogates

All surrogate recoveries were within QC acceptance limits except as noted above in the Summary section.

Blanks

No target analytes were detected in any of the blanks.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS/LCSD analyses met QC acceptance criteria. The analysis of the LCS/LCSD serves as a matrix-specific measure of accuracy and precision for the EB, FB and FRB in this SDG.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS or MSD were not performed with the sample in this data package as noted above in the Summary section.

An LCS/LCSD pair was analyzed to provide precision data.

Reporting Limits (RLs)

All limits of quantitation (LOQs) and detection limits (DLs) were properly reported. The samples were not diluted.

Other QC

The client was notified that the samples were analyzed using method EPA 537.1 (PFAS, Drinking Water) instead of method EPA 537.1 Modified.

FB2 and FRB 1 were submitted on ARCOC 623820 and were associated with the sample on the same ARCOC. EB 1 was submitted on ARCOC 623919 in another SDG and was associated with the sample on ARCOC 623820 submitted in this SDG. EB2 was submitted on ARCOC 623821 in this SDG and was associated with the sample on ARCOC 623822 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/16/2022

Memorandum

Date: December 1, 2022

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623820 and 623821

SDG: 597711 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks with the following exception.

Ni was detected at \leq the PQL in EB2, sample 597711014, submitted on ARCOC 623821in this SDG and associated with the samples on ARCOC 623822 submitted in another SDG. No data from this SDG will be qualified.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met QC acceptance criteria.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the EB. The LCS met QC acceptance criteria and no data will be qualified.

Laboratory Replicate

The sample replicate met QC acceptance criteria.

There was no matrix-specific replicate analysis for the EB. However, based on professional judgement, no data will be qualified.

Laboratory Control Sample (LCS)

The LCS met QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Al, Mg and Fe were < the ICS values.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

EB 1 was submitted on ARCOC 623819 in another SDG and was associated with the samples on ARCOC 623820 submitted in this SDG. EB2 was submitted on ARCOC 623821 in this SDG and was associated with the samples on ARCOC 623822 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/16/2022

Memorandum

Date: December 1, 2022

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623820 and 623821

SDG: 597711 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Radon-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

All analyses *except* gross beta:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3**.

Gross beta:

1. The gross beta result for sample 597711016 was \geq the MDA but <3X the MDA and will be **qualified J,FR7**.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations \geq the MDA and 2-sigma TPU with the following exceptions.

Gross beta was detected at ≥ the MDA and 2-sigma TPU in EB2, sample -016 submitted on ARCOC 623821 and associated with the samples on ARCOC 623822 submitted in another SDG. No data from this SDG will be qualified.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the EB. The LCS met QC acceptance criteria and no data will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

For all target analytes *except* Rn-22, there was no matrix-specific replicate analysis for the EB. However, based on professional judgement, no sample results will be qualified.

The Rn-222 LCS/LCSD met precision criteria for the EB.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and precision.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits (DLs) were met.

Other QC

EB 1 was submitted on ARCOC 623819 in another SDG and was associated with the samples on ARCOC 623820 submitted in this SDG. EB2 was submitted on ARCOC 623821 in this SDG and was associated with the samples on ARCOC 623822 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/16/2022

Sample Findings Summary

AR/COC: 623820, 623821 Page 1 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 537.1			
	118933-002/MWL-BW2	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, MS1
	118933-002/MWL-BW2	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, MS1
	118933-002/MWL-BW2	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, MS1
	118934-002/MWL-FB 2	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118934-002/MWL-FB 2	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118934-002/MWL-FB 2	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
	118936-001/MWL-FRB1	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118936-001/MWL-FRB1	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118936-001/MWL-FRB1	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
	118937-002/MWL-EB2	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118937-002/MWL-EB2	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118937-002/MWL-EB2	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
EPA 900.0/SW846 9310			
	118937-005/MWL-EB2	ALPHA (12587-46-1)	BD, FR3
	118937-005/MWL-EB2	BETA (12587-47-2)	J, FR7
EPA 901.1			
	118933-004/MWL-BW2	Americium-241 (14596-10-2)	BD, FR3
	118933-004/MWL-BW2	Cesium-137 (10045-97-3)	BD, FR3

AR/COC: 623820, 623821 Page 2 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	118933-004/MWL-BW2	Cobalt-60 (10198-40-0)	BD, FR3
	118933-004/MWL-BW2	Potassium-40 (13966-00-2)	BD, FR3
	118937-004/MWL-EB2	Americium-241 (14596-10-2)	BD, FR3
	118937-004/MWL-EB2	Cesium-137 (10045-97-3)	BD, FR3
	118937-004/MWL-EB2	Cobalt-60 (10198-40-0)	BD, FR3
	118937-004/MWL-EB2	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	118933-006/MWL-BW2	Tritium (10028-17-8)	BD, FR3
	118937-006/MWL-EB2	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	118937-007/MWL-EB2	Radon-222 (14859-67-7)	BD, FR3
SW846 8260D			
	118933-001/MWL-BW2	2-Butanone (78-93-3)	UJ, 14
	118933-001/MWL-BW2	Acetone (67-64-1)	5.0U, B1
	118933-001/MWL-BW2	Methylene chloride (75-09-2)	5.0UJ, B1,I3
	118934-001/MWL-FB 1	2-Butanone (78-93-3)	UJ, 14
	118934-001/MWL-FB 1	Acetone (67-64-1)	5.0U, B1
	118934-001/MWL-FB 1	Methylene chloride (75-09-2)	5.0UJ, B1,I3
	118935-001/MWL-TB 2	2-Butanone (78-93-3)	UJ, 14
	118935-001/MWL-TB 2	Methylene chloride (75-09-2)	J, I3
	118937-001/MWL-EB2	2-Butanone (78-93-3)	UJ, 14
	118937-001/MWL-EB2	Acetone (67-64-1)	J+, B1
	118937-001/MWL-EB2	Methylene chloride (75-09-2)	5.0UJ, B1,I3
	118938-001/MWL-TB 3	2-Butanone (78-93-3)	UJ, 14
	118938-001/MWL-TB 3	Methylene chloride (75-09-2)	J, 13

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 623820 and 623821		Site/Pro	ject: MWL LTMM	1P			Validation I	Date: 12/01/202	2
SDG #: 597711		`	ory: GEL Laborato				Validator: I		
Matrix: Aqueous			nples: 19	<u> </u>	esent: Yes		, wilduisti 2		
ARCOC(s) present: Yes			Container Integrity	1					
Analysis Type:		Sample	Container integrity	y. OK					
☐ Organic ☐ Metals	☐ Gench	nem	⊠ Rad		Other: PFAS				
			Requested	Analyses	Not Reported				
Client Sample ID	Lab Samp	ole ID	Analysi		.	Со	mments		
None									
			Hold Tim	o/Drosomy	ation Outliers				
CP 4 C 1 ID	1.10.1	ID			Collection	Preparation	Analysis	Analysis	Analysis
Client Sample ID	Lab Sample	e ID	Analysis	Pres.	Date	Date	Date	<2X HT	≥2X HT
None									
					I				
Comments: Collected: 10/20/202	!2								
The ARCOCs noted that the trip l				•					
EB 1 was submitted on ARCOC (•				
EB2 was submitted on ARCOC 6				•				.1 1 1'	1 1 11
Samples 118933-002, 118934-00. Method 537.1.	2, 118936-001 ai	nd 11893/	-002 were submitt	ed for PFA	S analysis by Metho	d 53/.1 Mod., bu	t were incorrect	tly logged in an	analyzed by
\sim	//0								
Validated by:	nal	-							

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623820 and 623821	SDG: 597711	Matrix: Aqueous
Laboratory Sample IDs: 597711001, -008, -010, -012, -019		
Method/Batch #s: 8260D 2335788	Tuning (pass/fail): pass	TICs Required? (yes/no): no

			C	alibrati	on			= 37					N.F.C./	ED 1			TB 2 ¹
Analy (outlie		Int.	RF/ Slope	RSD /r ²	(ICV)/C0 %D	CV	MB	5X (10X) MB	LC:		MS %R	MSD %R	MS/ MSD RPD	EB 1 597547 -001	EB2 -012	FB 1 -008	-010 TB 3 ² -019
1,2-Dichloroethan	ne	NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	0.56J	✓	0.44J	✓
2-Butanone		NA	0.021	✓	✓		✓	NA	✓		✓	✓	✓	2.58J	✓	✓	✓
Acetone		NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	6.23	7.98	2.47J	$2.97J^{1}$ $2.45J^{2}$
Bromodichlorome	ethane	NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	0.95J	0.97J	0.8J	✓
Chloroform		NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	3.8	3.51	3.04	✓
Dibromochlorome	ethane	NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	0.75J	0.79J	0.71J	✓
Methylene chlorid	de	NA	✓	18	✓		✓	NA	✓		✓	✓	✓	0.82J	0.86J	0.93J	$1.1J^1$ $1.12J^2$
					S	urrogate	Recov	ery Out	liers						1		
Sample ID	1,2-DCA-d4 %	R To	oluene-d8	%R	BFB %R		\$	Sample l	D 1	1,2-DC	CA-d4	%R	Toluene	-d8 %R	BFB %	oR .	
None																	
						I	S Outl	iers									
	FBZ			Chl-d	15	1,4	-DCB-	d4									
Sample ID	Area	RT	Arc	ea	RT	Are	a	RT									
None																	

Comments: HTs OK. MWL LTMMP TAL.

MS/MSD on -001

ICAL VOA2.I 10/26/22 All avg RF

SNL LCMSMS Worksheet (PFAS)

ARCOC: 6238 623821	820 and	SDG: 597711	Met	Iethod: EPA 537.1 Drinking water Matrix: Aqueous Lab Sample IDs: 597711002, -009, -011, -013													
Batch #s: 2336	6913 (prep))/ 233691	6														
Mass Calibration:	⊠ Pass	☐ Fail	Acqu	isitio	n Rate:	⊠ Pass	□ F	ail Io	on Transitions	: 🛛 Pa	ss 🗌	Fail E	NVI-Carb	Cleanu	p: 🗵	Yes [☐ No
						Calibra	tion (Q	SM)									ED2
	Analyte (outliers)		RS r' ≤20 ≥0.	20%	Cal. Std Rec'y 70- 130%	RTs Set	ISC (LOQ %D ±30%	%D	Inst Blanks (≤1/2 LOQ)	MB (≤1/2 LOQ)	5X MB		LCS/ LCSD RPD ≤30%	EB 5975 -00	547	EB2 -013	FB2 -009 FRB 1 -011
None																	
		. D.	<i>a.</i> 1. 1		1.500.0				FIG/I	D'1	. (11) () () (I')	<i>a.</i> 1. 1	50.1	7 00/	7 . 7	0 ()
Commis		lon Ratios	·	ts or 3	0-150%)					- î	`	OA) Outlier	s (lab limits	or 50-1	50% a	nd within ().4min)
Sample N	Compou	ına	Ratio						Sample ID None	1	DA	%R					
11									None								
Signal to	Noise Out	tliers (Sta	e 4) />1() for a	uant ions	and >3 fo	r conf io	ns)		RT outl	ers (Sta	ge 4) (±0.4)	minutes of I	CAL mid	noint o	or CCV)	
Sample ID	Compour		5/N	<i>J</i> - 1				/	Sample ID		pound	RT					
NA									NA								
		•					S	Surrogates	s (70-130%)			•					
Sample ID	13C2-	-PFHxA		13C2	2-PFDA		d5-NEt	FOSAA	13C3- PFPrOP	rA							
-009		23			✓		•	<i>(</i>	26								
-011		39			✓		٧		46								
-013		29			✓		•	/	30								

Comments: HTs OK. LCS/LCSD insufficient sample for MS.

ICAL LCMSMS9 11/02/22 All linear through zero, Isotope Dilution

No Ion Transition Summary; ion transitions on quant reports

No Ion Ratio Summary; ion ratios reported on quant reports, but not calculated

Sandia Inorganic Metals Worksheet

ARCOC #	(s): 6238	20 and	1 623821	1					SDG #	¢(s): 597′	711			Ma	trix: Aqu	ieous		
Laboratory	Sample	IDs: 5	977110	03, -014					•					•				
Method/Ba	atch #s: 3	005A/	6020B:	2332695	5/2332690	6												
ICPMS Mas	ss Cal: 🛭	Pass	s 🔲 I	Fail	□ NA	ICPM	S Resolu	tion: D	ass	☐ F	ail	□ NA						
Analyte (outliers)		1	Cal	ibration	ı		MB mg/L	5X Blank	LCS %R	MS %R	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL ug/L	LL CCV	PS %R	EB 1 597547	EB2 -014
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L		mg/L	,,,,,	,,,,,,	RPD	%D	%R	(x50)	%R	,,,,,,	-003	
Ni	✓	√	✓	✓	✓	√	√	NA	✓	√	✓	✓	NA	NA	✓	NA	✓	0.000614J
																	<u> </u>	
		<u> </u>																
																	<u> </u>	
			I	S Outli	ers 60-12	25%							IS (Outliers	80-120%	,)		
Sam	ple ID		%R	ecovery	,	%Recove	ry	%Recove	ry	CCV	CCB ID		%Recov	ery	%R	ecovery	%	Recovery
n	one									r	none							
Comments: ICPMS: M: Ca, Mg, Al	S/DUP/SE	on -00	03.		l		l											

Sandia Radiochemistry Worksheet

ARCOC #(s): 623820 and 623821 SDG #: 597711 Matrix: Aqueous

Laboratory Sample IDs: 597711 – see below

Method/Batch #s: EPA 901.1 (gamma spec)/2336537 Samples -004, -015

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2334732 Samples -005, -016

Method/Batch #s: EPA 906.0 Modified (Tritium)/2336102 Samples -006, -017

Method/Batch #s: SM 7500 Rn B (Rn-222)/2332595 Samples -007, -018

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDA	LCS %R	LCSD %R	LCS/ LCSD RPD	MS MS %	SD	MS/ MSD RER	MS/ MSD RPD	Lab Rep. RER	EB2 -016	EB 1 602159 -001
Gross beta	NA	NA	✓	NA	✓	NA	NA	✓	,	✓	NA	✓	0.777	✓
				Tracer/Ca	rrier Rec	overy Outl	iers							
Sample ID	Tracer/Ca	rrier %	R	Sample ID		Tracer/	Carrier	%R		Sample ID)	Trace	r/Carrier	%R
NA														

Comments: HTs OK. EB 1 being re-analyzed for gross alpha/beta

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on -005. Parent sample 152mL; DUP 150ml; MS/MSD 54.2/53ml; 2.8X dilution.

GS: DUP on -004.

Tritium: DUP/MS on -006

Rn-222: LCS/LCSD, DUP -007

SDG: 597711

Relinguished by

Received by

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Org.

Org.

Date 10/20/72 Time 1300

Time

725

MO Use 356489 page 1 of 2 ARCOC 623820 Project Name: MWL LTMMP Date Samples Shipped: 10/20/22 SMO Authorization: Waste Characterization: No Project Manager: Timmie Jackson SNL Shipper #: 3+168 356489 SMO Contact Phone: RMA: No P/T No: 195122.10.11.08 Lab Contact: Zachary Worsham/ 843-300-4224 Wendy Palencia/505.844.3132 4º Celsius: Yes Lab Destination: GEL Contract No.:1983530 TA: Bldg: Room: Turnaround Time: 30 days SDG#: Last Chain: No 597711 Validation Reg'd: Yes EDD: Yes Sample No Frac-Depth Date/Time Sample Location Detail Sample Container Preserv-Collection Sample Parameter & Method Requested Lab tion (ft) Collected Matrix Type Volume ative Method Type Sample Id 10/20/22 11:05 496 VOC-LTMMP (SW846-8260D) 118933 001 MWL-BW2 GW G 3x40 ml HCI SA DUI 10/20/22 11:03 002 MWL-BW2 496 GW PFAS (EPA 537 Mod) 118933 2x250 ml None G SA 002 10/20/22 11:07 METALS, LTMMP - Cd, Cr, Ni, U 118933 003 MWL-BW2 496 GW 500 ml HNO3 G SA 003 10/20/22 11:09 GW 1 L SA GAMMA SPEC, SHORT LIST (EPA 901) 118933 004 MWL-BW2 496 HNO3 G 004 10/20/22 11:12 GROSS-ALPHA/BETA (EPA 900) 005 MWL-BW2 GW 1 L G SA 118933 496 HNO3 005 10/20/22 11:15 118933 006 MWL-BW2 496 GW AG 250 ml None G SA TRITIUM (EPA 906) 006 10/20/22 11:17 GW G 2x40 ml G SA RADON (SM7500 Rn B) 118933 007 MWL-BW2 496 None 007 10/20/22 10:24 DIW G HCI G FB VOC-LTMMP (SW846-8260D) 118934 001 MWL-FB1 3x40 ml 800 10/20/22 10:20 DIW PFAS (EPA 537 Mod) 002 MWL-FB2 2x250 ml None G FB 118934 900 10/20/22 10:24 G VOC-LTMMP (SW846-8260D) 001 MWL-TB2 DIW G 3x40 ml HCI TB 118935 010 Comments: Report three PFAS compounds (PFHxS, PFOS, and PFOA) on COA. Trip Sample Name Signature blanks received from lab with head space. Team William Gibson Members Robert Lynch Denisha Sanchez Zachary Tenorio Relinguished by Time Org. 8888 Date 10 -20-27 Time 1230 Date Relinguished by Org. Org 06/8 Date 19/20/21 Time 1230 Received by Date Time Received by Org.

Relinguished by

Received by

Date

Date

Org.

Org.

Time

Time

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

AOP 95-16

page 2 of 2 ARCOC **623820**

Project Name: MWL LTMMP

Sample No	Frac- tion	Sample Location Detail	Depth (ft)	Date/Time Collected			ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample I
118936	001	MWL-FRB 1	0	10/20/22 10:22	DIW	Р	2x250 ml	None	G	FRB	PFAS (EPA 537 Mod)	110
100												
							11					
		(Hel)										

Receipt initials

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

				SMO Us	se				1	1	ARCO	page 1 of 1 OC 623821
Project M	lanag	MWL LTMMP er: Timmie Jackson 2.10.11.08	SNL S Lab C Lab D	amples Shipper hipper #: 35 ontact: zachary wo estination: GEI act No.:1983530	6 4 8 orsham/ 843-30		SMO	Authorizat Contact Ph y Palencia		.32	Waste Characterization: NRMA: No 4° Celsius: Yes	No
TA: Bld	g: Ro	om:		hain: No tion Req'd: Yes	S		Turna EDD:	round Tim Yes	e: 30 days		SDG #: 597711	
Sample No	Frac- tion	Sample Location Detail	Depth (ft)	Date/Time Collected	Sample Matrix	Type Cor	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample Id
118937	100000000000000000000000000000000000000	MWL-EB2	0	10/20/22 12:18	DIW		3x40 ml	HCI	G	EB	VOC-LTMMP (SW846-8260D)	012
118937	1203000000	MWL-EB2	0	10/20/22 12:17	DIW	Р	2x250 ml	None	G	EB	PFAS (EPA 537 Mod)	013
118937		MWL-EB2		10/20/22 12:19	DIW	Р	500 ml	HNO3	G	EB	METALS, LTMMP - Cd, Cr, Ni, U	014
118937	_	MWL-EB2	ŭ	10/20/22 12:20	DIW	Р	1 L	HNO3	G	EB	GAMMA SPEC, SHORT LIST (EPA 901)	015
118937		MWL-EB2	0	10/20/22 12:22	DIW	Р	1 L	HNO3	G	EB	GROSS-ALPHA/BETA (EPA 900)	016
118937	006	MWL-EB2	0	10/20/22 12:24	DIW	AG	250 ml	None	G	EB	TRITIUM (EPA 906)	017
118937	007	MWL-EB2	0	10/20/22 12:25	DIW	G	2x40 ml	None	G	EB	RADON (SM7500 Rn B)	810
118938	001	MWL-TB 3	0	10/20/22 12:18	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	019
Sample Team Members	Rob Der	ne Signate liam Gibson pert Lynch hisha Sanchez hary Tenorio	ure	Jaley Suns	,				PFAS comp with head s		PFHxS, PFOS, and PFOA) on	COA. Trip
Relinquisl				ate 10.20.22T			Relinqui			Org		
Received				ate 10/20/22T			Received	-		Org		
Relinquish Received		Org.		ate/0/20/22T			Relinqui Receive			Org		
Received	у /	Org.	L	ale/0/2/1221	ime 72	ر	Keceive	абу		Org	. Date Time	

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date: December 16, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623822 and 623823

SDG: 598056 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Six samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration intercepts were negative and > the MDL but ≤3X the MDL for methylene chloride and bromomethane. The associated sample results were non-detect and will be **qualified UJ,I5**.
- 2. Acetone was detected at ≤ the PQL in FB 3, sample 598056001, associated with samples -004 and -011. The associated result for sample -011 was a detect ≤ the PQL and will be **qualified 5.0U,B2**; non-detect at the PQL.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The initial calibration intercept was positive and > the MDL for dichlorodifluoromethane. The associated sample results were non-detect and will not be qualified.

