

Department of Energy National Nuclear Security Administration Sandia Field Office P. O. Box 5400 Albuquerque, NM 87185

MAR 2 5 2014

RECEIVED

Mr. Dave Cobrain
Manager
Permits Management Program
Hazardous Waste Bureau
New Mexico Environment Department
2905 Rodeo Park Dr. East, Bldg. 1
Santa Fe, NM 87505

MAR 27 2014

NMED Hazardous Waste Bureau

Subject: Submittal of Chemical Waste Landfill Annual Post-Closure Care Report, Calendar

Year 2013, Chemical Waste Landfill Post-Closure Care Permit for Sandia National Laboratories/New Mexico, Environmental Protection Agency Identification Number

NM5890110518

Dear Mr. Cobrain:

The Department of Energy/National Nuclear Security Administration and Sandia Corporation are submitting the *Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2013*, dated March 2014, to the New Mexico Environment Department. This submittal is required by Part 2, Section 2.6.3, of the Chemical Waste Landfill (CWL) Post-Closure Care Permit.

This document is comprised of a main report and four annexes that provide information for post-closure care activities conducted at the CWL during Calendar Year 2013. The report and supporting documentation satisfy requirements listed in Permit Attachment 1, Sections 1.9 and 1.12.

If you have questions, please contact John Weckerle of my staff at (505) 845-6026.

James W. Todd

Sincerel

Assistant Manager for

Engineering

Enclosure

See Page 2

cc w/enclosure:

William Moats
Hazardous Waste Bureau
New Mexico Environment Department
5500 San Antonio Dr. NE
Albuquerque, NM 87109

Brian Salem
Hazardous Waste Bureau
New Mexico Environment Department
5500 San Antonio Dr. NE
Albuquerque, NM 87109

Thomas Skibitski, NMED/OB Thomas.skibitski@state.nm.us

John Weckerle, SFO/ENG, MS-0184

Zimmerman Library MSC05 3020 1 University of New Mexico Albuquerque, NM 87101-0001

Amy Blumberg, SNL/NM, MS-0141 SNL Customer Funded Record Center, MS-0651 SFO Legal File SFO Waste Management File 14-343-565028

Submittal of Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2013 Chemical Waste Landfill Post-Closure Care Permit

Sandia National Laboratories Albuquerque, New Mexico EPA ID No. NM5890110518

CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations.

Man ZUIY
Date signed

25 MA2 2014 Date signed

Michael W. Hazen, Vice President

Sandia Corporation

Albuquerque, New Mexico

Operator

James W. Todd, Assistant Manager

U.S. Department of Energy

National Nuclear Security Administration

Sandia Field Office

Owner

CHEMICAL WASTE LANDFILL ANNUAL POST-CLOSURE CARE REPORT CALENDAR YEAR 2013

SANDIA NATIONAL LABORATORIES, NEW MEXICO LONG-TERM STEWARDSHIP CHEMICAL WASTE LANDFILL POST-CLOSURE CARE PERMIT

MARCH 2014

United States Department of Energy Sandia Field Office

ANNUAL CHEMICAL WASTE LANDFILL POST-CLOSURE CARE REPORT **CALENDAR YEAR 2013**

Chemical Waste Landfill Facility:

Location: Sandia National Laboratories

Albuquerque, New Mexico

EPA ID No.: NM5890110518

Permit Basis: Chemical Waste Landfill Post-Closure Care Permit, issued October 15,

2009, effective June 2, 2011, and subsequently modified.

Owner: United States Department of Energy

Sandia Field Office

Technical Contact: Mr. John Weckerle, Long-Term Stewardship

U.S. Department of Energy, Sandia Field Office

P.O. Box 5400/MS 0184 Albuquerque, NM 87185-5400

(505) 845-6026

John.Weckerle@nnsa.doe.gov

Operator: Sandia Corporation

> **Technical Contact:** Ms. Pamela Puissant, Manager

> > Long-Term Stewardship Sandia National Laboratories P.O. Box 5800/MS 0730

> > Albuquerque, NM 87185-1042

(505) 844-3185 pmpuiss@sandia.gov

TABLE OF CONTENTS

LIST OF FIGURES LIST OF TABLES. LIST OF ANNEXES ACRONYMS AND ABBREVIATIONS	vi
1.0 INTRODUCTION	1_1
1.1 Purpose and Scope	
2.0 CHEMICAL WASTE LANDFILL POST-CLOSURE CARE CONDITIONS	.2-1
2.1 Final Cover System	.2-1
2.2 Compliance Monitoring System	.2-4
2.2.1 Groundwater Monitoring Network	
2.2.2 Soil-Gas Monitoring Network	
2.3 Storm-Water Diversion Structures	
2.4 Security Fence	.2-7
3.0 MONITORING AND INSPECTION REQUIREMENTS	
3.1 Monitoring Requirements	
3.2 Inspection, Maintenance, and Repair Requirements	
3.2.1 Final Cover System Inspection/Maintenance/Repair Requirements	
3.2.2 Storm-Water Diversion Structure Inspection Requirements	
3.2.3 Monitoring Well Network Inspection Requirements	
3.2.4 Security Fence Inspection Requirements	.3-4
3.2.5 Emergency Equipment Inspection Requirements	.3-4
4.0 GROUNDWATER MONITORING RESULTS	.4-1
4.1 Groundwater Sampling Field Activities	
4.1.1 Well Purging	
4.1.2 Field Quality Control	
4.1.3 Waste Management	
4.2 Laboratory Results	
4.2.1 Environmental Sample Results	
4.2.2 Field Quality Control Sample Results	
4.2.3 Data Quality	
4.2.4 Variances and Non-Conformances	
4.3 Data Evaluation	
4.3.1 Statistical Assessment Requirements4	
4.3.2 Statistical Assessment Results4	
4.4 Hydrogeologic Assessment4	1-23
5.0 SOIL-GAS MONITORING RESULTS	.5-1
5.1 Soil-Gas Sampling Field Activities	
5.1.1 Well Evacuation	
5.1.2 Field Quality Control	
,	
5.1.3 Waste Management	.5-2
5.1.3 Waste Management	.5-2 .5-2

	5.2.3 Data Quality	5-16
	5.2.4 Variances and Non-Conformances	5-17
5.3	Data Evaluation	5-17
	5.3.1 Statistical Assessment Requirements	5-18
	5.3.2 Statistical Assessment Results	
5.4	Historic Data Evaluation	5-18
6.0 INSPEC	TION, MAINTENANCE, AND REPAIR RESULTS	6-1
6.1	Final Cover System	6-1
	6.1.1 Vegetation Monitoring and Inspection	6-1
	6.1.2 Cover Maintenance	
	6.1.3 Cover Inspection	6-3
6.2	Storm-Water Diversion Structure Inspection	
6.3	Monitoring Well Network Inspection	6-4
6.4	Security Fence Inspection	
6.5	Emergency Equipment Inspection	6-4
7.0 REGULA	ATORY ACTIVITIES	7-1
7.1	Permit Modification Requests	7-1
7.2	Permit Submittals	7-2
7.3	Technical Communication	7-2
8.0 SUMMA	RY AND CONCLUSIONS	8-1
8.1	Groundwater and Soil-Gas Monitoring	8-1
8.2	Inspections	
8.3	Regulatory Activities	
8.4	Conclusions	
9.0 REFERE	ENCES	9-1

LIST OF FIGURES

Figure		Page
2-1	Location of the Chemical Waste Landfill with respect to Kirtland Air Force Base and the City of Albuquerque	2-2
2-2	Location of the Chemical Waste Landfill within Technical Area III	2-3
2-3	Schematic Profile of the Chemical Waste Landfill Evapotranspirative Cover	2-5
2-4	Chemical Waste Landfill Surface Drainage Patterns and Monitoring Networks	2-6
4-1	Chromium Control Chart for CWL-BW5/4A	4-13
4-2	Nickel Control Chart for CWL-BW5/4A	4-14
4-3	TCE Control Chart for CWL-BW5/4A	4-15
4-4	Nickel Control Chart for CWL-MW9	4-16
4-5	Chromium Control Chart for CWL-MW10	4-17
4-6	Nickel Control Chart for CWL-MW10	4-18
4-7	TCE Control Chart for CWL-MW10	4-19
4-8	Chromium Control Chart for CWL-MW11	4-20
4-9	Nickel Control Chart for CWL-MW11	4-21
4-10	Potentiometric Surface of the Regional Aquifer at the Chemical Waste Landfill, October 2013	4-24
5-1	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well UI-1 Ports	5-23
5-2	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well UI-2 Ports	5-24
5-3	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well D1 Ports	5-25
5-4	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well D2 Ports	5-26
5-5	Historic Total TCE Compound Concentrations vs. Time, Chemical Waste Landfill Well D3 Ports	5-27

5-6	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well UI-1 Ports	5-28
5-7	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well UI-2 Ports	5-29
5-8	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well D1 Ports	5-30
5-9	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well D2 Ports	5-31
5-10	Historic Total VOC Compound Concentrations vs. Time, Chemical Waste Landfill Well D3 Ports	5-32

LIST OF TABLES

Table	Page	е
1-1	Chemical Waste Landfill Post-Closure Care Permit Modification History1-	1
1-2	Chemical Waste Landfill Post-Closure Care Permit Submittal History1-2	2
3-1	Chemical Waste Landfill Groundwater and Soil-Gas Monitoring Frequency, Parameters, and Methods	1
4-1	Summary of Trichloroethene Results, Chemical Waste Landfill Groundwater Monitoring, Analytical Method SW846-8260B ^a for Calendar Year 20134-4	1
4-2	Summary of Chromium and Nickel Results, Chemical Waste Landfill Groundwater Monitoring, Analytical Method SW846-6020 ^a Calendar Year 20134-8	5
4-3	Summary of Additional Volatile Organic Compound Results, Chemical Waste Landfill, Groundwater Monitoring Analytical Method SW846-8260Ba, January 20134-	6
4-4	Summary of Field Water Quality Measurements ^a , Chemical Waste Landfill Groundwater Monitoring, Calendar Year 20134-	7
4-5	Summary of Duplicate Sample Results, Chemical Waste Landfill Groundwater Monitoring, Calendar Year 20134-8	3
4-6	Concentration Limits for the Hazardous Constituents of Concern at the Chemical Waste Landfill4-10	Э
4-7	Statistical Assessment Results Summary, Chemical Waste Landfill, Calendar Year 2013 Sampling Results4-12	2
5-1	Summary of Detected Volatile Organic Compounds, Chemical Waste Landfill Soil-Gas Monitoring, Analytical Method TO-15, Calendar Year 20135-4	1
5-2	Summary of Detected Volatile Organic Compounds – March Resampling, Chemical Waste Landfill Soil-Gas Monitoring, Analytical Method TO-15, Calendar Year 20135-13	3
5-3	Summary of Duplicate Samples, Chemical Waste Landfill Soil-Gas Monitoring, Calendar Year 20135-18	5
5-4	Chemical Waste Landfill Soil-Gas Monitoring Statistical Assessment Results Summary, Calendar Year 20135-19	9

5-5	Historic Soil-Gas Monitoring Summary – TCE Concentrations (ppmv), Chemical Waste Landfill		
5-6	Historic Soil-Gas Monitoring Summary – Total Volatile Organic Compound Concentrations (ppmv), Chemical Waste Landfill	5-21	

LIST OF ANNEXES

Annex

Annex A	Chemical Waste Landfill CY 2013 Groundwater Monitoring Forms and Reports
Annex B	Chemical Waste Landfill CY 2013 Soil-Gas Monitoring Forms and Reports
Annex C	Chemical Waste Landfill CY 2013 Post-Closure Inspection Forms/Checklists
Annex D	Chemical Waste Landfill CY 2013 Biology Report

ACRONYMS AND ABBREVIATIONS

AOP administrative operating procedure

bgs below ground surface

CAMU Corrective Action Management Unit

CFR Code of Federal Regulations
CWL Chemical Waste Landfill

Closure Plan Chemical Waste Landfill Final Closure Plan

CY calendar year DO dissolved oxygen

DOE U.S. Department of Energy DQO data quality objective

EPA U.S. Environmental Protection Agency

evapotranspirative ET gpm gallons per minute Kirtland Air Force Base KAFB LCL lower confidence limit Landfill Excavation LE MDL method detection limit μg/L micrograms per liter milligrams per liter mg/L

NMED New Mexico Environment Department

NTU nephelometric turbidity units
ORP oxidation-reduction potential
PCCP Post-Closure Care Permit

pH potential of hydrogen (negative logarithm of the hydrogen ion concentration)

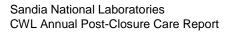
ppbv parts per billion by volume ppmv parts per million by volume PQL practical quantitation limit

QC quality control RL reporting limit

RPD relative percent difference SAP sampling and analysis plan

Sandia Sandia Corporation SC specific conductance

SNL Sandia National Laboratories


SNL/NM Sandia National Laboratories, New Mexico TCE trichloroethene (also trichloroethylene)

UCL upper confidence limit

VCM Voluntary Corrective Measure

VE Vapor Extraction

VOC volatile organic compound

Calendar Year 2013

Page Intentionally Left Blank

1.0 INTRODUCTION

Sandia National Laboratories (SNL) is a multi-purpose engineering and science laboratory owned by the U.S. Department of Energy (DOE)/National Nuclear Security Administration. SNL is managed and operated by Sandia Corporation (Sandia), a wholly-owned subsidiary of Lockheed Martin Corporation.

The Chemical Waste Landfill (CWL) at SNL/New Mexico (SNL/NM) is a remediated interim status landfill that has undergone closure in accordance with Title 20, Chapter 4, Part 1 of the New Mexico Administrative Code (20.4.1.600 NMAC), incorporating Title 40, Code of Federal Regulations (CFR), Part 265, (40 CFR 265) Subpart G, and the CWL Final Closure Plan (Closure Plan) (SNL/NM December 1992 and subsequent revisions). The CWL Post-Closure Care Permit (PCCP) (NMED October 2009), which became effective June 2, 2011 (Kieling June 2011) and has subsequently been modified, defines all post-closure requirements. Table 1-1 summarizes the modification history of the PCCP through 2013.

Table 1-1
Chemical Waste Landfill Post-Closure Care Permit Modification History

Date of Modification ^a	Affected Parts of PCCP	Description of Modification
September 26, 2011	Attachment 6 (Contingency Plan)	Updates to emergency response agreements, equipment, emergency coordinators, and inclusion of an evacuation route and assembly point figure and updated figure list.
November 16, 2011	Attachment 6 (Contingency Plan)	Correction of a typographical error in the telephone number for an emergency coordinator.
February 20, 2012	Attachments 1-5	Allow use of equivalent soil-gas passive venting devices and alternate method for analysis of soil-gas samples; clarification of cover inspection and repair specifications; updates to three figures for well locations; revisions to groundwater purging and stability requirements; inclusion of well completion diagrams for the four groundwater monitoring wells, updates to the list of operating procedures; clarification of soil-gas purging requirements; format updates to inspection forms; and correction of typographical errors.
November 7, 2013	Permit Part 3, Attachments 1-4	Provide clarification that alternative formats may be used to document inspections; provide additional detail regarding soil-gas passive venting devices; remove table and text references to the SNL/NM SOW for Analytical Laboratories, the SMO QAPP, and the Groundwater Monitoring HASP; and clarify data quality requirements for soil-gas samples.

Notes:

^aDate represents the effective date of modification

HASP = health and safety plan

QAPP = quality assurance project plan PCCP = Post-Closure Care Permit SMO = Sample Management Office

SNL/NM = Sandia National Laboratories/New Mexico

SOW = statement of work

In addition to permit modifications, DOE/Sandia are required to provide various submittals as part of the PCCP. Table 1-2 summarizes the submittals associated with the PCCP through calendar year (CY) 2013.

Table 1-2
Chemical Waste Landfill Post-Closure Care Permit Submittal History

Date of Submittal ^a	PCCP Requirement	Description of Submittal		
July 22, 2011	Permit Attachments 2 & 3	Procedures, plans, and documents cited in the PCCP used by SNL/NM personnel for groundwater and soil-gas monitoring.		
February 7, 2012 Permit Attachment 2		Four procedures and one plan related to groundwater monitoring activities that were update to include minor changes that do not affect sampling procedures or protocols. Two title changes to procedures incorporated into the November 2011 Class 1 permit modification request.		
January 24, 2013	Permit Attachments 2 & 3	Updates to reference document (SNL/NM Statement of Work for Analytical Laboratories) related to groundwater and soil-gas monitoring to reflect ongoing modifications and improvements in industry practices.		
December 9, 2013	Permit Attachments 2 & 3	Revisions to three procedures related to sample management, shipping, and data review that were revised to keep the documents current and reflecting ongoing modifications and improvements in industry practices.		

Notes:

^aDate represents the date stamp on the DOE transmittal letter for the submittal

PCCP = Post-Closure Care Permit

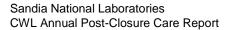
SNL/NM = Sandia National Laboratories/New Mexico

1.1 Purpose and Scope

The purpose of this CWL Annual Post-Closure Care Report is to document monitoring, inspection, maintenance, and repair activities conducted during CY 2013 in accordance with Attachment 1 of the CWL PCCP (NMED October 2009 and subsequent revisions). This annual report documents PCCP activities conducted from January through December 2013 and fulfills the CWL PCCP requirement for annual reporting to the New Mexico Environment Department (NMED).

The CWL PCCP requires monitoring, inspection, and maintenance/repair activities that must be documented and reported for each CY. Monitoring activities include semi-annual groundwater monitoring for specific volatile organic compounds (VOCs) and metals, and annual vadose zone soil-gas monitoring for specific VOCs. Inspection activities are required for the following components: final cover (vegetation and surface); storm-water diversion structures; monitoring networks and sampling equipment (groundwater and soil-gas); and security fence, locks, gates, signage, and survey monuments. The CWL final cover is a vegetative at-grade soil cover, or evapotranspirative (ET) cover.

The scope of this report includes documentation of all monitoring and inspection activities for CY 2013. Monitoring and inspections performed during this time period included:


- Two semi-annual groundwater monitoring events.
- One annual soil-gas monitoring event.
- Two semi-annual inspections of the groundwater monitoring network and sampling equipment.
- One annual inspection of the soil-gas monitoring network and sampling equipment.
- One annual inspection of final cover vegetation (i.e., biology inspection of the ET Cover).
- Four quarterly inspections of the final cover surface (i.e., physical features excluding the vegetation covered in the biology inspection), storm-water diversion structures, fence, locks, gates, signs, and survey monuments.

This CY 2013 report is organized as follows:

- Chapter 1 presents background information, purpose and scope, and report organization.
- Chapter 2 provides a description of the final cover system, compliance monitoring system (groundwater and soil-gas), storm-water diversion structures, and security fence (fence, locks, gate, signage, and survey monuments).
- Chapter 3 presents monitoring and inspection, maintenance, and repair requirements.
- Chapter 4 presents groundwater monitoring activities and results.
- Chapter 5 presents soil-gas monitoring activities and results.
- Chapter 6 presents inspection, maintenance, and repair activities and results.
- Chapter 7 summarizes regulatory activities.
- Chapter 8 presents a general summary and conclusions for the 2013 reporting period.
- Chapter 9 lists the references cited in this report.

Annexes are provided that include CY 2013 supporting information as follows:

- Annex A Groundwater Monitoring Forms and Reports
- Annex B Soil-Gas Monitoring Forms and Reports
- Annex C Post-Closure Inspection Forms
- Annex D Chemical Waste Landfill Biology Report

Calendar Year 2013

Page Intentionally Left Blank

2.0 CHEMICAL WASTE LANDFILL POST-CLOSURE CARE CONDITIONS

The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the CWL PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid waste was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.

Two voluntary corrective measures (VCMs) were conducted at the CWL. The CWL Landfill Excavation (LE) VCM was conducted from September 1998 through February 2002. Soil-vapor extraction was also conducted as a VCM from 1997 through 1998 prior to the LE VCM to reduce the concentrations of VOC soil gas in the vadose zone, control the VOC soil-gas plume, and to reduce groundwater trichloroethene (TCE) concentrations below the regulatory standard of 5 micrograms per liter (µg/L). All former disposal areas were excavated during the LE VCM and groundwater TCE concentrations have been below the regulatory standard since completion of the Vapor Extraction (VE) VCM in 1998. Approximately 52,000 cubic yards of contaminated soil and debris were removed during the LE VCM.

Additional information on CWL current conditions can be found in the CWL Final RCRA Closure Report for the CWL (SNL/NM September 2010), the CWL PCCP (NMED October 2009 and subsequent revisions), and the CWL Corrective Measures Study Report (SNL/NM December 2004). Detailed information on residual soil contamination at the CWL can be found in Part 3, Section 3.1 and Table 3-1 of the CWL PCCP (NMED October 2009 and subsequent revisions).

The following sections summarize information on the physical characteristics of the CWL, including the final cover system, compliance monitoring system, storm-water diversion structures, and security fence. More detailed information is provided in the CWL PCCP Attachment 1, Section 1.3 through 1.6, respectively.

2.1 Final Cover System

The CWL final cover is a centrally crowned "at-grade" ET cover designed to minimize infiltration of moisture into the former disposal area and to minimize long-term maintenance consistent with 40 CFR 264.111(a). The crown of the cover slopes to the north and south at a 1-percent grade, and east to west at a 3-percent grade to minimize erosion losses and control run-on/run-off. The ET Cover consists of two discrete layers; a 3-foot-thick native soil layer installed from 4 feet below ground surface (bgs) to 1 foot bgs, and a topsoil layer (approximately 1.5-feet thick) installed from 1 foot bgs to the local grade. The topsoil layer was revegetated with

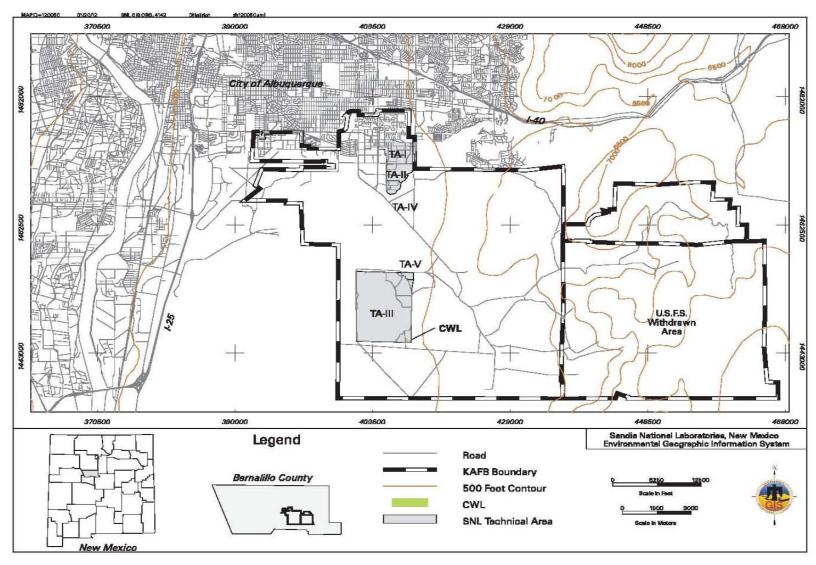


Figure 2-1 Location of the Chemical Waste Landfill with respect to Kirtland Air Force Base and the City of Albuquerque

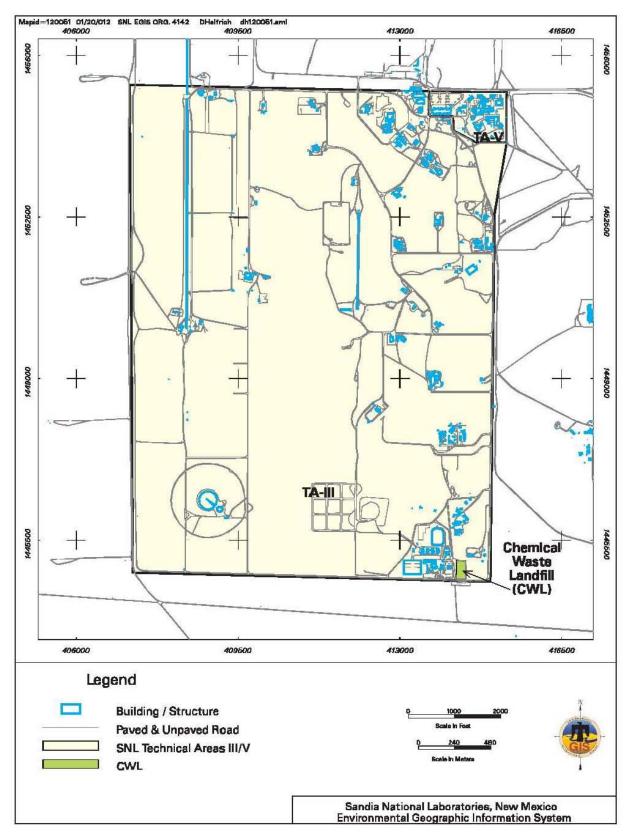


Figure 2-2
Location of the Chemical Waste Landfill within Technical Area III

native plants according to the specifications contained in the Remedial Action Proposal, Annex I, CMS Report (SNL/NM December 2004). Figure 2-3 shows a conceptual schematic profile of the ET Cover and Figure 2-4 shows the central crown and surface drainage patterns.

2.2 Compliance Monitoring System

The compliance monitoring system includes a groundwater monitoring well network and a soilgas monitoring well network, which are described in the following sections.

2.2.1 Groundwater Monitoring Network

Groundwater monitoring is performed to ensure the protection of groundwater during the compliance and post-closure care periods. The CWL groundwater monitoring network consists of four NMED-approved monitoring wells that monitor the uppermost part of the regional aquifer in accordance with the requirements of 40 CFR 264.99. The four wells are described below and their locations are shown in Figure 2-4.

- One hydraulically upgradient background well CWL-BW5, and
- Three hydraulically downgradient compliance wells CWL-MW9, CWL-MW10, and CWL-MWL11.

Well-completion diagrams for the groundwater monitoring wells are provided in Attachment 2 of the CWL PCCP (NMED October 2009 and subsequent revisions).

2.2.2 Soil-Gas Monitoring Network

The soil-gas monitoring network is designed to ensure the protection of groundwater quality by providing early detection data to determine whether the VOC soil-gas plume has the potential to contaminate groundwater at concentrations exceeding regulatory concentration limits. The five multiport wells, shown in Figure 2-4, are designed to monitor the vadose zone at various depths beneath the CWL in the area most contaminated by past disposal of organic liquid waste. The wells and their depth-specific sampling ports are as follows:

- D1 Sampling Ports at 100, 160, 240, 350, and 470 feet bgs (5 ports)
- D2 Sampling Ports at 120, 240, 350, 440, and 470 feet bgs (5 ports)
- D3 Sampling Ports at 120, 170, 350, 440, and 480 feet bgs (5 ports)
- U11 Sampling Ports at 40, 80, and 120 feet bgs (3 ports)
- U12 Sampling Ports at 36, 76, and 136 feet bgs (3 ports)

Well-completion diagrams for all of the soil-gas monitoring wells are provided in Attachment 3 of the CWL PCCP (NMED October 2009 and subsequent revisions).

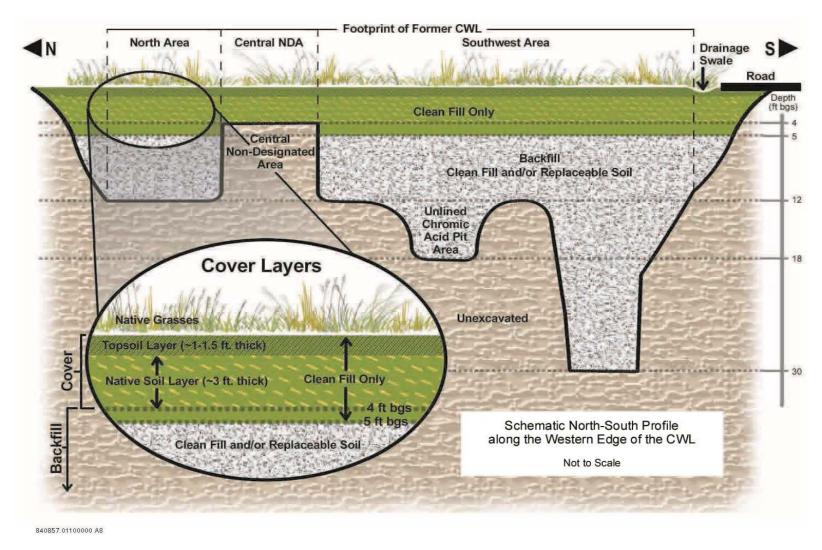
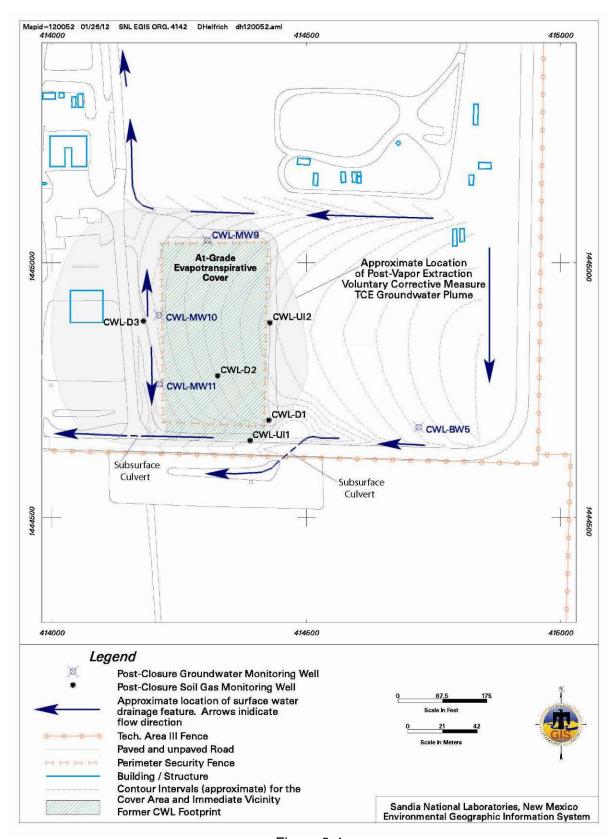
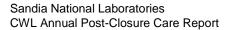


Figure 2-3
Schematic Profile of the Chemical Waste Landfill Evapotranspirative Cover




Figure 2-4
Chemical Waste Landfill Surface Drainage Patterns and Monitoring Networks

2.3 Storm-Water Diversion Structures

The function of the storm-water diversion features associated with the CWL is to minimize soil erosion caused by storm-water run-on and run-off and to reduce the amount of water that could potentially percolate into the former disposal area. Drainage features are shown in Figure 2-4 and include: ET Cover surface topography/slopes that direct water away from and off the ET Cover surface; road ditches; boundary swales; and two ditch drainage culverts at the southeastern and southwestern corners of the CWL that divert surface-water from the road ditch away from the CWL. The slight northeast and southeast inflection of the surface topography to the east of the ET Cover prevents significant run-on by directing the upgradient surface water toward the northern and southern boundary swales (Figure 2-4). Precipitation that falls directly on the ET Cover is diverted toward the boundary swales that intersect at the northwestern and southwestern corners of the site; its impact is minimized by the native vegetation, the central crown, and gently sloping topography (approximately 3-percent grade from east to west) of the ET Cover surface.

2.4 Security Fence

The location of the perimeter security fence is shown in Figure 2-4. It is a four-strand, barbed-wire fence with two gates. The gates remain locked except during inspections, maintenance, and monitoring activities. Only authorized personnel control the keys to the locks. Warning signs are posted on all sides of the CWL fence at 100-foot intervals and at the gates.

Calendar Year 2013

Page Intentionally Left Blank

3.0 MONITORING AND INSPECTION REQUIREMENTS

Monitoring, inspection, maintenance, and repair requirements are defined in the CWL PCCP Attachment 1 (NMED October 2009 and subsequent revisions) and briefly summarized in this chapter. Monitoring requirements include groundwater and soil-gas, which generate empirical data that are evaluated to assess site conditions during the compliance and post-closure care periods. Inspection requirements apply to the final cover, storm-water diversion structures, compliance monitoring system, and security fence. Emergency equipment required by the CWL Contingency Plan (CWL PCCP Attachment 6) is also subject to routine inspections. Maintenance and/or repairs are performed based upon the inspection results. Inspection, maintenance, and repair are performed to ensure the adequate performance of the ET Cover, monitoring networks, and surface features throughout the post-closure care period.

Monitoring, inspection, and maintenance/repair activities were conducted in CY 2013 in accordance with CWL PCCP Attachment 1, Sections 1.8 through 1.10. Results of CY 2013 monitoring, inspection, and repair activities are presented in Chapters 4.0, 5.0, and 6.0. The following sections provide information specific to the requirements for each type of monitoring and inspection activity under the PCCP.

3.1 Monitoring Requirements

The frequency, parameters/constituents of concern, and methods for groundwater and soil-gas monitoring are summarized in Table 3-1. The groundwater and soil-gas monitoring networks are described in Section 2.2.1 and 2.2.2 respectively. The groundwater and soil-gas monitoring requirements are detailed in CWL PCCP Attachment 1, Section 1.8. Sampling and analysis plans (SAPs) in CWL PCCP Attachments 2 and 3, respectively, describe the procedures, methods, and analytical protocols for collecting and analyzing groundwater and soil-gas samples.

Table 3-1
Chemical Waste Landfill Groundwater and
Soil-Gas Monitoring Frequency, Parameters, and Methods

Monitoring	Monitoring	Monitoring Parameters/	Monitoring
System	Frequency	Constituents of Concern	Method
Groundwater	Semi-Annually ^a	TCE by EPA Method 8260 ^b and	Sampling and Analysis per
		Cr and Ni by EPA Method 6020b	CWL PCCP Attachment 2
Soil-Gas	Annually	Compendium Method TO-14	Sampling and Analysis per
	-	VOCs ^c or equivalent ^d	CWL PCCP Attachment 3

Notes:

^aSemi-Annually: An enhanced list of constituents must be analyzed on an annual basis (see Section 1.8.1.1 of PCCP Attachment 1).

^bEPA November 1986.

EPA January 1999. See Table 1-5 in PCCP Attachment 1 for the list of the TO-14 VOCs.

^dUse of an analytical method equivalent to TO-14, such as EPA Method TO-15, was approved by NMED in February 2012 as part of a PCCP modification (Kieling February 2012).

EPA = U.S. Environmental Protection Agency.

TO-14 = EPA Method TO-14.

For all groundwater monitoring events, environmental samples must be analyzed for TCE, chromium, and nickel. Additionally, during one semi-annual event each year environmental samples must be analyzed for an enhanced list of VOCs comprised of 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113), tetrachlorethene (PCE), 1,1-dichloroethene (1,1-DCE), chloroform, and trichlorofluoromethane (Freon 11). Groundwater surface elevation must be measured each time groundwater is sampled and the groundwater flow rate, hydraulic gradient, and flow direction must be determined at least annually.

Soil-gas monitoring must be performed annually in accordance with the Soil-Gas SAP (CWL PCCP Attachment 3) using U.S. Environmental Protection Agency (EPA) Compendium Method TO-14 (EPA January 1999) or equivalent (i.e., such as the newer method TO-15) to ensure the collection of data in a manner consistent with historic soil-gas monitoring. Consistency in sampling and analysis is necessary so that results can be evaluated over time to determine changes/trends in soil-gas concentrations.

3.2 Inspection, Maintenance, and Repair Requirements

Inspection requirements for the final cover system, storm-water diversion structures, compliance monitoring system, security fence, and emergency equipment are briefly summarized in this section and detailed in CWL PCCP Attachment 1, Section 1.9. All inspections were performed by personnel who meet the qualification and training requirements of CWL PCCP Attachment 5. The schedule for implementing inspections and prescribed maintenance and/or repairs is provided in CWL PCCP Attachment 1, Section 1.10, Table 1-6. Maintenance and/or repairs are performed as needed based upon the inspection results.

3.2.1 Final Cover System Inspection/Maintenance/Repair Requirements

Inspection of the final cover includes vegetation inspection and monitoring by the staff biologist (i.e., biology inspection) and cover inspection by a field technician.

3.2.1.1 Vegetation Inspection and Monitoring

Achieving a sustainable native plant community on the final cover is an important component of overall ET Cover performance. Vegetation minimizes erosion by stabilizing the ET Cover surface and reduces infiltration of surface water by transferring soil moisture from the ET Cover to the atmosphere through transpiration.

Cover vegetation monitoring is to be accomplished in a two-phase approach. The first phase concentrates on establishing the vegetation on the ET Cover from seed to a mature plant community such that successful revegetation criteria (defined in CWL PCCP Attachment 1 Section 1.9) are met. These criteria are provided below.

- Total percent foliar coverage equals 20 percent (i.e., 20 percent of the land surface is covered with living plants versus 80 percent bare surface area);
- Of the 20 percent total foliar coverage, 50 percent or greater comprises native perennial species, and 50 percent or less comprises annual species; and

No contiguous bare spots greater than 200 square feet (approximately 14 by 14 feet).

During this first phase of vegetation inspection and monitoring a staff biologist must inspect and document the inventory of the main flora populating the cover on a quarterly basis. These inspections are to be documented on the Biology Inspection Form/Checklist (CWL PCCP Attachment 4 or equivalent) and include inspecting the cover for contiguous areas lacking vegetation in excess of 200 square feet, signs of animal intrusion, and deep-rooted plants. Repairs required as a result of the inspections to address vegetation parameters not meeting CWL PCCP specifications are to be performed as described in Section 3.2.1.3. At the end of each CY, the staff biologist must compile the results of the quarterly inspections, summarize local climate trends, and present recommendations in a summary report to be included in the annual CWL post-closure care report submitted to NMED.

Once successful revegetation criteria are met, the second phase of cover vegetation inspection and monitoring begins. During this phase the staff biologist inspection frequency changes to annual. The biology inspection is to occur near the end of the growing season (August-September) to most accurately determine the coverage of living plants. As with the first phase, the inspection is to be documented on the Biology Inspection Form/Checklist (CWL PCCP Attachment 4 or equivalent), include inspection results for the same parameters, and be documented in a summary report along with a summary of local climate trends and recommendations.

3.2.1.2 Cover Inspection Requirements

Cover inspections are required to be performed by a field technician on a quarterly basis to assess the physical integrity of the ET Cover. Settlement of the cover surface in excess of 6 inches, erosion of the cover soil in excess of 6 inches deep, areas of ponding water, animal intrusion burrows in excess of 4 inches in diameter, contiguous areas lacking vegetation in excess of 200 square feet, and any other conditions that may impact the cover integrity must be documented on the Post-Closure Inspection Form/Inspection Checklist (CWL PCCP Attachment 4 or equivalent). During the first phase of quarterly cover vegetation monitoring described in Section 3.2.1.1, documentation of animal intrusion burrows in excess of 4 inches in diameter and contiguous areas lacking vegetation in excess of 200 square feet are addressed on the Biology Inspection Form/Checklist (or equivalent). During the second phase of annual cover vegetation monitoring, these inspection parameters must be noted by the field technician on the Post-Closure Inspection Form/Checklist (or equivalent).

3.2.1.3 Cover Repairs

Cover damage exceeding CWL PCCP specifications is required to be repaired within 60 days to a condition that meets or exceeds the original design. However, repairs to fix inadequate cover vegetation may be delayed until the appropriate growing season if approved by NMED in advance, and if measures are taken as needed to prevent excessive erosion of the ET Cover during the delay period. Repairs to the cover are to be completed using materials consistent with the cover installation specifications in accordance with PCCP Attachment 1, Section 1.9.1.3.

3.2.2 Storm-Water Diversion Structure Inspection Requirements

Inspection of the storm-water diversion structures is required on a quarterly basis to verify structural integrity and to ensure adequate performance. These inspections are to be performed at the same time as the cover inspections. Erosion of the channels or sidewalls in excess of 6 inches deep, accumulations of silt greater than 6 inches deep, or debris that blocks more than one-third of the channel width must be documented on the Post-Closure Inspection Form/Inspection Checklist (CWL PCCP Attachment 4 or equivalent). Repairs, if needed, will be completed within 60 days.

3.2.3 Monitoring Well Network Inspection Requirements

Inspection of monitoring wells and sampling equipment is required at the same frequency as the associated monitoring, and is to be performed concurrently with all groundwater and soil-gas monitoring events. Inspections must be documented on the Post-Closure Inspection Form/Inspection Checklist (CWL PCCP Attachment 4 or equivalent) and address the condition of the components including protective casings and bollards, wellhead covers/caps/locks, soil-gas sampling ports, well identification markings, and passive venting BaroBalls™ or equivalent devices. Sampling pumps and tubing are inspected during each sampling event (pumps are not dedicated to the wells). Pump replacement and maintenance/repair, and tubing replacement are performed on an as-needed basis based upon pump and tubing performance, inspections, and review of analytical sampling results. Accumulation of wind-blown plants and debris that would interfere with any of the groundwater or soil-gas monitoring network components will also be documented and removed during these inspections, or within 60 days.

3.2.4 Security Fence Inspection Requirements

Inspection of the fence, gates, locks, and warning signs at the CWL is required on a quarterly basis and is to be performed concurrently with the cover inspection. The condition of the fence, including fence wires, posts, gates, locks, and warning signs, is to be inspected and documented on the Post-Closure Inspection Form/Inspection Checklist (CWL PCCP Attachment 4 or or equivalent). Accumulation of wind-blown plants and debris on the fence that would obscure warning signs or block access to the CWL will be documented during the inspection and removed within 60 days. Local survey monuments must also be inspected and excess soil and/or vegetation covering these features will be removed within 60 days.

3.2.5 Emergency Equipment Inspection Requirements

Inspection of emergency equipment is required on a quarterly basis. Emergency equipment is maintained at the nearby Corrective Action Management Unit (CAMU) for use at the CWL, if necessary. A list of emergency equipment and its location is provided in CWL PCCP Attachment 6, Table 6-4.

4.0 GROUNDWATER MONITORING RESULTS

This chapter presents groundwater monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation for CY 2013 in accordance with CWL PCCP Attachment 1, Sections 1.8 and 1.12, and Attachment 2 (NMED October 2009 and subsequent revisions). Groundwater sampling field activities are described in Section 4.1, analytical laboratory results and a discussion of data quality are presented in Section 4.2, data evaluation requirements and results are presented in Section 4.3, and hydrogeologic information on the regional aquifer is presented in Section 4.4. A summary of groundwater monitoring activities and results is provided in Section 8.1.

4.1 Groundwater Sampling Field Activities

This section describes groundwater monitoring activities conducted at the CWL in conformance with the CWL Groundwater SAP, PCCP Attachment 2 (NMED October 2009 and subsequent revisions), that describes the procedures, methods, and analytical protocols for collecting and analyzing groundwater samples. The data quality objective (DQO) for groundwater monitoring is to collect accurate and defensible data of high quality to determine the concentrations of hazardous constituents in the groundwater in the uppermost aquifer underlying the CWL. Field forms and documentation that address calibration of equipment, well purging and water quality measurements, and equipment decontamination activities are provided in Annex A of this report and filed in the SNL/NM Records Center.

Two semi-annual groundwater sampling events were conducted in CY 2013.

- The first sampling event was conducted January 8-14, 2013. Groundwater samples were collected from monitoring wells CWL-BW5, CWL-MW9, CWL-MW10, and CWL-MW11, and a duplicate sample was collected from CWL-MW9. Samples collected from all wells were analyzed for TCE, chromium, nickel, and the enhanced list of VOCs. The enhanced list of VOCs includes 1,1-dichloroethene (1,1-DCE), 1,1,2-trichloro-1 2,2-trifluoroethane (Freon 113), chloroform, tetrachloroethene (PCE), and trichlorofluoromethane (Freon 11) in addition to TCE.
- The second sampling event was conducted July 8-12, 2013. Groundwater samples
 were collected from monitoring wells CWL-BW5, CWL-MW9, CWL-MW10, and CWLMW11, and a duplicate sample was collected from CWL-MW10. Samples collected from
 all wells were analyzed for TCE, chromium, and nickel.

4.1.1 Well Purging

Purging removes stagnant water from the well so that a representative groundwater sample can be collected. The minimum purge requirement for a portable piston pump is one saturated casing volume (the volume of all static water in the well screen plus the borehole annulus around the saturated screen interval). Purging continued until four stable field measurements for temperature, specific conductance (SC), potential of hydrogen (pH), and turbidity were obtained in all monitoring wells that did not purge dry. As specified in PCCP Attachment 2,

Section 2.12, groundwater stability is considered acceptable when four successive measurements are less than five nephelometric turbidity units (NTU) for turbidity or within a range of 10 percent for turbidity values greater than 5 NTU, pH is within 0.1 units, temperature is within 1.0 degree Celsius, and SC is within five percent as micromhos per centimeter. Field measurements for water quality parameters were collected using a YSITM Model 6920 Water Quality Meter and a HACHTM Model 2100Q portable turbidity meter. Additional water quality measurements included oxidation-reduction potential (ORP) and dissolved oxygen (DO).

A portable Bennett Company groundwater sampling system was used to purge and collect groundwater samples from all wells. Minimum purge requirements were satisfied at all monitoring wells except CWL-MW10. This monitoring well was purged to dryness, allowed to recover, and then sampled to collect the most representative groundwater sample possible given the low yield of this well in accordance with PCCP requirements. In an effort to decrease flow rate for CWL-MW10, the existing sampling system is equipped with a flow-meter valve located along the discharge line, and with small diameter tubing. During the purging process at CWL-MW10, the flow rate was continually adjusted to achieve as low a flow rate as possible without causing the pump to fail. This represents a "best faith effort" to purge the wells at the slowest rate possible given equipment limitations as specified in PCCP Attachment 2, Section 2.12.

During January approximately 19 gallons were purged from monitoring well CWL-MW10 prior to the well going dry. The average flow rate was 0.17 gallons per minute (gpm), and the estimated flow rate was 0.13 gpm during the final four gallons (equivalent to 0.64 and 0.49 liters per minute, respectively). During July approximately 16 gallons were purged from CWL-MW10 prior to the well going dry. The average flow rate was 0.15 gpm, and the estimated flow rate was 0.10 gpm during the final four gallons (equivalent to 0.57 and 0.38 liters per minute, respectively).

4.1.2 Field Quality Control

Field quality control (QC) samples were collected as part of each sampling event and included environmental duplicate, equipment blank, trip blank, and field blank samples. The sampling pump and tubing bundle used to collect groundwater samples were decontaminated prior to sampling each monitoring well.

Duplicate samples were analyzed to estimate the overall reproducibility of the sampling and analysis process and were collected immediately after the original environmental sample to reduce variability caused by time and/or sampling mechanics. Equipment blank (also referred to as a rinsate blank) samples were collected prior to collection of an environmental sample, to verify the equipment decontamination process. Trip blank analysis is used to confirm samples were not contaminated during shipment and storage. Field blank samples were analyzed to detect any potential sample contamination resulting from ambient field conditions.

The field QC samples were submitted for analysis with the groundwater samples. A brief explanation of the field QC sampling protocol for the January and July sampling events is provided below. Analytical results are presented in Section 4.2.2.

First Semi-Annual Sampling Event – January 8-14, 2013

A duplicate environmental sample was collected from CWL-MW9. One equipment blank sample was collected prior to sampling CWL-MW9 and submitted for all analyses. A total of five trip

blank samples were submitted with the January 2013 groundwater samples and analyzed for the enhanced list of VOCs. Two field blank samples were collected for VOC analysis (enhanced list) by pouring deionized water into sample containers at the CWL-BW5 and CWL-MW10 sample locations to simulate the transfer of environmental samples from the sampling system to the sample container.

Second Semi-Annual Sampling Event – July 8-12, 2013

A duplicate environmental sample was collected from CWL-MW10. One equipment blank sample was collected prior to sampling CWL-MW10. The samples were submitted for all analyses. A total of five trip blank samples were submitted with the July 2013 groundwater samples and analyzed for TCE. Two field blank samples were collected for TCE analysis by pouring deionized water into sample containers at the CWL-MW9 and CWL-MW11 sample locations to simulate the transfer of environmental samples from the sampling system to the sample container.

4.1.3 Waste Management

Purge and decontamination water generated from sampling activities were placed into 55-gallon containers and stored at the Environmental Resources Field Office less than 90-day waste accumulation area. Approximately 275 gallons of wastewater were generated during the January 2013 groundwater sampling event and approximately 239 gallons of wastewater were generated during the July 2013 event. Separate waste characterization samples were collected from purge and decontamination water and analyzed for discharge parameters. All wastewater was discharged to the sanitary sewer in accordance with Albuquerque Bernalillo County Water Utility Authority requirements after waste characterization data were compared to discharge limits and determined to meet these requirements.

Personal protective equipment and other solid waste generated during January and July 2013 monitoring activities were packaged into 5-gallon plastic buckets and managed as hazardous waste. This waste was submitted to the Hazardous Waste Management Facility for ultimate disposal at a permitted off-site facility.

4.2 Laboratory Results

Groundwater and field QC samples were submitted to GEL Laboratories for analyses. Samples were analyzed in accordance with applicable EPA analytical methods. For comparison, hazardous constituent concentration limits from the CWL PCCP are included in the analytical results tables. Analytical results that are above the analytical laboratory method detection limit (MDL) but below the practical quantitation limit (PQL) are qualified as estimated values and designated with a "J" qualifier. Analytical laboratory reports, including certificates of analyses, analytical methods, MDLs, PQLs, dates of analyses, results of QC analyses, and data validation reports are filed in the SNL/NM Records Center.

4.2.1 Environmental Sample Results

Table 4-1 summarizes TCE results and Table 4-2 summarizes chromium and nickel results for the January and July 2013 groundwater sampling events. Table 4-3 summarizes results for the

Table 4-1 Summary of Trichloroethene Results Chemical Waste Landfill Groundwater Monitoring Analytical Method SW846-8260B^a Calendar Year 2013

Well ID	Result (µg/L)	MDL (µg/L)	PQL (µg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b		
January 2013 Sampling Ever	January 2013 Sampling Event						
CWL-BW5	ND	0.300	1.00	U			
CWL-MW9	ND	0.300	1.00	U			
CWL-MW9 (Duplicate)	ND	0.300	1.00	U			
CWL-MW10	4.63	0.300	1.00				
CWL-MW11	ND	0.300	1.00	U			
July 2013 Sampling Event							
CWL-BW5	ND	0.300	1.00	U			
CWL-MW9	ND	0.300	1.00	U			
CWL-MW10	3.13	0.300	1.00				
CWL-MW10 (Duplicate)	2.89	0.300	1.00				
CWL-MW11	ND	0.300	1.00	U			

Notes:

- MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix-specific.
- μg/L = Micrograms per liter.
- ND = Not detected (at method detection limit).
- PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.
- U = Analyte not present or concentration is below the method detection limit.

additional VOCs (enhanced list) included in the January 2013 event. Table 4-4 summarizes field water quality measurements collected prior to sampling for both events. Field water quality measurements include turbidity, pH, temperature, SC, ORP, and DO. A summary of the results from the January and July sampling events is provided below. Statistical evaluation and comparison of results to concentration limits specified in the PCCP is provided in Section 4.3.

