

National Nuclear Security Administration Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400

2 1 2006

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. James Bearzi, Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Road East Building 1 Santa Fe, NM 87505

Dear Mr. Bearzi:

On behalf of the Department of Energy (DOE) and Sandia Corporation, DOE is submitting a response to the Notice of Disapproval (NOD): Mixed Waste Landfill Corrective Measures Implementation Work Plan, November 2005 and Requirements for Soil-Vapor Sampling and Analysis Plan, Sandia National Laboratories, EPA ID NM5890110518, HWB-SNL-05-025. The enclosed responses address Part 1 comments. We have also enclosed a Soil-Vapor Sampling and Analysis Plan as directed by the NOD. Our response to Part 2 comments will be submitted under separate cover.

In our opinion, we do not consider our response to Part 1 and the soil-vapor plan as major documents in the corrective measures process and look forward to a timely review. It is our expectation that approval of this submittal will allow the start of the cover construction process. Sub-grade preparation activities are nearing completion and maintaining the experienced field crew is critical to that process.

If you have any questions, please contact me at (505) 845-6036 or Joe Estrada of my staff at (505) 845-5326.

Sincerely,

Pátty Wagner Manager

Enclosures

Mr. J. Bearzi

cc w/enclosures: W. Moats, NMED (via Certified Mail) J. Kieling, NMED, Santa Fe L. King, USEPA, Region VI (via Certified Mail) T. Skibitski, NMED-OB T. Longo, NNSA/NA-56/HQ, GTN UNM Zimmerman Library

cc w/o enclosure: M. Reynolds, NNSA/SSO J. Gould, NNSA/SSO A. Blumberg, SNL/NM, Org. 11100, MS 0141 P. Freshour, SNL/NM, Org. 6765, MS 1087 D. Miller, SNL/NM, Org. 6765, MS 0718 D. Schofield, SNL/NM, Org. 6765, MS 1087 T. Goering, SNL/NM, Org. 6765, MS 1087 S. Griffith, SNL/NM, Org. 6765, MS 1087 M. J. Davis, SNL/NM, Org. 6765, MS 1087 Records, Center, SNL/NM, Org. 6765, MS 1087

CERTIFICATION STATEMENT FOR APPROVAL AND FINAL RELEASE OF DOCUMENTS

Document title: Response to NMED NOD (Part 1) on MWL CMI Plan, December 2006

Document authors: Tim Goering and Mike Sanders, 6765

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations.

Signature:

121 15-106

Date

Peter B. Davies Director Nuclear Energy & Global Security Technologies Division 6700 Sandia National Laboratories/New Mexico Albuquerque, New Mexico 87185 Operator

and

Signature: Patty Wagner

Patty Wagner I Manager U.S. Department of Energy National Nuclear Security Administration Sandia Site Office Owner and Co-Operator

Sandia Corporation Albuquerque, New Mexico December 15, 2006

DOE/Sandia Responses to NMED's "Notice of Disapproval: Mixed Waste Landfill Corrective Measures Implementation Work Plan, November 2005"

Comment Set 1

INTRODUCTION

This document responds to the first set of comments received in a letter from the New Mexico Environment Department (NMED) to the U.S. Department of Energy (DOE) and Sandia Corporation (Sandia) on November 24th, 2006 regarding the Mixed Waste Landfill (MWL) Corrective Measures Implementation (CMI) Plan for Sandia National Laboratories (SNL). The letter is entitled "Notice of Disapproval: Mixed Waste Landfill Corrective Measures Implementation Work Plan, November 2005, and Requirement for Soil-Vapor Sampling and Analysis Plan, Sandia National Laboratories" [EPA ID NM5890110518, HWB-SNL-05-025].

The NMED letter contains two sets of comments, divided based on subject. The first set is entitled, "Part 1, Comments on Landfill Construction Plans and Performance Modeling". The second set is entitled, "Part 2, Comments on the MWL Fate and Transport Model (Appendix E)". The NMED letter also includes a request for a Soil-Gas Sampling Plan to obtain more current soil gas data.

This response document provides the first set of NMED comments, and DOE/Sandia's responses. NMED comments are listed in boldface, followed by the DOE/Sandia response, written in normal font under "Response". This document also contains a sampling and analysis plan (SAP) requested by NMED to obtain more current data on volatile organic compounds (VOCs), tritium, and radon at the MWL. The SAP is presented in Appendix A.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

This page intentionally left blank

Part 1. Comments on Landfill Construction Plans and Performance Modeling

1. -- Executive Summary, Page iii, last bullet -- Define the term ''climax ecological community''.

<u>Response</u>: The term "climax ecological community" is a term for a late or final stage in the development of an ecological community in which the composition of plants and animals is relatively stable and well-matched to environmental conditions. In the case of the MWL, the climax ecological community would be classified as Desert Grassland (Dick-Peddie, 1992), under current climatic conditions.

2. Section 2.1 -- Provide a more detailed schedule that, at a minimum, indicates completion times for the following cover and project elements: subgrade, bio-intrusion barrier, native soil layer, topsoil layer, seeding, fencing, overall completion of project, and submittal of Corrective Measures Implementation (CMI) Report to NMED. As the actual start time is dependent on when the CMI Plan is approved, the completion times can be proposed as the number of days from the start time (assume the start time = 0 days).

<u>Response</u>: A detailed schedule for the cover construction activities is presented below. Subgrade preparation activities should be completed by December 31, 2006. The cumulative schedule assumes approval to install the cover is received at start time T=0 days (T_0) . Assumptions include the following:

- 1) NMED approves the SAP for soil gas VOCs, tritium, and radon at the MWL within fifteen days of receiving the document, allowing rapid implementation of the soil gas sampling activities.
- 2) DOE/SNL complete the soil gas and tritium sampling activities by mid-January, and cover construction activities are initiated shortly thereafter, allowing the current MWL field crew and heavy equipment to be retained.
- 3) The cover start time T₀ assumes full NMED approval of the MWL cover design presented in the CMI Plan (SNL/NM November 2005), as well as approval of the DOE/SNL responses to the Part 1 NOD comments.

TASK	Task Duration (Working Days)	Cumulative Time From T₀ (Calendar Days)	
Receive Approval To Install Cover (T ₀)	0 days	0	
Screen Native Soils at the Borrow Areas	50 days	78	
Extend MWL-MW4 Well Casing; Service Pump and Packer	20 days	44	
Haul and Place Bio-Intrusion Barrier Rock	45 days	62	
Haul Native Soil from Borrow Areas to MWL	30 days	47	
Place Native Soil Layer	50 days	132	
Procure 3/8" Crushed Gravel for Topsoil Layer	20 days	103	
Stockpile Topsoil	14 days	93	
Blend 3/8" Gravel with Topsoil	15 days	118	
Haul and Place Topsoil Layer	30 days	190	
Seed Cover and Surrounding Area	10 days	204	
Install Fencing	10 days	218	
Demobilize	20 days	225	
Overall Completion of the Cover Construction Project	209 days	225	
Submit Corrective Measures Implementation Report to NMED	130 days ²	407	

¹Subgrade preparation should be completed by 12/31/2006²180 calendar days

3. Section 5.2.2.1.1, last paragraph -- Describe the rainfall event that was simulated in the second in situ test.

Response: A short-duration rainfall-simulation study was undertaken in 1998 to estimate evapotranspiration rates following natural rainfall events, and to provide infiltration and percolation data useful for fitting unsaturated models (SNL, April 1999; Wolford, 1998). A 10 ft by 10 ft plot was established approximately 100 ft northwest of the MWL IP test plot, located approximately 500 ft west of the MWL. A neutron access tube was installed in the center of the plot, and initial moisture contents were measured using gravimetric samples and neutron logging prior to initiating the rainfall event.

The simulated rainfall event consisted of applying 80 gallons (303 liters) of water, equal to 1.28 inches over 100 ft2, to the plot over a period of 38 minutes during the afternoon of August 20, 1998. The water was distributed uniformly over the plot by subdividing the plot into 4 quarters, and sprinkling from a hose for known time periods on each section of the plot.

The soil within the plot was subsequently sampled at 3-inch depth increments between August 20 1998 and September 30, 1998 to obtain soil-water content values over time following application of the water. The data collected were used to fit infiltration and unsaturated flow parameters, as well as to estimate evapotranspiration rates for modeling

purposes. Additional details on the artificial rainfall experiment simulated in the second in situ test are presented in Wolford, 1998.

4. Section 5.2.2.2, 1st paragraph on page 5-4 -- Specify whether the degree of compaction was measured using the standard or modified proctor test.

<u>Response</u>: The degree of compaction was measured using Standard Proctor tests. The results are tabulated in Attachment C of Appendix A, "Geotechnical Report", in the document, "Deployment of an Alternative Cover and Final Closure of the Mixed Waste Landfill, Sandia National Laboratories, New Mexico" (SNL September 1999).

5. Section 5.3.2.4, next to last sentence — This sentence refers to a sand layer with an initial water content of 0.036 cubic centimeters being used for a boundary condition, Normally, water content of soil is expressed as a percentage (of the ratio of the mass of water per the mass of solids, or in the case of volumetric water content the ratio of the volume of water to the total volume of soil). Confirm whether this value and unit of measurement are correct.

<u>Response</u>: The units for initial water content in the next-to-last sentence in Section 5.3.2.4 were incorrect. This sentence should read, "Instead, a coarse sand layer with an initial water content of $0.036 \text{ cm}^3/\text{cm}^3$ was used for its lower boundary condition".

The text in this section has been revised accordingly.

6. Section 5.7.1 -- Specify the values used for the variables R, K, LS, VM and sources of the values used in the MUSLE equation to predict soil loss by water erosion.

<u>Response:</u> The calculation set for potential soil loss from the MWL cover using the Modified Universal Soil Loss Equation (MUSLE) was originally presented in Appendix D of the document, "Deployment of an Alternative Cover and Final Closure of the Mixed Waste Landfill, Sandia National Laboratories, New Mexico" (SNL/NM September 1999). A copy of this calculation set, entitled "Erosion and Slope Stability Calculations", is included as Attachment 1 to this NOD response. This calculation set includes copies of the tables and figures from which the variables R, K, LS, and VM were determined.

References used to prepare this calculation set include

- Geotechnology of Waste Management, 2nd Ed., Issa S. Oweis, Raj P. KHera, February, 1998.
- AGRA, Mixed Waste Landfill Cover, Tabulation of Test Results performed by AGRA Earth & Environmental on May 17, 1999.

Values used for the variables and sources for the values are shown in the table below.

Parameter	Variable	Value	Additional Information
Rainfall Factor	R	35	Determined from isoerodent map of the western United States, illustrating average annual values of the rainfall factor, R. See Figure 1, Sheet 9 of Attachment 1.
Soil Erodibility Factor	К	0.44	Approximate value of K, based on a loamy very fine sand with organic content < 0.5%. See tabulation of AGRA test results, Table 1, Sheet 10 of Attachment 1; K determined from Table 2, Sheet 12, of Attachment 1.
Topographic Factor for Cover (2% slope)	LS	0.28	See Sheets 5 and 6 of Attachment 1.
Topographic Factor for Sideslope (16.7% slope)	LS	1.32	See Sheets 5 and 6 of Attachment 1.
Erosion Control Factor for Cover (no vegetation)	VM	0.06	Assumes no vegetation was yet established; that straw mulch had been applied to the cover and side-slopes at 2 tons/acre, and that the mulch was crimped into soils with a disk. See Sheet 7 and Sheet 14 of Attachment 1.
Erosion Control Factor for Sideslope (no vegetation)	VM	0.11	Assumes no vegetation was yet established; that straw mulch had been applied to the cover and side-slopes at 2 tons/acre, and that the mulch was crimped into soils with a disk. See Sheet 7 and Sheet 14 of Attachment 1
Erosion Control Factor for Cover and Sideslope (vegetation established)	VM	0.01	Assumes that vegetation is established on both the cover and side-slopes 12 months after seeding, and assumes that one-half the straw mulch remained. See Sheet 8 and Sheet 15 of Attachment 1.

7. Section 5.7.2 -- Specify the values used for the variables I, k, C, L, V and sources of the values used in the WEQ equation to predict soil loss by wind erosion.

<u>Response:</u> The calculation set for potential soil loss from the MWL cover using the Wind Erosion Equation (WEQ) was originally presented in Appendix D of the document, "Deployment of an Alternative Cover and Final Closure of the Mixed Waste Landfill, Sandia National Laboratories, New Mexico" (SNL/NM September 1999). A copy of this calculation set, entitled "Erosion and Slope Stability Calculations", is presented as Attachment 2 to this NOD response. This calculation set includes copies of the tables and figures from which the variables I, k, C, L, and V were determined.

References used prepare this calculation set include

- Natural Resources Conservation Service (NRCS) National Agronomy Manual, 190-V-NAM, 2nd Ed., Part 502, March 1988.
- 2) N.P. Woodruff and F.H. Siddaway, 1965. "A Wind Erosion Equation," Soil Science Society of America Proceedings, Vol. 29, No. 5, Pages 607-608.

Parameter	Variable	Value	Additional Information
Soil Erodibility Index for Cover (2% slope)	I	134 tons/acre/year	Based on erodibility index for a loamy very fine sand, as determined by AGRA test results. See Sheet 2, 9 and 11 of Attachment 2.
Soil Erodibility Index for Sideslope (16.7% slope)	I	188 tons/acre/year	Based on erodibility index for a loamy very fine sand, as determined by AGRA test results. See Sheets 3, 9 and 11 of Attachment 2.
Total Surface Roughness (Cover and Sideslope)	k	1.0	Based on the assumption that the engineered cover and sideslopes will be smooth and without ridges. See Sheets 3, 4, 13 and 14 of Attachment 2.
Climatic Factor	С	120	Index of the relative erosivity by geographic location. See Sheets 5 and 15 in Attachment 2.
Unsheltered Distance (Cover)	L	524 ft	Field length along the prevailing wind direction. See Sheets 5 and 15 of Attachment 2.
Unsheltered Distance (Sideslope)	L	25 ft	Field length along the prevailing wind direction. See Sheets 5 and 15 of Attachment 2.
Vegetative Cover Factor (Cover)	V	4,500 small grain equivalent	Assumes no vegetation was yet established; that straw mulch had been applied to the cover and side- slopes at 2 tons/acre, and that the mulch was crimped into soils with a disk. See
Vegetative Cover Factor (Sideslope)	V	3,200 small grain equivalent	Assumes vegetation is established on cover and sideslopes 12 months after seeding, and one half the straw mulch remains. Also assumes that 400 small grain equivalent of native grass is established on cover and sideslopes.

Values used for the variables and sources for the values are shown in the table below.

8. Section 7.0 -- The NMED expects the vadose zone to be monitored for volatile organic compounds, tritium, and radon, in addition to soil moisture. The NMED may also require soil-gas monitoring to be conducted at depths other than at 173 feet, as implied by the Permittees in the second paragraph of Section 7.1. Monitoring details will need to be included in the long-term monitoring and maintenance plan, due within 180 days following approval of the CMI Report. No response is required at this time.

<u>Response:</u> DOE/Sandia are proposing a robust soil-gas monitoring system for long-term monitoring at the MWL. The soil-gas monitoring system will serve as an early-warning system to protect groundwater from potential migration of contaminants. Additional information regarding the proposed monitoring, including the parameters and depths to be monitored, will be included in the DOE/Sandia responses to the second set of comments within this NOD (Part 2). Further details will be included in the Long Term Monitoring and Maintenance Plan (LTMMP), to be submitted within 180 days of the NMED's approval of the MWL CMI Report.

9. Figure 5-1 -- Clarify which curves are representative of the PET data from the four National Weather Service stations in New Mexico and which are representative of the predicted PET data.

<u>Response</u>: The PET curves for the Cochiti, Elephant Butte, Socorro, and Bosque del Apache National Weather Service Stations are delineated by wider lines and have no symbols. The curves representing the PET data predicted by HELP-3 are delineated by much narrower

lines, and have symbols identifying the monthly PET values predicted by the model.

10. Appendix A, Construction Specifications, Section 02930, Reclamation seeding and Mulching, Part 3.1.2, #1 -- Explain why the TA-3 borrow pits are not to be reseeded by the contractor, given that erosion of the borrow pits should be prevented.

<u>Response:</u> Once the MWL cover has been constructed and the TA-3 borrow pits are no longer required for environmental restoration activities, they may be transferred over to Sandia Facilities for continued use at Sandia. However, if the TA-3 borrow pits are not needed by Facilities, they will be seeded and reclaimed as described in Appendix A, Construction Specifications, Section 02930, Reclamation Seeding and Mulching.

11. Appendix A, Construction Specifications, Section 02200, Earthwork Part 3.3.3, #4 -- The Permittees should consider changing the requirement that no proof rolling be conducted within 2 feet of any groundwater monitoring well, measuring device, or other placed surface. The NMED strongly suggests changing the requirement to preclude all heavy equipment from operating within 3 feet of wells or other measuring devices.

<u>Response:</u> The requirement will be changed to preclude all heavy equipment from operating within 3 feet of any monitoring well or measuring device.

12. Appendix A, Construction Specifications, Section 02200, Earthwork Part 3.3.4, #8 and Part 3.3.6., #9 -- Both of these sections contain language stating that nonconforming work shall be redone until the specifications are attained "or the Operator accepts the placement conditions". Please note that the NMED expects construction of the cover to comply substantially with the specifications in the approved CMI Plan. Failure to achieve the specifications in the approved CMI Plan, or obtain an NMED-approved change, could lead to disapproval of part or all of the constructed cover.

<u>Response</u>: Sandia fully expects to construct the MWL cover to meet all specifications identified in the CMI Plan. If these specifications cannot be met for any reason, the NMED will be informed of these discrepancies and a mutually-acceptable corrective action will be determined and implemented.

13. Appendix A, Construction Specifications, Section 02200, Earthwork Part 3.3.6 --The NMED strongly recommends that the Permittees add to the specifications for construction of the native soil layer a requirement for a minimum number of passes with compaction equipment.

Response: Part 3.3.6 of Section 02200 describes the installation of the native soil layer. Item 5 of Part 3.3.6 states that for each lift "The Contractor shall compact to not less than 90 percent of maximum dry density at -2 to +2 percentage points of optimum moisture content, as determined by ASTM D698 (Standard Proctor testing)." Item 9 of the same section further states that "Lifts not compacted to the density and moisture content specifications or not meeting the requirements of this specification shall be reworked to the full depth of the lift and recompacted until the specifications are attained or the Operator accepts the

placement conditions."

With the requirement that the lifts be compacted, and tested to meet a specified compaction, it is not necessary to count the number of passes of compaction equipment, as long as the construction specifications are met.

14. Appendix B, Construction Quality Assurance Plan, Section 2.6.3, first sentence — Clarify what is meant by the first sentence: "The CQA Certifying Engineer is responsible for...certifying the CQA document has been approved by the NMED". Did the Permittees intend, instead, to require that the CQA Certifying Engineer be responsible for certifying the results of the CQA Report that is to be submitted for NMED approval? If so, the first sentence should be revised to state "The CQA Certifying Engineer is responsible for certifying in a statement to the owner and the NMED that, in his or her opinion, the cover has been constructed in accordance with all plans and specifications". The next sentence of the paragraph explains further that the certification statement would normally be included in a CQA Report.

<u>Response:</u> The first sentence will be revised to state "The CQA Certifying Engineer is responsible for certifying in a statement to the owner and the NMED that, in his or her opinion, the cover has been constructed in accordance with all plans and specifications."

15. Appendix B, Construction Quality Assurance Plan, Section 8.7 -- The Final Report must be submitted to the NMED as part of the CMI Report. The Final Report must include copies of all quality control data generated by the construction contractor as well as the quality assurance data generated by the CQA contractor.

<u>Response</u>: The Construction Quality Assurance Plan will include all quality control data generated by the construction contractor as well as quality insurance data generated by the CQA contractor. The Construction Quality Assurance Plan will be submitted to the NMED as part of the CMI Report.

16. Demonstrate with calculations and other information whether run-off and run-on controls have been adequately designed to handle peak precipitation events. Evaluate and discuss whether additional run-on controls should be constructed at locations further away from the landfill (e.g., at distances of 25 to 50 meters) to provide more protection for the cover from heavy rainfall events.

<u>Response:</u> Calculations have been prepared regarding the adequacy of the run-off and runon controls for handling peak precipitation events. The complete calculation set and supporting exhibits are presented in Attachment 3. The calculation results are summarized below.

The site will be graded such that runoff from the site flows north, west and east. There is a high point on the north side of the site that prevents flow from running onto the site. Two swales will be provided to carry the flow to the north or the south. This may be seen in Exhibit 1: Mixed Waste Landfill Final Cover Grading Plan", included in the complete

calculation set (Attachment 3).

The watershed basin draining onto the site has been delineated and is shown on Exhibit 2 of Attachment 3. It is divided in to a north basin and a south basin that drain to the north and south swales respectively.

Runoff was calculated using the City of Albuquerque Development Process Manual (City of Albuquerque 2006) criteria for the 100 year –6 hour storm. The north basin generates 24 cfs and the north swale has the capacity for 79 cfs. The south basin generates 6.5 cfs and the capacity of the south swale is 58 cfs.

The swales are therefore sized with abundant capacity to prevent flow from entering the site and to carry the runoff around the site.

The general drainage pattern in this area is a gentle slope to the west. After the flow is discharged from the site, it drains westward and no additional controls are needed. Exhibit 2 shows the topography up to a minimum of 200 feet beyond the site to illustrate this.

17. Identify the criteria to be applied to determine whether the establishment of vegetation on the final cover is acceptable, including, but not limited to, species diversity, plant survival, and the extent of ground cover. Explain how measurements will be conducted in the field to assess these criteria.

<u>Response:</u> Establishment of the desired vegetation community on the MWL cover is anticipated to be the result of a successional process. Ecological succession is a generally predictable pattern of orderly changes in the composition or structure of an ecological community. Succession on the MWL will be initiated by the formation of this new, unoccupied habitat on the cover.

The MWL cover will be seeded with grass species that have been identified as native to the surrounding area. These grasses will eventually out-compete the weedy plants that dominate early in plant community succession. The final cover soil has been collected from the local area in order to provide the correct growing substrate for the seeded plant species. This soil is expected to contain a significant amount of weed seed, including large amounts of *Salsola tragus* seeds, commonly known as Russian thistle or tumbleweed. No supplemental watering is planned for the MWL, although supplemental watering is widely recommended to facilitate establishment of native plants in a chosen area. Due to a large amount of weed seeds and no supplemental watering, the early succession period is anticipated to be long.

Mature Plant Community Criteria

Vegetation on the MWL cover will be surveyed by a qualified biologist on a regular basis. This survey will include:

- Identification of any barren areas
- Identification of all plant species present on the cover

• Quantification of plant species present on the cover

Plant species will be identified according to their scientific names. Plant species will be quantified by determining the percent cover of each actively photosynthesizing species contained within a one-meter by one-meter survey quadrat. These quadrat survey locations will vary across the cover at the time of each inspection in order to best reflect plant cover across the MWL.

The mature, secondary plant community will be achieved when greater than 50% of the photosynthesizing foliar coverage is comprised of grass species native to the general TA-III area.

General Comments and Requirements for Soil-Gas Sampling

As the Permittees are aware, most site characterization data for the MWL (other than groundwater data) dates before the mid 1990's. Because the rupturing of containers and the leaking of their contents could have occurred since the mid 1990's, the NMED requires more current soil-gas data to help resolve this issue. The Permittees shall therefore collect and analyze active soil-gas samples taken at depths of 10 and 30 feet at a minimum of three locations within the landfill where previous sampling has detected the highest soil-gas concentrations in the past. The soil-gas samples shall be analyzed for volatile organic compounds, tritium, and radon. Pursuant to Section VI.A of the Order on Consent (April 29, 2004), the Permittees shall provide for approval to the NMED within 30 days of receipt of this letter a work plan to conduct the active soil-vapor sampling described above. The work plan shall be prepared in accordance with Section X.B of the Consent Order.