The CCV %Ds were >20% with positive bias for chloromethane, vinyl chloride, bromomethane, chloroethane, vinyl acetate and 1,1-dichloroethylene. The associated sample results were non-detect and will not be qualified.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Acetone, bromodichloromethane and dibromochloromethane were detected at ≤ the PQL and chloroform was detected at > the PQL in FB 3, sample -001 associated with the samples -004 and -011. All associated sample results, *except* the acetone result for sample -011, were non-detect and will not be qualified.

Bromodichloromethane and dibromochloromethane were detected at \leq the PQL and acetone and chloroform were detected at > the PQL in EB2, sample 597711012 submitted on ARCOC 623821 in another SDG and associated with samples -004 and -011 submitted on ARCOC 623822 in this SDG. The acetone result for sample -011 was already qualified non-detect due to FB contamination and will not be further qualified. All remaining associated sample results were non-detect and will not be qualified.

Bromodichloromethane; dibromochloromethane 1,2-dichloroethane and 2-butanone were detected at ≤ the PQL and acetone and chloroform were detected at > the PQL in EB 3, sample 598056019 submitted on ARCOC 623823 in this SDG and associated with the samples on ARCOC 623824 submitted in another SDG. No data from this SDG will be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria with the following exception. The MS recovery for vinyl chloride was > the upper acceptance limit. The associated sample results were non-detect and will not be qualified.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the FB, TBs and EB. The LCS met QC acceptance criteria and no data will be qualified.

There was no matrix-specific replicate analysis for the FB, TBs and EB. However, based on professional judgement, no data will be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met except as follows. The LCS recoveries for chloromethane and vinyl chloride were > the upper acceptance limit. The associated sample results were non-detect and will not be qualified.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

A TB was submitted on each ARCOC. FB 3 was submitted on ARCOC 623822 and was associated with the samples on the same ARCOC. EB2 was submitted on ARCOC 623821 in another SDG and was associated with the samples on ARCOC 623822 submitted in this SDG. EB 3 was submitted on ARCOC 623823 in this SDG and was associated with the samples on ARCOC 623824 submitted in another SDG. A field duplicate pair was submitted on ARCOC 623822. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/19/2022

Memorandum

Date: December 16, 2022

To: File

From: Linda Thal

Subject: LC/MS/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623822 and 623823

SDG: 598056 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: PFAS

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Five samples were prepared and analyzed with accepted procedures using method EPA 537.1 (PFAS, drinking water). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The recoveries for surrogates 13C2-PFHxA and 13C3-PFPrOPrA were <70% but ≥10% for samples 598056002, -003 and -020. The associated sample results were non-detect and will be **qualified UJ,S2**.
- 2. An MS/MSD was not performed due to limited sample volume. The associated results for samples -005 and -012 were non-detect and should be **qualified UJ,MS1** due to lack of matrix-specific accuracy data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were extracted and analyzed within the prescribed holding times and were properly preserved.

Instrument Performance Checks

All instrument mass calibration verifications were within QC acceptance criteria.

Ion Transitions

The ion transitions specified in QSM Table B-15 were used for analysis. It should be noted that an ion transition summary was not provided in the data package. The ion transitions provided in the raw data were reviewed for validation.

Calibration

All initial and continuing calibration acceptance criteria were met.

Instrument Sensitivity Check (ISC)/Limit of Quantitation (LOQ) Check

All ISC/LOQ recoveries met QC acceptance criteria.

Ion Ratios

All ion ratios were within QC acceptance limits. It should be noted that an ion ratio summary was not provided for the standards or QC samples in the data package. The ion ratios provided in the raw data were reviewed for validation.

Extracted Internal Standards

All extracted internal standards met QC acceptance criteria.

Surrogates

All surrogate recoveries were within QC acceptance limits except as noted above in the Summary section.

Blanks

No target analytes were detected in any of the blanks.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS/LCSD analyses met QC acceptance criteria. The analysis of the LCS/LCSD serves as a matrix-specific measure of accuracy and precision for the EB, FB and FRB in this SDG.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS or MSD were not performed with the samples in this data package as noted above in the Summary section.

An LCS/LCSD pair was analyzed to provide precision data.

Reporting Limits (RLs)

All limits of quantitation (LOQs) and detection limits (DLs) were properly reported. The samples were not diluted.

Other QC

The client was notified that the samples were analyzed using method EPA 537.1 (PFAS, Drinking Water) instead of method EPA 537.1 Modified.

FB 4 and FRB 2 were submitted on ARCOC 623822 and were associated with the samples on the same ARCOC. EB2 was submitted on ARCOC 623821 in another SDG and was associated with the samples on ARCOC 623822 submitted in this SDG. EB 3 was submitted on ARCOC 623823 in this SDG and was associated with the samples on ARCOC 623824 submitted in another SDG. A field duplicate pair was submitted on ARCOC 623822. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/19/2022

Memorandum

Date: December 16, 2022

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623822 and 623823

SDG: 598056 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

1. Ni was detected at ≤ the PQL in EB 2, sample 597711014, submitted on ARCOC 623821 in another SDG and associated with samples 598056006 and -013 submitted on ARCOC 623822 in this SDG. The associated sample results were detects ≤ the PQL and will be **qualified 0.002U,B2**; non-detect at the PQL.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Ni was detected at \leq the PQL in EB 3, sample -021, submitted on ARCOC 623823 in this SDG and associated with the samples on ARCOC 623824 submitted in another SDG. No data from this SDG will be qualified.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met QC acceptance criteria.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the EB. The LCS met QC acceptance criteria and no data will be qualified.

Laboratory Replicate

The sample replicate met QC acceptance criteria.

There was no matrix-specific replicate analysis for the EB. However, based on professional judgement, no data will be qualified.

Laboratory Control Sample (LCS)

The LCS met QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Al, Mg and Fe were < the ICS values.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

EB2 was submitted on ARCOC 623821 in another SDG and was associated with the samples on ARCOC 623822 submitted in this SDG. EB 3 was submitted on ARCOC 623823 in this SDG and was associated with the samples on ARCOC 623824 submitted in another SDG. A field duplicate pair was submitted on ARCOC 623822. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/19/2022

Memorandum

Date: December 16, 2022

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623822 and 623823

SDG: 598056 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Radon-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

All analyses *except* gross beta:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3**.

Gross beta and Rn-222:

1. The sample results that were \geq the MDA but <3X the MDA will be **qualified J,FR7**.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU with the following exceptions.

Gross beta was detected at \geq the MDA and 2-sigma TPU in EB2, sample 597711016 submitted on ARCOC 623821 in another SDG and associated with samples 598056008 and -015 submitted on ARCOC 623822 in this SDG. The associated sample results were detects >5X the EB value and will not be qualified.

Gross beta was detected at ≥ the MDA and 2-sigma TPU in EB 3, sample -023 submitted on ARCOC 623823 in this SDG and associated with samples on ARCOC 623824 submitted in another SDG. No data from this SDG will be qualified.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria. The MS and/or MSD were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the EB. The LCS met QC acceptance criteria and no data will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met. The replicate analyses for all target analytes except Rn-222 were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

For all target analytes *except* Rn-22, there was no matrix-specific replicate analysis for the EB. However, based on professional judgement, no sample results will be qualified.

The Rn-222 LCS/LCSD met precision criteria for the EB.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and precision.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits (DLs) were met.

Other QC

EB2 was submitted on ARCOC 623821 in another SDG and was associated with the samples on ARCOC 623822 submitted in this SDG. EB 3 was submitted on ARCOC 623823 in this SDG and was associated with the samples on ARCOC 623824 submitted in another SDG. A field duplicate pair was submitted on ARCOC 623822. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/19/2022

Sample Findings Summary

AR/COC: 623822, 623823 Page 1 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 537.1			
	118939-002/MWL-FB 4	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118939-002/MWL-FB 4	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118939-002/MWL-FB 4	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
	118940-001/MWL-FRB 2	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118940-001/MWL-FRB 2	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118940-001/MWL-FRB 2	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
	118941-002/MWL-MW7	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, MS1
	118941-002/MWL-MW7	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, MS1
	118941-002/MWL-MW7	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, MS1
	118942-002/MWL-MW7	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, MS1
	118942-002/MWL-MW7	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, MS1
	118942-002/MWL-MW7	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, MS1
	118944-002/MWL-EB 3	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118944-002/MWL-EB 3	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118944-002/MWL-EB 3	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
EPA 900.0/SW846 9310			

AR/COC: 623822, 623823 Page 2 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	118944-005/MWL-EB 3	ALPHA (12587-46-1)	BD, FR3
	118944-005/MWL-EB 3	BETA (12587-47-2)	J, FR7
EPA 901.1			
	118941-004/MWL-MW7	Americium-241 (14596-10-2)	BD, FR3
	118941-004/MWL-MW7	Cesium-137 (10045-97-3)	BD, FR3
	118941-004/MWL-MW7	Cobalt-60 (10198-40-0)	BD, FR3
	118941-004/MWL-MW7	Potassium-40 (13966-00-2)	BD, FR3
	118942-004/MWL-MW7	Americium-241 (14596-10-2)	BD, FR3
	118942-004/MWL-MW7	Cesium-137 (10045-97-3)	BD, FR3
	118942-004/MWL-MW7	Cobalt-60 (10198-40-0)	BD, FR3
	118942-004/MWL-MW7	Potassium-40 (13966-00-2)	BD, FR3
	118944-004/MWL-EB 3	Americium-241 (14596-10-2)	BD, FR3
	118944-004/MWL-EB 3	Cesium-137 (10045-97-3)	BD, FR3
	118944-004/MWL-EB 3	Cobalt-60 (10198-40-0)	BD, FR3
	118944-004/MWL-EB 3	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	118941-006/MWL-MW7	Tritium (10028-17-8)	BD, FR3
	118942-006/MWL-MW7	Tritium (10028-17-8)	BD, FR3
	118944-006/MWL-EB 3	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	118941-007/MWL-MW7	Radon-222 (14859-67-7)	J, FR7
	118942-007/MWL-MW7	Radon-222 (14859-67-7)	J, FR7
	118944-007/MWL-EB 3	Radon-222 (14859-67-7)	BD, FR3
SW846 3005A/6020B	118941-003/MWL-MW7	Nickel (7440-02-0)	0.002U, B2
		. ,	•
CMO4C 03COD	118942-003/MWL-MW7	Nickel (7440-02-0)	0.002U, B2
SW846 8260D	118939-001/MWL-FB 3	Bromomethane (74-83-9)	UJ, 15
	118939-001/MWL-FB 3	Methylene chloride (75-09-2)	UJ, 15
	118941-001/MWL-MW7	Bromomethane (74-83-9)	UJ, 15

AR/COC: 623822, 623823 Page 3 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	118941-001/MWL-MW7	Methylene chloride (75-09-2)	UJ, 15
	118942-001/MWL-MW7	Acetone (67-64-1)	5.0U, B2
	118942-001/MWL-MW7	Bromomethane (74-83-9)	UJ, 15
	118942-001/MWL-MW7	Methylene chloride (75-09-2)	UJ, 15
	118943-001/MWL-TB 4	Bromomethane (74-83-9)	UJ, 15
	118943-001/MWL-TB 4	Methylene chloride (75-09-2)	UJ, 15
	118944-001/MWL-EB 3	Bromomethane (74-83-9)	UJ, 15
	118944-001/MWL-EB 3	Methylene chloride (75-09-2)	UJ, 15
	118945-001/MWL-TB 5	Bromomethane (74-83-9)	UJ, 15
	118945-001/MWL-TB 5	Methylene chloride (75-09-2)	UJ, 15

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ADCOCH, (22022 - 1 (22022		C't./D'.		<u> </u>			Validation Date: 12/16/2022			
ARCOC#: 623822 and 623823			ect: MWL LTMMI						2	
SDG #: 598056		Laborator	ry: GEL Laborator	ies, LLC			Validator: I	inda Thal		
Matrix: Aqueous		# of Samp	ples: 26	CVR prese	ent: Yes					
ARCOC(s) present: Yes		Sample C	Container Integrity:	OK						
Analysis Type:										
☐ Organic ☐ Metals	☐ Gench	em	⊠ Rad	⊠ Ot	her: PFAS					
			Requested A	Analyses N	ot Reported					
Client Sample ID	Lab Samp	le ID	Analysis			Cor	nments			
None										
			Hold Time	/Preservati	on Outliers					
Client Sample ID	Lab Sample	ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT	
None										
Comments: Collected: 10/24/202	22									
The ARCOCs noted that the trip	blank vials were r	received fro	om the lab with he	adspace.						
EB 3 was submitted on ARCOC				•	n ARCOC 623824	submitted in ano	ther SDG.			
EB2 was submitted on ARCOC				-						
Samples 118939-002, 118940-00	1, 118941-002, 1	18942-002	and 118944-002 v	were submitt	ed for PFAS analy	rsis by Method 53	7.1 Mod., but v	were incorrectly	logged in and	
analyzed by Method 537.1.										
Validated by: X Mal										

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623822 and 623823	SDG: 598056	Matrix: Aqueous
Laboratory Sample IDs: 598056001, -004, -011, -018, -019, -026		
Method/Batch #s: 8260D 2336528	Tuning (pass/fail): pass	TICs Required? (yes/no): no

	_		C	alibrati	on										TB 4
Analy (outlie		Int.	RF/ Slope	RSD /r ²	(ICV)/CC %D	CV MB	5X (10X) MB	LCS %R		MSD %R	MS/ MSD RPD	EB 3 -019	EB2 597711 -012	FB 3 -001	-018 TB 5 -026
1,2-Dichloroethan	ne	NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	0.48J	✓	✓	✓
2-Butanone		NA		✓	✓	✓	NA	✓	✓	✓	✓	4.52J	✓	✓	✓
Acetone		NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	9.18	7.98	3.65J	✓
Bromodichlorome	ethane	NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	0.76J	0.97J	0.65J	✓
Chloroform		NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	3.02	3.51	3.18	✓
Dibromochlorom		NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	0.060J	0.79J	0.49J	✓
Methylene chloric	de	-0.96	✓	✓	✓	✓	NA	✓	✓	✓	✓	✓	0.86J	✓	✓
Chloromethane		NA	✓	✓	+58	✓	NA	158	✓	✓	✓	✓	✓	✓	✓
Vinyl chloride		NA	✓	✓	+85	✓	NA	185	147	✓	✓	✓	✓	✓	✓
Dichlorodifluoror	nethane	+0.52	✓	✓	✓	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
Bromomethane		-0.73	✓	✓	+38	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
Chloroethane		NA	✓	✓	+28	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
1,1-Dichloroethyl	ene	NA	✓	✓	+24	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
Vinyl acetate		NA	✓	✓	+21	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
					S	urrogate Red	covery Ou	tliers							
Sample ID	1,2-DCA-d4 %	6R To	oluene-d8	%R	BFB %R		Sample	ID 1,	2-DCA-d4	%R	Toluene	e-d8 %R	BFB %	R	
None															
						IS O	utliers								
	FBZ			Chl-d	15	1,4-DC	B-d4								
Sample ID	Area	RT	Arc	ea	RT	Area	RT								
None															

Comments: HTs OK. MWL LTMMP TAL.

MS/MSD on -004

ICAL VOA6.I 10/14/22 Linear: Dichlorodifluoromethane, bromomethane, methylene chloride

SNL LCMSMS Worksheet (PFAS)

ARCOC: 6238 623823	822 and	37.1 Drin	king wate	Matrix: Aqueous Lab Sample IDs: 598056002 -005, -012, -020						002, -003,					
Batch #s: 2330	6913 (prep))/ 2336916													
Mass Calibration:	⊠ Pass	☐ Fail	Acquisit	on Rate:	Pass	☐ Fail	l Io	n Transitions:	⊠ Pass	s 🗌 Fa	il EN	IVI-Carb	Cleanup:	⊠ Yes	☐ No
					Calibra	tion (QSA	M)								ED 4
	Analyte (outliers)				RTs Set	ISC (LOQ) %D ±30%	ICV/ CCV %D ±30%	Inst Blanks (≤1/2 LOQ)	MB (≤1/2 LOQ)	5X MB	LCS/ LCSD %R	LCS/ LCSD RPD ≤30%	EB 3 -020	EB2 597711 -013	FB 4 -002 FRB 2 -003
None															
		lan Dating	7 1 1: .,	50 1500()				EIC/IssA	D:14	ion (ID)) O-4li	A 1 1: :	50 150	 % and within	0.4 :)
Sample	Compou	on Ratios	Ratio	30-130%)				Sample ID	ID	`	%R	(lab ilmils	or 30-130	% ana wiinin	0.4min)
None	Compou	ina i	vario .					None	110	71	/ UI X				
Signal to	Noise Out	liers (Stage	4) (≥10 for	quant ions	and ≥ 3 for	r conf ions,)]	RT outlie	ers (Stag	e 4) (±0.4 m	inutes of IC	CAL midpo	int or CCV)	
Sample ID	Compour	nd S/	N					Sample ID	Comp	ound	RT				
NA								NA							
	I		1			Su	rrogates	(70-130%)							
Sample ID	Sample ID 13C2-PFHxA 13C2-PFDA d5-NEtFOSAA							13C3- PFPrOPr	A						
-002								19							
-003	20					24									
-020	30						30								

Comments: HTs OK. LCS/LCSD insufficient sample for MS.

ICAL LCMSMS9 11/02/22 All linear through zero, Isotope Dilution

No Ion Transition Summary; ion transitions on quant reports

No Ion Ratio Summary; ion ratios reported on quant reports, but not calculated

Cal Std %Rs from raw data

Sandia Inorganic Metals Worksheet

ARCOC #	(s): 6238	22 and	1 62382.	3					SDG #	#(s): 5980	056			Mat	rix: Aqu	ieous		
Laborator	Sample	IDs: 5	980560	06, -013	, -021													
Method/B	atch #s: 3	8005A/	6020B:	2333658	3/233365	9												
ICPMS Ma	ss Cal: 🛭	Pass	s 🔲]	Fail	□ NA	ICPM	S Resolu	tion: 🛛 P	ass	☐ F	ail	□ NA						
Analyte			Cal	ibration	1		MB mg/L	5X Blank	LCS %R	MS %R	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL	LL CCV	PS %R	EB 3 -021	EB2 597711
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/L	mg/L	70K	70K	RPD	%D	%R	ug/L (x50)	%R	70K		-014
Ni	✓	✓	✓	✓	✓	✓	✓	NA	✓	✓	✓	✓	NA	NA	✓	NA	0.000821J	0.000614J
			I	S Outlie	ers 60-12	25%							IS	Outliers &	80-120%	<u> </u>		
Sam	ple ID		%R	ecovery	,	%Recove	ry	%Recove	ry	CCV	/CCB ID		%Recov	ery	%R	ecovery	%F	Recovery
n	one									1	none							
Comments: ICPMS: M Ca, Mg, Al	S/DUP/SI	on -00	06.															

Sandia Radiochemistry Worksheet

ARCOC #(s): 623822 and 623823 SDG #: 598056 Matrix: Aqueous

Laboratory Sample IDs: 598056 – see below

Method/Batch #s: **EPA 901.1** (gamma spec)/2336537 Samples -007, -014, -022

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2334732 Samples -008, -015, -023

Method/Batch #s: EPA 906.0 Modified (Tritium)/2336102 Samples -009, -016, -024

Method/Batch #s: SM 7500 Rn B (Rn-222)/2333838 Samples -010, -017, -025

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDA	LCS %R	LCSD %R	LCS/ LCSD RPD	N	MS/ MSD %R	MS/ MSD RER	MS/ MSD RPD	Lab Rep. RER	EB2 597711 -016	EB 3 -023
Gross beta	NA	NA	✓	NA	✓	NA	NA		✓	✓	NA	✓	0.777J	0.709J
				Tracer/Ca	rrier Rec	overy Outl	iers							
Sample ID	Tracer/Ca	arrier %I	₹	Sample ID)	Tracer/	Carrier	%R		Sample II)	Trace	r/Carrier	%R
NA														

Comments: HTs OK.