First Semi-Annual Sampling Event – January 8-14, 2013

TCE was detected above the laboratory MDL in the CWL-MW10 sample at a concentration of $4.63 \mu g/L$. No other VOCs (enhanced list) were detected.

Chromium was detected above the laboratory MDL in the CWL-MW11 sample at a concentration of 0.00304J milligrams per liter (mg/L). Nickel was detected in the CWL-MW10 environmental sample at a concentration of 0.00404 mg/L. The very low concentration detections of chromium in the CWL-MW10 sample and nickel in the CWL-BW5, CWL-MW9, and CWL-MW11 samples were qualified as not detected during data validation because the detections are less than five times the concentrations that were detected in the associated laboratory method blank samples.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

bLaboratory/Validation Qualifier - If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples. See explanation for "U" laboratory qualifier below.

Table 4-2 Summary of Chromium and Nickel Results Chemical Waste Landfill Groundwater Monitoring Analytical Method SW846-6020^a Calendar Year 2013

Well ID	Analyte	Result (mg/L)	MDL (mg/L)	PQL (mg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
January 2013 Sampling	Event					
CWL-BW5	Chromium	ND	0.002	0.010	U	
CVVL-BVV5	Nickel	0.0036	0.0005	0.002	В	0.0048U
CWL-MW9	Chromium	ND	0.002	0.010	C	
CVVL-IVIVV9	Nickel	0.00399	0.0005	0.002	В	0.0048U
CWL-MW9 (Duplicate)	Chromium	ND	0.002	0.010	U	
CVVL-IVIVV9 (Duplicate)	Nickel	0.00344	0.0005	0.002	В	0.0048U
CWL-MW10	Chromium	0.00321	0.002	0.010	B, J	0.018U
CVVL-IVIVV IO	Nickel	0.00404	0.0005	0.002	В	
CWL-MW11	Chromium	0.00304	0.002	0.010	J	
	Nickel	0.00333	0.0005	0.002	В	0.0048U
July 2013 Sampling Eve	nt					
CWL-BW5	Chromium	ND	0.002	0.010	U	
CVVL-BVV3	Nickel	0.00637	0.0005	0.002		J-
CWL-MW9	Chromium	ND	0.002	0.010	U	
CVVL-IVIVV9	Nickel	0.00198	0.0005	0.002	J	J-
CWL-MW10	Chromium	ND	0.002	0.010	U	
CVVL-IVIVV 10	Nickel	0.00234	0.0005	0.002		
CWL-MW10 (Duplicate)	Chromium	ND	0.002	0.010	U	
CVVL-IVIVV TO (Duplicate)	Nickel	0.00238	0.0005	0.002		
CWL-MW11	Chromium	ND	0.002	0.010	U	
OVV E-IVIVV I I	Nickel	0.00172	0.0005	0.002	J	J-

Notes:

- B = Analyte is detected in associated laboratory method blank.
- J = Amount detected is below the practical quantitation limit (PQL).
- J- = The associated numerical value is an estimated quantity with a suspected negative bias.
- U = Analyte is absent or below the method detection limit, if a number is shown units are mg/L.
- MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix-specific.
- mg/L = Milligrams per liter.
- ND = Not detected (at method detection limit).
- PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd ed.

^bLaboratory/Validation Qualifier - If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted sample. See explanation for "B," "J," "J-," and "U" qualifiers below:

Table 4-3
Summary of Additional Volatile Organic Compound Results
Chemical Waste Landfill Groundwater Monitoring
Analytical Method SW846-8260B^a
January 2013

Well ID	Analyte	Result (µg/L)	MDL (µg/L)	PQL (µg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-BW5	1,1-Dichloroethene	ND	0.300	1.00	U	
	Chloroform	ND	0.300	1.00	U	
	Tetrachloroethene	ND	0.300	1.00	U	
	Trichlorofluoromethane	ND	0.300	1.00	U	-
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	
CWL-MW9	1,1-Dichloroethene	ND	0.300	1.00	U	
	Chloroform	ND	0.300	1.00	U	
	Tetrachloroethene	ND	0.300	1.00	U	-
	Trichlorofluoromethane	ND	0.300	1.00	U	
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	
CWL-MW9	1,1-Dichloroethene	ND	0.300	1.00	U	
(Duplicate)	Chloroform	ND	0.300	1.00	U	
	Tetrachloroethene	ND	0.300	1.00	U	-
	Trichlorofluoromethane	ND	0.300	1.00	U	-
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	-
CWL-MW10	1,1-Dichloroethene	ND	0.300	1.00	U	-
	Chloroform	ND	0.300	1.00	U	-
	Tetrachloroethene	ND	0.300	1.00	U	-
	Trichlorofluoromethane	ND	0.300	1.00	U	-
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	-
CWL-MW11	1,1-Dichloroethene	ND	0.300	1.00	U	-
	Chloroform	ND	0.300	1.00	U	-
	Tetrachloroethene	ND	0.300	1.00	U	
	Trichlorofluoromethane	ND	0.300	1.00	U	-
	1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.50	5.00	U	

Notes:

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition. ^bLaboratory/Validation Qualifier - If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix-specific.

 μ g/L = Micrograms per liter.

ND = Not detected (at method detection limit).

PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

U = Analyte not present or concentration is below the method detection limit.

Table 4-4
Summary of Field Water Quality Measurements^a
Chemical Waste Landfill Groundwater Monitoring
Calendar Year 2013

Well ID/ Sample Date	Temperature (°C)	SC (µmho/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (% Sat)	DO (mg/L)				
January 2013 Sampling Event											
CWL-BW5	16.78	1024	226.5	6.64	0.68	77.6	7.44				
CWL-MW9	18.22	906	44.1	6.68	0.68	21.4	2.00				
CWL-MW10	9.10	797	156.9	6.98	2.67	26.1	3.00				
CWL-MW11	14.44	929	198.0	6.68	0.67	50.1	5.10				
July 2013 Sampling Event											
CWL-BW5	22.62	1200	104.1	6.85	0.78	77.6	6.61				
CWL-MW9	21.64	1066	14.5	6.91	0.71	26.4	2.32				
CWL-MW10	22.04	966	60.8	7.16	2.70	21.1	1.84				
CWL-MW11	26.73	1119	120.4	6.88	1.25	55.6	4.96				

Notes:

^aField measurements collected prior to sampling.

°C = Degrees Celsius.
% Sat = Percent saturation.
DO = Dissolved oxygen.
mg/L = Milligrams per liter.

umho/cm = Micromhos per centimeter.

mV = Millivolts.

ORP = Oxidation-reduction potential. NTU = Nephelometric turbidity units.

pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).

SC = Specific Conductance.

Second Semi-Annual Sampling Event – July 8-12, 2013

TCE only detected above the laboratory MDL in the CWL-MW10 sample at concentrations of 3.13 and 2.89 μ g/L in the environmental and duplicate samples, respectively. Both concentrations were lower than the January 2013 results of 4.63 μ g/L. There were no other detections of TCE.

Chromium was not detected above the laboratory MDL in any of the samples. Nickel was detected in all samples at concentrations ranging from 0.00172J mg/L (CWL-MW11 sample) to 0.00637 mg/L (CWL-BW5 sample).

4.2.2 Field Quality Control Sample Results

Tables 4-1 through 4-4 present results for samples collected in the January and July sampling events. Table 4-5 summarizes results of duplicate sample analyses and the calculated relative percent difference (RPD) values between the environmental and duplicate sample results for the July 2013 data set. For the environmental-duplicate sample pair collected at CWL-MW9 in January, no VOCs or chromium were detected and the nickel results were qualified during data validation as non-detections. Therefore, RPD values were not calculated. RPD values were calculated for detected constituents from the CWL-MW10 environmental-duplicate sample pair and show very good agreement (i.e., RPD values < 20 for organics and < 35 for metals).

Table 4-5
Summary of Duplicate Sample Results
Chemical Waste Landfill Groundwater Monitoring
Calendar Year 2013

Well ID/Parameter	Environmental Sample (R1)	Duplicate Sample (R2)	RPD ^a
July 2013 Sampling Event			
CWL-MW10			
Trichloroethene (μg/L)	3.13	2.89	8
Nickel (mg/L)	0.00234	0.00238	2

Notes:

^aRPD = Relative percent difference is calculated with the following equation and rounded to the nearest whole number.

$$RPD = \frac{|R_I - R_2|}{I(R_I + R_2)/2I} \times 100$$

where: R_1 = Environmental sample result.

R₂ = Duplicate sample result.

 μ g/L = microgram(s) per liter. mg/L = milligram(s) per liter.

One equipment blank sample was collected in January and analyzed for all constituents. Chloroform and chromium were detected in the January equipment blank sample. No corrective action was necessary since chloroform and chromium were not detected in the environmental sample associated with the equipment blank sample (i.e., CWL-MW9 samples). The equipment blank sample collected in July was analyzed for all constituents; no constituents were detected in the sample.

Of the five trip blank samples and two field blank samples associated with the January sampling event, the only detection was chloroform in all of the field blank samples. No corrective action was required since chloroform was not detected in any of the environmental samples. The five trip blank samples and two field blank samples associated with the July sampling event were analyzed only for TCE, which was not detected in any of the samples.

4.2.3 Data Quality

Field QC sample results met the sampling DQOs and validated the adequacy of the field sampling procedures and protocol. Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These samples included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, surrogate spike samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All chemical data were reviewed and qualified in accordance with SNL/NM Administrative Operating Procedure (AOP) AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM May 2011). Minor issues documented during the data validation process are summarized below.

For the January 2013 sampling event, the chromium result in the CWL-MW10 sample and the nickel results in CWL-BW5, CWL-MW9, and CWL-MW11 samples were qualified as not detected during data validation. The results are very low concentrations that are less than five times the concentration detected in the associated laboratory method blank samples; therefore they were qualified as not detected at an elevated detection limit equal to the associated blank concentration.

For the July 2013 sampling event, the nickel results in CWL-BW5, CWL-MW9, and CWL-MW11 environmental samples were qualified as estimated values with a negative bias during data validation, based on the associated laboratory quality control sample (interference check sample) results.

Based upon the data validation and review criteria, all analytical data were determined acceptable. Reported QC samples results were in compliance with analytical method and laboratory procedure requirements (i.e., technically defensible). Data Validation Reports and Contract Verification Review forms are provided in Annex A of this report and are filed in the SNL/NM Records Center.

4.2.4 Variances and Non-Conformances

No variances, non-conformances, or project-specific issues were identified during the January and July 2013 semi-annual groundwater sampling events.

4.3 Data Evaluation

Groundwater monitoring is required to determine whether the groundwater beneath the CWL is in compliance with the groundwater protection standard under 40 CFR § 264.92 and for the determination of statistical significance under 40 CFR § 264.97(h). In accordance with PCCP Attachment 1, Section 1.8.1.2, statistical evaluation of groundwater monitoring results from new wells is not required until three years of groundwater sampling results have been obtained (i.e., minimum data set for statistical analysis as defined by the NMED is six analytical results). For replacement wells, historical groundwater sampling results are used to augment the data sets and increase the amount of data available for statistical analysis. Historical groundwater data is limited to data obtained after completion of the VE VCM (July 1998).

Statistical evaluation includes results from CWL-BW5/4A, as well as CWL-MW9, CWL-MW10, and CWL-MW11. CWL-MW9, CWL-MW10, and CWL-MW11 are new wells installed in 2010 and have been sampled six times as of July 2013 (November-December 2010, July-August 2011, January and July 2012, January and July 2013). Statistical evaluation of the results from these wells is included for the first time in this report. In the following sections the term "historical results" refers to the 2010 through 2013 data set for these new wells. CWL-BW5 is a replacement well for CWL-BW4A. All results for CWL-BW5 (November-December 2010, July-August 2011, January and July 2012, January and July 2013) and historic results for CWL-BW4A (since completion of the VE VCM in 1998) are used for statistical evaluation presented in the following sections.

4.3.1 Statistical Assessment Requirements

Groundwater monitoring data are statistically evaluated on a well-by-well basis for each of the three hazardous constituents in accordance with the requirements stated in PCCP Attachment 1, Section 1.8.1.2. The hazardous constituents and their respective concentration limits are listed in Table 4-6. Prediction and confidence intervals are calculated and used to evaluate groundwater monitoring results. In addition, the cumulative percentage of sample results that are greater than the median (i.e., Median Test) is calculated to determine if there is statistically significant evidence of increased contamination. If a result is below the analytical laboratory detection limits, the MDL for the constituent is used for statistical analysis. For duplicate analyses, only the highest detection is used for statistical analysis. If a detection is qualified as "not detected" during data validation due to blank contamination, the original result is used for statistical analysis. More detailed information regarding statistical assessment requirements is provided below and statistical assessment results for CY 2013 groundwater monitoring data are presented in Section 4.3.2.

Table 4-6
Concentration Limits for the Hazardous Constituents of Concern at the Chemical Waste Landfill

Hazardous Constituent	Concentration Limit	Basis of Concentration Limit
Trichloroethene	5 μg/L	EPA MCL, 40 CFR § 264.94(b)
Chromium	0.050 mg/L	Table 1, 40 CFR § 264.94(a)(2)
Nickel	III II 28 ma/i	SNL/NM background level, 40 CFR § 264.94(a)(1)

Notes:

CFR = Code of Federal Regulations

EPA = U.S. Environmental Protection Agency

MCL = Maximum contaminant level.

 μ g/L = Micrograms per liter. mg/L = Milligrams per liter.

Prediction and Confidence Intervals

The probability that each semi-annual sample result for a given hazardous constituent falls within the range of previous sample results is determined using prediction intervals. The prediction interval for a given hazardous constituent is the range between the 95% upper confidence limit (UCL) and the 95% lower confidence limit (LCL) of the mean. Therefore, the probability of a sample result for a given hazardous constituent falling within the range of previous sample results (i.e., between the LCL and the UCL) is 90%. Sample results are also compared to the historical range (minimum and maximum result) to determine whether they fall within, below, or above the range of previous sample results.

The 95% LCL is also used to determine statistically significant evidence that the concentration limit for the particular hazardous constituent has been exceeded (NMED October 2009 and subsequent revisions). The calculated 95% LCL is compared to the concentration limit in Table 4-6 and if it exceeds the concentration limit, this is statistically significant evidence that the concentration limit has been exceeded. This triggers corrective action in accordance with PCCP Attachment 1, Section 1.8.3. Individual sample results are not directly compared to concentration limits, and if an individual result exceeds the concentration limit this does not constitute an exceedance requiring corrective action.

Median Test

The median value is calculated using all historic data prior to the sampling event(s) being evaluated. For example, the median value against which the July 2013 CWL-BW5/4A sample results are compared was calculated using all historic results obtained since July 1998 (i.e., completion of the VE VCM) not including the July 2013 sample results. For the next groundwater monitoring event, the median will be recalculated and include the July 2013 sample results. If the cumulative percentage of results greater than the median for a given hazardous constituent is 80% or greater, that is considered statistically significant evidence of increased contamination. However, no action is required due to statistically significant evidence of increasing contamination unless the 95% LCL of the mean for a given constituent exceeds the respective concentration limit (NMED October 2009 and subsequent revisions).

4.3.2 Statistical Assessment Results

CY 2013 groundwater sampling data and statistical analysis for CWL-BW5/4A, CWL-MW9, CWL-MW10, and CWL-MW11 are discussed in this section. Statistical assessment results are presented in Table 4-7 and shown graphically in Figures 4-1 through 4-9.

The statistical analysis of specific constituents was not performed if all results for the data set are non-detections. The statistical analysis presented for new wells CWL-MW9, CWL-MW10, and CWL-MW11 is significantly impacted by the small data set (each contains the minimum of six data points for each constituent), the very low concentrations, and in several cases the high number of non-detect results. Because the evaluation process uses the laboratory MDL in the case of laboratory non-detections, the statistical results are also affected by changes in the MDL over time. In general the laboratory MDLs have decreased over time, which impacts the CWL-BW5/4A statistical evaluation results as the historic data set for this well includes results from 1998 through the present. For laboratory detections that are qualified during the data validation process as "not detected" (i.e., "U" qualified) due to blank contamination, the original result reported by the laboratory is used. Likewise, results qualified by the laboratory and/or data validation as estimated (i.e., "J" qualified) are used as reported. Statistical results are presented below for all cases where evaluation was possible. As routine monitoring continues and the data sets increase in size, the evaluation results will improve for detected constituents.

Prediction Intervals

Monitoring Well CWL-BW5/4A

CY 2013 CWL-BW5 chromium and TCE sample results were both non-detections, and the corresponding MDLs were lower than their respective 95% LCLs, thus are below the prediction interval (range of 95% LCL to 95% UCL). This is due to the decrease in the laboratory detection limits over time and the fact that chromium and TCE are often not detected. The results for nickel fell within the range of the 95% LCL and 95% UCL. Results for all three hazardous constituents (using the MDL value if constituent was not detected) fell within the historical range.

Table 4-7 Statistical Assessment Results Summary Chemical Waste Lanfill Calendar Year 2013 Sampling Results

Hazardous Constituent ^a	M inimum ^b	Maximum ^b	Mean ^c	Standard Deviation ^c	LCL°	UCL°	Distribution Type ^c	Median Test ^d	Concentration Limit Exceeded ^e ?
CWL-BW5/4A									
Chromium (mg/L)	0.00038	0.0125	0.00337	0.0032	0.00239	0.00435	Normal	46%	No
Nickel (mg/L)	0.00109	0.049	0.00565	0.00853	0.00305	0.00825	Normal	50%	No
TCE (µg/L)	0.1	0.78	0.353	0.138	0.311	0.395	Normal	4%	No
CWL-MW9									
Chromium (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	No
Nickel (mg/L)	0.00198	0.0048	0.00363	0.00102	0.0028	0.00446	Normal	67%	No
TCE (µg/L)	NA	NA	NA	NA	NA	NA	NA	NA	No
CWL-MW10									
Chromium (mg/L)	0.002	0.018	0.00667	0.00734	0.00064	0.0127	Normal	33%	No
Nickel (mg/L)	0.00238	0.00707	0.00389	0.00175	0.00245	0.00533	Normal	33%	No
TCE (µg/L)	1.11	4.68	3.13	1.502	1.894	4.366	Normal	67%	No
CWL-MW11									
Chromium (mg/L)	0.002	0.00304	0.00236	0.000431	0.00201	0.00271	Normal	67%	No
Nickel (mg/L)	0.00172	0.0048	0.00321	0.00127	0.00217	0.00425	Normal	33%	No
TCE (µg/L)	NA	NA	NA	NA	NA	NA	NA	NA	No

Notes:

NA = Not Applicable; constituent has not been detected in any samples from this monitoring well.

mg/L = Milligrams/liter.

^aHazardous Constituents from CWL Permit Attachment 1, Section 1.4.1, Table 1-2 (Table 4-6 of this report).

^bMinimum and maximum result determined from historical data.

^cMean, LCL, UCL, Standard Deviation, and Distribution Type determined using ProUCL statistical program.

^d Median Test is the cumulative percentage of sample results that are greater than the median.

^eExceedance determined by comparing the sample result (Tables 4-1, 4-2, and 4-3) against the concentration limit in CWL Permit Attachment 1, Table 1-2 (Table 4-6 of this report).

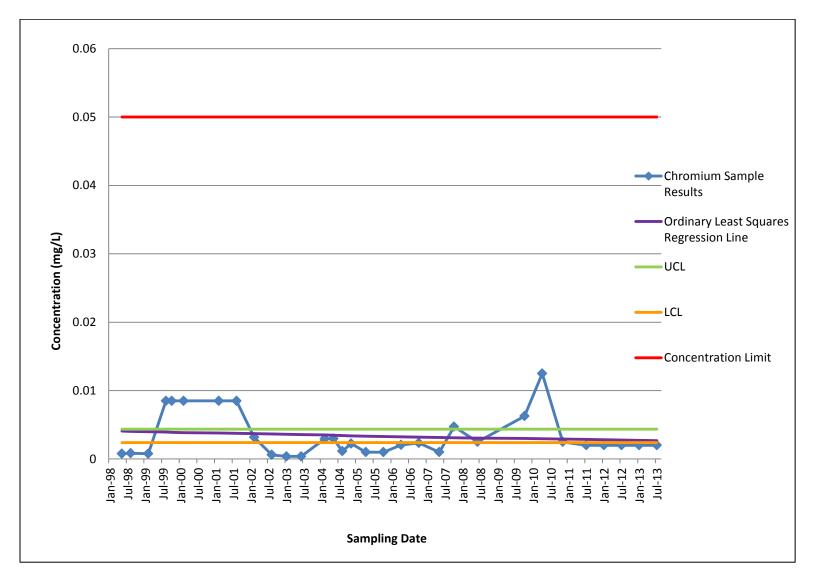


Figure 4-1 Chromium Control Chart for CWL-BW5/4A

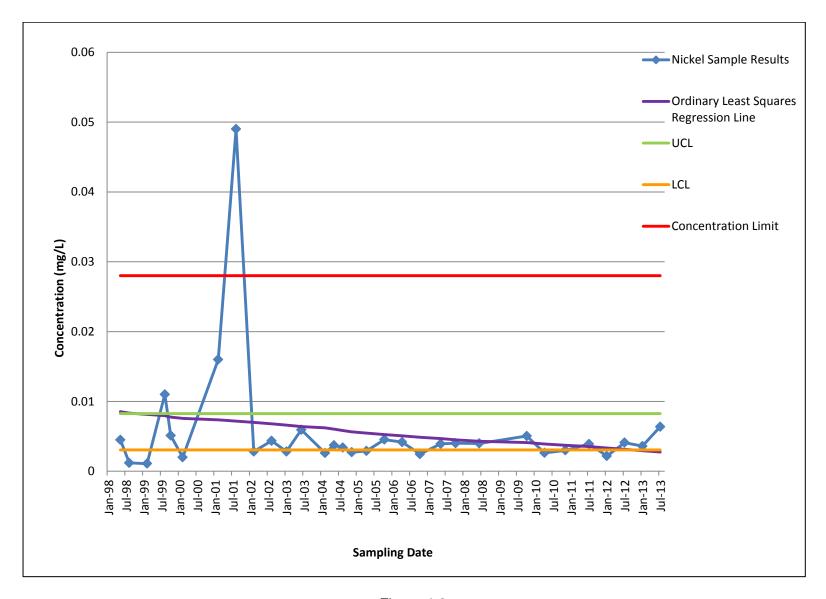


Figure 4-2 Nickel Control Chart for CWL-BW5/4A

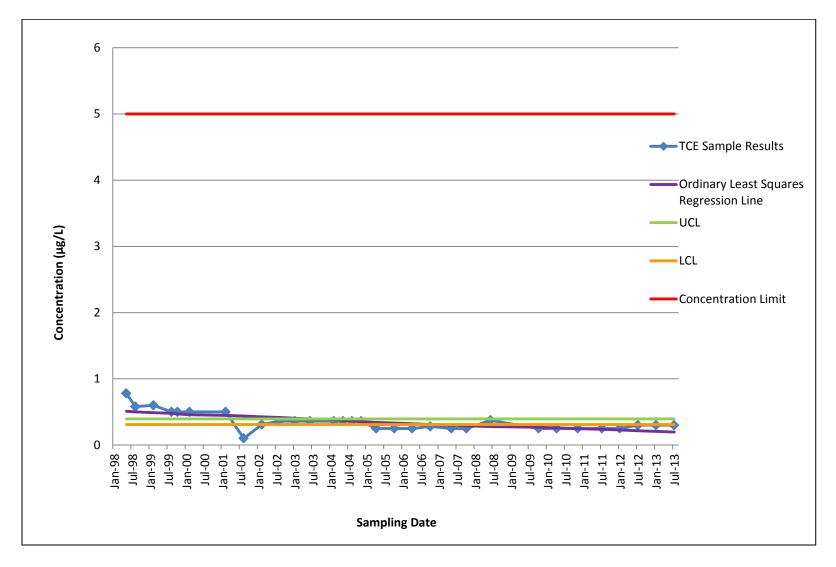


Figure 4-3
TCE Control Chart for CWL-BW5/4A

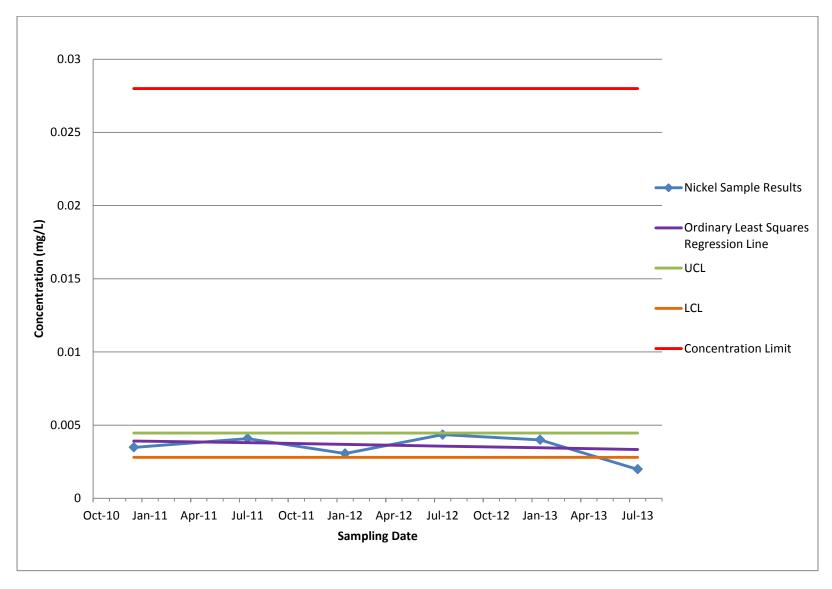


Figure 4-4 Nickel Control Chart for CWL-MW9

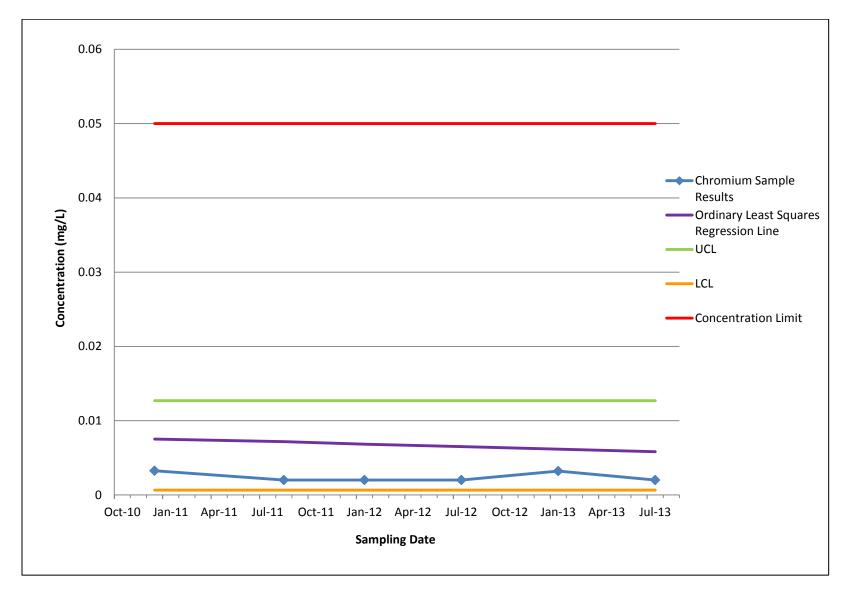


Figure 4-5
Chromium Control Chart for CWL-MW10

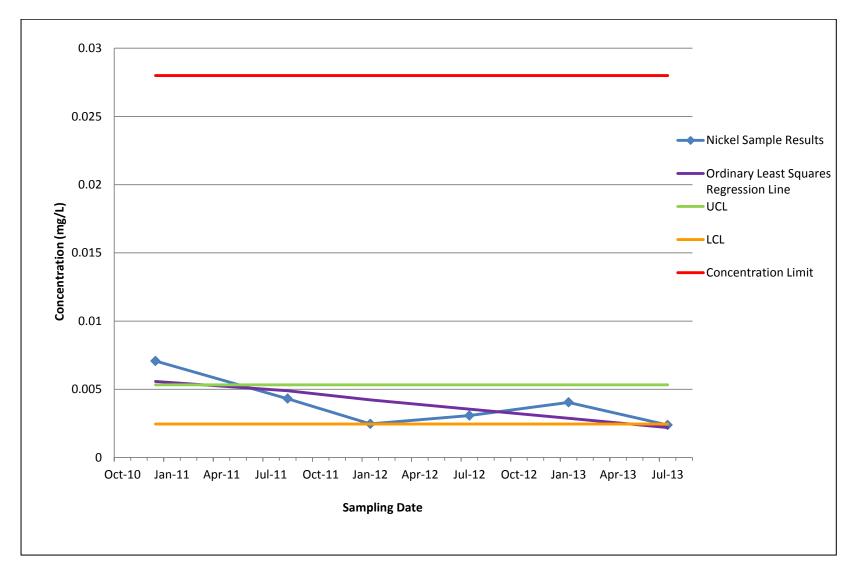


Figure 4-6
Nickel Control Chart for CWL-MW10

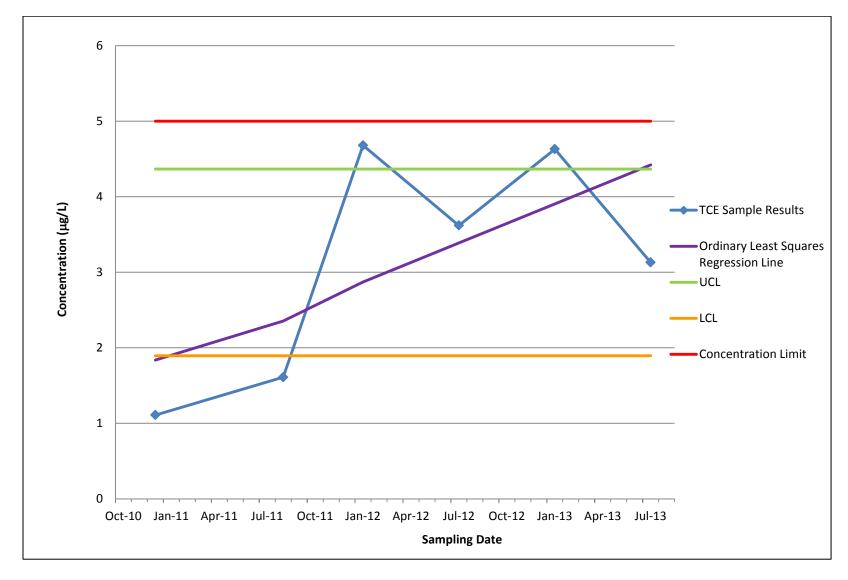


Figure 4-7
TCE Control Chart for CWL-MW10

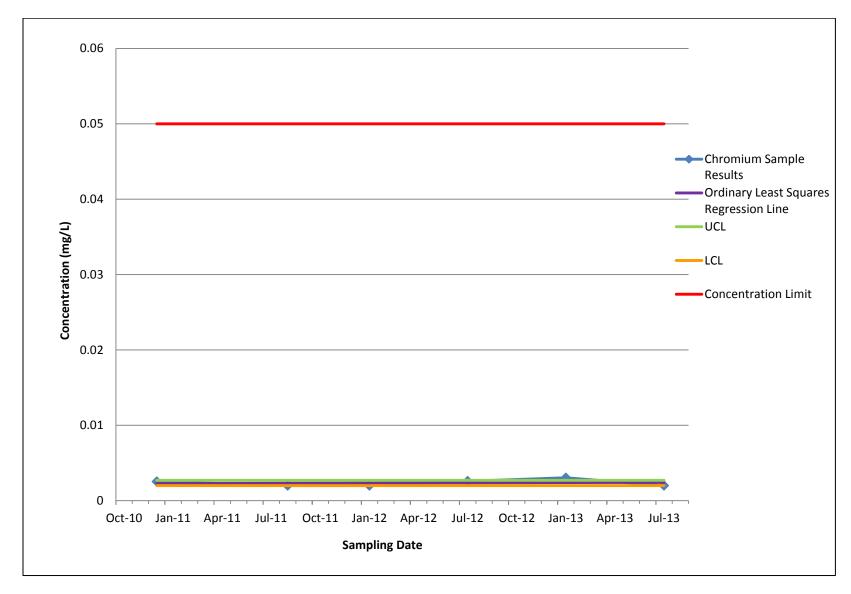


Figure 4-8
Chromium Control Chart for CWL-MW11

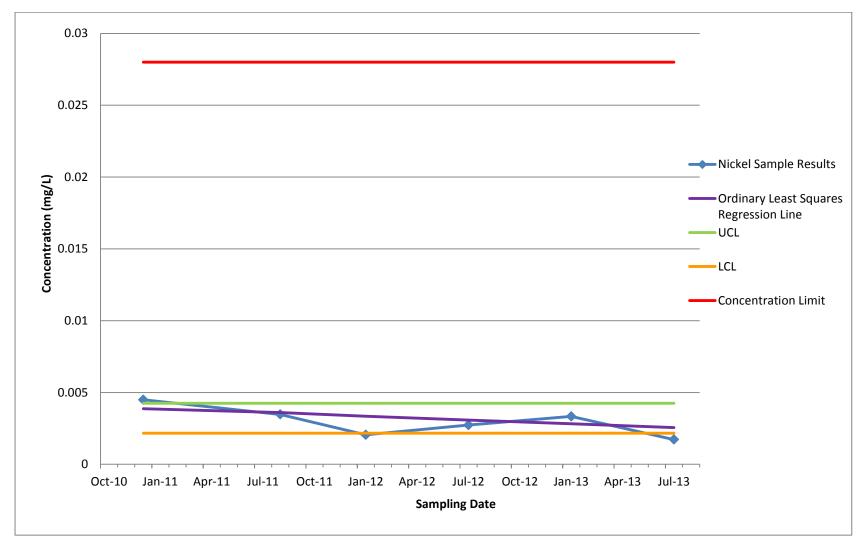


Figure 4-9
Nickel Control Chart for CWL-MW11

Monitoring Well CWL-MW9

Chromium and TCE have not been detected in any CWL-MW9 samples (CY 2010 through 2013, six environmental and two duplicate samples). Therefore statistical evaluation of these constituents is not presented. The January results for nickel (environmental and duplicate sample) fell within the range of the 95% LCL and 95% UCL, but the July result was less than the LCL. January and July nickel results fell within the historical range, with the July result equaling the minimum concentration.

Monitoring Well CWL-MW10

CY 2013 CWL-MW10 chromium sample results fell within the range of the 95% LCL and 95% UCL. The nickel result for the January sample fell within the range of the 95% LCL and 95% UCL, but both July results were less than the 95% LCL. The January TCE result exceeded the 95% UCL, but both July results fell within the range of the 95% LCL and 95% UCL. Results for chromium and TCE (using the MDL value if constituent not detected) fell within the historical range. Two of the three nickel results fell within the historical range; the environmental sample nickel result from July was below the historical range.

Monitoring Well CWL-MW11

The January chromium result fell within the range of the 95% LCL and 95% UCL, and the MDL for the July result was below the 95% LCL. The January nickel result fell within the range of the 95% LCL and 95% UCL but the July result was below the 95% LCL. TCE has not been detected in any CWL-MW11 samples (CY 2010 through 2013, six environmental and one duplicate sample). Therefore statistical evaluation of TCE is not presented. The July (non-detect/MDL) and January (detection) chromium results are equal to the historic minimum and maximum concentrations, respectively. The January result for nickel falls within the historical range, and the July result is equal to the historic minimum.

Confidence Intervals

Chromium, nickel, and TCE 95% LCLs and 95% UCLs of the mean are presented for each CWL monitoring well in Table 4-7 and are shown on the associated control charts (Figures 4-1 through 4-9). As previously explained, no statistical evaluation was performed for constituents that have not been detected in monitoring wells CWL-MW9 (chromium and TCE) and CWL-MW11 (TCE). All calculated 95% LCLs are below the respective concentration limits; therefore there are no exceedances of any concentration limits.

Median Test

The cumulative percentage of sample results greater than the median (i.e., Median Test) for the three hazardous constituents is below 80% for all detected constituents at all four monitoring wells. Therefore, there is no statistically significant evidence of increasing contamination for any of the hazardous constituents. The highest Median Test result was 67% for nickel (CWL-MW9), TCE (CWL-MW10), and chromium (CWL-MW11). The low median test results for TCE in CWL-BW5/4A (4%) reflects a data set influenced by non-detection results and an analytical laboratory detection limit that has decreased over time.

In addition, the ordinary least squares regression line is shown on Figures 4-1 through 4-9. This line provides a visual representation of the overall trend of the sample results. As

shown in Figures 4-1 through 4-9, all three hazardous constituents show a slight decreasing trend, consistent with the Median Test results. In Figure 4-7, TCE results in 2012 and 2013 for CWL-MW10 are higher than those in 2011 and 2010, but there is no statistically significant evidence of increasing contamination as indicated by the Median test. The most recent detected concentration (3.13 μ g/L in July 2013) is the lowest in the last two years.

4.4 Hydrogeologic Assessment

The regional aquifer in the area of the CWL is located within the Santa Fe Group alluvial sediments at a depth of approximately 485 to 500 feet bgs. Regional groundwater beneath Kirtland Air Force Base (KAFB) flows generally westward away from the mountains toward the Rio Grande. Pumping by the City of Albuquerque and KAFB have modified the natural groundwater flow regime and resulted in a steady decline of the upper surface of the regional aquifer. Water levels at the CWL have been declining since monitoring began in 1985. The average rate of decline has been somewhat variable over time, but is typically in the range of 0.4 to 0.8 feet per year. The groundwater elevation decline between October 2012 and October 2013 ranged from 0.22 (CWL-MW11) to 0.92 (CWL-BW5) feet.

In CY2013, water levels were measured in the groundwater monitoring wells on a quarterly basis, and also during the January and July sampling events. Figure 4-10 depicts the potentiometric surface map of the regional aquifer beneath the CWL based upon the October 2013 water-level measurements. The westward deflection of the potentiometric surface is a localized salient in the potentiometric surface of the regional aquifer. Based on this figure, the local groundwater flow direction varies across the site. However, the overall groundwater flow direction is generally westward in the CWL vicinity, which is consistent with the hydrogeologic conceptual model for the KAFB area (SNL/NM June 2013). Localized variations in the water table reflect site-specific geologic controls (i.e., vertical and lateral variability in permeability of the saturated Santa Fe Group alluvial sediments). Measured orthogonally from the potentiometric surface contours on Figure 4-10, the horizontal gradient is 0.011 feet/feet.

During 2012, slug tests were performed on the four groundwater monitoring wells to determine the hydraulic conductivity of the aquifer in these locations. This testing is not required by the PCCP but is routinely conducted for groundwater monitoring wells installed at SNL/NM. The range of hydraulic conductivity determined from the four existing groundwater monitoring wells is 4.74 x 10⁻³ feet per day (1.67 x 10⁻⁶ centimeters per second) to 7.46 x 10⁻² feet per day (2.63 x 10⁻⁵ centimeters per second) (SNL/NM August 2013).

Groundwater velocities were calculated using (a) the current potentiometric surface gradient, (b) the hydraulic conductivity range (i.e., high and low values) from the four groundwater monitoring wells, and (c) a porosity of 29 percent as determined from the laboratory analyses of CWL soil samples (SNL/NM October 1995). The calculated velocities range from approximately 1.8×10^{-4} to 2.8×10^{-3} feet per day (equivalent to 6.3×10^{-8} to 1.0×10^{-6} centimeters per second). The average groundwater velocity is 1×10^{-3} feet per day (equivalent to 4.1×10^{-7} centimeters per second). These very low values are consistent with previous estimates for horizontal groundwater flow at the water table in the CWL vicinity.

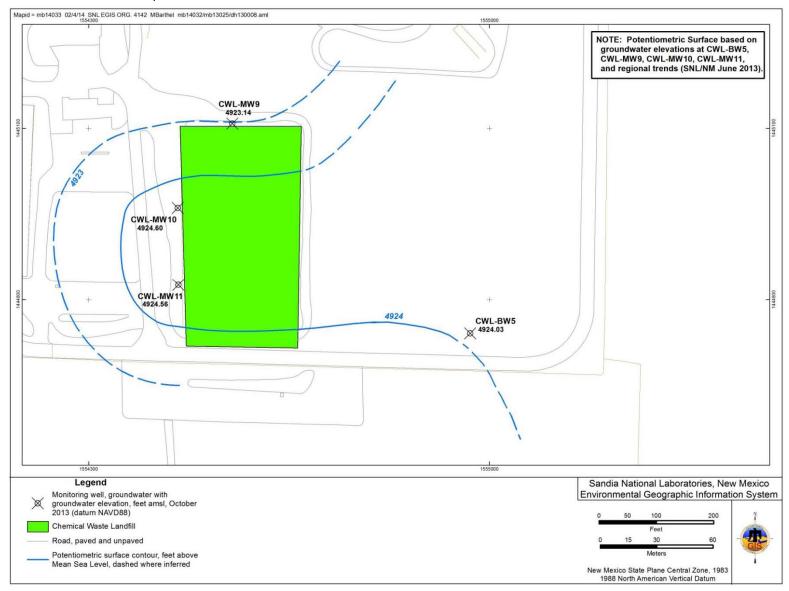


Figure 4-10
Potentiometric Surface of the Regional Aquifer at the Chemical Waste Landfill, October 2013

5.0 SOIL-GAS MONITORING RESULTS

This chapter presents soil-gas monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation for CY 2013 in accordance with CWL PCCP Attachment 1, Sections 1.8 and 1.12, and Attachment 3 (NMED October 2009 and subsequent revisions). The CY 2013 annual soil-gas sampling event was the second performed under the PCCP, which became effective June 2, 2011. Soil-gas sampling field activities are described in Section 5.1, analytical laboratory results and a discussion of data quality are presented in Section 5.2, and data evaluation requirements and results are presented in Section 5.3.

5.1 Soil-Gas Sampling Field Activities

This section describes soil-gas monitoring activities conducted at the CWL in conformance with the CWL Soil-Gas SAP, PCCP Attachment 3 (NMED October 2009 and subsequent revisions) that describes the procedures, methods, and analytical protocols for collecting and analyzing soil-gas samples. The DQO for soil-gas monitoring is to collect accurate and defensible data of high quality to determine the concentrations of hazardous constituents at various depths in the vadose zone at the CWL (i.e., unsaturated soil and sediments above the regional groundwater aquifer). Field forms and documentation that address calibration of equipment, well evacuation, purge volumes, and vacuum pressure readings for each sample container are provided in Annex B of this report and filed in the SNL/NM Records Center.

Soil-gas samples were collected from monitoring wells CWL-U11, CWL-U12, CWL-D1, CWL-D2, and CWL-D3 on January 17, 2013. Resampling of two soil-gas ports was conducted on March 27, 2013 because specific constituents failed the RPD requirement in the January environmental-duplicate sample pairs. All samples were analyzed using the EPA TO-15 analytical method for the 50 VOCs listed in PCCP Attachment 1, Table 1-5. CY2013 soil-gas sampling activities and results are described in the following sections.

There were two significant changes to Attachment 3 of the Permit that affected the CY2013 soil-gas monitoring effort. First, EPA Method TO-15 was used for the first time to analyze all samples instead of EPA Method TO-14. Analytical laboratories are moving to the TO-15 methodology because it provides equal or lower detection limits with improved quality assurance/quality control. As a result, many laboratories are phasing out Method TO-14. NMED approved this change in February 2012 (Kieling February 2012). Second, NMED approved a change to the RPD acceptance and resampling criterion for soil-gas environmental-duplicate sample pairs from 20% to 50% in November 2013 (Kieling November 2013) due to the inherent variability of soil-gas contamination in the vadose zone. While this latter change occurred after the January and March soil-gas sampling events, the new RPD criterion is applied to the evaluation of CY 2013 environmental and duplicate sample pair results (Section 5.2.2).

5.1.1 Well Evacuation

Purging removes stagnant air from each monitoring well port and sample tubing, allowing the collection of representative soil gas from the soil pore space surrounding the sampling port in

the subsurface. Purging continued after meeting the minimum requirement of three tubing volumes until field measurements for VOC levels stabilized, in accordance with PCCP Attachment 3, Section 3.9.2. VOCs were measured by attaching a VOC monitoring instrument to the exhaust port of the vacuum pump.

The CWL soil-gas sampling equipment includes a vacuum pump, a sampling manifold assembly, and a multiport purging chamber. The multiport purging chamber is equipped with individual valves, fittings, and tubing that can be connected to as many as ten individual sample ports. Valves were connected to each sampling port and purging was performed until minimum purge requirements were satisfied. Upon completion of purging, soil-gas samples were collected in SUMMA® canisters per laboratory protocols and sent to the off-site laboratory for analysis.

5.1.2 Field Quality Control

Field QC samples include environmental duplicate samples (minimum of two per annual monitoring event) and field blank samples. Field QC samples were submitted for analysis with the soil-gas samples and analytical results are presented in Section 5.2.2 and Annex B.

Duplicate environmental samples are collected immediately after the original environmental sample in order to reduce variability caused by time and/or sampling mechanics. These sample results are used to evaluate the reproducibility of the sampling and analytical processes.

Field blank samples are prepared in the field during sampling activities by collecting an ultrapure grade nitrogen gas sample. Results are used to assess whether contamination of the samples may have resulted from ambient field conditions. A total of seven field blank samples were submitted for analysis with CY 2013 environmental samples; five in January, two in March.

5.1.3 Waste Management

Only a small volume of solid waste (personal protective equipment) was generated during the two soil-gas monitoring events. This waste was combined with the groundwater monitoring solid waste and managed as hazardous waste. The waste was submitted to the Hazardous Waste Management Facility for ultimate disposal at a permitted off-site facility.

5.2 Laboratory Results

Soil-gas samples were submitted to Test America, Inc. for chemical analyses by EPA Method TO-15. Analytical reports (i.e., certificates of analyses), analytical methods, MDLs, reporting limits (RLs), dates of analyses, results of field and laboratory QC analyses, and data validation reports are included in Annex B and filed in the SNL/NM Records Center.

5.2.1 Environmental Sample Results

This section summarizes detected VOCs from soil-gas samples collected in January and March 2013. The January 2013 results are presented in Table 5-1 and the March 2013 resample results (two environmental-duplicate sample pairs) are presented in Table 5-2.

January 17, 2013 Soil-Gas Results

Detected VOCs that were consistent with the 2012 data set include acetone, chloroform, dichlorodifluoromethane, 1,1-dichloroethene (1,1-DCE), 1,2-dichloropropane, methylene chloride, tetrachlorethene, toluene, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113), TCE, and trichlorofluoromethane (Freon 11). Chloroethane and m,p-xylene were detected once in 2012 (CWL-D3-480 duplicate sample) but were not detected in any of the January 2013 samples. There were 15 VOCs detected in the January 2013 samples that were not detected in 2012; 8 of the 15 were not detected in the post-VE VCM historic data set (June 1998 through October 2005). There was one detection of each of the eight VOCs. All results, summarized below, were very low concentrations (parts per billion by volume [ppbv] or less) and most were near or below the analytical laboratory RL. Five of the eight detections were from one location (CWL-UI2-136).

VOC	No. of Detections	Location of Detection	Concentration (ppbv)
bromodichloromethane	1	CWL-UI2-136	0.2J
cis-1, 2-dichloroethene	1	CWL-UI2-136	0.43
trans-1, 2-dichloroethene	1	CWL-UI2-136	0.27J
vinyl acetate	1	CWL-UI2-136	7
vinyl chloride	1	CWL-UI2-136	0.36J
2-hexanone	1	CWL-D1-470	0.53J
hexachlorobutadiene	1	CWL-D1-470 (duplicate)	0.54J
chloromethane	1	CWL-D3-480	1.2J

"J" values are estimated concentrations below the RL but greater than the MDL. These first-time detections are likely related to the lower analytical MDLs and RLs of Method TO-15. The remaining seven VOCs that were not detected in CY2012 were previously detected in the historic CWL soil-gas data set, with the number of historic detections ranging from 5 (chlorobenzene) to 103 (1,1,1-trichloroethane). The number of detections in the January 2013 results ranged from one to four, and the concentrations of all the 2013 results were very low (1.4 to 50 ppbv).

VOC	No. of Detections January 2013	Concentration (ppbv)	No. of Detections from June 1998-October 2005
benzene	1	2.6	18
2-butanone	4	1.4 – 4.7 ^a	11
carbon tetrachloride	1	27	45
chlorobenzene	1	1.4	5
1, 2-dichloroethane	1	17	29
1,1,2-trichloroethane	1	5	7
1,1,1-trichloroethane	4	$36 - 50^{a}$	103

^aTwo of the four concentrations are "J" qualified.