<u>Response</u>: A work plan has been developed which presents plans for sampling and analysis of soil gas at six locations within or adjacent to the MWL, and at two background locations. Soil gas samples will be collected at depths of 10 and 30 feet, and analyzed for VOCs. Soil samples will be collected from the same locations and depths, and analyzed for tritium in soil moisture. Samples for analysis of radon are difficult to obtain from soil gas samples; instead, radon sampling is proposed to be conducted along the MWL perimeter once the MWL cover has been completed.

The sampling and analysis plan for soil gas VOCs and tritium and radon is presented in Appendix A.

References

City of Albuquerque, 2006, "Albuquerque Development Process Manual", October 2006 Revision, published by American Legal Publishing Corporation, 432 Walnut Street, Cincinnati, Ohio 45202.

Dick-Peddie, W.A. 1992, "New Mexico Vegetation Past, Present and Future." University of New Mexico Press, Albuquerque, NM. 244 pp.

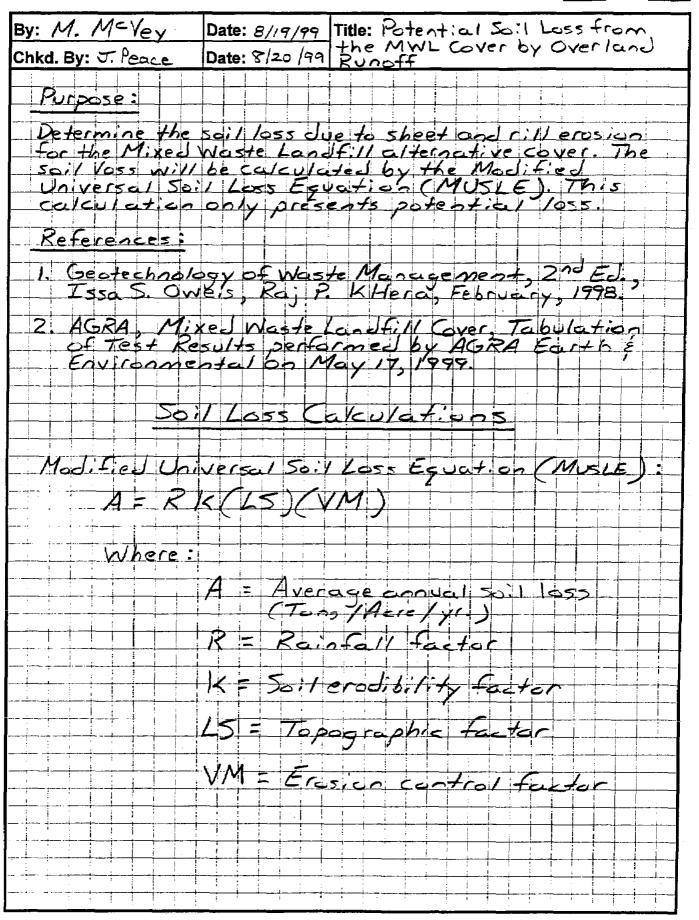
Sandia National Laboratories/New Mexico (SNL/NM), September, 1999, "Deployment of an Alternative Cover and Final Closure of the Mixed Waste Landfill, Sandia National Laboratories, New Mexico", prepared for US DOE by Sandia National Laboratories Environmental Restoration Project, Albuquerque, New Mexico, September 23, 1999.

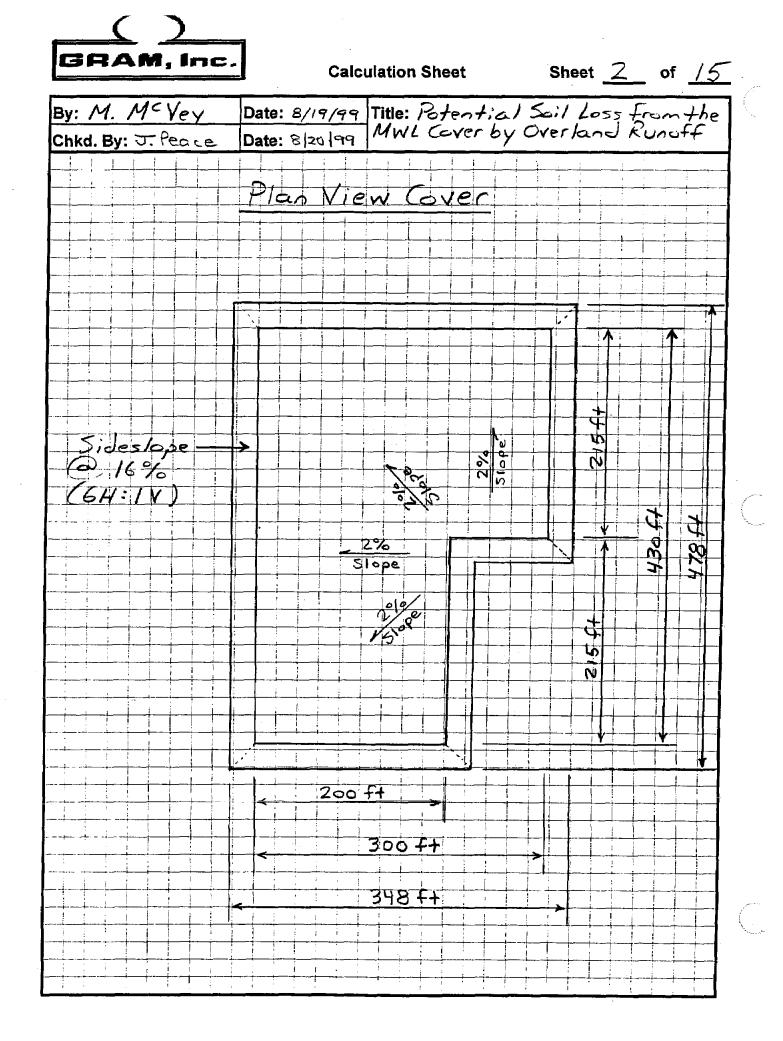
Sandia National Laboratories/New Mexico (SNL/NM), November 2005. "Mixed Waste Landfill Corrective Measures Implementation Plan", prepared at Sandia National Laboratories by J. Peace, T. Goering, C. Ho and M. Miller for the U.S. Department of Energy, Albuquerque, NM.

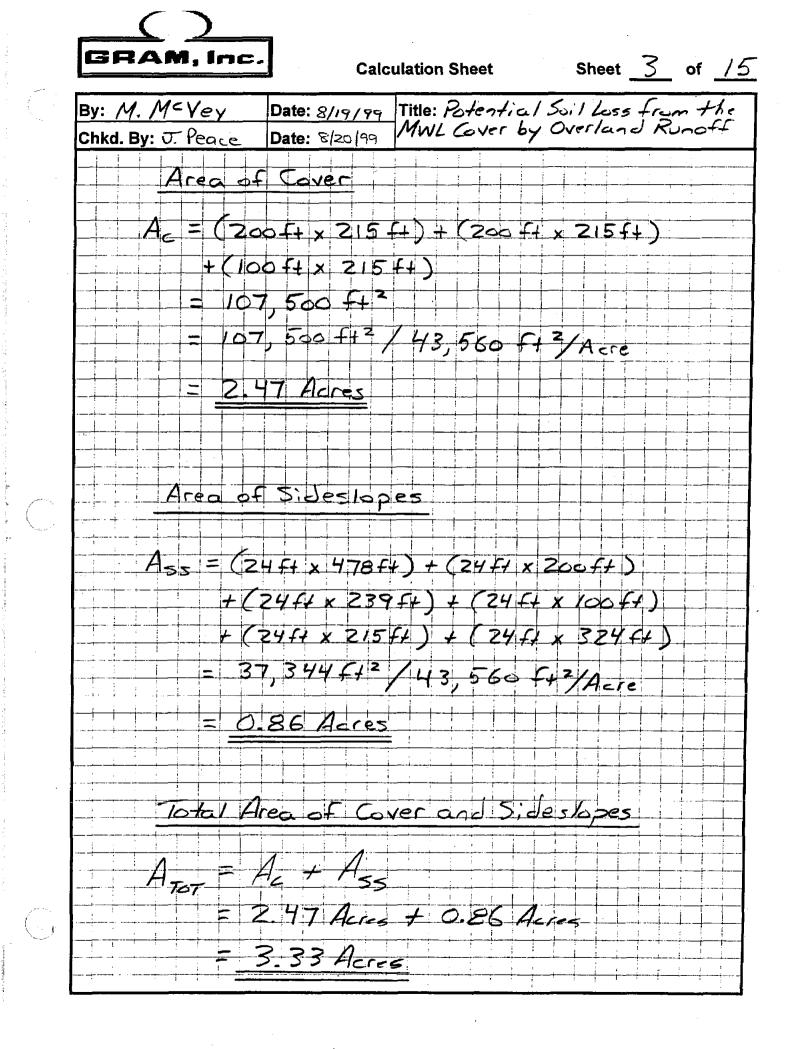
Wolford, R.A., 1998, Preliminary unsaturated flow modeling and related work performed in support of the design of a closure cover for the Mixed Waste Landfill. Prepared by GRAM, Inc. for the Mixed Waste Landfill Cover Project, Environmental Restoration Program, Organization 6135. Sandia National Laboratories, Albuquerque, NM, November 10, 1998.

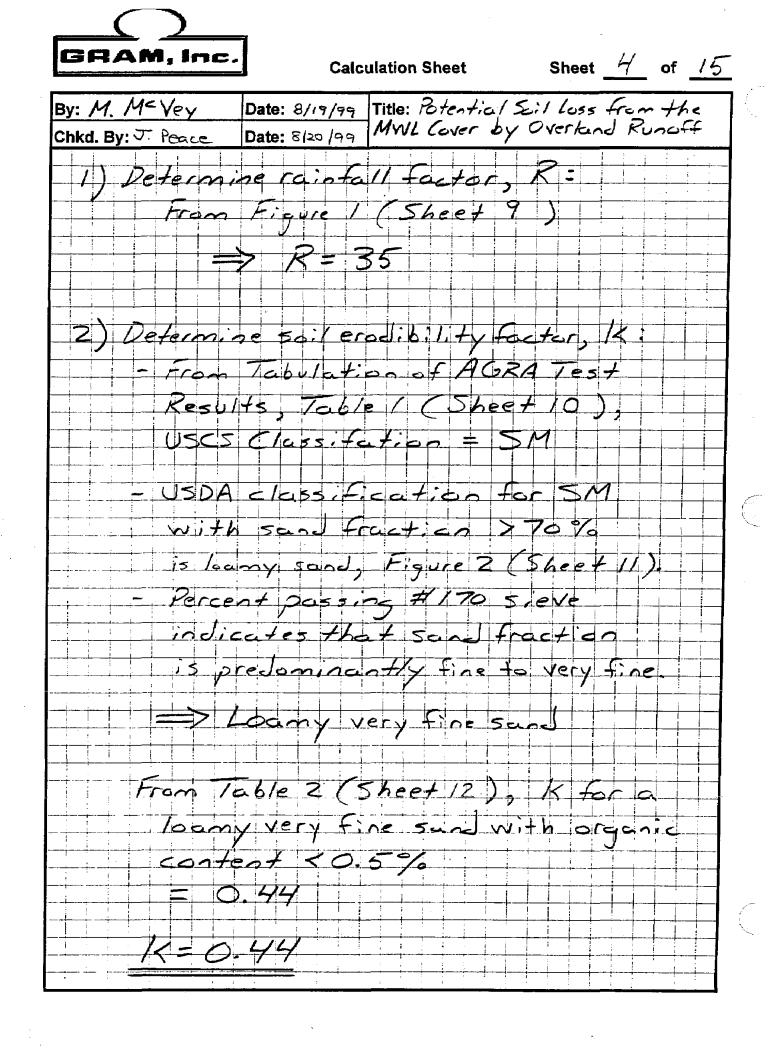
Attachment 1

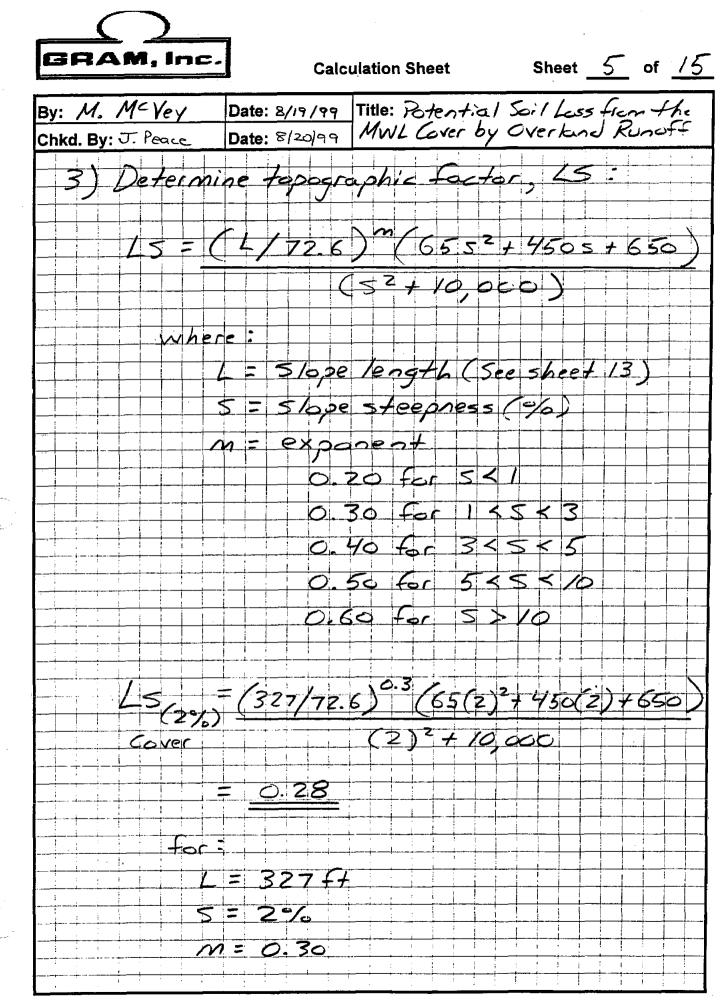
Universal Soil Loss Calculations for the MWL Cover

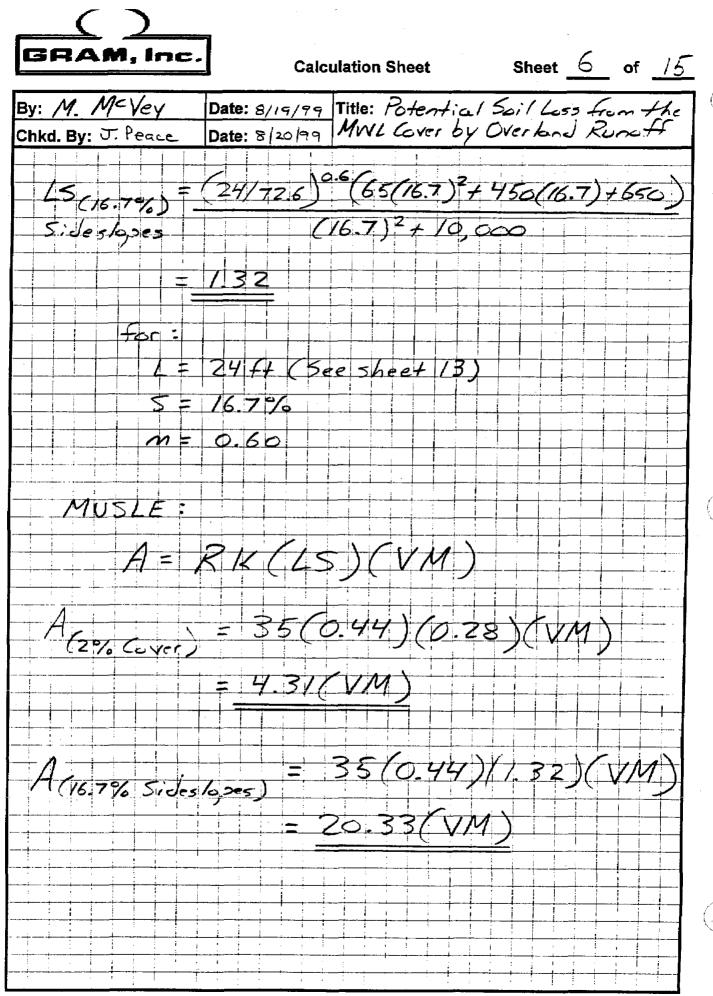

Using the

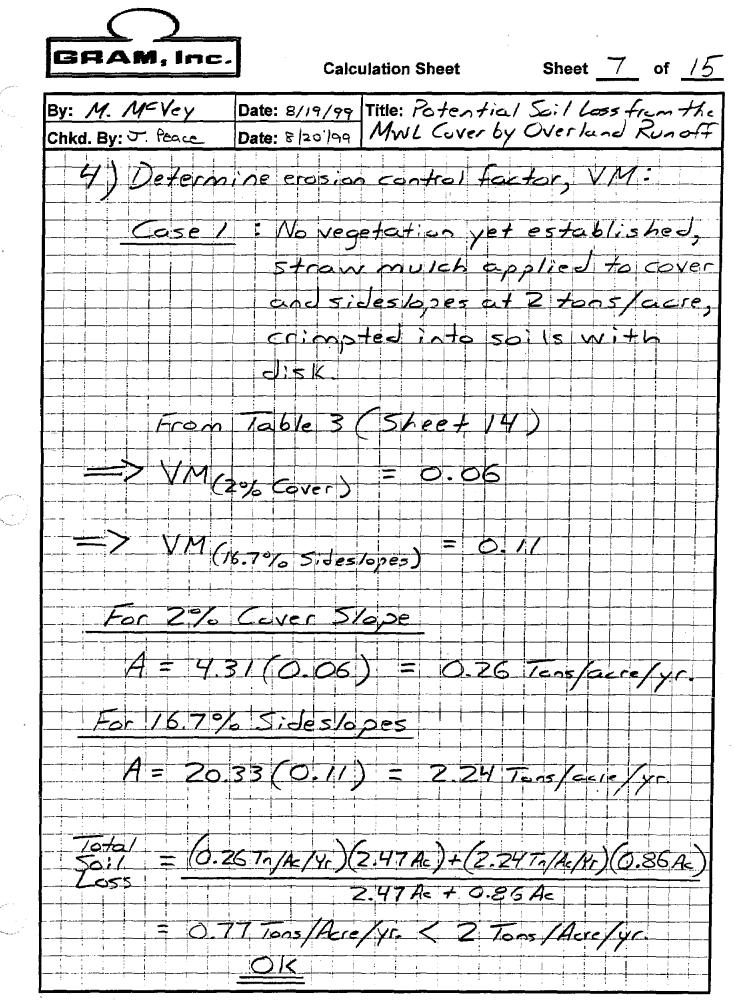

Modified Universal Soil Loss Equation (MUSLE)

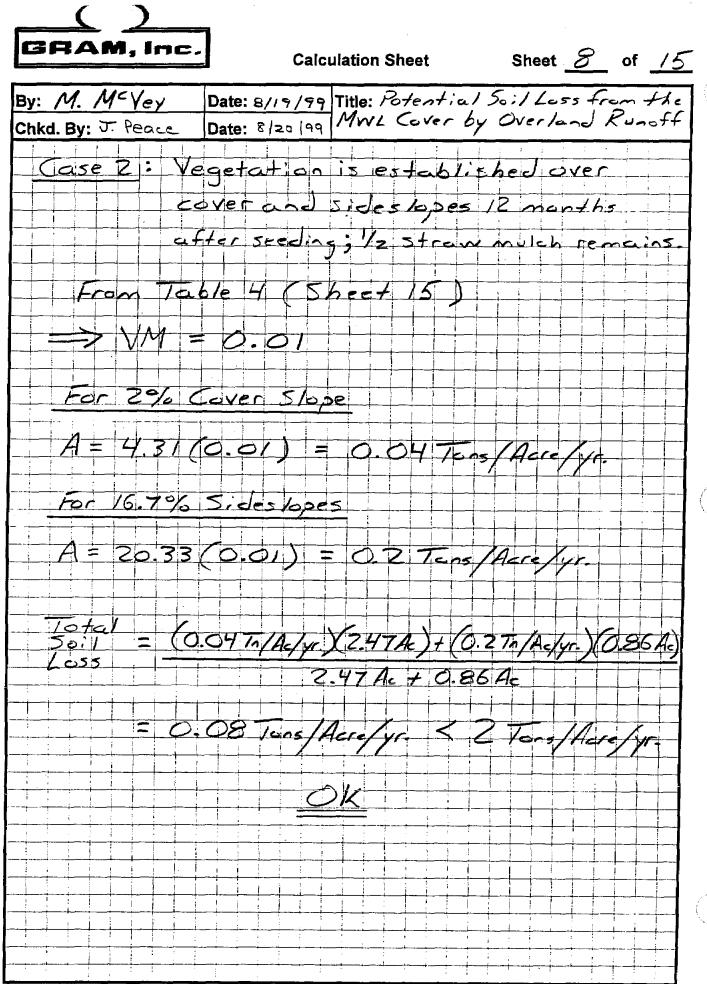


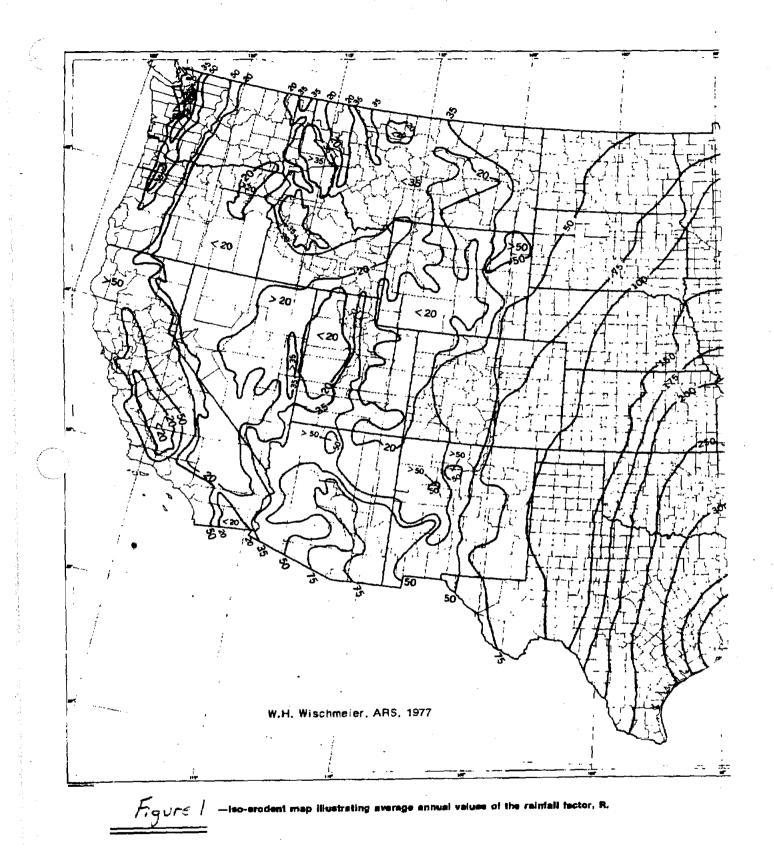

Calculation Sheet

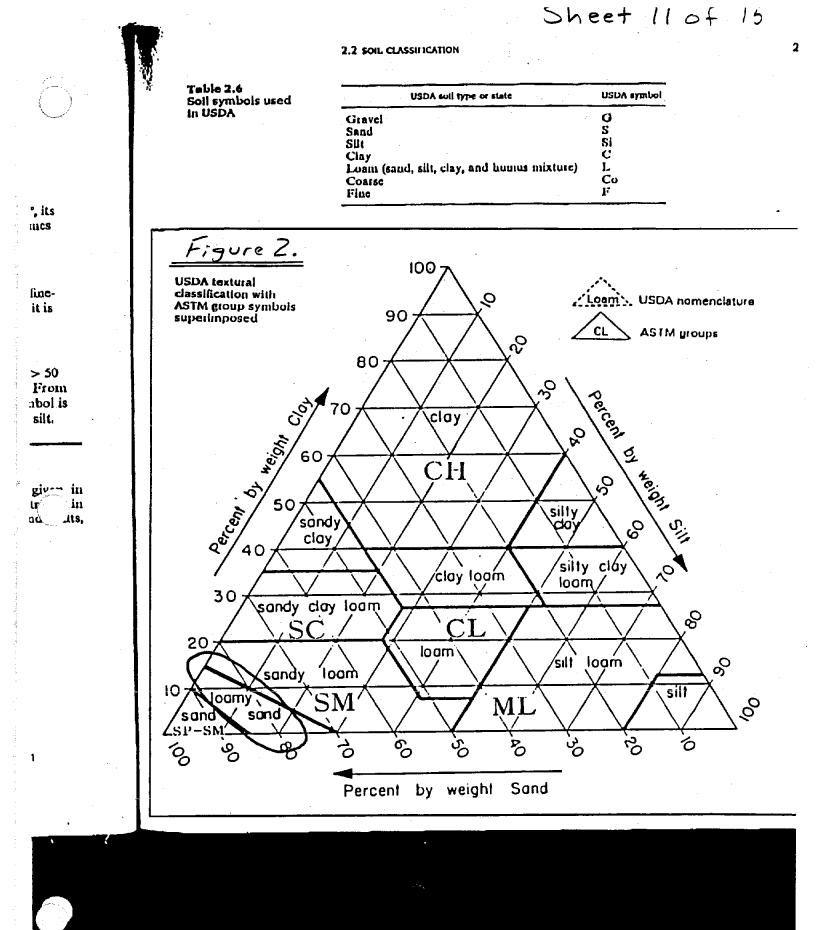

Sheet / of 15










Sheet 9 of 15

LCATION Supposite Hative Soit Native Soit Subgrade Soit Subgrade Soit Subgrade Soit Subgrade Soit P2A P2A P2A P2A P2A P2A P2A P2A P2A			Ć
DEPTH 1.0'	-		
W St. St	DATE: _05/17/09	S .ON EOL	able
T I I I I I I I I I I I I I I I I I I I	bo//1	<u>9-519-001154</u>	
		101154	11
8 X X X X X X X X X X X X X X X X X X X			
E 2 2 H 2 2 K K 6 K 2 K 5 K 2 K E 2 2 K K 6 K 2 K 5 K 2 K 5 K 2 K 4 K 6 K 7 K 7 K 7 K 7 K 7 K 7 K 7 K 7 K 7			
			TABU
			LATION
$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$			TABULATION OF TEST RESULTS
97 97<			RESULT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	
	Souso	PROJE	
	SOURCE : SNI	CL: 17	
		ed Hast	
		<u>e Land</u> i	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		PROJECT: Mixed Waste Landfill Cover	