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on SNL sample 597711005. Parent sample 152mL; DUP 150ml; MS/MSD 54.2/53ml; 2.8X dilution.

GS: DUP on SNL sample 597711004.

Tritium: DUP/MS on SNL sample 597711006

Rn-222: LCS/LCSD, DUP -010

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

page 1 of 2 ARCOC 623822 SMO Use Date Samples Shipped: Oct 21, 2023 SMO Authorization: Waste Characterization: No Project Name: MWL LTMMP SNL Shipper #: 357575 RMA: No Project Manager: Timmie Jackson SMO Contact Phone: Wendy Palencia/505.844.3132 4º Celsius: Yes Lab Contact: Zachary Worsham/ 843-300-4224 P/T No: 195122.10.11.08 Lab Destination: GEL Contract No.:1983530 SDG#: 598054 Turnaround Time: 30 days TA: Bldg: Room: Last Chain: No Validation Req'd: Yes EDD: Yes Date/Time Container Preserv-Collection Sample Parameter & Method Requested Lab Sample No Frac-Sample Location Detail Depth Sample Type Sample Id Type Collected Matrix Volume ative Method (ft) tion 10/24/22 09:23 VOC-LTMMP (SW846-8260D) DIW 3x40 ml HCI G FB 001 118939 🗸 001 MWL-FB 3 PFAS (EPA 537 Mod) 10/24/22 09:24 DIW P 2x250 ml None G FB 118939 002 MWL-FB 4 0 002 PFAS (EPA 537 Mod) 10/24/22 09:26 G **FRB** 0 DIW 2x250 ml None 003 001 MWL- FRB 2 118940 🗸 SA VOC-LTMMP (SW846-8260D) 1004 G 10/24/22 09:48 GW G HCI 3x40 ml 118941 V 001 MWL-MW7 496 005 SA G PFAS (EPA 537 Mod) 10/24/22 09:46 GW 2x250 ml None 118941 √ 002 MWL-MW7 496 G SA METALS, LTMMP - Cd, Cr, Ni, U 10/24/22 09:50 Р GW 500 ml HNO3 118941 003 MWL-MW7 496 006 G GAMMA SPEC, SHORT LIST (EPA 901) 10/24/22 09:52 Р 1 L SA GW HNO3 007 118941 V 004 MWL-MW7 496 008 10/24/22 09:54 1 L G SA GROSS-ALPHA/BETA (EPA 900) GW HNO3 118941 005 MWL-MW7 496 TRITIUM (EPA 906) 009 G SA 10/24/22 09:56 GW 250 ml None 118941 006 MWL-MW7 496 AG RADON (SM7500 Rn B) 10/24/22 09:58 2x40 ml G SA 010 007 MWL-MW7 GW None 118941 496 Comments: Report three PFAS compounds (PFHxS, PFOS, and PFOA) on COA. Trip Sample Name blanks received from lab with head space. William Gibson Team Robert Lynch Members Zachary Tenorio Denisha Sanchez Time Relinquished by Org. Date Relinguished by Org. 8888 Date 10-24-22Time 1125 Date Time Org. OC/8 Date 10/20/20 Time Received by Org. Received by (125 Relinquished by Time Org. Date Relinquished by 12000 Org. OCA Date 10 20/22 Time Date Time Date 10 75 Z Time 10 10 Received by Org. Received by LOSO

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

AOP 95-16

page 2 of 2 ARCOC **623822**

Project N	ame:	MWL LTMMP									598054	
Sample No	Frac- tion	Sample Location Detail	Depth (ft)	Collected	Sample Matrix	Туре	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample Id
118942 √	001	MWL-MW7	496	10/24/22 09:49	GW	G	3x40 ml	HCI	G	DU	VOC-LTMMP (SW846-8260D)	611
118942	002	MWL-MW7	496	10/24/22 09:47	GW	Р	2x250 ml	None	G	DU	PFAS (EPA 537 Mod)	012
118942 √	003	MWL-MW7	496	10/24/22 09:51	GW	Р	500 ml	HNO3	G	DU	METALS, LTMMP - Cd, Cr, Ni, U	013
118942 🏑	004	MWL-MW7	496	10/24/22 09:53	GW	Р	1 L	HNO3	G	DU	GAMMA SPEC, SHORT LIST (EPA 901)	014
118942 🗸	005	MWL-MW7	496	10/24/22 09:55	GW	Р	1 L	HNO3	G	DU	GROSS-ALPHA/BETA (EPA 900)	015
118942	006	MWL-MW7	496	10/24/22 09:57	GW	AG	250 ml	None	G	DU	TRITIUM (EPA 906)	016
118942 🗸	007	MWL-MW7	496	10/24/22 09:59	GW	G	2x40 ml	None	G	DU	RADON (SM7500 Rn B)	017
118943 🗸	001	MWL-TB 4	0	10/24/22 09:23	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	018
								E				
											, ,,	

Receipt initials

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

AOP 95-16

				SMO Us	se						ARCOC	oage 1 of 1 623823
	nage	MWL LTMMP er: Timmie Jackson 2.10.11.08	SNL S Lab C Lab D	Samples Shipper Bhipper #: 350 ontact: zachary wo estination: GEI act No.:1983530	35755 rsham/ 843-30	65	SMO	Authorizat Contact Ph y Palencia		32	Waste Characterization: No RMA: No 4° Celsius: Yes	
TA: Bldg:	Ro	om:	Last Chain: No Validation Req'd: Yes					round Tim Yes	e: 30 days		SDG #: 598056	
Sample No I	Frac- tion	Sample Location Detail	Depth (ft)	Date/Time Collected	Sample Matrix	Co Type	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample Id
		MWL-EB 3	0	10/24/22 10:53	DIW	G	3x40 ml	HCI	G	EB	VOC-LTMMP (SW846-8260D)	019
118944 🗸	002	MWL-EB 3	0	10/24/22 10:51	DIW	Р	2x250 ml	None	G	EB	PFAS (EPA 537 Mod)	020
118944 🗸 (003	MWL-EB 3	0	10/24/22 10:54	DIW	Р	500 ml	HNO3	G	EB	METALS, LTMMP - Cd, Cr, Ni, U	021
118944 🗸 (004	MWL-EB 3	0	10/24/22 10:55	DIW	Р	1 L	HNO3	G	EB	GAMMA SPEC, SHORT LIST (EPA 901)	022
118944.	005	MWL-EB 3	0	10/24/22 10:56	DIW	Р	1 L	HNO3	G	EB	GROSS-ALPHA/BETA (EPA 900)	023
118944 🗸	006	MWL-EB 3	0	10/24/22 10:57	DIW	AG	250 ml	None	G	EB	TRITIUM (EPA 906)	024
118944	007	MWL-EB 3	0	10/24/22 10:58	DIW	G	2x40 ml	None	G	EB	RADON (SM7500 Rn B)	025
118945 🗸 (001	MWL-TB 5	0	10/24/22 10:53	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	026
Team Members	Rob Den	ne Signat liam Gibson eert Lynch iisha Sanchez hary Tenorio	will lyg	nd Fils	2				PFAS compaint with head s		(PFHxS, PFOS, and PFOA) on CO	OA. Trip
Relinquishe				Date 10/24/28			Relinqu			Org		
Received by				Date 10/29/23 T			Receive			Org		
Relinquishe		11		Date 10/24/23 T		00	Relinqu			Org		
Received by	UT	a Musical Org.	1	Date 10/25/28	ime (0	10	Receive	и бу		Org	g. Date Time	

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: December 20, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623824 SDG: 598175 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

1. The initial calibration intercepts were negative and > the MDL but ≤3X the MDL for methylene chloride and bromomethane. The associated sample results were non-detect and will be **qualified UJ,I5**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The initial calibration intercept was positive and > the MDL for dichlorodifluoromethane. The associated sample results were non-detect and will not be qualified.

The CCV %Ds were >20% with positive bias for chloromethane, vinyl chloride, bromomethane, chloroethane, vinyl acetate and 1,1-dichloroethylene. The associated sample results were non-detect and will not be qualified.

Blanks

No target analytes were detected in any of the blanks except as follows.

Bromodichloromethane and dibromochloromethane were detected at \leq the PQL and acetone and chloroform were detected at > the PQL in FB 5, sample 598175001 associated with sample -004. The associated sample results were non-detect and will not be qualified.

Bromodichloromethane; dibromochloromethane 1,2-dichloroethane and 2-butanone were detected at ≤ the PQL and acetone and chloroform were detected at > the PQL in EB 3, sample 598056019 submitted on ARCOC 623823 in another SDG and associated with the sample on ARCOC 623824 submitted in this SDG. The associated sample results were non-detect and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria with the following exception. The MS recovery for vinyl chloride was > the upper acceptance limit. The associated sample results were non-detect and will not be qualified.

It should be noted that the MS/MSD analyses were performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the FB and TB. The LCS met QC acceptance criteria and no data will be qualified.

There was no matrix-specific replicate analysis for the FB and TB. However, based on professional judgement, no data will be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met except as follows. The LCS recoveries for chloromethane and vinyl chloride were > the upper acceptance limit. The associated sample results were non-detect and will not be qualified.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

A TB was submitted on the ARCOC. FB 5 was submitted on ARCOC 623824 and was associated with the sample on the same ARCOC. EB 3 was submitted on ARCOC 623823 in another SDG and was associated with the sample on ARCOC 623824 submitted in this SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/21/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date: December 20, 2022

To: File

From: Linda Thal

Subject: LC/MS/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623824 SDG: 598175 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: PFAS

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 537.1 (PFAS, drinking water). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The recoveries for surrogates 13C2-PFHxA and 13C3-PFPrOPrA were <70% but ≥10% for samples 598175002 and -003. The PFOS result for sample -002 was a detect and will be **qualified J-,S2** and the remaining associated sample results were non-detect and will be **qualified UJ,S2**.
- 2. An MS/MSD was not performed due to limited sample volume. The associated results for sample -005 were non-detect and should be **qualified UJ,MS1** due to lack of matrix-specific accuracy data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were extracted and analyzed within the prescribed holding times and were properly preserved.

Instrument Performance Checks

All instrument mass calibration verifications were within QC acceptance criteria.

Ion Transitions

The ion transitions specified in QSM Table B-15 were used for analysis. It should be noted that an ion transition summary was not provided in the data package. The ion transitions provided in the raw data were reviewed for validation.

Calibration

All initial and continuing calibration acceptance criteria were met except as follows.

The PFOA %D was >30% with positive bias for the CCV preceding sample -005. The associated sample result was non-detect and will not be qualified.

Instrument Sensitivity Check (ISC)/Limit of Quantitation (LOQ) Check

All ISC/LOQ recoveries met QC acceptance criteria except as follows.

The PFOA %D was >30% with positive bias for the ISC preceding all samples. The associated sample results were non-detect and will not be qualified.

Ion Ratios

All ion ratios were within QC acceptance limits. It should be noted that an ion ratio summary was not provided for the standards or QC samples in the data package. The ion ratios provided in the raw data were reviewed for validation.

Extracted Internal Standards

All extracted internal standards met QC acceptance criteria.

Surrogates

All surrogate recoveries were within QC acceptance limits except as noted above in the Summary section.

Blanks

No target analytes were detected in any of the blanks except as follows.

PFOS was detected at \leq the PQL in FB 6, sample -002 associated with sample -005. The associated sample result was non-detect and will not be qualified.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS/LCSD analyses met QC acceptance criteria. The analysis of the LCS/LCSD serves as a matrix-specific measure of accuracy and precision for the FB and FRB in this SDG.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS or MSD were not performed with the sample in this data package as noted above in the Summary section.

An LCS/LCSD pair was analyzed to provide precision data.

Reporting Limits (RLs)

All limits of quantitation (LOQs) and detection limits (DLs) were properly reported. The samples were not diluted.

Other QC

The client was notified that the samples were analyzed using method EPA 537.1 (PFAS, Drinking Water) instead of method EPA 537.1 Modified.

FB 6 and FRB 3 were submitted on ARCOC 623824 and were associated with the sample on the same ARCOC. EB 3 was submitted on ARCOC 623823 in another SDG and was associated with the sample on ARCOC 623824 submitted in this SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/21/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date: December 20, 2022

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623824 SDG: 598175 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks except as follows.

Ni was detected at \leq the PQL in EB 3, sample 598056021, submitted on ARCOC 623823 in another SDG and associated with the sample on ARCOC 623824 submitted in this SDG. The associated sample result was non-detect and will not be qualified.

ICP-MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met QC acceptance criteria.

Laboratory Replicate

The sample replicate met QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Al, Mg and Fe were < the ICS values.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

EB 3 was submitted on ARCOC 623823 in another SDG and was associated with the sample on ARCOC 623824 submitted in this SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/21/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: December 20, 2022

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623824 SDG: 598175 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec - short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Radon-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

Gamma spec and tritium:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3**.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations \geq the MDA and 2-sigma TPU with the following exceptions.

Gross beta was detected at ≥ the MDA and 2-sigma TPU in EB 3, sample 598056023 submitted on ARCOC 623823 in another SDG and associated with the sample on ARCOC 623824 submitted in this SDG. The associated sample result was a detect >5X the EB value and will not be qualified.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria. The MS and/or MSD were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met. The replicate analyses for all target analytes were performed on SNL samples of similar matrix from other SDGs. No data will be qualified.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits (DLs) were met.

Other QC

EB 3 was submitted on ARCOC 623823 in another SDG and was associated with the sample on ARCOC 623824 submitted in this SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/21/2022

Sample Findings Summary

AR/COC: 623824 Page 1 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 537.1			
	118946-002/MWL-FB 6	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118946-002/MWL-FB 6	Perfluorooctanesulfonate (PFOS) (1763-23-1)	J-, S2
	118946-002/MWL-FB 6	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
	118947-001/MWL-FRB 3	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118947-001/MWL-FRB 3	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118947-001/MWL-FRB 3	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
	118948-002/MWL-MW9	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, MS1
	118948-002/MWL-MW9	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, MS1
	118948-002/MWL-MW9	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, MS1
EPA 901.1			
	118948-004/MWL-MW9	Americium-241 (14596-10-2)	BD, FR3
	118948-004/MWL-MW9	Cesium-137 (10045-97-3)	BD, FR3
	118948-004/MWL-MW9	Cobalt-60 (10198-40-0)	BD, FR3
	118948-004/MWL-MW9	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	118948-006/MWL-MW9	Tritium (10028-17-8)	BD, FR3
SW846 8260D			
	118946-001/MWL-FB 5	Bromomethane (74-83-9)	UJ, 15
	118946-001/MWL-FB 5	Methylene chloride (75-09-2)	UJ, 15
	118948-001/MWL-MW9	Bromomethane (74-83-9)	UJ, 15

AR/COC: 623824 Page 2 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	118948-001/MWL-MW9	Methylene chloride (75-09-2)	UJ, 15
	118949-001/MWL-TB 6	Bromomethane (74-83-9)	UJ, 15
	118949-001/MWL-TB 6	Methylene chloride (75-09-2)	UJ, 15

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 623824		Site/Project: MWL LTN	ИMP	Validation Date: 12/20/2022				
SDG #: 598175	-	Laboratory: GEL Labor	atories, LLC		Validator: L	inda Thal		
Matrix: Aqueous		# of Samples: 11	CVR pro	esent: Yes		-		
ARCOC(s) present: Yes		Sample Container Integ	rity: OK					
Analysis Type: Organic Metals	s Gench	em 🛚 Rad		Other: PFAS				
		Request	ed Analyses	Not Reported				
Client Sample ID Lab Sample ID Analysis Comments								
None								
		Hold Ti	me/Preserva	ation Outliers				
Client Sample ID	Lab Sample		me/Preserva	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT
Client Sample ID None	Lab Sample			Collection		•		
-	Lab Sample			Collection		•		
-	Lab Sample			Collection		•		
-	Lab Sample			Collection		•		
-				Collection		•		
None)22	ID Analysis	Pres.	Collection		•		
None Comments: Collected: 10/25/20 The ARCOC noted that the trip to EB 3 was submitted on ARCOC	blank vials were re	e ID Analysis ecceived from the lab with r SDG and was associated	Pres. headspace. d with the sam	Collection Date ples on ARCOC 623	Date 824 submitted in	Date this SDG.	<2X HT	≥2X HT
None Comments: Collected: 10/25/20 The ARCOC noted that the trip by	blank vials were re	e ID Analysis ecceived from the lab with r SDG and was associated	Pres. headspace. d with the sam	Collection Date ples on ARCOC 623	Date 824 submitted in	Date this SDG.	<2X HT	≥2X HT

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623824	SDG: 598175	Matrix: Aqueous
Laboratory Sample IDs: 598175001, -004, -011		
Method/Batch #s: 8260D 2336528	Tuning (pass/fail): pass	TICs Required? (yes/no): no

		C	alibrati	on			73 7					MC	EB 3			
Analyte (outliers)	Int.	RF/ Slope	RSD /r ²	(ICV)/CC %D	CV	MB	5X (10X) MB	L(%		MS %R	MSD %R	MS/ MSD RPD	598056 -019	FB 5 -001	TB 6 -011	
1,2-Dichloroethane	NA	✓	✓	✓		✓	NA	~	/	✓	✓	✓	0.48J	✓	✓	
2-Butanone	NA		✓	✓		✓	NA	✓	/	✓	✓	✓	4.52J	✓	✓	
Acetone	NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	9.18	5.78	✓	
Bromodichloromethane	NA	NA 🗸 🗸		✓		✓	NA	✓		✓	✓	✓	0.76J	0.68J	✓	
Chloroform	NA	√	√	√		√	NA	✓		√	√	✓	3.02	3.22	✓	
Dibromochloromethane	NA	✓	√	√		✓	NA	✓		✓	✓	✓	0.060J	0.50J	✓	
Methylene chloride	-0.96	✓	✓	✓		✓	NA	✓		✓	✓	✓	✓	✓	✓	
Chloromethane	NA	✓	√	+58		√	NA		58	✓	√	√	√	✓	√	
Vinyl chloride	NA	✓	√	+85		<u>√</u>	NA	18		147	√	√	√	✓	✓	<u> </u>
Dichlorodifluoromethane	+0.52	✓	√	✓		<u>√</u>	NA	✓		√	√	√	√	✓	✓	<u> </u>
Bromomethane	-0.73	√	√	+38		√	NA	✓		√	✓	√	√	✓	√	
Chloroethane	NA	✓	√	+28		<u> </u>	NA	· ·		<u>√</u>	√	√	✓ ✓	√	√	
1,1-Dichloroethylene	NA	✓	✓	+24		√	NA			<u> </u>	✓	√	✓	✓	✓	<u> </u>
Vinyl acetate	NA	V	· ·	+21			NA				✓	· ·	V	V	V	
				S	urrogat	te Recov	very Out	liers							1	
Sample ID 1,2-DCA-d4	%R To	oluene-d8	%R	BFB %R		5	Sample I	D	1,2-D	OCA-d4	%R	Toluene	e-d8 %R	BFB %I	₹	
None																
						IS Outl	iers									
FBZ			Chl-d	15	1,	4-DCB-	d4									
Sample ID Area	RT	Are	ea	RT	Ar	ea	RT									
None																

Comments: HTs OK. MWL LTMMP TAL.