Table 5-1
Summary of Detected Volatile Organic Compounds
Chemical Waste Landfill Soil-Gas Monitoring
Analytical Method TO-15^a
Calendar Year 2013

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-UI1-40	Chloroform	890	31	93		-
17-Jan-13	1,1-Dichloroethene	190	62	250	J	-
	Tetrachloroethene	5100	46	120		
	Trichloroethene	7300	46	120		-
	Trichlorofluoromethane	230	46	120		1
	1,1,2-Trichloro-1,2,2-trifluoroethane	930	62	120	-	-
	Total Organics ^c	14640	NA	NA	NA	NA
CWL-UI1-80	Chloroform	700	34	100		
17-Jan-13	1,1-Dichloroethene	390	68	270		
	Methylene chloride	72	68	140	J	
	Tetrachloroethene	1500	51	140		
	Trichloroethene	9700	51	140		
	Trichlorofluoromethane	280	51	140		
	1,1,2-Trichloro-1,2,2-trifluoroethane	1100	68	140		
	Total Organics ^c	13742	NA	NA	NA	NA
CWL-UI1-120	Chloroform	520	45	130		
17-Jan-13	1,1-Dichloroethene	430	89	360		
	Methylene chloride	240	89	180		-
	Tetrachloroethene	1000	67	180		-
	Trichloroethene	11000	67	180		-
	Trichlorofluoromethane	290	67	180		-
	1,1,2-Trichloro-1,2,2-trifluoroethane	1200	89	180		-
	Total Organics ^c	14680	NA	NA	NA	NA
CWL-UI2-36	Chloroform	540	11	33		-
17-Jan-13	Dichlorodifluoromethane	25	16	44	J	-
	1,1-Dichloroethene	34	22	87	J	-
	1,2-Dichloropropane	26	16	44	J	
	Tetrachloroethene	170	16	44		
	Trichloroethene	3500	16	44		
	Trichlorofluoromethane	160	16	44		
	1,1,1-Trichloroethane	38	16	33		
	1,1,2-Trichloro-1,2,2-trifluoroethane	530	22	44		
	Total Organics ^c	5023	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-UI2-76	Chloroform	910	28	85		
17-Jan-13	Dichlorodifluoromethane	52	43	110	J	
7-0an-13	1,1-Dichloroethene	140	57	230	J	
	1,2-Dichloropropane	99	43	110	J	
	Tetrachloroethene	280	43	110		
	Trichloroethene	7800	43	110		
	Trichlorofluoromethane	310	43	110		
	1,1,1-Trichloroethane	50	43	85	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	1100	57	110		
	Total Organics ^c	10741	NA	NA	NA	NA
CWL-UI2-136	Benzene	2.6	0.20	0.40		
17-Jan-13	Bromodichloromethane	0.20	0.15	0.30	J	
	2-Butanone	1.4	0.40	0.80		
	Carbon tetrachloride	27	0.20	0.80		
	Chlorobenzene	1.4	0.10	0.30		
	Chloroform	620	8.9	27		
	Dichlorodifluoromethane	38	0.15	0.40		
	1,1-Dichloroethane	8.6	0.15	0.30		
	1,2-Dichloroethane	17	0.20	0.80		
	1,1-Dichloroethene	180	18	71		
	1,2-Dichloropropane	130	13	36		
	cis-1,2-Dichloroethene	0.43	0.20	0.40		
	trans-1,2-Dichloroethene	0.27	0.20	0.40	J	
	Methylene chloride	4.6	0.20	0.40		
	Tetrachloroethene	220	13	36		
	Toluene	0.72	0.15	0.40		U
	Trichloroethene	6600	36	95		
	Trichlorofluoromethane	250	13	36		
	1,1,1-Trichloroethane	38	13	27		
	1,1,2-Trichloroethane	5.0	0.15	0.40		
	1,1,2-Trichloro-1,2,2-trifluoroethane	970	18	36		
	Vinyl acetate	7.0	0.20	0.80		
	Vinyl chloride	0.36	0.15	0.40	J	
	Total Organics ^c	9121.86	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D1-100	Chloroform	640	96	290		
17-Jan-13	1,1-Dichloroethene	410	190	770	J	1
	Tetrachloroethene	1200	140	380		1
	Trichloroethene	12000	140	380		
	Trichlorofluoromethane	350	140	380	J	1
	1,1,2-Trichloro-1,2,2-trifluoroethane	1300	190	380		-
	Total Organics ^c	15900	NA	NA	NA	NA
CWL-D1-160	Chloroform	530	59	180		
17-Jan-13	1,1-Dichloroethene	630	120	470		
	Tetrachloroethene	820	88	240		-
	Trichloroethene	16000	88	240		
	Trichlorofluoromethane	450	88	240		
	1,1,2-Trichloro-1,2,2-trifluoroethane	1900	120	240		
	Total Organics ^c	20330	NA	NA	NA	NA
CWL-D1-240	Chloroform	440	73	220		
17-Jan-13	1,1-Dichloroethene	1100	150	590		
	1,2-Dichloropropane	180	110	290	J	
	Tetrachloroethene	530	110	290		
	Trichloroethene	23000	110	290		
	Trichlorofluoromethane	660	110	290		
	1,1,2-Trichloro-1,2,2-trifluoroethane	2800	150	290		
	Total Organics ^c	28710	NA	NA	NA	NA
CWL-D1-350	Chloroform	150	48	140		
17-Jan-13	1,1-Dichloroethene	700	96	380		
	Tetrachloroethene	210	72	190		
	Trichloroethene	13000	72	190		
	Trichlorofluoromethane	450	72	190		
	1,1,2-Trichloro-1,2,2-trifluoroethane	1800	96	190		
	Total Organics ^c	16310	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D1-470	Acetone	12	1.5	3.1		J
7-Jan-13	2-Butanone	4.7	1.0	2.1		
	Chloroform	0.76	0.26	0.77	J	
	Dichlorodifluoromethane	1.4	0.39	1.0		
	1,1-Dichloroethene	4.5	0.52	2.1		
	2-Hexanone	0.53	0.52	2.1	J	
	Methylene chloride	0.80	0.52	1.0	J	
	Tetrachloroethene	1.9	0.39	1.0		
	Trichloroethene	78	0.39	1.0		
	Trichlorofluoromethane	4.8	0.39	1.0		
	1,1,2-Trichloro-1,2,2-trifluoroethane	16	0.52	1.0		
	Total Organics ^c	125.39	NA	NA	NA	NA
CWL-D1-470 (Duplicate)	2-Butanone	1.5	1.0	2.0	J	
7-Jan-13	Chloroform	0.40	0.25	0.75	J	
	Dichlorodifluoromethane	2.2	0.38	1.0		
	1,1-Dichloroethene	5.2	0.50	2.0		
	Hexachlorobutadiene	0.54	0.50	2.0	J	
	Methylene chloride	1.8	0.50	1.0		
	Tetrachloroethene	1.3	0.38	1.0		
	Trichloroethene	51	0.38	1.0		
	Trichlorofluoromethane	8.2	0.38	1.0		
	1,1,2-Trichloro-1,2,2-trifluoroethane	24	0.50	1.0		
	Total Organics ^c	96.14	NA	NA	NA	NA
CWL-D2-120	Chloroform	770	60	180		
7-Jan-13	1,1-Dichloroethene	690	120	480		
	1,2-Dichloropropane	210	90	240	J	
	Tetrachloroethene	720	90	240		
	Trichloroethene	19000	90	240		
	Trichlorofluoromethane	560	90	240		
	1,1,2-Trichloro-1,2,2-trifluoroethane	2100	120	240		
	Total Organics ^c	24050	NA	NA	NA	NA

		Oridar Todi 20				
Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D2-240	Chloroform	640	78	230		
17-Jan-13	1,1-Dichloroethene	880	160	630		
	1,2-Dichloropropane	260	120	310	J	
	Tetrachloroethene	580	120	310		
	Trichloroethene	23000	120	310		
	Trichlorofluoromethane	620	120	310		
	1,1,2-Trichloro-1,2,2-trifluoroethane	2400	160	310		
	Total Organics ^c	28380	NA	NA	NA	NA
CWL-D2-350	Chloroform	250	21	63		
17-Jan-13	Dichlorodifluoromethane	51	31	84	J	
	1,1-Dichloroethene	510	42	170		
	1,2-Dichloropropane	90	31	84		
	Methylene chloride	58	42	84	J	
	Tetrachloroethene	300	31	84		
	Trichloroethene	13000	69	180		
	Trichlorofluoromethane	350	31	84		
	1,1,2-Trichloro-1,2,2-trifluoroethane	1400	42	84		
	Total Organics ^c	16009	NA	NA	NA	NA
CWL-D2-440	Acetone	9.7	3.5	6.9		J
17-Jan-13	Chloroform	2.8	0.58	1.7		
	1,1-Dichloroethene	5.7	1.2	4.6		
	1,2-Dichloropropane	1.0	0.87	2.3	J	
	Methylene chloride	1.2	1.2	2.3	J	
	Tetrachloroethene	3.3	0.87	2.3		
	Trichloroethene	110	0.87	2.3		
	Trichlorofluoromethane	3.4	0.87	2.3		
	1,1,2-Trichloro-1,2,2-trifluoroethane	11	1.2	2.3		
	Total Organics ^c	148.1	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D2-470	Chloroform	360	22	67		1
7-Jan-13	1,1-Dichloroethene	130	45	180	J	
	1,2-Dichloropropane	99	34	90		-
	Tetrachloroethene	340	34	90		
	Trichloroethene	7000 ^d	34	90		
	Trichlorofluoromethane	130	34	90		
	1,1,1-Trichloroethane	36	34	67	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	390	45	90		
	Total Organics ^c	8485	NA	NA	NA	NA
CWL-D2-470 (Duplicate)	Chloroform	250	17	51		
17-Jan-13	1,1-Dichloroethene	97	34	140	J	
	1,2-Dichloropropane	62	26	68	J	
	Tetrachloroethene	220	26	68		
	Trichloroethene	4400 ^d	26	68		
	Trichlorofluoromethane	84	26	68		
	1,1,2-Trichloro-1,2,2-trifluoroethane	270	34	68		
	Total Organics ^c	5383	NA	NA	NA	NA
CWL-D3-120	Chloroform	160	18	55		
17-Jan-13	Dichlorodifluoromethane	29	27	73	J	
	1,1-Dichloroethene	200	37	150		
	1,2-Dichloropropane	80	27	73		
	Methylene chloride	62	37	73	J	
	Tetrachloroethene	110	27	73		
	Trichloroethene	5300	27	73		
	Trichlorofluoromethane	190	27	73		
	1,1,2-Trichloro-1,2,2-trifluoroethane	670	37	73		
	Total Organics ^c	6801	NA	NA	NA	NA
CWL-D3-170	Chloroform	180	27	80		
17-Jan-13	1,1-Dichloroethene	290	53	210		
	1,2-Dichloropropane	110	40	110		
	Methylene chloride	71	53	110	J	
	Tetrachloroethene	130	40	110		
	Trichloroethene	7200	40	110		
	Trichlorofluoromethane	250	40	110		
	1,1,2-Trichloro-1,2,2-trifluoroethane	950	53	110		
	Total Organics ^c	9181	NA NA	NA NA	NA	NA

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D3-350	Chloroform	130	22	67		1
17-Jan-13	Dichlorodifluoromethane	46	34	90	J	1
	1,1-Dichloroethene	320	45	180		
	1,2-Dichloropropane	100	34	90		
	Methylene chloride	540	45	90		
	Tetrachloroethene	120	34	90		
	Trichloroethene	7800	34	90		
	Trichlorofluoromethane	280	34	90		
	1,1,2-Trichloro-1,2,2-trifluoroethane	1100	45	90		
	Total Organics ^c	10436	NA	NA	NA	NA
CWL-D3-440	Chloroform	250	41	120		
17-Jan-13	Dichlorodifluoromethane	89	61	160	J	
	1,1-Dichloroethene	470	81	320		
	1,2-Dichloropropane	210	61	160		
	Methylene chloride	1200	81	160		
	Tetrachloroethene	220	61	160		
	Trichloroethene	13000	61	160		
	Trichlorofluoromethane	490	61	160		
	1,1,2-Trichloro-1,2,2-trifluoroethane	1800	81	160		
	Total Organics ^c	17729	NA	NA	NA	NA
CWL-D3-480	Acetone	6.5	1.5	3.0		J
17-Jan-13	2-Butanone	1.6	0.99	2.0	J	
	Chloroform	0.67	0.25	0.74	J	
	Chloromethane	1.2	0.99	2.0	J	
	Dichlorodifluoromethane	0.78	0.37	0.99	J	
	1,1-Dichloroethene	1.2	0.49	2.0	J	
	1,2-Dichloropropane	0.52	0.37	0.99	J	
	Methylene chloride	2.8	0.49	0.99		
	Tetrachloroethene	0.70	0.37	0.99	J	
	Trichloroethene	34	0.37	0.99		
	Trichlorofluoromethane	1.2	0.37	0.99		
	1,1,2-Trichloro-1,2,2-trifluoroethane	4.1	0.49	0.99		
	Total Organics ^c	55.27	NA	NA	NA	NA

Notes:

^aAnalytical Method EPA 1999, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-

15" Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^bLaboratory/Validation Qualifier - Blank (--) cell = all quality control samples met acceptance criteria. "J" and "U," see below.

°Total Organics -- sum of validated detected organic compounds.

^dDetected value >500 ppbv threshold concentration that applies only to deepest well ports at CWL-D1, CWL-D2, and CWL-D3. Statistical evaluation presented in Section 5.3.

EPA = U.S. Environmental Protection Agency.

J = Estimated value. Analyte detected at a level below the practical quantitation limit or reporting limit (RL) and greater than or equal to the MDL.

MDL = Method detection limit. The minimum concentration that can be measured and reported with 99% confidence that the analyte is present (i.e., greater than zero).

NA = Not applicable.

ppbv = parts per billion by volume basis.

RL = Reporting limit. Minimum concentration that can be reported with a statistically established degree of confidence.

U = Analyte not present or concentration is below the method detection limit.

Similar to the 2012 results, TCE was the most frequently detected VOC and had the highest VOC concentrations. TCE was detected in all January samples at concentrations ranging from 0.034 parts per million by volume (ppmv) at CWL-D3 (480 foot bgs sample port) to 23 ppmv at CWL-D1 and CWL-D2 (240 foot bgs sample ports). Trichlorofluoromethane, 1,1,2-trichloro-1,2,2-trifluoroethane, tetrachloroethene, 1,1-dichloroethene, and chloroform were also detected in all samples at lower concentrations. No soil-gas concentrations from the three deepest sampling ports (CWL-D1-470, CWL-D2-470, CWL-D3-480) exceeded the trigger level of 20 ppmv, and only one VOC exceeded 0.5 ppmv (TCE at CWL-D2-470).

March 27, 2013 Soil-Gas Results

CWL-D1-470 and CWL-D3-470 were resampled in March because the duplicate samples collected during January 2013 failed the RPD requirement of less than 20% for specific constituents. The original January results (environmental and duplicate sample pairs) are presented in Table 5-1 and are included in the previous discussion of the January 2013 soil-gas results. The March results are presented in Table 5-2 and discussed below; RPD results for both the January and March sample pairs are presented in Section 5.2.2.

The March 2013 results for the CWL-D1-470 sample pair were generally similar to the January 2013 results, with low concentrations of various VOCs. Minor differences between the two data sets include two VOCs (2-hexanone and hexachlorobutadiene) detected in the January 2013 samples at very low concentrations (less than 1 ppbv) but not detected in the March samples. These VOCs were detected in only one of the two January samples. Carbon tetrachloride was detected in the March samples at very low concentrations (1.5 and 2.7 ppbv) but not in the January samples. VOC concentrations were generally higher in the March samples, with TCE having the highest concentration at 0.13 and 0.23 ppmv.

The March 2013 sample results for CWL-D2-470 showed greater variability. All eight VOCs detected in January were also detected in March. However, 14 additional VOCs were detected in the March samples, of which 4 VOCs (chloromethane, dichlorodifluoromethane, 4-ethyltoluene, and 1,1,1-trichloroethane) were detected only once (i.e., in either the environmental sample or the duplicate pair, not both). Eight of these 14 VOCs (carbon disulfide, ethylbenzene, 4-ethyltoluene, 4-methyl-2-pentanone, styrene, 1,2,4-trimethylbenzene, m,p-xylene, and o-xylene) were not detected in January, but were previously detected in the historic data set (June 1998 – October 2005; m,p-xylene was also detected in the 2012 data set). Five of these VOCs (acetone, 2-butanone, dichlorodifluoromethane, methylene chloride, and toluene), were detected in January as well as in the historic data set, and one (chloromethane) was detected in January but not in the historic data set (one detection, see Table 5-2).

Similar to the overall January 2013 results, TCE was detected in all the March samples and had the highest VOC concentrations. Trichlorofluoromethane, 1,1,2-trichloro-1,2,2-trifluoroethane, tetrachloroethene, 1,1-dichloroethene, and chloroform were also detected in all sample pairs at lower concentrations. No soil-gas concentrations from these deep sampling ports (CWL-D1-470 and CWL-D2-470) exceeded the trigger level of 20 ppmv. No VOCs exceeded 0.5 ppmv in the CWL-D1-470 sample. Acetone (1.3 ppmv), carbon disulfide (1.0 ppmv), methylene chloride (2.1 ppmv), 4-methyl-2-pentanone (0.58 ppmv), 1,1,2-trichloro-1,2,2-trifluoroethane (0.76 ppmv), and TCE (7.1 ppmv) exceeded 0.5 ppmv in the CWL-D2-470 environmental sample, but only TCE exceeded 0.5 ppmv in the duplicate sample. The higher concentration of TCE in the samples (7.1 and 4.9 ppmv in the environmental and duplicate pair, respectively) required dilution of the

Table 5-2
Summary of Detected Volatile Organic Compounds – March Resampling
Chemical Waste Landfill Soil-Gas Monitoring – Analytical Method TO-15^a
Calendar Year 2013

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D1-470	Acetone	3.3	3.3	6.6	J	
27-March-13	Carbon tetrachloride	1.5	1.1	4.4	J	
	Chloroform	1.1	0.55	1.6	J	
	Dichlorodifluoromethane	8.4	0.82	2.2		
	1,1-Dichloroethene	19	1.1	4.4		
	Methylene chloride	4.3	1.1	2.2		
	Tetrachloroethene	3.1	0.82	2.2		
	1,1,2-Trichloro-1,2,2-trifluoroethane	110	1.1	2.2		
	Trichloroethene	130	0.82	2.2		
	Trichlorofluoromethane	32	0.82	2.2		
	Total Organics ^c	312.7	NA	NA	NA	NA
CWL-D1-470 (Duplicate)	Carbon tetrachloride	2.7	1.1	4.5	J	
7-March-13	Chloroform	2	0.56	1.7		
	Dichlorodifluoromethane	15	0.84	2.2		
	1,1-Dichloroethene	36	1.1	4.5		
	Methylene chloride	7.5	1.1	2.2		
	Tetrachloroethene	5.8	0.84	2.2		
	1,1,2-Trichloro-1,2,2-trifluoroethane	210	1.1	2.2		
	Trichloroethene	230	1.7	4.4		
	Trichlorofluoromethane	58	0.84	2.2		
	Total Organics ^c	567	NA	NA	NA	NA
CWL-D2-470	Acetone	1300 ^d	140	270		
27-March-13	2-Butanone	120	91	180	J	
-March-13	Carbon disulfide	1000 ^d	46	180		
	Chloroform	330	23	68		
27-March-13	Chloromethane	94	91	180	J	
	Dichlorodifluoromethane	80	34	91	J	
	1,1-Dichloroethene	300	46	180		
	1,2-Dichloropropane	110	34	91		
	Ethyl benzene	75	34	91	J	
	Methylene chloride	2100 ^d	46	91		
	4-methyl-2-Pentanone	580 ^d	34	91		
	Styrene	51	34	91	J	
	Tetrachloroethene	310	34	91		
	Toluene	290	34	91		
	1,1,2-Trichloro-1,2,2-trifluoroethane	760 ^d	46	91		
	1,1,1-Trichloroethane	44	34	68	J	
	Trichloroethene	7100 ^d	34	91		
	Trichlorofluoromethane	230	34	91		
	1,2,4-Trimethylbenzene	120	46	180	J	
	m- & p-Xylene	180	46	180		
	o-Xylene	140	34	91		
	Total Organics ^c	15314	NA	NA	NA	NA

Table 5-2 (concluded)

Summary of Detected Volatile Organic Compounds – March Resampling Chemical Waste Landfill Soil-Gas Monitoring – Analytical Method TO-15^a Calendar Year 2013

Well ID/Sample Port	Analyte	Result (ppbv)	MDL (ppbv)	RL (ppbv)	Laboratory Qualifier ^b	Validation Qualifier ^b
CWL-D2-470 (Duplicate)	Acetone	1000 ^d	140	270		
27-March-13	2-Butanone	120	91	180	J	
	Carbon disulfide	450	46	180		
	Chloroform	240	23	68		
	1,1-Dichloroethene	230	46	180		
	1,2-Dichloropropane	79	34	91	J	
	Ethyl benzene	130	34	91		
	4-Ethyltoluene	54	34	91	J	
	Methylene chloride	360	46	91		
	4-methyl-, 2-Pentanone	350	34	91		
	Styrene	69	34	91	J	
	Tetrachloroethene	220	34	91		
	Toluene	420	34	91		
	1,1,2-Trichloro-1,2,2-trifluoroethane	560 ^d	46	91		
	Trichloroethene	4900 ^d	34	91		
	Trichlorofluoromethane	160	34	91		
	1,2,4-Trimethylbenzene	150	46	180	J	
	m- & p-Xylene	270	46	180		
	o-Xylene	230	34	91		
N	Total Organics ^c	9992	NA	NA	NA	NA

Notes:

NA = Not applicable.

ppbv = parts per billion by volume basis.

RL = Reporting limit. Minimum concentration that can be reported with a statistically established degree of confidence.

^aU.S. Environmental Protection Agency, 1999, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15" Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^bLaboratory/Validation Qualifier - Blank (--) cell = all quality control samples met acceptance criteria. "J" see below.

^cTotal Organics -- sum of validated detected organic compounds.

^dDetected value >500 ppbv threshold concentration that applies only to deepest well ports at CWL-D1, CWL-D2, and CWL-D3. Statistical evaluation presented in Section 5.3.

J = Estimated value. Analyte detected at a level below the practical quantitation limit or reporting limit (RL) and greater than or equal to the MDL.

MDL = Method detection limit. The minimum concentration that can be measured and reported with 99% confidence that the analyte is present (i.e., greater than zero).

sample by the laboratory, which in turn elevated the corresponding reporting limit. Duplicate sample concentration results for carbon disulfide and methylene chloride were less than 50% of the corresponding environmental samples (0.45 versus 1.0 and 0.36 versus 2.1 ppmv, respectively). A comparison of the January and March duplicate sample pairs illustrates the inherent variability of low concentration soil-gas analytical data and the variable composition of the residual VOC soil-gas plume beneath the CWL. More discussion of duplicate sample variability is provided in Section 5.2.2.

5.2.2 Field Quality Control Sample Results

Table 5-3 presents field duplicate results for samples collected from wells CWL-D1-470 and CWL-D2-470 in January and March. RPD calculations were performed for all detected compounds with concentrations exceeding five times the analytical laboratory RL in both the environmental and duplicate sample. If a detected compound in one sample was not detected in the corresponding duplicate or environmental sample, no RPD was calculated. As discussed in Section 5.1, the acceptance/resampling criterion for soil-gas RPDs changed from 20% to 50% after soil-gas sampling was completed in January and March. Therefore, resampling was conducted in March based upon the January environmental and duplicate sample results exceeding the initial criterion of less than 20%.

Table 5-3
Summary of Duplicate Samples
Chemical Waste Landfill Soil-Gas Monitoring
Calendar Year 2013

Well ID / Parameter	Environmental Sample (R1)	Duplicate Sample (R2)	RPD ^a (%)				
	(ppbv						
January 2013 Duplicate Sample Results							
CWL-D1-470							
1,1,2-Trichloro-1,2,2-trifluoroethane	16	24	40				
Trichloroethene	78	51	42				
CWL-D2-470							
Trichloroethene	7000	4400	46				
March 2013 Duplicate Resample Results							
CWL- D1-470							
1,1,2-Trichloro-1,2,2-trifluoroethane	110	210	63				
Trichloroethene	130	230	56				
Trichlorofluoromethane	32	58	58				
CWL- D2-470							
1,1,2-Trichloro-1,2,2-trifluoroethane	760	560	30				
Trichloroethene	7100	4900	37				

^aRPD = Relative percent difference is calculated with the following equation and rounded to nearest whole number. Bolded values exceed acceptance criterion of less than 50%.

$$RPD = \frac{|R_1 - R_2|}{[(R_1 + R_2)/2]} \times 100$$

where: R_1 = Environmental sample result.

R₂ = Duplicate sample result. ppbv = parts per billion by volume basis The duplicate sample results from CWL-D2-470 show good agreement in both sample sets, and are both less than 50%. The March results for CWL-D1-470 show greater variability and higher concentrations than the January results, but in general all the detections are low concentrations (i.e., less than 0.50 ppmv).

The discussion of the March results in Section 5.2.1 addresses the variability observed when comparing the January and March results for CWL-D1-470 and CWL-D2-470. Additional evaluation of the results is warranted and summarized below in the context of subsurface VOC soil-gas conditions and the sampling process.

With the exception of TCE, 1,1,2-trichloro-1,2,2-trifluoroethane, and trichlorofluoromethane, all results were less than five times the analytical laboratory RL. Based upon a review of the historic CWL soil-gas monitoring results since June 1998, low concentration results at or near the analytical laboratory MDL and RL tend to show the greatest variability, which is reflected in a wider range of RPDs. However, variation is not limited to low concentration detections and is most likely an indication of the variability of VOC soil-gas contamination and VOC concentrations in the deep subsurface, further complicated by the complex, three-dimensional distribution of alluvial sediments. In addition, some variability may be associated with the sampling process, which involves withdrawing soil gas from depths of hundreds of feet bgs from the area surrounding the subsurface sampling port. Very small changes in VOC soil-gas concentrations in the soil pore space (i.e., ppbv and low ppmv changes) can have a significant impact on the measured concentration. Because the duplicate sample is collected immediately after the environmental sample, very small changes in the subsurface VOC soil-gas concentrations will be reflected in subsequent sample results no matter how much air volume is purged during sampling. While it is impossible to state how much of the variability is directly related to the sampling process, the large historic CWL data set indicates that the soil-gas sampling process does produce representative sample results. Variation is most likely related to subsurface VOC soil-gas concentrations that are generally very low and change over time and space. In November 2013, NMED approved a change to the RPD acceptance and resampling criterion for soil-gas environmental-duplicate sample pairs from 20% to 50% (Kieling November 2013) due in part to the recognition of the inherent variability of soil-gas VOC concentrations in the vadose zone. This new criterion will be applied for all future sampling events.

A total of seven field blank samples were submitted with CY 2013 samples; five in January and two in March. In the field blank samples, acetone (1 detection), 2-butanone (1 detection), 2-hexanone (1 detection), and toluene (3 detections) were detected above laboratory MDLs but below the RLs (i.e., "J" qualified, estimated), except for one detection of toluene that slightly exceeded the RL. The toluene detection in the sample from CWL-UI2-136 (0.72 ppbv) was qualified as not detected during data validation because it was less than five times the toluene concentration detected in the associated field blank. No other January results were qualified. No VOCs were detected above the laboratory MDLs in the two March field blank samples.

5.2.3 Data Quality

Field QC sample results met the sampling DQOs and validated the adequacy of the field sampling procedures and protocol. RPD results for the CWL-D1-470 environmental-duplicate

sample pair collected in January met the RPD criterion of 50%, but the March sample pair exceeded the criterion for three constituents. This exceedance appears to be related to the very low concentrations of the various VOCs (all less than 0.15 ppmv) and variation in the VOC concentrations of the residual VOC soil-gas plume. Internal laboratory QC samples, including method blanks and duplicate laboratory control samples, were analyzed concurrently with CWL soil-gas samples. The data were reviewed and qualified in accordance with AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM May 2011).

No significant data quality issues were noted for January and March data sets. The three acetone results for the January samples were qualified as estimated (i.e., "J" qualifier) because the percent relative standard deviation for acetone was greater than 35% but less than 45%. All January non-detect results for chloroethane were qualified as "estimated" because the laboratory control sample and corresponding duplicate had an RPD exceeding the upper acceptance limit. No issues were identified for the March samples. All data were determined to be acceptable and reported quality control measures were in compliance with analytical method and laboratory procedure requirements (i.e., technically defensible). Data Validation Reports and Contract Verification Review forms are provided in Annex B of this report and are filed in the SNL/NM Records Center.

5.2.4 Variances and Non-Conformances

There were no variances and one nonconformance noted during the CY 2013 soil-gas activities. The nonconformance involved RPDs for three VOCs detected in the March environmental-duplicate pair from CWL-D1-470 that were outside the acceptance criterion.

5.3 Data Evaluation

Soil-gas monitoring is required to determine whether the groundwater beneath the CWL is adequately protected as part of the CWL groundwater monitoring program. In accordance with PCCP Attachment 1, Section 1.8.2.2, statistical evaluation of soil-gas results for specific VOCs that exceed 0.50 ppmv from the three deepest sampling ports of wells CWL-D1 through CWL-D3 (i.e., CWL-D1-470, CWL-D2-470, and CWL-D3-480) are required annually, and include the following:

- calculate the UCL and LCL of the mean at a 95% confidence level using current data and historic data since completion of the VE VCM, and
- compare the LCL to the trigger level of 20 ppmv.

The trigger level of 20 ppmv only applies to the 95% LCL of the mean and not to individual sample results. For the first 5 years after the effective date of the PCCP (June 2, 2011), historical soil-gas monitoring results are to be used to augment the statistical analysis. After June 2, 2016, only soil-gas data collected under the PCCP is to be used. Historical soil-gas data used and presented in Section 5.4 includes results from June 1998, June 1999, August 2001, June 2004, September 2004, and October 2005. Although the VE VCM was completed in July 1998, the June 1998 data set is included as it is representative of the conditions when the VE system was shut down a month later.

5.3.1 Statistical Assessment Requirements

Based upon the soil-gas monitoring results presented in Tables 5-1 and 5-2 and discussed in Section 5.2.1, acetone (1.3 ppmv), carbon disulfide (1.0 ppmv), methylene chloride (2.1 ppmv), 4-methyl-2-pentanone (0.58 ppmv), 1,1,2-trichloro-1,2,2-trifluoroethane (0.76 ppmv), and TCE (7.1 ppmv) in the CWL-D2-470 sample exceeded the 0.5 ppmv threshold. As a result, confidence intervals (UCLs and LCLs) are calculated and used to compare to the trigger level of 20 ppmv. If a result is below the analytical laboratory detection limit, the MDL for the constituent is used for statistical analysis. For duplicate analyses, only the highest detection is used for statistical analysis.

CWL-D2-470 was sampled twice (January and March) and both times duplicates samples were collected. The highest detection from the four CY 2013 samples was used for statistical analysis. For all six VOCs detected greater than the 0.5 ppmv threshold concentration, the maximum concentration is the result from the environmental sample collected in March. None of the January CWL-D2-470 results (environmental-duplicate pair) exceeded the 0.5 ppmv threshold except for TCE. In the March results, the duplicate sample concentrations for carbon disulfide, methylene chloride, and 4-methyl-2-pentanone did not exceed the 0.5 ppmv threshold.

5.3.2 Statistical Assessment Results

CY 2013 soil-gas statistical assessment results are presented in Table 5-4. The LCLs for acetone, carbon disulfide, methylene chloride, and 4-methyl-2-pentanone could not be calculated due to the combination of the low total number of sample results and the high standard deviation (i.e., high variability) of the data set. There are only nine results for these VOCs except for carbon disulfide, which has only seven results (it is not a CWL contaminant of concern and was not reported in the 1998 and 1999 data sets). As noted in the discussion of the January and March environmental-duplicate sample pair results (Sections 5.2.1 and 5.2.2), variability of soil-gas data has been observed in the recent CY 2013 results, the historic data set, and appears to be representative of variation inherent in the residual soil-gas plume that is changing over time.

The calculated LCLs for 1,1,2-trichloro-1,2,2-trifluoroethane and TCE are below the trigger level of 20 ppmv. For the four VOCs where an LCL could not be calculated, the corresponding LCLs would be below the 20 ppmv trigger level if they could be calculated, as their corresponding UCLs are an order of magnitude below the trigger level.

5.4 Historic Data Evaluation

In accordance with PCCP Attachment 1, Section 1.12 and Attachment 3, Section 3.11, current soil-gas monitoring results are compared and evaluated with respect to historic results since completion of the VE VCM. This allows for long-term trends to be defined and provides for more meaningful interpretations of current results with respect to historic data. Tables 5-5 and 5-6 present TCE and Total VOCs soil-gas monitoring results, respectively, for the post-closure

Table 5-4
Chemical Waste Landfill Soil-Gas Monitoring
Statistical Assessment Results Summary
Calendar Year 2013

Soil-Gas Constituent Exceeding Threshold Concentration ^a	Minimum ^b (ppmv)	Maximum ^b (ppmv)	Mean ^c (ppmv)	Standard Deviation ^c	LCL ^c (ppmv)	UCL ^c (ppmv)	Distribution Type ^c	Trigger Level ^a (ppmv)	Trigger Level Exceeded ^d ?
Acetone (1.3 ppmv)	0.001	5	0.7303	1.655	NA	1.756	Normal	20	No
Carbon Disulfide (1.0 ppmv)	0.015	1	0.1674	0.3673	NA	0.4372	Normal	20	No
Methylene Chloride (2.1 ppmv)	0.014	2.1	0.2573	0.6911	NA	0.6857	Normal	20	No
4-Methyl-2-Pentanone (0.58 ppmv)	0.001	0.58	0.08256	0.1871	NA	0.1777	Normal	20	No
1,1,2-Trichloro-1,2,2- Trifluoroethane (0.76 ppmv)	0.001	1.2	0.6746	0.389	0.4335	0.9157	Normal	20	No
Trichloroethene (7.1 ppmv)	0.001	7.1	4.105	2.459	2.581	5.629	Normal	20	No

Notes:

LCL = Lower confidence limit.

NA = Not applicable; LCL invalid due to low number of samples and high standard deviation of the data set.

ppmv = Parts per million by volume basis.

UCL = Upper confidence limit.

^aAll maximum concentrations are from CWL-D2-470 March environmental sample. CWL Permit Attachment 1, Section 1.8.2.2, defines the threshold concentration (0.50 ppmv) and trigger level (20 ppmv). Both concentration limits apply only to soil-gas constituents detected in the three deepest sampling ports of wells CWL-D1 through CWL-D3.

^bMinimum and maximum results determined from historical data, including the CY 2013 results.

^cMean, standard deviation, LCL, UCL, and Distribution Type determined using ProUCL statistical program.

^dExceedance determined by comparing the constituent LCL against the trigger level of 20 ppmv.

Table 5-5
Historic Soil-Gas Monitoring Summary – TCE Concentrations^a (ppmv)
Chemical Waste Landfill

Well ID & Sample Port Depth ^b	June 1998	June 1999	August 2001	June 2004	September 2004	October 2005	January ^c 2012	January ^c 2013
CWL-UI1-40	4.5	16.0	7.9	3.8	4.0	4.5	5.2	7.3
CWL-UI1-80	0.19	4.9	6.7	5.9	6.1	6.8	6.5	9.7
CWL-UI1-120	3.0	5.9	9.1	6.0	14.0	13.0	7.7	11.0
CWL-UI2-36	0.037	0.70	ND	1.6	ND	1.2	3.1	3.5
CWL-UI2-76	0.091	1.0	2.4	3.4	4.1	3.7	5.6	7.8
CWL-UI2-136	5.5	1.9	4.6	3.0	1.9	3.0	8.5	6.6
CWL-D1-100	0.220	2.5	7.1	9.8	13.0	12.0	10.0	12.0
CWL-D1-160	120.0	14.0	21.0	25.0	29.0	22.0	14.0	16.0
CWL-D1-240	160.0	44.0	44.0	34.0	34.0	24.0	22.0	23.0
CWL-D1-350	0.013	11.0	19.0	13.0	22.0	2.8	13.0	13.0
CWL-D1-470	0.077	0.17	0.25	0.25	0.27	0.34	0.51	0.078
CWL-D2-120	3.1	21.0	20.0	22.0	25.0	16.0	16.0	19.0
CWL-D2-240	ND	40.0	38.0	26.0	13.0	17.0	18.0	23.0
CWL-D2-350	0.064	12.0	18.0	11.0	17.0	5.0	11.0	13.0
CWL-D2-440	0.082	1.0	7.6	2.5	5.9	2.8	1.8	0.11
CWL-D2-470	ND	0.94	5.8	3.1	4.6	4.3	4.1	7.0
CWL-D3-120	0.009	1.1	4.0	6.0	4.9	4.5	7.0	5.3
CWL-D3-170	ND	2.5	9.9	4.5	6.6	4.4	7.9	7.2
CWL-D3-350	ND	1.6	2.4	2.2	1.5	1.4	8.8	7.8
CWL-D3-440	ND	1.8	0.26	0.75	3.4	3.3	6.8	13
CWL-D3-480	ND	1.9	1.2	0.2	2.1	4.1	0.21	0.034

Notes:

ND = not detected

ppmv = parts per million by volume

TCE = trichloroethene

^aJune 1998 through January 2012 are Analytical Method TO-14 results. January 2013 are Analytical Method TO-15 results. If a duplicate sample was collected, the maximum concentration of the environmental-duplicate sample pair is shown,

^bPort depth is the last number in the Well Identification (ID), and is in feet below ground surface.

^cResults associated with duplicate resampling conducted in May (2012 data set) and March (2013 data set) are not included. CWL-D3-440 results for January 2012 collected in March 2012 due to issues with sampling this port; could not be sampled in January 2012.

Table 5-6
Historic Soil-Gas Monitoring Summary – Total Volatile Organic Compound Concentrations^a (ppmv)
Chemical Waste Landfill

Well ID & Sample Port Depth ^b	June 1998	June 1999	August 2001	June 2004	September 2004	October 2005	January ^c 2012	January ^c 2013
CWL-UI1-40	112	246	141	11.78	11.47	13.15	11.76	14.68
CWL-UI1-80	0.22	9.63	13	10.61	10.67	11.61	10.18	13.74
CWL-UI1-120	6.32	9.94	45.42	9.36	21.41	19.18	11.07	14.64
CWL-UI2-36	17.6	2117	1800	813.7	850.0	391.78	4.64	5.02
CWL-UI2-76	0.126	1.65	4.37	5.52	6.90	5.96	7.85	10.74
CWL-UI2-136	10.5	4.21	7.98	4.42	2.85	4.89	11.45	9.12
CWL-D1-100	0.248	4.93	11.9	14.59	18.22	17.25	13.84	15.90
CWL-D1-160	167	21.4	30.1	33.32	38.41	29.28	18.48	20.33
CWL-D1-240	261	78.4	61.5	45.27	44.74	32.60	22.46	28.71
CWL-D1-350	0.02	20.7	31.7	18.73	30.53	4.07	16.56	16.31
CWL-D1-470	0.105	0.231	0.921	0.612	0.82	0.603	0.868	0.125
CWL-D2-120	5.4	33.0	29.4	29.26	34.23	22.31	20.70	24.05
CWL-D2-240	0.047	101	52.9	34.72	17.62	22.83	22.90	28.38
CWL-D2-350	0.091	22.9	25.9	15.42	23.41	7.50	13.31	16.01
CWL-D2-440	0.453	4.38	11.8	3.85	9.29	4.17	2.60	0.148
CWL-D2-470	0.058	6.95	8.40	4.17	6.60	6.40	5.78	8.49
CWL-D3-120	0.009	2.17	6.20	8.39	7.10	6.23	9.19	6.80
CWL-D3-170	0.037	5.01	15.0	6.11	9.40	6.12	10.57	9.18
CWL-D3-350	0.106	2.76	3.98	3.39	2.34	2.27	12.90	10.44
CWL-D3-440	0.017	4.04	0.519	0.96	5.14	4.64	9.69	17.73
CWL-D3-480	0.001	4.47	1.85	0.31	3.30	5.71	0.299	0.055

Notes

ppmv = parts per million by volume

VOC = volatile organic compound

^aThe total VOC concentration is the sum of all detected constituents. June 1998 through January 2012 are Analytical Method TO-14 results. January 2013 are Analytical Method TO-15 results. If a duplicate sample was collected, the maximum concentration of the environmental-duplicate sample pair is shown,

^bPort depth is the last number in the Well Identification (ID), and is in feet below ground surface.

^cResults associated with duplicate resampling conducted in May (2012 data set) and March (2013 data set) are not included. CWL-D3-440 results for January 2012 collected in March 2012 due to issues with sampling this port; could not be sampled in January 2012.

care monitoring network. Data sets included range from June 1998 (representative of the end of the VE VCM) to January 2013. To be consistent with historic soil-gas monitoring data sets and for a more technically sound historic comparison, the concentrations shown in Tables 5-5 and 5-6 for the 2012 and 2013 data sets are taken from the January sampling events that included results for all monitoring wells and sampling ports. The much more limited data set associated with resampling one port at two monitoring wells in May 2012 and March 2013 were not incorporated into Tables 5-5 and 5-6.

Consistent with pre-VE VCM characterization data, the highest concentrations of TCE in soil gas remain in the central part of the vadose zone, approximately 240 feet bgs (CWL-D1 and CWL-D2 results for the 240 foot bgs depth, 23.0 ppmv). Consistent with the detailed conceptual site model presented in Annex E of the CWL Corrective Measures Study Report (SNL/NM December 2004), concentrations in this central portion of the plume are generally decreasing over time as VOC soil gas slowly diffuses in three dimensions (i.e., away from this central "core" of the VOC soil-gas plume). As this slow diffusion occurs, concentrations at other depths will sometimes increase. When the September 2004 results are compared to the January 2013 results for the CWL-D1 through CWL-D3 sampling ports (5 sampling ports each, for a total of 15 ports from 100 to 480 feet bgs), eight sampling ports show decreasing levels, whereas seven ports show increasing levels. Two of the three deep sampling ports (CWL-D1-470 and CWL-D2-470) had higher concentrations in January 2013 relative to September 2004. These trends are similar for the total VOC results.

Figures 5-1 through 5-5 show the concentration of TCE over time for each sampling port of CWL-UI1, CWL-UI2, CWL-D1, CWL-D2, and CWL-D3, respectively. Figures 5-6 through 5-10 show the concentration of total VOCs over time for each sampling port of CWL-UI1, CWL-UI2, CWL-D1, CWL-D2, and CWL-D3, respectively. The figures are graphical representations of the data presented in Tables 5-5 and 5-6. The total VOC plots for CWL-UI1 and CWL-UI2 (Figures 5-6 and 5-7) look very different than the corresponding TCE plots (Figures 5-1 and 5-2). This is because for these locations and the shallower depths represented (36 to 136 feet bgs), acetone used to occur at very high concentrations, especially at the shallowest two ports (36 and 40 feet bgs) (SNL/NM December 2004). Concentrations of total VOCs have decreased dramatically over time at these depths, most likely due to upward diffusion to the surface. Concentrations of TCE in the shallower soil-gas wells have stayed relatively low or increased slightly, as reflected in Table 5-5 and Figures 5-1 and 5-2. Trends at CWL-UI1 and CWL-UI2 are also consistent with upward diffusion of TCE soil gas from the former plume "core" located approximately 250 feet bgs.

The majority of the CWL residual soil-gas plume is represented by the CWL-D1 through D3 wells that have significantly deeper sampling ports, ranging from 110 to 480 feet bgs. TCE is the dominant and primary VOC of concern, although trichlorofluoromethane, 1,1,2-trichloro-1,2,2-trifluoroethane, tetrachloroethene, 1,1-dichloroethene, and chloroform have also been detected in most of the samples. Together with TCE, these VOCs comprise the majority of the total VOC concentration calculated for each sample. Concentrations are generally steady or decreasing over time (Figures 5-3 and 5-4), except at the CWL-D3 location (Figure 5-5). Relative to June 1999 results, concentrations are generally higher in the CWL-D3 ports except at the 480 foot bgs port, which has decreased. All sampling ports at CWL-D3 show lower TCE concentrations relative to 2012 except at the 440 foot bgs port, and the deepest port (CWL-D3-480) continues to show an overall decreasing trend. It is important to note the vertical scale difference on Figures 5-4 and 5-5 relative to Figure 5-3, as it exaggerates the appearance of

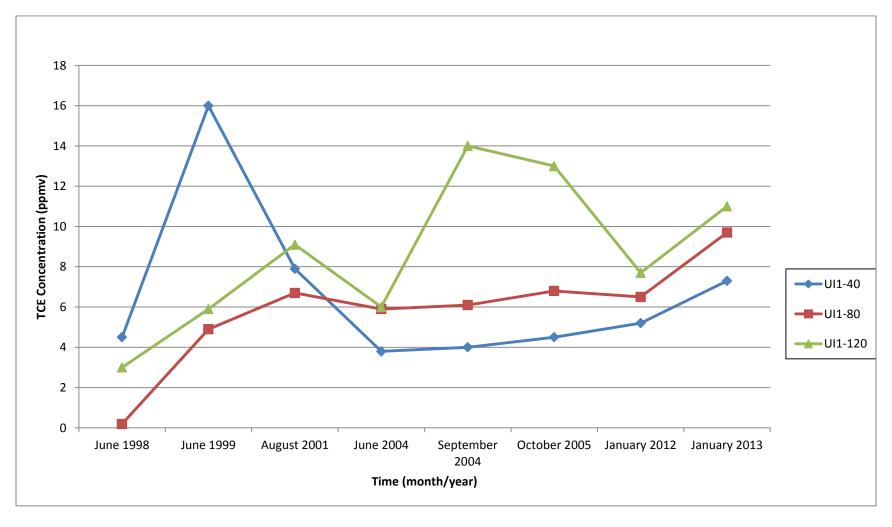


Figure 5-1
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well UI-1 Ports

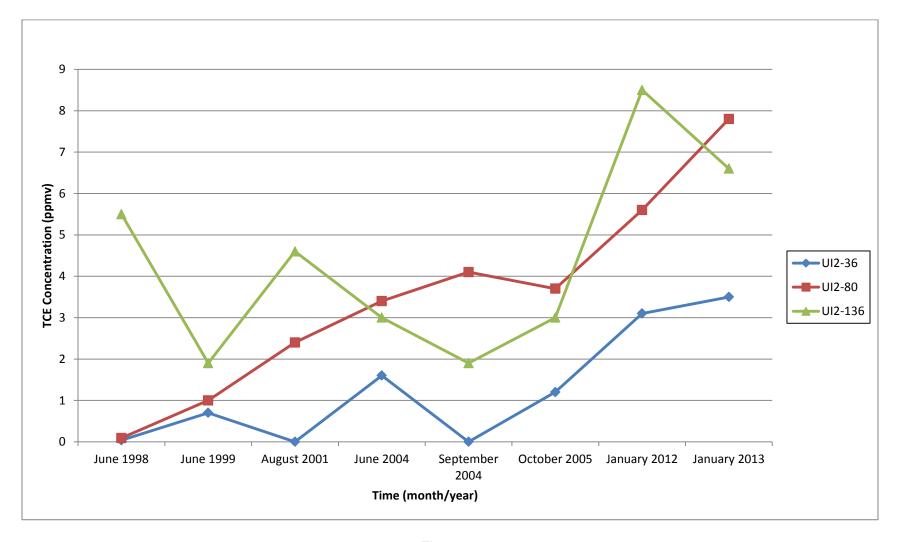


Figure 5-2
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well UI-2 Ports

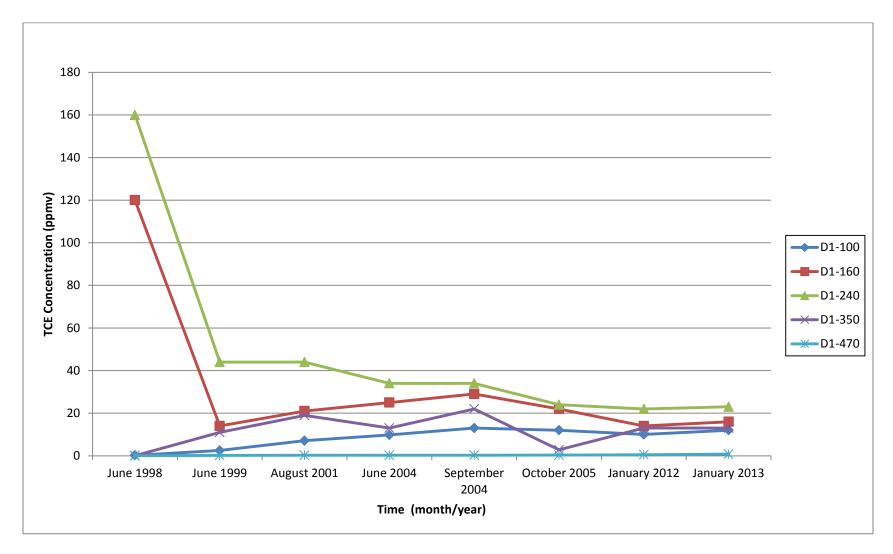


Figure 5-3
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well D1 Ports

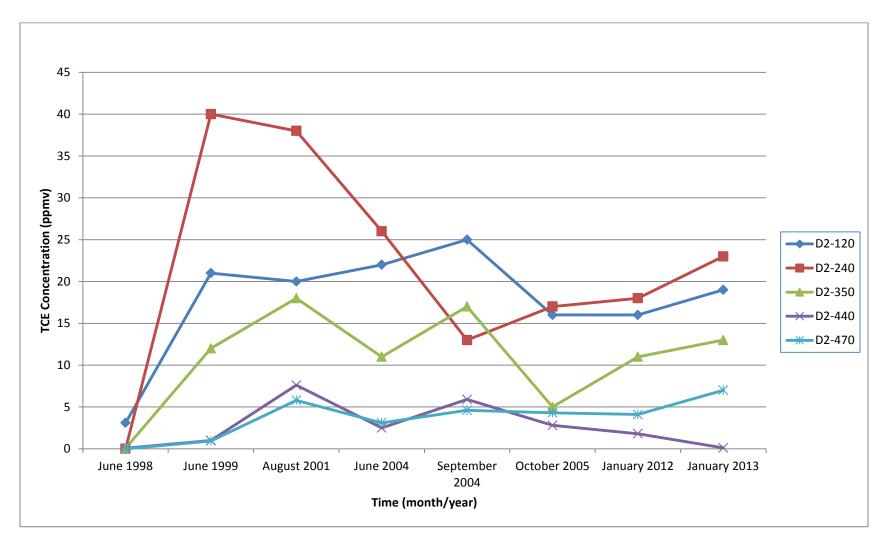


Figure 5-4
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well D2 Ports

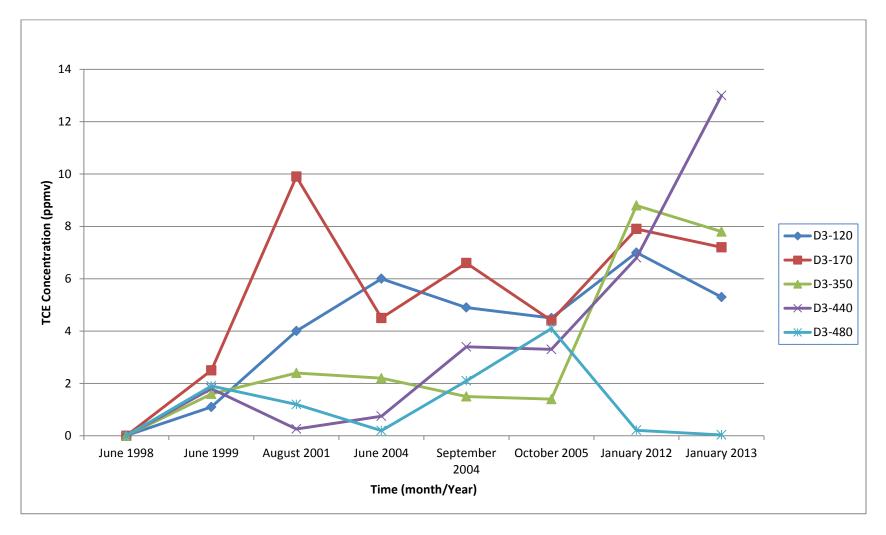


Figure 5-5
Historic Total TCE Compound Concentrations vs. Time
Chemical Waste Landfill Well D3 Ports

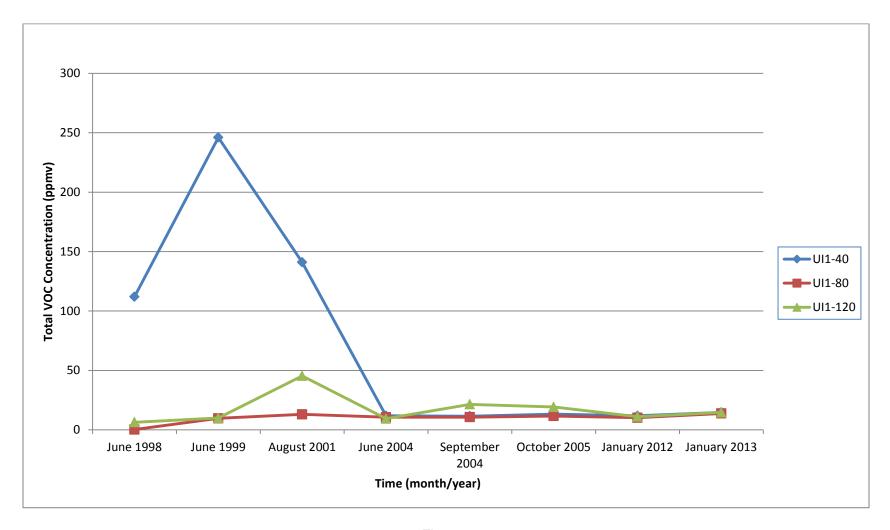


Figure 5-6
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well UI-1 Ports

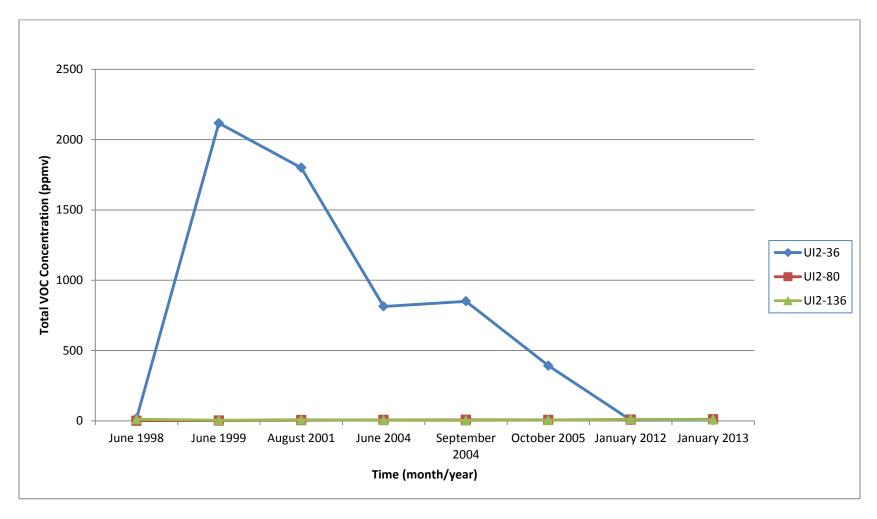


Figure 5-7
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well UI-2 Ports

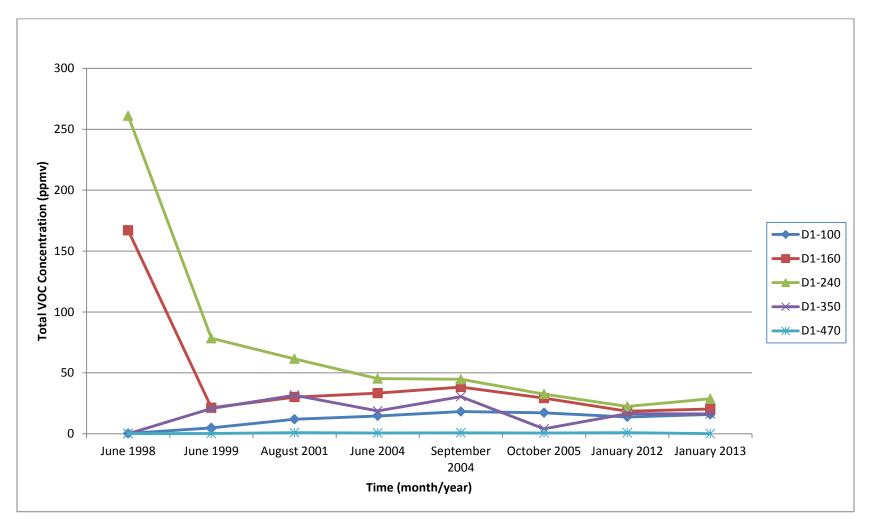


Figure 5-8
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well D1 Ports

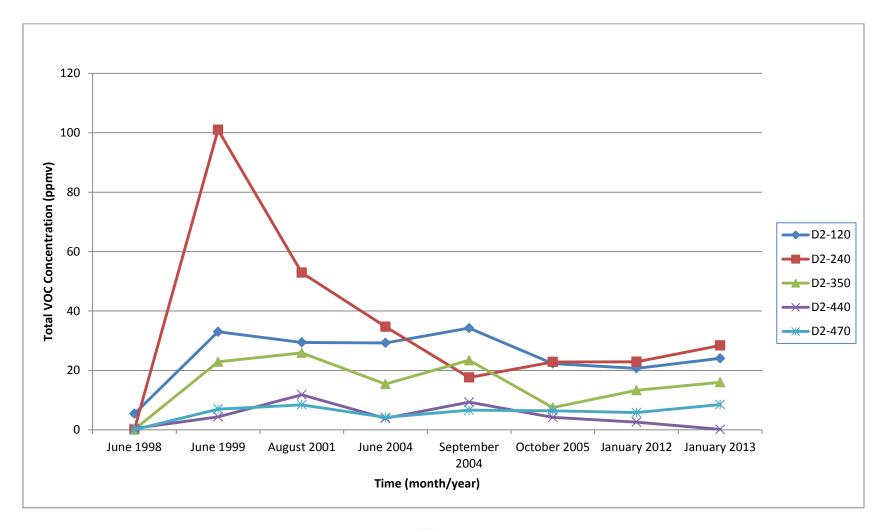


Figure 5-9
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well D2 Ports

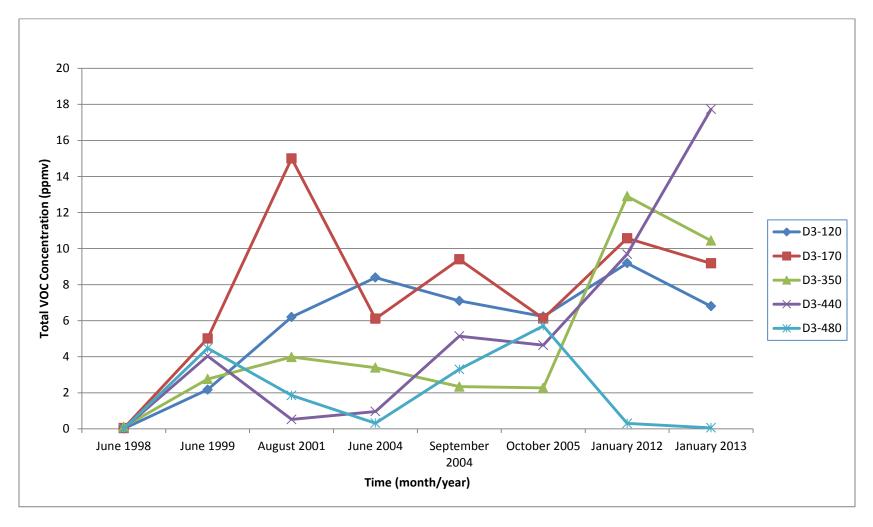
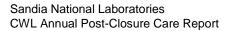



Figure 5-10
Historic Total VOC Compound Concentrations vs. Time
Chemical Waste Landfill Well D3 Ports

minor (ppmv) changes in TCE concentration. This is especially true of Figure 5-5. Again, these trends are also reflected in the total VOC plots shown in Figures 5-8 through 5-10.