15

Sheet 10

Chapter 12 / Caps

Sheet 12 of 15

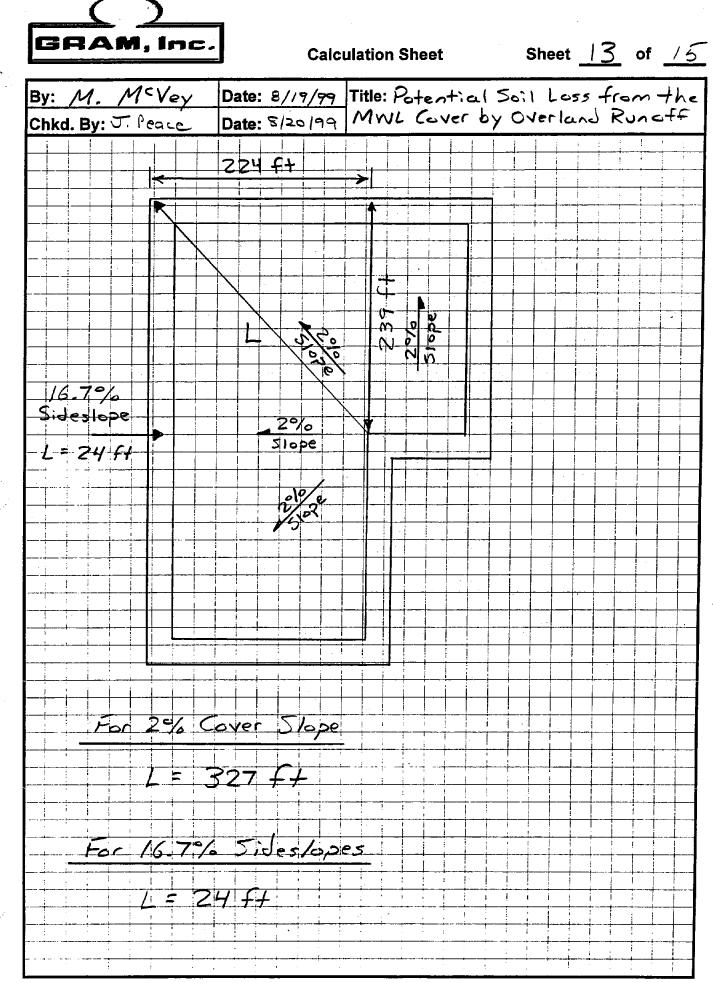
Example 12.3

A landfill in south New Jersey is designed to have a cover with a slope of 5% of a top plateau extending from a central ridge (high point) for a distance of 300 ft. Beyond this distance, the cover slopes down to the toe at a grade of 1V on 4H. The upper cover component is loamy sand with 2% organic content. Grass is the only means of erosion control. Determine the expected soil loss from sheet flow.

Solution: From Figure 12.7, R = 200. From Table 12.9, K = 0.1. From Eq. 12.21:

LS (top plateau), m = 0.4

 $LS = (300/72.6)^{0.4}(65 \times 25 + 450 \times 5 + 650)/(25 + 10,000) = 0.794$ LS (side slope), m = 0.6


 $LS = (500/72.6)^{0.6}(65 \times 625 + 450 \times 25 + 650)/(625 + 10,000) = 15.73$ To determine the soil loss, we begin by using Eq. 12.20 for the top plateau:

A = 200(0.1)(0.79)(VM) = 15.8(VM)

From Table 12.8, the VM factors are 0.4, for grass seedings less than 2 months old, 0.05 for those 2 to 12 months old, and 0.01 for those over 12

pproximate values of		ORC	ANIC MATTER CON	TENT
actor K for USDA extural classification	Texture class	<0.5% K	2% K	4% K
	Sand	0.05	0.03	0.02
	Fine sand	0.16	0.14	0,10
	Very fine sand	0.42	0.36	0.28
	Loamy sand	0.12	0.10	0.08
-	Loamy fine sand	0.24	0.20	0.16
>	Loamy very fine sand	0.44	0.38	0.30
	Sandy loam	0.27	0.24	0 19
	FIRE sanuy toam	0.35	0.30	0.24
	Very fine sandy loam	0.47	0.41	0,33
	Loam	0.38	0.34	0.29
	Silt loam	Q.48	0.42	0.33
	Silt	0.60	0.52	0.42
	Sandy clay loam	0.27	Ū.25	0.21
	Clay loam	0,28	0.25	0.21
	Silty clay loam	0.37	0.32	0.26
	Sandy clay	0.14	0.13	0.12
	Silty clay	0.25	0.23	0.19
	Clay		0.13-0.29	

358

Staw or hay mulches applied to stop construction slopes and not tied to the soil by mcharing and tacking equipment may be less effective than equivaicut mulch rates on cropisud. In Indiana, tents on a 20% slope of acalped subucit, a 2.3-1 arts of unanchared storw mulch allowed soil losses of 12 t/A when 5 in. of simulated esin was applied at 2.5 in./hr on a 35-h plot (Wischmeier and Mayor, 1973). There was evidence of crosion from flow benesith the storw. Mulches of crushed stone at (35 or store 1/A, or wood chips \$17 or more 1/A, were more effective.

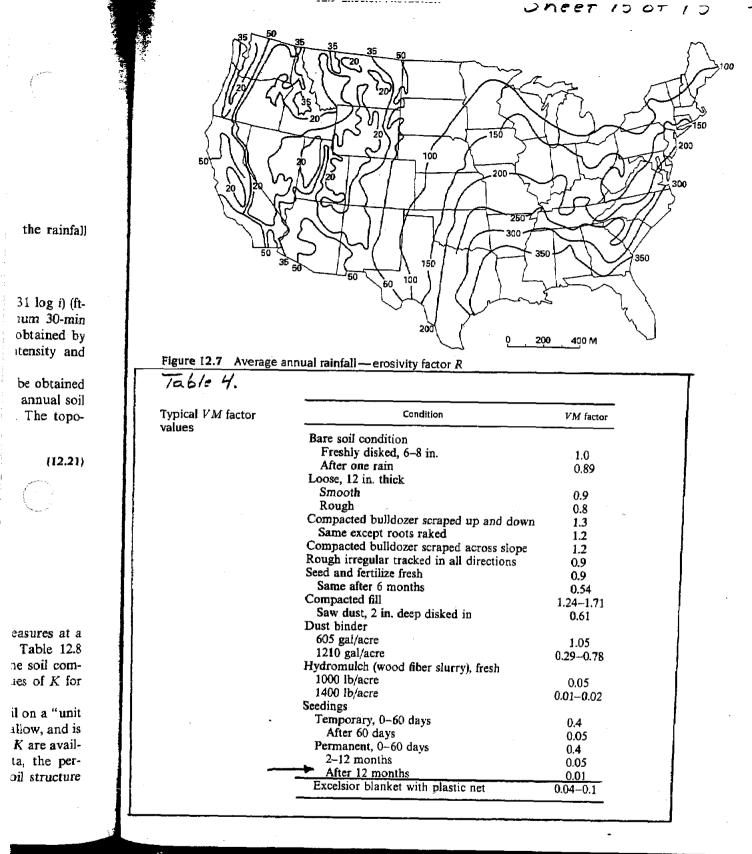
Table IV presents approximate C values for strue, crushed stone, and woodchip mulches on construction slopes where no canopy cover exists, and also shown the maximum slope lengths on which these values may be assumed to be applicable.

Soil loss ratios for many conditions on SLB, construction, and developmental areas can be obteneod from Table IV if good judgment is continued in comparing the surface conditions with those of specified agricultural conditions. Time intervals analogous to cropstage periods will be defined to begin and end with successive construction or managreement activities that appreciably change the surface conditions.

The observed soil loss ratios for given conditions othen yaried subsentially from year to year because of influence of unpredictable modom variables and experimental error. The percentages listed for Table V are the best svailable averages for a wide variety of specified agricultural conditions, only a few of which might be applicable to SLB systems. To make the table inclusive enough for general field wie, expected antios had to be computed for cover, senidue, and management combinations that were not directly reprisented in the plot data. This was done by using empirical relationships of soil lowes to the subfactors and interactions discussed in the preceding subsection. The user should recognize that the mbulated percentages are subject to appreciable caperimental error and could be improved through additional research. However, because of the large volume of data coordinand in developing the table, the listed values should be sear enough to the true averages to provide highly valuable pisoning and mositoring guidelines. A satio derived locally from 1year sainfall anomistor tests on a few plots would not necessarily more socurately represent the true average for that locality. Small samples are more subject to bits by stadom variables and experimental ector than are larger samples.

Table 3.

Sheet 14 of 15

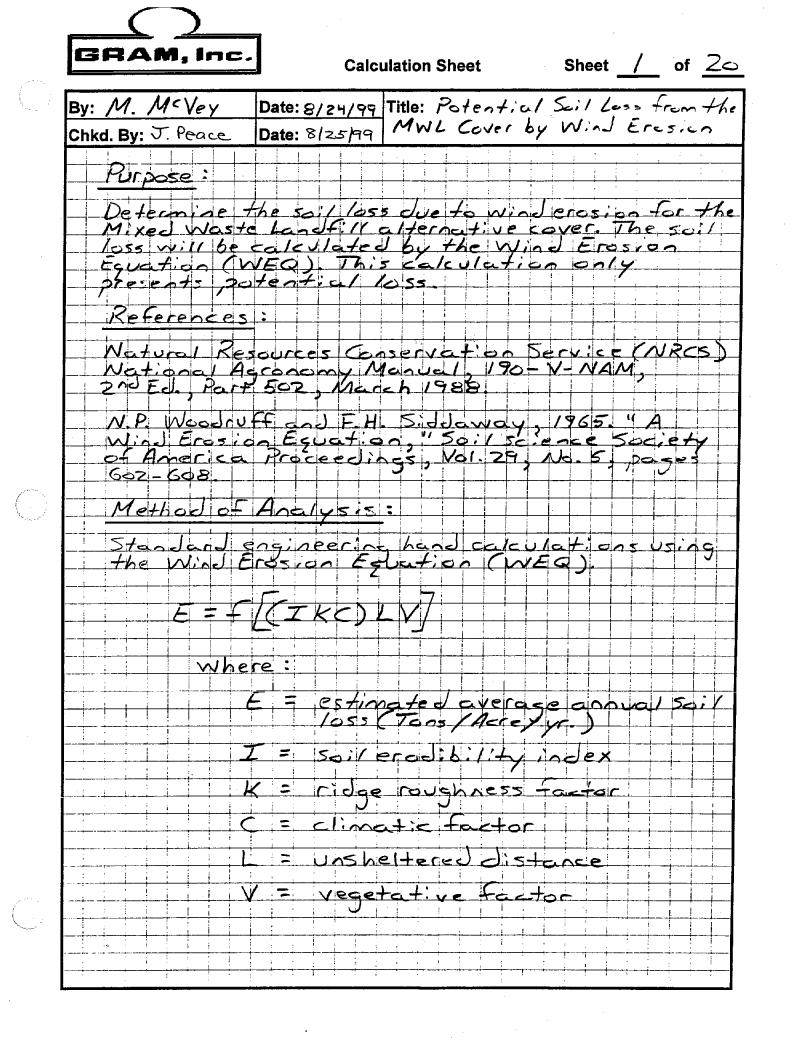

MULCH FACTORS AND LENGTH LIMITI FOR CONSTRUCTION SLOPES

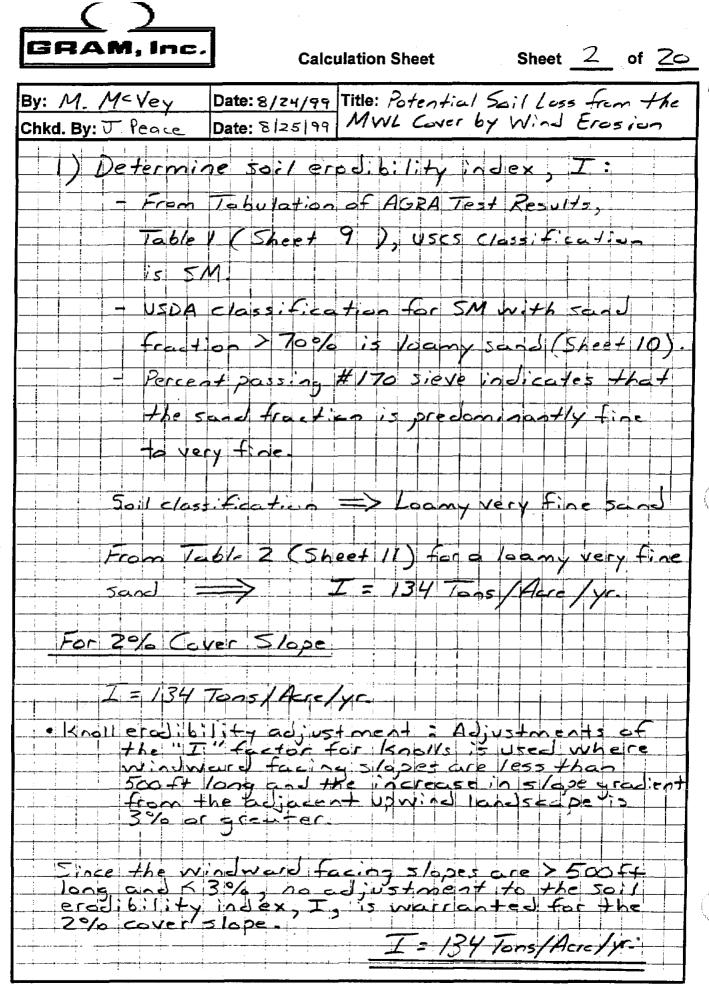
Type of Malch	Maich Just: (Tons/Aart)	Land Shipe (%)	Puctur C	
None	Ð	a II	10	
Stow or hay,	1.0	1-5	0.20	1
tind down by	1.0	6-10	0.20	1
Aschoome and				
tacking	1.5	1-5	0.12	3
equipment	1.5	6-10	0.12	Ĩ
2% Cover-	20	1.5	DD6	- Ă
Slape	2.0	6-10	0.06	2
Jiepe	20	11-15	0.07	1
11 701 -	2.0	16-20	11.0	1
16.7%	2.0	21-25	0.14	_
SidesTopes	7.0	26-33	0.17	
	20	34-50	0,20	
Cruthed stone,	135	كأك	105	2
× to it/it	135	16-20	0.05	<u>_</u>
	135	21-33	0.05	· · ·
	135	34-50	- 500 - 1	n.
	240	Qi	0.02	3
	240	21-33	0.03	3
	240	14-50	0.02	1
Wood chips	. 7	<16	0.05	
TOOLEUpe	4	16-20	0.06	
	12	<16	0.05	1
	12	16-20	0.05	ž
	12	21-33	8.05	
	ä	<16	0.02	2
	23	16-20	4.02	Ē
	ž	21-33	0.02	ū
	***	\$4.50	0.02	

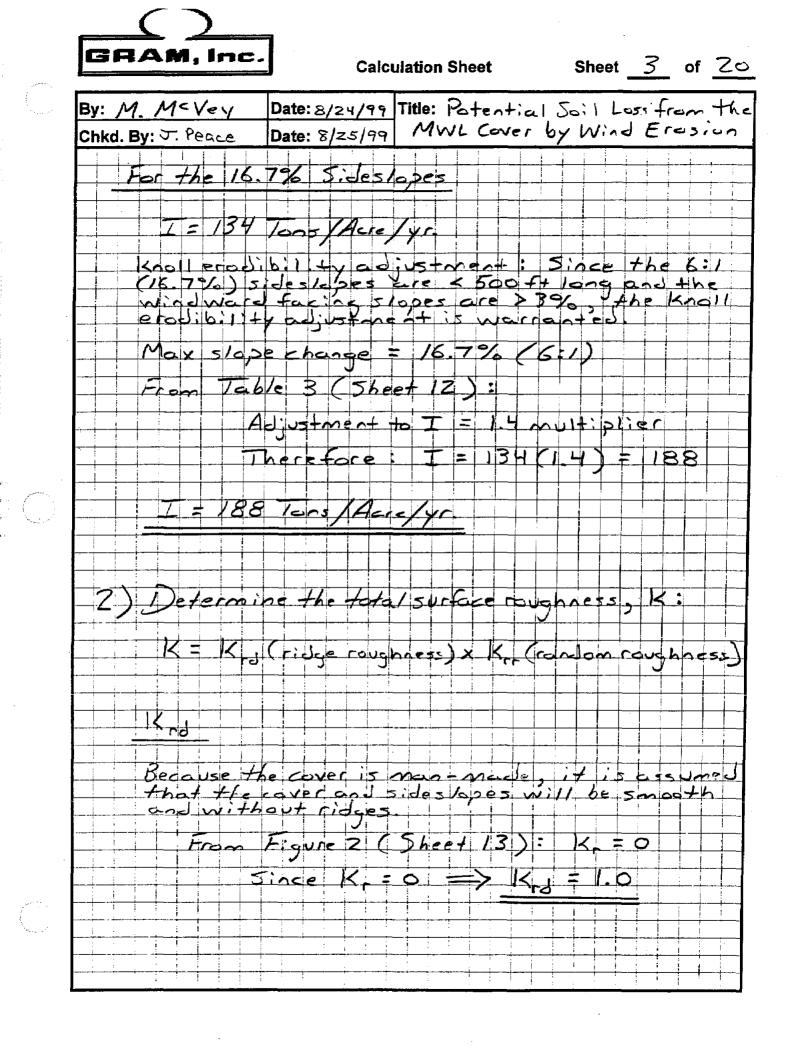
Prom Moyer and Parts (1976). Developed by an integrated workshop group on the basis of field experience a familied superious data.

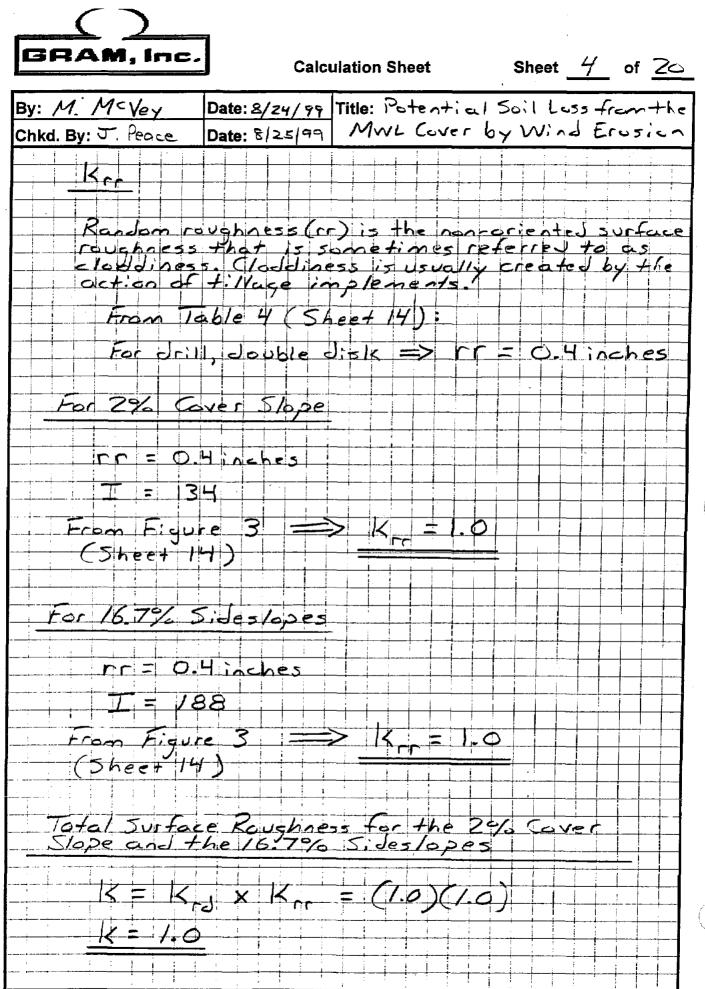
"Maximum slope length for which the specified mulch a is considered effective. When this limit is encoused, eithe higher application rate or mechanical shortening of 1 effective slope length is supplied.