MS/MSD on SNL sample 598056004
ICAL VOA6.I 10/14/22 Linear: Dichlorodifluoromethane, bromomethane, methylene chloride

SNL LCMSMS Worksheet (PFAS)

ARCOC: 623	824	SDG: 59	98175	Metho	od: EPA 537.1 Drinking water Matrix: Aqueous Lab Sample IDs: 59817506 -005							002, -003,			
Batch #s: 233	7543 (prep).	/ 233754	4 (-002, -00	03) and 2	338333(prep)/23	38334 (-	005)1		•					
Mass Calibration:	🛛 Pass [Fail	Acquisit	on Rate:	Pass	☐ Fai	il Io	on Transitions:	⊠ Pa	nss 🔲 F	ail EN	NVI-Carb	Cleanup:	⊠ Yes	☐ No
					Calibra	tion (QS	'M)								
Analyte (outliers) RSD/ r^2 $\leq 20\%$ ≥ 0.99				Cal. Std Rec'y 70- 130%	Std RTs (L Set 70-		ICV/ CCV %D ±30%	Inst Blanks (≤1/2 LOQ)	MB (≤1/2 LOQ)	$\frac{5X}{MR}$	1 1 7 213	LCS/ LCSD RPD ≤30%	EB 3 598056 -020	FB 6 -002	FRB 3 -003
PFOS	√	√	✓	√	√	✓	NA	√	✓	√	0.768J	✓			
PFOA	√	√	+35	+351	√	✓	NA	✓	✓	√	✓	✓			
	Id	on Ratios	(lab limits or	50-150%)				EIS/Isot	ope Dil	ution (ID	A) Outliers	(lab limits	or 50-150%	6 and within	0.4min)
Sample	Compou	nd	Ratio					Sample ID		DA	DA %R				
None								None							
Signal to	Noise Outl	iers (Stag	e 4) (≥10 for	quant ions	and ≥ 3 fo	r conf ions	s)		RT outl	iers (Stag	ge 4) (±0.4 m	inutes of I	CAL midpoir	nt or CCV)	
Sample ID	Compoun	d S	/N					Sample ID	Con	pound	RT				
NA								NA							
	<u> </u>		1			Su	ırrogates	(70-130%)							
Sample ID	13C2-	PFHxA	13	C2-PFDA	. (d5-NEtF	OSAA	13C3- PFPrOPr	A						
-002	1	9		✓		✓		22							
-003	2	.7		✓		✓		31							

Comments: HTs OK. Tune 05/12/22

2337543 (prep)/ 2337544 (-002, -003) LCS/LCSD ok samples are blanks

 $2338333 (prep)/2338334 \ (-005) \ LCS/LCSD$ insufficient sample for MS.

ICAL LCMSMS9 11/02/22 All linear through zero, Isotope Dilution

No Ion Transition Summary; ion transitions on quant reports

No Ion Ratio Summary; ion ratios reported on quant reports, but not calculated

Cal Std %Rs from raw data

Sandia Inorganic Metals Worksheet

□ NA		
1		
Serial ICS ±1	MDL CCV PS	EB 3 598056 X5
9/D 0/D U	ug/L _{0/D} %K	-021
✓ NA	NA ✓ NA 0	.000821J 0.0041
IS Out	Hiors 80_120%	
<u> </u>		%Recovery
/ Unccovery	/orceover y	/orceovery
	Dil. AB ± (Dil. AB wg/L ccv %R %R

Sandia Radiochemistry Worksheet

ARCOC #(s): 623824 SDG #: 598175 Matrix: Aqueous

Laboratory Sample IDs: 598175 – see below

Method/Batch #s: **EPA 901.1** (gamma spec)/2336537 Sample -007

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2334732 Sample -008

Method/Batch #s: EPA 906.0 Modified (Tritium)/2336102 Sample -009

Method/Batch #s: SM 7500 Rn B (Rn-222)/2333838 Sample -010

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDA	LCS %R	LCSD %R	LCS/ LCSD RPD	N	MS/ MSD %R	MS/ MSD RER	MS/ MSD RPD	Lab Rep. RER	EB 3 598056 -023	X5
Gross beta	NA	NA	✓	NA	√	NA	NA		✓	✓	NA	✓	0.709J	3.55
				Tracer/Ca	rrier Rec	overy Outl	iers							
Sample ID	Tracer/Ca	ırrier %F	₹ .	Sample ID		Tracer/0	Carrier	%R		Sample II)	Trace	r/Carrier	%R
NA														

Comments: HTs OK.

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on SNL sample 597711005. Parent sample 152mL; DUP 150ml; MS/MSD 54.2/53ml; 2.8X dilution.

GS: DUP on SNL sample 597711004.

Tritium: DUP/MS on SNL sample 597711006

Rn-222: LCS/LCSD, DUP on SNL sample 598056010

598175

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

AOP 95-16

page 1 of 2 ARCOC 623824 **SMO** Use Date Samples Shipped: (27 25, 202) SMO Authorization: Waste Characterization: No Project Name: MWL LTMMP SNL Shipper #: 352 72/ SMO Contact Phone: RMA: No Project Manager: Timmie Jackson Lab Contact: Zachary Worsham/ 843-300-4224 Wendy Palencia/505.844.3132 4º Celsius: Yes P/T No: 195122.10.11.08 Lab Destination: GEL Contract No.: 1983530 TA: Bldg: Room: Last Chain: No Turnaround Time: 30 days SDG #: 598175 Validation Req'd: Yes EDD: Yes Date/Time Container Collection Parameter & Method Requested Lab Depth Preserv-Sample Sample No Frac-Sample Location Detail Sample Sample Id (ft) Collected Matrix Type | Volume ative Method Type tion 10/25/22 09:24 VOC-LTMMP (SW846-8260D) FB 3x40 ml HCI G 118946 🗸 001 MWL-FB 5 DIW G 001 G PFAS (EPA 537 Mod) 0 10/25/22 09:20 DIW Р 2x250 ml None FB 118946 002 MWL-FB 6 002 10/25/22 09:22 G **FRB** PFAS (EPA 537 Mod) DIW Р 2x250 ml None MWL-FRB 3 118947 001 003 VOC-LTMMP (SW846-8260D) 10/25/22 10:07 G GW G 3x40 ml HCI SA 118948 🗸 MWL-MW9 497 001 400 G PFAS (EPA 537 Mod) 10/25/22 10:06 Р 2x250 ml None SA GW 118948 002 MWL-MW9 497 005 G METALS, LTMMP - Cd, Cr, Ni, U 10/25/22 10:08 SA 003 MWL-MW9 497 GW Р 500 ml HNO3 118948 🗸 006 10/25/22 10:10 G SA GAMMA SPEC, SHORT LIST (EPA 901) GW Р 1 L HNO₃ 004 MWL-MW9 497 118948 🗸 500 GROSS-ALPHA/BETA (EPA 900) 10/25/22 10:12 G P HNO3 SA 005 MWL-MW9 497 GW 1 L 200 118948 TRITIUM (EPA 906) 10/25/22 10:14 GW 250 ml None G SA 497 AG 118948./ 006 MWL-MW9 009 RADON (SM7500 Rn B) 10/25/22 10:15 G SA GW G 2x40 ml 497 None 010 118948 007 MWL-MW9 Comments: Report three PFAS compounds (PFHxS, PFOS, and PFOA) on COA. Trip Sample Name blanks received from lab with head space. Robert Lynch Team Members Zachary Tenorio William Gibson Date Time Org. \$888 Date 10/25/22 Time Relinguished by Org. Relinquished by ? 1140 Time Org. OG/8 Date 10/25/22 Time 1140 Received by Org. Date Received by Date Time Relinquished by Org. Org. 06/8 Date 10/25/22 Time 1200 Relinguished by Time Date Date 10/26/22 Time 745 Received by Org. Org. Received by

AOP 95-16

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

page 2 of 2 ARCOC **623824**

Project Name: MWL LTMMP

Sample No	Frac- tion	Sample Location Detail	Depth (ft)	Collected	Sample Matrix	Туре	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample Id
118949 🗸	001	MWL-TB 6	0	10/25/22 09:24	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	011
							-					
		77										

Receipt initials _____

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: December 20, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623825 SDG: 598176 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration intercepts were negative and > the MDL but $\le 3X$ the MDL for methylene chloride and bromomethane. The associated sample results were non-detect and will be **qualified UJ,15**.
- 2. Acetone was detected at \leq the PQL in TB 7, sample 598176008 associated with sample -001. The associated sample result was a detect > the PQL but \leq 10X the TB value and will be **qualified J+,B1**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The initial calibration intercept was positive and > the MDL for dichlorodifluoromethane. The associated sample results were non-detect and will not be qualified.

The CCV %Ds were >20% with positive bias for chloromethane, vinyl chloride, bromomethane, chloroethane, vinyl acetate and 1,1-dichloroethylene. The associated sample results were non-detect and will not be qualified.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Bromodichloromethane and dibromochloromethane were detected at ≤ the PQL and acetone and chloroform were detected at > the PQL in EB 4, sample -001 submitted on ARCOC 623825 in this SDG and associated with samples on ARCOC 623827 submitted in another SDG. No data from this SDG will be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria with the following exception. The MS recovery for vinyl chloride was > the upper acceptance limit. The associated sample results were blanks and will not be qualified.

It should be noted that the MS/MSD analyses were performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the EB and TB. The LCS met QC acceptance criteria and no data will be qualified.

There was no matrix-specific replicate analysis for the EB and TB. However, based on professional judgement, no data will be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met except as follows. The LCS recoveries for chloromethane and vinyl chloride were > the upper acceptance limit. The associated sample results were non-detect and will not be qualified.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

A TB was submitted on the ARCOC. EB 4 was submitted on ARCOC 623825 in this SDG and was associated with the samples on ARCOC 623827 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/21/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.againc.net

Memorandum

Date: December 20, 2022

To: File

From: Linda Thal

Subject: LC/MS/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623825 SDG: 598176 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: PFAS

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with accepted procedures using method EPA 537.1 (PFAS, drinking water). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

1. The recoveries for surrogates 13C2-PFHxA and 13C3-PFPrOPrA were <70% but ≥10% for sample 598176002. The associated sample results were non-detect and will be **qualified UJ,S2**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was extracted and analyzed within the prescribed holding times and was properly preserved.

Instrument Performance Checks

All instrument mass calibration verifications were within QC acceptance criteria.

Ion Transitions

The ion transitions specified in QSM Table B-15 were used for analysis. It should be noted that an ion transition summary was not provided in the data package. The ion transitions provided in the raw data were reviewed for validation.

Calibration

All initial and continuing calibration acceptance criteria were met except as follows.

The CCV %D was >30% with positive bias for PFOA. The associated sample result was non-detect and will not be qualified.

Instrument Sensitivity Check (ISC)/Limit of Quantitation (LOQ) Check

All ISC/LOQ recoveries met QC acceptance criteria except as follows.

The ISC %D was >30% with positive bias for PFOA. The associated sample result was non-detect and will not be qualified.

Ion Ratios

All ion ratios were within QC acceptance limits. It should be noted that an ion ratio summary was not provided for the standards or QC samples in the data package. The ion ratios provided in the raw data were reviewed for validation.

Extracted Internal Standards

All extracted internal standards met QC acceptance criteria.

Surrogates

All surrogate recoveries were within QC acceptance limits except as noted above in the Summary section.

Blanks

No target analytes were detected in any of the blanks.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS/LCSD analyses met QC acceptance criteria. The analysis of the LCS/LCSD serves as a matrix-specific measure of accuracy and precision for the EB in this SDG.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS or MSD were not performed with the sample in this data package. Since the only sample was a blank, no data will be qualified.

Reporting Limits (RLs)

All limits of quantitation (LOQs) and detection limits (DLs) were properly reported. The sample was not diluted.

Other QC

The client was notified that the sample was analyzed using method EPA 537.1 (PFAS, Drinking Water) instead of method EPA 537.1 Modified.

EB 4 was submitted on ARCOC 623825 in this SDG and was associated with the samples on ARCOC 623827 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/21/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: December 20, 2022

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623825 SDG: 598176 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met QC acceptance criteria. It should be noted that the MS was performed on an SNL sample from another SDG. No data will be qualified.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the EB. The LCS met QC acceptance criteria and no data will be qualified.

Laboratory Replicate

The sample replicate met QC acceptance criteria. It should be noted that the replicate was performed on an SNL sample from another SDG. No data will be qualified.

There was no matrix-specific replicate analysis for the EB. However, based on professional judgement, no data will be qualified.

Laboratory Control Sample (LCS)

The LCS met QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Al, Mg and Fe were < the ICS values.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria. It should be noted that the serial dilution was performed on an SNL sample from another SDG. No data will be qualified.

Other QC

 $EB\ 4$ was submitted on ARCOC 623825 in this SDG and was associated with the samples on ARCOC 623827 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/21/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: December 20, 2022

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 623825 SDG: 598176 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec - short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Radon-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

All analyses *except* gross beta:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3**.

Gross Beta:

1. The sample result was \geq the MDA but \leq 3X the MDA and will be **qualified J,FR7**.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU with the following exceptions.

Gross beta was detected at ≥ the MDA and 2-sigma TPU in EB 4, sample 598176005 submitted on ARCOC 623825 in this SDG and associated with the sample on ARCOC 623827 submitted in another SDG. No data from this SDG will be qualified.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria. The MS and/or MSD were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the EB. The LCS met QC acceptance criteria and no data will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met. The replicate analyses for all target analytes were performed on SNL samples of similar matrix from other SDGs. No data will be qualified.

For all target analytes *except* Rn-22, there was no matrix-specific replicate analysis for the EB. However, based on professional judgement, no sample results will be qualified.

The Rn-222 LCS/LCSD met precision criteria for the EB.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits (DLs) were met.

Other QC

EB 4 was submitted on ARCOC 6238235 in this SDG and was associated with the sample on ARCOC 623827 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/21/2022

Sample Findings Summary

AR/COC: 623825 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 537.1	•		
	118950-002/MWL-EB 4	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118950-002/MWL-EB 4	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118950-002/MWL-EB 4	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
EPA 900.0/SW846 9310			
	118950-005/MWL-EB 4	ALPHA (12587-46-1)	BD, FR3
	118950-005/MWL-EB 4	BETA (12587-47-2)	J, FR7
EPA 901.1			
	118950-004/MWL-EB 4	Americium-241 (14596-10-2)	BD, FR3
	118950-004/MWL-EB 4	Cesium-137 (10045-97-3)	BD, FR3
	118950-004/MWL-EB 4	Cobalt-60 (10198-40-0)	BD, FR3
	118950-004/MWL-EB 4	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	118950-006/MWL-EB 4	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	118950-007/MWL-EB 4	Radon-222 (14859-67-7)	BD, FR3
SW846 8260D			
	118950-001/MWL-EB 4	Acetone (67-64-1)	J+, B1
	118950-001/MWL-EB 4	Bromomethane (74-83-9)	UJ, 15
	118950-001/MWL-EB 4	Methylene chloride (75-09-2)	UJ, 15
	118951-001/MWL-TB 7	Bromomethane (74-83-9)	UJ, 15
	118951-001/MWL-TB 7	Methylene chloride (75-09-2)	UJ, 15

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

		T					T				
ARCOC#: 623825			ct: MWL LTM					Date: 12/20/202	2		
SDG #: 598176		Laborator	y: GEL Laborat	ories, LLC			Validator: Linda Thal				
Matrix: Aqueous		# of Samp	oles: 8	CVR p	resent: Yes						
ARCOC(s) present: Yes		Sample Co	ple Container Integrity: OK								
Analysis Type:											
☐ Organic ☐ Metals	Gencl	nem	\boxtimes Rad	\boxtimes	Other: PFAS						
			Requested	l Analyse	s Not Reported						
Client Sample ID	Lab Samj	ole ID	Analys	sis		Cor	mments				
None											
			Hold Tim	ie/Preser	vation Outliers	n	A 1 .	A 7 ·	A 1 *		
Client Sample ID	Lab Sample	e ID	Analysis	Pres	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT		
None											
Comments: Collected: 10/25/20	22										
The ARCOC noted that the trip l	olank vials were r	eceived from	n the lab with h	eadspace.							
EB 4 was submitted on ARCOC					es on ARCOC 623827	submitted in and	other SDG.				
Sample 118950-002 was submitted				-							
,											
\sim	//100										
Validated by:	Mal	-									

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 623825	SDG: 598176	Matrix: Aqueous
Laboratory Sample IDs: 598176001, -008		
Method/Batch #s: 8260D 2336528	Tuning (pass/fail): pass	TICs Required? (yes/no): no

			C	alibrati	on								3.50/				
Analy (outlie		Int.	RF/ Slope	RSD /r ²	(ICV)/C0 %D	CV	MB	5X (10X) MB		CS 5R	MS %R	MSD %R	MS/ MSD RPD	EB 4 -001	X5 (X10)	TB 7 -008	(X10)
Acetone		NA	✓	✓	✓		✓	NA	v	/	✓	✓	✓	5.18	(51.8)	2.1J	(21)
Bromodichlorome	ethane	NA	✓	✓	✓		✓	NA	٧		✓	✓	✓	0.65J	3.25	✓	NA
Chloroform		NA	✓	✓	✓		✓	NA	v	/	✓	✓	✓	2.78	13.9	✓	NA
Dibromochloromo	ethane	NA	✓	✓	✓		✓	NA	٧	/	✓	✓	✓	0.44J	2.2	✓	NA
Methylene chloric	de	-0.96	✓	✓	✓		✓	NA	٧	/	✓	✓	✓	✓	✓	✓	NA
Chloromethane		NA	✓	✓	+58		✓	NA	1:	58	✓	✓	✓	✓	✓	✓	NA
Vinyl chloride		NA	✓	✓	+85		✓	NA	18	85	147	✓	✓	✓	✓	✓	NA
Dichlorodifluoror	nethane	+0.52	✓	✓	✓		✓	NA	٧		✓	✓	✓	✓	✓	✓	NA
Bromomethane		-0.73	✓	✓	+38		✓	NA	٧	/	✓	✓	✓	✓	✓	✓	NA
Chloroethane		NA	✓	✓	+28		✓	NA	٧	/	✓	✓	✓	✓	✓	✓	NA
1,1-Dichloroethyl	ene	NA	✓	✓	+24		✓	NA	٧	/	✓	✓	✓	✓	✓	✓	NA
Vinyl acetate		NA	✓	✓	+21		✓	NA	٧	/	✓	✓	✓	✓	✓	✓	NA
					S	urrogat	e Recov	ery Out	liers								
Sample ID	1,2-DCA-d4 %	6R To	oluene-d8	%R	BFB %R			Sample l	D	1,2-D	OCA-d4	%R	Toluene	-d8 %R	BFB %F	2	
None																	
]	IS Outl	iers									
	FBZ			Chl-d	15	1,4	1-DCB-	d4				_					
Sample ID	Area	RT	Are	ea	RT	Arc	ea	RT									
None																	

Comments: HTs OK. MWL LTMMP TAL.
MS/MSD on SNL sample 598056004
ICAL VOA6.I 10/14/22 Linear: Dichlorodifluoromethane, bromomethane, methylene chloride

SNL LCMSMS Worksheet (PFAS)

ARCOC: 623	825	SDG: 5981	76	Metho	d: EPA 5	37.1 Drin	king wate	er		Matrix:	Aqueous	Lab S	Lab Sample IDs: 598176002			
Batch #s: 233	8333(prep)/	2338334		1								•				
Mass Calibration:	⊠ Pass	Fail	Acquisiti	on Rate:	N Pass	☐ Fai	l Io	n Transitions:	⊠ Pas	ss 🗌 Fa	il El	NVI-Carb	Cleanup:	⊠ Yes	☐ No	
					Calibra	tion (QS	M)									
	Analyte (outliers) RSD/ r^2 $\leq 20\%$ ≥ 0.99				RTs Set	ISC (LOQ) %D ±30%	ICV/ CCV %D ±30%	Inst Blanks (≤1/2 LOQ)	MB (≤1/2 LOQ)	5X MB	LCS/ LCSD %R	LCS/ LCSD RPD ≤30%	EB 4 -002			
PFOA			✓	√	✓	35	35	√	✓	NA	✓	√	✓			
	I	on Ratios (la	b limits or	50-150%)				EIS/Isot	ope Dilu	tion (IDA	A) Outliers	(lab limits	or 50-150%	6 and withir	0.4min)	
Sample	Compou	nd Ra	tio					Sample ID	II	DA	%R					
None								None								
Signal to	Noise Outl	iers (Stage 4) (≥10 for	quant ions	and ≥ 3 fo	r conf ions	:)]	RT outli	ers (Stag	e 4) (±0.4 m	inutes of IC	CAL midpoi	nt or CCV)		
Sample ID	Compoun	d S/N						Sample ID	Com	pound	RT					
NA								NA								
						Su	rrogates	(70-130%)								
Sample ID	13C2-	PFHxA	130	C2-PFDA	. (d5-NEtF0	OSAA	13C3- PFPrOPr	A							
-002	2	23		✓		✓		24								

Comments: HTs OK. Tune 05/12/22

2338333(prep)/2338334 LCS/LCSD OK sample is a blank

ICAL LCMSMS9 11/02/22 All linear through zero, Isotope Dilution

No Ion Transition Summary; ion transitions on quant reports

No Ion Ratio Summary; ion ratios reported on quant reports, but not calculated

Cal Std %Rs from raw data

Sandia Inorganic Metals Worksheet

ARCOC #(s): 623825										SDG #(s): 598176 Matrix: Aqueous									
Laboratory	y Sample	IDs: 5	981760	03															
Method/Ba	atch #s: 3	8005A	/6020B:	2333909	0/2333910	0													
ICPMS Ma	ss Cal: 🛭	☐ Pas	s 🗌 1	Fail	□ NA	ICPM	S Resolu	ition: 🛛 P	ass	□ F	ail	□ NA							
Analyte (outliers)	Int. R ² ICV CCV IO			nt. R ² ICV CCV ICB CCB					LCS %R	MS %R	Lab Rep RPD	Serial Dil. %D	ICS AB %R	ICS . ±MD ug/I (x50		V .	PS %R	EB 4 -003	X5
none																			
																+			
																+			
																工			
																4			
																+			
																4			
						1										+			
			I	S Outli	ers 60-12	25%							IS	Outlier	rs 80-120)%			
Sam	ple ID		%R	ecovery	,	%Recove	ry	%Recove	ry	CCV	CCB ID		%Recov	ery	%	Reco	overy	%I	Recovery
n	one									r	none								
Comments: ICPMS: M Ca, Mg, Al	S/DUP/SD	on SN	NL sampl	le 598175	5006.														