TCE in groundwater is currently only being detected in CWL-MW10, which is the closest groundwater monitoring well to CWL-D3 (see Figure 2-4). Because of the concern that VOC soil gas could potentially enter a groundwater well through the upper unsaturated portion of the well screen or at casing joints that may not be air-tight and contaminate groundwater samples, passive soil-gas venting devices (i.e., Baroballs™) were installed on all groundwater monitoring wells in March 2012. The Baroball™ devices remained on all groundwater and soil-gas monitoring wells throughout CY 2013 and were inspected during the sampling events. It is unlikely that the current residual VOC soil-gas plume will directly impact groundwater due to the declining surface of the regional aquifer beneath the CWL (Section 4.4 and Annex E of CWL Corrective Measures Study Report [SNL/NM December 2004]). Based upon historical groundwater monitoring results and statistical evaluation of more recent results (Section 4.3), statistically significant evidence of increasing contamination in groundwater has not been observed since completion of the VE VCM in 1998.

Overall, the CY 2013 data set is consistent with historic post-VE VCM soil-gas monitoring results and suggests the residual VOC soil-gas plume beneath the CWL is slowly dissipating in three dimensions through diffusion in the vadose zone. These data and conclusions are consistent with the conceptual site model presented in Annex E of the CWL Corrective Measures Study Report (SNL/NM December 2004).

Calendar Year 2013

Page Intentionally Left Blank

6.0 INSPECTION, MAINTENANCE, AND REPAIR RESULTS

This chapter presents a summary of CY 2013 inspection, maintenance, and repair activities. Requirements for inspection, maintenance, and repair are presented in Section 3.2 of this report. The CWL post-closure care systems and features that require periodic inspection, maintenance, and/or repair include:

- Final cover system (vegetation and cover)
- Surface-water diversion structures
- Compliance monitoring system (groundwater and soil-gas monitoring networks and sampling equipment)
- Perimeter security fence (including signs, gates, locks, and survey monuments)

A schedule for implementing inspections and prescribed maintenance is provided in CWL PCCP Attachment 1, Section 1.10, Table 1-6. CY 2013 inspections are summarized in the following sections and results are documented on the CWL Post-Closure Inspection Forms/Checklists provided in Annex C of this report, in conformance with the requirements in CWL PCCP Attachment 1, Section 1.9 and 1.10 (NMED October 2009 and subsequent revisions).

6.1 Final Cover System

The final cover system includes the ET Cover vegetation and the cover surface. ET Cover vegetation is inspected by the staff biologist and documented on the Biology Inspection Form/Checklist for the CWL Cover. The ET Cover surface is inspected by a field technician along with the storm-water diversion structures, security fence, and survey monuments, and documented on the Post-Closure Inspection Form/Inspection Checklist.

6.1.1 Vegetation Monitoring and Inspection

Based upon results from ET Cover vegetation inspection conducted in CY 2011, it was determined that the three criteria for successful revegetation had been met (CWL PCCP Attachment 1, Section 1.9). This determination changed the required frequency of cover vegetation inspection to an annual basis. ET Cover vegetation was monitored throughout CY 2013 and cover maintenance activities were performed both before (February and August) and after (September and October) the CY 2013 annual inspection (Section 6.1.2).

The annual Biology Inspection of the ET Cover vegetation was conducted on September 9, 2013 by the SNL/NM staff biologist. The inspection was conducted at the end of the New Mexico growing season so an accurate determination of living plants at the site could be performed. Although 2010 through 2012 meteorological conditions (i.e., lack of significant rainfall events that fully saturate the soil) caused significant vegetation stress, the ET Cover foliar coverage and vegetation continue to meet PCCP requirements for successful revegetation (i.e., greater than 20% foliar coverage, with greater than 50% of that foliar coverage comprised of native species). No deeply rooted plants (including four-wing saltbush) or mammal burrows

were noted during the annual biology inspection, but ant hills/burrows were observed similar to previous inspections.

The foliar coverage based on the September annual inspection was approximately 38%, of which 90% is native vegetation (Inspection Form in Annex C). Many of the native blue grama grass clumps did not survive the 2012-2013 winter season and the above-normal rainfall in July 2013 (4.75 inches) spurred the growth of opportunistic annual weedy species in the resulting open spaces (weeds removed in August prior to the annual inspection, see Section 6.1.2). This significant change in ET Cover vegetation is evident in the percent foliar coverage of blue grama grass clumps, which decreased from 45% in September 2012 to 18% in September 2013. Blue grama remains the dominant grass species, and along with other native grasses comprises the majority of the current ET Cover vegetation. No four-wing saltbush was observed during the September 2013 inspection, but many weedy species, including weedy grasses, were present that have not previously been documented on the cover.

The 2013 Chemical Waste Landfill Biology Report (Biology Report) is presented in Annex D of this report and provides background information on ET Cover revegetation efforts. This report includes a summary of 2013 cover maintenance activities and local climate trends, additional details on the September Biology Inspection and the successional development of the native grasses, ET Cover photographs, and recommendations. CY 2013 cover maintenance activities are summarized below.

6.1.2 Cover Maintenance

Cover maintenance performed during CY 2013 is summarized below.

February 4 – 5, 2013

Four-wing saltbush (*Atriplex canescens*) seedlings were observed during the September 2012 inspection; these plants were clipped at the ground surface and removed from the site along with other undesirable annual weedy species and weeds. The perimeter fence was also cleared of vegetation. Approximately 50 cubic yards of green waste (not compressed) was removed and disposed at the KAFB Landfill.

August 19 – 30, 2013

All annual weedy species were removed by hand to facilitate removal of the entire plant (including the root system) from the ET Cover and were placed in a green waste roll off container for offsite composting (~30 cubic yards of tightly compressed weeds). Weeds that could not be effectively pulled by hand were spot-sprayed with LESCO® Three-Way Selective Herbicide by a licensed herbicide spray technician equipped with a backpack herbicide sprayer.

Five days after the herbicide application was completed, seeding of the barren areas resulting from the weeding effort was performed to facilitate the growth of desired perennial native grasses. The same seed mix used for the 2009 seeding effort was used, but since a gravel mulch is present over the ET Cover surface a slightly different seeding method was developed, tested, and used to apply the seed mix. The method involved using a utility vehicle to pull a drop spreader that applied the seed mix at a uniform rate, behind which a chain drag was attached and pulled. The chain drag was used to disrupt the gravel mulch surface of the ET Cover such that the seed could be mixed into the gravel mulch to provide a direct soil contact and protective cover for the seed. Smooth-link chain was tested and used after confirming that

it accomplished the task of mixing/burying the seed without damaging the existing vegetation. This was confirmed during a visual observation of the task while the drop spreader was calibrated to ensure the proper seeding rate was achieved prior to performing full-scale seeding of the ET Cover surface. The seed mix and seeding rate are summarized below. Based on the ET Cover acreage and the pounds of pure live seed applied, a rate of slightly more than 60 pounds of pure live seed per acre was achieved.

Common Name	Pure Live Seed, Pounds/Acre	% of Mix
"Paloma" Indian rice grass:	23	38%
"Viva" Galleta grass:	12	20%
"Hatchita" Black grama:	17	28%
Sand Dropseed:	4	7%
Alkali sacaton:	4	7%
Approximate Total:	60	100%

September and October 2013 Supplemental Watering

Immediately following the seeding effort, supplemental watering was performed to facilitate seed germination and seedling growth. Each watering event was performed during the morning hours to minimize evaporative loss and involved applying the equivalent of 0.5 inches of water over the ET Cover surface. Supplemental watering was performed only when natural precipitation was insufficient to maintain high soil moisture content in the surface soil. A total of five events (equivalent to 2.5 inches of rainfall) were conducted on September 5, 10, 19, 24, and October 2. New grass seedlings were evident in the open spaces by mid-September (after the September 9 inspection), especially in the northwest corner near the entrance gate were plant coverage was most sparse. The total of natural rainfall (12.11 inches) and supplemental watering (2.5 inches) for CY 2013 was 14.61 inches.

October 2-4, 2013

All annual weedy species were removed by hand to facilitate removal of the entire plant (including the root system) from the ET Cover and surrounding perimeter. Removed vegetation (~ 20 cubic yards) was placed in a green waste roll off container for offsite composting. Weeds from the ET Cover and perimeter area that could not be effectively pulled by hand were spot-sprayed with LESCO® Three-Way Selective Herbicide by a licensed herbicide spray technician equipped with a backpack herbicide sprayer. On the west side of the site from the perimeter fence to the road (approximately 0.5 acres), a pre-emergent granular herbicide (FreeHand®) was applied as a preventive measure to reduce the growth of weeds during the CY 2014 growing season.

6.1.3 Cover Inspection

Quarterly cover surface inspections were performed by a field technician in March, June, September, and December of 2013. No inspection parameters required repairs.

6.2 Storm-Water Diversion Structure Inspection

Quarterly inspections of storm-water diversion structures by a field technician were performed in March, June, September, and December of 2013. During the December inspection, tumbleweed debris was removed from the southern boundary swale (conditions met PCCP specifications, but the debris was removed as preventive maintenance). No inspection parameters required repairs.

6.3 Monitoring Well Network Inspection

Semi-annual inspection of the groundwater monitoring network and sampling equipment was performed by a field technician in January and July of 2013. In January the annual inspection for the soil-gas monitoring wells and sampling equipment was also performed. No inspection parameters required repairs. Baroball™ passive venting devices remain on all soil-gas and groundwater monitoring wells, and are in good condition.

During the January groundwater monitoring well inspection, it was noted that the concrete pad for the decommissioned groundwater monitoring well pair CWL-2BU/L was damaged. This decommissioned monitoring well pair is located on the west side of the CWL perimeter area and was damaged by a vehicle. Decommissioned wells do not have protective bollards. Repairs to this concrete pad were completed on February 11, 2013 and included the addition of rebar reinforcement in the concrete pad. Although inspection and repair of decommissioned well pads is not required under the PCCP, it is conducted and documented as part of the inspection process.

6.4 Security Fence Inspection

Quarterly inspections of the security fence, access controls (gates, locks, signs), and survey monuments were performed by a field technician in March, June, September, and December of 2013. No repairs were needed.

6.5 Emergency Equipment Inspection

For the CWL, quarterly inspection of emergency equipment listed in CWL PCCP Attachment 6, Table 6-4, is required. This equipment is inspected weekly and documented on the CAMU 90-Day Area inspection forms. Any repairs or replacement of equipment are performed, as necessary, to maintain compliance with requirements for emergency equipment.

7.0 REGULATORY ACTIVITIES

On June 2, 2011, the NMED approved closure of the CWL and the PCCP became the governing regulatory document for the CWL (Kieling June 2011). NMED-approved Permit modifications and DOE/Sandia submittals since the PCCP became effective are summarized in Chapter 1. Regulatory activities in CY 2013 consisted of submittal of the revised Statement of Work for Analytical Laboratories, cited as a reference document in the PCCP, NMED approval of the February 2013 PCCP modification request (Kieling November 2013), approval of the Calendar Year 2012 Chemical Waste Landfill Annual Post-Closure Care Report (Kieling October 2013), a telephone conference and follow-up email message with NMED to provide notification on ET Cover maintenance-related issues, and a December 2013 submittal of updated reference documents cited in the PCCP. These activities are summarized below in Sections 7.1 through 7.3, respectively.

7.1 Permit Modification Requests

A Permit modification request that affected Part 3 and Attachments 1 through 4 of the PCCP was submitted to NMED on February 11, 2013 (Beausoleil February 2013). The modification included changes to Part 3 and Attachments 1 through 4 of the CWL PCCP as summarized below.

- Part 3 Post-Closure Care Requirements for the Chemical Waste Landfill: Clarifying inspection documentation requirements for consistency with revisions to Permit Attachment 1 and Attachment 4 to allow the use of alternative formats to the inspection forms included in Permit Attachment 4.
- Attachment 1 Post-Closure Care Plan for the CWL: Providing additional detail regarding inspection requirements; and providing additional detail regarding soilgas passive venting devices.
- Attachment 2 Groundwater Sampling and Analysis Plan: Clarifying requirements by removing redundant and unnecessary documents from the list of operating procedures (SNL/NM Statement of Work for Analytical Laboratories and Quality Assurance Project Plan).
- Attachment 3 Soil-Gas Sampling and Analysis Plan: Clarifying requirements by removing redundant and unnecessary documents from the list of operating procedures (SNL/NM Statement of Work for Analytical Laboratories and Quality Assurance Project Plan); revising the quality assurance acceptance requirement for soil-gas duplicate sample pairs (RPD criterion); and clarifying data requirements for soil-gas duplicate sample pair RPD calculations.
- Attachment 4 Inspection Forms: Clarifying that all forms are included as examples, and alternative formats may be used to document inspections.

This Class 1 modification request was approved by NMED on November 7, 2013; the changes became effective immediately upon approval.

7.2 Permit Submittals

On January 24, 2013, DOE/Sandia submitted an updated reference document, *Sandia National Laboratories/New Mexico Statement of Work for Analytical Laboratories*, cited in the CWL PCCP in accordance with requirements of Attachment 2, Section 2.0 and Attachment 3, Section 3.9 of the PCCP (Beausoleil January 2013). The statement of work was deleted as a reference document in the PCCP effective November 7, 2013 when NMED approved the Class 1 permit modification request described in Section 7.1; future submittals of this document and other removed reference documents will not be required.

On March 26, 2013, DOE and Sandia submitted the Calendar Year 2012 Chemical Waste Landfill Annual Post-Closure Care Report to NMED. The NMED approved the report on October 16, 2013 (Kieling October 2013).

On December 11, 2013, DOE and Sandia submitted three updated reference documents cited in the CWL PCCP in accordance with requirements of Attachment 2, Section 2.0 and Attachment 3, Section 3.9 of the PCCP. Revisions included updates to keep the reference documents current and to reflect ongoing modifications and improvements in industry practices. The revised reference documents became effective on November 12, 2013.

7.3 Technical Communication

On August 29, 2013 DOE and Sandia notified NMED of plans to conduct weeding, limited application of herbicide, seeding, and supplemental watering to address ET Cover vegetation issues in a teleconference. On November 13, 2013 DOE/Sandia followed up on this notification with a summary of the activities conducted and preliminary results (Weckerle November 2013). A complete discussion of the CY 2013 ET Cover maintenance activities is provided in Section 6.1.2 and Annex D.

8.0 SUMMARY AND CONCLUSIONS

A summary of CY 2013 activities and results is provided in this chapter, along with conclusions.

8.1 Groundwater and Soil-Gas Monitoring

Two semi-annual groundwater monitoring events were conducted in January and July 2013. Groundwater samples were collected and analyzed in accordance with PCCP Attachment 1, Section 1.8 and Attachment 2 requirements. There were no variances, non-conformances, or project-specific issues related to the sampling activities.

Statistical assessment was conducted on results from replacement well CWL-BW5 and new wells CWL-MW9, CWL-MW10, and CWL-MW11. There was no statistically significant evidence of increasing contamination and no hazardous constituent 95% LCL of the mean exceeded its respective concentration limit. Groundwater surface elevation, hydraulic gradient, flow direction, and groundwater flow rate have been determined and are consistent with historical results.

One annual soil-gas monitoring event was conducted in January 2013 and resampling of two soil-gas sampling ports was conducted in March 2013 due to RPD exceedances for several VOCs. Samples collected from all wells were analyzed for VOCs by analytical method TO-15 for the first time (TO-14 was used previously). TCE was detected in all samples at concentrations ranging from 0.034 ppmv to 23.00 ppmv. The 95% LCL of the mean was calculated and compared to the 20 ppmv trigger level for all VOCs that exceeded the threshold value of 0.5 ppmv from the deepest sampling ports of wells CWL-D1 through CWL-D3. There were no exceedances of the 20 ppmv trigger level. The lower detection limits and greater sensitivity of analytical method TO-15 did result in more detections at low concentrations relative to the 2012 soil-gas data set. In general, the soil-gas monitoring results continue to indicate the residual VOC soil-gas plume beneath the CWL is slowly dissipating in three dimensions through diffusion in the vadose zone. These data and conclusions are consistent with the conceptual site model presented in Annex E of the CWL Corrective Measures Study Report (SNL/NM December 2004).

8.2 Inspections

Inspections of the CWL final cover system, storm-water diversion structures, compliance monitoring system, and security fence were performed in accordance with CWL PCCP requirements. No repairs were required, but during the December inspection tumbleweed debris was removed from the southern boundary swale (conditions met PCCP specifications, but the debris was removed as preventive maintenance).

Based upon the September biology inspection, the ET Cover continues to meet successful revegetation criteria. ET Cover maintenance was performed in February, August, September, and October, and included removal of four-wing saltbush, annual weedy species, discrete herbicide application for weed control, seeding, and supplemental watering.

8.3 Regulatory Activities

Regulatory activities in CY 2013 included NMED approval of the February 2013 Class 1 Permit modification request, approval of the Calendar Year 2012 Chemical Waste Landfill Annual Post-Closure Care Report, submittal of updated reference documents cited in the CWL PCCP, a telephone conference with NMED to provide advanced notification on ET Cover maintenance activities, and a follow-up email message to document results of cover maintenance activities.

8.4 Conclusions

All PCCP monitoring, inspection, and maintenance/repair requirements have been met for CY 2013. This CWL Annual Post-Closure Care Report documents all activities and results as required by the PCCP Attachment 1, Section 1.12.

9.0 REFERENCES

EPA, see U.S. Environmental Protection Agency.

Beausoleil, G.L., February 2013. "Request for Modification to Hazardous Waste Post-Closure Care Permit for Sandia National Laboratories/New Mexico, EPA ID NM5890110518," U.S. Department of Energy, February 11, 2013.

Beausoleil, G.L., January 2013. "Submittal of Updated Reference Document Cited in the Chemical Waste Landfill Post Closure Care Permit for the Department of Energy National Nuclear Security Administration/Sandia Site Office and Sandia National Laboratories/New Mexico, EPA ID No. NM5890110518," U.S. Department of Energy, January 24, 2013.

Kieling, J.E., November 2013. "Approval, Request for Modification to Hazardous Waste Post-Closure Care Permit for the Chemical Waste Landfill at Sandia National Laboratories, February 2013, Sandia National Laboratories, EPA ID No. NM5890110518, HWB-SNL-12-015," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, November 7, 2013.

Kieling, J.E., October 2013. "Approval, Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2012, March 2013, Sandia National Laboratories, EPA ID No. NM5890110518, HWB-SNL-13-002," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, October 16, 2013.

Kieling, J.E., February 2012. "Approval, Class 1 Modification to Chemical Waste Landfill Post-Closure Care Permit for Sandia National Laboratories, November 2011, Sandia National Laboratories, EPA ID No. NM5890110518, HWB-SNL-11-015," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, February 20, 2012.

Kieling, J.E., June 2011. "Notice of Approval, Closure of Chemical Waste Landfill and Post-Closure Care Permit in Effect, Sandia National Laboratories, EPA ID No. NM5890110518, HWB-SNL-10-013," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, Jun 2, 2011.

New Mexico Environment Department (NMED), October 2009. "Resource Conservation and Recovery Act, Post-Closure Care Permit, EPA ID No. NM5890110518, to the U.S. Department of Energy/Sandia Corporation, for the Sandia National Laboratories Chemical Waste Landfill," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, October 15, 2009.

Sandia National Laboratories/New Mexico (SNL/NM), August 2013. "Technical Memorandum – Field Report on the Slug Tests at Chemical Waste Landfill Groundwater Monitoring Wells," Sandia National Laboratories, Albuquerque, New Mexico, August 5, 2013.

Sandia National Laboratories/New Mexico (SNL/NM), June 2013. "Calendar Year 2012 Annual Groundwater Monitoring Report," SAND2013-4700P, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), May 2011. "Data Validation Procedure for Chemical and Radiochemical Data," (AOP 00-03), Sample Management Office, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), September 2010. "Chemical Waste Landfill Final Resource Conservation and Recovery Act Closure Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 2004. "Chemical Waste Landfill Corrective Measures Study Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), October 1995. "Chemical Waste Landfill Groundwater Assessment Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), December 1992, "Chemical Waste Landfill Final Closure Plan and Postclosure Permit Application," Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, see Sandia National Laboratories/New Mexico.

- U.S. Environmental Protection Agency (EPA), January 1999, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-14A," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA), January 1999, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," 3rd ed., Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

Weckerle, J., November 2013. Email message to NMED on November 13, 2013, regarding cover maintenance activities performed in August and September, 2013 at the Chemical Waste Landfill Evapotranspirative Cover. U.S. Department of Energy, November 13, 2013.

ANNEX A Chemical Waste Landfill CY 2013 Groundwater Monitoring Forms and Reports

Field Forms

Data Validation Reports

Contract Verification Reports

FIELD SAMPLING FORMS

CWL POST-CLOSURE CARE GROUNDWATER MONITORING

Form Title	Corresponding Procedure
Tailgate Safety Briefing	PLA 05-09
Groundwater Sample Collection Field Equipment Check Log	FOP 05-02
Portable Pump and Tubing/Water Level Indicator Decontamination Log Form	FOP 05-03
Field Measurement Log For Groundwater Sample Collection	FOP 05-01
Analysis Request and Chain of Custody*	LOP 94-03

^{*}Completed AR/COC forms are provided in the Data Validation Section of this Annex.

FIELD SAMPLING FORMS JANUARY 2013 GROUNDWATER MONITORING

TAILGATE SAFETY MEETING FORM

Dept: 4124 Well Location: CWL-BW5	Date: 01/08/13 Time: 075.5
Activities: Ground Water monitoring and sampling (Anyone has the right to cease field activities for sa	fety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp:°F Wind Speed:MPH	Humidity: % Wind Chill °F
Chemicals Used: Acids in sample containers, stand. Other:	ard solutions, Hach ACCU-VAC ampules
Safety 7	Opics Presented
Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	 ☑ Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
Wear safety boots. ■ Wear safety boots.	⊠ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	☐ Be aware of pressure hazards.
Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
☑ Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
Wear chemical safety goggles.	
Hospital/Clinic: Sandia Medical Clinic Phone:	
Robert Lynch	Attendees Folt Gnel
William bibson	William Gily
Printed Name ALFRED 5 ANTILLANCS Printed Name	Signature Signature Signature
Printed Name	Signature
Printed Name	Signature

TAILGATE SAFETY MEETING FORM

	A. 0.
Dept: 4142 Well Location: CWL-MW9	Date: 01/09/13 Time: D812
Activities: Ground Water Monitoring and Sampling (Anyone has the right to cease field activities for sa	afety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: °F Wind Speed: MPH	Humidity: % Wind Chill °F
Chemicals Used: Acids in sample containers, stand Other:	ard solutions, Hach ACCU-VAC ampules
Safety 7	Topics Presented
☑ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	 ☑ Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
☑ Wear safety boots.	図 Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	Be aware of pressure hazards.
Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
☑ Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
■ Wear nitrile or latex gloves when sampling.	☑ Wear communication device (cell phone, EOC pager).
☑ Wear chemical safety goggles.	■ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911
Robert Lynch Printed Name	Attendees Signature
HLFRED SANTILLANCS Printed Name	HIJO Satille
William Gibson Printed Name	Signature Signature Signature
Printed Name	Signature
Printed Name	Signature

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: CWL-MW11	Date: 01/10/13 Time: 0747
Activities: Ground Water monitoring and Sampling (Anyone has the right to cease field activities for sa	afety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp:°F Wind Speed:MPH	Humidity: % Wind Chill °F
Chemicals Used: Acids in sample containers, stand Other:	lard solutions, Hach ACCU-VAC ampules
Safety 7	Topics Presented
Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
Wear safety boots.	☑ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.
☑ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	No eating or drinking at sampling counter.
☑ Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	☑ Wear communication device (cell phone, EOC pager).
▼ Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone: Robert Lynch Printed Name	Attendees Signature Signature
Printed Name William Gibson Printed Name	Signature Willing Allog Signature
Printed Name	Signature
Printed Name	Signature

1-14-13

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: CWL-MW10 Activities: Ground Water monitoring and Sampling (Anyone has the right to cease field activities for sa	Date: 01/11/13 Time: 0750 01-14-13 0844 afety concerns. The buddy system will be used when needed.)					
Weather Conditions: Temp: 20 °F Wind Speed: 5 MPH Chemicals Used: Acids in sample containers, stand	·					
Other:	ard soldions, flacil ACCO-VAC ampules					
Safetv T	Topics Presented					
⊠ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	 ☑ Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated. 					
Wear safety boots. ■	⊠ Be aware of electrical hazards					
☑ Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.					
⊠ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	No eating or drinking at sampling counter.					
Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)					
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).					
☑ Wear chemical safety goggles.	Avoid spilling purge / decon water.					
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911					
RoberTlunch	Attendees Allens (
Printed Name	Signature					
William bibson Printed Name	Signature Signature					
PLERED SANTILLANCES	Alfal Satilla					
Printed Name Robert Lunch	Signature William Will					
Printed Name	Signature					
Printed Name	Signature 5 aloll					

Signature
Signature

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

Project Name: CWL-BW5 PL	Project No.: 146422.10.11	.01
Well I.D.: CWL-BW5	Date: 01/08/13	
Well Condition:	Weather Condition:	
Method: Portable pump X	Dedicated pump	Pump depth: 571

PURGE MEASUREMENTS

Depth to		Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	Comments
Water (ft)	hr		(-)	(με, σιιι)	(==)			()	DOng/L
570.18	0815		ST	AR+					
513.67		5	16.09	1023	251.4	6.48	0.93	77.6	7.63
514.17	0857	10	16.18	1023	244.3	6.62	1.11	77,1	7.56
513.45	0920	14	15.67	4001	239.9	6.61	1.15	75.3	7. 46
513.32	0931	16	15.72	1024	237.7	6.62	0.78	76.2	7.54
513.16	0941	18	15.89	1024	235.1	6.62	0.81	76.1	7.52
513.04	0958	20	16.03	1023	2321	6.64	0.70	76.7	7.57
513.39	1005	20	16.88	1024	228.1	6.64	0.81	77.2	7.46
513.50	1014	24	16.78	1024	226.5	6.64	0.68	77.6	7.44
	1015		5 F.	mp/il	2 Q -				
				7	0				
		*							
		, m							
		· · · · · · · · · · · · · · · · · · ·							
		_							
								-	-4.00 pals. purged
						_			from tubing 0828
									<i>৩</i> ४२८ [°]

Project Name: CWL	1.01			
Well I.D.: CWL-MW9 Date: 01/09/13				
Well Condition:	Weather Condition:			
Method: Portable pump X	Dedicated pump	Pump depth: 516'		

PURGE MEASUREMENTS

Depth to Water	Time 24 hr	Vol. (L@)	Temp	SC (µS/cm)	ORP (mV)	pH	Turbidity (NTU)	DO (%)	Comments Dong/L
(ft)							<u> </u>		COMS/L
502.74	0822		51A	et					
506.75	0844	5	15.69	674	ə ə ə.1	6.73	1.43	12.6	1.25
507.99	0856	10 15	16.29	874	182,9	6.73	1.24	13.1	1.29
508.70		15	16:76	884	120.3	6.70	1.40	13.7	1.33
509.16	0920	20	17.36	896	68.2	6.70	0.90	14.8	1.42
509.27	0925	92	17.54	903	56.3	6.68	0.79	16.4	1.56
509.34		24	17.92	906	48.0	6.69	0.83	17.0	1.63
509.39	0935	26	18.13	907	44.6	6.68	0.64	19.1	1.80
509.41	0940	28	18.14	906	42.3	6.68	0.70	20.1	1.89
509.44	0945	30	18.22	906	44.1	6.68	0.68	가┖	7.00
	0946	***************************************	SAN	npling					
				7 0					
70.00									
		······································					**************************************		
ć f									
-									-4.00 gals purged from tubing 0832
									from tubina
									0832

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

Project Name: CWL	Project No.: 146422.10.11.01			
Well I.D.: CWL-MW10	Date: 01/11/13 01 - 14	1-13		
Well Condition:	Weather Condition:			
Method: Portable pump X	Dedicated pump	Pump depth: 515'		

PURGE MEASUREMENTS

Depth to	Time 24	Vol.	Temp	SC	ORP	рН	Turbidity	DO	Comments
Water (ft)	hr	(LÆAI)	(°C)	(μS/cm)	(mV)		(NTU)	(%)	DOmg/L
499.38	0812		5	TARY					
504.22		5	13.18	768	205.2	6.97	1.73	36.0	3.77 Pump stop
506.58	0912	8	13.33	768	2020	6.94	1.53	33.3	3.77 pump stop 3.47 > 80psi
508.19	0924	10	13.44	766	199.6	6.93	3.29	32.7	3.41
509.59	0934	12	13.30	767	197.0	6.92	5.09	31.0	3.24
510.91	0945	14-	13.06	772	191.2	6.90	6.20	29.1	3.06
511.76	0950	15	13.09	775	186.5	6.90	7.86	27.9	2.92
512.63	0956	16	/3.34	780	182.4	6.90	8.45	26.4	2.75
513.58	1002	17	13.51	784	175.8	6.91	10.2	24.8	2.57
514.29	1009	18	12.80	791	146.8	6.91	9.98	23.6	2.46
515111	1020	19	13.31	782	138.0	6.91	16.8	21.9	2.91
515.11	1020	well	DRY						
3									
499,55	0906		5/1	Ht -					
501,25	0922	0.5	8.68	795	1851	7.03	3.86	42.0	4.80
501.64		1	9.11	797	166.6	6.98	3.14	29.1	3.34
502.17	0930	1.5	9.10	797	156.9	6.98	2.67	26.1	3.00
	0931		SAM	pling					
				g					
								^	-1.7gals purged
									from Jubing
									0825/0918

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

Project Name: CWL	Project No.: 146422.10.11.	.01
Well I.D.: CWL-MW11	Date: 01/10/13	
Well Condition:	Weather Condition:	
Method: Portable pump X	Dedicated pump	Pump depth: 513'

PURGE MEASUREMENTS

Depth to	Time 24	Vol.	Temp	SC	ORP	рН	Turbidity	DO	Comments
Water	hr	(L/gal)	(°C)	(µS/cm)	(mV)	pri	(NTU)	(%)	Dang /2
· (ft)									DOM8/2
499.05			54	ART					
502.76	0837	5	13.00	946	254.3	6.64	0.81	55.5	5.84
505.48	0907	10	14.87	947	736.8	6.71	1.18	55.9	5.63
508.06	0937	15	15.05	926	226.1	6.70	1.19	47.4	
510.12	1007	20	14.87	919	217.3	6.67	1.56	34.4	3.47
511.05	1018	22	15.45	927	210.7	6.70	1.37	34.7	3.45
511.47	1035	24	14.76	927	208.8	6-68	1.22	31.9	3.30
511.78	1056	26	14.12	929	204.1	6.68	0.95	47.8	4.89
511.89	1116	28	14.37	928	200.1	6.68	0.71	49.1	5.01
511.93	1126	29	14.44	929	198.0	6.68	0.67	50.1	5.10
	1127		51	Amp1	na			-	
									-1.7 gals
								_	Lass. ouraed
						•			from tubing
									0896

4. Time:

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project No.: 146422.10.11.01 SNL/NM Project Name: CWL Calibrations done by: R. Lynch Make & Model: YSI 6920 V2 YSI 6820 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: 08H100033 YSI 650 MDS (S/N): N/A pH Calibration pH Calibrated to (std): 7.00 pH sloped to (std): 10.00 7.00 10.00 Reference value: 4.00 Value Value Value Temp Temp Temp 3.99 7.00 18.0 18.0 I. Time: 18.0 7.00 19.0 2. Time: 4,00 10-01 3. Time; 4. Time: Standard lot no.: 2AH113 2AG653 2AF557 Expiration date: JUL-14 AUG-14 JUL-14 **SC** Calibration Reference Value: 1278 uS 2AG086 Standard Lot No.: Value Temp Expiration Date: JUL-13 1275 1. Time: 18.0 2. Time: 3. Time: 4. Time: **ORP** Calibration 220mV Standard Lot No. 2AD404 Reference Value. Value JAN-13 Temp Expiration Date: 219.6 0702 L. Time: 8,0 220.1 19.2 2. Time: 3. Time: 4. Time: DO Calibration 81% air saturation @ 5200 ft Atmospheric Pressure in Hg Calibration Value: 0700 1. Time: 2. Time: 3. Time:

LTS GW-2012-002 (11-2012) FOP 05-02

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CWI	NL/NM Project Name: CWL		Project No.: 146422.10.11.01			
Calibration done by: R Lynch	Calibration done by: Rtynch					
· · · · · · · · · · · · · · · · · · ·	URBIDIMETER					
Make & Model: HACH 210	Serial No. S/I	N 10050C002897				
Reference Value	ež 10	20	100	800		
Standard Lot No.	0161	0168	. 0162	0161		
1. Time 0804	10.2	20.1	99.7	798		
2. Time 1026	10-1	20.2	[00	795		
3. Tîme						
4. Time	The state of the s	· · · · · · · · · · · · · · · · · · ·		:		
Comments:						
		•				
		·				
•				-		
		-				

GROUNDWATER S	AMPLE COI	LLECTION F	RETO EGUIS	MENT CHE	CK LOG	Page I of 2	
SNL/NM Project Name: CWL			SNL/NM Project No.: 146422.10.11.01				
Calibrations done by: R. Lynch	Date: 0//	69/13		0.000000			
Make & Model: YSI 6920 V2	<u> </u>		7			****	
YSI 6820 Sonde (S/N) with DO,	Ec, pH, ORP, an	d temperature prob	es: 08H100033			_	
YSI 650 MDS (S/N): N/A						A/m===	
		· рН С	alibration	:			
pH Calibrated to (std): 7.00			pH sloped to ((std): 10.00	-	***************************************	
Reference value;		4.00		7,00		10.00	
,	Value	Temp	Value	Temp	Value	Тепір	
1. Time: 0736	3.99	17.9	7.00	17.9	10.02	180	
2. Time: 1049	4.01	19.4	7.00	19.4	10-01	19.4	
3. Time:				, , , , , , , , , , , , , , , , , , ,			
4. Time:							
Standard lot no.:	2AG653 2AH113			2AF557			
Expiration date:	JUL-14		AUG-14		JUL-14		
		SC Ca	libration				
Reference Value: 1278 uS Standard Lot No.: 2AG086							
	Value	Temp	Expiration Da	te:	JUL-13	-	
1. Time: 0738	1272	17.9					
2. Time: 1051	1277	19.4					
3. Time:							
4. Time:							
		ORPC	alibration				
Reference Value:	220mV		Standard Lot 1	No. 2AD404			
	Value	Temp	Expiration Da	te:	JAN-13		
1. Time: 0737	219.8	17.9		di Tanana			
2. Time: 1050	11160	19.4		***			
3. Time:							
4. Time:							
		DO C	alibration				
Calibration Value:	81% air satur	ation @ 5200 ft.		Atmospher	ic Pressure in Hg		
1. Time: 0735	81.9	7	24	.53		***************************************	
2. Time; /048	81.8		24	.52	***************************************		
3. Time:							
	-						

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

FOP 05-02

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CWL		Project No.:	Project No.: 146422.10.11.01			
Calibration done by: RLynch	Date: 64	Date: 0/09/13				
	Τ	JRBIDIMETER				
Make & Model: HACH 2100)P HACH 2100Q	Serial No. S	N 10050C002897			
Reference Value	ex 10	20	100	800		
Standard Lot No.	0161	0168	0162	0161		
1. Time 0814	10.3	20.4	103	800		
2. Time 1003	10.1	19.9	lol	804		
3. Time	THE REAL PROPERTY AND ADDRESS OF THE PARTY AND					
4. Time	-					
Comments:			•			
		*				

GROUNDWATER	SAMPLE COI	LLECTION F	IELD EQUIP	MENT CHE	CK LOG P	age 1 of 2
SNL/NM Project Name: CWL	NL/NM Project Name: CWL SNL/NM Project No.: 146422.10.11.01			10.11.01	-	
Calibrations done by: R. Lynch	7		Date: 01/10/13			
Make & Model: YSI 6920 V	2		1			
YSI 6820 Sonde (S/N) with DC), Ec, pH, ORP, and	d temperature prob	es: 08H100033			_
YSI 650 MDS (S/N): N/A	****					
		' pH C	alibration	~ 		
pH Calibrated to (std): 7,00	····	W-	pH sloped to (std): 10.00		
Reference value:		1.00		7.00	10	0.00
	Value	Temp	Value	Temp	Value	Temp
1. Time: 0638	3.98	17.7	7.00	17.7	9.99	17.7
2. Time: 1241	3.99	18.6	7.00	18.6	10.01	18.6
3. Time:						****
4. Time:	<u>-</u>			ļ		***************************************
Standard lot no :				2AH113 2AF557		
Expiration date:	JUL-14		AUG-14	***************************************	JUL-14	
		SC C	alibration			-
Reference Value: 1278 uS			Standard Lot N	lo.: 2AG086		
, , , , , , , , , , , , , , , , , , ,	Value	Temp	Expiration Dat	C.	JUL-13	
1. Time: 0 640	1274	17.8				
2. Time: /243	1276	18.6				
3. Time:						
4. Time:			1.44467			
-	VV	ORP C	Calibration	,		
Reference Value:	220mV		Standard Lot N	lo. 2AD404		
	Value	Temp	Expiration Dat	e:	JAN-13	
1. Time: 0639	218.9	17.7		ja kalbana j		
2. Time: 1242	2193	13.6				· ·
3. Time:					· · · · · · · · · · · · · · · · · · ·	
4. Time:			: ' :			
		DO C	alibration			
Calibration Value:	81% air satur	ation @ 5200 ft.		Atmospheri	c Pressure in Hg	
1, Time: 0637	80.	8	2	4.24		,,,,,
2. Time: 1240	50.	7	2	4.23		-
3. Time:						
4. Time:			P TOTAL VALVA MACHINE			,

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CWL	IL/NM Project Name: CWL		Project No.: 146422.10.11.01			
Calibration done by: R Lynch	alibration done by: R Lynch					
, , , , , , , , , , , , , , , , , , ,	Τ	URBIDIMETER		···· = ·····		
Make & Model: HACH 210	0P HACH 2100Q	Serial No. S/N 10050C002897				
Reference Value	et 10	20	20 100			
Standard Lot No.	0161	0168	0162	0161		
1. Time <i>0800</i>	10.1	19.8	101	796		
2. Time 1/3 5	10.3	20.1	[0 9	798		
3. Time	,					
4. Time			Allinoid			
Comments:						
			•			
			4			
•						
		s				
•						

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: CWL			SNL/NM Pr	oject No.: 146422.	10.11.01	±	
Calibrations done by: R. Lynch	Date: (1-11-13	01-1	4-13			
Make & Model: YSI 6920 V2							
YSI 6820 Sonde (S/N) with DO	Ec, pH, ORP, and	l temperature prob	es: 08H10003				
YSI 650 MD\$ (S/N): N/A							
7 51 030 MIDS (5/18).			***************************************	x/a,			
222		. рнс	alibration				
pH Calibrated to (std): 7.00			pH sloped to	(std): 10.00			
Reference value:	4	.00		7.00	1	0.00	
	Value	Текпр	Value	Temp	Value	Temp	
1. Time: 0639	4.00	19.7	7.01	19.7	10.00	19.7	
2. Time: 1118	3.98	19.9	7.00	19.9	10.00	19.9	
3. Time: 0650	3-99	ોજ- છે	7.00	18-3	9.99	18.2	
4. Time: 1107	401	18-6	7.00	18.9	9-99	ાજુ.ઇ	
Standard lot no.:	2AG653		2AH113		2AF557		
Expiration date:	JUL-14		AUG-14		JUL-14		
SC Calibration							
Reference Value: 1278 uS			Standard Lot	: No.: 2AG086			
	Value	Temp	Expiration D	late:	JUL-13		
1. Time: 0641	1277	19.7				7 - A - 1 - 2	
2. Time: 1/20	1579	19.9					
3. Time: 0652	1224	18.2					
4. Time: 109	1275	18-6					
		ORP C	Calibration				
Reference Value:	220mV		Standard Lot	No. 2AD404			
	Value	Текар	Expiration D	late:	JAN-13		
1. Time: 0640	721-1	19.7					
2. Time: [119	220.7	19-9				÷ (3) + (4)	
3. Time: 065	219.6	6.81			× .		
4. Time: [108	220.4	18.6					
·····		DO C	alibration				
Calibration Value:	81% air satura	nion @ 5200 ft.		Atmospheric	Pressure in Hg	-	
1. Time: 0638	80.	2		24.00			
2. Time: ///7	86.	3	<u></u>	3.98			
3. Time: 0649	80.4			3.99			
4. Time: 1106	80.1)U.01		, 147	

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

Calibration done by: R Lynch		Project No.	: 146422.10.11.01			
	Calibration done by: R Lynch			-14-13		
		TURBIDIMETER	RBIDIMETER			
Make & Model: HACH 210	Make & Model: HACH 2100P HACH 2100Q					
Reference Value	er 10	20	100	800		
Standard Lot No.	0161	0168	0162	0161		
1. Time 0803	10.3	20.2	99.8	801		
2. Time 1036	10.1	20.4	101	806		
3. Time 0909	10.4	20.3	104	803		
4. Time 0940	[0.9	20.4	103	801		

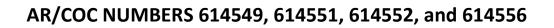
FOP 05-03

Project Name: CWL	Monitoring Well ID # : CWL-BW5	Date: 01/08/13				
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03						
Pump and Tubing Bundle ID #: 1806-586	Water Level Inc	Water Level Indicator ID #: 62088				
Personnel Performing Decontamination: Robert Lynch Print Name: William Gibson Print Name: Initial:	Robert Lynch Print Name:	Print Name: Initial: William Gibson				
Pump: GOOD Tub	Condition of Equipment sing Bundle: GOOD	Water Level Indicator: G	OOD			
Tunp, Cook	List of Decontamination Materia	11 01 11000				
Distilled or Deonized (circle		HNO ₃				
Source: Culligan	UN #	2031				
Lot Number: 122712	Manufacturer	: Fisher				
,	Lot Number	: 002735				

Project Name: CWL	Monitoring Well ID # : CWL-MW9			Date: 01/09/13		
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03						
Pump and Tubing Bundle ID #: 1806-586		Water Level Indi	cator ID #: 62088			
Personnel Performing Decontamination: Robert Lynch Print Name: William Gibson Print Name: Initial:		Personnel Performance Robert Lynch Print Name: William Gibson Print Name:	ming Decontamination: Decontamination: Deconta	tial:		
	Condition	of Equipment				
Pnmp: Good Tub	ing Bnndle: Good		Water Level Indicator: Go	ood		
	List of Deconta	mination Materials				
Distilled or Deonized (circle	i ana i		HNO ₃			
Distinct of Decouved (Circle	o one y	Grade:	Reagent			
Source: Culligan		UN #:	2031			
Lot Number: 122712		Manufacturer:	Fisher			
		Lot Number:	002735			

Project Name: CWL	Monitoring Well ID#: N/#			Date: 01/09/13	
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03					
Pump and Tubing Bundle ID #: 1806-640	_ Water	Water Level Indicator ID #: 62088			
Personnel Performing Decontamination: Robert Lynch Print Name; Initial:		t Lynch	ming Decontamination:	itial:	
Print Name: Initial:	Print N	ame:	In	itial:	
	Condition of Equi	pment		1.200	
Pump: Good Tubi	ing Bundle: Good		Water Level Indicator: G	ood	
	List of Decontaminatio	n Materials	,		
Distilled or Deonized (circle	(ano	HNO ₃			
		Grade:	Reagent	ALASA I CHARACHT MICHIGAN I PARA PARA PARA PARA PARA PARA PARA PA	
Source: Culligan		UN#:	2031		
Lot Number: 122712	Manu	facturer:	Fisher		
	Lot	Number:	002735		

Project Name: CWL	Monitoring Well ID # :	Date: 01/10/13				
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03						
Pump and Tubing Bundle ID #: 1806-640	Water Level Indicator ID #: 62088					
Personnel Performing Decontamination: Robert Lynch Print Name: Initial:		Personnel Perfor Robert Lynch Print Name:		Lital:		
Print Name: Initial:		Print Name:	In	itial:		
	Condition	of Equipment				
Pump: Good Tub	ing Bundle: Good		Water Level Indicator: Go	ood		
·	List of Deconta	unination Materials				
Distilled or Deonized (circl	e one)	HNO ₃				
Distinct of Desineet (offer	c one)	Grade:	Reagent			
Source: Culligan		UN #:	2031			
Lot Number: 122712	taken prominent of control and proving section	Manufacturer:	Fisher			
		Lot Number:	002735			


Project Name: CWL	Monitoring Well ID#:	CWL-MW10		Date: 01/14/13	
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03					
Pump and Tubing Bundle ID #: 1806-640	Water Level Indicator ID #: 62088				
Robert Lynch U		Personnel Performing Decontamination: Robert Lynch Print Name: Initial:			
Print Name: Initial:		Print Name:	Ini	tial:	
	Condition	of Equipment			
Pump: Good Tub	ing Bundle: Good	Water Level Indicator: Good			
	List of Deconta	umination Materials			
Distilled or Deonized (circle	one)	HNO ₃			
Distinct of Decinized Concu	. outo,	Grade:	Reagent		
Source: Culligan		UN #:	2031		
Lot Number: 122712		Manufacturer:	Fisher	a de de servicio	
		Lot Number:	002735		

SUMMARY SHEET FOR JANUARY 2013 SAMPLES

Sample Summary for CWL GWM January 2013

					Associated			
	Sample		Sample		Equipment Blank	Associated Trip Blank	Associated Field Blank	
Sample ID	Date	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	(ARCOC # / Sample #)	(ARCOC # / Sample #)	Comments
CWL GWM: Enviro	onmental S	amples 1	46422.10. 1	11.01				
CWL-BW5	8-Jan-13	614549	093275	Environmental	n/a	614549 / 093276	614549 / 093277	
CWL-MW9	9-Jan-13	614552	093282	Environmental	614551 / 093280	614552 / 093284	n/a	
CWL-MW9	9-Jan-13	614552	093283	Duplicate	614551 / 093280	614552 / 093284	n/a	
CWL-MW10	14-Jan-13	614554	093287	Environmental	n/a	614554 / 093288	614554 / 093289	
CWL-MW11	10-Jan-13	614556	093292	Environmental	n/a	614556 / 093293	n/a	
CWL-EB1	8-Jan-13	614551	093280	Equipment Blank	n/a	614551 / 093281	n/a	Decon prior to CWL-MW9
CWL GWM: Waste	Character	ization Sa	mples					
CWL-BW5	8-Jan-13	614550	093278	Waste	n/a	614550 / 093279	n/a	No data validation required
CWL-MW9	9-Jan-13	614553	093285	Waste	n/a	614553 / 093286	n/a	No data validation required
CWL-MW10	14-Jan-13	614555	093290	Waste	n/a	614555 / 093291	n/a	No data validation required
CWL-MW11	10-Jan-13	614557	093294	Waste	n/a	614557 / 093295	n/a	No data validation required

DATA VALIDATION REPORTS FOR ENVIRONMENTAL SAMPLES GROUNDWATER MONITORING JANUARY 2013

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: February 14, 2013

To: File

From: Marcia Hilchey

Subject: GC/MS Organic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 614549 through -553, -556, -557

SDG: 318159 Laboratory: GEL

Project/Task: 14622.10.11.01

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Ten samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable except as noted above, and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

It should be noted that, per client instruction, data from samples on COCs 614550, -553, and -557 were not validated.