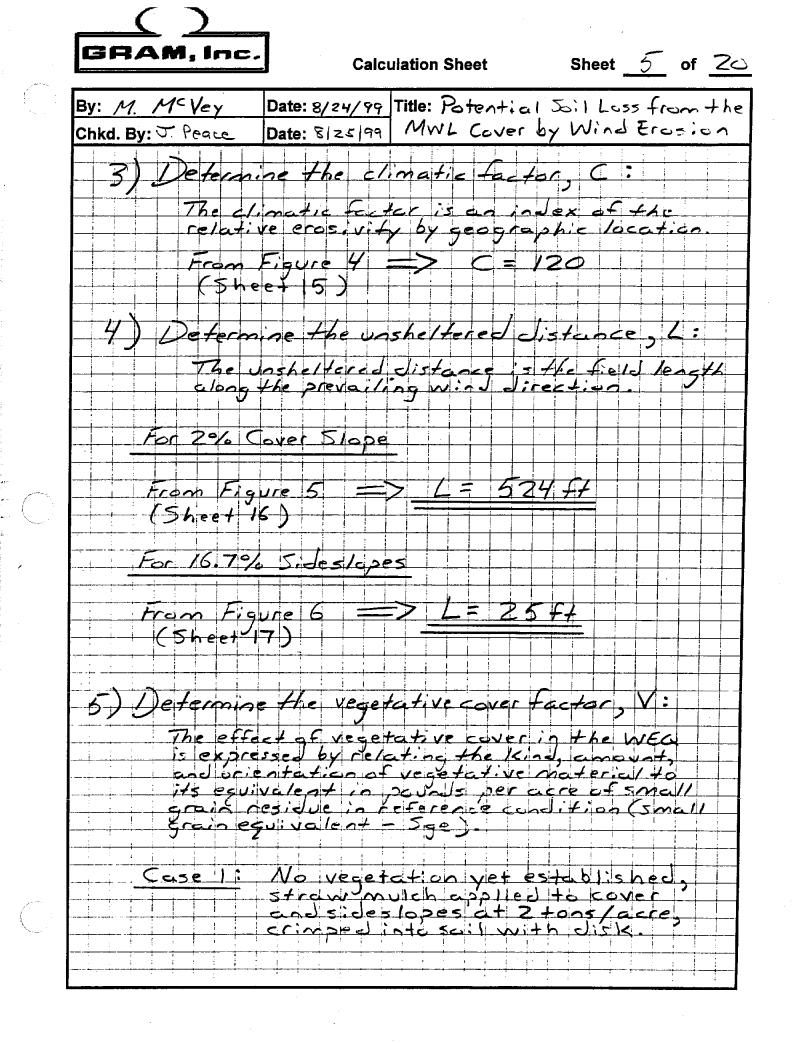
Whith the sites of hery match is not exchanged to the wold, whites an moderate or some slopes of soils having K vak greater than 0.30 should be taken at double the values giv in this table.

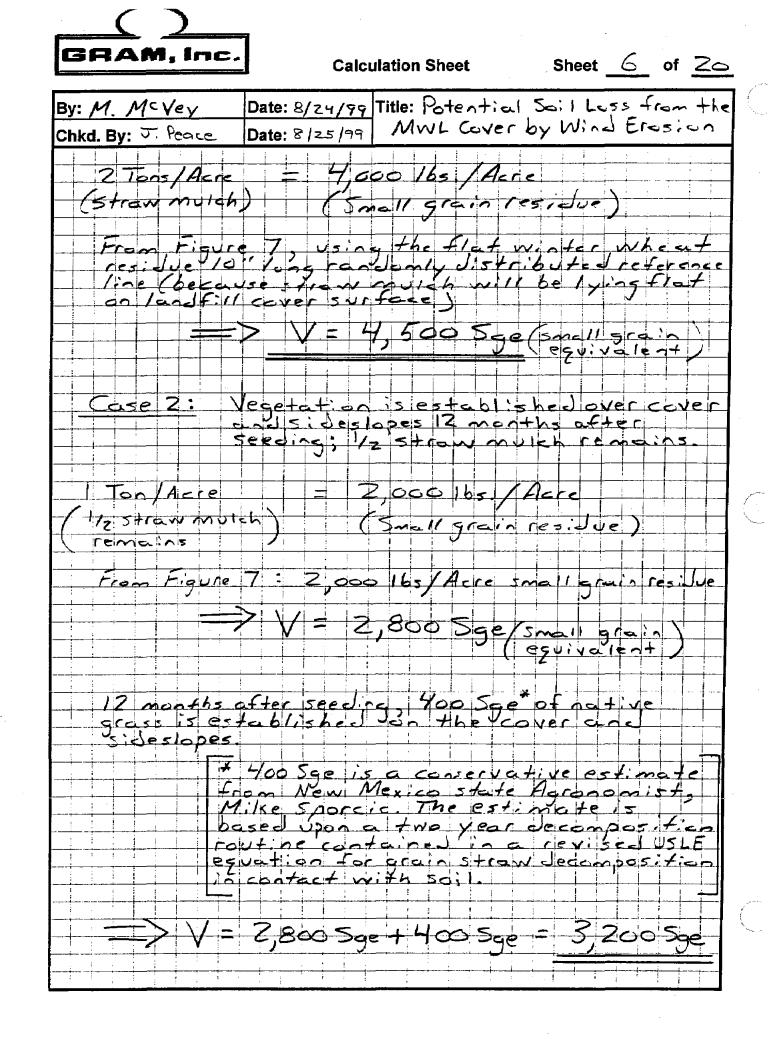

 $S(z) \geq 0$

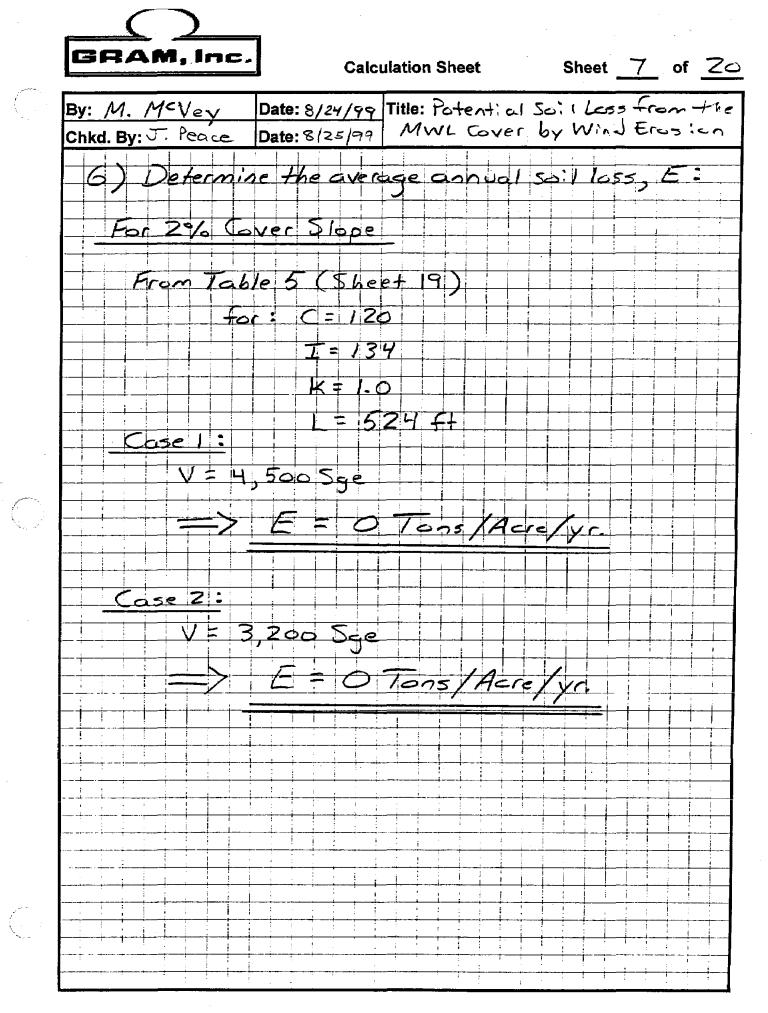

Attachment 2

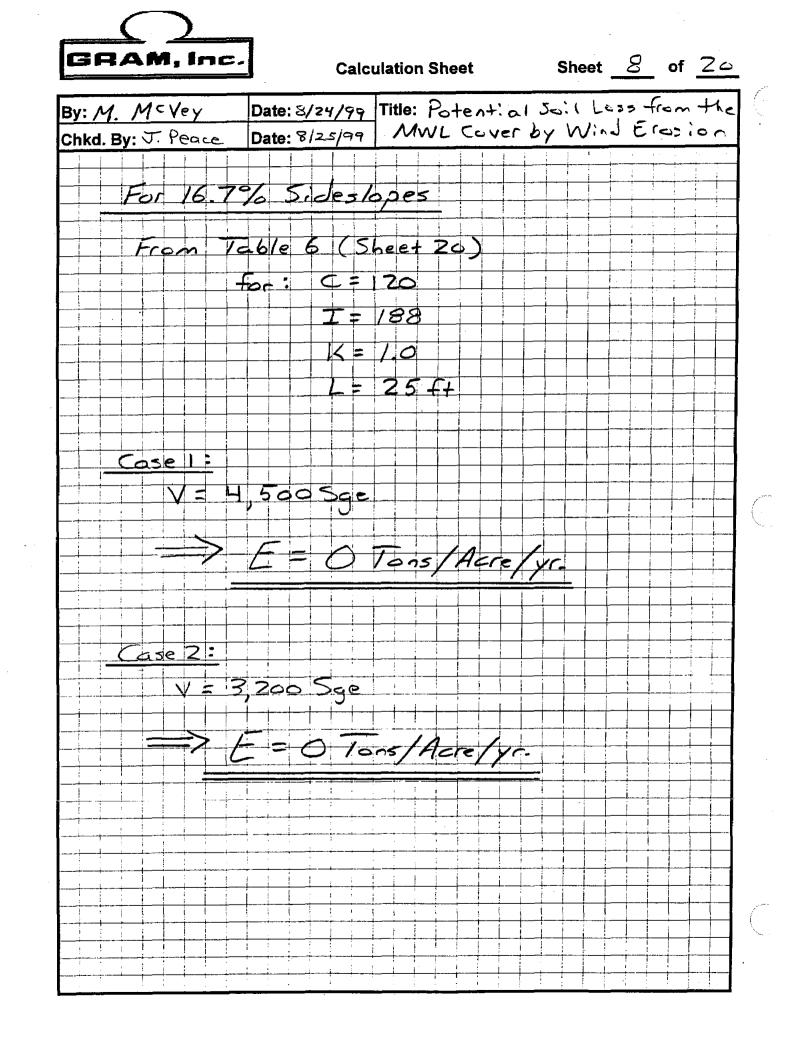

Potential Soil Loss


From the MWL Cover


By Wind Erosion







	•														-	- •	,	_	
		PZE	77	AZd	P2A	PZA	Subgrade Soil	Subgrade Soil	Subgrade Soll	Hative Soil	Native Soil	Native Soil	Composite Mul-18	Corposite Hul-Al	LOCATION				
		1.0	0.61	1.71	1.51	0.61	3 of 3	2 of 3	1 of 3	3 of 3	2 of 3	1 of 3	~	12-•0	DEPTH (ft.)		.		
	M δ	AL AL	SH-SC	Ł	S.	뚌	SK	¥	SH	¥	SH-SC	¥	SM	¥	CLASS		DAIE:_05/17/99	JOB NO. <u>9-519-001154</u>	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
	2	. 17	ដ	۶.	М	₹	2	N	ЧΥ	M	22	₹	N.	VX.	F		17/99	<u>0-615-</u>	1
		Ą	7	ł	Ą	NP	Ę	Ϋ́	Ę	Ę	٥	zş	NP	Ŋ	2			01154	1 1 1 1
	\checkmark	59	37	25	28	43	27	8	82	28	.31	26	55	58	200				
	r v	67	ć2	33	36	43	3	36	6	38	42	z	35	¢,	170				_
	Silty	83	70	19	63	2	69	67	69	8	70	68	56	82	100				•
	Silfy Sand USC Loany Very Fine	8	80	ส	ы	82	75	ы	75	8	Я	74	ъ	8	80 SIE				
•		56	88	58	81	88	78	76	78	70	02	87	79	87	JE ANALYS 70				
-	Kush C	97	97	94	۶ ۲	96	8	81	82	Ħ	84	8	87	63	SIEVE ANALYSIS - ACCUM. 7 60 70 40 10				
	JI S	8	100	8	98	66	16	16	F.6	57	91	ŝ	SI	55	עא, א פא 10				
		100			8	100	\$	8	8	56	96	2	\$	36	E PASSING		Sourc	PROJE	
	f l				รี		ī	8	\$\$	97	98	97	100	8.	3/8		SOURCE: SNL	CT: Mux	
•			·					100	Ĩ	ē	Ĭ	ĬØ		100	-1/2			ed Hast	
A (≦															3/4			e Landf	
SHA Ea	USDA	5.9	12.0	7.3	2.1	13.1	7.3	6.6	8.4	6.5	6.2	4.8	4.3	4.5	HOIST.			PROJECT: Mixed Waste Landfill Cover	
rth & En	V	4575	4574	4573	4572	4571	4570	6957	4568	4567	4566	4565	4560	4557	LAB NO.				
AGRA Earth & Envernmentr'	•														, , ,				

Contraction and the second seco

TABULATION OF TEST RESULTS

1 2010 1.

UNRET IU OF 20

Table 2.6 Soll symbols used in USDA USDA soil type or state USDA symbol Gravel G Sand s SiCL Silt Clay Loam (sand, silt, clay, and humus mixture) Coarse Co Fine F . (3)°, its somes Figure 1. 100 **USDA** textural . is fineclassification with 0 ¿Loam USDA nomenclatura ace it is ASTM group symbols 90 superimposed CL ASTM gloups ŝ 80 LL > 50percent by weight)H. From 30 symbol is 30 70 nic silt. clay Cercent of the Oh 00 60 H are given in llustrated in silty sands, silts, sondy S. do So clay silty clay clay loam loam 30 sandy clay loam 80 S 20 loom silt loam *0*б sandy loam 10 silt oamy SM 00 00 MI sond 'sand (sp-sm . 60 ŝ 20 ىن 20 is O ي 6 5.001 C Percent Sand by weight

2.2 SOIL CLASSIFICATION

.

TABLE 2.

WIND ERODIBILITY GROUPS and SOIL ERODIBILITY INDEX

Sheet 11 of 20

Predominant Soil Texture Class	Wind Erodibility	Soil Erodibility
of Surface Layer	Group (WEG)	Index (I)
		(Tons/Acre/Year)
Very fine sand, fine sand, sand, or coarse sand	1	310 ²
		250
		220
		180
		160
oamy very fine sand, loamy fine sand,	2	134
oamy sand, loamy coarse sand,		
r sapric organic soil materials		•
· ·		•
ery fine sandy loam, fine sandy loam, sandy	3	86
oam, or coarse sandy loam		
-		
Clay, silty clay, noncalcareaous clay loam, or	4	86
ilty clay loam with more than 35 % clay		
Calcareous loam and silt loam, or calcareous clay	4L	86
oam and silty clay loam		
		•
Noncalcareous loam and silt loam with less than	5	56
20% clay, or sandy clay loam, sandy clay, and		
emic organic soil materials		
Noncalcareous loam and silt loam with more	. 6	48
han 20% clay, or non-calcareous clay loam with		
ess than 35% clay		
1977 1 1 1977 1 1 1 1 1 1 1 1 1 1 1 1 1	-	
Silt, non-calcareous silty clay loam with less than	7	38
5% clay, and fibric organic soil material		
Tails not associatible to mind encoder deside	Ô	
Soils not susceptible to wind erosion due to coarse surface fragments or wetness	8	

The soil erodibility index is based on the relationship of dry soil aggregates greater then .84 mm to

potential soil erosion. ² The "1" factors for WEG 1 vary from 160 for coarse sands to 310 for very fine sands. Use an I of 220 as an average figure. For coarse sand with gravel, use a low figure. For no gravel and very fine sand, use a higher figure.

8

Slope Change in Prevailing Wind Erosion Direction	A Knoll Adjustment to I	B Increase at Crest Area Where Erosion Is Most Severe
3	1.3	1.5
4	1.6	1.9
. 5	1.9	2.5
6	2.3	3.2
8	3.0	4.8
10	3.6	6.8
10 - 15*	2.0	
5.7% (* 15-20	1.4	-
20+	1.0	

To adjust the "I" factor for knoll erodibility the "I" factor for the soil on the windward facing part of the knoll is multiplied by the factor shown in Column A of Table 3. Column B in the same table shows the increased erodibility near the crest (upper 1/3 of the slope), where the effect is most severe. This adjustment applies only to that portion of the knoll exposed to the prevailing wind erosion direction.

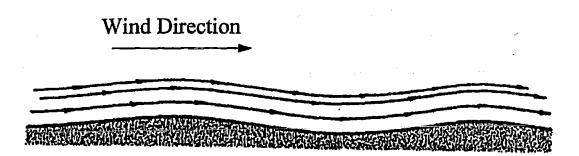
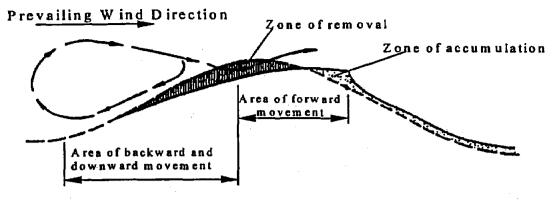
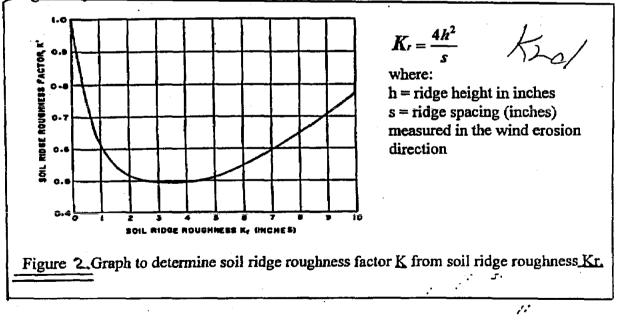



Figure 4. Wind Flow Pattern over Level to Rolling Terrain

On level fields or on rolling terrain where slopes are longer and slope changes are less than those used to describe a knoll, the wind flow pattern tends to conform to the surface and do not exhibit the flow constriction typical of knolls, as illustrated in Figure 4.

11.

Sheet 13 of 20

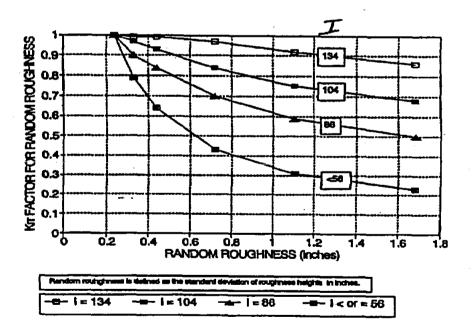

Soil Movement on Ridges

Information Needed to Determine the "K" Factor for Ridge Roughness

- Angle of Deviation
 - Prevailing wind erosion direction
 - * Ridge-furrow direction
- Ridge Height
- Ridge Spacing

The "K" factor is based on a standard ridge height to ridge spacing ratio of 1:4. Calibrations of wind tunnel studies led to the development of this curve that relates ridgefurrow roughness to the "K" factor.

This curve is the basis for the "K" factor tables found in Exhibit 502.62 in the National Apronomy Manual and in the Field Office Technical Guide.



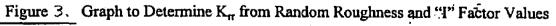
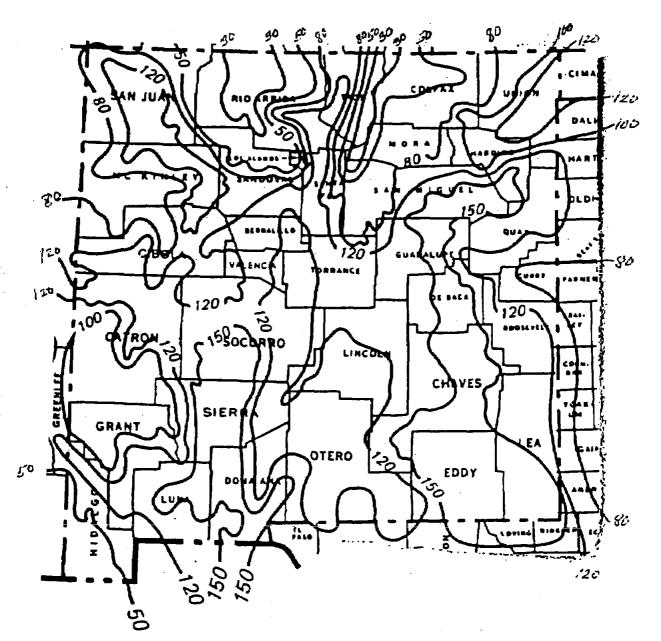

Field	Random	Field	Random
Operations	Roughness (in)	<u>Operations</u>	
		-	Roughness (in)
Chisel, sweeps	1.2 ²	Fertilizer applicator, anhydrous knife	0.6
Chisel, straight points	1.5	Harrow, spike	0.4
Chisel, twisted shovels	1.9	Harrow, tine	0.4
Cultivator, field	0.7	Lister	0.8
Cultivator, row	0.7	Manure injector	1.5
Cultivator, ridge till	0.7	Moldboard plow	1.9
Disk, one way	1.2	Mulch treader	0.4
Disk, heavy plowing	1.9	Planter, no-till	0.4
Disk, tandem	0.8	Planter, row	0.4
- Drill, double disk	0.4	Rodweeder	0.4
Drill, deep furrow	0.5	Rotary hoe	0.4
Drill, no-till	0.4	Vee ripper	1.2
Drill, no-till into sod	0.3		

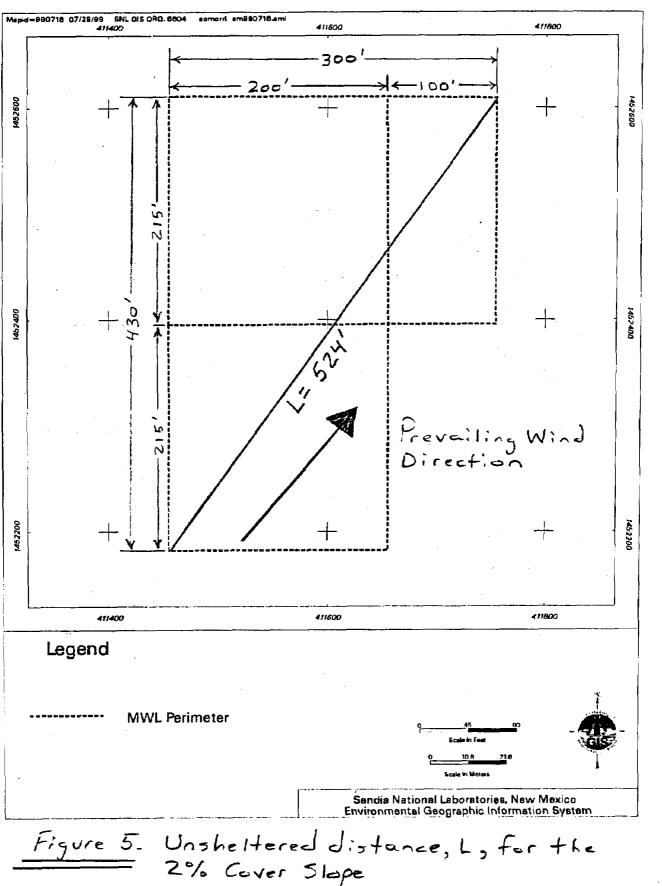
Table 4. Random Roughness Values for "Core" Field Operations¹

¹ These values are typical and representative for operations in medium textured soils tilled at optimum moisture conditions. Many of the machines may vary by cropping region, farming practice, soil texture, or other conditions.