Sandia Radiochemistry Worksheet

ARCOC #(s): 623825 SDG #: 598176 Matrix: Aqueous

Laboratory Sample IDs: 598176 – see below

Method/Batch #s: EPA 901.1 (gamma spec)/2336537 Sample -004

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2334732 Sample -005

Method/Batch #s: EPA 906.0 Modified (Tritium)/2336102 Sample -006

Method/Batch #s: SM 7500 Rn B (Rn-222)/2333838 Sample -007

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDA	LCS %R	LCSD %R	LCS/ LCSD RPD	N.	MS/ ASD %R	MS/ MSD RER	MS/ MSD RPD	Lab Rep. RER	EB 4 -005	X5
Gross beta	NA	NA	✓	NA	√	NA	NA		✓	✓	NA	✓	1.4J	7.0
				Tracer/Ca	rrier Rec	overy Outl	liers							
Sample ID	Tracer/Ca	rrier %	R	Sample ID)	Tracer/	Carrier	%R		Sample ID)	Trace	r/Carrier	%R
NA					<u>-</u>								<u> </u>	
4	I		I			1						1		1

Comments: HTs OK.

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on SNL sample 597711005. Parent sample 152mL; DUP 150ml; MS/MSD 54.2/53ml; 2.8X dilution.

GS: DUP on SNL sample 597711004.

Tritium: DUP/MS on SNL sample 597711006

Rn-222: LCS/LCSD, DUP on SNL sample 598056010

SMO 2012-ARCOC (4-2012)

598176

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

AOP 95-16

page 1 of 1 ARCOC 623825 **SMO** Use Date Samples Shipped: Oct 25,2022 SNL Shipper #: 356 72/ Project Name: MWL LTMMP SMO Authorization: Waste Characterization: No Project Manager: Timmie Jackson SMO Contact Phone: RMA: No P/T No: 195122.10.11.08 Lab Contact: Zachary Worsham/ 843-300-4224 Wendy Palencia/505.844.3132 4º Celsius: Yes Lab Destination: GEL Contract No.:1983530 TA: Bldg: Room: Turnaround Time: 30 days Last Chain: No SDG #: Validation Reg'd: Yes EDD: Yes Sample No Frac-Sample Location Detail Date/Time Depth Sample Container Preserv-Collection Sample Parameter & Method Requested Lab tion (ft) Collected Matrix Type Volume ative Method Type Sample Id 001 MWL-EB 4 10/25/22 11:13 118950 🗸 DIW G 3x40 ml **HCI** VOC-LTMMP (SW846-8260D) G EB 100 10/25/22 11:12 118950 🗸 002 MWL-EB 4 DIW G P 2x250 ml None PFAS (EPA 537 Mod) EB 002 10/25/22 11:14 118950 003 MWL-EB 4 DIW P 500 ml HNO3 G EΒ METALS, LTMMP - Cd, Cr, Ni, U 003 10/25/22 11:15 DIW G 118950 / 004 MWL-EB 4 1 L HNO3 EB GAMMA SPEC, SHORT LIST (EPA 901) 400 10/25/22 11:16 118950 / DIW P 1 L G 005 MWL-EB 4 HNO3 EB GROSS-ALPHA/BETA (EPA 900) 005 10/25/22 11:17 118950./ 006 MWL-EB 4 DIW AG 250 ml G TRITIUM (EPA 906) None EB 006 118950 / 007 MWL-EB 4 10/25/22 11:18 G RADON (SM7500 Rn B) DIW G 2x40 ml None EB 007 118951 / 001 MWL-TB 7 10/25/22 11:13 DIW G 3x40 ml HCI G TB VOC-LTMMP (SW846-8260D) 800 Comments: Report three PFAS compounds (PFHxS, PFOS, and PFOA) on COA. Trip Sample Name Team William Gibson blanks received from lab with head space. Members Robert Lynch Zachary Tenorio Relinquished by Org. 5688 Date 10/25/22 Time 1/140 Relinguished by 3. Date Time Org. Received by Org. OC/S Date 10/25 Time Received by Date Time 1140 Org. Org. 00/8 Date 10/25/25 Time 1200 Relinquished by Date Relinguished by Org. Time Received by Received by Org. Date 10/26/22 Time Org. Date Time

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.againc.net

Memorandum

Date: December 21, 2022

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623826 and 623827

SDG: 598360 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Five samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration intercept was negative and > the MDL but ≤3X the MDL for methylene chloride. The associated result for sample 598360012 was non-detect and will be **qualified UJ,I5**. All remaining associated sample results were detects <3X the absolute value of the intercept and will be **qualified J-,I5**.
- 2. The initial calibration %RSDs were >15% but ≤40% and the CCV %Ds were >20% but ≤40% with negative bias for carbon disulfide and dichlorodifluoromethane. The associated sample results were non-detect and will be **qualified UJ,I3,C3**.
- 3. Methylene chloride was detected at ≤ the PQL in TB 8, sample -008 associated with sample -001 and in TB 9, sample -019 associated with samples -009 and -012. The associated results for samples -001 and -009 were detects ≤ the PQL and will be **qualified 5.0U,B1**; non-detect at the PQL.
- 4. Toluene was detected at > the PQL in TB 8, sample -008 associated with sample -001 and in TB 9, sample -019 associated with samples -009 and -012. The associated sample results were detects > the PQL but \(\leq 2X \) the TB values and will be **qualified U,B1**; non-detect at the reported values.
- 5. The MS/MSD relative percent difference (RPD) was >20% for dichlorodifluoromethane. The associated sample results were non-detect and will be **qualified UJ,MS5.**

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The ICV %D was >20% and positive for dichlorodifluoromethane. The associated sample results were non-detect and will not be qualified.

The CCV %D was >20% but ≤40% with negative bias for chloromethane. The associated sample results were non-detect and since no other calibration infractions occurred, will not be qualified.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Methylene chloride was detected at \leq the PQL in TB 9, sample -019 associated with samples -009 and -012. The associated result for sample -012 was non-detect and will not be qualified.

Bromodichloromethane and dibromochloromethane were detected at \leq the PQL and acetone and chloroform were detected at > the PQL in EB 4, sample 598176001 submitted on ARCOC 623825 in another SDG and associated with samples on ARCOC 623827 submitted in this SDG. The associated sample results were non-detect and will not be qualified.

Bromodichloromethane and dibromochloromethane were detected at ≤ the PQL and acetone and chloroform were detected at > the PQL in FB 7, sample -009 associated with sample -012. The associated sample results were non-detect and will not be qualified. Methylene chloride and toluene were also detected in FB 7 but were qualified non-detect due to TB contamination and were not applied to the associated sample results.

Bromodichloromethane and dibromochloromethane were detected at \leq the PQL and acetone and chloroform were detected at > the PQL in the DIWQC sample, sample -001 not associated with any field samples.

Methylene chloride and toluene were also detected in the DIWQC sample but were qualified non-detect due to TB contamination.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria except as noted above in the Summary section.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the FB, TBs and DIWQC sample. The LCS met QC acceptance criteria and no data will be qualified.

There was no matrix-specific replicate analysis for the FB, TBs and DIWQC sample. However, based on professional judgement, no data will be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

A TB was submitted on each ARCOC. EB 4 was submitted on ARCOC 623825 in another SDG and was associated with the sample on ARCOC 623827 submitted in this SDG. FB 7 was submitted on ARCOC 623827 and was associated with the sample on the same ARCOC. A DIWQC sample was submitted on ARCOC 623826 and was the DI source water for equipment decontamination.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/22/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: December 21, 2022

To: File

From: Linda Thal

Subject: LC/MS/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623826 and 623827

SDG: 598360 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: PFAS

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Four samples were prepared and analyzed with accepted procedures using method EPA 537.1 (PFAS, drinking water). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The recoveries for surrogates 13C2-PFHxA and 13C3-PFPrOPrA were <70% but ≥10% for samples 598360002, -010 and -011. The associated sample results were non-detect and will be **qualified UJ,S2**.
- 2. An MS or MSD were not performed due to limited sample volume. The associated results for sample -013 were non-detect and will be **qualified UJ,MS1**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were extracted and analyzed within the prescribed holding times and were properly preserved.

Instrument Performance Checks

All instrument mass calibration verifications were within QC acceptance criteria.

Ion Transitions

The ion transitions specified in QSM Table B-15 were used for analysis. It should be noted that an ion transition summary was not provided in the data package. The ion transitions provided in the raw data were reviewed for validation.

Calibration

All initial and continuing calibration acceptance criteria were met except as follows.

The CCV %D was >30% with positive bias for PFOA. The associated sample results were non-detect and will not be qualified.

Instrument Sensitivity Check (ISC)/Limit of Quantitation (LOQ) Check

All ISC/LOQ recoveries met QC acceptance criteria except as follows.

The ISC %D was >30% with positive bias for PFOA. The associated sample results were non-detect and will not be qualified.

Ion Ratios

All ion ratios were within QC acceptance limits. It should be noted that an ion ratio summary was not provided for the standards or QC samples in the data package. The ion ratios provided in the raw data were reviewed for validation.

Extracted Internal Standards

All extracted internal standards met QC acceptance criteria.

Surrogates

All surrogate recoveries were within QC acceptance limits except as noted above in the Summary section.

Blanks

No target analytes were detected in any of the blanks.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS/LCSD analyses met QC acceptance criteria. The analysis of the LCS/LCSD serves as a matrix-specific measure of accuracy and precision for the FB, FRB and DIWQC sample in this SDG.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS or MSD were not performed as noted above in the Summary section.

Reporting Limits (RLs)

All limits of quantitation (LOQs) and detection limits (DLs) were properly reported. The samples were not diluted.

Other QC

The client was notified that the samples were analyzed using method EPA 537.1 (PFAS, Drinking Water) instead of method EPA 537.1 Modified.

EB 4 was submitted on ARCOC 623825 in another SDG and was associated with the sample on ARCOC 623827 submitted in this SDG. An FB and an FRB were submitted on ARCOC 623827 and were associated with the sample on the same ARCOC. A DIWQC sample was submitted on ARCOC 623826 and was the DI source water for equipment decontamination.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/22/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: December 21, 2022

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623826 and 623827

SDG: 598360 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

ICP-MS Instrument Tune

The ICP-MS tune met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met QC acceptance criteria.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the DIWQC sample. The LCS met QC acceptance criteria and no data will be qualified.

Laboratory Replicate

The sample replicate met QC acceptance criteria.

There was no matrix-specific replicate analysis for the DIWQC sample. However, based on professional judgement, no data will be qualified.

Laboratory Control Sample (LCS)

The LCS met QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Al, Mg and Fe were < the ICS values.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

EB 4 was submitted on ARCOC 623825 in another SDG and was associated with the sample on ARCOC 623827 submitted in this SDG. A DIWQC sample was submitted on ARCOC 623826 and was the DI source water for equipment decontamination.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/22/2022

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date: December 21, 2022

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 623826 and 623827

SDG: 598360 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Two samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/SW846 9310 (gross alpha/beta), SM 7500 Rn B (Radon-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

All analyses:

1. The sample results that were < the associated 2-sigma TPU and/or < the associated MDA will be **qualified BD,FR3**.

Radon-222:

1. The result for sample 598360018 was \geq the MDA but <3X the MDA and will be **qualified J,FR7**.

Gross beta:

1. Gross beta was detected at > the associated 2-sigma TPU and/or > the associated MDA in EB 4, sample 598176005, submitted on ARCOC 623825 in another SDG, and associated with sample 598360016, submitted on ARCOC 623827 in this SDG. The associated sample result was a detect ≤5X the EB value and will be **qualified NJ+,B2**.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU except as noted above in the Summary section.

Tracer/Carrier Recovery

Tracer/carriers were not required.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria. The MS and/or MSD were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

The analysis of the LCS serves as a matrix-specific measure of accuracy for the DIWQC sample. The LCS met QC acceptance criteria and no data will be qualified.

Laboratory Replicate

All replicate error ratio acceptance criteria were met. The replicate analyses for all target analytes *except* Rn-22 were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

For all target analytes *except* Rn-22, there was no matrix-specific replicate analysis for the DIWQC sample. However, based on professional judgement, no sample results will be qualified.

The Rn-222 LCS/LCSD met precision criteria for the DIWQC sample.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits (DLs) were met.

Other QC

EB 4 was submitted on ARCOC 623825 in another SDG and was associated with the sample on ARCOC 623827 submitted in this SDG. A DIWQC sample was submitted on ARCOC 623826 and was the DI source water for equipment decontamination.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/22/2022

Sample Findings Summary

AR/COC: 623826, 623827 Page 1 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 537.1			
	118952-002/MWL-DIWQC	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118952-002/MWL-DIWQC	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118952-002/MWL-DIWQC	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
	118954-002/MWL-FB 8	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118954-002/MWL-FB 8	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118954-002/MWL-FB 8	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
	118955-001/MWL-FRB 4	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, S2
	118955-001/MWL-FRB 4	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, S2
	118955-001/MWL-FRB 4	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, S2
	118956-002/MWL-MW8	Perfluorohexanesulfonate (PFHxS) (355-46-4)	UJ, MS1
	118956-002/MWL-MW8	Perfluorooctanesulfonate (PFOS) (1763-23-1)	UJ, MS1
	118956-002/MWL-MW8	Perfluorooctanoic acid (PFOA) (335-67-1)	UJ, MS1
EPA 900.0/SW846 9310			
	118952-005/MWL-DIWQC	ALPHA (12587-46-1)	BD, FR3
	118952-005/MWL-DIWQC	BETA (12587-47-2)	BD, FR3
	118956-005/MWL-MW8	BETA (12587-47-2)	NJ+, B2
EPA 901.1			
	118952-004/MWL-DIWQC	Americium-241 (14596-10-2)	BD, FR3

AR/COC: 623826, 623827 Page 2 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	118952-004/MWL-DIWQC	Cesium-137 (10045-97-3)	BD, FR3
	118952-004/MWL-DIWQC	Cobalt-60 (10198-40-0)	BD, FR3
	118952-004/MWL-DIWQC	Potassium-40 (13966-00-2)	BD, FR3
	118956-004/MWL-MW8	Americium-241 (14596-10-2)	BD, FR3
	118956-004/MWL-MW8	Cesium-137 (10045-97-3)	BD, FR3
	118956-004/MWL-MW8	Cobalt-60 (10198-40-0)	BD, FR3
	118956-004/MWL-MW8	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	118952-006/MWL-DIWQC	Tritium (10028-17-8)	BD, FR3
	118956-006/MWL-MW8	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	118952-007/MWL-DIWQC	Radon-222 (14859-67-7)	BD, FR3
	118956-007/MWL-MW8	Radon-222 (14859-67-7)	J, FR7
SW846 8260D	4400F2 004/MAN DINOC	Carlage distribide (75.45.0)	111 12 62
	118952-001/MWL-DIWQC	Carbon disulfide (75-15-0)	UJ, 13,C3
	118952-001/MWL-DIWQC	Dichlorodifluoromethane (75-71-8)	UJ, 13,C3,MS5
	118952-001/MWL-DIWQC	Methylene chloride (75-09-2)	5.0UJ, B1,I5
	118952-001/MWL-DIWQC	Toluene (108-88-3)	6.2U, B1
	118953-001/MWL-TB 8	Carbon disulfide (75-15-0)	UJ, I3,C3
	118953-001/MWL-TB 8	Dichlorodifluoromethane (75-71-8)	UJ, 13,C3,MS5
	118953-001/MWL-TB 8	Methylene chloride (75-09-2)	J-, I5
	118954-001/MWL-FB 7	Carbon disulfide (75-15-0)	UJ, I3,C3
	118954-001/MWL-FB 7	Dichlorodifluoromethane (75-71-8)	UJ, 13,C3,MS5
	118954-001/MWL-FB 7	Methylene chloride (75-09-2)	5.0UJ, B1,I5
	118954-001/MWL-FB 7	Toluene (108-88-3)	6.56U, B1
	118956-001/MWL-MW8	Carbon disulfide (75-15-0)	UJ, I3,C3
	118956-001/MWL-MW8	Dichlorodifluoromethane (75-71-8)	UJ, 13,C3,MS5
	118956-001/MWL-MW8	Methylene chloride (75-09-2)	UJ, 15
	118956-001/MWL-MW8	Toluene (108-88-3)	7.93U, B1

AR/COC: 623826, 623827 Page 3 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	118957-001/MWL-TB 9	Carbon disulfide (75-15-0)	UJ, 13,C3
	118957-001/MWL-TB 9	Dichlorodifluoromethane (75-71-8)	UJ, 13,C3,MS5
	118957-001/MWL-TB 9	Methylene chloride (75-09-2)	J-, I5

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 623826 and 623827		Site/Projec	et: MWL LTMM	IP .			Validation I	Date: 12/21/202	2				
SDG #: 598360		Laboratory	y: GEL Laborato	ories, LLC			Validator: L	inda Thal					
Matrix: Aqueous		# of Samp	les: 19	CVR preser	t: Yes								
ARCOC(s) present: Yes		Sample Co	ontainer Integrity	y: OK									
Analysis Type:		1											
□ Organic	s Gencl	nem	⊠ Rad	Oth	er: PFAS								
			Requested	Analyses No	t Reported								
Client Sample ID	Lab Samp	ole ID	Analysi	Comments									
None													
			H-11 T:	- /D 4° -	O41'								
				e/Preservatio	Collection	Preparation	Analysis	Analysis	Analysis				
Client Sample ID	Lab Sample	e ID	Analysis	Pres.	Date	Date	Date	<2X HT	≥2X HT				
None													
Comments: Collected: 10/26/20	022												
The ARCOCs noted that the trip	blank vials were	received from	m the lab with h	eadspace.									
EB 4 was submitted on ARCOC				-	s on ARCOC 623	3827 submitted in	this SDG.						
Sample 118952-002, 118954-00 Method 537.1.)2, 118955-001 an	d 118956-00	2 were submitte	ed for PFAS an	alysis by Method	537.1 Mod., but	were incorrectl	y logged in and	analyzed by				
Validated by:	Mal	-											

Sandia Organic Worksheet (GC/MS VOC)

ARCOC	2 #(s): 623826 and 623827	SDG: 598360	Matrix: Aqueous
Laborato	ory Sample IDs: 598360001, -008, -009, -012, -019		
Method/	Batch #s: 8260D 2338298	Tuning (pass/fail): pass	TICs Required? (yes/no): no

Calibration								5X		I CC			ME	ED 4	DIW		TB 8 ¹
Analyte (outliers)		Int.	RF/ Slope	RSD /r ²	(ICV)/C0 %D	CV	CV MB		LC %l		MS %R	MSD %R	MS/ MSD RPD	EB 4 598176 -001	DIW QC -001	FB 7 -009	-008 TB 9 ² -019
Acetone		NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	5.18	5.92	6.5	✓
Bromodichloromethane		NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	0.65J	0.99J	0.94J	✓
Chloroform		NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	2.78	3.57	3.39	✓
Dibromochloromethane	;	NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	0.44J	0.78J	0.73J	✓
Methylene chloride	-	-0.82		✓	✓	✓		NA	✓		✓	✓	✓	✓	0.50J	0.63J	$0.77J^{1}$ $0.84J^{2}$
Toluene		NA	✓	✓	✓		✓	NA	✓		✓	✓	✓	✓	6.2	6.56	6.47 ¹ 6.67 ²
Carbon disulfide	n disulfide NA ✓ 19 -24			✓	NA	✓		✓	✓	✓	✓	✓	✓	√			
Dichlorodifluoromethan	ne	NA	✓	16	(+35), -2	25	✓	NA	✓		✓	✓	26	✓	✓	✓	✓
Chloromethane		NA	✓	✓	-24	-24		NA	✓		✓	✓	✓	✓	✓	✓	✓
				l .	S	urroga	ite Recov	ery Out	liers								
Sample ID 1,2-I	DCA-d4 %F	R To	oluene-d8	%R	BFB %R			Sample I	D	1,2-D	CA-d4	%R	Toluene	-d8 %R	BFB %I	₹	
None																	
							IS Outl	iers									
	FBZ			Chl-d5			,4-DCB-	d4									
Sample ID	Area	RT	Are	ea	RT A		rea	RT									
None		73.00															