Holding Times

The samples were analyzed within the prescribed holding times and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria.

Blanks

No target analytes were detected in the blanks with the following exceptions. Chloroform was detected in the EB and the FB. All associated sample results were ND and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met. It should be noted that trichlorotrifluoroethane was not present in the MS solution. No sample data were qualified as a result.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Four TBs, one EB, one FB, and one field duplicate pair were submitted on the AR/COCs. There are no required evaluation criteria for field duplicate analyses.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 02/15/13

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: February 14, 2013

To: File

From: Marcia Hilchey

Subject: Inorganic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 614549 through -553, -556, -557

SDG: 318159 Laboratory: GEL

Project/Task: 14622.10.11.01

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

Five samples were prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. A problem was identified with the data package that resulted in the qualification of data.

ICP-MS:

1. Ni was detected in the MB at > MDL and < PQL. All associated sample results were detects < 5X the MB concentration and will be **qualified 0.0048U,B** at 5X the MB value.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

All instrument tune requirements were met.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section and as follows.

ICP-MS:

Cr was detected in the EB at > MDL and < PQL. All associated sample results were ND and will not be qualified.

Ni was detected in the EB. This result was U,B qualified and therefore was not applied to associated field samples.

ICP -MS Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike (MS)

All MS recoveries met QC acceptance criteria.

Laboratory Replicate

All replicates met QC acceptance criteria.

Laboratory Control Sample (LCS)

All LCS QC acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. No samples were diluted.

ICP Interference Check Sample (ICS A and AB)

The Ca concentration of samples -002, -006, -008, and -014 were comparable to ICS levels for the ICP-MS analysis. All ICS analysis results met QC acceptance criteria.

ICP Serial Dilution

The serial dilution analyses met all QC acceptance criteria.

Other QC

One EB and one field duplicate pair were submitted on the AR/COCs. There are no required evaluation criteria for field duplicate analyses.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 02/15/13

Sample Findings Summary

AR/COC: 614549, 614551, 614552, 614556

Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
SW846 3005/6020 DOE-AL			
	093275-015/CWL-BW5	Nickel (7440-02-0)	0.0048U, B
	093280-015/CWL-EB1	Nickel (7440-02-0)	0.0048U, B
	093282-015/CWL-MW9	Nickel (7440-02-0)	0.0048U, B
	093283-015/CWL-MW9	Nickel (7440-02-0)	0.0048U, B
	093292-015/CWL-MW11	Nickel (7440-02-0)	0.0048U, B

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC#: 6/4549 -> -553- SDG #: 3121564318159 Matrix: 49.	556 - 557 Laboratory:	EC	Site	/Project:	Mittel	he.	Validation	Date: 2/14/	/13
Matrix: 49. AR/COC(s) present: yes	# of Samples:Samp	sle Container	CV	R present:	yes K	Analy	sis Type: ÆOı □ Ra	ganic Al-Metals	nem
,		Requ	iested Ana	yses Not I	D 4 1	me			
Sample Number	Laboratory ID	organic	genchem	metals	rad		Сош	ments	
						1000			
		Hole	d Time/Pre	servation 	Outliers	or			
Sample Number	Laboratory ID	Analy	sis I	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT
		Andrew An			/H			***************************************	

Comments: no DV for	CCCs:-550-3	T	<u> </u>						
					4000044000044000				Revised 7/2007
				Validated	By:	Ma			

Inorganic Metals Worksheet

]	olution (pass/fa)		Lab	Serial	ICS	ICS A	CRA/	CA	<i>ca</i>	
nalyte utliers)		_	Calib	ration			Method Blank	or	LCS %R	MS %R	Rep.	Dil.	AB	±	CRI	EB	51	
	Int.	R ²	ICV_	CCV	ICB	CCB		5X MDL	/	/	RPD	%D	%R	MDL	%R			
<u> </u>							/									0.00203		
V;	4	1	7	7	<u> </u>	7	0.000941	0.004785		7	1	4		- 1	4	0.000 74	3 7/9	
																		_
							_											
_																		
_																		
														<u> </u>				
								_										
				IS Ou	ıtliers		_		<u> </u>				IS	Outliers				
Sample ID %Recovery %Reco								6Recovery	+	CV/CCI	B ID	%R	ecovery		%Recov		0/n	Recover
	- Acceptery Accepter																	

_Revised 7/2007

Organic Worksheet (GC/MS)

					ration		SDG# - R	5X				MS/	1	········	1	Т,
	alyte :liers)	-	Int.	RF	RSD/	CCV %D	Method Blank	(10X) Blank	LCS %R	MS %R	MSD %R	MSD RPD	FA	FB	COI	\$
hloroform			1			•••						100 100 100 100 100 100 100 100 100 100	2.31	11.55	2 3 2	1.
												managara da				
																Ī
	***************************************									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						+
	***************************************				1			-								+

***************************************		and the second	***************************************									######################################			 	
					S	urrogat	 e Recovery	Outliers				A sittle and AAA	Lancard Lancar			<u></u>
Sample ID		***************************************	A A to the collection of the c				*	An illustration of	nore	······································						
					***************************************											<u>-</u>
						A A A A A A A A A A A A A A A A A A A								<u> </u>		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,]	IS Outliers	101	<u> </u>							
Sample ID	Area	RT	Area	1	RT	Are	· a .	RT	Area	RT		Area	RT	Ar	rea	P

Revised 7/2007

EB1: -005 -007

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab	أدر												г		_1_ of _1_
Batch No.	<i>[</i> - "				SMO Use					_			AR/COC	614	1549/
Project Name	:	CWL GWM	Date Samples	Shipped:	1/812	013		SMO A	uthorization:	Dun	1 de		Waste Characterization		
Project/Task I	Manager:	Tim Jackson	Carrier/Waybi	ll No.	15046	3		SMO C	ontact Phone	e:			RMMA		
Project/Task I	Number:	146422.10.11.01	Lab Contact:		Edie Kent/	803-556-8	171		Lorraine H	Herrera/505	5-844-3199		Released by COC No.		
Service Order	•	CF025-13	Lab Destination	on:	GEL			Send Re	eport to SMC	D:				4	° Celsius
			Contract No.:		PO 691436	6			Lorraine H	Herrera/505	5-844-3199		Bill to:Sandia National Laboratories	s (Accounts Payable	
Tech Area:													P.O. Box 5800, MS-0154		
Building:		Room:	Operationa	I Site:									Albuquerque, NM 87185-0154	4	318159
Sample No.	Ernotion	Sample Location D	Octail	Depth (ft)	Date/ Colle		Sample Matrix	Co Type	ontainer Volume	Preserv-	Collection Method	Sample Type	Parameter & Method Requested	1	Lab Sample ID
			Jetan	(14)	Cone	cieu	IVIALITA	Type			Metriod	туре			
093275	-001 /	CWL-BW5		521	1/8/13	10:15	GW	G	3x40ml	HCL	G	SA	VOC (SW846-8260)		001
093275	-015V	CWL-BW5		521	1/8/13	10:16⁄	GW	Р	500 ml	HNO3	G	SA	Chromium Nickel (SW846-	6020)	002
093276	-001	CWL-TB1		NA	1/8/13	10:15	DIW	G	3x40ml	HCL	G	ТВ	VOC (SW846-8260)		003
093277	-001	CWL-FB1 ×		NA	1/8/13	9:53 <	DIW	G	3x40ml	HCL	G	FB	VOC (SW846-8260)		004
															7
					 					 	<u> </u>	 		-	
														-	
					<u> </u>										
														I	
	,							_		-	<u> </u>				
					<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>				
Last Chain:		Yes		Sample	Tracking		SMC) Use	Special Ins	structions	/QC Requi	rements:		Condi	itions on
Validation F	Req'd:	✓ Yes		Date En	tered:				EDD		✓ Yes		No	Re	ceipt
Background	d :	Yes		Entered	by:				Turnaroun	d Time	<u>7 Da</u>	y *	15 Day* 30 Day		
Confirmato	ry:	Yes		QC inits	.:				Negotiated	TAT					
Sample	N	ame // Signat	ure	Init.	Compan	y/Organizat	ion/Phon	e/Cell	Sample Di	sposal	Retur	n to Client	t 📝 Disposal by Lab		
Team	Robert L	ynch Kullyno		Pl	SNL/4142/5	05-844-401	3/505-25	0-7090	Return Sai	mples By:					
r	Alfred Sa	intillanes [Hul5]	title	- 063	SNL/4142/5	05-844-513	0/505-22	8-0710	Comments	3:	Send report to	Tim Jacksor	n/4142/MS 0729/284-2547		
Г	William Gibson				SNL/4142/5	05-284-330	7/505-23	9-7367	VOC's: Rep	oort CWL e	enhanced li	st of comp	oounds (Chloroform,1,1-		
Ī	William Closen Popularia Alland				DCE,PCE,TCE,Freon 11, and Freon 113)										
Ì			_						1					La	b Use
1.Relinguishe	d by	Val Satella	Org. 4/4	2 Date	1/8/13	Time /	055	3.Relino	uished by			Org.	. Date	Time	
1. Received b		John .	Org. 4/4			7 Time /		3. Rece	• • • • • • • • • • • • • • • • • • • •			Org.		Time	
2.Relinquishe			Org. 4/7		1/4/13	Time /	200	4.Relino	quished by			Org.	. Date	Time	

Time 7:05

Org.

Date

Time

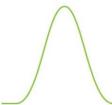
Date 1-9-13

*Prior confirmation with SMO required for 7 and 15 day TAT

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab																Page	<u>1</u> of <u>1</u>
Batch No.	NA					SMO Use					_				AR/COC	614	4551
Project Name Project/Task Project/Task Service Orde	Manager: Number:	Tim Jacks 146422.1 CF025-13	on 0.11.01	Date Sample Carrier/Wayb Lab Contact: Lab Destinati	oill No. ion:	/ 505 Edie Kent/ GEL	36 803-556-8	3171	SMO C	uthorization: ontact Phone Lorraine F eport to SMC	Herrera/50	5-844-3199		RMMA	Characterization	☑ 4	1º Celsius
Tools Asses				Contract No.		PO 69143	6	<u>. 90.5 </u>		Lorraine F	Herrera/50	5-844-3199		-1	National Laboratories	(Accoun	its Payable),
Tech Area: Building:		Room:		Operation	al Site:									P.O. Box 5800	NM 87185-0154		31815
Sample No.	Fraction		mple Location D		Depth (ft)	Date/ Colle		Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type		meter & Method Requested		Lab Sample ID
093280	-001 1	CWL-EB			NA	1/8/13	13:10	DIW	G	3x40ml	HCL	G	EB	VOC (SW	846-8260)		010
093280	-015 🗸	CWL-EB	<u></u>		NA	1/8/13	13:11	DIW	Р	500 ml	HNO3	G	EB	Chromium	Nickel (SW846	-6020)	011
093281	-001 ′	CWL-TB3	3 ′		NA	1/8/13	13:10	DIW	G	3x40ml	HCL	G	ТВ	voc (sw	846-8260)		012
								-									
									<u> </u>				-				
Last Chain		☐ Yes			1	Tracking		SMC) Use	1	structions	/QC Requir	ements:		:		itions on
Validation Backgroun	 _	✓ Yes ☐ Yes		· · · · · · · · · · · · · · · · · · ·	Date Entered					EDD Turnaroun	d Time	✓ Yes	v*	No 15 Day*	☑ 30 Day	Re	eceipt
Confirmato		Yes			QC inits.					Negotiated			-				
Sample Team	N Robert L	lame vnch	Signal	ture	Init.	Compan SNL/4142/5	y/Organiza 605-844-401			Sample Di Return Sai			to Client	t v	Disposal by Lab		
Members Alfred Santillanes William Gibson						SNL/4142/5 SNL/4142/5				Comments VOC's: Rep	s: port CWL e	Send report to	t of comp	n/4142/MS 0729/2 Dounds (Chlor	1.		
		111	7.11			1 (6)	_			<u> </u>							b Use
1.Relinquishe		Mark	Spell.	Org. 4// 6			3 Time / Time /			quished by	,		Org		Date	Time Time	~
Received I Relinguisher		and of	man-	Org. 4/4				1100	3. Rece	guished by			Org. Org.		Date Date	Time	
2. Received I	у Д			Org.	Date			10:00	4. Rece	<u></u>			Org.		Date	Time	·
*Prior confirmation with SMO required for 7 and 15 day					T												


Pagg MO 2012-ARCOC (4-2012) of 942


CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab	.1.														Page	1_ of _1_
Batch No.	NV					SMO Use								AR/COC	61	4552
Project Name	e:	CWL GWN	Π	Date Samples	s Shipped:	1/9/1	13		SMO AL	thorization:	1)2-6	den		Waste Characterization	1	
Project/Task	Manager:	Tim Jacks	son	Carrier/Waybi		150	536		SMO C	ontact Phone				RMMA		
Project/Task	Number:	146422.1	0.11.01	Lab Contact:		Edie Kent/8		3171	1	Lorraine H	Herrera/50	5-844-3199		Released by COC No.		
Service Orde	r:	CF025-13	3	Lab Destination	on:	GEL			Send Re	eport to SMC	D:			1	✓.	4º Celsius
				Contract No.:		PO 691436			1 _	Lorraine I	Herrera/50	5-844-3199		Bill to:Sandia National Laborato	ries (Accour	nts Payable),
Tech Area:											.,			P.O. Box 5800, MS-0154		
Building:		Room:		Operationa	l Site:									Albuquerque, NM 87185-0154		318159
					Depth	Date/T	ime	Sample	Co	ontainer	Preserv-	Collection	Sample	Parameter & Meth	od	Lab
Sample No.	Fraction	Sar	nple Location D	etail	(ft)	Collec	ted	Matrix	Туре	Volume	ative	Method	Туре	Requested		Sample ID
093282	-001 ^	CWL-MW	/9		516	1/9/13	9:46	GW	G	3x40ml	HCL	G	SA	VOC (SW846-8260)		005
093282	-015	CWL-MW	/9		516	1/9/13	9:48	GW	Р	500 ml	HNO3	G	SA	Chromium Nickel (SW8-	46-6020)	006
093283	-001/	CWL-MW	/9		516	1/9/13	9:46	GW	G	3x40ml	HCL	G	DU ^	VOC (SW846-8260)		007
093283	-015	CWL-MW	/9		516	1/9/13	9:48	GW	Р	500 ml	HNO3	G	DU-	Chromium Nickel (SW8-	46-6020)	008
093284	-001	CWL-TB4	,		NA	1/9/13	9:46 */	DIW	G	3x40ml	HCL	G	ТВ	VOC (SW846-8260)		009
																Í
											<u>.</u>					
				·												
Last Chain	:	Yes			Sample	Tracking		SMC) Use	Special In	structions	/QC Requi	rements:		Cond	ditions on
Validation	Req'd:	√ Yes			Date En	tered:			_	EDD		✓ Yes		No	R	eceipt
Backgroun	ıd:	Yes			Entered	by:				Turnarour	nd Time	7 <u>7 D</u> a	<u>y*</u>	<u>15 Day</u> *		
Confirmato	ory:	Yes			QC inits	:			_	Negotiated	TAT b					
Sample	N	lame	Signati	ure,	Init.	Company	//Organiza	tion/Phor	ne/Cell	Sample Di	sposal	Retur	n to Client	t 🔽 Disposal by La	b	
Team	Robert L	ynch.	WIZAC		The	SNL/4142/50	05-844-401	13/505-25	50-7090	Return Sa	mples By:					
Members	Alfred Sa	antillanes	Aliston	ill	000	SNL/4142/50	05-844-513	30/505-22	28-0710	Comment	s:	Send report to	Tim Jackson	n/4142/MS 0729/284-2547		
	William Gibson Willest Self						05-284-330	07/505-23	39-7367					oounds (Chloroform,1,1-		
			1.1		,					DCE,PCE,	TCE,Freor	11, and Fr	eon 113)			
		1.								1					La	ab Use
1.Relinquishe	ed by	Hoch.	5-Tille	Org.4/4	2 Date	1/9/13	Time /	020	3.Relino	quished by			Org	. Date	Time)
1. Received I	by /	me d	un	Org. 4/4	つ Date	1/9/13	Time /		3. Rece	ived by			Org		Time)
2.Relinquishe	ed by	orivel	Lugar	Org. 4/4	Z _Date	1/9/13	Time	1100	4.Relino	quished by			Org	. Date	Time	
2. Received I	by 🖈		=	Org.	Date	1-10-13	Time [0:00	4. Rece	ived by			Org	. Date	Time	>
*Prior confir	mation	ith CRACT TO	LAS day TAT		•											

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

internal Lab															Page _	<u> or</u>
Batch No.	M					SMO Use	AR/COC	614	556							
Project Name	e:	CWL GW	VI	Date Sample	s Shipped:	1/10/1	3		SMO A	uthorization:	Done	den		Waste Characterization		
Project/Task	Manager	Tim Jack	son	Carrier/Wayt	oill No.	15060	9		вмо с	ontact Phone				RMMA		
Project/Task	Number:	146422.1	0.11.01	Lab Contact:		Edie Kent/8	03-556-8	3171	1	Lorraine H	terrera/50	5-844-3199		Released by COC No.		
Service Orde	er:	CF025-13	3	Lab Destinat		GEL			Send R	eport to SMC):			1 —	√ 4°	^o Celsius
				Contract No.	:	PO 691436			1	Lorraine I	terrera/50	5-844-3199		Bill to:Sandia National Laboratorie		
Tech Area:														P.O. Box 5800, MS-0154	•	
Building:		Room:		Operation	al Site:									Albuquerque, NM 87185-0154	3	318159
	<u></u>			<u> </u>	Depth	Date/T		Sample		ontainer	Preserv-	Collection		Parameter & Method		Lab
Sample No.	Fraction	Sai	mple Location D)etail	(ft)	Collec	ted	Matrix	Туре	Volume	ative	Method	Туре	Requested	s	Sample ID
093292	-001	CWL-MV	/11		513	1/10/13	11:27	GW	G	3x40ml	HCL	G	SA	VOC (SW846-8260)		<u>013</u>
093292	-015	CWL-MW	/11		513	1/10/13	11:29	GW	Р	500 ml	HNO3	G	SA	Chromium Nickel (SW846	-6020)	0,4
093293	-001	CWL-TB8	3		NA	1/10/13	11:27	DIW	G	3x40ml	HCL	G	ТВ	VOC (SW846-8260)	l	015
								 								
ļ	 															
ļ																
	<u> </u>															
								<u> </u>	<u> </u>							
								<u> </u>								
															l	
Last Chain	:	Yes			Sample	Tracking		SMC) Use	Special Ins	structions	/QC Requi	rements:		Conditi	ions on
Validation	Reg'd:	√ Yes			Date Ent	ered:				EDD		✓ Yes	Г	No	Rec	ceipt
Backgroun	d:	Yes			Entered	by:				Turnaroun	d Time	7 Da	ıy*	<u>15 Day</u> *		
Confirmato	ry:	Yes			QC inits.	:				Negotiated	TAT					
Sample	N	ame	, Signati	ure	Init.	Company	/Organiza	tion/Phon	e/Cell	Sample Di	sposal	Retur	n to Clien	t 🔽 Disposal by Lab		
Team	Robert L	ynch	Rollino	~		SNL/4142/50	5-844-401	13/505-25	0-7090	Return Sa	nples By:					
Members	Alfred Santillanes / Hulsofull its SNL/4142/505-844-5130							30/505-22	28-0710	Comments	s:	Send report to	Tim Jackson	n/4142/MS 0729/284-2547		
	William Gibson William Silv W/ SNL/4142/505-284-3307/							07/505-23	9-7367					pounds (Chloroform,1,1-		
										DCE,PCE,	TCE,Freor	n 11, and Fi	reon 113)			
															Lab	Use
1.Relinquishe	ed by	Unla	5. stille	Qrg. 4/4	12 Date	1/10/13	7 Time	156	3.Relino	quished by			Org	. Date	Time	
1. Received t	y Do	Ne	Cen	Org. 4/4	2 Date	10/10/			3. Rece	ived by			Org	. Date	Time	
2.Relinquishe	ed by \mathcal{O}	nwd	eye-	Org. 41	Y Z Date	16/10/13			4.Relino	quished by			Org	. Date	Time	
2. Received l	by 41	ongs	ui	Org.	Date	dulis	Time /	040	4. Rece	ived by			Org	. Date	Time	
*Prior confirmation with SMO required for 7 and 15 day					T											

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: February 26, 2013

To: File

From: Marcia Hilchey

Subject: GC/MS Organic Data Review and Validation – SNL

Site: CWL GWM AR/COC: 614554, -555 SDG: 318341 and 318342

Laboratory: GEL

Project/Task: 146422.10.11.01

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Five samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. A problem was identified with the data package that resulted in the qualification of data.

1. The MS and MSD %Rs for acetone were < LAL. The associated sample results were ND and will be **qualified UJ,MS3**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding times and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as follows.

The CCV %Ds for acetone; 1,2-dichloroethane; 2-hexanone; and 1,2,3-trichlorobenzene were >20% with negative bias and no other associated calibration infractions. ICV and/or CCV %Ds for 2-hexanone and

carbon disulfide were > 20% but < 40% with positive bias. All associated results were ND and will not be qualified.

Blanks

No target analytes were detected in the blanks with the following exception.

Chloroform was detected in the FB associated with sample 318342-001. The associated sample result was ND and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met except as noted above in the Summary section. It should be noted that target analyte trichlorotrifluoroethane was included in the MS/MSD solution. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Two TBs and one FB were submitted on the AR/COCs.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 02/28/13

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date: February 26, 2013

To: File

From: Marcia Hilchey

Subject: Inorganic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 614554, -555 SDG: 318341 and 318342

Laboratory: GEL

Project/Task: 146422.10.11.01

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 6020 (ICP-MS), EPA 6010 (ICP-AES), and EPA 7471/7470B (CVAA). One sample was prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

CVAA:

1. Hg was reported at a negative value with absolute value > MDL in the ICB and CCBs. The associated result was ND and will be **qualified UJ,B4**.

ICP-MS:

- Cu and Cr were detected in the MB. The Cu and Cr results for sample 318341-002, and the Cr result for sample 318342-002 were detects < 5X the MB concentration and will be qualified U,B at 5X the associated MB values.
- 2. The serial dilution %Ds were > 10% and the parent sample results were > 50X MDL for Mg and Zn. Both associated sample results were detects and will be **qualified J,D1**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

All instrument tune requirements were met.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries met QC acceptance criteria with the following exceptions.

The CRI %Rs for Mg and Na were > 130%. Both associated sample results were > 5X PQL and will not be qualified.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section and as follows.

ICP-MS:

Mo and Ni were detected in the MB at > MDL and < PQL. Associated sample results were detects >5X the MB concentration and will not be qualified. Mo was detected in a CCB at > MDL and < PQL. The associated sample result was >5X the CCB concentration and will not be qualified.

ICP -MS Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike (MS)

All MS recoveries met QC acceptance criteria except as follows.

ICP-MS:

The parent sample concentrations for Ca, Mg, K, and Na were >4X the spike. However, an MS analysis is not required for these analytes. Therefore, no sample data will be qualified.

The MS analysis for SDG 318341 was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Replicate

All replicates met QC acceptance criteria.

The replicate analysis for SDG 318341 was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS QC acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported.

ICP-MS:

Sample 318341-002 was diluted 5X for Ba, Ca, Na, and Zn; and 10X for Mn.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the concentrations of Al, Ca, Fe, and Mg in the samples were < those in the ICS solutions. No sample data will be qualified as a result.

ICP Serial Dilution

The serial dilution analyses met all QC acceptance criteria except as noted above in the Summary section.

The serial dilution analysis for SDG 318341 was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski **Level I Date:** 02/28/13

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: February 28, 2013

To: File

From: Marcia Hilchey

Subject: Inorganic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 614554, -555

SDG: 318341 Laboratory: GEL

Project/Task: 146422.10.11.01 Analysis: General Chemistry

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

One sample was prepared and analyzed with accepted procedures using methods EPA 9056 (anions by IC), EPA 9066 (total phenol), and EPA 9012A (total cyanide). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

Total cyanide:

Total cyanide was reported in a CCB at a negative value, with absolute value > MDL. The associated sample result was ND and will be **qualified UJ,B4**.

Total phenol:

Total phenol was reported in the ICB and a CCB at negative values, with absolute values > MDL. The associated sample result was ND and will be **qualified UJ,B4**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and properly preserved.

Calibration

All initial and continuing calibration met QC acceptance criteria except as follows.

Anions:

The ICAL intercepts for chloride and sulfate were > the MDL and < 3X MDL. All associated sample results were > 3X the intercept value and will not be qualified.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Matrix Spike (MS)

All MS/PS recoveries met QC acceptance criteria.

Total cyanide and Anions:

The MS analysis was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Replicate

The replicate analyses met all QC acceptance criteria.

Total cyanide and Anions:

The replicate analysis was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Detection Limits/Dilutions

All detection limits were properly reported.

Anions:

The sample was diluted 10X for chloride analysis.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 02/28/13

Sample Findings Summary

AR/COC: 614554, 614555 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
SW846 3005/6020 DOE-AL			
	093287-015/CWL-MW10	Chromium (7440-47-3)	0.018U, B
	093290-009/CWL-MW10	Chromium (7440-47-3)	0.018U, B
	093290-009/CWL-MW10	Copper (7440-50-8)	0.0019U, B
	093290-009/CWL-MW10	Magnesium (7439-95-4)	J, D1
	093290-009/CWL-MW10	Zinc (7440-66-6)	J, D1
SW846 7470A			
	093290-009/CWL-MW10	Mercury (7439-97-6)	UJ, B4
SW846 8260B DOE-AL			
	093290-001/CWL-MW10	Acetone (67-64-1)	UJ, MS3
	093291-001/CWL-TB7	Acetone (67-64-1)	UJ, MS3
SW846 9012B			
	093290-027/CWL-MW10	Cyanide, Total (57-12-5)	UJ, B4
SW846 9066			
	093290-026/CWL-MW10	Total Phenol (N/A)	UJ, B4

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC#: <u>614554-555</u> SDG#: <u>3183414-34</u> 2			Site.	/Project:	Cul au	m_	Validation	Date: 2/26	/13
SDG #: 3/834/4 -342	Laboratory:	-86	Val	ldator: 🟒	27. Hilar	Sey	··········	······································	
Matrix: ag	# of Samples:		CV	R present:	701	Analy	sis Type: 🗷 Or	ganic ≱Metals	
Matrix: 69 AR/COC(s) present: 9es	Samp	le Container	Integrity:	OK			□ Ra	d ÆGen.Ch	nem
		Requ	iested Anal	yses Not	Danartad	77-C			
Sample Number	Laboratory ID	organic	genchem	metals	rad		Com	ments	
		· · · · · · · · · · · · · · · · · · ·	1	·····					
			The state of the s						
						- Annual Control of the Control of t			
						~~^^*	AAAA		

		Hole	t Time/Pres	servation	Outliers 7	· · · · · · · · · · · · · · · · · · ·	·······	AL ALLA VIENNESSE LA ALLA LA L	
								Anal. within	Anal. beyond
Sample Number	Laboratory ID	Analy	sis P	res.	Coll. Date	Prep. Date	Anal. Date	2X HT	2X HT
				444				***************************************	

				A					
Comments:	***************************************								***************************************

									Revised 7/2007
				Validate	d By:				

Organic Worksheet (GC/MS) LCC

AR/COC #: 6/9535 Laboratory Sample IDs Method/Batch #s: 82	: <u>318341 -</u> e	7B 001,-006	3	18372	001 _;			: <u>3/834/</u>	(nass/fail)	/		_ Matrix	: <u> </u>	(vas/na)		
Ana	llyte	12/8/	Int.	Calib	RSD/	SCV CCV %D	Method Blank	5X (10X) Blank	LCS %R	MS %R	MSD %R	MS/ MSD RPD	FB	(yes/no) _ 5 × FB		
chlorotom			V	<i>'</i>	/	7				/	/		2.08	10.4		
acctore 1,2-dichloserka	e					-37.				29.7	28.3					
actore 1,2-dichlosethan 2 texanore 1,23-truchloso conchenctisult	berzere					20.5									_	
carbondisulf	ide_		<u> </u>	1	1	25.6	<u>4</u>		1		1	<u> </u>	4-			
												_			<u>. </u>	
						Surrogate	Recovery	Outliers	rore							
Sample ID			_													
			_													
-				-			S Outliers									
Sample ID	Area	RT	Ar	ea	RT	Аге		RT	Area	RT		Аген	RT	Are	ea	RT
Comments: Of or	Her Sho	wi bot	L SD	(is 1	<u> </u>	o	•	- '							Revised '	7/2007

Inorganic Metals Worksheet

AR/COC #:	614	<u> 537</u>	1 -5	33_					SDC	i#: <u>3/8</u>	34/ 4	3183	42	Ma	trix:	<i>49</i>			
Laboratory S	Sample	IDs: 3	18241	-(7)2		31	8142 €	OZ.								•			
Method/Bato	:h #s: <u>/</u>	com	56020	2 12.7	7164/1	27716	3 Il	PAES 601	OB 1	277162/	12776	<u> </u>	MA	74 <i>7</i> 0A	127.	1238/12	27723.	6	
ICPMS Mas	s Cal (p	ass/fail))	per	<u>s></u>	[6	CPMS Reso	olution (pass/f	fail)	jas.	د					,			
Analyte				oration		./1	Method	5X Blank	LCS	MS %R	Lab Rep.	Serial Dil.	ICS AB	ICS A	CRA/ CRI				
(outliers)	Int.	R ²	ICV	CCV	ICB	CCB	mg/1	(5X MDL)	%R	%K	RPD	%D	%R	MDL	%R				
15		7	1	V		7	~		/	138	/	/			/				
Ma	4			1						**		23.7			135-1				
Na							1			_☆		/			1341				
Cu						1	0.700324	0.0019		/					/				
Mo						0.258	0.000294	0.015		/									
N:						1	0.0006955	0.005											
Ba				\bot			/			A.									
Ca										₹\$									
Mn										A		1	_						
$\frac{Z_n}{Z_n}$							1					69.7			1				
\mathcal{L}					1	1	0.00 36	0.018				<u> </u>							
Ha	1	T	T	1	-0.079	-0.115	/	(0.00034)	<u> </u>	1	طـ	/			1				
R																			
				IC O	utlians								TE	Outlions					

	IS Out	lliers por			IS Out	tliers rare	
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery
	_						
	-				_		

Comments: QC offer SMSOG: 318341 FIRMS dolms/50 ChitA dolins

* parent > 4x spike

General Chemistry Worksheet

ttory Sample 112s: _	-00>	10161	1	19	uri W.Ç						***************************************	******		***************************************	
d/Batch #s:	- <u>00 T</u>	9066		1380	اد/ه			<u></u>					***************************************	······································	
OC #: 6/4557, ratory Sample IDs: _ od/Batch #s:	-003	9056	Crojz	205		***************************************	44						***************************************	***************************************	
od/Batch #s:			***************************************												
od/Batch #s:												<u>. </u>			
			Calib	ration				5X				MS/	Lab	Partial/	
Analyte (outliers)	Int.	R ²	ICV	CCV	ICB	PGCB	Method Blank	Blank or (5X MDI)	LCS %R	MS %R	MSD %R	MSD RPD	Rep.	Total RPD n/4	
stal organide	'	/	<i></i>	J	v	-0.00116	/	0.0014 14004	1	V			J.		
etal organide terlipherol	/	j			-0.0018	-0.003		(0.0084)	(
1/feste	.144					-		,							····
Monde	,127		1	1	<i>V</i>	ь	4_	-	<u> </u>	1			<u> </u>		

											_				
							1								
												Lama App Apple Balling		-	
						-									
***************************************					<u> </u>							And the second s			
RAZARARANIA MARKATANIA MARKATANIA MARKATANIA MARKATANIA MARKATANIA MARKATANIA MARKATANIA MARKATANIA MARKATANIA			***							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
		1					***************************************								******
											and the same of th		***************************************		
		<u>†</u>									-		***************************************	·	
				***		1								1	····
						_							***************************************		···
	V V V V V V V V V V V V V V V V V V V		1			1	<u> </u>								

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab																Page	of
Batch No. A	10					SMO Use					_	*			AR/COC	614	4554 /
Project Name Project/Task N		CWL GWA	-	Date Sample: Carrier/Wayb		15025	7			ithorization:	- One	John		Was	ste Cherecterization		
Project/Task I		146422.1		Lab Contact:		Edie Kent/8		31 71				5-844-3199			eased by COC No.		
Service Order		CF025-13		Lab Destination		GEL			Send R	eport to SMC				****		2 1	° Celsius
		***************************************	***************************************	Contract No.:	•	PO 691436				*		5-844-3199		Bill to:Sand	ija National Laboratorie		
Tech Area;		***************************************												1	800, MS-0154	n di monumenti	
Building:		Room:		Operations	l Site:									1	e. NM 87185-0154	*	3/8341
Sample No.	Fraction	Sai	nple Location D		Depth (ft)	Date/T		Sample Matrix	Co Type	ontainer Volume	Preserv-	Collection Method	Sample Type	-	arameter & Method Requested	i	Lab Sample ID
093287		CMF-WA			515	1/14/13	9:31	ØW	G	3x40mi	HCL	G	USA	voć (s)	W846-8260)		001
093287	-015	CWL-MV			515	1/14/13	9:32	GW	P	500 ml	HNO3	G	sA		m Nickel (SW846	6020)	002
093288	-001	CWL-TB6			NA NA	1/14/13	9:31 [°]	DIW	G	3x40ml	HCL	G	TB		W846-8260)	10202	003
093289	-001	CWL-FB:			NA NA	1/14/13	9:25	DIW	G	3x40ml	HCL	G	FB	1	W846-8260)		004
090208	-001	CVYLTD	<u> </u>		NA	1/ 14/ 13	3.23	DIVA	U U	JA - UIIII	ROL	. G	ГD	VOC (3)	vv640-826U)		
			***************************************		***************************************				***************************************	<u> </u>							· · · · · · · · · · · · · · · · · · ·
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
	*																
		· ·				***	4										
															<u></u>		
Last Chain		 			Comple	Tracking		SMO	Use	Special Ins	tructions	OC Benuir	amante:	1		Condi	tions on
Validation		✓ Yes			Date Ent	•••		CHERT		EDD		☑ Yes		No			ceipt
Backgroun	d:	[Yes			Entered	by:				Turnaroun	d Time	7 Day	¢ 🗆	15 Day*	□ 30 Day		
Confirmato	ry:	☐ Yes			QC inits.	*		***************************************	******	Negotiated	TAT						
Sample	N	lame	Signal Signal	ture /	Init.	Company	Organiza	tion/Phon	e/Cell	Sample Dis	sposal	Return	to Client	7	Disposal by Lab		1.142
Team	Robert L	ynch.	1001 9 K	uth-		SNL/4142/50	5-844-40	13/505-25	0-7090	Return San	nples By:		·				
Members	Alfred S	antillanes	All 5-	ree.	184	3NL /4142/50	5-844-510	30/505-22	8-0710	Comments	-	Send report to				•	
			1.2											ounds (Chi	loroform,1,1-		
ļ								***************************************	*******************************	DCE,PCE,1	rce,Freon	11, and Fre	on 113)				
	L	1000			<u> </u>				7 2244444444444							· Lab	Use
1.Relinquishe		Made	Sattle.	_Org. 4]/4/s	70-00000		Time /		3.Relino	juished by			Org.		Date	Time	
1. Received I	by 💋	La Landon	<u> </u>	Org. 4/4	T		Time /		3. Rece				Org.		Date	Time	
2.Relinquishe		<u>برکب سیا</u>	لرسي	Org.4/4	2. Date	1/14/13			4.Relino	uished by			Org.		Date	Time	
2. Received	by //	L 12	7	Org.	Date	1-15-13	Time :	<u>87 1 (</u>	4. Rece	ived by			Org.		Date	Time	
*Prior confir	mation v	with SMO r	equire Doc 7 an	d 15 day TA	٢												

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab	NK															Page	<u>1</u> of 1
Batch No.						SMO Use									AR/COC	61	4555
Project Name		CWL GWM		Date Samples	Shipped:	1/14/1	3		SMO A	ıthorization:	1/0-	Jilen		☑ Wasto	Characterization		
Project/Task	Manager:			Carrier/Waybill	No.	1502			SMO C	ontact Phone	<u></u>	uc Boot 4	and	RMMA			
Project/Task	Number:	146422.10		Lab Contact:		Edie Kent/	303-556-6	3171		Lorraine F	ferrera/50	5-844-3199		Rolons	ed by COC No.		
Service Orde	r;	CF025-13		Lab Destination	n:	GEL	:	-	Send R	eport to SMC);]		$\mathbf{Z}_{\mathbf{A}}$	4º Celsius
				Contract No.:		PO 691436	}			Lorraine F	lerrera/50	5-844-3199		Bill to:Sandia N	Vational Laboratorie	s (Accour	nts Payable),
Tech Area:														P.O. Box 5800	, MS-0154		
Building:		Room:		Operational	Site:									Albuquerque, M	NM 87185-0154		31834
Sample No.	Fraction	Sam	nple Location D	etali	Depth (ft)	Date/ , Colle		Sample Matrix	Co Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type	Para	meter & Method Requested		Lab Sample ID
093290	-001 ~	CWL-MW			515	1/14/13	9:19	₩ C	G	3x40ml	HCL.	G	SA.		(SW846-8260)		001
093290	-009	CWL-MW			515	1/14/13	9:20 1	WC.	Р	500 ml •	HNO8	G	® SA		Mo (SW846-602		
093290	-016 ·	CWL-MW	10		515	1/14/13	9:21	WCY	y P	125 ml *	None*	G	★		N846-9056)		003
093290	-026	CWL-MW	10		515	1/14/13	9:22 ′	₩e	/当 AG	250 mf	H2SO4	G	S A لد	Total Pheno	olics (SW846-9	1066)	004
093290	-027	CWL-MW	10		515	1/14/13	9:23	ME	Р	250 ml	NaQH [*]	G	SV _{SA}	Total Cyani	ide (SW846-90	12)	005
093291	-001	CWL-TB7			NA	1/14/13	9:19 -	DIW	G	3x40ml	HCL	G	TB	TCL VOC	(SW846-8260)		006
****						***************************************		_					····				
1						AP			<u> </u>	ļ <u></u>							-
								<u> </u>							***************************************		·
I		\$4	and Addition	1	0				Use			00.00					1
Last Chain		[7] Yes			•	Tracking		200) VSE	Special ins	Kruckons	-	ements:	**			litions on
Validation		☐ Yes			Date En		<u> </u>		:	EDO	. *-	☑ Yes		No .		Re	ecelpt
Backgrour		☐ Yes	·		Entered			***************************************		Turnaroun		☐ ZDa		15 Day*	☑ 30 Day		,
Confirmate		☐ Yes			QC inits					Negotiated							. *
Sample	<u> </u>	lame	A Soport	ure	Inít.		y/Organiza		***************************************	Sample Dis		****	to Client		Disposal by Lab		i
Team	Robert I			W.C	ZL-	SNL/4142/5			***************************************	Return Sar							
Members	Alfred S	antillanes	119045-2	THE -	<u> Liet</u>	SNL/4142/5	05-844-51	<u>30/505-22</u>	8-0710	Comments			Tim Jackson	V4142/MS 0729/28	14-2547	·	
										Anions as E	sr,CI,F,SO	14				٠,	
	<u> </u>									-							
		1	<u>L</u>						,	<u> </u>						Lal	b Use
1.Relinquish			otella	-Org. 4/14			<u> </u>	11:00	+	uished by			Org.)ate	Time	
1. Received	by Jan	2 rec	<u>~~_</u>	Org. 4/14					3. Rece	ived by	<u>,</u>		Org.	0	Date	Time	
2.Relinquish	ed by	معلى لسابهده		Org. 4/42				1130		uished by			Org.	D)ate	Time	
2. Received		للح		Org.		1-15-1	3 Time	8135	4. Rece	ived by			Org.		Date	Time	
*Prior confi	rmation v	with SMO re	ns Zaef beniup	d 15 day TAT	•												<u></u>

CONTRACT VERIFICATION REVIEW FORMS GROUNDWATER MONITORING JANUARY 2013

Note: The review forms in this section include AR/COC numbers for environmental samples and additional AR/COC numbers for waste characterization samples.

AR/COC Number	Sample Type
614549	Environmental*
614550	Waste
614551	Environmental*
614552	Environmental*
614553	Waste
614554	Environmental*
614555	Waste
614556	Environmental*
614557	Waste

^{*} These AR/COC forms are provided in the Data Validation Section of this Annex.