² These values may be used in WEQ for random roughness. However, the use of the random roughness photos in Agriculture Handbook 703 is preferable.

25

Sheet 15 of 20


1.1470 (1.14

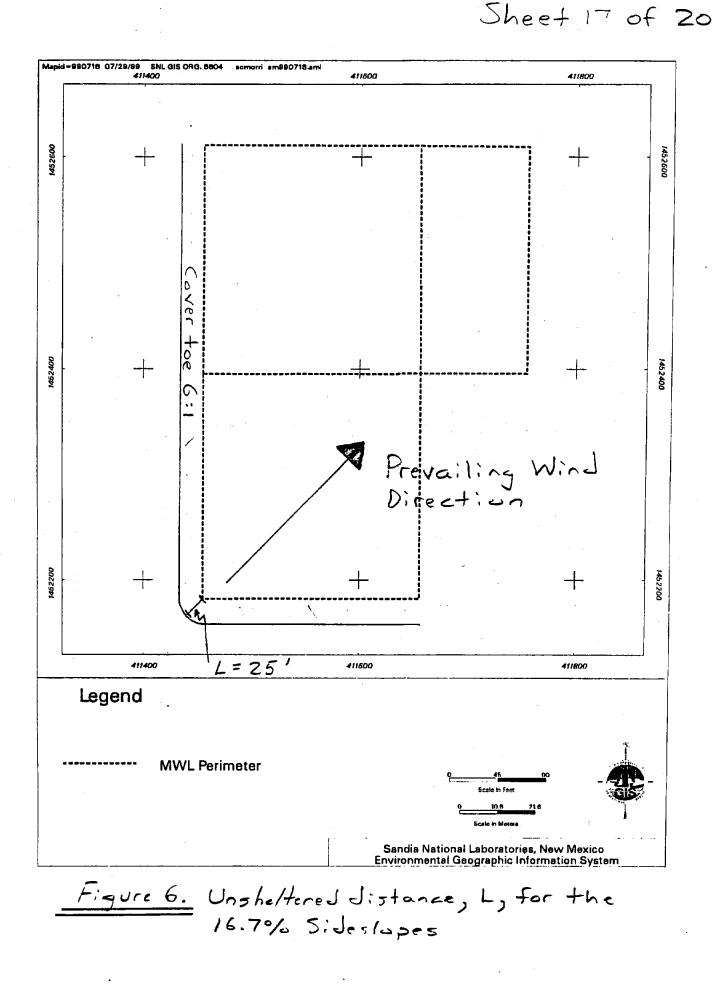

Annual "C" Values Of The Wind Erosion Equation New Mexico

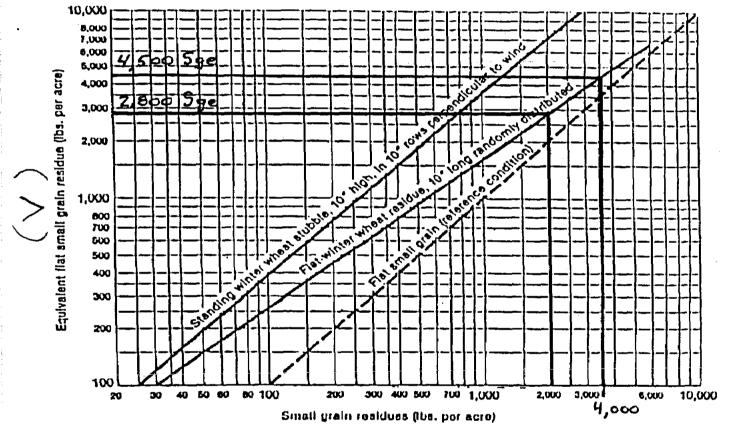
Figure 4.

39

Sheet 16 of 20

.

Sheet 18 of Zo


GETATIVE COVER "V"

ad Erosion Equation E = f[(1KC)LV]

retative Cover Factor "V"

effect of vegetative cover in the Wind Erosion Equation is expressed by relating the . 1, amount, and orientation of vegetative material to its equivalent in pounds per acre of all grain residue in reference condition (SGe).

Flat Small Grain Equivalents of Small Grain Healdues (Use for wheat, balley, rye and cats)

Reference condition - dry email grain stalks 10° long, lying list on the soil surface in 10° rows, rows perpendicular to wind strection, stalks oriented to wind strection. Gource: Lytes and Allison—Trans. ASAE 1981, 24 (2): 405-405.

fissidues are washed, all diled, and placed as described for wind tunnel lasts.

Figure 7.

e Reference Condition

term Flat Small Grain Equivalent (SGe) is based on a reference condition (dotted line
 Figure 6) developed from wind tunnel research. It is defined as:

10-inch stalks of small grain lying parallel to the wind arranged in rows

Table 5.

C=120, I=134, K=1.0

WIND EROSION EQUATION "C" FACTORS

NEW MEXICO

Sheet 19 of 20

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{SURFACE - K = 1.00} \\ (L) \\ (V)^{**} - FLAT SMALL GRAIN RESIDUE IN POUNDS PER ACRE \\ \hline \\ \text{UNSHELTERED} \\ \text{DISTANCE} & 0 & 250 & 500 & 750 & 1000 & 1250 & 1500 & 1750 & 2000 & 2250 & 2500 & 2750 \\ \hline \text{IN FEET} \\ 10000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ \hline \\ \text{6000} & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ \hline \\ \text{6000} & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ \hline \\ \text{6000} & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ \hline \\ \text{6000} & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ \hline \\ \text{2000} & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ \hline \\ \text{2000} & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ \hline \\ \text{2000} & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ \hline \\ \text{2000} & 153.2 & 137.4 & 116.2 & 95.5 & 65.4 & 45.4 & 27.4 & 17.1 & 10.8 & 5.8 & 3.2 & 0.7 \\ \hline \\ \text{800} & 151.0 & 135.3 & 114.3 & 93.7 & 64.0 & 44.3 & 26.6 & 16.5 & 10.5 & 5.5 & 3.0 & 0.6 \\ \hline \\ \text{524'} & 600 & 144.7 & 129.5 & 109.0 & B8.9 & 60.2 & 41.2 & 24.5 & 15.0 & 9.4 & 4.9 & 2.6 & 0.2 \\ \hline \\ \text{200} & 120.2 & 106.7 & 86.5 & 70.5 & 46.1 & 29.9 & 17.0 & 9.8 & 5.9 & 2.8 & 1.4 & 0.1 \\ 150 & 111.5 & 98.7 & 81.3 & 64.2 & 41.4 & 26.3 & 14.6 & 8.3 & 4.9 & 2.3 & 1.1 & 0.1 \\ 100 & 104.4 & 92.1 & 75.5 & 59.1 & 37.6 & 23.4 & 12.8 & 7.1 & 4.1 & 1.9 & 0.9 & 0.1 \\ \hline \\ \text{80} & 98.5 & 86.7 & 70.7 & 54.9 & 34.6 & 21.2 & 11.4 & 6.3 & 3.6 & 1.6 & 0.7 & 0.1 \\ \hline \\ \text{80} & 98.5 & 86.7 & 70.7 & 54.9 & 34.6 & 21.2 & 11.4 & 6.3 & 3.6 & 1.6 & 0.7 & 0.1 \\ \hline \\ \text{80} & 98.5 & 86.7 & 70.7 & 54.9 & 34.6 & 21.2 & 11.4 & 6.3 & 3.6 & 1.6 & 0.7 & 0.1 \\ \hline \\ \text{80} & 98.5 & 86.7 & 70.7 & 54.9 & 34.6 & 21.2 & 11.4 & 6.3 & 3.6 & 1.6 & 0.7 & 0.1 \\ \hline \\ \text{80} & 98.5 & 86.7 & 70.7 & 54.9 & 34.6 & 21.2 & 11.4 & 6.3 & 3.6 & 1.6 & 0.7 & 0.1 \\ \hline \\ \text{80}$	= 134
SURFACE - K = 1.00 (L) (V)** - FLAT SMALL GRAIN RESIDUE IN POUNDS PER ACRE (V)** - FLAT SMALL GRAIN RESIDUE IN POUNDS PER ACRE UNSHELTERED DISTANCE 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 IN FEET 10000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 8000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 4000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 3000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 3000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 153.2 137.4 116.2 95.5 65.4 45.4 27.4 17.1 10.8 5.8 3.2 0.7 800 151.0 135.3 114.3 93.7 64.0 44.3 26.6 16.5 10.5 5.5 3.0 0.6 524' >600 137.4 122.7 102.8 83.3 55.9 37.6 22.1 13.3 8.3 4.2 2.2 0.2 300 131.6 117.2 97.9 78.9 52.5 34.9 20.3 12.1 7.4 3.7 1.9 0.2 200 120.2 106.7 88.5 70.5 46.1 29.9 17.0 9.8 5.9 2.8 1.4 0.1 150 111.5 98.7 81.3 64.2 41.4 26.3 14.6 8.3 4.9 2.3 1.1 0.1 150 111.5 98.7 81.3 64.2 41.4 26.3 14.6 8.3 4.9 2.3 1.1 0.1 160 98.6 7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 88.7 77.7 62.8 48.2 29.7 17.7 9.3 4.9 2.8 1.2 0.4 0.0 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.3 1.0 0.3 40 77.5 67.5 54.0 40.7 24.5 14.0 7.1 3.6 2.0 0.7 0.0 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.3 1.0 0.3 40 77.5 67.5 54.0 40.7 24.5 14.0 7.1 3.6 2.0 0.7 0.0 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.3 1.0 0.3 40 77.5 67.5 54.0 40.7 24.5 14.0 7.1 3.6 2.0 0.7 0.0 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.3 1.0 0.3 40 77.5 67.5 54.0 40.7 24.5 14.0 7.1 3.6 2.0 0.7	- 134 3000 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
(L) (V)** - FLAT SMALL GRAIN RESIDUE IN POUNDS PER ACRE UNSHELTERED DISTANCE 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 IN FEET 10000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 B000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 6000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 3000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 3000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 3000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 <	3000 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
DISTANCE 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 IN FEET 10000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 8000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 6000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 3000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 3000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 150.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 150.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 151.0 135.3 114.3 93.7 64.0 44.3 26.6 16.5 10.5 5.5 3.0 0.6 600 144.7 129.5 109.0 88.9 60.2 41.2 24.5 15.0 9.4 4.9 2.6 0.2 300 131.6 117.2 97.9 78.9 52.5 34.9 20.3 12.1 7.4 3.7 1.9 0.2 200 120.2 106.7 88.5 70.5 46.1 29.9 17.0 9.8 5.9 2.8 1.4 0.1 150 111.5 98.7 81.3 64.2 41.4 26.3 14.6 8.3 4.9 2.3 1.1 0.1 100 104.4 92.1 75.5 59.1 37.6 23.4 12.8 7.1 4.1 1.9 0.9 0.1 80 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.2 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.8 1.2 0.4 0.0 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.8 1.2 0.4 0.0 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.9 0.7	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3
IN FEET 10000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 8000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 6000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 4000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 3000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 160.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 150.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 3.7 0.8 2000 150.8 144.5 122.7 101.4 70.1 49.4 30.1 19.0 12.2 6.6 0.7 0.8 2000 153.2 137.4 116.2 95.5 65.4 45.4 27.4 17.1 10.8 5.8 3.2 0.7 800 151.0 135.3 114.3 93.7 64.0 44.3 26.6 16.5 10.5 5.5 3.0 0.6 524' > 600 144.7 129.5 109.0 88.9 60.2 41.2 24.5 15.0 9.4 4.9 2.6 0.2 200 120.2 106.7 88.5 70.5 46.1 29.9 17.0 9.8 5.9 2.8 1.4 0.1 150 111.5 98.7 81.3 64.2 41.4 26.3 14.6 8.3 4.9 2.3 1.1 0.1 150 111.5 98.7 81.3 64.2 41.4 26.3 14.6 8.3 4.9 2.3 1.1 0.1 160 104.4 92.1 75.5 59.1 37.6 23.4 12.8 7.1 4.1 1.9 0.9 0.1 80 98.5 86.7 70.7 54.9 34.6 21.2 11.4 6.3 3.6 1.6 0.7 0.1 60 98.5 77.7 62.8 48.2 29.7 17.7 9.3 4.9 2.8 1.2 0.4 0.0 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.3 10.0 0.3 40 77.5 67.5 54.0 40.7 24.5 14.0 7.1 3.6 2.0 0.7 0.0 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.3 1.0 0.3 40 77.5 67.5 54.0 40.7 24.5 14.0 7.1 3.6 2.0 0.7 0.0 50 82.8 72.4 58.2 44.2 26.9 15.7 8.1 4.2 2.3 1.0 0.3 40 77.5 67.5 54.0 40.7 24.5 14.0 7.1 3.6 2.0 0.7 0.0 50 82.8 72.4 58.2 44.2 20.9 11.6 5.7 2.8 1.5 0.5 20 57.9 49.8 38.9 26.3 16.1 8.5 4.0 1.9 0.9 0.0 10 43.2 36.8 28.1 19.7 10.6 5.1 2.3 1.0 0.3 4 (E)* SOIL LOSS FROM WIND EROSION IN TONS PER ACRE PER YEAR JANUAR	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3
$ \begin{array}{c} 10000 \\ 160.8 \\ 144.5 \\ 122.7 \\ 101.4 \\ 70.1 \\ 49.4 \\ 30.1 \\ 19.0 \\ 12.2 \\ 6.6 \\ 3.7 \\ 0.8 \\ 6000 \\ 160.8 \\ 144.5 \\ 122.7 \\ 101.4 \\ 70.1 \\ 49.4 \\ 30.1 \\ 19.0 \\ 12.2 \\ 6.6 \\ 3.7 \\ 0.8 \\ 4000 \\ 160.8 \\ 144.5 \\ 122.7 \\ 101.4 \\ 70.1 \\ 49.4 \\ 30.1 \\ 19.0 \\ 12.2 \\ 6.6 \\ 3.7 \\ 0.8 \\ 4000 \\ 160.8 \\ 144.5 \\ 122.7 \\ 101.4 \\ 70.1 \\ 49.4 \\ 30.1 \\ 19.0 \\ 12.2 \\ 6.6 \\ 3.7 \\ 0.8 \\ 3000 \\ 160.8 \\ 144.5 \\ 122.7 \\ 101.4 \\ 70.1 \\ 49.4 \\ 30.1 \\ 19.0 \\ 12.2 \\ 6.6 \\ 3.7 \\ 0.8 \\ 3000 \\ 152.2 \\ 6.6 \\ 3.7 \\ 0.8 \\ 3000 \\ 160.8 \\ 144.5 \\ 122.7 \\ 101.4 \\ 70.1 \\ 49.4 \\ 30.1 \\ 19.0 \\ 12.2 \\ 6.6 \\ 3.7 \\ 0.8 \\ 3.8 \\ 3.2 \\ 0.7 \\ 3.0 \\ 0.8 \\ 3.8 \\ 3.2 \\ 0.7 \\ 3.8 \\ 3.8 \\ 3.2 \\ 0.7 \\ 3.8 \\ 3.8 \\ 3.2 \\ 0.7 \\ 3.8 \\ 3.8 \\ 3.2 \\ 0.7 \\ 3.8 \\ 3.8 \\ 3.2 \\ 0.7 \\ 3.8 \\ 3.8 \\ 3.2 \\ 0.7 \\ 3.8 \\ 3.8 \\ 3.2 \\ 0.7 \\ 3.8 \\ $	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3
$\begin{array}{c} 8000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ 6000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ 4000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ 3000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ 2000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ 2000 & 153.2 & 137.4 & 116.2 & 95.5 & 65.4 & 45.4 & 27.4 & 17.1 & 10.8 & 5.8 & 3.2 & 0.7 \\ 800 & 151.0 & 135.3 & 114.3 & 93.7 & 64.0 & 44.3 & 26.6 & 16.5 & 10.5 & 5.5 & 3.0 & 0.6 \\ 600 & 144.7 & 129.5 & 109.0 & 80.9 & 60.2 & 41.2 & 24.5 & 15.0 & 9.4 & 4.9 & 2.6 & 0.2 \\ 400 & 137.4 & 122.7 & 102.8 & 83.3 & 55.9 & 37.6 & 22.1 & 13.3 & 8.3 & 4.2 & 2.2 & 0.2 \\ 300 & 131.6 & 117.2 & 97.9 & 70.9 & 52.5 & 34.9 & 20.3 & 12.1 & 7.4 & 3.7 & 1.9 & 0.2 \\ 200 & 120.2 & 106.7 & 88.5 & 70.5 & 46.1 & 29.9 & 17.0 & 9.8 & 5.9 & 2.8 & 1.4 & 0.1 \\ 150 & 111.5 & 98.7 & 81.3 & 64.2 & 41.4 & 26.3 & 14.6 & 8.3 & 4.9 & 2.3 & 1.1 & 0.1 \\ 100 & 104.4 & 92.1 & 75.5 & 59.1 & 37.6 & 23.4 & 12.8 & 7.1 & 4.1 & 1.9 & 0.9 & 0.1 \\ 60 & 98.5 & 86.7 & 70.7 & 54.9 & 34.6 & 21.2 & 11.4 & 6.3 & 3.6 & 1.6 & 0.7 & 0.1 \\ 60 & 88.7 & 77.7 & 62.8 & 48.2 & 29.7 & 17.7 & 9.3 & 4.9 & 2.8 & 1.2 & 0.4 & 0.0 \\ 50 & 82.8 & 72.4 & 58.2 & 44.2 & 26.9 & 15.7 & 8.1 & 4.2 & 2.3 & 1.0 & 0.3 \\ 40 & 77.5 & 67.5 & 54.0 & 40.7 & 24.5 & 14.0 & 7.1 & 3.6 & 2.0 & 0.7 & 0.0 \\ 50 & 82.8 & 72.4 & 58.2 & 44.2 & 26.9 & 15.7 & 2.8 & 1.5 & 0.5 \\ 20 & 57.9 & 49.8 & 38.9 & 28.3 & 16.1 & 8.5 & 4.0 & 1.9 & 0.9 & 0.0 \\ 10 & 43.2 & 36.8 & 28.1 & 19.7 & 10.6 & 5.1 & 2.3 & 1.0 & 0.3 \\ 40 & 77.5 & 67.5 & 54.0 & 40.7 & 24.5 & 14.0 & 7.1 & 3.6 & 2.0 & 0.7 & 0.0 \\ 10 & 43.2 & 36.8 & 28.1 & 19.7 & 10.6 & 5.1 & 2.3 & 1.0 & 0.3 \\ 40 & 77.5 & 67.5 & 54.0 & 40.7 & 24.5 & 14.0 & 7.9 & 0.9 & 0.0 \\ 10 & 43.2 & 36.8 & 28.1 & 19.7 & 10.6 & 5.1 & 2.3 & 1.0 & 0.3 \\ 40 & 77.5 & 67.5 & 50.1 & LOSS & FROM WIND & EROSION IN TONS & FER ACRE & FER YEAR $	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3
$ \begin{array}{c} 6000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ 4000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ 3000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ 2000 & 160.8 & 144.5 & 122.7 & 101.4 & 70.1 & 49.4 & 30.1 & 19.0 & 12.2 & 6.6 & 3.7 & 0.8 \\ 1000 & 153.2 & 137.4 & 116.2 & 95.5 & 65.4 & 45.4 & 27.4 & 17.1 & 10.8 & 5.8 & 3.2 & 0.7 \\ 800 & 151.0 & 135.3 & 114.3 & 93.7 & 64.0 & 44.3 & 26.6 & 16.5 & 10.5 & 5.5 & 3.0 & 0.6 \\ 600 & 144.7 & 129.5 & 109.0 & 88.9 & 60.2 & 41.2 & 24.5 & 15.0 & 9.4 & 4.9 & 2.6 & 0.2 \\ 400 & 137.4 & 122.7 & 102.8 & 83.3 & 55.9 & 37.6 & 22.1 & 13.3 & 8.3 & 4.2 & 2.2 & 0.2 \\ 300 & 131.6 & 117.2 & 97.9 & 78.9 & 52.5 & 34.9 & 20.3 & 12.1 & 7.4 & 3.7 & 1.9 & 0.2 \\ 200 & 120.2 & 106.7 & 88.5 & 70.5 & 46.1 & 29.9 & 17.0 & 9.8 & 5.9 & 2.8 & 1.4 & 0.1 \\ 150 & 111.5 & 98.7 & 81.3 & 64.2 & 41.4 & 26.3 & 14.6 & 8.3 & 4.9 & 2.3 & 1.1 & 0.1 \\ 100 & 104.4 & 92.1 & 75.5 & 59.1 & 37.6 & 23.4 & 12.8 & 7.1 & 4.1 & 1.9 & 0.9 & 0.1 \\ 80 & 98.5 & 86.7 & 70.7 & 54.9 & 34.6 & 21.2 & 11.4 & 6.3 & 3.6 & 1.6 & 0.7 & 0.1 \\ 60 & 88.7 & 77.7 & 62.8 & 48.2 & 29.7 & 17.7 & 9.3 & 4.9 & 2.8 & 1.2 & 0.4 & 0.0 \\ 50 & 82.9 & 72.4 & 58.2 & 44.2 & 26.9 & 15.7 & 8.1 & 4.2 & 2.3 & 1.0 & 0.3 \\ 40 & 77.5 & 67.5 & 54.0 & 40.7 & 24.5 & 14.0 & 7.1 & 3.6 & 2.0 & 0.7 & 0.0 \\ 30 & 69.3 & 60.1 & 47.7 & 35.4 & 20.9 & 11.6 & 5.7 & 2.8 & 1.5 & 0.5 \\ 20 & 57.9 & 49.8 & 38.9 & 28.3 & 16.1 & 8.5 & 4.0 & 1.9 & 0.9 & 0.0 \\ 10 & 43.2 & 36.8 & 28.1 & 19.7 & 10.6 & 5.1 & 2.3 & 1.0 & 0.3 & 4 \\ \end{array}$	0.4 0.4 0.4 0.4 0.4 0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4 0.4 0.4 0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4 0.4 0.3
$ \begin{array}{c} 1000 \\ 800 \\ 151.0 \\ 135.3 \\ 114.3 \\ 93.7 \\ 64.0 \\ 44.3 \\ 26.6 \\ 16.5 \\ 10.5 \\ 5.5 \\ 3.0 \\ 144.7 \\ 129.5 \\ 109.0 \\ 144.7 \\ 129.5 \\ 109.0 \\ 109.0 \\ 137.4 \\ 122.7 \\ 102.8 \\ 83.3 \\ 35.9 \\ 37.6 \\ 22.1 \\ 13.3 \\ 8.3 \\ 4.2 \\ 2.2 \\ 0.2 \\ 300 \\ 131.6 \\ 117.2 \\ 97.9 \\ 78.9 \\ 52.5 \\ 34.9 \\ 20.3 \\ 12.1 \\ 7.4 \\ 3.7 \\ 1.9 \\ 0.2 \\ 200 \\ 120.2 \\ 106.7 \\ 88.5 \\ 70.5 \\ 46.1 \\ 29.9 \\ 17.0 \\ 9.8 \\ 5.9 \\ 2.8 \\ 1.4 \\ 0.1 \\ 150 \\ 111.5 \\ 98.7 \\ 81.3 \\ 64.2 \\ 41.4 \\ 26.3 \\ 14.6 \\ 8.3 \\ 4.9 \\ 2.8 \\ 1.2 \\ 1.4 \\ 6.3 \\ 3.6 \\ 1.6 \\ 0.7 \\ 0.1 \\ 80 \\ 98.5 \\ 86.7 \\ 70.7 \\ 54.9 \\ 34.6 \\ 21.2 \\ 11.4 \\ 6.3 \\ 3.6 \\ 1.6 \\ 0.7 \\ 0.1 \\ 60 \\ 88.7 \\ 77.7 \\ 62.8 \\ 48.2 \\ 29.7 \\ 17.7 \\ 9.3 \\ 4.9 \\ 2.8 \\ 1.2 \\ 0.4 \\ 0.7 \\ 50 \\ 82.8 \\ 72.4 \\ 58.2 \\ 44.2 \\ 26.9 \\ 15.7 \\ 8.1 \\ 4.2 \\ 2.3 \\ 1.0 \\ 0.3 \\ 40 \\ 77.5 \\ 67.5 \\ 54.0 \\ 40.7 \\ 24.5 \\ 14.0 \\ 7.1 \\ 3.6 \\ 2.0 \\ 0.7 \\ 0.0 \\ 43.2 \\ 36.8 \\ 28.1 \\ 19.7 \\ 10.6 \\ 5.1 \\ 2.3 \\ 1.0 \\ 0.3 \\ 40 \\ 7 \\ 4.5 \\ 1.0 \\ 0.3 \\ 40 \\ 7 \\ 4.5 \\ 1.0 \\ 0.3 \\ 40 \\ 7 \\ 4.5 \\ 1.0 \\ 0.3 \\ 40 \\ 7.5 \\ 67.5 \\ 54.0 \\ 40.7 \\ 24.5 \\ 14.0 \\ 7.1 \\ 3.6 \\ 2.0 \\ 0.7 \\ 0.0 \\ 43.2 \\ 36.8 \\ 28.1 \\ 19.7 \\ 10.6 \\ 5.1 \\ 2.3 \\ 1.0 \\ 0.3 \\ 40 \\ 7 \\ 2.8 \\ 1.2 \\ 0.4 \\ 0.7 \\ 2.8 \\ 1.2 \\ 0.4 \\ 0.7 \\ 0.6 \\ 0.7 \\ 0.0 \\ 0.7 \\ $	0.4 0.3
$\begin{array}{c} 800 \\ 524' > \begin{array}{c} 600 \\ 600 \\ 400 \\ 137.4 \\ 122.7 \\ 102.8 \\ 120.2 \\ 100 \\ 137.4 \\ 122.7 \\ 102.8 \\ 83.3 \\ 55.9 \\ 37.6 \\ 22.1 \\ 13.3 \\ 8.3 \\ 4.2 \\ 22.2 \\ 0.2 \\ 13.3 \\ 8.3 \\ 4.2 \\ 22.2 \\ 0.2 \\ 13.3 \\ 8.3 \\ 4.2 \\ 22.2 \\ 0.2 \\ 0.2 \\ 100 \\ 120.2 \\ 106.7 \\ 88.5 \\ 70.5 \\ 46.1 \\ 29.9 \\ 17.0 \\ 9.8 \\ 59 \\ 2.8 \\ 1.4 \\ 0.1 \\ 150 \\ 111.5 \\ 98.7 \\ 81.3 \\ 64.2 \\ 41.4 \\ 26.3 \\ 14.6 \\ 8.3 \\ 4.9 \\ 2.3 \\ 1.1 \\ 0.1 \\ 100 \\ 104.4 \\ 92.1 \\ 75.5 \\ 59.1 \\ 37.6 \\ 23.4 \\ 12.8 \\ 7.1 \\ 4.1 \\ 1.9 \\ 0.9 \\ 0.1 \\ 100 \\ 104.4 \\ 92.1 \\ 75.5 \\ 59.1 \\ 37.6 \\ 23.4 \\ 12.8 \\ 7.1 \\ 4.1 \\ 1.9 \\ 0.9 \\ 0.1 \\ 60 \\ 98.5 \\ 86.7 \\ 70.7 \\ 54.9 \\ 34.6 \\ 21.2 \\ 11.4 \\ 6.3 \\ 3.6 \\ 1.6 \\ 0.7 \\ 0.1 \\ 60 \\ 88.7 \\ 77.7 \\ 62.8 \\ 48.2 \\ 29.7 \\ 17.7 \\ 9.3 \\ 4.9 \\ 2.8 \\ 1.2 \\ 0.4 \\ 0.7 \\ 0.0 \\ 10 \\ 43.2 \\ 36.8 \\ 28.1 \\ 19.7 \\ 10.6 \\ 5.1 \\ 2.3 \\ 1.0 \\ 0.3 \\ 40 \end{array}$	0.3
524' > 600 = 144.7 129.5 109.0 = 88.9 = 60.2 = 41.2 = 24.5 = 15.0 = 9.4 = 4.9 = 2.6 = 0.2 = 0.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
10 43.2 36.8 28.1 19.7 10.6 5.1 2.3 1.0 0.3 ↓ ↓ ↓ (E) + SOIL LOSS FROM WIND EROSION IN TONS PER ACRE PER YEAR JANUAR	₩.,
(E) + SOIL LOSS FROM WIND EROSION IN TONS PER ACRE PER YEAR JANUAR	
	V 1000
SURFACE - K =0.90 I	- 134
SURFACE - K =0.90 (L) (V) ** - FLAT SMALL GRAIN RESIDUE IN POUNDS PER ACRÉ UNSHELTERED	
	3000
DISTANCE 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 In Feet	3000
10000 144.7 129.5 109.0 88.9 60.2 41.2 24.5 15.0 9.1 4.9 2.6 0.2	
B000 144.7 129.5 109.0 BB.9 60.2 41.2 24.5 15.0 9.4 4.9 2.6 0.2	
6000 144.7 129.5 109.0 88.9 60.2 41.2 24.5 15.0 9.4 4.9 2.6 0.2	
4000 144.7 129.5 109.0 88.9 60.2 41.2 24.5 15.0 9.4 4.9 2.6 0.2 3000 144.7 129.5 109.0 88.9 60.2 41.2 24.5 15.0 9.4 4.9 2.6 0.2	
2000 143.2 128.0 107.6 87.7 59.3 40.4 23.9 14.6 9.1 4.7 2.5 0.2	
1000 137.3 122.6 102.7 B3.3 55.8 37.6 22.1 13.3 B.2 4.2 2.2 0.2	
800 132.5 118.1 98.7 79.7 53.1 35.4 20.6 12.3 7.5 3.8 2.0 0.2	
600 126.6 112.7 93.8 75.2 49.7 32.7 18.8 11.1 6.7 3.3 1.7 0.1	
400 118.1 104.8 86.7 69.0 44.9 29.0 16.4 9.5 5.6 2.7 1.3 0.1 300 112.0 99.1 81.7 64.5 41.6 26.4 14.8 8.4 4.9 2.3 1.1 0.1	
200 104.1 91.9 75.3 58.9 37.5 23.3 12.8 7.1 4.1 1.9 0.9 0.1 150 96.6 85.0 69.2 53.7 33.6 20.5 11.0 6.0 3.4 1.5 0.7 0.1	
100 88.7 77.8 62.9 48.2 29.7 17.7 9.3 4.9 2.8 1.2 0.4	
80 83.1 72.6 58.4 44.4 27.1 15.8 8.2 4.3 2.3 1.0 0.3	
60 74.3 64.7 51.6 38.7 23.1 13.0 6.6 3.3 1.8 0.7	
50 69.8 60.6 48.0 35.7 21.1 11.7 5.8 2.9 1.5 0.6	
40 64.8 56.1 44.2 32.6 18.9 10.3 5.0 2.4 1.3 30 57.2 49.3 38.4 27.9 15.8 8.3 3.9 1.8 0.9	
30	
10 35.4 29.9 22.4 15.3 8.0 3.6 1.5 0.5	
* NOTE: SOIL LOSS FOR VALUES WHERE 'E' IS LESS THAN 0.1 OR GREATER THAN	
440.0 ARE NOT SHOWN; OTHER VALUES NOT SHOWN ARE INVALID	
** NOTE: VALUES SHOWN ARE FLAT SMALL GRAIN EQUIVALENT, NOT 'V''	