Comments: HTs OK. MWL LTMMP TAL. MS/MSD on -012

ICAL VOA4.I 10/28/22 Linear: Methylene chloride

SNL LCMSMS Worksheet (PFAS)

ARCOC: 623	826 and 62382°	Method	: EPA 53°	7.1 Drink	ing water		Matrix:	Aqueous		Lab Sample IDs: 598360002, -010, -011, -013					
Batch #s: 233	8333(prep)/233	8334													
Mass Calibration:	🛛 Pass 🔲	Fail	Acquisiti	on Rate:	N Pass	☐ Fai	l Ic	on Transitions:	⊠ Pas	s 🗌 Fa	ail El	NVI-Carb	Cleanup:	Yes	☐ No
					Calibra	ation (QS	M)								
	Analyte (outliers) PFOA			Cal. Std Rec'y 70- 130%	RTs Set	ISC (LOQ) %D ±30%	ICV/ CCV %D ±30%	Inst Blanks (≤1/2 LOQ)	MB (≤1/2 LOQ)	5X MB	LCS/ LCSD %R	LCS/ LCSD RPD ≤30%	EB 4 598176 -002	FB 8 -010 FRB 4 -011	DIW QC -002
PFOA			✓	✓	✓	35	35	√	✓	NA	✓	✓	✓	✓	✓
	Ion F	latios (lab limits or	50-150%)				EIS/Isot	ope Dilut	ion (IDA	A) Outliers	(lab limits	or 50-150%	6 and within	0.4min)
Sample	Compound	R	Ratio					Sample ID	ID	A	%R				
None								None							
Signal (o Noise Outliers	(Stage	4) (>10 for	auant ions	s and >3 fa	or confions	;)		RT outlie	ers (Stage	e 4) (±0.4 m	ninutes of I	CAL midpoir	nt or CCV)	
Sample ID	Compound	S/1		4			/	Sample ID	Comp		RT				
NA								NA							
						Su	rrogates	(70-130%)							
Sample ID 13C2-PFHxA 13C2-PFDA d5-NEtFOSA						OSAA	13C3- PFPrOPr	A							
-002	23			✓		✓		26							
-010	28			✓		✓		30							
-011	1 14 🗸 🗸						16								

Comments: HTs OK. Tune 05/12/22 2338333(prep)/2338334 LCS/LCSD

ICAL LCMSMS9 11/02/22 All linear through zero, Isotope Dilution

No Ion Transition Summary; ion transitions on quant reports

No Ion Ratio Summary; ion ratios reported on quant reports, but not calculated

Cal Std %Rs from raw data

Sandia Inorganic Metals Worksheet

ARCOC #(s): 623826 and 623827										SDG #(s): 598360 Matrix: Aqueous								
Laborator	Sample	IDs: 5	983600	03, -014										•				
Method/B	atch #s: 3	3005A/	6020B:	2335037	7/233503	8												
ICPMS Ma	ss Cal: 🛭	Pass	s 🔲 1	Fail	□ NA	ICPM	S Resolu	tion: 🛛 P	ass	□ F	ail	□ NA						
Analyte			Cal	ibration	1		МВ	5X Blank	LCS	MS	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL	LL CCV	PS OF P	EB 4 598176	DIWQC -003
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/L	mg/L	%R	%R	RPD	%D	%R	ug/L (x50)	%R	%R	-003	
none																		
																	-	
			I	S Outli	ers 60-12	25%							IS	Outliers &	30-120%			
Sam	ple ID		%R	ecovery	7	%Recove	ry	%Recove	ry	CCV	CCB ID		%Recov	ery	%R	ecovery	%I	Recovery
n	one									r	none							
Comments: ICPMS: M Ca, Mg, Al	S/DUP/SE	on -0	14															

Sandia Radiochemistry Worksheet

ARCOC #(s): 623826 and 623827 SDG #: 598360 Matrix: Aqueous

Laboratory Sample IDs: 598360 – see below

Method/Batch #s: EPA 901.1 (gamma spec)/2336537 Samples -004, -015

Method/Batch #s: EPA 900.0/SW846 9310 (gross A/B)/2334732 Samples -005, -016

Method/Batch #s: EPA 906.0 Modified (Tritium)/2336102 Samples -006, -017

Method/Batch #s: SM 7500 Rn B (Rn-222)/2334564 Samples -007, -018

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDA	LCS %R	LCSD %R	LCS/ LCSD RPD	N	MS/ MSD %R	MS/ MSD RER	MS/ MSD RPD	Lab Rep. RER	EB 4 598176 -005	DIW QC -005
Gross beta	NA	NA	✓	NA	✓	NA	NA		✓	✓	NA	✓	1.4J	✓
				Tracer/Ca	rrier Rec	overy Outl	liers							
Sample ID	Tracer/Ca	rrier %F	₹ .	Sample ID)	Tracer/	Carrier	%R		Sample II)	Trace	r/Carrier	%R
NA														
			1											

Comments: HTs OK.

Note: No precision criteria apply to samples < the MDA including where one result is > the MDA and the other < MDA.

Gross A/B: DUP, MS/MSD on SNL sample 597711005. Parent sample 152mL; DUP 150ml; MS/MSD 54.2/53ml; 2.8X dilution.

GS: DUP on SNL sample 597711004.

Tritium: DUP/MS on SNL sample 597711006

Rn-222: LCS/LCSD, DUP on -018

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

				SMO Us	se				0	0	ARCO	page 1 of 1 [623826]
Project Ma	Project Name: MWL LTMMP Project Manager: Timmie Jackson P/T No: 195122.10.11.08 Date Samples Shipped: SNL Shipper #:						SMO	Authorizat Contact Ph y Palencia/		32	Waste Characterization: No RMA: No 4° Celsius: Yes)
TA: Bldg	: Ro	om:		hain: No tion Req'd: Yes	3		Turna EDD:	round Tim Yes	e: 30 days		SDG#: 598360	
Sample No	Frac- tion	Sample Location Detail	Depth (ft)	Date/Time Collected	Sample Matrix		ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample Id
118952 🗸	001	MWL-DIWQC	0	10/26/22 09:19	DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260D)	001
118952 🗸	002	MWL-DIWQC	0	10/26/22 09:18	DIW	Р	2x250 ml	None	G	FB	PFAS (EPA 537 Mod)	002
118952 🗸	003	MWL-DIWQC	0	10/26/22 09:20	DIW	Р	500 ml	HNO3	G	FB	METALS, LTMMP - Cd, Cr, Ni, U	003
118952 🗸	004	MWL-DIWQC	0	10/26/22 09:21	DIW	Р	1 L	HNO3	G	FB	GAMMA SPEC, SHORT LIST (EPA 901)	400
118952√	005	MWL-DIWQC	0	10/26/22 09:22	DIW	Р	1 L	HNO3	G	FB	GROSS-ALPHA/BETA (EPA 900)	005
118952 🗸	006	MWL-DIWQC	0	10/26/22 09:23	DIW	AG	250 ml	None	G	FB	TRITIUM (EPA 906)	006
118952 🗸	007	MWL-DIWQC	0	10/26/22 09:24	DIW	G	2x40 ml	None	G	FB	RADON (SM7500 Rn B)	700
118953 🗸	001	MWL-TB 8	0	10/26/22 09:19	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	800
Sample Team Members	Rob	ne Signat liam Gibson pert Lynch Lo hary Tenorio	aure Mulu Ut 5	id Bie	7				PFAS compaint with head s		PFHxS, PFOS, and PFOA) on 0	COA. Trip
Relinquish	_			Date 10/28/22T			Relinqui			Org		
Received b				Pate 10/20/20 T		10	Receive			Org		
Relinquish				ate 10/26/22T		-	Relinqui			Org		
Received b	У	Org.	L	Date 10/27/22 T	ime 72	25	Receive	1 ву		Org	g. Date Time	

AOP 95-16

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

			SMO Us	se .						ARCO	page 1 of 2 oC 623827
Project Name: MWL LTMMP Project Manager: Timmie Jackson P/T No: 195122.10.11.08 Date Samples Shipped: SNL Shipper #: 352 71 Lab Contact: Zachary Worsham/ 84 Lab Destination: GEL Contract No.:1983530						SMO	Authorizat Contact Ph y Palencia/		32	Waste Characterization: N RMA: No 4° Celsius: Yes	
TA: Bldg:	Room:		Chain: Yes ation Req'd: Ye s	S		Turna EDD:	round Time Yes	e: 30 days		SDG #: 598360	
Sample No F	Frac- tion Sample Location	Detail Depth (ft)	Date/Time Collected	Sample Matrix		ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample Id
118954	001 MWL-FB 7	0	10/26/22 09:37	DIW	G	3x40 ml	HCI	G	FB \	/OC-LTMMP (SW846-8260D)	209
118954 🗸 0	002 MWL-FB 8	0	10/26/22 09:35	DIW	Р	2x250 ml	None	G	FB F	PFAS (EPA 537 Mod)	010
118955	001 MWL-FRB 4	0	10/26/22 09:36	DIW	Р	2x250 ml	None	G	FRB F	PFAS (EPA 537 Mod)	011
118956 🗸 0	001 MWL-MW8	497	10/26/22 10:08	GW	G	3x40 ml	HCI	G	SA	/OC-LTMMP (SW846-8260D)	012
118956 🗸 0	002 MWL-MW8	497	10/26/22 10:07	GW	Р	2x250 ml	None	G	SA	PFAS (EPA 537 Mod)	013
118956 🗸 0	003 MWL-MW8	497	10/26/22 10:09	GW	Р	500 ml	HNO3	G	SA N	METALS, LTMMP - Cd, Cr, Ni, U	014
118956 V	004 MWL-MW8	497	10/26/22 10:11	GW	Р	1 L	HNO3	G	SA	GAMMA SPEC, SHORT LIST (EPA 901)	015
118956 🗸	005 MWL-MW8	497	10/26/22 10:13	GW	Р	1 L	HNO3	G	SA	GROSS-ALPHA/BETA (EPA 900)	016
118956 🗸	006 MWL-MW8	497	10/26/22 10:15	GW	AG	250 ml	None	G	SA T	TRITIUM (EPA 906)	017
118956 🗸 0	007 MWL-MW8	497	10/26/22 10:16	GW	G	2x40 ml	None	G	SA F	RADON (SM7500 Rn B)	018
Team Members	Name William Gibson Zachary Tenorio Robert Lynch	Signature Wall	iffile	2				PFAS comp with head s		PFHxS, PFOS, and PFOA) on	COA. Trip
Relinquishe	d by 3	Org. 88881	Date 10/26/2T	ime los		Relinqui			Org.		
Received by			Date 10/26/22 T		-	Receive		*	Org.		
	d by Call Spile (4)		Date Oper T		_	Relinqui			Org.		
Received by	15/15	Org. I	Date 10 27 22 T	ime 7.	55	Receive	a by		Org.	Date Time	

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

page 2 of 2 ARCOC **623827**

	Project Name: MWL LTMMP
--	-------------------------

598360

Sample No	Frac	ac- Sample Location Detail	Denth	Date/Time	Sample		antainer	Preserv-	Collection	Sample	Parameter & Method Requested	Lab
Sample No	tion	Sample Location Detail	Depth (ft)	Date/Time Collected	Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type		Sample Io
118957 🗸	001	MWL-TB 9	0	10/26/22 09:37	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	019
						-	-					
						_		-				
			-	+								
						-						
									1			
								-				
							-					
		77										

Receipt initials _____

Contract Verification Review Forms Mixed Waste Landfill Groundwater Monitoring October 2022

AR/COC Number	Sample Type
623819	Quality Control
623820	Environmental & Quality Control
623821	Quality Control
623822	Environmental & Quality Control
623823	Quality Control
623824	Environmental & Quality Control
623825	Quality Control
623826	Quality Control
623827	Environmental & Quality Control

Note: The forms in this section include AR/COC numbers for environmental and quality control samples; the AR/COC forms are provided in the Data Validation Reports in this Annex.

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623819

Analytical Lab GEL

SDG No. 597547

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item		olete?	If no, explain
No.	iteiii	Yes	No	п по, ехріані
1.1	All items on ARCOC complete	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item		olete?	If no avalain
No.			No	If no, explain
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623819 1 of 5

Line	Item	Complete?		If no, explain
No.	Y		No	ii iio, expiaiii
2.6	QC batch numbers provided	Χ		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique		Χ	13C3_PFPrOPrA and perfluoro-n-[1, 2-13C2] hexanoic acid failed recovery limits for MWL-EB 1
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623819 2 of 5

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	1,2-Dichloroethane, 2-butanone, acetone, bromodichloromethane, chloroform, dibromochloromethane, methylene chloride and alpha/beta detected in MWL-EB 1. Acetone and methylene chloride detected in MWL-TB 1.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Χ		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623819 3 of 5

Line No.	Item	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) lon abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	Х		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	Χ		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623819 4 of 5

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Based on the review, this data package is complete. f C Yes $\bf C$ No

Reviewed by: Wendy Palencia Date: 11-21-2022 09:19:00

Closed by: Wendy Palencia Date: 11-21-2022 09:19:00

ARCOC No. 623819 5 of 5

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623820 & 623821

Analytical Lab GEL

SDG No. 597711

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item –	Complete?		If no, explain
No.		Yes	No	ii iio, explaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623820 & 623821 1 of 5

Line	ltem	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, explaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique		Χ	13C3_PFPrOPrA and perfluoro-n-[1, 2-13C2] hexanoic acid failed recovery limits for MWL-FB2, MWL-FRB 1 and MWL-EB2
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623820 & 623821 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Х		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	Х		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	1,2-Dichloroethane, acetone, bromodichloromethane, chloroform, dibromochloromethane and methylene chloride detected in MWL-FB 1. Acetone, bromodichloromethane, chloroform, dibromochloromethane, methylene chloride, nickel and beta detected in MWL-EB 2. Acetone and methylene chloride detected in MWL-TB 2 and MWL-TB 3.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623820 & 623821 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	Х		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	Χ		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623820 & 623821 4 of 5

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Reviewed by: Wendy Palencia Date: 11-21-2022 15:29:00

Closed by: Wendy Palencia Date: 11-21-2022 15:29:00

ARCOC No. 623820 & 623821 5 of 5

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623822 & 623823

Analytical Lab GEL

SDG No. 598056

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item	Complete?		If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623822 & 623823

Line	ltem	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, explaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		X	Chloromethane and vinyl chloride failed recovery limits for LCS (1205232980)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met		Χ	Vinyl chloride failed recovery limits for PS (1205232982)
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623822 & 623823 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Х		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	Х		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	Acetone, bromodichloromethane, chloroform and dibromochloromethane detected in MWL-FB 3. 1,2-Dichloroethane, 2-butanone, acetone, bromodichloromethane, chloroform, dibromochloromethane, nickel and gross beta detected in MWL-EB 3.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623822 & 623823 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	Х		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	Χ		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623822 & 623823 4 of 5

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Reviewed by: Wendy Palencia Date: 11-29-2022 09:23:00

Closed by: Wendy Palencia Date: 11-29-2022 09:23:00

ARCOC No. 623822 & 623823 5 of 5

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623824

Analytical Lab GEL

SDG No. 598175

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	X		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line	Item		olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623824 1 of 5

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, expiairi
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		X	Chloromethane and vinyl chloride failed recovery limits for LCS (1205232980)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
	c) Matrix spike recovery data reported and met		Χ	Vinyl chloride failed recovery limits for PS (1205232982)
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623824 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Acetone, bromodichloromethane, chloroform and dibromochloromethane detected in MWL-FB 5. PFOS detected in MWL-FB 6.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	×		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Χ		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623824 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	Х		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	Х		
	g) Isotope dilution/EIS performance data provided (PFAS only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623824 4 of 5

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

- 0			
	Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Based on the review, this data package is complete. f C Yes $\bf C$ No

Reviewed by: Wendy Palencia Date: 11-29-2022 11:02:00

Closed by: Wendy Palencia Date: 11-29-2022 11:02:00

ARCOC No. 623824 5 of 5

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623825

Analytical Lab GEL

SDG No. 598176

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	lf no, explain
No.	Y	Yes	No	
1.1	All items on ARCOC complete	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item —	Com	olete?	If no, explain
No.		Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623825

Line	ltem —	Complete?		If no, explain
No.		Yes	No	η πο, ολριαπι
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		X	Chloromethane and vinyl chloride failed recovery limits for LCS (1205232980)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met		Χ	Vinyl chloride failed recovery limits for PS (1205232982)
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 623825 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	Acetone, bromodichloromethane, chloroform, dibromochloromethane and gross beta detected in MWL-EB 4. Acetone detected in MWL-TB 7.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	×		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623825 3 of 5

SMO-2022-CVR (4-2022)

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	Х		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	Χ		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623825 4 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

- 1			
	Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ⊙ No

Reviewed by: Wendy Palencia Date: 11-29-2022 11:48:00

Closed by: Wendy Palencia Date: 11-29-2022 11:48:00

ARCOC No. 623825 5 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Contract Verification Form (CVR)

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 623826 & 623827

Analytical Lab GEL

SDG No. 598360

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Χ		
1.7	Date samples received	Χ		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item	Complete?		If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 623826 & 623827

SMO-2022-CVR (4-2022)

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	Х		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		

ARCOC No. 623826 & 623827 2 of 5

SMO-2022-CVR (4-2022)

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples		Χ	RPD between MS/MSD outside acceptance range for dichlorodifluoromethane (QC1205236287/288)
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	Acetone, bromodichloromethane, chloroform, dibromochloromethane, methylene chloride and toluene detected in MWL-DIWQC and MWL-FB 7. Methylene chloride and toluene detected in MWL-TB 8 and MWL-TB 9.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Χ		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Χ		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 623826 & 623827 3 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) lon abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850, 8330, 537 and 1633) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	Х		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
	g) Isotope dilution/EIS performance data provided (PFAS only)	Χ		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		

ARCOC No. 623826 & 623827 4 of 5

SMO-2022-CVR (4-2022) SMO-05-03

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Based on the review, this data package is complete. f C Yes $\bf C$ No

Reviewed by: Wendy Palencia Date: 11-29-2022 13:21:00

Closed by: Wendy Palencia Date: 11-29-2022 13:21:00

ARCOC No. 623826 & 623827 5 of 5

ANNEX F

Mixed Waste Landfill Inspection Forms

April 2022-March 2023

Soil-Vapor Monitoring Network
Soil-Moisture Monitoring Network
Groundwater Monitoring Network
Cover Inspection
Biology Inspection

Note: Radon monitoring system inspection forms are provided in Annex A

Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form

1. Date of Inspection			
2. Time of Inspection			
3. Name of Inspector Zach Terrio			
Provide explanatory notes for each parameter not inspected maintenance or repair required.	or each action	required. Inc	clude any
I. SOIL-VAPOR MONITORING LOCATIONS [Semiannua	ally or Annually	/]	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Concrete pads, bollards, and protective casings in need of repair/maintenance.	yes	100	
B. Well cover caps in need of repair/maintenance.	yes	No	
C. Well casing or sampling ports in need of repair/maintenance.	yes	No	
D. Monitoring location and sampling ports properly labeled.	yas	w	
E. Locks in need of cleaning or replacement.	405	120	
II. SAMPLING EQUIPMENT [Semiannually or Annually]		7 - · · · · · · · · · · · · · · · · · ·	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	405	140	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	yes	No	
III PREVIOUS DEFICIENCIES		N	

AL/5-16/WP/SNL12:MWL LTMMP_App I_Final.doc

Uncorrected/undocumented previous deficiencies.

Inspection Parameter

Action

Required

(Yes or No)

AU

Note

Number

Parameter

Inspected

(Yes or No)

AU

Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form (Continued)

NOTES

Note Number	DESCRIPTION			
		assigned to		
		assigned to		
		assigned to		
Action (No	ote Number)	assigned to	Date action completed	- i f
Additiona	al Comments:			
2				
-				
Inspector's S	Signature	3/		
		ndfill Operating Record		
_	NL/NM Records			

A. Neutron probe in need of repair/maintenance.

III. PREVIOUS DEFICIENCIES

Inspection Parameter

B. Cable reel or cable in need of repair/maintenance.

Uncorrected/undocumented previous deficiencies.