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	CWL GWM	Project/Task No.	146422_10.11.01
AR/COC No.	614549, 614550, 614551, 614552, 614553, 614556, 614557	Analytical Lab	GEL	SDG No.	318156

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Comp	olete?		Resol	ved?
No.	Item	Yes	No	If no, explain	Yes	No
1.1	All items on COC complete - data entry clerk initialed and dated	X				
1.2	Container type(s) correct for analyses requested	X				
1.3	Sample volume adequate for # and types of analyses requested	X				
1.4	Preservative correct for analyses requested	X				
1.5	Custody records continuous and complete	X				
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	×				
1.7	Date samples received	X				
1.8	Condition upon receipt information provided	X				

2.0 Analytical Laboratory Report

Line		Comp	olete?		Resol	ved?
No.	Item	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature	Х				
2.2	Method reference number(s) complete and correct	Х				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х				
2.4	Matrix spike/matrix spike duplicate data provided	Х				
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	X				
2.6	QC batch numbers provided	Х				
2.7	Dilution factors provided and all dilution levels reported	Х				
2.8	Data reported in appropriate units and using correct significant figures	Х				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A				
2.10	Narrative provided	Х				
2.11	TAT met	Х				
2.12	Hold times met	Х				
2.13	Contractual qualifiers provided	X				
2.14	All requested result and TIC (if requested) data provided	X				

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

3.0 Data Quality Evaluation			
Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
3.3 Accuracy a) Laboratory control samples accuracy reported and met for all samples	Х		
Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
c) Matrix spike recovery data reported and met	Х		
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
Blank data a) Method or reagent blank data reported and met for all samples		Х	Nickel detected in Metals Method Blank
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	Detected in FB1: Chloroform ((093277-001 Detected in EB1: Chloroform (093280- 001):Chromium, Nickel (093280-015)
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time	X		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and pesticides/PCBs 8081 and 8082.	N/A		

Contract Verification Review (Continued)

4.0 Calibrations and Validation Documentation

Item	Yes	No	Comments
1.1 GC/MS (8260, 8270, etc.)	X		
a) 12-hour tune check provided			
b) Initial calibration provided	X		· · · · · · · · · · · · · · · · · · ·
c) Continuing calibration provided	X		
d) Internal standard performance data provided	Х		
e) Instrument run logs provided	X		
1.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A	_	
c) Instrument run logs provided	N/A		
.3 HRGC/HRMS (1668)	N/A		
a) 12-hour tune check provided			
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		
f) RRTs for samples and standards provided	N/A		

ARCOC: 614549, 614550, 614551, 614552, 614553, 614556, 614557

		1330, 614331, 6 14332, 614333, 614336, 614
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
b) Continuing calibration provided	N/A	-
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	_
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	X	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry	N/A	***
a) Instrument run logs provided		

Contract Verification Review (Continued)

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for all monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		X	
5.3 Verification or reanalysis requested from lab		Х	

Contract Verification Review (Concluded)

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
All	All	Sample Receipt & Review Forms missing ARCOC numbers
Were deficiencies unresolved	d? X Yes θ N	0
Based on the review, this dat	a package is complete.	heta Yes X No
If no, provide: _nonconfo	ormance report or correction re	equest number or date correction request was submitted:02/13/2013
Reviewed by:	~	Date:

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	CWL GWM	Project/Task No.	146422_10.11.01
AR/COC No.	614554, 614555	— Analytical Lab	GEL	SDG No.	318341

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Comp	olete?		Resol	ved?
No.	Item	Yes	No	If no, explain	Yes	No
1.1	All items on COC complete - data entry clerk initialed and dated	X				
1.2	Container type(s) correct for analyses requested	X				
1.3	Sample volume adequate for # and types of analyses requested	X				
1.4	Preservative correct for analyses requested	X				
1.5	Custody records continuous and complete	X				
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X				
1.7	Date samples received	X				
1.8	Condition upon receipt information provided	X				

2.0 Analytical Laboratory Report

Line		Com	olete?		Resol	ved?
No.	Item	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature					
2.2	Method reference number(s) complete and correct	X				1
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2.4	Matrix spike/matrix spike duplicate data provided	X				
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х				
2.6	QC batch numbers provided	Х				
2.7	Dilution factors provided and all dilution levels reported	X				
2.8	Data reported in appropriate units and using correct significant figures	X				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A				
2.10	Narrative provided	X				
2.11	TAT met	Х				
2.12	Hold times met	Х				
2.13	Contractual qualifiers provided	Х				
2.14	All requested result and TIC (if requested) data provided	Х				

ARCOC: 614554, 614555

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	х		
3.2 Quantitation limit met for all samples	х		
Accuracy a) Laboratory control samples accuracy reported and met for all samples	х		
Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
c) Matrix spike recovery data reported and met		Х	VOC MS recovery failed for Acetone; Metals MS recovery failed for Potassium
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		_
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
Blank data a) Method or reagent blank data reported and met for all samples		Х	Chromium, Copper, Molybdenum, Nickel detected in Metals Method Blank
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		х	Chloroform detected in FB2 (093289-001)
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time	X		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and pesticides/PCBs 8081 and 8082.	N/A		

Contract Verification Review (Continued)

4.0 Calibrations and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260, 8270, etc.)			
a) 12-hour tune check provided	×		
b) Initial calibration provided	×		
c) Continuing calibration provided	Х		
d) Internal standard performance data provided	х		
e) Instrument run logs provided	X		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668) a) 12-hour tune check provided	N/A		-
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		·
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		-
f) RRTs for samples and standards provided	N/A		

g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	X	-
d) ICP serial dilution provided	х	-
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry	X	
a) Instrument run logs provided		

Contract Verification Review (Continued)

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for all monitoring and surveillance sample data	N/A	-	
5.2 Problems or outliers noted		х	
5.3 Verification or reanalysis requested from lab		Х	

Contract Verification Review (Concluded)

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis		Problems/Comments/Resolutions				
				-			
				7			
-							
		75-44		16.70			
Were deficiencies unresolved?	θ Yes X No						
Based on the review, this data	package is complete.	X Yes 6	O No				
1 17)	nance report of correction requi						
Reviewed by:		Date: 02/17	7/2013 Closed by:	Date			

FIELD SAMPLING FORMS JULY 2013 GROUNDWATER MONITORING

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location CW L-BWS	Date: 7/8/13 Time: 0815
Activities: Groundwaler Monitoring (purging, sam	
Weather Conditions: Temp: 78.2 °F Wind Speed: & MPH	Humidity: 43.5 % Wind Chill NA °F
Chemicals Used: Acids in sample containers, stand Other:	lard solutions. Harth 1660 VAC omputer
Safety'	Topics Presented
IX Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	Be aware of environmental conditions (heat/cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
X Wear safety boots.	🛭 Be aware of electrical hazards
M Use safe lifting practices. Wear leather gloves if necessary.	⊠Be aware of pressure hazards.
Re aware of pinch points on pump cable reel and hydraulic tailgate lift.	IX No eating or drinking at sampling counter.
Be aware of chemical hazards.	哲Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	
ĕ Wear chemical safety goggIes.	
Robert Lynch Printed Name William Gibson Printey Name	Attendees Signature Signature Signature
HIFRED SANTILLANES Printed Name	Signature Signature
remed come	·
Printed Name	Signature

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

TAILGATE SAFETY MEETING FORM

ept: 4142 Well Location: CWL-MW9	Date: 7-9-13 Time: 0826
ctivities: Groundwater Monitoring (purging, sam	pling, decon)
(Anyone has the right to cease field activities for s	aftry concerns. The buddy system will be used when needed.)
enther Conditions: emp: 81.5 °F Wind Speed: O MPH	Humidity: 248 % Wind Chill MA %
nemicals Used: Acids in sample containers, stand her:	ard solutions. High ACCU VAC computer 1
Safety 1	Topics Presented
X Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	(X Be aware of environmental conditions (heat/cold stress). Dress accordingly, Wear sunscreen if necessary. Stay hydrated.
X Wear safety boots.	🛮 Be aware of electrical hazards
Use safe lifting practices. Wear leather gloves if necessary.	iX Be aware of pressure hazards.
Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	(XNo eating or drinking at sampling counter
Be aware of chemical hazards.	⊠ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
Wear chemical safety goggles.	X Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone: William Libson Printed Name ALFROD, SANTILLANDS Printed Name	Attendeus Autendeus William Mily Signapure HIRESTELL
Printed Name Printed Name	Signature
Printed Name	Signature
	,

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The afficial version is located on the Santdia Restricted Network (SRN), department home page

pt: 4142 Well Location: CWL - MWI) tivities: Groundwaler Monitoring (purging, sam (Anyone has the right to cease field activities for s	
(Anyone has the right to coase field activities for s	
	rafery concerns. The buddy system will be used when needed.)
eather Conditions: mp: 81-9 °F Wind Speed: _6 MPH	Humidity: 349 % Wind Chill WA °F
emicals Used: <u>Acids in sample containers, stand</u> ner:	
Safety :	Topics Presented
Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	IX Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
Wear safety boots.	🛭 Be aware of electrical hazards
Use safe lifting practices. Wear leather gloves if necessary.	🗵 Be aware of pressure hazards.
Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	IXNo eating or drinking at sampling counter.
Be aware of chemical hazards.	Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
Wear chemical safety goggles.	iX Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone: William Gibem Printed Name ALFRED SANTILLANES Printed Name	Attendees William Jally Signare Life State Signary
Printed Name	Signature
Printed Name	Signature
Printed Name	Signature

TAILGATE SAFETY MEETING FORM

activities: Groundwater Monitoring (purging, sam	pling, decon) 7-12-13 08/4 pling, decon) along concerns. The buddy system will be used when needed.)
(Anyone ms time right to coasse than activities tot s.	may enquerns. The body system win be used which needed,
Veather Conditions:	east wh
Veather Conditions: emp: 73.2 °F Wind Speed: 2.5 MPH	Flumidity: 62.4 % Wind Chill N/A %
hemicals Used: Acids in sample containers, stand	ard solutions 1 1 1 CCT VAC
ther:	
	Topics Presented
IX Be aware of slips, trips, and falls. Keep	X Be aware of environmental conditions
work area clean and use a stepping stool	(heat/cold stress). Dress accordingly. Wear sunscreen if necessary. Stay
when necessary.	hydrated.
X Wear safety boots.	Be aware of electrical hazards
∐se safe lifting practices, Wear leather	X Be aware of pressure hazards.
gloves if necessary.	as no avere or pressure intention.
Be aware of pinch points on pump cable	IXNo eating or drinking at sampling counter.
reel and hydraulic tailgate lift.	
X Be aware of chemical hazards.	Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when	Wear communication device (cell phone,
sampling.	EOC pager).
Wear chemical safety goggles.	X Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	
~	Attendees
William bibson	Wellian Dilas
Printed Name	Signature
HLEREN SANTILL PRIES	11165 for
Printed Name	Signatur
William bebson	1.11: 18:11
The state of the s	Signature 1
a lielaenae e Yelleedo	
DI+II	
Printed Name Robert Lynch Printed Name	Sign sture

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandio Restricted Network (SIN), department home page

Project Name: CWL GWM	Project No.: 146422.10.11.01			
Well I.D.: CWL-BW 5	Date: 07/08/13			
Well Condition:	Weather Condition:			
Method: Portable pump X	Dedicated pump	Pump depth: 521'		

PURGE MEASUREMENTS

		Vol.	Temp	SC	ORP		Turbidity	DO	Comments
Depth to		(L(gal)	(°C)	(µS/cm)	(mV)	pН	(NTU)	(%)	~ ·
Water (ft)	hr			\(\frac{1}{2}\)			***************************************	- x	DOmg/L
	0020		<u>~</u>	MR+					
510.65	T								
514.31		5		1903	108.6	6.77	0.95	83.9	7.16
515,20	0913	10		1201	98.8	18.1	1.0	81.1	6.97
515.66		14		1301	98.2	6.83	1.03	77.2	6.66
515.81		16	20.37	1199	99.3	6.83	1.08	80.7	6.98
515.93	(hencesensone)	18	22.43	1199	100.4	6.84	0.93	78.8	6.81
516.02	0945	20		1198	103.0		0.94	78.8	6.83
516.03	0951	29	22.7J		103.1	6.85	0.86	78.1	6.72
516.04	0958	24	22.62	1206	104.1	6.85	0.78	77.6	6-61
	0959		9A	mplin	3-		********		
Y					0				
					_				
		,	**			· ·			
							h.t.		
				AKARISHI AMARIN PARAMATAN		and a factor of the factor of	*		

						, , , , , , , , , , , , , , , , , , , ,			<u> </u>
<u></u>									
<u></u>	<u></u>					44 var			4.00 gals purged
				TO THE PERSON NAMED IN COLUMN 1					from tubing
				1					0844

Project Name: CWL GWM	Project No.: 146422.10.11	.01
Well I.D.: CWL-MW 9	Date: 07/09/13	
Well Condition:	Weather Condition:	
Method: Portable pump X	Dedicated pump	Pump depth: 516'

PURGE MEASUREMENTS

Time 24	Vol. (L / gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	pH	Turbidity (NTU)	DO (%)	Comments
HI			`	***			***************************************	Do mg/L
0836	THE RESERVE AND THE PARTY OF TH	51	art -					
0913	5			154.7	6.90	1.96	19.9	1.77
0925				105.7	6.92	1.80	18.0	1.59
0937				64.4	6.92		18.3	1.62
0949	20	21.36	1057	36.4	6.92	1763	19.9	1.76
0955	22	21.37	1064	28.1		0.94	20.3	1.79
1003	24	21.53	1065	20.3	6.91	0.09	23.1	2.07
1008	26	21.54	106b	17.5	6.91	0.89	244	2.15
1014	28	21.60	1066.	15.1	6.91	0.87	26.0	2.28
1019		21.64	1066	14.5	6.91	0.71	26.4	2.32
1020		50	umple					>
·						, A D		
				***************************************)		· ·
		****	<u> </u>					***************************************
								M

								0856
				***************************************				0856 2 4.00 gal purged
				***************************************				prior measurement.

	hr 0836 0913 0925 0937 0949 0955 1003 1008 1014	0836 09/3 5 09/3 5 0925 10 0937 15 0949 20 0955 12 1003 24 1008 26 10/4 28 10/9 30	0836 54 0913 5 20.94 0925 10 21.22 0937 15 21.35 0949 20 21.36 0955 12 21.37 1003 24 21.53 1008 26 21.54 1019 30 21.64	11me 24 hr (L(gal)) (°C) (μS/cm) 0836	11me 24 hr (L(gal)) (°C) (μS/cm) (mV) 0836	11me 24 hr (L(gal) (°C) (μS/cm) (mV) pri 0836	11me 24 hr (L(gal) (°C) (μS/cm) (mV) PH (NTU) 0836	1 me 24 hr (L(gal) (°C) (μS/cm) (mV) pH (NTU) (%) 0836

Project Name: CWL GWM	Project No.: 146422.10.11.01				
Well I.D.: CWL-MW 10	Date: 07/11/13	-			
Well Condition:	Weather Condition:				
Method: Portable pump X	Dedicated pump	Pump depth: <u>515"</u>			

PURGE MEASUREMENTS

Depth to Water	Time 24	Vol. (L(gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	Comments
(ft)	***				THE THE PROPERTY OF THE PROPER				
500.03	0813	> <	5	tart					
505.78		5	20.84	938	1335	7,06	1.55	13.7	1.22
	0917	10	20.91	938	122.2	7.05	9.69	12.0	1.07
511.42	0929		21.06	944	118.6	7.05		11.5	1.02
	6935		11:28	947	117.7	7.05	11-0	11.8	1.04
513.13	0943	14	21.38	951	115.7	7.04	13.2	11.8	1.04
514.10	0953	15	21-69	952	84.5	7.04	11.9	15.4	1-34
514.81	\$010	16	22.70	953	66.6	7.03	12.0	18.2	1.59
515.04	1013	> <	a D	ru -					>
503.76	0830	75<0	854	- A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				>
506.12]	5185		114.6	720	2.48	24.8	2.16
506-65	7	1.5	21.91	966	89.3	7,17	2.77		1.94
507.07		2.	22.04	1966	60.8	7.16	2.70	21.1	1.84
	0856			mplin					
		Z							
							h-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
									_
									0840 7/12
		141				-			0825
									~ 1.75 purged pror
						***************************************	ethi dahidi	_	to measurement
		`							,

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

Project Name: CWL GWM	Project No.: 146422.10.11	.01
Well I.D.: CWL-MW 11	Date: 07/10/13	
Well Condition:	Weather Condition:	•
Method: Portable pump X	Dedicated pump	Pump depth: <u>513</u>

PURGE MEASUREMENTS

Depth to	Time 24	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	pН	Turbidity (NTU)	DO (%)	Comments
Water (ft)	hr		, ,				volument A volument in A volum		
498.71	0809	Mark Mark Mark Mark Mark Mark Mark Mark	54	avt -	***************************************			<u> </u>	
503.15	0901		23.88	1118	149.2	6.86	D.49	68.5	5.76
	0924		24.13	1118	139.4	6.87	0.79	64.4	
508.53	0946	15	24.29	1118	133.7	6.88	0.97	61.6	5.14
511.29	1008.	20	24.52	1113	127.1	6.88	0.99	49.8	4.13
511.87	1014	22	14.76	1114	121.8	68.0	1.03	53.4	4.41
512.12	1020	24	15.01	1115	117.3	6 88	1.13	51.9	4.37
512.13	1031	26	26.23	1116	116.6	6.89	1.21	50 g	3.96
512.13	1035	27	26.82	1116	117.2	6.88	1.17	51.0	3.97
512.38	1045	28	26.65	1118	119.3	6.88	1.114	54.3	4.53
512.83	1049	29_	26.73	1119	120.4	6.88	1.25	55.6	4.96
	1050	A CONTRACTOR OF THE PARTY OF TH	5,	ample	·				>
				, , ,					

									0828
									2 1.75 ga Davaed
**************************************									Prior to measurement

GROUNDWATER S	SAMPLE CO	LLECTION F	ELD EQUIPMENT CHECK LOG Page 1 of 2					
SNL/NM Project Name: CWL	SNL/NM Project No.: 146422.10.11.01							
Calibrations done by: R Lynch	111111111111111111111111111111111111111		Date: 7/8/13					
Make & Model: YSI 6920V2	2	**************************************						
YSI 6820 Sonde (S/N) with DO	, Ec, pH, ORP, an	d temperature prob	es: <u>08H100033</u>		^^^^^^	*****		
YSI 650 MD\$ (\$/N): NA	**********							
***************************************		рН С	alibration					
pH Calibrated to (std): 7.00			pH sloped to (atd): 10.00				
Reference value:		4.00		7.00		10.00		
	Value	Temp	Value	Temp	Value	Temp		
1. Time: 0645	3.99	22.3	7.01	22.3	10.02	29.3		
2. Time: 1105	4.01	22.5	7.01	22.6	10.01	33.6		
3. Time:						,		
4. Time:								
Standard lot no.:	2AG653	3	2AH113		2AF557			
Expiration date:	JUL-14		AUG-14		JUL-14			
		SC Ca	ilibration					
Reference Value: 1413 uS		******	Standard Lot 1	No.: 2AG086	······································			
	Value	Temp	Expiration Da		JUL-13			
1. Time: 0648	1411	22.3	, , ,		* _	\ <		
2. Time: 1168	1417	22.6		•		-		
3. Time:								
4. Time:			naan .					
		ORP C	alibration					
Reference Value:	200 mV		Standard Lot No. 1301187					
***************************************	Value	Temp	Expiration Da	te:	OCT-13			
1. Time: 0647	199.8	22.3		2				
2. Time: [107	201-2	22.6		7	· ×			
3. Time:								
4. Time:			,					
		DO C	dibration					
Calibration Value:	81% air satur	Atmospherie Pressure in Hg						
Time: 0644 81.7			24.43					
2. Time: //04				ટ વ. મા				
3. Time:		WWW.999PHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				- Control of the Cont		
4 Times								

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CV	WL GWM	Project No.:	Project No.: 146422.10.11.01							
Calibration done by: R Lyne	ħ	Date: 7	Date: 7/8/13							
TURBIDIMETER										
Make & Model: HACH 21	00P HACH 2100Q	Serial No. S	3/N 10050C002897	·						
Reference Value	PL 10	20	100	800						
Standard Lot No.	0161	0168	0162	0161						
1. Tîme 0821	10-1	19.7	99.8	803						
2. Time 1006	10.3	19.9	[0]	799						
3. Time .										
4. Time			A COMMITTEE OF THE COMM	***************************************						
Comments:										
				•						

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project No.: 146422.10.11.01 SNL/NM Project Name: CWL GWM Calibrations done by: RLynch William Gibson 7-9-13 Date: Make & Model: YSI 6920V2 YSI 6820 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: 08H100033 YSI 650 MDS (S/N): NA pH Calibration pH sloped to (std): 10.00 pH Calibrated to (std): 7.00 Reference value: 4 00 7.00 10.00 Value Temp Value Temp Value Temp 1. Time: 3.98 23.46 7.01 23.46 10.07 23.46 23.63 23.43 2. Time: 3.99 7-01 10.03 23.63 3. Time: 4. Time: Standard lot no.: 2AG653 2AH113 2AF557 Expiration date: JUL-14 AUG-14 JUL-14 SC Calibration Reference Value: 1413 uS Standard Lot No.: 2AG086 Value Temp Expiration Date: JUL-13 1411 1. Time: 2. Time: 3. Time: 4. Time: **ORP** Calibration 200 mV Reference Value: Standard Lot No. 1301187 OCT-13 Value Expiration Date: Тепор 0742 144.7 23.41 1. Time: 199.9 23.63 2. Time: 3. Time: 4. Time: DO Calibration 81% air saturation @ 5200 ft. Atmospheric Pressure in Hg Calibration Value: 24 52 81.9 0738 1. Time: 24.79 82. 2. Time: //05 3. Time: 4. Time:

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

Standard Lot No. 0161 0168 0162 0161 1. Time 0 8 40 .10 19.9 101 799 2. Time 1125 .10 19.8 101 799 3. Time 4. Time								
TURBIDIMETER Make & Model: HACH 2100P HACH 2100Q Reference Value .1 .1 .1 .1 .1 .1 .1 .1 .1 .	SNL/NM Project Name: CWL	. GWM	Project No.:	Project No.: 146422.10.11.01				
TURBIDIMETER Make & Model: HACH 2100P HACH 2100Q Reference Value .1 .1 .1 .1 .1 .1 .1 .1 .1 .	Calibration done by: RLynch	William Gibsu	Date: 7	Date: 7-9-13				
Reference Value .1 20 100 800 Standard Lot No. 0161 0168 0162 0161 1. Time 0840 .10 19.9 101 799 2. Time 1125 .10 19.8 101 799 3. Time 4. Time								
Standard Lot No. 0161 0168 0162 0161 1. Time 0 8 40 .10 19.9 101 799 2. Time 1125 .10 19.8 101 799 3. Time 4. Time	Make & Model: HACH 210	OP HACH 2100Q	Serial No. S/	/N 10050C002897				
1. Time 0840 .10 19.9 101 799 2. Time 1125 .10 19.8 101 799 3. Time 4. Time	Reference Value	.1	20	100	800			
2. Time 1125 .10 19.8 101 799 3. Time	Standard Lot No.	0161	0168	0162	0161			
2. Time 1125 .10 19.8 101 799 3. Time 4. Time	1. Time 0 8 40	. 10	19.9	101	799			
4. Time		10	19.8	101	799			
	3. Time							
Comments:	4. Time							
·								

GROUNDWATER S	SAMPLE CO	LLECTION F	ETD EGUIS	MENT CHEC	K LOG	Page 1 of 2		
SNL/NM Project Name; CWL (BWM	~	SNL/NM Project No.: 146422.10.11.01					
Calibrations done by: R. Lynch	Willian	n bibson	Date: 7-10-13					
Make & Model: YSI 6920V2								
YSI 6820 Sande (S/N) with DO	Ec, pH, ORP, an	d temperature probi	es: 08H100033	~				
YSI 650 MDS (S/N): NA					444	<u> </u>		
	***************************************	pH Ca	libration					
pH Calibrated to (std): 7.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		pH sloped to ((std); 10,00				
Reference value:	•	4 00		7.00		10.00		
**************************************	Value	Тетр	Value Temp Value			Temp		
1. Time: 0745	3.99	21.93	7.00	21.93	10.0L	21.93		
2. Time: 1959	3.99	25.43	7.01	25.43	10.01	25.43		
3, Time:			W. W.					
4. Time:								
Standard lot no.:	2AG653		2AH113		2AF557			
Expiration date:	JUL-14		AUG-14	www.asaa.asaa.asaa.asaa.asaa.asaa.asaa.	JUL-14	MANAGAPI I I		
		SC Ca	libration					
Reference Value: 1413 uS			Standard Lot 1	No.: 2AG086	tidahihitidahih			
	Value Temp			te:	JUL-13			
1. Time: 0743	1412	21.63		*				
2. Time: 1455	1411	25.43	1		;			
3. Time:								
4. Time			·					
		ORP C	alibration					
Reference Value:	200 mV	***************************************	Standard Lot No. 1301187					
Value Temp			Expiration Date: OCT-13					
1. Time: 07 40				-	_			
2. Time: 1450	1998	25.43		2		•		
3. Time:				-		•		
4. Time:			<u>'</u>					
	***************************************	DO Ca	libration	· · · · · · · · · · · · · · · · · · ·		***************************************		
Calibration Value:	81% air satur	ation @ 5200 ft.	Atmospheric Pressure in Hg					
1. Time: 0736 81-7			24.49					
2. Time: 14.47 81.7			24.45					
3. Time:			An annual					
4 Time								

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CW	L GWM	Project No.: 1	Project No.: 146422.10.11.01 Date: 7-10-13			
Calibration done by: R Lynch	Williambi	bson Date: -				
	-	TURBIDIMETER		441000000000000000000000000000000000000		
Make & Model: HACH 210	00P HACH 2100Q	Serial No. S/	N 10050C002897	•		
Reference Value	.1	20	100	800		
Standard Lot No.	0161	0168	0162	0161		
1. Time 0817	1.10	19.8	49.9	802		
2. Time 1245	. 10	19.9	101	801		
3. Time						
4. Time			400014400444004440044400444	**************************************		

Page 1 of 2

	SNL/NM Project Name: CWL	GWM		SNL/NM Proje	ect No.: 146422.1	0.11.01		
	Calibrations done by: (** Lynch	William	Gibson	Date: 7	- 11-13	/7-	12-13	
	Make & Model: YSI 6920V		· ·					
	YSI 6820 Sonde (S/N) with DC). Ec. pH. ORP. and	d temperature prob	oes: 08H100033				
		,, ,,,				*******	~~ ~~~	
ļ	YSI 650 MDS (S/N): NA	······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	***************************************	мирори	р Н С	alibration				
	pH Calibrated to (std): 7,00	1000400		pH sloped to (s	std): 10.00	***************************************		
	Reference value:		4.00		7.00		10,00	
		Value	Temp	Value	Temp	Value	Temp	
	1. Time: 0742 2. Time: 1503	4.01	73.07	6.98	23.08	10.01	23.08	
12	2. Time: 1503 3. Time: 0729	4.01	12 10	6.99	25.31	9.99	25.31	
12	4. Time: 15 2.0	4.01	23.14	1.00	24.92	10.02	24.92	
ļ	Standard lot no.:	2AG653	1611	2AH113	P1.10	2AF557	<u> </u>	
}	Expiration date:	JUL-14		AUG-14	**************************************	JUL-14		
		N	SC C	alibration				
	Reference Value: 1413 uS	***************************************		Standard Lot N	_{lo.:} 2AG086			
ľ	***************************************	Value	Temp	Expiration Date	e:	JUL-13		
ŀ	1. Time: 0737	1412	23.07					
ľ	2. Time: 1459	14/1	25.31					
2	3. Time: 0724	14-1/	23.14					
	4. Time: [6]	<u> </u>	24.93					
		ORP Calibration						
	Reference Value:	200 mV		Standard Lot N	lo. 1301187			
		Value	Тетр	Expiration Date	e:	OCT-13		
	1. Time: 0733	199.7	23.07					
ĺ	2. Time: 1454	149.8	25.31					
2	3. Time: 0720	199.8	23.14					
-	4, Time: 5 3	199.8	24.43					
İ		<u> </u>	1 -	alibration			-	
Ì	Calibration Value:	81% air satur	ation @ 5200 ft.		Atmospheric	Pressure in Hg	·	
Ì	1. Time: 0728	81-9		1	14.52	٠		
ľ	2. Time: 14 50	81.7		W/X 1	ANN	24.49		
12	3. Ťíme: 0716	81.7		1	4.42	······································		
. in				1440 -				

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: CW	L GWM	Project No.: 1	Project No.: 146422.10.11.01 Date: 7-11-13			
Calibration done by: R Lynco	William bil	oson Date: 7				
	:	TURBIDIMETER	30000			
Make & Model: HACH 210	00P HACH 2100Q	Serial No. S/	N 10050C002897	·		
Reference Value	I.	20	100	800		
Standard Lot No.	0161	D168	0162	0161		
I. Time 08/5	.10	19.9	101	749		
2. Time 1510	. 10	19.8	100	798		
3. Time 0730	. 09	19.9	99.7	799		
4. Time / 04/	.10	19.8	97.8	798		
	,					

Project Name: CWLGWM	Monitoring Well ID # :	CWL-BW5	Date: 7/8/13			
The following equipment wa	s decontaminated at comp	letion of sampling a	activities in accordance with FC	OP-05-03		
Pump and Tubing Bundle ID #: 1807-32		Water Level Indi	cator ID #: 62187			
Personnel Performing Decontamination: Robert Lynch Print Name: Initial:	-	Personnel Performing Decontamination: Robert Lynch Print Name: Initial:				
Print Name: Initial:	-	Print Name: Initial:				
	Condition	of Equipment				
Pump: GOOD Tub	ing Bundle: GOOD	Water Level Indicator: GOOD				
	List of Decont	amination Materials				
Distilled or Deonized (circle	, ona)	HNO ₃				
Distinct of Debutzed (Circle	c one)	Grade:	Reagent	,		
Source: Culligan		UN #:	2031			
Lot Number: 06/20/13	A + + + + + + + + + + + + + + + + + + +	Manufacturer:	AROC			
		Lot Number:	A0305629			

Project Name: CWL	Monitoring Well ID # : CWL-MW9		Date: <u>7-9-13</u>			
The following equipment wa	s decontaminated at completion of sampling	activities in accordance with FC	OP-05-03			
Pump and Tubing Bundle ID #: _/807-32	Water Level Ind	licator ID #: 62089				
Personnel Performing Decontamination: William Gibson Print Name: Alfred Santillanes Print Name: Initial:	William Gibson Print Name:	Alfred Santillanes Print Name: Initial:				
Pump: Good Tub	ing Bundle: Excellent	Water Level Indicator: Go	od			
	List of Decontamination Material	s				
Distilled or Deonized (circle		HNO ₃				
Source: Culligan	UN #:	2031				
Lot Number: 6-17-13	Manufacturer:		rananian analanana			
	Lot Number:	A0305629				

Project Name: CWL	Monitoring Well ID # :	: <u>CWL-MW11</u> Date: <u>7-10-13</u>				
The following equipment wa	s decontaminated at comp	letion of sampling a	ectivities in accordance with FC)P-05-03		
Pump and Tubing Bundle ID#:/806 ~ 84	<u>'0</u>	Water Level Indi	cator ID #: 62089			
Personnel Performing Decontamination: William Gibson Print Name: Alfred Santillanes Print Name: Initial:		Personnel Performance William Gibson Print Name: Alfred Santillane: Print Name:	ming Decontamination: Wilden	tial:		
	Condition	of Equipment				
Pump: Excellent Tubi	ing Bundle: Excellent		Water Level Indicator: Go	od .		
	List of Deconta	mination Materials				
Distilled or Deonized (circle	anal		HNO ₃			
Distined of Deonized (Chere	onej	Grade:	Reagent			
Source: Culligan		UN #:	2031	***		
Lot Number: 06-17-13	····	Manufacturer:	AROC			
		Lot Number:	A0305629			

Project Name: CWL	Monitoring Well ID#:	CWL-MW10		Date: <u>7-12-13</u>	
The following equipment was	s decontaminated at comp	letion of sampling a	activities in accordance with l	FOP-05-03	
Pump and Tubing Bundle ID #: 1806-840	_	Water Level Indi	icator ID #: 62089		
Personnel Performing Decontamination:			ming Decontamination:	* 4.	
Alfred Santillanes Print Name: Initial;		Alfred Santillane Print Name:	es	nitial:	
William Gibson Print Name: Initial:	7	William Gibson Print Name: Initial:			
	Condition	of Equipment			
Pump: Excellent Tubi	ng Bundle: Excellent		_ Water Level Indicator: _G	ood	
	List of Deconta	amination Materials			
Distilled or Deonized (circle	mel	And the second s	HNO ₃		
Distinct of Debrigate (Circle	· using	Grade:	Reagent	. <u>. </u>	
Source: Culligan		UN #:	2031		
Lot Number: 7-9-13	Million Control of the State of	Manufacturer:	AROC		
		Lot Number:	AO305629		

SUMMARY SHEET FOR JULY 2013 SAMPLES

Sample Summary for CWL GWM July 2013

					Associated							
	Sample		Sample		Equipment Blank	Associated Trip Blank	Associated Field Blank					
Sample ID	Date	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	(ARCOC # / Sample #)	(ARCOC # / Sample #)	Comments				
CWL GWM: Project Task # 146422.10.11.03. Service Order # CF 327-13												
Environmental Sa	mples											
CWL-BW5	8-Jul-13	614872	094278	Environmental	n/a	614872 / 094279	n/a					
CWL-MW9	9-Jul-13	614874	094282	Environmental	n/a	614874 / 094283	614874 / 094284					
CWL-MW10	12-Jul-13	614879	094294	Environmental	614878 / 094292	614879 / 094296	n/a					
CWL-MW10	12-Jul-13	614879	094295	Duplicate	614878 / 094292	614879 / 094296	n/a					
CWL-MW11	10-Jul-13	614876	094287	Environmental	n/a	614876 / 094288	614876 / 094289					
CWL-EB1	10-Jul-13	614878	094292	Equipment Blank	n/a	614878 / 094293	n/a	Decon prior to CWL-MW10				
Waste Characteriz	zation Sam	ples										
CWL-BW5	8-Jul-13	614873	094280	Waste	n/a	614873 / 094281	n/a	No data validation required				
CWL-MW9	9-Jul-13	614875	094285	Waste	n/a	614875 / 094286	n/a	No data validation required				
CWL-MW10	12-Jul-13	614880	094297	Waste	n/a	614880 / 094298	n/a	No data validation required				
CWL-MW11	10-Jul-13	614877	094290	Waste	n/a	614877 / 094291	n/a	No data validation required				

DATA VALIDATION REPORTS FOR ENVIRONMENTAL SAMPLES GROUNDWATER MONITORING JULY 2013

AR/COC NUMBERS 614872, 614874, and 614876

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: August 22, 2013

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 614872, 614874 and 614876

SDG: 329090 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Eight samples were prepared and analyzed with accepted procedures using method EPA 8260B (trichloroethylene only). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria.

Blanks

No target analytes were detected in the blanks.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met.

It should be noted that the MS/MSD was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Three TBs were submitted, one with each AR/COC. Two FBs were submitted, one with AR/COC 614874 and one with AR/COC 614876.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 08/22/13

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: August 22, 2013

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 614872, 614874 and 614876

SDG: 329090 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

Three samples were prepared and analyzed with approved procedures for Ni and Cr using method EPA 6020 (ICP-MS) Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

ICP-MS:

1. Ni was detected in the ICS A at a negative value with an absolute value >2X the MDL. All associated sample results were detects <50X the absolute value of the ICS A and will be **qualified J-,CK3**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

The ICP-MS tunes met QC acceptance criteria.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries associated with the samples met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicates met all QC acceptance criteria.

Laboratory Control Sample (LCS)

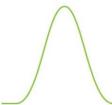
The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were evaluated and applied to samples 329090002, -005 and -009 It was not possible to determine if the results for Ca, Al, Mg and Fe were > those in the ICS solution and so it was assumed that one or more of these target analytes for the samples were > the ICS A solution. All QC acceptance criteria were met except as noted above in the Summary section.


ICP Serial Dilution

The serial dilutions met all QC acceptance criteria.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 08/22/13

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: August 20, 2013

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 614873, 614875 and 614877

SDG: 329085 Laboratory: GEL

Project/Task: 146422.10.11.03 Analysis: General Chemistry

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

Three samples were prepared and analyzed with accepted procedures using methods EPA 9056 (anions by IC), EPA 9066 (total phenols) and EPA 9010C/9012A (total cyanide). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

Total cyanide:

- 1. The intercept for total cyanide was negative with an absolute value > the MDL but $\le 3X$ the MDL. The associated sample results were NDs and will be **qualified UJ,15**.
- 2. Total cyanide was detected in the ICB/CCB at negative values with absolute values < the PQL. The associated sample results were NDs and will be **qualified UJ,B4**.

Total phenol:

1. The intercept for total phenol was negative with an absolute value > the MDL but $\le 3X$ the MDL. The associated results for samples 329085004 and -016 were NDs and will be **qualified UJ,15**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and properly preserved.

Calibration

All initial and continuing calibration met QC acceptance criteria except as noted above in the Summary section and as follows.

Total phenols:

The intercept for total phenol was negative with an absolute value > the MDL but $\le 3X$ the MDL The associated result for sample -010 was a detect > 3X the absolute value of the intercept and will not be qualified.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section and as follows.

Total phenol:

Total phenol was detected in the MB at < the PQL. The associated result for sample -010 was a detect >5X the MB value and will not be qualified. The remaining associated sample results were NDs and will not be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Matrix Spike (MS)

All MS/PS recoveries met QC acceptance criteria.

Laboratory Replicate

The replicate analyses met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted except as follows.

Anions

The samples were diluted 50X for chloride and sulfate.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski **Level I Date:** 08/21/13

Sample Findings Summary

AR/COC: **614872**, **614874**, **614876**Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
SW846 3005/6020 DOE-AL			
	094278-015/CWL-BW5	Nickel (7440-02-0)	J-, CK3
	094282-015/CWL-MW9	Nickel (7440-02-0)	J-, CK3
	094287-015/CWL-MW11	Nickel (7440-02-0)	J-, CK3

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 614872, 614874and 614876

Site/Project: CWL GWM

Validation Date: 08/22/2013

SDG #: 329090

Laboratory: GEL

Validator: Linda Thal

Matrix: Aqueous

of Samples: 11 CVR present: Yes

Analysis Type: X□ Organic X□ Metals

AR/COC(s) present: Yes Sample Container Integrity: OK												
Requested Analyses Not Reported												
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments						

The state of the s										
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments				
None										

Hold Time/Preservation Outliers											
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT			
None											

Comments: Sampled 7/08 – 7/10/2013

Validated by: X Mal

Organic Worksheet (GC/MS)

AR/COC #: 614872, 614874, 614876 SDG #: 329085-1 (329090) Matrix: Aqueous

Laboratory Sample IDs: 329090001, -003, -004, -006, -007, -008, -010 and -011

Method/Batch #s: 8260B: 1315625 (TCE only)

Tuning (pass/fail): Pass TICs Required? (yes/no): No

				Calibra	ation			5X				MS/				
	alyte liers)	I	nt.	RF	RSD/ R ²	(ICV) CCV %D	Method Blank	(10X) MB	LCS %R	MS %R	MSD %R	MSD RPD	TBs	FBs		
None																
																<u> </u>
																+
					Sı	urrogate	Recovery (Outliers								
Sample ID																
None																
						IS	Outliers									
Sample ID	Area	RT	Area		RT	Area	R'	Γ	Area	RT		Area	RT	Are	ea	RT
None																
Comments UTs OV.																

Comments: HTs OK: ICAL VOA9.I 7/01/2013; MS/MSD from another SNL

Inorganic Metals Worksheet

AR/COC #: 614872, 614874 and 614876 SDG #: 329085-1 (329090) Cr and Ni only Matrix: Aqueous

Laboratory Sample IDs: 329090002, -005, and -009

Method/Batch #s: **6020**: 1315151 ICPMS Mass Cal (pass/fail): Pass

ICPMS Resolution (pass/fail): Pass

Analyte		1	Cal	ibration	1		Method Blank	5X Blank or	LCS	MS	Lab	Serial		ICS A ± MDL	CRA/		
(outliers)	Int. ug/L	\mathbb{R}^2	ICV	ccv	ICB ug/L	CCB ug/L	mg/L mg/kg	(5X MDL) mg/kg	%R	%R	Rep RPD	Dil. %D	ICS AB %R	ug/L x50 (mg/kg)	CRI %R		
Ni	NA	✓	√	✓	✓	✓	✓	NA	✓	✓	✓	✓	✓	-1.26 (063)	✓		
										/							
										/		/					
																	<i></i>

	IS Outliers	60-125%			IS Outliers 60-125% %Recovery %Recovery %Recovery				
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery		
None				None					

Comments: HTs OK; Matrix QC -002; ICS applied to all samples even though it was not possible to determine the conc of Al, Ca, Mg or Fe.

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

IO 2012-ARCC	OC (4-201	2)	STREET ST	ΑN	NALY	c SIS RE				ATORY	F CUS	STODY	(AOP 9
Internal Lab	A CONTRACTOR OF THE CONTRACTOR														Pag	e <u>1</u> of <u>1</u>
Batch No.						SMO Use					^	\ 1 -		AR/COC	61	4872 ~
Project Name	1	CWL GWM		Date Sample	s Shipped:				4	uthorization:		Ictim	~~	Waste Characterizatio	n	
Project/Task				Carrier/Wayb	ill No.		655	<u> Šitskij</u>	SMO C	ontact Phone				RMMA		
Project/Task	1	146422.10.	11.01 03	Lab Contact:		Edie Kent	/803-556-8	1/1				5-844-3199		Released by COC No.		40.0-1-1
Service Orde	r:	CF327-13	100	Lab Destinati		GEL DO 42020	70		Send R	eport to SM0		- 004 0550				4º Celsius
71- A				Contract No.:		PO 13038	/3		<u> </u>	Rita Kava	anaugh/50	5-284-2553		Bill to:Sandia National Laborato	ries (Accou	unts Payable),
Tech Area:	 -	I	<u> </u>	-										P.O. Box 5800, MS-0154		20000
Building:		Room:		Operation				T			T_	la 11 11	T	Albuquerque, NM 87185-0154		32909
Sample No.	Fraction	Samı	ole Location I	Detail	Depth (ft)	Colle	Time ected	Sample Matrix	Type	Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Meth Requested	oa	Lab Sample ID
094278 [,]	-001 ″	CWL-BW5	1000		521	7/8/13	9:59	GW	G	3x40ml	HCL	G	SA	TCE (SW846-8260)		001
094278	-015 ^	CWL-BW5			521	7/8/13	10:00 1	GW	G	500 ml	HNO3	G	SA [′]	Chromium, Nickel (SW846-	6020)	002
094279 🔨	-001 -	CWL-TB1			NA	7/8/13	9:59	DIW	G	3x40ml	HCL	G	ТВ	TCE (SW846-8260)		003
	a de consessa de	<u> </u>	144 C				· · · · · · · · · · · · · · · · · · ·									
				 												
										 						
7			, , , , , , , , , , , , , , , , , , ,							<u> </u>						
			0200							<u> </u>						
Last Chain		Yes			Comple	Tracking		SMO	Use	Special Ins	structions	OC Pequi	romonte:	<u> </u>	Con	ditions on
Validation		✓ Yes		-	Date En	in a second transfer I in the		SIIIC	, use	EDD	su ucuons	✓ Yes		No	AE 74 trape (50)	Receipt
Backgroun		Yes			Entered					Turnaroun	d Time	7 Da		15 Day* ✓ 30 Day		
Confirmato		Yes			QC inits.					Negotiated		1	<u> </u>	, <u>10 Duy</u> 345 347	1	
Sample		lame	J. Signa	hure/	Init.		y/Organizat	ion/Phon	e/Cell	Sample Di		Retur	n to Client	Disposal by La	1	
Team			1/1/1/4/1/4/1/			SNL/4142/5									7	
Members		7.1011	Alfred Fry			SNL/4142/5				Comments			Tim Jackson	n/4142/MS 0729/284-2547	1	
	William	- 72	seller 7	, IL	* * \ / 	SNL/4142/5				1		cond report to	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	WITH TENNING OF EGIZO V EGAT		
	V V III CALL	Sibson 1	may /	Ly .	47	0110717270	20-20+000	17000 20	0 7007	1						
			- <i>V</i> -2							1					1	ab Use
1.Relinquishe	d by	06 1-	7.0	Org. 4/4	2 Date	7/8/	3 Time 1	0:28	3 Relino	uished hv			Org.	Date	Time	
Received b	- 20	12.7.7.		Org.4/42		7/2/13	Time /		3. Rece			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Org.		Time	
		20														
		XXXXII	1 1/1 1.													
2.Relinquishe 2. Received b	d by		HW in	Org.4/172 Org.	Date Date	7/8/13	Time /		4.Relino	uished by			Org.	Date	Time Time	•

AOP 95-10

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

//O 2012-ARCC	OC (4-201	12)		AN	NALY	c SIS RE				ATORY		STODY	•			AOP 9
Internal Lab	Laurent Lauren													Section of the sectio	Page	<u>1</u> of <u>1</u>
Batch No.						SMO Use					_			AR/COC	61	4874
Project Name Project/Task Project/Task Service Orde	Manager Number:	CWL GWM Tim Jackson 146422.10.1 CF327-13	4 14	Date Sample Carrier/Wayb Lab Contact: Lab Destinati Contract No.:	ill No. on:	7/9/ 2067 Edie Kent/ GEL PO 13038	803-556-8	171	SMO C	eport to SM	e: Herrera/50 O:	5-844-3199 5-284-2553		Waste Characterization RMMA Released by COC No. Bill to:Sandia National Laboratori		4º Celsius
Tech Area:					Land to Comb. Annual Condessable		<u> </u>							P.O. Box 5800, MS-0154		
Building:		Room:		Operationa	al Site:				·			,		Albuquerque, NM 87185-0154		329090
Sample No.	Fraction	Sampl	e Location D	etail	Depth (ft)	Date/		Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Metho Requested	d	Lab Sample ID
094282	-001	CWL-MW9			516	7/9/13	10:20	GW	G	3x40ml	HCL	G	SA	TCE (SW846-8260)		004
094282	-015	CWL-MW9			516	7/9/13	10:21	GW	G	500 ml	HNO3	G	SA	Chromium, Nickel (SW846-60	020)	005
094283	-001	CWL-TB3			NA	7/9/13	10:20	DIW	G	3x40ml	HCL	G	TB	TCE (SW846-8260)		006
094284	-001	CWL-FB1 -	A CONTRACTOR OF THE CONTRACTOR		NA	7/9/13	10:07	DIW	G	3x40ml	HCL	G	FB	TCE (SW846-8260)		007
			e processor en pro													
	***************************************		200000000000000000000000000000000000000													
	The second secon															
			and the second s													
Last Chain: Validation I		Yes Yes			Sample Date En	Tracking tered:		SMC	Use .	Special Ins	structions	/QC Requir		No		litions on eceipt
Backgroun		Yes			Entered					Turnarour		7 Da	<u>y*</u>	15 Day * ✓ 30 Day		
Confirmato Sample		Yes lame	Signatu		QC inits.		y/Organizat	ion/Phon	e/Cell	Negotiated Sample Di		Return	n to Client	✓ Disposal by Lab		
Team		antillanes /	Uffel See	till		SNL/4142/5							r to Olicin	C Disposal by Cab		
Members	William (Gibson <i>U</i>	Muf	Gels:	WJX	SNL/4142/5	05-284-330	7/505-23	9-7367	Comments	s:	Send report to	Tim Jackson	v4142/MS 0729/284-2547	la	b Use
1.Relinquishe	d by	Chel Son	tille	Org. 4/14	∠ Date	7/9/13	3 Time //	1:10	3.Relino	uished by			Org.	Date	Time	
1. Received b	y L	Kelele	and .	Org. 4/	2_Date	7/9/13	Time	110	3. Rece				Org.	Date	Time	
2.Relinquishe	d by 69	nyply				7/9/17	Time //	130	4.Relino	uished by			Org.	Date	Time	
2. Received b		rith SMO requi		Org. GAL		7-10-13	Time (2740	4. Rece	ived by			Org.	Date	Time	

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab

Page <u>1</u> of <u>1</u>

Batch No.	NIA				SMO Uşe	,					, ,	0	AR/COC	614876
Project Name	e: (/	CWL GWM	Date Sample			113		SMO A	uthorization:	Q1	197	1_	Waste Characterization	
	, -	: Tim Jackson	नाय Carrier/Way	oill No.		68		ѕмо с	ontact Phone			grup)	RMMA	
Project/Task	i		Lab Contact		Edie Kent/8	303-556-8	3171				5-844-3199		Released by COC No.	
Service Orde	r:	CF327-13	Lab Destina		GEL.			Send R	eport to SMC					✓ 4º Celsius
	_	100	Contract No.	:	PO 130387	3			Rita Kava	naugh/505	5-284-2553		Bill to:Sandia National Laborator	ies (Accounts Payable),
Tech Area:		1											P.O. Box 5800, MS-0154	32909
Building:	<u> </u>	Room:	Operation				7-	ı ————			1-		Albuquerque, NM 87185-0154	
Sample No.	Fraction	Sample	Location Detail	Depth (ft)	Date/T Collec		Sample Matrix	Type	Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Metho Requested	od Lab Sample ID
094287	-001	CWL-MW11		513	7/10/13	10:50	GW	G	3x40ml	HCL	G	SA	TCE (SW846-8260)	008
094287	-015	CWL-MW11		513	7/10/13	10:51	GW	G	500 ml	HNO3	G	SA	Chromium, Nickel (SW846-6	6020) 009
094288	-001	CWL-TB5		NA	7/10/13	10:50	DIW	G	3x40ml	HCL	G	TB	TCE (SW846-8260)	010
094289	-001	CWL-FB2		NA	7/10/13	10:46	DIW	G	3x40ml	HCL	G	FB	TCE (SW846-8260)	011
													and the same of th	
		and the second												
		(Acedinoculeous)												
						-								
Last Chain:		Yes		Sample	Tracking		SMO	Use	Special Ins	tructions				Conditions on
Validation I	Req'd:	✓ Yes		Date Ent	ered:				EDD		✓ Yes		No	Receipt
Backgroun	d:	Yes		Entered	by:				Turnaroun	d Time	7 Da	<u>y*</u>	15 Day *	D 1
Confirmato	ry:	Yes		QC inits.	•		County of Tay 1	yang kasalat	Negotiated	TAT				Turk with a second
Sample		lame	Signature	Init.	Company	/Organiza	tion/Phone	e/Cell	Sample Dis	sposal	Return	to Client	✓ Disposal by Lab	
Team	Alfred Sa	antillanes	100 Sofille	166	SNL/4142/50)5-844 - 513	30/505-22	8-0710	Return Sar	nples By:]
Members	William	Gibson	Mear & Dell	USS	SNL/4142/50)5-284-33(07/505-23	9-7367	Comments	:	Send report to	Tim Jackson	n/4142/MS 0729/284-2547	
			///											
									1				200 A C C C C C C C C C C C C C C C C C C	Lab Use
1.Relinquishe	d by	11/1/0-5	Williams. 410	/て Date	7/10/1	7 Time	1140	3.Relino	uished by			Org.	Date	Time
Received b		1819	6 GMO Org. 414					3. Rece				Org.		Time
2.Relinquishe		5/90	E GIMPIG. 414			<u>·</u>			uished by	· · · · · · · · · · · · · · · · · · ·		Org.	Date	Time
2. Received b		THE EN			7-12-13		0735					Org.	Date	Time
		ith SMO rogulir	ed for 7 and 15 day TA		- 10 10									

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: August 22, 2013

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 614878 and 614879

SDG: 329489 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Five samples were prepared and analyzed with accepted procedures using method EPA 8260B (trichloroethylene only). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria.

Blanks

No target analytes were detected in the blanks.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met except as follows.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Two TBs were submitted, one with each AR/COC. An EB was submitted with AR/COC 614878 to be applied to the samples on AR/COC 614879. A field duplicate pair was submitted with AR/COC 614879. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 08/22/13

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: August 22, 2013

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: CWL GWM

AR/COC: 614878 and 614879

SDG: 329489 Laboratory: GEL

Project/Task: 146422.10.11.03

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

Three samples were prepared and analyzed with approved procedures for Ni and Cr using method EPA 6020 (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and properly preserved.

ICP-MS Instrument Tune

The ICP-MS tunes met QC acceptance criteria.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries associated with the samples met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations of Ca, Mg, Fe and Al were < those in the ICS solution.

ICP Serial Dilution

The serial dilutions met all QC acceptance criteria.

Other QC

An EB was submitted with AR/COC 614878 to be applied to the samples on AR/COC 614879. A field duplicate pair was submitted with AR/COC 614879. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 08/22/13

Sample Findings Summary

AR/COC: **614872**, **614874**, **614876**Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
SW846 3005/6020 DOE-AL			
	094278-015/CWL-BW5	Nickel (7440-02-0)	J-, CK3
	094282-015/CWL-MW9	Nickel (7440-02-0)	J-, CK3
	094287-015/CWL-MW11	Nickel (7440-02-0)	J-, CK3

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 614878 and 614879

Site/Project: CWL GWM

Validation Date: 08/22/2013

SDG #: 329489

Laboratory: GEL

Validator: Linda Thal

Matrix: Aqueous

of Samples: 8 CVR present: Yes

Analysis Type: X Organic X Metals

AR/COC(s) present: Yes

Sample Container Integrity: OK

		Requ	ested Anal	yses Not R	eported	
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments
None						

	Hold Time/Preservation Outliers													
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT						
None														

Comments: Sampled 7/12/2013

Validated by: X Mal

Organic Worksheet (GC/MS)

AR/COC #: 614878 and 614879 SDG #: 329489 Matrix: Aqueous

Laboratory Sample IDs: 329489001, -003, -005, -006 and -008 (TCE only)

Method/Batch #s: 8260B: 1317006 Tuning (pass/fail): Pass TICs Required? (yes/no): No

			Cal	ibration			5X				MS/		ТВ	ТВ	EB
Ana (outl		Ir	it. RF	RSD/ R ²	(ICV) CCV %D	Method Blank	(10X) MB	LCS %R	MS %R	MSD %R	MSD RPD		005 TCE	008 TCE	006 TCE
None															
					Surrogata	Recovery (Outliars								
Sample ID					urrogate	Recovery	Juners								
None															
		<u> </u>			IS	Outliers									
Sample ID	Area	RT	Area	RT	Area	R'	Т	Area	RT		Area	RT	Ar	ea	RT
None															
C UT. OV.															

Comments: HTs OK: ICAL VOA4.I 7/18/2013; MS/MSD -001;

Inorganic Metals Worksheet

AR/COC #: 614878 and 614879 SDG #: 329489 Matrix: Aqueous

Laboratory Sample IDs: 329489002, -004, -007 (Cr and Ni only)

Method/Batch #s: 6020: 1315220

ICPMS Mass Cal (pass/fail): Pass ICPMS Resolution (pass/fail): Pass

Analyte			Calil	bration			Method Blank	5X Blank or	LCS	MS	Lab	Serial		ICS A ± MDL ug/L	CRA/		
(outliers)	Int. mg/L	\mathbb{R}^2	ICV	ccv	ICB ug/L	CCB ug/L	mg/L mg/L	(5X MDL) mg/L	%R	%R	Rep RPD	Dil. %D	ICS AB %R	x50 (mg/L)	CRI %R	ЕВ	
None																	
		_									_						

	IS Outliers	60-125%			IS Outliers 60-125% CCV/CCB ID %Recovery %Recovery %Recovery					
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery			
None				None						

Comments: HTs OK; All Matrix QC 329489002; ICS NA for All.