626

WIND EROSION EQUATION "C" FACTORS

Table 6.

NEW MEXICO

L-100, 1=100, K=1.0

	(5)*	SOTI. 1	000 55	OM WTN	D EROS	τον τν	TONS		or pro	VEAD			. 1998	
	(4)*	SOLD I	1033 Fr	CON MIN	D ERUS.	1014 114	IONS	FER AU		ILAK	•	C =	•	
				SU	RFACE	- K =1	. 00					I -		
(L)			(V)					SIDUE	IN POU	NDS PER	ACRE	•	100	
UNSHELTERI	ED		•••	-										
DISTANC	E 0	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	Ĩ
IN FEET														1
10000	216.0	196.6	171.0	146.7	107.5	82.3	54.0	37.2	25.7	15.7	9.8	2.4	1.6	
8000		196.6				62.3	54.0	37.2	25.7	15.7	9.8	2.4	1.6	
6000		196.6				82.3	54.0	37.2	25.7	15.7	9.8	2.4	1.6	- 1
4000		196.6				82.3	54.0	37.2	25.7	15.7	9.8	2.4	1.6	[
3000		196.6				82.3	54.0	37.2	25.7	15.7	9.8	2.4	1.6	
2000		196.6				82.3	54.0	37.2	25.7	15.7	9.8	2.4	1.6	
1000		194.7				81.0	53.0	36.5	25.1	15.3	9.5	2.4	1.6	1
800		191.8		. –		79.1	51.5	35.3	24.2	14.7	9.1	2.2	1.5	· ·)
600		187.1				75.8	49.1	33.4	22.8	13.7	8.4	2.0	1.3	
400		178.3			93.9	70.0	44.8	30.1	20.3	12.0	7.2	1.7	1.1	
300		172.0				65.9	41.9	27.8	18.6	10.8	6.4	1.5	1.0	
200		161.6				59.5	37.3	24.3	16.0	9.1	5.3	1.2	0.6	1
150		150.5				52.8	32.5	20.8	13.5	7.4	4.2	0.9	0.5	
100		140.0		97.6	67.1	46.9	28.4	17.8	11.4	6.1	3.4	0.7	0.4	
80		131.9		90.9		42.5	25.4	15.6 13.0	9.8	5.1	2.8	0.6	0.0	
60 50		121.1		82.0	54.9 50.3	36.0 33.2	21.6 19.1	11.3	8.0	4.0	2.1	0.2		
40			94.7 88.0	76.1				9.7	6.9 5.8	3.4	1.7	0.1		
	109.5	106.2	79.6	70.1 62.7	45.B 40.3	29.6 25.4	16.8 14.1		4.7	2.8 2.2	1.4	0.1		•
25' >20	94.6		.67.6	52.2	32.6	19.7	10.6	8.0 5.7	3.2	1.4	0.4	0.1		
10	72.7		50.3	37.6	22.4	12.6	6.3	3.2	1.7	0.6	0.0	4	↓ l	
10		03.2	20.2	37.0	22.1	12.0		2.1	.	0.0		•	•	
	(E)*	SOIL L	LOSS FF	OM WIN	D EROS	ION IN	TONS	PER ACI	RE PER	YEAR	· ·	JANUARY		
												ç -		
					RFACE ·		*				BODE	I -	180	
(L) UNSHELTERI			(V)		'LAT SM/	Գեւե ԵК	AIN KE	SILUE .	IN PUUR	ILS PLK	ALRE			
	ED .										•			
-		250	500	750	1000	1250						2750	3000	
DISTANC		250	500	750	1000	1250			2000		2500	2750	3000	
DISTANCI IN FEET	E 0						1500	1750	2000	2250	2500			
DISTANCI IN FEET 10000	E 0 194.4	176.1	151.9	128.6	92.3	68.6	1500 43.8	1750 29.3	2000 19.7	2250 11.6	2500 6.9	1.6	1.1	
DISTANCI IN FEET 10000 B000	E 0 194.4 194.4	176.1 176.1	151.9 151.9	128.6	92.3 92.3	68.6 68.6	1500 43.8 43.8	1750 29.3 29.3	2000 19.7 19.7	2250 11.6 11.6	2500 6.9 6.9	1.6	1.1	
DISTANCI IN FEET 10000 8000 6000	E 0 194.4 194.4 194.4	176.1	151.9 151.9 151.9	128.6 128.6 128.6	92.3	68.6	1500 43.8	1750 29.3	2000 19.7	2250 11.6	2500 6.9	1.6	1.1	
DISTANCI IN FEET 10000 8000	E 0 194.4 194.4 194.4 194.4 194.4	176.1 176.1 176.1	151.9 151.9 151.9 151.9	128.6 128.6 128.6 128.6	92.3 92.3 92.3	68.6 68.6 68.6	1500 43.8 43.8 43.8	1750 29.3 29.3 29.3	2000 19.7 19.7 19.7	2250 11.6 11.6 11.6	2500 6.9 6.9 6.9	1.6 1.6 1.6	1.1 1.1 1.1	
DISTANCI IN FEET 10000 8000 6000 4000	E 0 194.4 194.4 194.4 194.4 194.4	176.1 176.1 176.1 176.1	151.9 151.9 151.9 151.9 151.9	128.6 128.6 128.6 128.6 128.6 128.6	92.3 92.3 92.3 92.3	68.6 68.6 68.6 68.6	1500 43.8 43.8 43.8 43.8 43.8	1750 29.3 29.3 29.3 29.3	2000 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6	2500 6.9 6.9 6.9 6.9	1.6 1.6 1.6 1.6	1.1 1.1 1.1 1.1	
DISTANCI IN FEET 10000 8000 6000 4000 3000	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6	176.1 176.1 176.1 176.1 176.1 176.1 176.1 171.6	151.9 151.9 151.9 151.9 151.9 151.9 151.9 147.6	128.6 128.6 128.6 128.6 128.6 128.6 128.6 128.6	92.3 92.3 92.3 92.3 92.3 92.3 92.3 89.0	68.6 68.6 68.6 68.6 68.6 68.6 68.6 68.6	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8	1750 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 11.6 10.7	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.4	1.6 1.6 1.6 1.6 1.6 1.5	1.1 1.1 1.1 1.1 1.1 1.1 1.1	
DISTANCI IN FEET 10000 6000 4000 3000 2000 1000 800	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.6 189.6 186.4	176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5	151.9 151.9 151.9 151.9 151.9 151.9 151.9 147.6 144.8	128.6 128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0	92.3 92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8	68.6 68.6 68.6 68.6 68.6 68.6 68.6 65.7 63.8	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8	1750 29.3 29.3 29.3 29.3 29.3 29.3 29.3 27.7 26.6	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.5 17.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.4 6.0	1.6 1.6 1.6 1.6 1.6 1.5 1.5	1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.7	
DISTANCI IN FEET 10000 8000 6000 4000 3000 2000 1000 800 600	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.6 189.6 186.4 182.7	176.1 176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1	151.9 151.9 151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6	128.6 128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0	92.3 92.3 92.3 92.3 92.3 92.3 89.0 66.6 84.4	68.6 68.6 68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8	1750 29.3 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.5 17.7 16.9	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.4 6.0 5.7	1.6 1.6 1.6 1.6 1.6 1.5 1.5 1.4	1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7	
DISTANCI IN FEET 10000 8000 4000 3000 2000 1000 800 600 400	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.6 186.4 182.7 174.1	176.1 176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9	151.9 151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1	128.6 128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7	68.6 68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 56.6	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8	1750 29.3 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.4 6.0 5.7 4.8	1.6 1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1	1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.6	
DISTANCI IN FEET 10000 8000 4000 3000 2000 1000 800 600 400 300	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3	176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6	151.9 151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3	128.6 128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3	68.6 68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 56.6 52.9	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6	1750 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 18.5 17.7 16.9 14.9 13.5	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5	2500 6.9 6.9 6.9 6.9 6.9 6.4 6.0 5.7 4.8 4.2	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 6000 4000 3000 2000 1000 800 600 400 300 200	E 0 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.6 182.7 174.1 167.3 153.1	176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3	151.9 151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1	128.6 128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 56.6 52.9 45.3	1500 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3	1750 29.3 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.5 17.7 16.9 14.9 13.5 10.8	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7	2500 6.9 6.9 6.9 6.9 6.4 6.0 5.7 4.8 4.2 3.2	1.6 1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.7	1.1 1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.6	
DISTANCI IN FEET 10000 8000 4000 3000 2000 1000 800 600 400 300 200 150	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3	176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7	128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 112.0 112.0 106.6 95.4 87.8	92.3 92.3 92.3 92.3 92.3 89.0 86.6 84.4 78.7 74.3 65.3 59.4	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 56.6 52.9 45.3 40.5	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0	1750 29.3 29.3 29.3 29.3 29.3 29.3 29.3 29.3	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.4 5.7 4.8 4.2 3.2	1.6 1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.7 0.2	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 2000 1000 800 600 400 300 200 150 150 100	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3 134.1	176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 119.6	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0	128.6 128.6 128.6 128.6 128.6 128.6 128.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3 59.4 54.0	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 52.9 45.3 40.5 36.1	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8	1750 29.3 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9	$\begin{array}{c} 2500\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.4\\ 5.7\\ 4.2\\ 2.5\\ 2.0\\ \end{array}$	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.2 0.2	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 6000 4000 3000 2000 1000 800 600 400 300 200 150 150 100 80	E 0 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3 134.1 126.3	176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 119.6 112.3	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5	128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8 75.0	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3 65.3 59.4 54.0 49.5	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 52.9 45.3 40.5 36.1 32.5	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8	1750 29.3 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 17.0 14.7 12.6 11.0	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 16.9 14.9 13.5 10.8 9.2 7.8 6.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.4 5.7 4.8 3.2 2.5 1.7	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.2 0.2 0.2	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 6000 4000 3000 2000 1000 800 600 400 300 200 150 150 100 80 60	E 0 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3 134.1 126.3 114.9	176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 119.6 112.3 101.8	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1	128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8 75.0 66.6	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3 59.4 59.4 54.0 49.5 43.2	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 52.9 45.3 40.5 36.1 32.5 27.6	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8	1750 29.3 29.3 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9	2000 19.7 19.7 19.7 19.7 19.7 19.7 18.5 17.7 16.9 14.9 13.5 10.8 9.2 7.8 6.7 5.3	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 0.4 7.5 5.7 4.7 3.9 3.3 2.5	$\begin{array}{c} 2500\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.4\\ 0.5\\ 7\\ 4.8\\ 2.5\\ 2.0\\ 1.7\\ 1.2\end{array}$	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.7 0.2 0.2 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 3000 2000 1000 800 600 400 300 200 150 150 100 80 60 50	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3 134.1 126.3 114.9 108.3	176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 119.6 112.3 101.8 95.8	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7	128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8 75.0 66.6 61.9	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3 59.4 54.0 49.5 43.2 39.7	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 52.9 45.3 40.5 36.1 32.5 27.6 25.0	1500 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0 21.1 18.7 15.5 13.8	1750 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9 7.8	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1	$\begin{array}{c} 2500\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.4\\ 5.7\\ 4.8\\ 2.5\\ 1.7\\ 1.2\\ 1.0\\ \end{array}$	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.7 0.2 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 3000 2000 1000 800 600 400 300 200 150 100 80 60 50 40	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.3 167.3 153.1 143.3 134.1 126.3 114.9 108.3 102.8	176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 19.6 112.3 101.8 95.8 90.7	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7 74.2	128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8 75.0 66.6 61.9 58.0	92.3 92.3 92.3 92.3 92.3 92.3 92.3 85.3 89.0 86.8 84.4 78.7 74.3 59.4 54.0 49.5 43.2 39.7 36.8	68.6 68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 52.9 45.3 36.5 32.5 27.6 25.0 22.8	1500 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0 21.1 18.7 15.5 13.8 12.5	1750 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9 7.8 6.9	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1 1.8	2500 6.9 6.99 6.99 6.99 6.99 6.07 4.225 2.507 1.209 1.09	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.7 0.2 0.2 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 3000 2000 1000 800 600 400 300 200 150 150 100 80 60 50 40 30	E 0 194.4 194.6 186.4 182.7 174.1 167.3 153.1 143.3 114.1 126.3 1102.8 94.5	176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 119.6 112.3 101.8 95.8 90.7 83.1	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7 74.2 67.5	128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 80.8 75.0 66.6 61.9 58.0 52.2	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 59.4 54.0 49.5 43.2 39.7 36.8 32.6	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 52.9 45.3 40.5 36.5 27.6 27.6 25.0 22.8 19.7	1500 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0 21.1 18.7 15.5 13.8 12.5 10.6	1750 29.3 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9 7.8 6.9 5.7	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1 1.8 1.4	$\begin{array}{c} 2500\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.9\\ 6.4\\ 5.7\\ 4.8\\ 2.5\\ 1.7\\ 1.2\\ 1.0\\ \end{array}$	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.7 0.2 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 2000 1000 800 600 400 300 200 150 150 150 100 80 60 50 40 300 200	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3 134.1 126.3 114.9 102.8 94.5 79.5	176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 119.6 112.3 101.8 90.7 83.1 69.4	151.9 151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7 74.2 67.5 55.6	128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 80.8 75.0 66.6 61.9 52.2 42.1	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3 59.4 54.0 49.5 43.2 39.7 36.8 32.6 25.4	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 52.9 45.3 40.5 36.1 32.5 27.6 22.8 19.7 14.6	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0 21.1 18.7 15.5 13.8 12.5 10.6 7.5	1750 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9 7.8 6.9 5.7 3.9	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1 1.8	2500 6.9 6.99 6.99 6.99 6.99 6.07 4.225 2.507 1.209 1.09	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.7 0.2 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 3000 2000 1000 800 600 400 300 200 150 150 100 80 60 50 40 30	E 0 194.4 194.6 186.4 182.7 174.1 167.3 153.1 143.3 114.1 126.3 1102.8 94.5	176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 119.6 112.3 101.8 90.7 83.1 69.4	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7 74.2 67.5	128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 80.8 75.0 66.6 61.9 58.0 52.2	92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 59.4 54.0 49.5 43.2 39.7 36.8 32.6	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 52.9 45.3 40.5 36.5 27.6 27.6 25.0 22.8 19.7	1500 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0 21.1 18.7 15.5 13.8 12.5 10.6	1750 29.3 29.3 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9 7.8 6.9 5.7	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1 1.8 1.4	2500 6.9 6.99 6.99 6.99 6.99 6.07 4.225 2.507 1.209 1.09	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.7 0.2 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 6000 4000 3000 2000 1000 800 600 400 300 200 150 100 80 60 50 40 300 200 150 100 80 60 50 40 30 10	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3 134.1 126.3 114.9 108.3 102.8 94.5 79.5 60.1 NOTE:	176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 119.6 112.3 101.8 95.8 90.7 83.1 69.4 51.8	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7 74.2 67.5 55.6 40.6	128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8 75.0 66.6 61.9 58.0 52.2 42.1 29.7	92.3 92.3 92.3 92.3 92.3 92.3 92.3 92.3	68.6 68.6 68.6 68.6 68.6 65.7 63.8 61.6 52.9 45.3 40.5 27.6 25.0 22.8 19.7 14.6 9.0 E 'E'	1500 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8	1750 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 17.0 14.7 12.6 11.0 8.9 7.8 6.9 5.7 3.9 2.0 5.7 3.9	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1 1.8 1.4 0.6 GREAT	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.07 4.22 2.50 1.20 0.9 0.	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.2 0.2 0.1 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 2000 1000 800 600 400 300 200 150 150 100 80 60 50 40 300 200 150	E 0 194.4 194.6 186.4 182.7 174.1 167.3 114.3 104.9 108.3 102.8 94.5 79.5 60.1 NOTE:	176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 19.6 112.3 101.8 90.7 83.1 69.4 51.8 SOIL LC 440.0	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7 74.2 67.5 55.6 40.6 OSS FOR	128.6 128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8 75.0 66.6 61.9 58.0 52.2 42.1 29.7 VALUE	92.3 92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3 59.4 54.0 49.5 43.2 39.7 36.8 32.6 25.4 17.0 : : : : : : : : : : : : : : : : : : :	68.6 68.6 68.6 68.6 68.6 68.6 55.7 63.8 61.6 55.9 45.3 40.5 36.5 32.5 27.6 25.0 22.8 19.7 14.6 9.0 E 'E' R VALU	1500 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0 21.1 18.7 15.5 13.8 12.5 10.6 7.5 4.3 IS LES: ES NOT	1750 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9 7.8 6.9 5.7 3.9 2.0 5 THAWN	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1 1.8 1.4 0.6 SGREATI	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.4 5.7 4.8 4.2 2.5 2.0 1.7 1.2 0.9 0.4 ER TH	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.2 0.2 0.1 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 2000 1000 800 600 400 300 200 150 150 100 80 60 50 40 300 200 150	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3 134.1 126.3 114.9 108.3 102.8 94.5 79.5 60.1 NOTE:	176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 19.6 112.3 101.8 90.7 83.1 69.4 51.8 SOIL LC 440.0	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7 74.2 67.5 55.6 40.6 OSS FOR	128.6 128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8 75.0 66.6 61.9 58.0 52.2 42.1 29.7 VALUE	92.3 92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3 59.4 54.0 49.5 43.2 39.7 36.8 32.6 25.4 17.0 : : : : : : : : : : : : : : : : : : :	68.6 68.6 68.6 68.6 68.6 68.6 55.7 63.8 61.6 55.9 45.3 40.5 36.5 32.5 27.6 25.0 22.8 19.7 14.6 9.0 E 'E' R VALU	1500 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0 21.1 18.7 15.5 13.8 12.5 10.6 7.5 4.3 IS LES: ES NOT	1750 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9 7.8 6.9 5.7 3.9 2.0 5 THAWN	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1 1.8 1.4 0.6 SGREATI	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.4 6.0 5.7 4.2 2.5 2.0 1.7 1.2 0.9 0.4 ER TH	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.2 0.2 0.1 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 2000 1000 800 600 400 300 200 150 150 100 80 60 50 40 300 200 150	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3 134.1 126.3 114.9 108.3 102.8 94.5 79.5 60.1 NOTE: NOTE:	176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 119.6 112.3 101.8 95.8 90.7 83.1 69.4 51.8 SOIL LC 440.0 /	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7 74.2 67.5 55.6 40.6 0SS FOR ARE NOT	128.6 128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8 75.0 66.6 61.9 58.0 52.2 42.1 29.7 VALUE	92.3 92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3 59.4 54.0 49.5 43.2 39.7 36.8 32.6 25.4 17.0 : : : : : : : : : : : : : : : : : : :	68.6 68.6 68.6 68.6 68.6 68.6 55.7 63.8 61.6 55.9 45.3 40.5 36.5 32.5 27.6 25.0 22.8 19.7 14.6 9.0 E 'E' R VALU	1500 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0 21.1 18.7 15.5 13.8 12.5 10.6 7.5 4.3 IS LES: ES NOT	1750 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9 7.8 6.9 5.7 3.9 2.0 5 THAWN	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1 1.8 1.4 0.6 SGREATI	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.4 5.7 4.8 4.2 2.5 2.0 1.7 1.2 0.9 0.4 ER TH	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.2 0.2 0.1 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	
DISTANCI IN FEET 10000 8000 4000 2000 1000 800 600 400 300 200 150 150 100 80 60 50 40 300 200 150	E 0 194.4 194.4 194.4 194.4 194.4 194.4 194.4 189.6 186.4 182.7 174.1 167.3 153.1 143.3 134.1 126.3 114.9 108.3 102.8 94.5 79.5 60.1 NOTE: NOTE:	176.1 176.1 176.1 176.1 176.1 176.1 171.6 168.5 165.1 156.9 150.6 137.3 128.1 19.6 112.3 101.8 90.7 83.1 69.4 51.8 SOIL LC 440.0	151.9 151.9 151.9 151.9 151.9 147.6 144.8 141.6 134.1 128.3 116.1 107.7 100.0 93.5 84.1 78.7 74.2 67.5 55.6 40.6 0SS FOR ARE NOT	128.6 128.6 128.6 128.6 128.6 128.6 128.6 124.6 122.0 119.0 112.0 106.6 95.4 87.8 80.8 75.0 66.6 61.9 58.0 52.2 42.1 29.7 VALUE	92.3 92.3 92.3 92.3 92.3 92.3 92.3 89.0 86.8 84.4 78.7 74.3 65.3 59.4 54.0 49.5 43.2 39.7 36.8 32.6 25.4 17.0 : : : : : : : : : : : : : : : : : : :	68.6 68.6 68.6 68.6 68.6 68.6 55.7 63.8 61.6 55.9 45.3 40.5 36.5 32.5 27.6 25.0 22.8 19.7 14.6 9.0 E 'E' R VALU	1500 43.8 43.8 43.8 43.8 43.8 43.8 41.7 40.3 38.8 35.2 32.6 27.3 24.0 21.1 18.7 15.5 13.8 12.5 10.6 7.5 4.3 IS LES: ES NOT	1750 29.3 29.3 29.3 29.3 27.7 26.6 25.5 22.8 20.8 17.0 14.7 12.6 11.0 8.9 7.8 6.9 5.7 3.9 2.0 5 THAWN	2000 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7	2250 11.6 11.6 11.6 11.6 11.6 11.6 11.6 10.7 10.2 9.6 8.4 7.5 5.7 4.7 3.9 3.3 2.5 2.1 1.8 1.4 0.6 SGREATI	2500 6.9 6.9 6.9 6.9 6.9 6.9 6.4 5.7 4.8 4.2 2.5 2.0 1.7 1.2 0.9 0.4 ER TH	1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.1 0.9 0.2 0.2 0.1 0.1 0.1	1.1 1.1 1.1 1.1 1.1 1.0 0.7 0.7 0.7 0.6 0.5	