Mixed Waste Landfill Soil-Moisture Monitoring Network Checklist/Form

1.	Date of Inspection April 14 & 21, 2022 Time of Inspection 10:36, 09:40 Name of Inspector Robert Field			
2.	Time of Inspection 10:36, 09:40			
3.	Name of Inspector Robert Fisch			
ma	ovide explanatory notes for each parameter not inspected of intenance or repair required.			clude any
1.	SOIL—MOSITURE MONITORING LOCATIONS [Semian	nnually or Ann		
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
F.	Concrete pads, bollards, and protective casings in need of repair/maintenance.	yes	No	
G.	Access tube cover caps in need of repair/maintenance.	yes	No	
H.	Access tube casing in need of repair/maintenance.	yes	Ng	
I.	Monitoring location properly labeled.	yes	No	
J.	Locks in need of cleaning or replacement.	yes	No	
п.	SAMPLING EQUIPMENT [Semiannually or Annually]			
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
			A /	

Parameter

Inspected

(Yes or No)

Action

Required

(Yes or No)

Note

Number

Mixed Waste Landfill Soil-Moisture Monitoring Network Checklist/Form (Continued)

NOTES

Note Number			Description	
×				
Action (Not	e Number)	assigned to	Date action completed	
Action (Note	e Number)	assigned to	Date action completed	
			Date action completed	
		assigned to		
Additional	Comments:			
	_			
·				
		18/25	`/	
Inspector's Si	gnature //	las years		

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form

1. Date of Inspection	_		
2. Time of Inspection	→		
3. Name of Inspector Zach Terorio	_,		
Provide explanatory notes for each parameter not in maintenance or repair required.	nspected or each action	required. In	clude any
I. GROUNDWATER MONITORING LOCATIONS	S [Semiannually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Concrete pads, bollards, and protective casings in need or repair/maintenance.	f yes	No	
B. Well cover caps in need of repair/maintenance.	yes	No	1
C. Well casing in need of repair/maintenance.	yes	No	
D. Monitoring well properly labeled.	yes	o~	
E. Locks in need of cleaning or replacement.	yes	No	
II. GROUNDWATER SAMPLING EQUIPMENT [Semiannually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	yes	No	
B. Sampling assembly (e.g., tubing, gauges, and valves) in no repair/maintenance.	eed of VeS	N.	
III. PREVIOUS DEFICIENCIES	1	1, -	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.			

NA

NA

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form (Continued)

NOTES

Note Number	Description		
1	Baro Ball	installed	or all wells
	-		
Action (No	ote Number)	_assigned to _	Date action completed
Action (No	ote Number)	assigned to	Date action completed
			Date action completed
			Date action completed
Additiona	al Comments:		
-			
-			
y ====================================			
-			
	Signature 3	-	
Original to:	Mixed Waste Land	fill Operating R	Record

Copy to: SNL/NM Records Center

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form

1. Date of Inspection			
2. Time of Inspection			
3. Name of Inspector Zach Tenorio			
Provide explanatory notes for each parameter not inspected or maintenance or repair required.	each action	required. In	clude any
I. GROUNDWATER MONITORING LOCATIONS [Semiann	ually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Concrete pads, bollards, and protective casings in need of repair/maintenance.	Yes	100	
B. Well cover caps in need of repair/maintenance.	yes	100	1
C. Well casing in need of repair/maintenance.	Yes	No	
D. Monitoring well properly labeled.	425	Nb	
E. Locks in need of cleaning or replacement.	yes	M	
II. GROUNDWATER SAMPLING EQUIPMENT [Semiannua	lly]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	Yes	No	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	Yes	NO	
III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected	Action Required	Note Number

Uncorrected/undocumented previous deficiencies.

(Yes or No)

AU

(Yes or No)

AU

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form (Continued)

NOTES

Note Number	Description				
1	Baro-Ball	installed	at all	wells	83
Action (No	te Number)	assigned to		Date action completed	
Action (No	te Number)	assigned to		Date action completed	
Action (No	te Number)	assigned to		Date action completed	
Action (No	te Number)	_assigned to		Date action completed	
Additiona	d Comments:				
-					
-					
,					
Y					
Inspector's S	ignature	7			

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Mixed Waste Landfill Cover Inspection Checklist/Form

1.	Date of Inspection June 1, 2022	
	Time of Inspection <u>0945-/025</u>	
3.	Name of Inspector Robert Finck, Manielle Michel	

Provide explanatory notes for each parameter not inspected or each action required. Include any maintenance or repair required in notes section at the end of this form.

Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
В.	Erosion of the soil cover in excess of 6 inches deep.	425	No	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
F.	Potentially deep-rooted plants present. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
П.	SURFACE-WATER (STORM-WATER) DIVERSION STR	RUCTURES [Quarterly]	
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
В.	Channel sediment accumulation in excess of 6 inches deep.	yes	13	
C.	Debris that blocks more than 1/3 of the channel width.	485	UPS	1

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	yes	2
B. Fence wires and posts in need of repair/maintenance.	yes	No	
C. Gates in need of oiling/repair/maintenance.	yes	No	
D. Locks in need of cleaning or replacement.	yes	No	
E. Warning signs in need of repair or replacement.	yes	yes	3
F. Survey monuments in vicinity of MWL visible.	yes	No	
IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

NOTES

1. Wind-blown plant deb	n's in drainage culverts.
2. Wind-blown plant de	bris on security fence.
3. One warning sign is	facted and needs to be
replaced.	
	10

Action (Note Number) 1. assigned to Robert Zick Date action completed June 1, 20 22
Action (Note Number) 2. assigned to Robert Ziock Date action completed June 1, 20 27
Action (Note Number) 3. assigned to Robert Bock Date action completed June 2, 2022
Action (Note Number) assigned to Date action completed
Action (Note Number) assigned to Date action completed
Additional Comments:
1. Wind-blown plant debris removed at time of
1. Wind-blown plant debris removed at time of the inspection.
2. Wind-blown plant debris removed at time of the inspection.
3. Warning sign replaced on June 2, 2012,
Inspector's Signature Helia Visik

Copy to: SNL/NM Records Center

Original to: Mixed Waste Landfill Operating Record

Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia. LLC.

Albuquerque, New Mexico 87185-0104

date: June 22, 2022

to: Mike Mitchell (08854) Robert Ziock (08854)

from: Jennifer Payne (00643) jipayne@sandia.gov

subject: June 2022 MWL Quarterly Inspection Biology Follow-Up

Biological Requirement:

Biological Surveys are required prior to driving across any area of native vegetation, spraying herbicides, or initiating other work activities that disturb wildlife.

Please submit request three weeks to prior work at: https://ecoticket-ng.sandia.gov/request.php. Should personnel find a bird's nest during any of the work associated with these sites, they will need to halt work, and contact the Ecology Program at https://ecoticket-ng.sandia.gov/request.php If other wildlife is encountered that may cause a health and safety issue, contact the Ecology Program.

All proposed project activities would be conducted according to applicable requirements identified in ESH001, ES&H Policy. Detailed instruction can be found in the ES&H Manual, MN471022: "Migratory Birds, Protected Species, and Other Biota".

ET Cover Observations and Recommendations

The biology quarterly evaluation of the MWL ET Cover was conducted on June 13, 2022.

Overall, the MWL vegetation appeared to be in good health at the time of the inspection. The native bunchgrasses on the cover continue to mimic the surrounding native vegetation spacing, density, and level of photosynthesis. Most of the bunchgrasses on the cover and in the KAFB and TA3 area have not yet begun to grow new warm season green grass blades. KAFB has experienced prolonged drought and was in Extreme Drought according to the U.S. Drought Monitor at the time of the inspection.

Native grasses are excellent at optimizing their energy resources and only expend energy producing new foliage when adequate soil moisture is available during the warm season. Native bunchgrasses can maintain a low metabolic state for an extended amount of time, drawing a very low amount of energy from their extensive root systems to maintain their below ground structures. This adaptation of native plant species allows them to survive under prolonged

drought conditions. Although the above ground portions of native bunchgrasses may not display plant life activity, the mature soil-stabilizing root systems are very healthy and poised to send out new growth as soon as adequate soil moisture becomes available. The new seasonal growth that develops in response to warm season rainfall enables photosynthesis, which replenishes energy stores in the root systems.

- No weeds were observed.

cc: Customer Funded Records Center Ecology Library Matt Baumann

Mixed Waste Landfill Cover Inspection Checklist/Form 1. Date of Inspection August 31, 2022 2. Time of Inspection 11:50 - 12:15

3.	Name of Inspector Robert Zio W, Dunielle M	1, the		
	ovide explanatory notes for each parameter not inspected or intenance or repair required in notes section at the end of this for		required. In	clude any
I.	COVER SYSTEM [Quarterly]		ue de la Grand	- F
Ins	Spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
В.	Erosion of the soil cover in excess of 6 inches deep.	405	No	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	405	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
F.	Potentially deep-rooted plants present. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
II.	SURFACE-WATER (STORM-WATER) DIVERSION STR	RUCTURES [Quarterly]	
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α.	Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
В.	Channel sediment accumulation in excess of 6 inches deep.	yes	No	
C.	Debris that blocks more than 1/3 of the channel width.	706	No	

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	No	
B. Fence wires and posts in need of repair/maintenance.	yes	No	
C. Gates in need of oiling/repair/maintenance.	yes	No	
D. Locks in need of cleaning or replacement.	yes	No	
E. Warning signs in need of repair or replacement.	yes	16	
F. Survey monuments in vicinity of MWL visible.	yes	No	
IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	No	No	

NOTES

Note Number	Description

Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Additional Comments:		
	1/2/1	

Inspector's Signature

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Mixed Waste Landfill Cover Inspection Checklist/Form

1.	Date of Inspection December 1, 2022
	Time of Inspection //:02 - //: 4-2
3.	Name of Inspector Robert Zock, Danielle Michel

Provide explanatory notes for each parameter not inspected or each action required. Include any maintenance or repair required in notes section at the end of this form.

I.	COVER SYSTEM [Quarterly]			
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	1/0	
B.	Erosion of the soil cover in excess of 6 inches deep.	yes	No	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
F.	Potentially deep-rooted plants present. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
II.	SURFACE-WATER (STORM-WATER) DIVERSION STR	UCTURES [Quarterly]	
Insp	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α. (Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
В. (Channel sediment accumulation in excess of 6 inches deep.	yes	16	
C. I	Debris that blocks more than 1/3 of the channel width.	ues	No	

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	yes	1
B. Fence wires and posts in need of repair/maintenance.	yes	No	
C. Gates in need of oiling/repair/maintenance.	res	No	
D. Locks in need of cleaning or replacement.	yes	No	
E. Warning signs in need of repair or replacement.	yes	No	
F. Survey monuments in vicinity of MWL visible.	yes	No	
IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

NOTES

Note Number	Description		
1.	Wind-blown plant debris on Security Fence.		

Action (Note Number) assigned to Robert Fock Date action completed 12/15/20 z	2
Action (Note Number) assigned toDate action completed	
Action (Note Number) assigned to Date action completed	-
Action (Note Number) assigned toDate action completed	
Action (Note Number) assigned toDate action completed	
Additional Comments:	
1. Wisd-blown slant depris was removed	
1. Wind-blown slant depris was removed from security fence on December 15, 202	_Z
	-
	_
Melnist	

Inspector's Signature

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia. LLC.

Albuquerque, New Mexico 87185-0104

date: December 9, 2022

to: Mike Mitchell (08854) Robert Ziock (08854)

from: Jennifer Payne (00643) jipayne@sandia.gov

subject: December 2022 MWL Quarterly Biology Inspection

Biological Requirement:

Biological Surveys are required prior to driving across any area of native vegetation, spraying herbicides or initiating other work activities that disturb wildlife.

Please submit request three weeks to prior work at: https://info.sandia.gov/esh/ecoticket/request.php

Should personnel find a bird's nest during any of the work associated with these sites, they will need to halt work, and contact the Ecology Program at https://info.sandia.gov/esh/ecoticket/request.php If other wildlife is encountered that may cause a health and safety issue, contact the Ecology Program.

All proposed project activities would be conducted according to applicable requirements identified in ESH001, ES&H Policy. Detailed instruction can be found in the ES&H Manual, MN471022: "Migratory Birds, Protected Species, and Other Biota".

ET Cover Observations and Recommendations

The biology quarterly evaluation of the MWL ET Cover was conducted on December 9, 2022.

- Overall, the native vegetation community on the MWL cover appears to be in excellent condition and the ET cover looks great overall. Nothing unexpected was observed.
- The native bunchgrasses appear to be healthy and in the same condition as observed during the August inspection except the grass leaves have dried out, they are no longer green and photosynthesizing. After full seed development in the summer, the leaves of warm season perennial bunchgrasses begin to dry out in the summer heat in preparation for winter dormancy. During winter dormancy the bunchgrasses remain alive using resources stored in their roots and the base of their stems.
- The fence surrounding the cover was clear of tumbleweeds, as was the cover.

December 2022 MWL Quarterly Biology Inspection

- 2 -

December 9, 2022

cc: Customer Funded Records Center

Ecology Library

Mixed Waste Landfill Cover Inspection Checklist/Form

1.	Date of Inspection March 6, 2023
2.	Time of Inspection <u>093 7 - 0959</u>
3.	Name of Inspector Robert Fink Danielle Michel, Caitlin La Chance

Provide explanatory notes for each parameter not inspected or each action required. Include any maintenance or repair required in notes section at the end of this form.

Inspection Parameter		Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
В.	Erosion of the soil cover in excess of 6 inches deep.	yes	No	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
F.	Potentially deep-rooted plants present. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
II.	SURFACE-WATER (STORM-WATER) DIVERSION STR	UCTURES [Quarterly]	
Insį	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
В.	Channel sediment accumulation in excess of 6 inches deep.	yes	No	
C. :	Debris that blocks more than 1/3 of the channel width.	1,01	nick ed ar	,

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	yes	2
B. Fence wires and posts in need of repair/maintenance.	405	No	
C. Gates in need of oiling/repair/maintenance.	ves	No	
D. Locks in need of cleaning or replacement.	Les	No	
E. Warning signs in need of repair or replacement.	15es	No	
F. Survey monuments in vicinity of MWL visible.	yes	No	
IV. PREVIOUS DEFICIENCIES	vie 0	n may was	ing 1
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	1/6	No	

NOTES

Note Number	Description
/.	Wind-blown plant debris in culvert drainage areas.
2.	Wind-blown plant debris on security fence

Mixed Waste Landfill Cover Inspection Checklist/Form (continued)

Action (Note Number) / assigned to Abbert Zing Action (Note Number) 2, assigned to Abbert Zion	Date action completed $4/7/2023$
Action (Note Number) 2, assigned to Robert Zion	Date action completed $\frac{9}{7}/\frac{7}{2^{\circ}}$ 23
Action (Note Number) assigned to	Date action completed
Action (Note Number) assigned to	Date action completed
Action (Note Number) assigned to	Date action completed
Additional Comments:	's removed from
Additional Comments: 1,2 - Windblown plant debri drainage features and by BGI/yellowston	e.

Inspector's Signature

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia. LLC.

Albuquerque, New Mexico 87185-0104

date: March 22, 2023

to: Mike Mitchell (08888) Robert Ziock (08888)

from: Jennifer Payne (00643) jjpayne@sandia.gov

subject: MWL March 2023 Quarterly Inspections - Biology Follow-Up

Biological Requirement:

Biological Surveys are required prior to driving across any area of native vegetation, spraying herbicides or initiating other work activities that disturb wildlife.

Please submit request three weeks to prior work at: https://info.sandia.gov/esh/ecoticket/request.php

Should personnel find a bird's nest during any of the work associated with these sites, they will need to halt work, and contact the Ecology Program at https://info.sandia.gov/esh/ecoticket/request.php If other wildlife is encountered that may cause a health and safety issue, contact the Ecology Program.

All proposed project activities would be conducted according to applicable requirements identified in ESH001, ES&H Policy. Detailed instruction can be found in the ES&H Manual, MN471022: "Migratory Birds, Protected Species, and Other Biota".

The biology quarterly evaluation of the Mixed Waste Landfill was conducted on March 15, 2023.

Observations

- Currently the MWL looks excellent. The mature native grass community appears to be very healthy while in winter dormancy. Some of the native bunchgrasses are displaying a very small amount of green at their bases, this is the earliest sign that warm season growth is prepared to begin.
- Three different species of annual plants have established basal rosettes; these annual plants were observed to be scattered across the cover. Positive identification of these three species was not possible from the basal rosettes.
- No biological concerns observed at this time.

Recommendations

- No recommendations at the time of this inspection.

If you should have any questions, don't hesitate to contact me at on my cell 218-1815, or email at jjpayne@sandia.gov.

cc: Customer Funded Records Center Ecology Library

Matt Baumann

Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover

Approximate vegetative coverage (actively photosynthesizing*):43%
Approximate percent native vegetation of the total vegetative cover:99%
Listed below are the main plant species identified as growing on the MWL cover and the percentage of the cover populated by each species.

Scientific Name	Common Name (optional)	% of Cover ¹
Pleuraphis jamesii	Galleta grass	35 %
Bouteloua gracilis	Blue grama	1 %
Sporobolus flexuosus	Mesa dropseed	1 %
Bouteloua eriopoda	Black grama	5 %
Sporobolus cryptandrus	Sand dropseed	1 %
Salsola tragus	Russian thistle	< 0.5 %
Xanthisma spinulosum	Spiny goldenweed	< 0.5 %
Sporobolus contractus	Spike dropseed	< 0.5 %
Kallstroemia californica	California caltrop	< 0.5 %
Sphaeralcea angustifolia	Narrowleaf globemallow	< 0.5 %
Tidestromia lanuginosa	Wooly tidestromia	< 0.5 %
Solanum elaeagnifolium	Silverleaf nightshade	< 0.5 %
Opuntia phaeacantha	Brown-spined prickly pear	< 0.5 %
Euphorbia exstipulata	Square-seed spurge	< 0.5 %

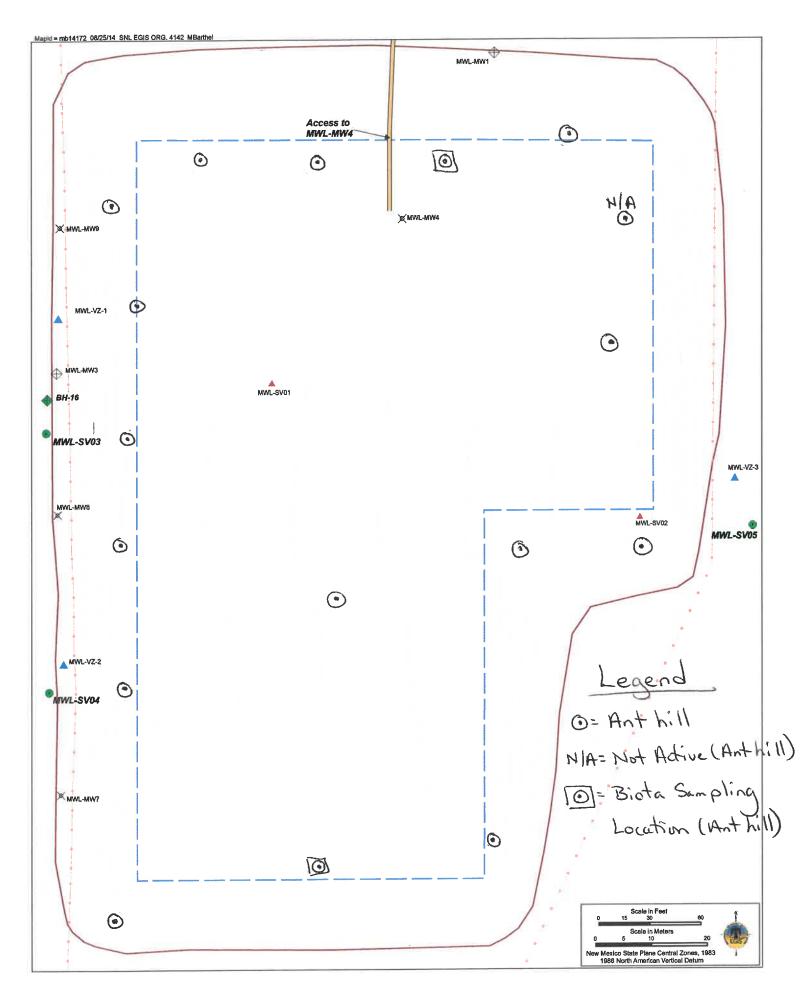
Notes:

^{*} Living plants per Section 4.1 of the MWL LTMMP.