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

internal Lab															Page _1_ of _1_
Batch No. A	1A					SMO Use	,					1 0		AR/COC	614878
Project Name: CWL GWM ONL Date Sample Project/Task Manager: Tim Jackson 7 16 Carrier/Way Lab.Contact Service Order: CF327-13 Lab Destina		ill No.	ped: 7 12 13 205 65 1 Edie Kent/803-556-8171 GEL			SMO Authorization: SMO Contact Phone: Lorraine Herrera/505-844-3199 Send Report to SMO:					Waste Characterization RMMA Released by COC No.	☑ 4º Celsius			
0011100 0100		0,02, 10		Contract No.:		PO 130387	3		OCHO IX	•		5-284-2553		Bill to:Sandia National Laboratori	
Tech Area:									.					P.O. Box 5800, MS-0154	(10000 me 1 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Building:		Room:		Operationa	al Site:			14-						Albuquerque, NM 87185-0154	32948
Sample No.	Fraction	Sample Loca	ition De	etail	Depth (ft)	Date/T Collec		Sample Matrix	Co Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Methor	
094292	-001	CWL-EB1			NA	7/10/13	13:35	DIW	G	3x40ml	HCL	G	EB	TCE (SW846-8260)	006
094292	-015	CWL-EB1			NA	7/10/13	13:36	DIW	G	500 ml	HNO3	G	EB	Chromium, Nickel (SW846-60	020) 007
094293	-001	CWL-TB7			NA	7/10/13	13:35	DIW	G	3x40ml	HCL	G	ТВ	TCE (SW846-8260)	008
							·								
					_ 1. Patestambanes _co see	ell de comme	and the second second second	numen paketarar 202	1000 Sector (110 Sector 110						
Last Chain: Validation I		Yes Yes			Sample Date Ent	Tracking ered:		SMO) Use	Special Ins	structions	/QC Requir ✓ Yes		No	Conditions on Receipt
			Entered by:					Turnaround Time 7 Day*				15 Day *	APPROXIMATION OF THE PROPERTY		
				QC inits.:					Negotiated	TAT					
Sample	Na	Name Signature			Init. Company/Organization/Phone/Ce					Sample Dis	sposal	Return	to Client	Disposal by Lab	
Team	Robert Ly	nch ///	07 4 M2												
Members	Alfred Sa	ntillanes 4/	L 597.	till	742	SNL/4142/50				Comments	::	Send report to	Tim Jackson	n/4142/MS 0729/284-2547	
	William G	Bibson Wille	il Mi	\mathcal{A}_{L}	WYA	SNL/4142/50	5-284-330	07/505-23	9-7367						
			/ /		U J										
	1	11.05 50	0	- 111.1		m 1.= 1.=		0000		<u> </u>					Lab Use
1. Received by The Systell Org. 4147 Date 7/12/13 Time 0930 3. Received by Org. Date 1. Received by Org. 4147 Date 7/12/13 Time 0930 3. Received by Org. Date									Time						
2. Relinquished by Day Grand G														Date Date	Time Time
2. Received b		Wall to			Date				4. Rece	·			Org.	Date	Time
		ith SMO required for				1-17 17	11110 2	J Jaco	, rece				O,y.	Date	THEO

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab																Page <u>1</u> of _
Batch No.	VIA					SMO Use	1					10			AR/COC	614879
Project Name	- (CWL GWM	ent .	Date Samples	Shipped:	7/18	213		SMO A	uthorization	2/	1171	11	Waste	Characterization	
Project/Task	Manager:	Tim Jackson	नामा	Carrier/Waybill	No.	20	56	51	SMO C	ontact Phone	e:		Smo	RMMA		
Project/Task	Number:	146422.10.11	.013	Lab Contact:		Edie Kent/8			1	Lorraine H	Herrera/505	5-844-3199	11.0	Releas	sed by COC No.	
Service Orde	r:	CF327-13	,	Lab Destination). 1. —	GEL			Send Re	eport to SMC	D:			1		✓ 4º Celsi
				Contract No.:		PO 130387	3		1	Rita Kava	naugh/505	5-284-2553		Bill to:Sandia I	National Laboratorie	es (Accounts Payable
Tech Area:						· · · · · · · · · · · · · · · · · · ·								P.O. Box 5800	, MS-0154	•
Building:		Room:		Operational	Site:									Albuquerque.	NM 87185-0154	3294
	Fraction	Sample	Location D	1	Depth (ft)	Date/T Collec		Sample Matrix	Co Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type		meter & Method Requested	Lab Sample
094294	-001	CWL-MW10			515	7/12/13	8:56	GW	G	3x40ml	HCL	G	SA	TCE (SW84	6-8260)	00
094294	-015	CWL-MW10			515	7/12/13	8:58	GW	G	500 ml	HNO3	G	SA	Chromium, Nickel (SW846-60		120) 602
094295	-001	CWL-MW10			515	7/12/13	8:56	GW	G	3x40ml	HCL	G	DU	TCE (SW846-8260)		00 3
094295	-015	CWL-MW10			515	7/12/13	8:58	GW	G	500 ml	HNO3	G	DU	Chromium, Nickel (SW846-60		120) 004
094296	-001	CWL-TB8			NA	7/12/13	8:56	DIW	G	3x40ml	HCL	G	ТВ	TCE (SW846-8260)		003
								_							·	
					-			-								
			<u>-</u> .					 								
Last Chair		- V			· · · · · · · · · · · · · · · · · · ·		. 20 at the second			Special Ins	4-11-1-1	(OC Demois			I.	Conditions on
Last Chain: V Yes				Sample Tracking SMO Use Date Entered:					Special ins	structions	✓ Yes		Ni.			
Validation Req'd: Yes										MAKAN-1918				No 15 Day*	✓ 30 Day	Receipt
Background: Yes				Entered by:					Turnaround Time 7 Day*					<u> </u>		
Confirmatory: Yes				QC inits:					Negotiated TAT					Disposal by Lab		
Sample		ame Signature Init. Company/Organization/Phone/Cell Sample Disposal Return to Client					to Client	<u> </u>								
	Robert L		100171	70 One 11 12 000 011 10 10 000 200 1000 1000												
Members Alfred Santillanes		The second											√4142/MS 0729/284-2547			
İ	William	Gibson /	Men 12	Wr B	NA	SNL/4142/50	5-284-33	07/505-23	9-7367							
					0 1			~		1						
	<u> </u>	,														Lab Use
1.Relinquishe	ed by	4785	till_		Z Date	7/12/13			3.Reling	uished by			Org.		Date	Time
	1. Received by Jella Grue Org. 419								3. Received by			Org.			Time	
									4.Reling	Relinquished by Org			Org.	Date Time		Time
2. Received by You Lotte 0rg. Cel Date 1-13-13 Time 0950 4. Received by Org. Date Time																
*D-i	matian	ith SMO roquit	ad far 7 and	45 dow TAT		•										

CONTRACT VERIFICATION REVIEW FORMS GROUNDWATER MONITORING JULY 2013

Note: The review forms in this section include AR/COC numbers for environmental samples and additional AR/COC numbers for waste characterization samples.

AR/COC Number	Sample Type
614872	Environmental*
614873	Waste
614874	Environmental*
614875	Waste
614876	Environmental*
614877	Waste
614878	Environmental*
614879	Environmental*
614880	Waste

^{*} These AR/COC forms are provided in the Data Validation Section of this Annex.

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	CWL GWM	Project/Task No.	146422_10.11.03
AR/COC No.	614872, 614873, 614874, 612875, 612876, 612877	Analytical Lab	GEL	SDG No.	329085

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Comp	olete?		Resolved?	
No.	Item	Yes	No	If no, explain	Yes	No
1.1	All items on COC complete - data entry clerk initialed and dated	X				
1.2	Container type(s) correct for analyses requested	X				
1.3	Sample volume adequate for # and types of analyses requested	X				
1.4	Preservative correct for analyses requested	X		-		
1.5	Custody records continuous and complete	X				
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х				
1.7	Date samples received	Х				
1.8	Condition upon receipt information provided	X				

2.0 Analytical Laboratory Report

Line		Com	olete?		Reso	ved?
No.	Item	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature	Х				
2.2	Method reference number(s) complete and correct	Х				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2.4	Matrix spike/matrix spike duplicate data provided	X				
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х				
2.6	QC batch numbers provided	X				
2.7	Dilution factors provided and all dilution levels reported	Х				
2.8	Data reported in appropriate units and using correct significant figures	Х				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	Х				
2.10	Narrative provided	Х				
2.11	TAT met	X				
2.12	Hold times met	X				
2.13	Contractual qualifiers provided	Х				
2.14	All requested result and TIC (if requested) data provided	Х				

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
Accuracy a) Laboratory control samples accuracy reported and met for all samples	Х		
 Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 	Х		
c) Matrix spike recovery data reported and met		X	MS recovery failed for Mercury And Total Cyanide
3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
Blank data a) Method or reagent blank data reported and met for all samples		Х	Detected in Method Blank: Tetrachloroethylene (Batch 1315624); Molybdenum; Total Phenol
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time	X		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and pesticides/PCBs 8081 and 8082.	N/A		

4.0 Calibrations and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260, 8270, etc.)	X		
a) 12-hour tune check provided			
b) Initial calibration provided	Х		
c) Continuing calibration provided	Х		
d) Internal standard performance data provided	Х		
e) Instrument run logs provided	Х		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)	N/A		
a) Initial calibration provided			
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)	N/A		
a) 12-hour tune check provided			
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		<u>.</u>
e) Labeled compound recovery data provided	N/A		
f) RRTs for samples and standards provided	N/A		

ARCOC: 614872, 614873, 614874, 612875, 612876, 612877

	ANCOC. 014072,	014073, 014074, 012073, 012070, 012
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	X	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry	X	
Instrument run logs provided		

ARCOC: 614872, 614873, 614874, 612875, 612876, 612877 **Contract Verification Review (Continued)**

5.0 Data Anomaly Report

Yes	No	Comments
N/A		
	х	
	Х	
		N/A X

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions					
ARCOC-614875 samples	All	Missing Sample Receipt and Review Form					
094280-009, 094285-009, 094290-009	Metals	Potassium incorrectly N qualified					
	_						
Were deficiencies unresolved?	θYes X No						
Based on the review, this data	Based on the review, this data package is complete. $ extbf{X}$ Yes $ heta$ No						
If no, provide: nonconform	mance report or correction reque	est number or date correction request was submitted:08/09/2013					
Reviewed by:	Date:	06/04/2013 Closed by: Date 08/13/2013					

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	CWL GWM	Project/Task No.	146422_10.11.03
AD/COC No	(14070 (14070 (14000	Analytical Lab	CEL	SDC No	220400
AR/COC NO.	614878, 614879, 614880	Analytical Lab	GEL	SDG No.	329488

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Com	olete?		Resol	ved?
No.	Item	Yes	No	If no, explain	Yes	No
1.1	All items on COC complete - data entry clerk initialed and dated	Х				
1.2	Container type(s) correct for analyses requested	X				
1.3	Sample volume adequate for # and types of analyses requested	Х				
1.4	Preservative correct for analyses requested	Х				
1.5	Custody records continuous and complete	X				
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х				
1.7	Date samples received	X				
1.8	Condition upon receipt information provided	X				

2.0 Analytical Laboratory Report

Line		Comp	olete?		Resol	ved?
No.	Item	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature	X				
2.2	Method reference number(s) complete and correct	X				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2.4	Matrix spike/matrix spike duplicate data provided	X				
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and L _c	X				
2.6	QC batch numbers provided	Х				
2.7	Dilution factors provided and all dilution levels reported	Х				
2.8	Data reported in appropriate units and using correct significant figures	Х				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A				
2.10	Narrative provided	Х				
2.11	TAT met	Х				
2.12	Hold times met	Х				
2.13	Contractual qualifiers provided	Х				
2.14	All requested result and TIC (if requested) data provided	Х				

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
3.3 Accuracy a) Laboratory control samples accuracy reported and met for all samples		Х	VOC LCS recovery failed for1,2-Dibromo-3- chloropropane & Bromoform
 Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 	Х		
c) Matrix spike recovery data reported and met	Х		
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		
b) Matrix spike duplicate RPD data reported and met for all organic samples		Х	MS recovery failed for Cyanide
Blank data a) Method or reagent blank data reported and met for all samples	Х		
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and pesticides/PCBs 8081 and 8082.	N/X		

4.0 Calibrations and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260, 8270, etc.)			
a) 12-hour tune check provided	X		
b) Initial calibration provided	X		
c) Continuing calibration provided	Х		
d) Internal standard performance data provided	Х		
e) Instrument run logs provided	X		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)	N/A		
a) 12-hour tune check provided			
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		
f) RRTs for samples and standards provided	N/A		

		7(1000: 014070; 014077 and 014
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
,		
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	Х	
c) ICP interference check sample data provided	X	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry		
a) Instrument run logs provided	X	

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for all monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		Х	
5.3 Verification or reanalysis requested from lab		Х	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
094297-001, 094298-001	VOC	Missing N qualifier on CoAs for 1,2-Dibromo-3-chloropropane and Bromoform
Were deficiencies unresolved?	${\sf X}$ Yes ${\sf \theta}$ No	
Based on the review, this data	package is complete.	heta Yes X No
If no, provide: nonconfor	mance report or correction reque	est number <u>16871_</u> or date correction request was submitted: <u>08/14/2013</u>
Reviewed by:		
Reviewed by:	Date:	

ANNEX B Chemical Waste Landfill CY 2013 Soil Gas Monitoring Forms and Reports

Field Forms

Data Validation Reports

Contract Verification Reports

Certificates of Analysis – provided on CD in plastic sleeve insert

FIELD SAMPLING FORMS CWL POST-CLOSURE CARE SOIL-GAS MONITORING

Form Title	Corresponding Procedure
Tailgate Safety Briefing	PLA 05-09
SUMMA® Canister Log	FOP 08-22
Soil Vapor Sampling Form	FOP 08-22
Analysis Request and Chain of Custody*	LOP 94-03

^{*}Completed AR/COC forms are provided in the Data Validation Section of this Annex.

FIELD SAMPLING FORMS CALENDAR YEAR 2013 SOIL-GAS MONITORING

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: CWL	Date: 01/17/13 Time: 08/0
Activities: Vapor well sampling	
(Anyone has the right to cease field activities for sa	afety concerns. The buddy system will be used when needed.)
Weather Conditions:	
Temp: °F Wind Speed: MPH	Humidity: % Wind Chill °F
Chemicals Used: Acids in sample containers, stand Other:	lard solutions, Hach ACCU-VAC ampules
Safety T	Topics Presented
☑ Be aware of slips, trips, and falls. Keep	Be aware of environmental conditions
work area clean and use a stepping stool	(heat / cold stress). Dress accordingly.
when necessary.	Wear sunscreen if necessary. Stay
	hydrated.
☑ Wear safety boots.	☐ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	図 Be aware of pressure hazards.
☐ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	No eating or drinking at sampling counter.
☐ Be aware of chemical hazards.	⊠ Be aware of biohazards (snakes, spiders, etc.)
☐ Wear nitrile or latex gloves when sampling.	▼ Wear communication device (cell phone, EOC pager).
☐ Wear chemical safety goggles.	☐ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	: <u>844-0911/911</u>
	Attendees
Tim Jackson	Signature)
Printed Name	Signature/
HLERED SANTILLANE	5 Allesatele_
Printed Name	Signature
Robert Lynch	Signature Signature
William Gibson Printed Name	Signature Signature
	<i>V</i> -
Printed Name	Signature

SUMMA® Canister Log

	Serial#	Date Received	Date Tested for Initial VAC	Initial VAC at 5400 ft (in. Hg)	Date Used	End VAC at 5400 ft (in, Hg)	Date Returned to SMO
ابتيا	34001151	1-10-13	1-17-13	-26	1-17-13	-8 a	
	3400 0605		Ř	-26		-8	
	3400 0411			- 24	1000	- 3	
l	3400 1362			- 24		- 8	V V V V V V V V V V V V V V V V V V V
\downarrow	3400 1398	-		- 26		- 8	
DI	3400 0158	WAY AND THE STATE OF THE STATE		-26		- 8	
	3400 [299			- 25		- 3	
	3400 007/	1		- 24		- 8	
	3400 0705	Anna Anna Anna Anna Anna Anna Anna Anna		- 25		- 8	·
	3400 1043			- 25	WAY AN A STATE OF THE STATE OF	- 8	
	3400 0174			- 26		-8	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	3400 0178			-25		~ 8	
	3400 0178	TA		-a6		- 8	
	3400 1321			~ 26		- 8	
	3400 1351	111111111111111111111111111111111111111		- 2 <u>5</u>		- 8	
	3408 8374	American Control of the Control of t	•	- 25		- 8	
	3466 6273			~ 25		- 8	
	3400 0223			-26_		-8	
*	3400 1660	MAN AND AND AND AND AND AND AND AND AND A		-25		~ 8	
	3400 1391			-25_	Vivi	- 8	
	3400 6462			- <i>a</i> 5		~ 3	
****	3400 1237			-26	<u> </u>	- 8	***************************************
*>n	3400 0345			- 2 <u>5</u>		- 8	
	3400 0093			- 25		-8	
	3400 1654			- 25		~ 8	
10	34000221			-26		- 2	
	34006538			-25		. 8	
	3400 0086		Y	<u> </u>		n 8	
· Au						****	<u> </u>

SUMMA® Canister Log completed by:

ALFRED SANTILLANCE

Printed Name

Affel Satilla

Soil Vapor Sampling Log

Location	Date	Time	Canister #	PID (ppm)	Starting Vacuum (in. Hg)	Ending Vacuum (in. Hg)	Location Comments Flow(f3/4r)
CWL-UII-FBI	1/17/13	0818	3400 (15)	NA	-26	- 8	(7/-741)
1 -40		0829	1 0605	8.0	-26	-8	8,0 2150
.80		0832	0411	0,0	-26	-8	10,0 2750
V -120	J	0337	V 1362	0.0	-26	- 8	10,0 37500

cur-01-100	1/11/13	0853	3400 1398	0,0	-24	- 6	8,0
1 -160	١	0350	34000159	1,0	-26	- 4	10,0
-240		0901		0,0	*****		10,0
		0902	34001799	L	-25	-4	1
-350		090 b		0,0	-	,	10,0
J 1		0907	34000071	Ĵ,	-24	-8	L
-470		0911		0,0	************	*******	10,0
		1912		ì			
		0913	34000705	J	-25	- 5	V
J		0915			-25	- 4	Duplicate
U -FB3	Ą	0418	10174	~/A	-26	- 4	•
		Washington Managara					
CWL-D2-120	ılnlı3	0939	34000178	0.0	-25	-8	10,0
1 -240	1	0945		0,0	,		10.0
		0946	3400 1593	Ļ	-26	<u>-5</u>	ı
-350		0951		0,0	f Radiona,	Approximate.	10,0
1		0952	3400 1321	${\cal T}$	-26	- ४	レ
-440		0455	_	0,0	***************************************		10,9
		0956		1		***	
1		0957	34001351		-25	- 8	L
-470		1001	*****	0,0		****	10,0
)		1001		ł	¥2 333 0.	*****	
			3400 0374	J	-25	-8	J
ν J	J	1006	L 0273	40.00m	-25	- 4	Duplicate

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

Note: Continuous PID leadings from during purging of each well.

Soil Vapor Sampling Log

	1015	34000723		(in. Hg)	(in. Hg)	Comments
צולכולו		71	NA	-26	٠ ٧	
1/12/12		Automotiva			***************************************	
111117		3400/660	NA	-25	<u>-8</u>	fowled/no)
	1030	4 1391	0,0	-25	-6	<u>& 3</u>
		V 0462		-25	-6	10,0
		**************************************				10,0
	1039	34001237	<u> </u>	.26	- 0	1
	1043	-	0,0	****		10,0
	1044					
	1045	34000345	<u> </u>	-25	- 8	T
	1049	-	0,0	·	***************************************	10, 3
	1050		<u> </u>	,		
J	1051	34000043	J	~76	-8	<u>J</u>
1/17/13	1104	34000721	0,0	-26	- 8	10,0
		0588	0.0	-25	_ 8	10,6
	1110	1086	0,0	-26	-8	10,0
J	1102		MA	-25	- &	
		4666				
			**************************************	Avon	***************************************	
				Value and value		
						W. W. W. W. W. W. W. W. W. W. W. W. W. W
	•••••••••••••••••••••••••••••••••••••••				Abbit da Ar	AMAAAAMIIIIII
				, , , , , , , , , , , , , , , , , , ,	***************************************	
	****				***************************************	hiddal Allillillillillipppy yepp
				***************************************	<u> </u>	
				Water agency of the	,	
				1	****	
	1/17/13	1035 1038 1039 1043 1044 1045 1049 1050 1051	1035 V 0462 1038 — 1039 34001237 1043 — 1045 34000345 1049 — 1050 — 1051 34000053 1117/13 1104 34000721 1107 0588 1110 0086	1035 V 0462 0,0 1038 — 0,0 1039 34001237 L 1043 — 0,0 1044 — 1 1045 34000345 L 1049 — 0,0 1050 — 1 1051 34000043 L 117/13 1104 34000221 0,0 1107 0588 0,0 1110 086 0,0	1035 \ 0462 \ 0,0 \ -25 \ 1038 \ - \ 10,0 \ - \ 1039 \ 3400 1237 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: Chemical Waste	Landfill Date: 3/27/12 Time: 0846
Activities: Soil Gas monitoring/ sampling	
(Anyone has the right to cease field activities for sa	fety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: °F Wind Speed; MPH	Humidity:% Wind Chill °F
Chemicals Used: None Other:	
Safety T	opics Presented
Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
Wear safety boots.	☐ Be aware of electrical hazards
☐ Use safe lifting practices. Wear leather gloves if necessary.	Be aware of pressure hazards.
Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	No eating or drinking at sampling counter.
Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
Wear chemical safety goggles.	Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	
1	Attendees
Printed Mine + 1	Signature Satur
Printed Name	Signature
William Gibson Printed Name	Signature Signature
Time Jadesun	Signature
Printed Name	Signature

SUMMA® Canister Log

Serial#	Date Received	Date Tested for Initial VAC	Initial VAC at 5400 ft (in. Hg)	Date Used	End VAC at 5400 ft (in. Hg)	Date Returned to SMO
34001427	3/26/13	3 27/13	-24	3/24/13	8	
34001417			- 28		- 8 - 8	
34001453	<u> </u>	<u> </u>	<i>- 27</i>		<u> </u>	
					^^^^^	
34000106	3/26/13	3/27/13	-26 -28 -27	3/27/13	~ 8 - 8 - 8	
34000433			- 28		8	and a contract of the contract
34000174	<u></u>	₩ W	- 27	4	~ 8'	Withhelm
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	***************************************	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s				
					~	
whiteled					****	
:					***************************************	
			****			
		WHO WHO ARRANGED AND A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF				
***************************************						
			A & & & A & & & & &			
1				,		
***************************************		THE COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A COMMAN AND A C	*****			
	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s					
					~~~^^^	

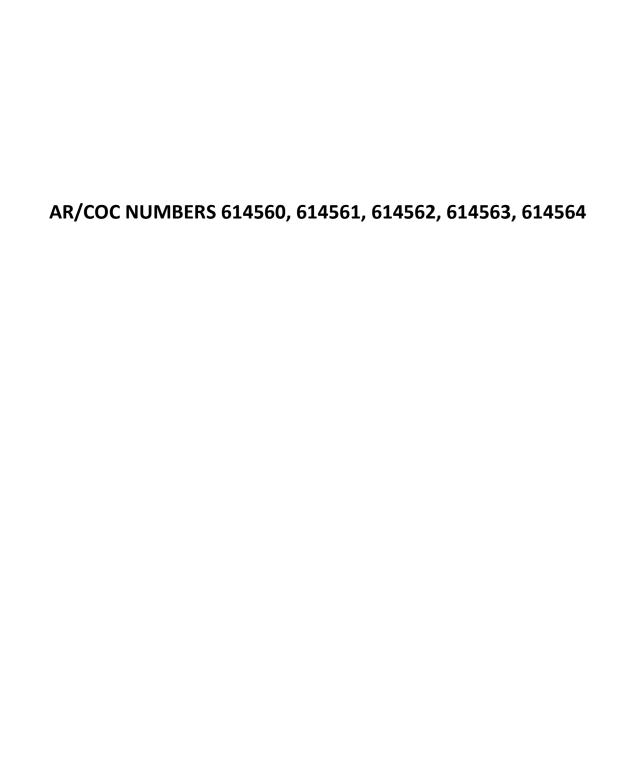
	hhddabhhdille				-	
-			***************************************		***	
	W +00+000	AAAA				The state of the s
***************************************		Annual An	~~~~			The state of the s

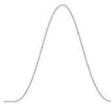
SUMMA® Canister Log completed by:

Printed Name

Alfal Satile

Soil Vapor Sampling Log


Location	Date	Time	Canister #	PID (ppm)	Starting Vacuum (in. Hg)	Ending Vacuum (in, Hg)	Location Comments
CWL-D-FB1	3/27/13	0252	34001417	N/n	-26	-8	FB
CWC-11-470		0857	34001412	0.0	-28	- 3	54
CWL- D1-470		0900	3400453	۵.0	-27	- 8	84
		· · · · · · · · · · · · · · · · · · ·		***		***************************************	
CWL- D2-FB	3/27/13	0906	34000104	W/A			FB
CWL- D2-47		8190	34000433	٥٠٥	-28	- 8	51
CWL- 02-470	· •	0920	3400 6174	٥.٥	-27	- B	D4
***************************************	<u>-</u>	······································	** **********************************				
		Not	e: cor	tinuo	us Pl	1) sea	thirty
		4 	men	SULLAN	<u>~ts</u>	Lurin	spurge
		***	acti.	1.4115			
		***		***			
	•••	***************************************		••••			
						4	
William Andrews		8 V			,		
			·	•			
,							
, cons	,		• • • • • • • • • • • • • • • • • • • •	•			
	****	7,0				•	
		***				▼ V//// / // / = = =====================	**************************************


SUMMARY SHEET FOR CALENDAR YEAR 2013 SAMPLES

Sample Summary for CWL Soil Vapor Monitoring FY13

	1	l I		I	I	1	Associated Equipment	Γ	Γ	T
			SUMMA		Sample		Blank	Associated Trip Blank	Associated Field Blank	
Well ID	Sample Date	Sample ID / Port	Number	ARCOC		Sample Type	(ARCOC #/Sample #)	(ARCOC #/Sample #)	(ARCOC #/Sample #)	Comments
	<u> </u>				•		rder Number CF 327-13	(Autoco modilipio m)	(Filter in Campio ii)	Commonic
		CWL-UI1-40	34000605		093306	Environmental				I
		CWL-UI1-80	34000411		093307	Environmental	n/a	n/a	614560 / 093309	
CWL-UI1	17-Jan-13	CWL-UI1-120	34001362	614560	093308	Environmental				
		CWL-FB1	34001151		093309	Field QC	n/a	n/a	n/a	Ultra Pure N2
		CWL-UI2-36	34000221		093310	Environmental				
01411 1110	47 1 40	CWL-UI2-76	34000588	04.4504	093311	Environmental	n/a	n/a	614561 / 093313	
CWL-UI2	17-Jan-13	CWL-UI2-136	34000086	614561	093312	Environmental				
		CWL-FB2	34001654		093313	Field QC	n/a	n/a	n/a	Ultra Pure N2
		CWL-D1-100	34001398		093314	Environmental				
		CWL-D1-160	34000158		093315	Environmental				
		CWL-D1-240	34001299		093316	Environmental	n/a	n/a	614562 / 093320	
CWL-D1	17-Jan-13	CWL-D1-350	34000071	614562	093317	Environmental		II/a	614362 / 093320	
		CWL-D1-470	34000705		093318	Environmental				
		CWL-D1-470	34001043		093319	Duplicate				
		CWL-FB3	34000174		093320	Field QC	n/a	n/a	n/a	Ultra Pure N2
		CWL-D2-120	34000178		093321	Environmental				
		CWL-D2-240	34001593		093322	Environmental	_			
		CWL-D2-350	34001321		093323	Environmental		n/a	614563 / 093327	
CWL-D2	17-Jan-13	CWL-D2-440	34001351	614563	093324	Environmental	.,.	.,,	0.10007 00002.	
		CWL-D2-470	34000374		093325	Environmental				
		CWL-D2-470	34000273		093326	Duplicate				
		CWL-FB4	34000223		093327	Field QC	n/a	n/a	n/a	Ultra Pure N2
		CWL-D3-120	34001391		093328	Environmental				
		CWL-D3-170	34000462		093329	Environmental				
CWL-D3	17-Jan-13	CWL-D3-350	34001237	614564	093330	Environmental	n/a	n/a	614564 / 093333	
		CWL-D3-440	34000345		093331	Environmental				
		CWL-D3-480	34000093		093332	Environmental				
	<u> </u>	CWL-FB5	34001660		093333	Field QC	n/a	n/a	n/a	Ultra Pure N2
Re-Sample		01411 D.4 4770		1						· .
014/1 P.4	07 Mar 40	CWL-D1-470	34001412	04.4005	093727	Environmental	- 1-	/ -	044005 / 000700	re-sample
CWL-D1	27-Mar-13	CWL-D1-470	34001453	614665	093728	Environmental	n/a	n/a	614665 / 093729	re-sample
		CWL-D1-FB1	34001427		093729	Field QC				Ultra Pure N2
CWI DO	27 Mor 42	CWL-D2-470	34000433	614666	093730 Environmental	2/2	2/2	644666 / 002722	re-sample	
CWL-D2	CWL-D2 27-Mar-13	27-Mar-13 CWL-D2-470	34000174	614666	093731	Environmental	n/a	n/a	614666 / 093732	re-sample
		CWL-D2-FB2	34000106		093732	Field QC				Ultra Pure N2

DATA VALIDATION REF	PORTS FOR ENVIRO	NMENTAL SAMPLES

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.againc.net

Memorandum

Date:

March 4, 2013

To:

File

From:

Marcia Hilchey

Subject:

GC/MS Organic Data Review and Validation - SNL

Site: CWL SVM

AR/COC: 614560 through -564

SDG: 340-5922-1

Laboratory: TestAmerica - Costa Mesa

Project/Task: 146422.10.11.03 Analysis: VOCs by TO-15

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Twenty-eight samples were prepared and analyzed with accepted procedures using method EPA TO-15 (VOCs in air). Problems were identified with the data package that resulted in the qualification of data.

- 1. Toluene was detected in the FB associated with samples 5922-5 through -7. The associated result for sample -7 was a detect > the PQL and < 5X the FB concentration will be qualified U,B2 at the reported value.
- 2. The %RSD for acetone was >30% but < 45%. All associated detected results will be **qualified J,I3**.
- 3. Batch 4016

The LCS/LCSD RPD for chloroethane was > UAL. All associated sample results were ND and will be qualified UJ,L5.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The %RSD for acetone was >30% but < 45%, with no other associated calibration infractions. All associated ND results will not be qualified.

The CCV %D for 1,2,4-trichlorobenzene in batch 4039, and the CCV%Ds for 1,2-dichloro-1,1,2,2-tetrafluoroethane in batch 4051 were >30% with positive bias. All associated sample results were ND and will not be qualified.

Blanks

No target analytes were detected in the blanks criteria except as noted above in the Summary section and as follows.

2-butanone, 2-hexanone, toluene, and/or acetone were detected in the FB samples. All associated ND results will not be qualified.

Internal Standards

All internal standards met QC acceptance criteria.

Surrogates

Surrogate analyses are not required by this method.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

All LCS/LCSD QC acceptance criteria were met except as follows.

The LCS %Rs for 1,2-dichloro-1,1,2,2-tetrafluoroethane in batch 4039 and for 1,2-dichloro-1,1,2,2-tetrafluoroethane and bromomethane in batch 4051 were > UAL. All associated sample results were ND and will not be qualified.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

No MS/MSD analyses are required by this method. The LCSD analyses were used as a measure laboratory precision. All precision acceptance criteria were met except as noted above in the Summary section.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Detection Limits/Dilutions

All detection limits were properly reported. Samples were analyzed at various dilutions.

Other QC

Five FBs and two field duplicate pairs were submitted on the AR/COC(s). There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 03/05/13

Sample Findings Summary

AR/COC: 614560, 614561, 614562, 614563, 614564

Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
TO15			
	093306-001/CWL-UI1-40	CHLOROETHANE (75-00-3)	UJ, L5
	093307-001/CWL-UI1-80	CHLOROETHANE (75-00-3)	UJ, L5
	093308-001/CWL-UI-120	CHLOROETHANE (75-00-3)	UJ, L5
	093309-001/CWL-FB1	CHLOROETHANE (75-00-3)	UJ, L5
	093312-001/CWL-UI2-136	CHLOROETHANE (75-00-3)	UJ, L5
	093312-001/CWL-UI2-136	TOLUENE (108-88-3)	U, B2
	093313-001/CWL-FB2	ACETONE (67-64-1)	J, 13
	093318-001/CWL-D1-470	ACETONE (67-64-1)	J, 13
	093324-001/CWL-D2-440	ACETONE (67-64-1)	J, I3
	093332-001/CWL-D3-480	ACETONE (67-64-1)	J, 13

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 6/4560-7 - 564			Site	e/Project: _	Chil Sc	m	Validation	Date: 3/4/1	7
SDG#: 340-5922	_ Laboratory: _ 77	-617	Va	lidator.	nHles	her			
SDG #: 3 40-5922 Matrix: <i>QiC</i>	# of Samples:	28	CV	/R present:	yes	Analys			
AR/COC(s) present: yel	Samp	ole Container	integrity:	- 0/1			□ Ra	d Gen Cl	nem
		Requ	uested Ana	lyses Not	Reported	ore			
Sample Number	Laboratory ID	organic	genchem	metals	rad		Com	ments	
							- <u> </u>		
				1000					3 4
						<u> </u>			
	.				-				
									
		Hol	d Time/Pre	servation	Outliers				
	-				~	re	1	Anal within	Anal. beyond
Sample Number	Laboratory ID	Analy	sis I	Pres.	Coll. Date	Prep. Date	Anal. Date	2X HT	2X HT
-		-							
	_								
						Acce			
Comments:					_				
-	_				-				
	·								Derila de 2005
			<u> </u>	45 55 55	7-	2222			Revised 7/2007
				Validate	d By:				

Organic Worksheet (GC/MS) 7D-15

AR/COC#: 6/45%	07-5	64	_				SDG #:	340-	5922			Matrix:	Qir	ĺ		
Laboratory Sample IDs:	-1 7 -	28	FOI	= -04	F	32 = 0	8 E	13 = -0	15 1	=By = -	250	FS5	-= -01	7		
AR/COC#: 6/956 Laboratory Sample IDs: Method/Batch #s: 10	15 bute	h 4016	1,2,3,4	7/402	7: 2(784/	40317,103	Tuning ((pass/fail):	P	233	_ TICs Re	equired? (yes/no)_	10	
Anal	- to		.,,,	Calib	ration	4	Method		LCS	-MS	LCSD MED	MS+ MSD	FBI	FBZ	FB3	FBY
Anal (outli			Int.	RF	RSD/ R ²	CCV %D	Blank	(10X) Blank	%R	%R	%R	MSD RPD	Apple	-		F85
2-butana					1	1	1		/			1	0.725		~	
2. texapare													0.425		~	
tolun					1								0.285	0.89	0.175	
acetore					3.7							1	/	0.89		
ch brosk have					L			11/50			270	 	1			
bromover har	totra Plus	sexpare			<u> </u>	35,00			13750	,		1.		<u> </u>		
bromoves har	r					30.25			1335	,	<u> </u>				\longrightarrow	$\vdash \downarrow$
1,2,4. moblerober	en				<u> </u>	30.9®	エ		~		1	<u> </u>	1	7	<u> </u>	7
				ļ			F									
													_	-		
										-	_	-			┼	
												<u> </u>	 - -		 	
		_				_						 	-		├──	
						Surrogate	Recovery	Outliers	2/6							
Sample ID						T			1/4	-				\neg		
														_		
							_							+		
														_		
								_								9-200
	_					1	S Outliers	nore	/							
Sample ID	Area	RT	A	rea	RT	Are	a I	RT	Area	RT		Area	RT	Aı	rea	RT
				-												_
									÷			-		-		
																-
Comments: by the O4	038:14,15,	17 18,20,	25,26	,28												
04	1061:-22	-97													Revised 7	/2007

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

340-5922

Internal Lab	1															Page _1_ of _1_		
Batch No.	4 4					SMO,Use	1								AR/COC	614560		
Project Name:		CWL SVM		Date Samples	Shipped:	1/22	113	S. San A.	SMO AL	thorization:	1 min	talinga	Z		te Characterization	-		
Project/Task N		Tim Jacks	on	Carner/Waybi		Just 6			SMO Co	ontact Phone	1	,		RMS	MA			
Project/Task N		146422.10	.11.03	Lab Contact		Sonia Tabirar						5-844-3132		Ref	eased by COC No.	-		
Service Order	:	CF327-13		Lab Destination	15 15 10 /e	Test America			Send Re	eport to SMC				4º Celsius				
				Contract No.:	P0:691437 Wendy Palencia/505-844-3132									7		es (Accounts Payable).		
Tech Area:														P.O. Box 5	800, MS-0154			
Building:		Room:		Operationa	I Site:							Collection			e, NM 87185-0154			
Sample No.	mple No. Fraction Sample Location Detail)etail	Depth (ft)	Date/Time Collected		Sample Matrix	Type	Volume_			Sample Type			d Lab Sample ID			
093306	-001	CWL-UI1	40			1/17/13	8:29	SG	SC	6L	none	G	SA	VOC - TO	015	1		
093307	-001	CWL-UI1	80			1/17/13	8:32	SG	SC	6L	none	G	SA	VOC - TO	015	2		
093308	-001	CWL-UI1	120			1/17/13	8:37	SG	sc	6L	none	G	SA	VOC - T	015	1		
2093309	-001	CWL-FB1			NA	1/17/13	8;18	UPN	sc	6L.	none	G	₽B	VOC - TO	015	(1) (1)		
G																1		
927						-	-											
9																		
						_												
932		T																
						-							-	- "	<u> </u>			
Last Chain	:	Yes			Sample	Tracking	TO SONG	SMC	Use	Special ins	tructions	/QC Requi	rements:	<u> </u>		Conditions on		
Validation	Reg'd:	✓ Yes			Date En	22.7 A 30.00 Sec. 3.381.39				EDD		☑ Yes		No		Receipt		
Backgroun		Yes			Entered	by:	estinger:	(2)14:14:59	T. M.	Turnaroun	d Time	7 Da		15 Day	☑ 30 Day			
Confirmato		Yes				adulation state			Balana	Negotiated	TAT							
Sample		Vame	/ Sieve	ture /	Init.	Company			ne/Cell	Sample Dis		Retur	n to Client	7	Disposal by Lab			
Team	Robert	Lynch	WULL		R	SNLJ4142/50	5-844-40	13/505-25	50-7090	Return Sar	mples By:			-				
Members	Alfred S	antillanes	110/15	tell	MA	SNL/4142/50	5-844-51	30/505-22	28-0710	Comments	;	Send report to	Tim Jackson	V4142/MS 072	0.7284-2547			
(100)12013	William		William VX	silel	Wiss	SNL/4142/50	5-284-33	07/505-23	39-7367	7								
]								
\		1000	-					1				_				Lab Use		
						The second name of the second name of				quished by			Org.		Date	Time		
									Org. Date				Time					
2.Relinquish		Dala 1	of Gu	p Org. 4/4				4		quished by			Org.		Date	Time		
2. Received by Org.					Date	(/25/45	Time	1070	4. Rece	eived by			Org	•	Date	Time		

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY 340-5922

Internal Lab	NX															Pa	ge 1 of 1
Batch No.	10 %					SMO Usp	/	_				1			AR/C	OC 6	14561
Project Name:		CWL SVM		Date Sample:	Shipped:		2///	MANAGE T	SMO AL	thorization:	1 boni	vely	-		Waste Characteriz	ation	
Project/Task N	fanager:	Tim Jacks	on	Carrier/Wayb			509	44		ontact Phone					RMMA		
Project/Task N	lumber:	146422.10		Las Contact:		Sonia Tabir	ara 744-25	8-8610		Wendy Pa	alencia/50	5-844-3132		_	Released by COC	No.	
Service Order		CF327-13		Lab Destinati		Test Americ			Send Re	port to SMC	D:	_		1			4° Celsius
				Contract No.:	4	PO 69143	7。如为6	"实现是是 "		Wendy Pa	alencia/50	5-844-3132		Bill to:S	andla National Labo	ocA) sehotsro	ounts Payable),
Tech Area:										100				P.O. Bo	x 5800, MS-0154		
Building:		Room:		Operations	al Site:									Albuqui	erque, NM 87185-0	154	
Sample No.	Fraction	San	nple Location	Detail	Depth (ft)	Date/ Colle	Time	Sample Matrix	Type	Volume	Preserv- ative	Collection Method	Sample Type		Parameter & M Requeste		Lab Sample ID
093310	-001	CWL-UI2	36			1/17/13	11:04	SG	sc	6L	none	G	SA	voc.	- TO15		5
093311	-001	CWL-UI2	76			1/17/13	11:07	SG	sc	6L_	none	G	SA	voc.	- TO15	•	6
093312	-001_	CWL-UI2	136			1/17/13	11:10	SG	sc	6L	none	G	SA	voc	- TO15		7
2093313	-001	CWL-FB2	!		NÁ	1/17/13	11:02	UPN	sc	6L	none	G	FB	voc.	- TO15		3
0																	
28																	
of															······································		
932				1												W. C.	Agricus and A
N																	A TOTAL CONTRACTOR
Last Chain	:	Yes			Sample	Tracking		SMC	Use	Special In	structions	/QC Requi	rements:			Co	nditions on
Validation	Reg'd:	☑ Yes			Date En	tered.	(C. 1.5)			EDD		☑ Yes		No			Receipt
Backgroun	d:	Yes				by.	War and the same		N. A. W.	Turnaroun	d Time	☐ 7.Da	v 🗆	15 Day	₾ 30 0)av	land a
Confirmato		Yes			QC infts		A COLOR		and the state of	Negotiated	TAT						J.
Sample	1	Name	Signa	ature	Init.		y/Organiza		e/Cell	Sample Di	sposal	Return	to Client		Disposal by	Lab	
Team	Robert	Lynch	LOUTHE	n	R	SNU4142/	505-844-40	13/505-25	0-7090	Return Sa	mples By:					1	2.5
Members	A10- 1 0	antillanes	11015-	Ash.	104	SNL/4142/	505-844-51	30/505-22	8-0710	Comment	B;	Send report to	Tim Jackson	V4142/MS	0729/284-2547		Elva Vice de la la la la la la la la la la la la la
Meditotio		Gibson	Williams	0:1.1	208	SNL/4142/				1						No.	
•			0		107					1							
		1			—				-	1						10000	Lab Use
1.Relinquish	ed by	14-6	Satile	-Org. 4/	42 Date		3 Time		3.Relino	uished by			Org.		Date	Tin	
1. Received	by L	the I	leanel	Org. 419	/2 Date			1137	3. Rece				Org.	ii.	Date	Tin	ne
2.Relinguish	ed by	Dela &	for GUA	0 Org. 4(4	Z Date	1/22/1			4.Relina	quished by			Org.		Date	Tin	ne
2. Received	by	Jan Jan		Org.	Date	1/25/1	3 Time	10:10	4, Rece	ived by			Org.	IS.	Date	Tin	16
"Prior confi	mation"	with SMO n	equired for 7 as	nd 15 day TA	T									and Parallel			

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

340-5922 AOP 95-16

Internal Lab	á.														Page _1_ of _	1
Batch No.	NA				SMO Use	,	,			^				AR/COC	614562	
Project Name:		CWL SVM	Date Samples Ship							Don	Water	me	☐ Was	ae Characterization		
Project/Task &		Tim Jackson	Garrier/Waybilt No.		A CONT			SMO Co					Was RMI	4A		
Project/Task N		146422.10.11.03	Lab Contact		Sonia Tabirar						-844-3132		Rela	essed by COC No.		
Service Order	:	CF327-13	Lab Destination.		Test America			Send Re	157						☐ 4º Ceisit	-
			Contract Nos	200	PO 691437		ALCOHOL:		Wendy Pa	alencia/50	5-844-3132			a National Laboratori	es (Accounts Payable	ž),
Tech Area:			_										P.O. Box 58	00, MS-0154		
Building:		Room:	Operational Site	_									<u> </u>	e, NM 87185-0154		
Sample No.	Fraction	Sample Location D	Detail (fi		Date/Ti Collec		Sample Matrix	Type	Volume	Preserv- ative	Collection Method	Sample Type	Pa	rameter & Metho Requested	Sample	1C
093314	-001	CWL-D1-100			1/17/13	8:53	SG	SC	6L	none	G	SA	VOC - TO	015	19	Š
093315	-001	CWL-D1-160			1/17/13	8:58	SG	sc	6L	none	G	SA	VOC - TO	015	10	
093316	-001	CWL-D1-240			1/17/13	9:02	SG	sc	6L	none	G	SA	VOC - TO	015	14	がは
o93317	-001	CWL-D1-350			1/17/13	9:07	SG	sc	6L	none	G	SA	VOC - TO	015	12	
093318	-001	CWL-D1-470			1/17/13	9:13	SG	sc	6L	none	G	SA	VOC - TO)15	1.3	
%09 <u>3319</u>	-001	CWL-D1-470			1/17/13	9:15	\$G	sc	6L	none	G	DU	VOC - TO	015	140	
0 093320	-001	CWL-FB3	N	Α	1/17/13	9:18	UPN	sc	6L	none	G	FB	VOC - TO	015	135	
9			17 ATT IN COMMANDERS		1500											
2													*		4	W2
															vást lé	
Last Chain	;	Yes	San	ple	Tracking		SMC	Use	Special Ins	structions		rements:			Conditions on	
Validation	Req'd:	☑ Yes	Date) = (tered:		0.454		EDD		☑ Yes		No		Receipt	1
Backgroun	d:	Yes	Ente	red	by:				Turnaroun	d Time	☐ Z.Da	Y	15 Dav*	☑ 30 Day		311
Confirmato	yry:	Yes	QC	inits	0条形形的10条件				Negotiated	TAT		in that	1	47 776		
Sample		Name Signa	ture In				ation/Phon		Sample Di	sposal	Return	n to Client	<u> </u>	Disposal by Lab	6. 604	7 d
Team	Robert I				SNL/4142/50				Return Sa	m ples By:						鴻
Members	Alfred S	Santillanes Hyllads			GNL/4142/50				Comments	ş:	Send report to	Tim Jackson	V4142/MS 072	W284-2547		
1	William	Gibson William	Lilan W	2	SNL/4142/50	5-284-33	307/505-23	9-7367								
		0	1 0 1						1							
	<u></u>	10,			1/2/			1	1					`	Lab Use	11
1.Relinquish		Hed Soldle	- Org. 4142						uished by			Org.		Date	Time	_
1. Received		Your sleyens	Org. 4H2					3. Rece				Org		Date	Time	_
2.Relinquish		Dagter que	Org. 4142						uished by			Org.		Date	Time	_
2. Received		With SMO required for 7 ar		Date	11/25/13	lime	10:10	4. Rece	rved by			Org.		Date	Time	_

CONTRACT LABORATORY **ANALYSIS REQUEST AND CHAIN OF CUSTODY**

340-5922 AOP 95-18

Internal Lab	- 10														Inches de la constantia	ge <u>1</u> of <u>1</u>	
Batch No.	MA				SMO Use	1	/			•		_		AR/CC	C 6'	14563	
Project Name:		CWL SVM	Date Samples		深和的智慧				thorization:		Jaley	~		ca Characteriza	tion		
Project/Task N		Tim Jackson	Camen/Waybl		15			SMO C	ntact Phone				☐ RM	MA			
Project/Task N		146422.10,11.03	Lab Contact		Sonia Tabira	re/714-25	8-8610				844-3132		Reli	essed by COC N	٥		
Service Order	;	CF327-13	Lab Destination		Test Americ			Send Re	port to SMC				☐ 4º Celsius				
			Contract No.	推進。	PO 691437	HER THE STATE OF T	基数的小部分		Wendy Pa	alencia/50	5-844-3132	Mont	Bill to: Sandia National Laboratories (Accounts Payable),				
Tech Area:													P.O. Box 56	800, MS-0154			
Building:		Room:	Operationa	I Site:									Albuquerque, NM 87185-0154				
Sample No.	Fraction	Sample Location D	Detail	Depth (ft)	Date/		Sample Matrix	Туре	volume Volume	Preserv- ative	Collection Method	Sample Type	Pa	rameter & Me Requested		Lab Sample ID	
093321	-001	CWL-D2-120			1/17/13	9:39	SG	SC	6L	none	G	SA	VOC - TO	015		16	
093322	-001	CWL-D2-240			1/17/13	9:46	SG	sc	6L	none	G	SA	VOC - TO	015		17	
093323	-001	CWL-D2-350			1/17/13	9:52	SG	sc	6L	none	G	SA	VOC - TO	015		13	
093324	-001	CWL-D2-440			1/17/13	9:57	SG	sc	6L.	none	G	SA	VOC - TO	015		19	
© 093325	-001	CWL-D2-470			1/17/13	10:03	SG	\$C	6L	none	G	SA	VOC - TO	015		070	
დ ₀₉₃₃₂₆	-001	CWL-D2-470			1/17/13	10:06	SG	sc	6L	none	G	טם	VOC - TO	015		41	
0 093327	-001	CWL-FB4		NA	1/17/13	10:15	UPN	sc	6L	none	G	FB	VOC - TO	015		22	
9																W0744 473	
82																5.5	
					-		-			 						Zana Zana Zana Zana Zana Zana Zana Zana	
		<u> </u>		Mary and Call	Line fore with the ability	many appearants		Water and							Table (MASA)		
Last Chain		Yes Yes		376765633.05	Tracking	i i i ya a wa	- SMO	Use	Special In:	structions	/QC Requir		No		. 25	ditions on	
Validation	_	☐ Yes	_	Date En	V. Mes line.		-	MANAGE STATE	EDD Turnaroun	-1 Ti	☐ 7 Dar			[] 200		Receipt	
Backgroun		Yes			by.			TO THE TANK	Negotiated			¥	15 Day	☑ 30 D	y		
Confirmate				Init.					Sample Di			to Client	<u> </u>	-	- 3	The Constitution	
Sample	-	Name Signa	ature/	ZU	SNL/4142/5		ation/Phon		Return Sa			1 to Chent		Disposal by	AD WITH THE		
Team	Robert				SNL/4142/5				Comments			10				A 2 2 2 2 1	
Members		200 17421 /1	tille						Comment	F	siena report to	IIM 1800801	V4142M8 072	9/284-2547	1500		
	William	Gloson William V	gille	20929	SNL/4142/5	05-284-33	0//505-23	9-/36/	1								
	-				+				1							ab'Use	
1.Relinquish	ed by	11/22 1.01	- Org. 4/1	12 Date	1/2/1	5 Time	611 32	3.Relina	uished by			Org.		Date	Tim		
1. Received	74.1	The dear	Org. 4/4				11.38					Org.		Date	Tim		
2.Relinquish		Daligan Gra	10 Org. 467	Z. Date					uished by		-	Org.		Date	Tim		
2. Received		52	Org.	Date			10:10					Org.		Date	Tim		
		with SMO regulred for 7 ar		T													

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

340-5922 AOP 95-16

Internal Lab											•			F	age 1 of 1
Batch No.	NB				SMO Use	, h							AR/0	coc	614564
Project Name		CWL SVM	Date Samples	Shipped:	THE PROPERTY OF A	TO BOOK A	15公司第	SMO AU	thorization:	Done	Jaley	\	Waste Characte	rization	-
Project/Task I	Manager.	Tim Jackson	Carner/Wayo	il No.	WANTES TO	0941	经 数库车 蓝	SMO Co	ntact Phone	2.	,		RMMA		
Project/Task I	Number:	146422.10.11.03	Lab Contact:		Some Table	ne/7:14-25	8-8610				5-844-3132		Released by CO		
Service Order	:	CF327-13	Lab Destinati	on:	Test Americ	L, Costa W	lesa CA	Send Re	port to SMC):			- 100		4º Celsius
860 90			Contract No.:		PO 691437	其的消费和安			Wendy Pa	lencia/50	5-844-3132		Bill to:Sandia National La	aboratories (A	counts Payable),
Tech Area:												-	P.O. Box 5800, MS-0154		
Building:		Room:	Operations	ıl Site:									Albuquerque, NM 87185	S-0154	
Sample No.	Fraction		Detail	Depth (ft)	Date/ Coile		Sample Matrix	Туре	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Reques		Lab Sample ID
093328	-001	CWL-D3-120			1/17/13	10:30	SG	SC	6L	None	O	SA	VOC - TO15		26
093329	-001	CWL-D3-170			1/17/13	10:35	SG	SC	6L	None	G	SA	VOC - TO15		24
093330	-001	CWL-D3-350			1/17/13	10:39	SG	sc	6L	None	G	SA	VOC - TO15		25
² C93331	-001	CWL-D3-440			1/17/13	10:45	SG	SC	6L	None	G	SA	VOC - TO15		26
093332	-001	CWL-D3-480			1/17/13	10:51	SG	sc	6L	None	G	SA	VOC - TO15		37
5 093333	-001	CWL-FB5		na	1/17/13	10;23	UPN	sc	6L	None	G_	FB	VOC - TO15		28
9															
932															
N											'				
Last Chain	:	☐ Yes		Sample	Tracking		SMC	Use 👋	Special ins	structions	/QC Requir	ements:		Wint.	onditions on
Validation	Reg'd:	✓ Yes		Date En	tered:				EDD		☑ Yes		No	, · · :	Receipt
Backgrour		☐ Yes		Entered	by:	ALL SECTION	at to the	连续	Tumaroun	d Time	□ Z.Da	<u>v.</u>	15 Day* 2 30	Day	
Confirmate		☐ Yes		GC inte	Ve allegation		S. A. A. P. S.	(1) A 11 11 11 11 11 11 11 11 11 11 11 11 1	Negotiated	TAT	U				
Sample		Name Signa	ature /	Init.			ation/Phon	e/Cell	Sample Di		Return	to Client	☑ Disposal 1	by Lab	2000000
Team	Robert			R	SNL/4142/5				Return Sa	nples By:			A. A.	870	2.5
Members	-		till		SNL/4142/5				Comments	::	Send report to	Tim Jackson	V4142/MS 0729/264-2547		
Meubers	-		Ailel	TO S	SNL/4142/5				1						
	- Villica II	C.ZOO.	MARIE	A YA	10/12/11/12				1					10.20	1757007,7500
		1													Labuse
1.Relinquish	ed by Z	Wolf tile	Org. 4/	42 Date	1/2//1	3 Time	11:38	3.Relino	uished by			Org.	Date		ime
1. Received	by /	Kerkhannel	Org. 4/			7 Time		3. Rece				Org.	Date	T	ime
2. Relinquish		Al G Fin Sil	16 Org. 414				070	A.Relino	uished by			Org.		7	ime
2. Received	50		Org.	Date	1/25/12	Time	10:10	4. Rece	ived by			Org.			ime
		with SMO required for 7 ar		T					***************************************		-				

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447 www.aqainc.net

Memorandum

Date:

April 17, 2013

To:

File

From:

Marcia Hilchey

Subject:

GC/MS Organic Data Review and Validation – SNL

Site: CWL SVM

AR/COC: 614665, -666

SDG: 340-6754-1

Laboratory: TestAmerica - Costa Mesa

Project/Task: 146422.10.11.03 Analysis: VOCs by TO-15

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Six samples were prepared and analyzed with accepted procedures using method EPA TO-15 (VOCs in air). No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times/Preservation

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria with the following exception. The CCV %D for bromoform was > 30% with positive bias. All associated sample results were ND and will not be qualified.