Sheet 20 of 20

616

Attachment 3

Calculations

Regarding

Run-Off and Run-On Controls

For the MWL Cover

NMED (NOD) COMMENT: "Demonstrate with calculations and other information whether run-off and run-on controls have been adequately designed to handle peak precipitation events. Evaluate and discuss whether additional fun-on controls should be constructed at locations further away from the landfill (e.g. at distances of 25 to 50 meters) to provide more protection for the cover from heavy rainfall events."

Response to NMED (NOD) Comment;

The site will be graded such that runoff from the site flows north, west and east. There is a high point on the north side of the site that prevents flow from running onto the site. Two swales will be provided to carry the flow to the north or the south. This may be seen in Exhibit 1: Mixed Waste Landfill Final Cover Grading Plan" attached.

The watershed basin draining onto the site has been delineated and is shown on Exhibit 2. It is divided in to a north basin and a south basin that drain to the north and south swales respectively.

Runoff was calculated using the City of Albuquerque DPM criteria for the 100 year -6 hour storm. Reference: DPM Criteria Attached. The north basin generates 24 cfs and the north swale has the capacity for 79 cfs. The south basin generates 6.5 cfs and the capacity of the south swale is 58 cfs.

The swales are therefore sized with abundant capacity to prevent flow from entering the site and to carry the runoff around the site.

The general drainage pattern in this area is a gentle slope to the west. So after the flow is discharged from the site, they drain westward and no additional controls are needed. Exhibit 2 shows the topography up to a minimum of 200 feet beyond the site to illustrate this.

URS Page / of Mixed Woste Candbill Project Project No. _ of Sheet Description Response to NMED Connet Computed by Date 11 Dec.06 HOPE No. 16, Date 11 Dec. 06 Checked by Reference 453 CITY of ALB. BRAWARD METHOD BASIN AREA NOETH 297636 # TOTAL = 379633.54 SF / Sound 81997.54 3 Time of Concentration longest flow path $N = 9641 \quad \text{SLOPE} \quad \frac{97.2 - 91.7}{400} = .0137541$ $N = 9641 \quad \text{SLOPE} \quad \text{other} \quad 5391.7 - 5380 = .0207441$ S= 616' Slope = 5388 - 5382 = 0.0097'/1 616 Zone 3 LAND TREATMENT => SAY Type C possibly some type A is there but much of the area has been inverted by human activity this is conservative Time of Concentration NORTH to= TV. + Lyve ... V=K 5#1000 VI= .7 J.01375(00) = 0,821 V2= 2 (.02074(100) = 2.88 Ta= (400/0.82, 5+ 544/2.88 ft/sa) / (3600 sec/horr) = 0.

URS Page 2_ of ___ Mixed waste Carlbill Project Project No. Sheet of Response to NMED Comment Computed by 55 Description ____ Date 11 Oc. 06 Checked by _____ HBIE No. 16. Date 11 Dec. 66 Reference South use K=2 V = 2 (10097(100)) = (197 - 197) $T_c = 616 \text{ ft}$ 1.97 ft= 312,7 see Smin NORTH + South - Both K12 min. USE TABLE A-9 For apeak -100 Bone 3/ L.T. C NORTH 297636 #= 6,833 AC SOUTH 31997.54 = 1,882 AC Qpeak North = 6,833Ac (3,45 Cfs) = 23,60fs R_{pEGRE} SOUTH = 1.882 AC (3.45 $\frac{cFs}{r}$) = 6.5 cfs

1 ..

NORTH SWALE - Q100 Righter Description Manning Formula Friction Method Normal Depth Solve For hput Dalei 0.02000 ft/ft Channel Slope 23.60 ft3/s Discharge Section Definitions Stellor (ii)latarolion (ii) 1+00 5388.00 1+40 5382.00 1+56 5381.00 1+86 5382.50 **Roughness Segment Definitions** Sadija Selion Serie Sellion Routine and elem (1+00, 5388.00) (1+86, 5382.50) 0.030 Resulta

Normal Depth		0.63	ft 🗸
Elevation Range	5381.00 to 5388.00 ft		
Flow Area		7.25	ft²
Wetted Perimeter		22.88	ft
Top Width		22.84	ft
Normal Depth		0.63	ft
Critical Depth		0.64	ft
Critical Slope	Ο.	01922	ft/ft
Velocity	、	3.26	ft/s
Velocity Head		0.16	ft
Specific Energy		0.80	ft
Froude Number		1.02	
Flow Type	Supercritical		

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00]
A 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

12/11/2006 11:50:01 AM

NORTH SWALE - Q100

CVF Inputionala		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	. 0	
GVF Onion Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.63	ft
Critical Depth	0.64	ft
Channel Slope	0.02000	ft/ft
Critical Slope	0.01922	ft/ft

 Bentley Systems, Inc. Haestad Methods Solution Center
 Bentley FlowMaster [08.01.066.00]

 12/11/2006 11:50:01 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 2 of 2

NORTH SWALE - CAPACITY

ProjectiDescription			
Friction Method	Manning Formula		
Solve For	Discharge		
Ingelidatas			
Channel Slope		0.02000	ft/ft
Normal Depth		1.00	ft
Section Definitions			
Sittion (n)	Elevation	÷(ii):-	
	1+00		5388.00
	1+40		5382.00
	1+56		5381.00
	1+86		5382.50

Roughness Segment Definitions

Senseilen EndingStation (1+00, 5388.00) (1+86, 5382.50) 0.030 Results Discharge 79.35 ft³/s **Elevation Range** 5381.00 to 5388.00 ft Flow Area 18.00 ft² Wetted Perimeter 36.06 ft Top Width 36.00 ft Normal Depth 1.00 ft **Critical Depth** 1.04 ft **Critical Slope** 0.01631 ft/ft Velocity ft/s 4.41 Velocity Head 0.30 ft Specific Energy 1.30 ft Froude Number 1.10 Flow Type Supercritical

Bentley Systems, Inc. Haestad Methods Solution Center

12/11/2006 11:50:52 AM

Bentley FlowMaster [08.01.066.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

P.5

NORTH SWALE - CAPACITY

CEWAF //populiticDates		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
CMF @utputcDatar		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.00	ft
Critical Depth	1.04	ft
Channel Slope	0.02000	ft/ft
Critical Slope	0.01631	ft/ft

Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster [08.01.066.00]12/11/2006 11:50:52 AM27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666Page 2 of 2

SOUTH SWALE - CAPACITY

Project Description	
Friction Method	Manning Formula
Solve For	Discharge
ເມືອງຍໍດີອຸຊາຊາ	
Channel Slope	0.00900 ft/ft
Normal Depth	1.10 我
Section Definitions	

Stellon (i)		[≡](=,y=]}[0]§4]([j]):
THE COMPLETE AND		an a
	1+00	5388.00
	1+24	5384.00
•	1+32	5383.90
	1+39	5385.00

Roughness Segment Definitions

ient Stellon Ending

	(1+00, 5388.00)	(1+39,), 5385.00)	0.030
Rəsultə				
Discharge		57.58	ft ³ /s	
Elevation Range	5383.90 to 5388.00 ft			
Flow Area		15.25	ft²	
Wetted Perimeter		21.17	ft	
Top Width		21.00	ft	
Normal Depth		1.10	ft	
Critical Depth		0.97	ft	
Critical Slope		0.01529	ft/ft	
Velocity		3.78	ft/s	
Velocity Head		0.22	ft	
Specific Energy		1.32	ft	
Froude Number		0.78		,
Flow Type	Subcritical			

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.066.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

P.7

12/11/2006 12:30:11 PM

SOUTH SWALE - CAPACITY

GVIR InputiData:		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	. 0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	- Infinity	ft/s
Normal Depth	1.10	ft
Critical Depth	0.97	ft
Channel Slope	0.00900	ft/ft
Critical Slope	0.01529	ft/ft

 Bentley Systems, Inc. Haestad Methods Solution Center
 Bentley FlowMaster [08.01.066.00]

 12/11/2006 12:30:11 PM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 2 of 2

SOUTH SWALE - Q100					
Projeci Description					
Friction Method	Manning Formula				
Solve For	Normal Depth				
(Iniguli IDalia)					
Channel Slope		0.00900	ft/ft	<u></u>	
Discharge		6.50	ft³/s 💆		
Section Definitions					
Settor(i) ⁻²¹	iElēvāto	ñ(())			
	1+00		5388.00		
	1+24		5384.00		
	1+32		5383.90		
	1+39		5385.00		
Roughness Segment Definitions					
Ster Steilon	si constituys)	গ্রাহা		Roughnesseecilierant	
(1+00, 538	38.00)	(1+39,	5385.00)	0.030	
Results					
Normal Depth		0.38	ft 🖌	-	
Elevation Range	5383.90 to 5388.00 ft				
Flow Area		3.29	ft²		
Wetted Perimeter		12.11	ft		
Top Width		12.05	ft		
Normal Depth		0.38	ft		
Critical Depth		0.30	ft		
Critical Slope		0.02186	ft/ft		
Velocity		1.97	ft/s		
Velocity Head		0.06	ft		
Specific Energy		0.44	ft		
Froude Number		0.67			
Flow Type	Subcritical				

Bentley FlowMaster [08.01.066.00] Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

12/11/2006 12:31:11 PM

P. 9

SOUTH SWALE - Q100

GWF IInputidate		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Culpul Deler		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	.0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.38	ft
Critical Depth	0.30	ft
Channel Slope	0.00900	ft/ft
Critical Slope	0.02186	ft/ft

 Bentley Systems, Inc.
 Haestad Methods Solution Center
 Bentley FlowMaster [08.01.066.00]

 12/11/2006 12:31:11 PM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 2 of 2

TABLE 22.3 B-1

ł

÷

	· · · · · · · · · · · · · · · · · · ·
	n
Reinforced Concrete Pipe	.013
Poured Concrete	.013
No-joint cast in place concrete pipe	.014
Reinforced Concrete Box	.015
Reinforced Concrete Arch	.015
Streets	.017
Flush Grouted Rip-Rap	.020
Corrugated Metal Pipe	.025
Grass Lined Channels (sodded & irrigated)	.025
Earth Lined Channels (smooth)	.030
Arroyo Channels	.030
Wire Tied Rip-Rap	.040
Medium Weight Dumped Riprap	.045
Grouted Rip-Rap (exposed rock)	.045
Arroyo Overbank	,04 5
Jetty Type Rip-Rap ($D_{so} > 24''$)	.050

VALUES OF MANNING'S n

P.11

Chapter 22 - Drainage, Flood Control and Erosion Control

Following incorporation of review comments, the August, 1991 version of Section 22.2, Hydrology was released for use by the Drainage Design Criteria Committee. This version included the placement of the rainfall peak in this second hour of the design storm. Modifications to the Probable Maximum Flood procedures incorporated a "local storm" and a "general storm." A "Notice of Second Review" was published in the Albuquerque Journal and Tribune on August 31, 1991. The August, 1991 version has been accepted by the City, County and AMAFCA as an allowable procedure for hydrologic analysis and design of flood control structures.

The January, 1993 version of Section 22.2, Hydrology incorporates comments received since August, 1991. The version includes a procedure to evaluate basin hydrology for steep natural slopes, and some text revisions suggested by the USDA Soil Conservation Service. For most applications, there will be no computational differences between the January, 1993 version and the August, 1991 version. The text has been reformatted into seven (7) separately numbered parts, to simplify future revision of the document.

The pages which follow replaced all previous pages in the Hydrology Section of the DPM (Section 22.2, pages 2 through 21). Following a public review and comment period, the revised Section 22.2, Hydrology was approved by the City Engineer and the Mayor. In the City of Albuquerque, the revision became effective on April 7, 1993. Bernalillo County also adopted the revision as the standard for design of flood and drainage control, effective April 7, 1993. The revised Section 22.2, Hydrology is to be regarded as the principal reference for hydrologic design in the City of Albuquerque and Bernalillo County.

The Drainage Design Criteria Committee wish to acknowledge the assistance of the many individuals who reviewed the document. In particular we wish to thank Richard Leonard, Brian Burnett and Dwayne Sheppard for their work on the Committee.

The D.P.M. Drainage Design Criteria Committee:

Richard J. Heggen, PE, PH, PhD Professor of Civil Engineering University of New Mexico

Clifford E. Anderson, PE & PS Drainage Engineer, AMAFCA

Robert S. Foglesong, PE & PS Surface Water Hydrologist Bernalillo County Public Works Howard C Stone, PE Water Resources Manager Bohannan-Huston Inc.

Charles M. Easterling, PE Pres., Easterling & Assoc.

Fred Aguirre, PE Hydrologist, PWD City of Albuquerque

INTRODUCTION

There have been many methods used in Albuquerque and Bernalillo County to compute runoff volumes, peak flow rates and runoff hydrographs from drainage basins. Any methodology used should be based on measurable conditions, be as simple as possible and produce accurate reproducible results. The methods, graphs, and tables which follow will be used by the City of Albuquerque, Bernalillo County and AMAFCA staff in the review and evaluation of development plans and drainage management plans.

Two basic methods of analysis are presented herein:

- a) PART A describes a simplified procedure for smaller watersheds based on the Rational Method and initial abstraction/uniform infiltration precipitation losses. The procedure is applicable to watersheds up to 40 acres in size, but the procedure may be extended to include larger watersheds with some limitations.
- b) PART C describes a unit hydrograph procedure which uses a version of the U.S.D.A. Agricultural Research Service HYMO computer program, modified to utilize initial abstraction/uniform infiltration precipitation losses. The AHYMO computer program developed by the Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA), and the simplified input procedures available with this program, are also described. This procedure is applicable for small and large watersheds.

In addition to these procedures, **PART D** describes a modification of the **PART C** procedures to compute a Probable Maximum Flood. This has special application to the design of dams.

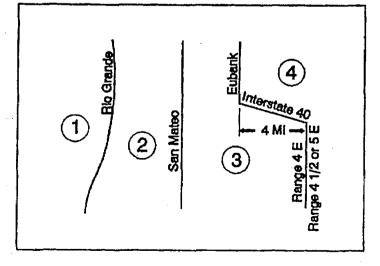
PART B describes the computation of time of concentration and time to peak which are used in PART A, PART C and PART D.

There may be conditions in which the procedures and analysis tools described in PART A, PART C or PART D are not applicable or optimal for design. **PART E** describes some additional analysis procedures and some criteria under which alternate procedures will be evaluated.

PART F contains a tabulated list of definitions of symbols used in this Section of the D.P.M. and a bibliography.

PART G contains the input and output files from the examples in PARTS C and D which utilize the HYMO computer program.

PART A - PROCEDURE FOR 40 ACRE AND SMALLER BASINS


A simplified procedure for projects with sub-basins smaller than 40 acres has been developed based on initial abstraction/uniform infiltration precipitation losses and Rational Method procedures. For this procedure, Bernalillo County has been divided into four (4) Precipitation Zones.

A.1 PRECIPITATION ZONES

Bernalillo County's four precipitation zones are indicated in TABLE A-1 and on FIGURE A-1.

TABLE A-1. PRECIPITATION ZONES			
Zone	Location		
1	West of the Rio Grande		
2	Between the Rio Grande and San Mateo		
3	Between San Mateo and Eubank, North of Interstate 40; and between San Mateo and the East boundary of Range 4 East, South of Interstate 40		
4	East of Eubank, North of Interstate 40; and East of the East boundary of Range 4 East, South of Interstate 40		

FIGURE A-1

Where a watershed extends across a zone boundary, use the zone which contains the largest portion of the watershed.

P.14

A.2 DESIGN STORM

The principal design storm is the 100-year 6-hour event defined by the NOAA Atlas 2, <u>Precipitation-Frequency Atlas of the Western United States</u>, Vol. IV - New Mexico. Assume an AMC II condition (a normally dry watershed). For design of retention or detention ponds, storms of 24-hour or longer duration many be required. The 24-hour event is defined by the NOAA Atlas 2. The 4-day and 10-day events can be obtained using the procedures in <u>S.C.S.</u> <u>TSC Technical Note-Hydrology</u>, PO-6 (Rev. 2) The 100-year 60-minute depth is computed by the following formula from Table 11 of NOAA Atlas 2:

$$P_{60} = 0.494 + 0.755 * (P_{360} * P_{360} / P_{1440})$$

	TABLE A-2. DEPTH (INCHES) AT 100-YEAR STORM				
Zone	P ₆₀	P ₃₆₀	P ₁₄₄₀	P _{4days}	Plodays
1	1.87	2.20	2.66	3.12	3.67
2	2.01	2.35	2.75	3.30	3.95
3	2.14	2.60	3.10	3.95	4.90
4	2.23	2.90	3.65	4.70	5.95

The 2-year 60-minute depth is computed by the following formula from NOAA Atlas 2:

$$P_{60-2} = -0.011 + 0.942* (P_{360-2} * P_{360-2} / P_{1440-2})$$
(a-2)

Based on fitting a logarithmic curve to the values in Table 12 of NOAA Atlas 2, the 12minute (0.2 hour) depth was computed to be 50.24 percent of the 60-minute depth:

$$P_{12} = 0.5024 * P_{60} \tag{a-3}$$

For certain applications (e.g., street drainage, low flow channels and sediment transport) storms of greater frequency than the 100-year storm must be considered. To estimate precipitation at return periods other than 100 years, multiply the 360-minute or 1440-minute 100-year precipitation amounts by the factors in TABLE A-3.

December 5, 1999

22-8

(a-1)

TABLE A-3. RETURN PERIOD FACTORS		
Return Period (years)	Factor	
50	0.900	
25	0.800	
10	0.667	
5	0.567	
. 2	0.434	

Chapter 22 - Drainage, Flood Control and Erosion Control

Example A-1	
Find the 10-year, 6-hour storm depth for Zone 2.	
$P_{360-10} = 2.35 * 0.667 = 1.57$ inches	

 Example A-2

 Find the 2-year, 1-hour storm depth for Zone 3.