¹ Percentage of total MWL Cover populated by living plants of these species. All species observed to be present at less than 0.5% are not calculated into the total vegetative coverage.

Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover (continued)

Are there any contiguous areas of no vegetation greater than 200 square feet? (Approximately 14 x 14 ft)? No
If "Yes," mark such areas on a map and attach to this checklist. Address actions and schedule to improve such area(s) in the notes section below.
Are there any very deeply rooted (roots greater than 8 feet deep at maturity) plant species present on the cover? No
If "Yes," describe the plant(s) and their general distribution. Address actions and schedule to remove plant(s) from the cover in the notes section below.
Notes:
Inspection for Animal and Insect Intrusion into MWL Cover
Are any burrows present on the cover? <u>No</u>
Do any of the burrows appear to be active? <u>N/A</u>
Any ant hills/nests? Yes_
Describe below observations regarding animal and insect features. If burrows with an entrance diameter of 4 inches or greater are present or appear to be that of a species that is able to burrow 6 feet deep or greater, indicate the location(s) on a map and attach to this checklist. Address actions and schedule to repair cover damage that exceeds prescribed limits. As appropriate, identify animal and insect features and have them surveyed and marked for biota sampling.
Notes: Seventeen active and one inactive ant hills were observed on the cover, occurring
primarily on the side-slopes. Two ant hill locations were selected, flagged for biota sampling,
and surveyed using a GPS unit. The sampling locations are shown in the biological inspection
map.


Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover (continued)

General Observations:
- Overall, the MWL ET Cover vegetation is in excellent condition. The species complexity,
spacing, and appearance of the mature native perennial grasses continues to be similar to that of
the surrounding area vegetation. Many of the grasses had set seed for the year at the time of
inspection.
- An aspect of mirroring the varied age adjacent native plant communities is some of the older,
large galleta bunch grasses, or portions of them, were again observed to have died occasionally
across the MWL cover.
- A few biological soil crusts were again observed on the MWL cover. Biological soil crusts are
most often composed of fungi, lichens, cyanobacteria. bryophytes, and algae in varying
proportions. These communities of living organisms grow on the soil surface in arid and semi-
arid environments and perform important ecological roles including soil stabilization, nitrogen
fixation, trapping soil moisture, and providing sheltered areas for plants to germinate and grow.
- Extremely few weeds were observed on MWL Cover. Although the presence of silverleaf
nightshade remains low on the MWL, it is the only weed that was observed to be more abundant
than in previous years. Over the past 5 years this weed has gradually been becoming more
common in central New Mexico. This species is expected to continue to expand moderately
across the MWL, its numbers kept in check by the existing establishment of native grasses across
the top and sides of the cover. Herbicide is not effective against this weed, only continual hand
removal.
- Butterflies, grasshoppers, dragonflies, and lizards were observed on the MWL cover at the time
of the inspection.
Biological Aspects Map [note: sketch map to locate specific features described above will be attached as appropriate]
Inspector's Signature: Date: August 22, 2022
Time: 1:15PM – 2:55PM

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Notes (continued):

MWL Biological Inspection Map - August 22, 2022

ANNEX G

Mixed Waste Landfill Biology Report

April 2022-March 2023

1.0 Introduction

As required by the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (LTMMP) (SNL/NM March 2012, Section 4.2.1), this summary report for the annual reporting period (April 1, 2022-March 31, 2023) presents the results of vegetation inspection and monitoring activities performed by the staff biologist on the MWL Evapotranspirative (ET) Cover. The purpose of this report is to provide relevant background information, describe local climate trends over the 2022 growing season and reporting period, expand on the inspection results if appropriate, and provide recommendations for future ET Cover vegetation monitoring and maintenance. The annual Biology Inspection of the ET Cover was conducted on August 22, 2022. The inspection observations are documented on the *Biology Inspection Checklist/Form for the MWL Cover* and included in Annex F of this MWL Annual Long-Term Monitoring and Maintenance (LTMM) Report. The staff biologist also provided support during the other quarterly ET Cover Inspections (June and December 2022, and March 2023) as a best practice.

A self-sustaining plant community is an important component of overall ET Cover performance. Vegetation minimizes erosion by stabilizing the ET Cover surface and moves soil moisture from the ET Cover Topsoil and Native Soil Layers to the atmosphere through transpiration. Native grass species create the optimal, self-sustaining plant community because the species are specifically adapted to the local climate and soil conditions. The MWL is located at an elevation of 5,380 feet in a semi-arid climate that experiences high temperatures throughout the summer, cold temperatures in the winter, drying winds in the spring, and infrequent precipitation. Perennial native grass species are ideal due to their extensive near-surface root systems that are poised to uptake moisture throughout the year and prevent precipitation from percolating more deeply into the subsurface soil. The deeper, permanent roots of perennial native grasses enable them to withstand drought conditions, provide soil stabilization, and remove moisture from deeper within the Native Soil Layer relative to non-native or annual species.

2.0 Background Information

To meet the revegetation criteria as required in the MWL LTMMP, Section 4.1, the MWL was seeded in August 2009 after cover construction was completed. The native seed mix was drill-seeded and hand-broadcast uniformly across the cover. To facilitate seed germination and seedling growth, supplemental watering was performed as approved by NMED (Bearzi December 2008). Specific conditions and limits for supplemental watering are addressed in Section 4.2.3 of the LTMMP (SNL/NM March 2012). All cover maintenance and supplemental watering activities from 2009 through 2011 are documented in Appendix B of the LTMMP. ET Cover maintenance and supplemental watering activities performed since 2011 are documented in MWL Annual LTMM Reports.

ET Cover Biology Inspections were initiated in May 2013 prior to LTMMP approval, which occurred on January 8, 2014. The ET Cover met the LTMMP criteria for successful revegetation as documented in all quarterly inspections. In accordance with the LTMMP, the frequency of Biology Inspections transitioned to an annual frequency after the August 2014 growing season inspection, which provided confirmation that all successful revegetation criteria had been met (SNL/NM June 2015).

Percentage of vegetative cover of each plant species across the site (i.e., foliar coverage of living plants of each identified species) is determined by dividing the cover into smaller sections of approximately 35 meters by 35 meters. Each section is visually assessed for the percent cover of each species; the sections are then averaged overall for the entire cover. Species that are present at a density of less than one-half of one-percent (%) are recorded as "< 0.5%." Due to the presence of these species in very low numbers, they are not calculated into the total vegetative coverage. Species that are present between one-half and one percent are recorded as "1%" and are calculated into the total vegetative coverage.

3.0 Local Climate Trends for 2022 Growing Season

Climate trends for north-central New Mexico are presented in this section as they have a significant impact on the cover vegetation. Since the seeding occurred in August 2009, the local climate has generally been characterized by below average precipitation and warmer than average temperatures across the seasons.

Precipitation, relative humidity, wind speed, and temperature all impact soil moisture and plant growth. These meteorological factors are presented in the local meteorological discussion below. They are integrated into the U. S. Drought Monitor status (briefly summarized in the two following paragraphs), which is a very useful tool that provides a regularly updated snapshot summary of soil moisture and plant stress. Table 1 and 2 at the end of this report provide local SNL Technical Area III meteorological data for the period preceding and including the CY 2022 growing season. A 25-year data set (1995-2019) provides the reference mean monthly meteorological data and is included in Table 1 and 2 for comparison; these data are hereafter referred to as the "average." Meteorological data for the January through March 2023 period will be presented and discussed in the June 2024 MWL Annual LTMM Report.

The U.S. Drought Monitor provides a simple but robust insight into the meteorological conditions affecting the local vegetation. It is a weekly updated map that shows the parts of the U.S. in drought and breaks them into categories depending on severity. This weekly map is produced jointly by the National Oceanic and Atmospheric Administration (NOAA), the U.S. Department of Agriculture (USDA), and the National Drought Mitigation Center (NDMC) at the University of Nebraska-Lincoln. The map authors synthesize varied drought indicator data sources to create a snapshot of current drought conditions. Data sources include climatological inputs, soil moisture indicators, hydrologic data, and contributions from a nationwide network of more than 450 scientific observers.

At the time of the 2022 Biology Inspection, the MWL area drought status was "D2 Severe Drought." This status indicates crops are impacted and the native vegetation is likely under significant stress.

Soil moisture content during the dormant seasons can significantly stress or assist the root systems, which compose the bulk of each native plant. An extended period of very low soil moisture can severely injure root systems during the dormant season, whereas ample soil moisture during the dormant season can promote vigorous above ground growth during the growing season. In arid and semiarid climates such as New Mexico, plant functions such

as growth and photosynthesis are limited by low soil moisture conditions (Xu January 2011). For this reason, monitoring the ET Cover vegetation and local meteorological conditions throughout the year is important. The following brief discussion of meteorological conditions includes the last three months of CY 2021.

Precipitation and Relative Humidity

Extremely dry meteorological conditions dominated the nine months (October 2021 through June 2022) preceding the 2022 monsoon season (July through September 2022). October 2021 through May 2022 was an eight-month period of significantly below average precipitation and relative humidity, with only 1.38 inches of precipitation, 67% below the eight-month average of 4.17 inches, and no precipitation recorded in April and May 2022. March and June 2022 were the only non-monsoonal months with above average precipitation, with June recording 2.13 inches, 1.61 inches above the average of 0.52 inches. The October 2021 through June 2022 precipitation total was 1.18 inches below average. Relative humidity was also generally lower than average during this nine-month timeframe.

The North American Monsoon season is July through September and is an important feature of New Mexico's summer climate and growing season. Monsoonal moisture typically provides approximately half of the annual precipitation in the Kirtland Air Force Base area. Total precipitation during the 2022 monsoon season was 3.79 inches, 0.38 inches below the average of 4.17 inches. However, when the month of June is added to the range, the total precipitation for June through September 2022 was 5.92 inches, 1.23 inches above the average of 4.69 inches for the four-month period. Relative humidity was above average in August and September, but slightly below average in July.

During the last three months of 2022, October and December experienced more precipitation than average, with drier than average conditions in November. Total precipitation in 2022 was 9.84 inches, 10% above the annual average of 8.86 inches.

Temperature and Wind Speeds

In CY 2022 the monthly mean temperature was 58.1°F, this was 0.7°F above the 25-year annual mean of 57.4°F. The monthly mean temperature for six months in 2022 exceeded their 25-year monthly means, with a maximum variation of +4.6°F in May.

The 2022 monthly and annual wind speed means were very close or the same as the 25-year monthly and annual means. All monthly wind means were within 1.0 miles per hour of their respective 25-year means, except for May (1.9 miles per hour difference). The 2022 annual mean and 25-year means were the same (8.3 miles per hour).

4.0 August 22, 2022 Inspection Results

The August 22, 2022 MWL ET Cover Biology Inspection occurred during the warm New Mexico growing season after the monsoon rains had begun. Inspection during the growing season allows for the most accurate assessment of living plant coverage because the greatest amount of photosynthesis occurs during this time of the year.

The August 2022 MWL ET Cover Biology Inspection results confirmed the ET Cover continues to meet the successful revegetation criteria defined in the MWL LTMMP, Section 4.1 (SNL/NM March 2012) as shown in the photographs of the ET Cover taken during the August 22, 2022 inspection presented at the end of this report. The approximate foliar coverage of living plants was 43%, with 99% of the foliar coverage comprised of native perennial species. There were no contiguous bare areas that exceeded 200 square feet. Nearly all the MWL ET Cover vegetation was comprised of grasses, with galleta grass continuing as the dominant grass species (35% foliar coverage) and black grama as the next most prominent native grass (5% foliar coverage). The vegetative community was observed to be very healthy overall, with mature native species spaced evenly across the cover.

The overall species complexity, spacing, and appearance of the mature native grass community was very similar to the surrounding vegetation in Technical Area III. At the time of inspection many of the grasses had set seed for the year. Similar to last year, some of the older, large galleta bunch grasses, or parts of them, had died and black grama (5% foliar coverage) continues to propagate across the cover. This is significant because black grama grass is an important climax species of New Mexico grasslands, a final successional species in grassland development. Overall there was a very low presence of weed species, less than last year. Silverleaf night shade continues to be present but is being controlled through routine weed removal events.

No small animal burrows were observed on the MWL ET Cover during the August 2022 Biology Inspection. Seventeen active ant hills were observed across the ET Cover on both the side-slopes and cover surface, two of which were selected for biota surface soil sampling based on current ant activity and to obtain samples from different locations than last year's sampling locations. No potentially deep-rooted plants were observed on the ET Cover in 2022. Biota sampling activities and results are presented in Chapter 8 of this MWL Annual LTMM Report.

Butterflies, grasshoppers, dragonflies, and lizards were observed on the MWL ET Cover at the time of the inspection. This observation is consistent with previous biology inspection observations and indicates that wildlife recognizes the MWL Cover as native habitat.

5.0 Cover Maintenance

The successional development of the native grasses on the ET Cover has benefited greatly from best practice maintenance activities designed to minimize invasive weed growth. ET Cover best practice maintenance activities performed in CY 2022 are presented in Section 9.7 of this MWL Annual LTMM Report and were performed in response to inspections, general site conditions, and recommendations by the staff biologist. The two minor maintenance events conducted in April and September 2022 were designed to achieve the long-term goal of establishing a healthy, self-sustaining native grass community on the ET Cover by reducing competition with weedy species for limited moisture and nutrients. This work included removal of live and dead weeds from the ET Cover, the perimeter fence, the storm-water diversion drainage, and other perimeter areas. In

addition, an annual application of an herbicide sterilant (Hyvar®) to the North and South Staging Areas was performed (April 2022).

6.0 Recommendations

The MWL ET Cover Biology Inspections will continue on an annual frequency and be conducted in August or September. As a best practice, the SNL staff biologist will continue to support quarterly ET Cover inspections, document observations, and provide recommendations to maintain the ecological health and integrity of the ET Cover.

Routine, minor weed removal events will be needed during the April 2022 – March 2023 reporting period to clear the perimeter fence and remove windblown tumbleweeds from the ET Cover, perimeter drainage, and perimeter area based on LTMMP inspection requirements and best practice. If present, live annual weedy species on the MWL ET Cover and perimeter should also be removed during the growing season weed removal events if they pose a threat to the established native grasses. Silverleaf nightshade and Russian thistle are expected to be the primary focus of live weed removal efforts in 2023. Sterilant herbicide application (Hyvar®) over the past several years has been very effective at weed control for the North and South Staging Areas (graveled areas); this practice should be continued at the annual frequency recommended by the manufacturer. Given the effectiveness of Esplanade® at the Chemical Waste Landfill (a pre-emergent herbicide that is more environmentally friendly), it should be considered as an alternative to the Hyvar® as an environmental stewardship best practice. If observed, four-wing saltbush and any other potentially deep-rooted plants or shrubs will be pulled by hand, clipped at the ground surface, or removed for biota sampling. These routine weed control activities help the desired native grasses by reducing the amount of weed seeds on the ET Cover and competition from the future growth of invasive plants.

The application of a pre-emergent herbicide should be considered for the ET Cover and perimeter fence area in the future to prevent the germination of the current weed seed bank and seeds dropped by windblown weeds caught in the fence each year. Given the low abundance of annual weedy species on the ET Cover in CY 2022 and the foliar coverage of mature native bunch grasses, this is not a critical weed control measure at this time but should be kept in mind if weed growth increases significantly in this area.

Based upon experience since initial seeding of the ET Cover in 2009, maintenance activities have had a significant, positive impact on the establishment of healthy, self-sustaining, mature native grasses in a relatively short period of time. Successful revegetation requirements were met in 5 years after initial seeding; this is a process that could take 50 years or more without active seeding and maintenance activities.

8.0 References

Bearzi, J.P. (New Mexico Environment Department), December 2008. Letter to K. Davis (U.S. Department of Energy) and F. Nimick (Sandia Corporation), "Conditional Approval, Mixed Waste Landfill Corrective Measures Implementation Plan, November 2005, Sandia National Laboratories NM5890110518, SNL-05-025." December 22, 2008.

Sandia National Laboratories/New Mexico (SNL/NM), March 2012. "Long-Term Monitoring and Maintenance Plan for the Mixed Waste Landfill," Environmental Restoration Operations, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2015. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, January – March 2015," Sandia National Laboratories, Albuquerque, New Mexico.

U. S. Drought Monitor (August 2022) Accessed August 2021. http://droughtmonitor.unl.edu/

Table 1
October-December 2021 Meteorological Data Summary for the Mixed Waste Landfill^a

Month	October	November	December		
Temperature (°F)				3-Month Avg	
Monthly Mean	58.8	52.2	43.4	51.5	
25-year Temp Means	58.0	3.0 46.6 37.3		47.3	
Precipitation (Inches)				3-Month Total	
Monthly Total	0.06	0.16	0.29	0.51	
25-year Precip Means	0.95	0.95 0.47		1.99	
Relative Humidity (RH) (%)				3-Month Avg	
Monthly Mean	36.5	35.7	41.5	37.9	
25-year RH Means	42.6	45.0 53.4		47.0	
Wind (Miles/hour)				3-Month Avg	
Monthly Mean	7.8	6.0	7.0	6.9	
25-year Wind Means	7.9	7.1	6.7	7.2	

^aInformation Source: SNL/NM Meteorological Monitoring Program.

% = Percent.

°F = Fahrenheit.

RH = Relative humidity.

SNL/NM = Sandia National Laboratories/New Mexico.

Table 2
Summary of 2022 Meteorological Data at the Mixed Waste Landfill^a

Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	
Year	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	
Temperature (°F)													Annual ^b
Monthly Mean	39.5	38.3	48.2	59.9	70.3	75.6	79.7	74.7	72.1	56.1	43.0	39.5	58.1
25-year Temp Means	37.7	42.1	49.3	56.0	65.7	75.7	76.8	74.8	69.3	58.0	46.6	37.3	57.4
Precipitation (Inches)													Annual ^c
Monthly Total	0.04	0.07	0.76	0.0	0.0	2.13	1.1	2.37	0.32	1.92	0.38	0.75	9.84
25-year Precip Means	0.39	0.43	0.50	0.52	0.34	0.52	1.72	1.46	0.99	0.95	0.47	0.57	8.86
Relative Humidity (%)													Annual ^b
Monthly Mean	46.8	40.4	34.4	18.9	15.0	37.7	40.1	50.5	42.6	55.1	42.4	53.0	39.7
25-year RH Means	51.1	44.5	35.8	30.7	27.2	25.3	40.6	44.3	42.3	42.6	45.0	53.4	40.2
Wind (Miles/hour)													Annual ^b
Monthly Mean	7.0	7.7	8.2	11.2	11.8	8.7	7.7	8.0	7.8	7.9	7.5	6.3	8.3
25-year Wind Means	6.9	8.2	9.1	10.3	9.9	9.7	8.4	7.9	8.0	7.9	7.1	6.7	8.3

^aInformation Source: SNL/NM Meteorological Monitoring Program.

% = Percent.

°F = Fahrenheit.

RH = Relative humidity.

SNL/NM = Sandia National Laboratories/New Mexico

^bValues provided are averages of the monthly data.

 $[\]ensuremath{^{\text{c}}}\xspace\ensuremath{\text{Values}}\xspace$ provided are totals of the monthly data.

August 22, 2022 Mixed Waste Landfill Biology Inspection Photographs

Looking north from approximate center of ET Cover

Looking west from approximate center of ET Cover

August 22, 2022 Mixed Waste Landfill Biology Inspection Photographs

Looking south from approximate center of ET Cover

Looking east from approximate center of ET Cover

August 22, 2022 Mixed Waste Landfill Biology Inspection Photographs

North Slope of ET Cover: facing west from the upper eastern portion of slope

West Slope of ET Cover: looking south from northern end

August 22, 2022 Mixed Waste Landfill Biology Inspection Photographs

South Slope of ET Cover: looking east from the western end

East slope of ET Cover: facing north from south of the dogleg

August 22, 2022 Mixed Waste Landfill Biology Inspection Photographs

Northwest corner of ET Cover: facing center of cover

Southwest corner of ET Cover: facing center of cover

August 22, 2022 Mixed Waste Landfill Biology Inspection Photographs

Southeast corner of ET Cover: facing center of cover

Northeast corner of ET Cover: facing center of cover

August 22, 2022 Mixed Waste Landfill Biology Inspection Photographs

Harvester ant collecting galleta grass seed on the MWL Cover

Silverleaf nightshade weed and native bunchgrasses