 P_{360-2} = 2.60 * 0.434 = 1.128 inches

 P_{360-2} = 2.60 * 0.434 = 1.345 inches

 P_{1440-2} = 3.10 * 0.434 = 1.345 inches

 P_{60-2} = -0.011 + 0.942* (P_{360-2} * P_{360-2} / P_{1440-2})

 = -0.011 + 0.942* (1.128*1.128/1.345)

 = 0.880 inches

A.3 LAND TREATMENTS

All land areas are described by one of four basic land treatments or by a combination of the four land treatments.

P.16

December 5, 1999

Land treatments are given in TABLE A-4.

	TABLE A-4. LAND TREATMENTS	
Treatment	Land Condition	
А	Soil uncompacted by human activity with 0 to 10 percent slopes. Native grasses, weeds and shrubs in typical densities with minimal disturbance to grading, groundcover and infiltration capacity.	
В.	Irrigated lawns, parks and golf courses with 0 to 10 percent slopes. Native grasses, weeds and shrubs, and soil uncompacted by human activity with slopes greater than 10 percent and less than 20 percent.	
C Soil compacted by human activity. Minimal vegetation. Unpaved parking, roads, trails. Most vacant lots. Gravel or rock on plastic (desert landscaping). Irrigated lawns and parks with slopes greater than 10 percent. Native grasses, weeds and shrubs, and soil uncompacted by human activity with slopes at 20 percent or greater. Native grass, weed and shrub areas with clay or clay loam soils and other soils of very low permeability as classified by SCS Hydrologic Soil Group D.		
D	Impervious areas, pavement and roofs.	
Most watersheds contain a mix of land treatments. To determine proportional treatments, measure respective subareas. In lieu of specific measurement for treatment D, the areal percentages in TABLE A-5 may be employed.		

December 5, 1999

P.17

TABLE A-5. PERCENT TI	REATMENT D (Impervious)
Land Use	Percent
Commercial*	90
Single Family Residential N=units/acre, N≤6	7*√((N*N)+(5*N)) (a-4)
Multiple Unit Residential Detached* Attached*	60 70
Industrial Light* Heavy*	70 80
Parks, Cemeteries	7
Playgrounds	13
Schools	50
Collector & Arterial Streets	90
*Includes local streets	

TABLE A-5 does not provide areal percentages for land treatments A, B and C. Use of TABLE A-5 will require additional analysis to determine the appropriate areal percentages of these land treatments.

Backyard retention ponds, and other small on-site ponding, may have the effect of reducing runoff from impervious areas. Where it can be clearly demonstrated that backyard and small on-site retention ponding currently exist, impervious and/or pervious areas which drain to such ponds may can be given credit towards their determination of peak rates of runoff and runoff volumes from the development. considered to be in land treatment A. Application of backyard ponding is not normally applicable to more than 35 percent of the area in land treatment D (impervious). Allowance for backyard ponding will not be considered for new developments and future development.

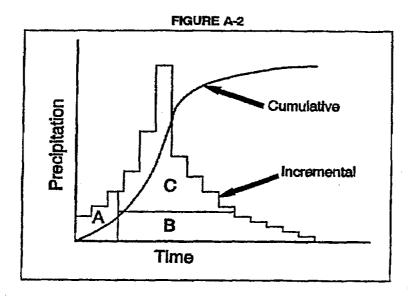
A.4 ABSTRACTIONS

Initial abstraction is the precipitation depth which must be exceeded before direct runoff begins. Initial abstraction may be intercepted by vegetation, retained in surface depressions, or absorbed on the watershed surface. Initial abstractions are shown in TABLE A-6.

P. 18

TABLE A-6. INITIAL ABSTRACTION (IA)				
Treatment	Initial Abstraction (inches)			
A	0.65			
В	0.50			
С	0.35			
D	0.10			

Infiltration is the only significant abstraction after the initial abstraction. After initial


abstraction is satisfied, treat infiltration as a constant loss rate as specified in TABLE A-7.

	FILTRATION (INF)		
Treatment Loss Rate (inches/hour)			
Α	1.67		
В	1.25		
C	0.83		
D	0.04*		

Runoff from a previous event can saturate a channel bed, rendering it minimally pervious for several days. Do not anticipate additional bed losses for design purposes.

A.5 EXCESS PRECIPITATION & VOLUMETRIC RUNOFF

Excess precipitation, E, is the depth of precipitation remaining after abstractions are removed. Excess precipitation does not depend on watershed area. Excess precipitation is determined by subtracting the initial abstraction and infiltration from the design storm hydrograph. FIGURE A-2 illustrates the development of excess precipitation. The curved line plots cumulative precipitation. Precipitation intensities (in/hr) are shown as a histogram. Initial abstraction is area A. The horizontal line is at a height corresponding to the infiltration rate. Infiltration loss is area B. The remaining histogram, area C, is excess precipitation.

Excess precipitation, E, by zone and treatment is summarized in TABLE A-8.

(NOTE: In this table and several tables which follow, corresponding values for 2- and 10- year storms are shown in brackets below each 100-year value)

TABLE A	TABLE A-8. EXCESS PRECIPITATION, E (INCHES) - 6 HOUR STORM				
		Tre	eatment [2	100-YR -YR, 10-YR]	
Zone	A	В	С	D	
1	0.44	0.67	0.99	1.97	
	[0.00, 0.08]	[0.01, 0.22]	[0.12, 0.44]	[0.72, 1.24]	
2	0.53	0.78	1.13	2.12	
	[0.00, 0.13]	[0.02, 0.28]	[0.15, 0.52]	[0.79, 1.34]	
3	0.66	0.92	1.29	2.36	
	[0.00, 0.19]	[0.06, 0.36]	[0.20, 0.62]	[0.89, 1.50]	

22-13

4 0.80	1.08	1.46		Τi.
[0.02, 0.28]			2.64	N.
[][0.02, 0.28]	[0.11, 0.46]	[0.27, 0.73]	[1.01, 1.69]	1

P, 21

To determine the volume of runoff,

- 1) Determine the area in each treatment, A_A , A_B , A_C , A_D
- 2) Compute the weighted excess precipitation, E

Weighted E =
$$\frac{E_A A_A + E_B A_B + E_C A_C + E_D A_D}{A_A + A_B + A_C + A_D}$$
 (a-5)

3) Multiply the weighted E by the watershed area.

$$V_{360} \text{ (as volume)} = \text{weighted } E^* (A_A + A_B + A_C + A_D)$$
(a-6)

EXAMPLE A-3

Find the 100-year V_{360} for 30 acres in zone 1. Eight acres are treatment A, 10 acres are treatment B, 5 acres are treatment C, and 7 acres are treatment D.

Weighted
$$E = ((8 * 0.44) + (10 * 0.67) + (5 * 0.99) + (7 * 1.97)) / 30 = 0.965$$
 inches

Volume =
$$(0.965 * 30) / 12 = 2.41$$
 acre-ft. = V_{360}

For ponds which hold water for longer than 6 hours, longer duration storms are required to establish runoff volumes. Since the additional precipitation is assumed to occur over a long period, the additional volume is based on the runoff from the impervious areas only.

For 24-hour storms:

$$V_{1440} = V_{360} + A_D * (P_{1440} - P_{360}) / 12 in/ft$$

7)

For 4-day storms:

$$V_{4DAYS} = V_{360} + A_D * (P_{4DAYS} - P_{360}) / 12 in/ft$$
 (a-8)

For 10-day storms:

$$V_{10DAYS} = V_{360} + A_D * (P_{10DAYS} - P_{360}) / 12 in/ft$$
 (a-9)

December 5, 1999

(a-

EXAMPLE A-4

Find the 100-year 24-hour and 4-day runoff volume, V_{1440} and V_{4days} , for the area in Example A-3.

 $V_{360} = 2.41 \text{ acre-feet}$ $V_{1440} = 2.41 + 7 \text{ ac } (2.66 - 2.20) / 12 = 2.68 \text{ acre-feet}$ $V_{4DAYS} = 2.41 + 7 \text{ ac } (3.12 - 2.20) / 12 = 2.95 \text{ acre-feet}$

A.6 PEAK DISCHARGE RATE FOR SMALL WATERSHEDS

Small watersheds are less than or equal to 40 acres.

Peak Discharge

Using a 0.2-hour (12-minute) time of concentration, peak discharge, Q_P , per acre is the volume of excess precipitation in the heaviest 12-minute portion of the storm, divided by the time increment 12 minutes, and multiplied by an attenuation factor. The attenuation factor (0.59 for treatment A, 0.67 for treatment B, 0.75 for treatment C and 0.93 for treatment D) describes the effect of routing. Determine the peak discharge using the values in TABLE A-9, which have been adjusted to consider the effects of initial abstraction.

	TABLE A-9. PEAK DISCHARGE (CFS/ACRE)				
	100-YR Treatment [2-YR, 10-YR]				
Zone	A	В	С	D	
1	1.29	2.03	2.87	4.37	
	[0.00, 0.24]	[0.03, 0.76]	[0.47, 1.49]	[1.69, 2.89]	
2	1.56	2.28	3.14	4.70	
	[0.00, 0.38]	[0.08, 0.95]	[0.60, 1.71]	[1.86, 3.14]	
3	1.87	2.60	3.45	5.02	
	[0.00, 0.58]	[0.21,1.19]	[0.78, 2.00]	[2.04, 3.39]	
4	2.20	2.92	3.73	5.25	
	[0.05, 0.87]	[0.38, 1.45]	[1.00, 2.26]	[2.17, 3.57]	

To determine the peak rate of discharge,

.

- 1) Determine the area in each treatment, A_A , A_B , A_C and A_D .
- 2) Multiply the peak rate for each treatment by the respective areas and sum to compute the total Q_p.

$$Total Q_{P} = Q_{PA}A_{A} + Q_{PB}A_{B} + Q_{PC}A_{C} + Q_{PD}A_{D}$$
(a-10)

Example A-5

Find 100-year Q_P for 14 acres in zone 1. The four land treatments are: 3 acres in treatment A, 5 acres in treatment B, 2 acres in treatment C and 4 acres in treatment D.

Total $Q_{R} = (1.29 * 3) + (2.03 * 5) + (2.87 * 2) + (4.37 * 4) = 37.24 \text{ cfs}$

3) Approximately the same results can be achieved by a Rational Method solution. The 0.2-hour (12-minute) peak intensities, I, are given in TABLE A-10 and Rational Method coefficients, C, are given in TABLE A-11.

Total $Q_P = (C_A * I * A_A) + (C_B * I * A_B)$

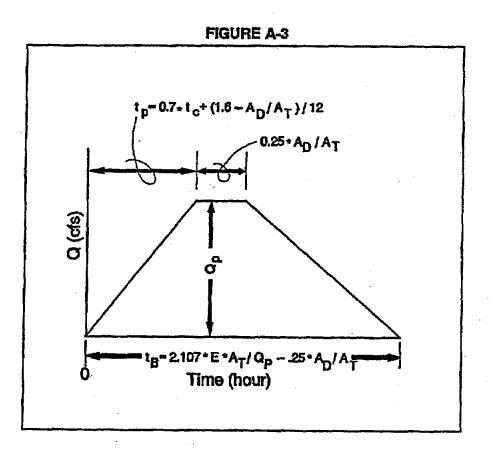
 $+ (C_{c} * I * A_{c}) + (C_{D} * I * A_{D})$

(a-11)

TABLE A-10. PEAK INTENSITY (IN/HR at $t_c = 0.2$ hour)				
Zone	Intensity	100-YR [2-YR, 10-YR]		
1	4.70 [1.84, 3.14]			
2	5.05 [2.04, 3.41]			
3	5.38 [2.21, 3.65]			
4	5.61 [2.34, 3.83]			

P.24

T.	TABLE A-11. RATIONAL METHOD COEFFICIENT, C				
	100-YR Treatment [2-YR, 10-YR]				
Zone	A	В	C	D	
1	0.27	0.43	0.61	0.93	
	[0.00, 0.08]	[0.02, 0.24]	[0.26, 0.47]	[0.92, 0.92]	
2	0.31	0.45	0.62	0.93	
	[0.00, 0.11]	[0.04, 0.28]	[0.29, 0.50]	[0.91, 0.92]	
3	0.35	0.48	0.64	0.93	
	[0.00, 0.16]	[0.10, 0.33]	[0.35, 0.55]	[0.92, 0.93]	
4	0.39	0.52	0.66	0.94	
	[0.02, 0.23]	[0.16, 0.38]	[0.43, 0.59]	[0.93, 0.93]	


(Note the quote from the <u>ASCE Manual and Report on Engineering Practice No.</u> <u>37</u> (1969): The commonly reported Rational C values "are applicable for storms to 5- to 10-yr frequencies. Less frequent, higher intensity storms will require the use of higher coefficients because infiltration and other losses have a proportionally smaller effect on runoff." Thus higher C's realized under heavy precipitation might be expected.)

Example A-6

Recompute Example A-5 using the Rational Method.

Q = CIA = (0.27 * 4.70 * 3) + (0.43 * 4.70 * 5) + (0.61 * 4.70 * 2) + (0.93 * 4.70 * 4)= 37.13 cfs

Continue the peak for $0.25 * A_D / A_T$ hours. When A_D is zero, the hydrograph will be triangular. When A_D is not zero, the hydrograph will be trapezoidal. FIGURE A-3 shows the hydrograph in graphic form.

Example A-8

Determine the hydrograph for Example A-5.

$$A_{T} = 14.0 \text{ acres } A_{D} = 4.0 \text{ acres } t_{C} = 0.2 \text{ hour } Q_{P} = 37.24 \text{ cfs}$$

E =
$$((3 * .44) + (5 * .67) + (2 * .99) + (4 * 1.97)) / (3 + 5 + 2 + 4) = 1.038$$
 inches

$$t_p = (0.7 * 0.2) + (1.6 - (4 / 14)) / 12) = 0.2495$$
 hours

$$t_B = (2.017 * 1.038 * 14 / 37.24) - (0.25 * 4 / 14) = 0.7157$$
 hours

Duration of peak = 0.25 * 4 / 14 = 0.0714 hours

PART B - TIME OF CONCENTRATION, LAG TIME, AND TIME TO PEAK

There is a delay, after a brief heavy rain over a watershed, before the runoff reaches its maximum. The length of time it takes for runoff from a watershed to reach an analysis point effects the peak runoff rate, with shorter times producing higher peak flow for a constant runoff volume. The velocity at which water can flow through a watershed and the length of flow path are used to determine the time factors. Time of concentration, lag time, and time to peak are three related watershed parameters that are used to determine peak rates of runoff.

B.1 DEFINITIONS

The three time parameters used are defined as follows:

time of concentration (t_c) = time it takes for runoff to travel from the hydraulically most distant part of the watershed basin to the basin outlet or point of analysis

Lag time (L_0) = time from the center of unit rainfall excess to the time that 50 percent of the volume of unit runoff from the drainage basin has passed the concentration point or point of analysis.

time to peak (t_p) = time from the beginning of unit rainfall excess to the time of the peak flow of the unit runoff hydrograph.

The three time parameters can be computed using the procedures identified in this section. The peak discharge rates and intensity factors identified in TABLES A-9 and A-10 (PART A) were computed using a time of concentration (t_c) of 0.2 hour. The procedures in Part C require the computation of time to peak (t_n) as specified herein.

B.2 COMPUTATION OF TIME OF CONCENTRATION

Three different equations are used to compute time of concentration (t_c) for larger watersheds. For subbasin reach lengths shorter than 4000 feet the SCS Upland Method is used; for subbasin reach lengths longer than 12000 feet the USDI Bureau of Reclamation lag time equation is used. A transition equation is used for subbasin reach lengths between 4000 and 12000 feet.

Consideration should be given to splitting large watersheds into smaller subbasins with reach lengths less than 4000 feet. Smaller subbasins will allow more accurate modeling of channels and basin topography, and should provide for greater modeling accuracy.

1). For subbasin reach lengths less than 4000 feet:

Compute time of concentration, t_c (hours), for the entire (pervious and impervious) watershed by the SCS Upland Method, the sum of the travel times in the subreaches comprising the longest flow path to the watershed outlet.

$$t_{z} = (L_{1} / V_{1} + L_{2} / V_{2} + ... + L_{x} / V_{x}) / 3600 \text{ sec/hour}$$
 (b-1)

and, $(L_1 + L_2 + ... + L_x) < 4000$ feet

where L_x is the subreach length (feet) and v is the velocity (feet/sec) in that subreach, as determined by the following equation:

$$v = K * \sqrt{(s * 100)} = 10 * K * \sqrt{(s)}$$
 (b-2)

where s is the slope in foot per foot, and K depends upon the conveyance condition, as shown in TABLE B-1. If t_c is computed to be less than 0.2 hours, use $t_c = 0.2$ hours.

	TABLE B-1. CONVEYANCE FACTORS		
К	Conveyance Condition		
0.7	Turf, landscaped areas and undisturbed natural areas (sheet flow* only).		
1	Bare or disturbed soil areas and paved areas (sheet flow* only).		
2	Shallow concentrated flow (paved or unpaved).		
3	Street flow, storm sewers and natural channels, and that portion of subbasins (without constructed channels) below the upper 2000 feet for subbasins longer than 2000 feet.		
4	Constructed channels (for example: riprap, soil cement or concrete lined channels).		

For composite reaches, where this basin slope is uniform, the composite basin conveyance condition, K, can be computed using the following equation:

$$K = L / (L_1 / K_1 + L_2 / K_2 + ... + L_X / K_X)$$

(b-

3)

.

where $L = L_1 + L_2 + ... + L_X$

0,28

For composite reaches where the basin slope is <u>not</u> uniform, the composite basin conveyance condition, K, can be computed using the following equation:

$$K = (L/\sqrt{s}) / (L_1 / (K_1 * \sqrt{s_1}) + L_2 / (K_2 * \sqrt{s_2}) + ... + L_x / (K_x * \sqrt{s_x}))$$
(b-4)

where:

$$L = L_1 + L_2 + ... +$$

and,

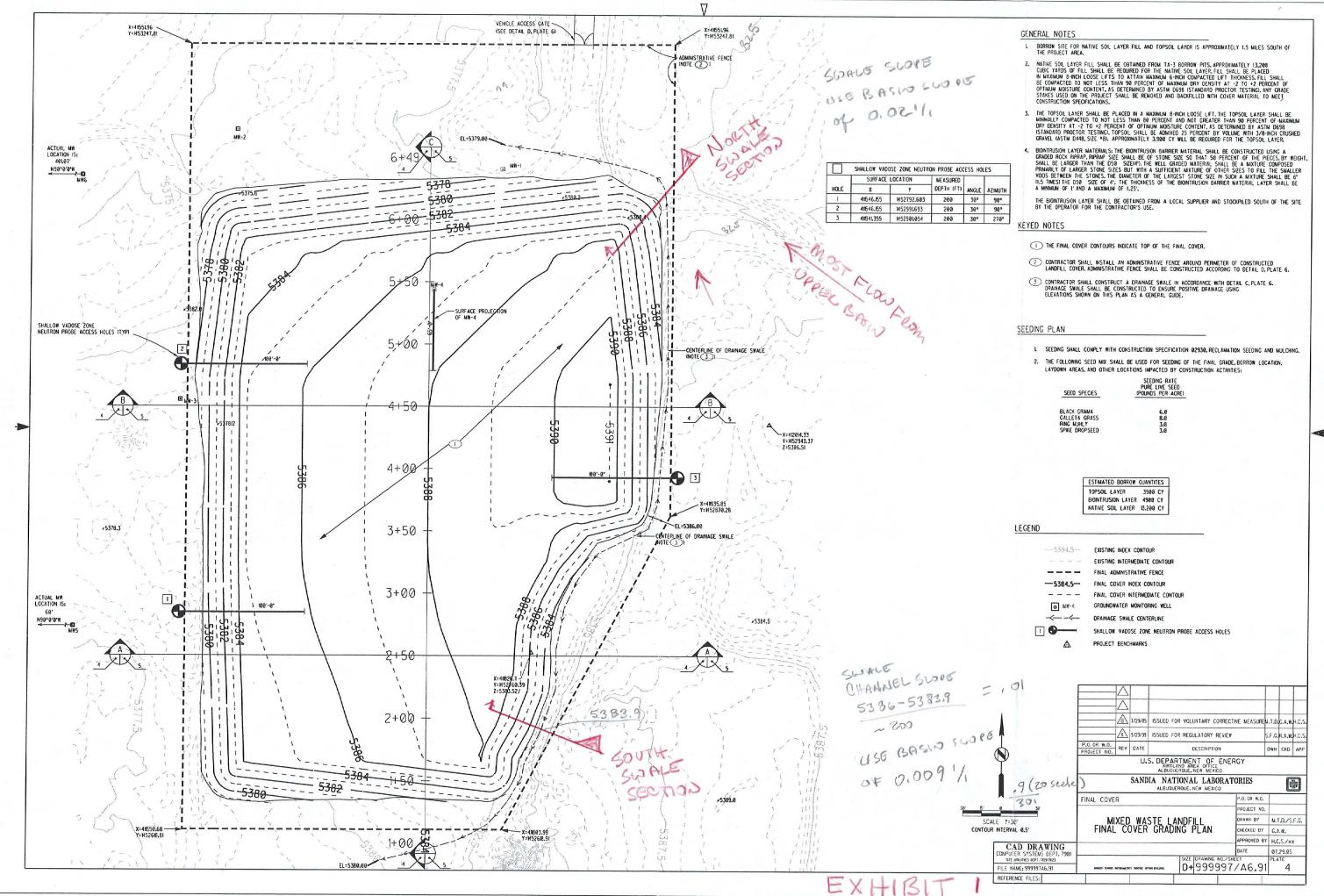
(b-5)

2.) For subbasin reach lengths between 4000 and 12000 feet:

L_x

 $s = (L_1 * s_1 + L_2 * s_2 + ... + L_x * s_x) / L$

Compute the time of concentration, t_c (hours), for the entire watershed using the following equation:


$$t_{\rm C} = ((12000 - L) / (72000 * K * s^{0.5})) + ((L - 4000) * K_{\rm N} * (L_{\rm CA} / L)^{0.33} / (552.2 * s^{0.165}))$$
(b-6)

where:

K	÷	Conveyance factor from TABLE B-1. For composite reaches, K is
		computed using equation b-3 or b-4.
L	==	distance of longest watercourse, in feet.
L _{CA}	.	distance along L from point of concentration to a point opposite centroid of
		drainage basin, in feet.
S .	*	overall slope of L, in foot per foot. For composite reaches s is computed using equation b-5.

 $K_N = a$ basin factor based on an estimate of the weighted, by stream length, average Manning's n value for the principal watercourses in the drainage basin. For the Albuquerque area, values of K_N may be estimated from TABLE B-2.

TABLE B-2. LAG EQUATION BASIN FACTORS			
K _N	K _N Basin Condition		
0.042	Mountain Brush and Juniper		
0.033	Desert Terrain (Desert Brush)		
0.025	Low Density Urban (Minimum improvements to watershed channels)		
0.021	Medium Density Urban (Flow in streets, storm sewers and improved channels)		
0.016	High Density Urban (Concrete and rip-rap lined channels)		

DIRECTION OF FLOW BASIN BOUNDARY

6501 AMERICAS PARKWAY N.E., SUITE 900 ALBUQUERQUE, NEW MEXICO 87110 (505) 855-7500 FAX: (505) 855-7555 EXHIBIT #2

MWL SITE AS OF DECEMBER, 2006

SHEET 1 OF 1