Blanks

No target analytes were detected in the blanks.

Internal Standards

All internal standards met QC acceptance criteria.

Surrogates

Surrogate analyses are not required by this method.

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

All LCS/LCSD QC acceptance criteria were met. It should be noted that total xylenes was not reported for the LCS/LCSD. No sample data will be qualified as a result.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

No MS/MSD analyses are required by this method. The LCSD analyses were used as a measure laboratory precision. All precision acceptance criteria were met.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Detection Limits/Dilutions

All detection limits were properly reported. Samples were analyzed at various dilutions.

Other QC

Two FBs and two field duplicate pairs were submitted on the AR/COC(s). There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 04/17/13

Sample Findings Summary

AR/COC: 614665, 614666 Page 1 of 1

Analytical Method Sample ID Analyte Name (CAS#) Qualifier, RC

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

	_				, it of his hi			41	
AR/COC#: 6/4/665-6/66 SDG #: 340-6754-1 Matrix: 617			Site	/Project: _	Cul-si	/m	Validation	Date:	<u> </u>
SDG #: 340-6754-1	Laboratory:		Val	lidator:	17/1/16	her			
Matrix: _G	# of Samples:	<u> </u>	CV	R present:	yes_	Analys	sis Type: ②Or	ganic	
AR/COC(s) present:	Samp	ole Container	Integrity:	OK			□ Ra	d 🛮 Gen Ch	em
			ested Anal		Reported	rore			
Sample Number	Laboratory ID	organic	genchem	metals	rad	, ., .	Com	ments	
	-								
,									
			-						
									
	,				<u> </u>				
		Hole	d Time/Pre	servation	Outliers /	ore			
Sample Number	Laboratory ID	Analys	sie E	res.	Coll. Date	Prep. Date	Anal. Date	Anal. within	Anal. beyond
Sample (Valide)	Laboratory 15	Zinary.	,,,,		Con. Date	Trep. Date	Auat. Date	2X HT	2X HT
1									
-									
		-		-					
Comments:									
J									
· · · · · · · · · · · · · · · · · · ·	. ==							-	
									_Revised 7/2007
					і Ву:				

Organic Worksheet (GC/MS) 70-15

od/Batch #s: <u>N</u>	-13 64	10n 113C	<u>&</u>					(pass/fail)). <u>pa</u>			equired? (ye	s/no) _/O	
An	alyte		Calil	ration RSD/	CCV	Method	5X (10X)	LCS	MS	USD MSD	MSD	FBs	ŀ	
(ou	tliers)	In	Int. RF R ² %D	Blank	Blank	%R	%R	%R	MSD RPD	/				
matern		n	a Ma	~	15.0				ļ'					
													-	
		-												
								-					_	
	W				Surrogate	Recovery	Outliers	2/2		ŀ				
Sample ID								7174					T	
				_		-			-					
											<u> </u>			
					I	S Outliers	non	e						
Sample ID	Area	RT	Area	RT	Are	a F	RT .	Area	RT		Area	RT	Area	
					_			<u> </u>						
					_								 	

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

340-6754

Internal Lab		I														Page .	1 of 1
Batch No.	N	A				SMO Use	,								AR/COC	614	665
Project Name:	1	CWL-SVM		Date Samples	Shipped:	3/2	7/13		SMO Au	thorization:	Duc	1.2		Waste	Characterization		
Project/Task N		Tim Jackson	on	Carrier/Waybi		201	70		SMO Co	ntact Phone	2:			RMMA			
Project/Task N		146422.10		Lab Contact:		Sonia Tabira				Wendy Pa	alencia/50	5-844-3132		Releas	ed by COC No.		1
Service Order		CF327-13		Lab Destination	JD.	TACA			Send Re	port to SMC						4	° Celsius
00,,,,00		0. 02. 10		Contract No.:		PO 691437				•		-284-2553		Rill to: Sandia t	National Laboratories		
Tech Area:				CONTRACT NO.		10001-01				11102 14010	ina ognira oc	207 2000		P.O. Box 5800		(A. Charles of the Control of the Co	a r uyeo.c/, 1
		D			104.									no Adecesia-Anto-evaluences	· same in name		-
Building:		Room:		Operationa				In .	_			la 11 11 (NM 87185-0154	- 1	
Sample No.	Fraction	Sam	ple Location D	etail .	Depth (ft)	Date/1 Collect		Sample Matrix	Туре	volume Volume	Preserv- ative	Collection Method	Sample Type	Para	meter & Method Requested		Lab Sample ID
093727	-001	CWL-D1-4	70			3/27/13	8:57	SG	sc	6 L	None	G	SA	VOC-TO15			}
093728	-001	CWL-D1-4	70			3/27/13	9:00	SG	sc	6L	None	G	DΩ	VOC-T015			7
093729	-001	CWL-D1-F	-B1			3/27/13	8:52	UPN	sc	6 L	None	G	FB	VOC-T015			3
Расе																	_
0				_	_											+	
														1			
3 2 5																	
						-		_									
O th		1									ļ						
32		1					-										
		-	_		-						 	1		1			
1																1	
								7									
14 01		<u> </u>				100				0		1000		J			
Last Chain		Yes				Tracking		SMC) Use		structions	/QC Requir		1			ions on
Validation		√ Yes	7-130		Date Er					EDD	- Waterbury	✓ Yes		No		Re	ceipt
Backgroun	-	Yes			Entered					Turnarour		7.Da	<u>v* </u>	15 Day	✓ 30 Day		
Confirmato	ry:	Yes			QC inits	s.:				Negotiated	TAT						
Sample		lame	Signal	ture,	Init.	Company	y/Organiza	ation/Phon	e/Cell	Sample Di	sposal	Return	to Client	: كا ت	Disposal by Lab		
Team	Robert L	ynch	WVI 4m		pe	SNL/4142/5	05-844-40	13/505-25	0-7090	Return Sa	mples By:						
Members	Alfred S	antillanes	1711/25	100	do	SNL/4142/5	05-844-51	30/505-22	28-0710	Comment	s:	Send report to	Tim Jackson	N4142/MS 0729/2	84-2547		
	William	Gibson	Miller	SULF	WA	SNL/4142/5	05-284-33	307/505-23	9-7367	- 10 to tours 10000 Page							
			The state of the s	7211	1					1							
			, ·							1						Lah	Use I
1.Relinquish	ed by	1612	1-11	- Org.4/14	2 Date	3/27/13	7 Time	10:35	3.Relino	uished by			Org.		Date	Time	
1. Received			1	Org. 41616				10.35	3. Rece				Org		Date	Time	
2. Relinquish	- / - / - / - / - / - / - / - / - / - /	3/- 3	1. anu	10-110				1156		uished by			Org.		Date	Time	
2. Received		27 10	the same	Org.	Date			10:10	4. Rece			_	Org.		Date	Time	
		with SMO =	ouired for 7 an			. (1111)	111116	10 -10	7. 11000			_	Oig.			14116	

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

340-6754

Internal Lab	/1															Page	1 of 1
Batch No.	NIG	}				SMO Uşe	,				_				AR/COC	614	1666
Project Name		CWL-SVM		Date Samples	Shipped:	3/2	7/13		SMO Au	thorization:	Don	Jetu		Waste Ch	aracterization		
Project/Task I		Tim Jackso	on	Carrier/Waybil	No.	20	17	03	SMO Co	intact Phone	:	,		RMMA			
Project/Task I	Number:	146422,10	.11.03	Lab Contact:		Sonia Tabira		8-8610		Wendy Pa	lencia/508	844-3132		Released	by COC No.		
Service Order		CF327-13		Lab Destination		TACA		****	Send Re	port to SMC						4	° Celsius
				Contract No.:		PO 691437	,			Rita Kava		-284-2553		Rill to Sandia Nat	ional Laboratories		
Tech Area:		1.004.00												P.O. Box 5800, M		V 10000111	J . 4344.67,
Building:		Room:		Operationa	Site.									Albuquerque, NM			
Building.		ROOM.	-	Operationa		Detec	T	Comple			D-+	Callage	C				
		_			Depth	Date/		Sample		ntainer	Preserv-	Collection	Sample		eter & Method		Lab
Sample No.	Fraction	Sam	ple Location D	etan	(ft)	Coile	ctea	Matrix	Туре	Volume	ative	Method	Type	K	equested		Sample ID
093730	-001	CWL-D2-4	170			3/27/13	9:18	SG	sc	6 L	None	G	_SA	VOC-TO15			4
093731	-001	CWL-D2-4	170			3/27/13	9:20	SG	sc	6 L	None	G	מם	VOC-TO15			5
093732	-001	CWL-D2-F	-B2			3/27/13	9:06	UPN	sc	6 L	None	G	FB	VOC-TO15	_		6
Page		Ì														i	
23 —									_								
32																	
<u> </u>								_		-							—
0																	
w																	
37		-						+			-		-				
-						1					Į					1	
			-														
								1									
Last Chain		Yes		-	Sample	Tracking		SMC) Use	Special Ins	tructions		ements:			Condit	ions on
Validation	Req'd:	✓ Yes			Date En	tered:				EDD		☑ Yes		No		Rec	ceipt
Backgroun	d:	Yes			Entered	by:	_	-		Turnaroun	d Time	7 Day		15 Day	✓ 30 Day		
Confirmato	ry:	Yes			QC inits	.:				Negotiated	TAT				-1		
Sample	N	lame	Signat	ture /	lnit.	Compan	y/Organiza	ation/Phon	e/Cell	Sample Dis	sposal	Return	to Client	☑ Dis	posal by Lab		
Team	Robert L	ynch	10/1/2m	ich-	u	SNL/4142/5	05-844-40	13/505-25	0-7090	Return Sar	nples By:	*					
Members		antillanes	Alloca	100 _	2015	SNL/4142/5			_	Comments		Send report to	Tim Jackson	/4:42/MS 0729/284-2	2547		
Monibers	William		Miller	14.10	7.1	SNL/4142/5	10000										
1	y v integrit	Sipeott	KATANANA S	HIMI	W/	011541420	00-201-00	7077000		1							
				<u> </u>	-	+		-		1					Ť) -6	
la Dallacori	4	Walls.	6//		(- B-A-	2/2-1	2 T	/	da Dalla	minhad by							Use
1.Relinquish		May Co	tille			3/27/1					-		Org.	Dat		Time	
1. Received		5 year	youn	Org. 4/	/ Z Date	3/27/1		1035	3. Rece				Org.	Dat		Time	
2.Relinquish	ed by	2491	in grup	Org. 414		3/27//		1150	4.Relino	uished by			Org.	Dat	e	Time	
2. Received	by 🗲	22	-	Org.	Date	4/1/13	Time	10:10	4. Rece	ived by			Org.	Dat	e	Time	
*Prior confi	mation v	vith SMO re	quired for 7 and	d 15 day TA	T												

CONTRACT VERIFICATION REVIEW FORMS

Note: The review forms in this section include AR/COC numbers for environmental samples and additional AR/COC numbers for waste characterization samples.

AR/COC Number	Sample Type
614560	Environmental*
614561	Environmental*
614562	Environmental*
614563	Environmental*
614564	Environmental*
614565	Environmental*
614566	Environmental*

^{*} These AR/COC forms are provided in the Data Validation Section of this Annex.

Contract Verification Review (CVR)

Project Leader	JACKSON	Project Name	CWL SVM	Project/Task No.	146422_10.11.03
AR/COC No.	614560, 614561, 614562, 614563, 614564	Analytical Lab	TEST AMERICA – CA	SDG No.	340-5922-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line			olete?		Resol	ved?
No.	ltem	Yes	No	If no, explain	Yes	No
1.1	All items on COC complete - data entry clerk initialed and dated	Х				
1.2	Container type(s) correct for analyses requested	Х				
1.3	Sample volume adequate for # and types of analyses requested	Х				
1.4	Preservative correct for analyses requested	Х				
1.5	Custody records continuous and complete	X				
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	х				
1.7	Date samples received	Х				
1.8	Condition upon receipt information provided	Х				

2.0 Analytical Laboratory Report

Line		Com	olete?		Resol	ved?
No.	Item	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature	Х				
2.2	Method reference number(s) complete and correct	Х				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х				
2.4	Matrix spike/matrix spike duplicate data provided	N/A				
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and L _c	Х				
2.6	QC batch numbers provided	Х				
2.7	Dilution factors provided and all dilution levels reported	Х	Y			
2.8	Data reported in appropriate units and using correct significant figures	Х				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A				
2.10	Narrative provided	X				
2.11	TAT met	Х				
2.12	Hold times met	Х				
2.13	Contractual qualifiers provided	Х				
2.14	All requested result and TIC (if requested) data provided	X				

3.0 Data Quality Evaluation

3.0 Data Quality Evaluation			
Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2 Quantitation limit met for all samples	Х		
Accuracy a) Laboratory control samples accuracy reported and met for all samples		X	RPD FOR CHLOROETHANE OUTSIDE ACCEPTANCE RANGE (BATCH 340-4016) 1,2-DICHLORO-1,1,2,2-TETRAFLUOROETHANE OUTSIDE RECOVERY LIMITS FOR LCS (340-4039) BROMOMETHANE AND 1,2-DICHLORO-1,1,2,2- TETRAFLUOROETHANE OUTSIDE RECOVERY LIMITS FOR LCS (340-4051)
 b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 	Х		
c) Matrix spike recovery data reported and met	N/A		
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	х		
b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
Blank data a) Method or reagent blank data reported and met for all samples	Х		
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	2-BUTANONE, 2-HEXANONE AND TOLUENE DETECTED IN CWL-FB1 ACETONE AND TOLUENE DETECTED IN CWL-FB2 TOLUENE DETECTED IN CWL-FB3 CWL-FB4 WAS DILUTED
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and pesticides/PCBs 8081 and 8082.	N/A		

4.0 Calibrations and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260, 8270, etc.)			
a) 12-hour tune check provided	×		
b) Initial calibration provided	х		
c) Continuing calibration provided	×		
d) Internal standard performance data provided	×		
e) Instrument run logs provided	X		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)			
a) 12-hour tune check provided	N/A		
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		
f) RRTs for samples and standards provided	N/A		

g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)		
a) Initial calibration provided	N/A	
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	N/A	
b) Continuing calibration provided	N/A	
c) ICP interference check sample data provided	N/A	
d) ICP serial dilution provided	N/A	
e) Instrument run logs provided	N/A	
4.6 Radiochemistry and General Chemistry	N/A	
a) Instrument run logs provided		

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for all monitoring and surveillance sample data			
	X		
5.2 Problems or outliers noted	X		
5.3 Verification or reanalysis requested from lab		×	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis		Problems/Comments/Resolutions	
_				
			-	
			·	
Were deficiencies unresolved?	θ Yes X No			
Based on the review, this data	package is complete.	X Yes θ No		
If no, provide: nonconform	nance report or correction reque	est number or d	ate correction request was submitted:	
Reviewed by: W.Pal	Pencia Data	2 26 2013 Closed by:	Date:	

Contract Verification Review (CVR)

AR/COC No.	614665 & 614666	Analytical Lab	TEST AMERICA – CA	SDG No.	340-6754-1
				_	
Project Leader	JACKSON	Project Name	CWL SVM	Project/Task No.	146422_10.11.03

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Complete?			Resol	ved?
No.	ltem	Yes	No	If no, explain	Yes	No
1.1	All items on COC complete - data entry clerk initialed and dated	Х				
1.2	Container type(s) correct for analyses requested	X				
1.3	Sample volume adequate for # and types of analyses requested	Х				
1.4	Preservative correct for analyses requested	Х				
1.5	Custody records continuous and complete	Х				
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х				
1.7	Date samples received	Х				
1.8	Condition upon receipt information provided	X				

2.0 Analytical Laboratory Report

Line		Comp	olete?		Resol	ved?
No.	Item	Yes	No	If no, explain	Yes	No
2.1	Data reviewed, signature	Х				
2.2	Method reference number(s) complete and correct	X				
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X				
2.4	Matrix spike/matrix spike duplicate data provided	N/A				
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and L _c	Х				
2.6	QC batch numbers provided	Х				
2.7	Dilution factors provided and all dilution levels reported	Х				
2.8	Data reported in appropriate units and using correct significant figures	X				
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A				
2.10	Narrative provided	Х				
2.11	TAT met	Х				
2.12	Hold times met	Х				
2.13	Contractual qualifiers provided	Х				
2.14	All requested result and TIC (if requested) data provided	Х				

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
Accuracy a) Laboratory control samples accuracy reported and met for all samples	х		
 Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique 	N/A		
c) Matrix spike recovery data reported and met	N/A		
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		
b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
3.5 Blank data a) Method or reagent blank data reported and met for all samples	х		
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time	X		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives) and pesticides/PCBs 8081 and 8082.	N/A		

Contract Verification Review (Continued)

4.0 Calibrations and Validation Documentation

Yes	No	Comments
Х		
X		
X		-
X		
X		
N/A		
N/A		
N/A		
N/A		
N/A		
N/A		
N/A		
N/A		
N/A		
	X X X X X X N/A N/A N/A N/A N/A N/A N/A N/A N/A	X X X X X X N/A N/A N/A N/A N/A N/A N/A N/A N/A

g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)		
a) Initial calibration provided	N/A	
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	N/A	
b) Continuing calibration provided	N/A	
c) ICP interference check sample data provided	N/A	
d) ICP serial dilution provided	N/A	
e) Instrument run logs provided	N/A	
4.6 Radiochemistry and General Chemistry	N/A	
a) Instrument run logs provided		

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for all monitoring and surveillance sample data		·	
	X		
5.2 Problems or outliers noted	X		
5.3 Verification or reanalysis requested from lab		X	

Contract Verification Review (Concluded)

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
Were deficiencies unresolved?	θ Yes X No	
Based on the review, this data	package is complete.	X Yes θ No
If no, provide: nonconfor	mance report or correction reque	est number or date correction request was submitted:
	n •	4.9.2013 Closed by: Date:

SOIL-GAS SAMPLING RESULTS CERTIFICATES OF ANALYSIS

January 2013 – Soil-Gas Samples

March 2013 – Well D1 – 470 ft port Samples

Well D2 – 470 ft port Samples

Note: Certificates of Analysis are provided on compact disc only, for printed copies of this report.

JANUARY 2013 SOIL-GAS SAMPLING RESULTS CERTIFICATES OF ANALYSIS

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093306-001/CWL-UI1 40

 Lab Sample ID:
 340-5922-1
 Date Sampled: 01/17/2013 0829

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4016 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0644.D

 Dilution:
 309
 Initial Weight/Volume:
 1.901 mL

 Analysis Date:
 02/09/2013 1733
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		190	370
Benzene	ND		62	120
Benzyl chloride	ND		62	250
Bromodichloromethane	ND		46	93
Bromoform	ND		62	250
Bromomethane	ND		62	250
2-Butanone (MEK)	ND		120	250
Carbon disulfide	ND		62	250
Carbon tetrachloride	ND		62	250
Chlorobenzene	ND		31	93
Chloroethane	ND	*	220	460
Chloroform	890		31	93
Chloromethane	ND		120	250
Dibromochloromethane	ND		31	120
1,2-Dibromoethane (EDB)	ND		62	250
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		46	120
1,2-Dichlorobenzene	ND		46	120
1,3-Dichlorobenzene	ND		46	120
1,4-Dichlorobenzene	ND		46	120
Dichlorodifluoromethane	ND		46	120
1,1-Dichloroethane	ND		46	93
1,2-Dichloroethane	ND		62	250
1,1-Dichloroethene	190	J	62	250
cis-1,2-Dichloroethene	ND		62	120
trans-1,2-Dichloroethene	ND		62	120
1,2-Dichloropropane	ND		46	120
cis-1,3-Dichloropropene	ND		46	120
trans-1,3-Dichloropropene	ND		46	120
Ethylbenzene	ND		46	120
4-Ethyltoluene	ND		46	120
Hexachlorobutadiene	ND		62	250
2-Hexanone	ND		62	250
4-Methyl-2-pentanone (MIBK)	ND		46	120
Methylene Chloride	ND		62	120
Styrene	ND		46	120
1,1,2,2-Tetrachloroethane	ND		31	120
Tetrachloroethene	5100		46	120
Toluene	ND		46	120
1,1,2-Trichloro-1,2,2-trifluoroethane	930		62	120
1,2,4-Trichlorobenzene	ND		220	770
1,1,1-Trichloroethane	ND		46	93
1,1,2-Trichloroethane	ND		46	120
Trichloroethene	7300		46	120
Trichlorofluoromethane	230		46	120
1,2,4-Trimethylbenzene	ND		62	250
1,3,5-Trimethylbenzene	ND		46	120

Analytical Data

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093306-001/CWL-UI1 40

Lab Sample ID: 340-5922-1 Date Sampled: 01/17/2013 0829

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4016 Instrument ID: MSC

 N/A
 Prep Batch:
 N/A
 Lab File ID:
 C0644.D

 Dilution:
 309
 Initial Weight/Volume:
 1.901 mL

Analysis Date: 02/09/2013 1733 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 62 250 ND Vinyl chloride ND 46 120 m,p-Xylene ND 62 250 o-Xylene ND 46 120 Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093307-001/CWL-UI1 80

 Lab Sample ID:
 340-5922-2
 Date Sampled: 01/17/2013 0832

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4016 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0645.D

 Dilution:
 342
 Initial Weight/Volume:
 1.708 mL

 Analysis Date:
 02/09/2013 1812
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		210	410
Benzene	ND		68	140
Benzyl chloride	ND		68	270
Bromodichloromethane	ND		51	100
Bromoform	ND		68	270
Bromomethane	ND		68	270
2-Butanone (MEK)	ND		140	270
Carbon disulfide	ND		68	270
Carbon tetrachloride	ND		68	270
Chlorobenzene	ND		34	100
Chloroethane	ND	*	240	510
Chloroform	700		34	100
Chloromethane	ND		140	270
Dibromochloromethane	ND		34	140
1,2-Dibromoethane (EDB)	ND		68	270
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		51	140
1,2-Dichlorobenzene	ND		51	140
1,3-Dichlorobenzene	ND		51	140
1,4-Dichlorobenzene	ND		51	140
Dichlorodifluoromethane	ND		51	140
1,1-Dichloroethane	ND		51	100
1,2-Dichloroethane	ND		68	270
1,1-Dichloroethene	390		68	270
cis-1,2-Dichloroethene	ND		68	140
trans-1,2-Dichloroethene	ND		68	140
1,2-Dichloropropane	ND		51	140
cis-1,3-Dichloropropene	ND		51	140
trans-1,3-Dichloropropene	ND		51	140
Ethylbenzene	ND		51	140
4-Ethyltoluene	ND		51	140
Hexachlorobutadiene	ND		68	270
2-Hexanone	ND		68	270
4-Methyl-2-pentanone (MIBK)	ND		51	140
Methylene Chloride	72	J	68	140
Styrene	ND		51	140
1,1,2,2-Tetrachloroethane	ND		34	140
Tetrachloroethene	1500		51	140
Toluene	ND		51	140
1,1,2-Trichloro-1,2,2-trifluoroethane	1100		68	140
1,2,4-Trichlorobenzene	ND		240	860
1,1,1-Trichloroethane	ND		51	100
1,1,2-Trichloroethane	ND		51	140
Trichloroethene	9700		51	140
Trichlorofluoromethane	280		51	140
1,2,4-Trimethylbenzene	ND		68	270
1,3,5-Trimethylbenzene	ND		51	140

Analytical Data

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093307-001/CWL-UI1 80

Lab Sample ID: 340-5922-2 Date Sampled: 01/17/2013 0832

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4016 Instrument ID: MSC

 N/A
 Prep Batch:
 N/A
 Lab File ID:
 C0645.D

 Dilution:
 342
 Initial Weight/Volume:
 1.708 mL

Analysis Date: 02/09/2013 1812 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 68 270 ND Vinyl chloride ND 51 140 m,p-Xylene ND 68 270 o-Xylene ND 51 140 Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093308-001/CWL-UI 120

 Lab Sample ID:
 340-5922-3
 Date Sampled: 01/17/2013 0837

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4016 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0647.D

 Dilution:
 446
 Initial Weight/Volume:
 1.653 mL

 Analysis Date:
 02/09/2013 1937
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		270	540
Benzene	ND		89	180
Benzyl chloride	ND		89	360
Bromodichloromethane	ND		67	130
Bromoform	ND		89	360
Bromomethane	ND		89	360
2-Butanone (MEK)	ND		180	360
Carbon disulfide	ND		89	360
Carbon tetrachloride	ND		89	360
Chlorobenzene	ND		45	130
Chloroethane	ND	*	310	670
Chloroform	520		45	130
Chloromethane	ND		180	360
Dibromochloromethane	ND		45	180
1,2-Dibromoethane (EDB)	ND		89	360
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		67	180
1,2-Dichlorobenzene	ND		67	180
1,3-Dichlorobenzene	ND		67	180
1,4-Dichlorobenzene	ND		67	180
Dichlorodifluoromethane	ND		67	180
1,1-Dichloroethane	ND		67	130
1,2-Dichloroethane	ND		89	360
1,1-Dichloroethene	430		89	360
cis-1,2-Dichloroethene	ND		89	180
trans-1,2-Dichloroethene	ND		89	180
1,2-Dichloropropane	ND		67	180
cis-1,3-Dichloropropene	ND		67	180
trans-1,3-Dichloropropene	ND		67	180
Ethylbenzene	ND		67	180
4-Ethyltoluene	ND		67	180
Hexachlorobutadiene	ND		89	360
2-Hexanone	ND		89	360
4-Methyl-2-pentanone (MIBK)	ND		67	180
Methylene Chloride	240		89	180
Styrene	ND		67	180
1,1,2,2-Tetrachloroethane	ND		45	180
Tetrachloroethene	1000		67	180
Toluene	ND		67	180
1,1,2-Trichloro-1,2,2-trifluoroethane	1200		89	180
1,2,4-Trichlorobenzene	ND		310	1100
1,1,1-Trichloroethane	ND		67	130
1,1,2-Trichloroethane	ND		67	180
Trichloroethene	11000		67	180
Trichlorofluoromethane	290		67	180
1,2,4-Trimethylbenzene	ND		89	360
1,3,5-Trimethylbenzene	ND		67	180

Analytical Data

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093308-001/CWL-UI 120

Lab Sample ID: 340-5922-3 Date Sampled: 01/17/2013 0837

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4016 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0647.D

Dilution: 446 Initial Weight/Volume: 1.653 mL

Analysis Date: 02/09/2013 1937 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 89 360 ND Vinyl chloride ND 67 180 m,p-Xylene ND 89 360 o-Xylene ND 67 180 Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093309-001/CWL-FB1

 Lab Sample ID:
 340-5922-4
 Date Sampled: 01/17/2013 0818

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:	TO-15	Analysis Batch:	340-4016	Instrument ID:	MSC
------------------	-------	-----------------	----------	----------------	-----

N/A Prep Batch: N/A Lab File ID: C0646.D

Dilution: 1.0 Initial Weight/Volume: 571 mL Analysis Date: 02/09/2013 1858 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		0.60	1.2
Benzene	ND		0.20	0.40
Benzyl chloride	ND		0.20	0.80
Bromodichloromethane	ND		0.15	0.30
Bromoform	ND		0.20	0.80
Bromomethane	ND		0.20	0.80
2-Butanone (MEK)	0.72	J	0.40	0.80
Carbon disulfide	ND		0.20	0.80
Carbon tetrachloride	ND		0.20	0.80
Chlorobenzene	ND		0.10	0.30
Chloroethane	ND	*	0.70	1.5
Chloroform	ND		0.10	0.30
Chloromethane	ND		0.40	0.80
Dibromochloromethane	ND		0.10	0.40
1,2-Dibromoethane (EDB)	ND		0.20	0.80
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.15	0.40
1,2-Dichlorobenzene	ND		0.15	0.40
1,3-Dichlorobenzene	ND		0.15	0.40
1,4-Dichlorobenzene	ND		0.15	0.40
Dichlorodifluoromethane	ND		0.15	0.40
1,1-Dichloroethane	ND		0.15	0.30
1,2-Dichloroethane	ND		0.20	0.80
1,1-Dichloroethene	ND		0.20	0.80
cis-1,2-Dichloroethene	ND		0.20	0.40
trans-1,2-Dichloroethene	ND		0.20	0.40
1,2-Dichloropropane	ND		0.15	0.40
cis-1,3-Dichloropropene	ND		0.15	0.40
trans-1,3-Dichloropropene	ND		0.15	0.40
Ethylbenzene	ND		0.15	0.40
4-Ethyltoluene	ND		0.15	0.40
Hexachlorobutadiene	ND		0.20	0.80
2-Hexanone	0.42	J	0.20	0.80
4-Methyl-2-pentanone (MIBK)	ND		0.15	0.40
Methylene Chloride	ND		0.20	0.40
Styrene	ND		0.15	0.40
1,1,2,2-Tetrachloroethane	ND		0.10	0.40
Tetrachloroethene	ND		0.15	0.40
Toluene	0.28	J	0.15	0.40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.20	0.40
1,2,4-Trichlorobenzene	ND		0.70	2.5
1,1,1-Trichloroethane	ND		0.15	0.30
1,1,2-Trichloroethane	ND		0.15	0.40
Trichloroethene	ND		0.15	0.40
Trichlorofluoromethane	ND		0.15	0.40
1,2,4-Trimethylbenzene	ND		0.20	0.80
1,3,5-Trimethylbenzene	ND		0.15	0.40

Analytical Data

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093309-001/CWL-FB1

Lab Sample ID: 340-5922-4 Date Sampled: 01/17/2013 0818

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4016 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0646.D ution: 1.0 Initial Weight/Volume: 571 mL

Dilution: 1.0 Initial Weight/Volume: 571 mL Analysis Date: 02/09/2013 1858 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate ND 0.20 0.80 Vinyl chloride ND 0.15 0.40 m,p-Xylene ND 0.20 0.80 o-Xylene ND 0.15 0.40

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093310-001/CWL-UI2 36

 Lab Sample ID:
 340-5922-5
 Date Sampled: 01/17/2013 1104

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4023 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0668.D

 Dilution:
 109
 Initial Weight/Volume:
 6.108 mL

 Analysis Date:
 02/11/2013 1812
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		65	130
Benzene	ND		22	44
Benzyl chloride	ND		22	87
Bromodichloromethane	ND		16	33
Bromoform	ND		22	87
Bromomethane	ND		22	87
2-Butanone (MEK)	ND		44	87
Carbon disulfide	ND		22	87
Carbon tetrachloride	ND		22	87
Chlorobenzene	ND		11	33
Chloroethane	ND		76	160
Chloroform	540		11	33
Chloromethane	ND		44	87
Dibromochloromethane	ND		11	44
1,2-Dibromoethane (EDB)	ND		22	87
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		16	44
1,2-Dichlorobenzene	ND		16	44
1,3-Dichlorobenzene	ND		16	44
1,4-Dichlorobenzene	ND		16	44
Dichlorodifluoromethane	25	J	16	44
1,1-Dichloroethane	ND		16	33
1,2-Dichloroethane	ND		22	87
1,1-Dichloroethene	34	J	22	87
cis-1,2-Dichloroethene	ND		22	44
trans-1,2-Dichloroethene	ND		22	44
1,2-Dichloropropane	26	J	16	44
cis-1,3-Dichloropropene	ND		16	44
trans-1,3-Dichloropropene	ND		16	44
Ethylbenzene	ND		16	44
4-Ethyltoluene	ND		16	44
Hexachlorobutadiene	ND		22	87
2-Hexanone	ND		22	87
4-Methyl-2-pentanone (MIBK)	ND		16	44
Methylene Chloride	ND		22	44
Styrene	ND		16	44
1,1,2,2-Tetrachloroethane	ND		11	44
Tetrachloroethene	170		16	44
Toluene	ND		16	44
1,1,2-Trichloro-1,2,2-trifluoroethane	530		22	44
1,2,4-Trichlorobenzene	ND		76	270
1,1,1-Trichloroethane	38		16	33
1,1,2-Trichloroethane	ND		16	44
Trichloroethene	3500		16	44
Trichlorofluoromethane	160		16	44
1,2,4-Trimethylbenzene	ND		22	87
1,3,5-Trimethylbenzene	ND		16	44

Analytical Data

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093310-001/CWL-UI2 36

Lab Sample ID: 340-5922-5 Date Sampled: 01/17/2013 1104

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4023 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0668.D

Dilution: 109 Initial Weight/Volume: 6.108 mL

Analysis Date: 02/11/2013 1812 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RL Vinyl acetate 22 87 ND Vinyl chloride ND 16 44 m,p-Xylene ND 22 87 o-Xylene ND 16 44 Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093311-001/CWL-UI2 76

 Lab Sample ID:
 340-5922-6
 Date Sampled: 01/17/2013 1107

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4023 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0669.D

 Dilution:
 284
 Initial Weight/Volume:
 2.272 mL

 Analysis Date:
 02/11/2013 1851
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		170	340
Benzene	ND		57	110
Benzyl chloride	ND		57	230
Bromodichloromethane	ND		43	85
Bromoform	ND		57	230
Bromomethane	ND		57	230
2-Butanone (MEK)	ND		110	230
Carbon disulfide	ND		57	230
Carbon tetrachloride	ND		57	230
Chlorobenzene	ND		28	85
Chloroethane	ND		200	430
Chloroform	910		28	85
Chloromethane	ND		110	230
Dibromochloromethane	ND		28	110
1,2-Dibromoethane (EDB)	ND		57	230
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		43	110
1,2-Dichlorobenzene	ND		43	110
1,3-Dichlorobenzene	ND		43	110
1,4-Dichlorobenzene	ND		43	110
Dichlorodifluoromethane	52	J	43	110
1,1-Dichloroethane	ND		43	85
1,2-Dichloroethane	ND		57	230
1,1-Dichloroethene	140	J	57	230
cis-1,2-Dichloroethene	ND		57	110
trans-1,2-Dichloroethene	ND		57	110
1,2-Dichloropropane	99	J	43	110
cis-1,3-Dichloropropene	ND		43	110
trans-1,3-Dichloropropene	ND		43	110
Ethylbenzene	ND		43	110
4-Ethyltoluene	ND		43	110
Hexachlorobutadiene	ND		57	230
2-Hexanone	ND		57	230
4-Methyl-2-pentanone (MIBK)	ND		43	110
Methylene Chloride	ND		57	110
Styrene	ND		43	110
1,1,2,2-Tetrachloroethane	ND		28	110
Tetrachloroethene	280		43	110
Toluene	ND		43	110
1,1,2-Trichloro-1,2,2-trifluoroethane	1100		57	110
1,2,4-Trichlorobenzene	ND		200	710
1,1,1-Trichloroethane	50	J	43	85
1,1,2-Trichloroethane	ND		43	110
Trichloroethene	7800		43	110
Trichlorofluoromethane	310		43	110
1,2,4-Trimethylbenzene	ND		57	230
1,3,5-Trimethylbenzene	ND		43	110

Analytical Data

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093311-001/CWL-UI2 76

Lab Sample ID: 340-5922-6 Date Sampled: 01/17/2013 1107

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4023 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0669.D Dilution: 284 Initial Weight/Volume: 2.272 mL

Analysis Date: 02/11/2013 1851 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 230 ND 57 Vinyl chloride ND 43 110 m,p-Xylene ND 57 230 o-Xylene ND 43 110

Client Sample ID: 093312-001/CWL-UI2 136

 Lab Sample ID:
 340-5922-7
 Date Sampled: 01/17/2013 1110

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4016 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0650.D

 Dilution:
 1.0
 Initial Weight/Volume:
 622 mL

 Analysis Date:
 02/09/2013 2142
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		0.60	1.2
Benzene	2.6		0.20	0.40
Benzyl chloride	ND		0.20	0.80
Bromodichloromethane	0.20	J	0.15	0.30
Bromoform	ND		0.20	0.80
Bromomethane	ND		0.20	0.80
2-Butanone (MEK)	1.4		0.40	0.80
Carbon disulfide	ND		0.20	0.80
Carbon tetrachloride	27		0.20	0.80
Chlorobenzene	1.4		0.10	0.30
Chloroethane	ND	*	0.70	1.5
Chloromethane	ND		0.40	0.80
Dibromochloromethane	ND		0.10	0.40
1,2-Dibromoethane (EDB)	ND		0.20	0.80
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.15	0.40
1,2-Dichlorobenzene	ND		0.15	0.40
1,3-Dichlorobenzene	ND		0.15	0.40
1,4-Dichlorobenzene	ND		0.15	0.40
Dichlorodifluoromethane	38		0.15	0.40
1,1-Dichloroethane	8.6		0.15	0.30
1,2-Dichloroethane	17		0.20	0.80
cis-1,2-Dichloroethene	0.43		0.20	0.40
trans-1,2-Dichloroethene	0.27	J	0.20	0.40
cis-1,3-Dichloropropene	ND		0.15	0.40
trans-1,3-Dichloropropene	ND		0.15	0.40
Ethylbenzene	ND		0.15	0.40
4-Ethyltoluene	ND		0.15	0.40
Hexachlorobutadiene	ND		0.20	0.80
2-Hexanone	ND		0.20	0.80
4-Methyl-2-pentanone (MIBK)	ND		0.15	0.40
Methylene Chloride	4.6		0.20	0.40
Styrene	ND		0.15	0.40
1,1,2,2-Tetrachloroethane	ND		0.10	0.40
Toluene	0.72		0.15	0.40
1,2,4-Trichlorobenzene	ND		0.70	2.5
1,1,2-Trichloroethane	5.0		0.15	0.40
1,2,4-Trimethylbenzene	ND		0.20	0.80
1,3,5-Trimethylbenzene	ND		0.15	0.40
Vinyl acetate	7.0		0.20	0.80
Vinyl chloride	0.36	J	0.15	0.40
m,p-Xylene	ND		0.20	0.80
o-Xylene	ND		0.15	0.40

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093312-001/CWL-UI2 136

Lab Sample ID: 340-5922-7 Date Sampled: 01/17/2013 1110

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 340-4023 Instrument ID: MSC Analysis Batch:

N/A Prep Batch: N/A Lab File ID: C0671.D 89.2 Initial Weight/Volume: 6.978 mL

Dilution: Analysis Date: 02/11/2013 2010 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Result (ppb v/v) Qualifier MDL RL Analyte 27 Chloroform 620 8.9 1,1-Dichloroethene 180 18 71 130 36 1,2-Dichloropropane 13 Tetrachloroethene 220 13 36 1,1,2-Trichloro-1,2,2-trifluoroethane 970 18 36 1,1,1-Trichloroethane 38 27 13 250 Trichlorofluoromethane 36 13

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093312-001/CWL-UI2 136

Lab Sample ID: 340-5922-7 Date Sampled: 01/17/2013 1110

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0681.D

238 Initial Weight/Volume: 2.617 mL

 Dilution:
 238
 Initial Weight/Volume:
 2.617 mL

 Analysis Date:
 02/12/2013 1624
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RL
Trichloroethene 6600 36 95

Client Sample ID: 093313-001/CWL-FB2

 Lab Sample ID:
 340-5922-8
 Date Sampled: 01/17/2013 1102

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4023 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0672.D

Dilution: 1.0 Initial Weight/Volume: 600 mL Analysis Date: 02/11/2013 2057 Final Weight/Volume: 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	0.64	J	0.60	1.2
Benzene	ND		0.20	0.40
Benzyl chloride	ND		0.20	0.80
Bromodichloromethane	ND		0.15	0.30
Bromoform	ND		0.20	0.80
Bromomethane	ND		0.20	0.80
2-Butanone (MEK)	ND		0.40	0.80
Carbon disulfide	ND		0.20	0.80
Carbon tetrachloride	ND		0.20	0.80
Chlorobenzene	ND		0.10	0.30
Chloroethane	ND		0.70	1.5
Chloroform	ND		0.10	0.30
Chloromethane	ND		0.40	0.80
Dibromochloromethane	ND		0.10	0.40
1,2-Dibromoethane (EDB)	ND		0.20	0.80
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.15	0.40
1,2-Dichlorobenzene	ND		0.15	0.40
1,3-Dichlorobenzene	ND		0.15	0.40
1,4-Dichlorobenzene	ND		0.15	0.40
Dichlorodifluoromethane	ND		0.15	0.40
1,1-Dichloroethane	ND		0.15	0.30
1,2-Dichloroethane	ND		0.20	0.80
1,1-Dichloroethene	ND		0.20	0.80
cis-1,2-Dichloroethene	ND		0.20	0.40
trans-1,2-Dichloroethene	ND		0.20	0.40
1,2-Dichloropropane	ND		0.15	0.40
cis-1,3-Dichloropropene	ND		0.15	0.40
trans-1,3-Dichloropropene	ND		0.15	0.40
Ethylbenzene	ND		0.15	0.40
4-Ethyltoluene	ND		0.15	0.40
Hexachlorobutadiene	ND		0.20	0.80
2-Hexanone	ND		0.20	0.80
4-Methyl-2-pentanone (MIBK)	ND		0.15	0.40
Methylene Chloride	ND		0.20	0.40
Styrene	ND		0.15	0.40
1,1,2,2-Tetrachloroethane	ND		0.10	0.40
Tetrachloroethene	ND		0.15	0.40
Toluene	0.89		0.15	0.40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.20	0.40
1,2,4-Trichlorobenzene	ND		0.70	2.5
1,1,1-Trichloroethane	ND		0.15	0.30
1,1,2-Trichloroethane	ND		0.15	0.40
Trichloroethene	ND		0.15	0.40
Trichlorofluoromethane	ND		0.15	0.40
1,2,4-Trimethylbenzene	ND		0.20	0.80
1,3,5-Trimethylbenzene	ND		0.15	0.40

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093313-001/CWL-FB2

Lab Sample ID: 340-5922-8 Date Sampled: 01/17/2013 1102

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic	Compounds	in Ambient Air
------------------------	-----------	----------------

Analysis Method: TO-15 Analysis Batch: 340-4023 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0672.D

1.0 Initial Weight/Volume: 600 mL

Dilution: 1.0 Initial Weight/Volume: 600 mL Analysis Date: 02/11/2013 2057 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 0.20 ND 0.80 Vinyl chloride ND 0.15 0.40 m,p-Xylene ND 0.20 0.80 o-Xylene ND 0.15 0.40

Client Sample ID: 093314-001/CWL-D1-100

 Lab Sample ID:
 340-5922-9
 Date Sampled: 01/17/2013 0853

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4023 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0673.D

 Dilution:
 961
 Initial Weight/Volume:
 0.6537 mL

 Analysis Date:
 02/11/2013 2135
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		580	1200
Benzene	ND		190	380
Benzyl chloride	ND		190	770
Bromodichloromethane	ND		140	290
Bromoform	ND		190	770
Bromomethane	ND		190	770
2-Butanone (MEK)	ND		380	770
Carbon disulfide	ND		190	770
Carbon tetrachloride	ND		190	770
Chlorobenzene	ND		96	290
Chloroethane	ND		670	1400
Chloroform	640		96	290
Chloromethane	ND		380	770
Dibromochloromethane	ND		96	380
1,2-Dibromoethane (EDB)	ND		190	770
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		140	380
1,2-Dichlorobenzene	ND		140	380
1,3-Dichlorobenzene	ND		140	380
1,4-Dichlorobenzene	ND		140	380
Dichlorodifluoromethane	ND		140	380
1,1-Dichloroethane	ND		140	290
1,2-Dichloroethane	ND		190	770
1,1-Dichloroethene	410	J	190	770
cis-1,2-Dichloroethene	ND		190	380
trans-1,2-Dichloroethene	ND		190	380
1,2-Dichloropropane	ND		140	380
cis-1,3-Dichloropropene	ND		140	380
trans-1,3-Dichloropropene	ND		140	380
Ethylbenzene	ND		140	380
4-Ethyltoluene	ND		140	380
Hexachlorobutadiene	ND		190	770
2-Hexanone	ND		190	770
4-Methyl-2-pentanone (MIBK)	ND		140	380
Methylene Chloride	ND		190	380
Styrene	ND		140	380
1,1,2,2-Tetrachloroethane	ND		96	380
Tetrachloroethene	1200		140	380
Toluene	ND		140	380
1,1,2-Trichloro-1,2,2-trifluoroethane	1300		190	380
1,2,4-Trichlorobenzene	ND		670	2400
1,1,1-Trichloroethane	ND		140	290
1,1,2-Trichloroethane	ND		140	380
Trichloroethene	12000		140	380
Trichlorofluoromethane	350	J	140	380
1,2,4-Trimethylbenzene	ND		190	770
1,3,5-Trimethylbenzene	ND		140	380

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093314-001/CWL-D1-100

Lab Sample ID: 340-5922-9 Date Sampled: 01/17/2013 0853

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4023 Instrument ID: MSC

Analysis Date: 02/11/2013 2135 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 770 ND 190 Vinyl chloride ND 140 380 m,p-Xylene ND 190 770 o-Xylene ND 140 380

Client Sample ID: 093315-001/CWL-D1-160

Lab Sample ID: 340-5922-10 Date Sampled: 01/17/2013 0858

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0682.D

 Dilution:
 588
 Initial Weight/Volume:
 1.051 mL

 Analysis Date:
 02/12/2013 1703
 Final Weight/Volume:
 250 mL

Benzene ND 120 240 Benzyl chloride ND 120 470 Bromodichloromethane ND 88 180 Bromoform ND 120 470 Bromomethane ND 120 470 2-Butanone (MEK) ND 240 470 Carbon Istracthoride ND 120 470 Carbon Idualide ND 120 470 Carbon Idualide ND 120 470 Chlorocherane ND 19 180 Chlorocherane ND 410 880 Chlorocherane ND 410 880 Chlorocherane ND 240 470 Dibromochloromethane (EDB) ND 120 470 12-Dichloro-1, 12-Zebetrafluroethane ND 88 240 12-Dichlorocherane ND 88 240 13-Dichlorocherane ND 88 240 14-Dichlorocherane ND 88	Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Benzyl chloride ND 120 470 Bromodichloromethane ND 88 180 Bromodichloromethane ND 120 470 Bromomethane ND 120 470 Zebtanone (MEK) ND 240 470 Carbon disulfide ND 120 470 Carbon tetrachloride ND 120 470 Chlorobenzene ND 59 180 Chlorochane ND 410 880 Chlorochane ND 410 880 Chloromethane ND 410 880 Chloromethane ND 240 470 Dibromochloromethane ND 29 40 1,2-Dibromochloromethane ND 88 240 1,2-Dibromochloromethane ND 88 240 1,2-Dibromochloromethane ND 88 240 1,2-Dibromochloromethane ND 88 240 1,2-Dibromochloromethane ND	Acetone	ND		350	710
Bromodichloromethane ND 88 180 Bromoform ND 120 470 Bromomethane ND 120 470 2-Butanon (MEK) ND 240 470 Carbon disuffide ND 120 470 Carbon tetrachloride ND 120 470 Chlorobenzene ND 190 180 Chlorobenzene ND 410 880 Chlorobenzene ND 410 880 Chloromethane ND 410 880 Chloromethane ND 240 470 Dibromochloromethane ND 29 440 1,2-Dichloromethane ND 120 470 1,2-Dichloromethane ND 88 240 1,2-Dichloromethane ND 88 240 1,2-Dichloromethane ND 88 240 1,1-Dichloromethane ND 88 240 1,1-Dichloromethane ND 88 <	Benzene	ND		120	240
Bromome Hanne ND 120 470 2-Eutanone (MEK) ND 120 470 2-Eutanone (MEK) ND 240 470 Carbon disulfide ND 120 470 Carbon tetrachloride ND 120 470 Chlorobenzene ND 190 180 Chlorochetane ND 410 880 Chloroform 530 59 180 Chlorochetane ND 410 880 Chloromethane ND 240 470 Dibromochtoromethane ND 59 240 1,2-Dibriorochetane ND 88 240 1,2-Dichlorochetane ND 88 240 1,2-Dichlorochezene ND 88 240 1,3-Dichlorochezene ND 88 240 1,4-Dichlorochezene ND 88 240 1,1-Dichlorochezene ND 88 240 1,1-Dichlorochetane ND 88	Benzyl chloride	ND		120	470
Brommeltane ND 120 470 2-Bulanone (MEK) ND 240 470 Carbon disulfide ND 120 470 Carbon tetrachloride ND 120 470 Chloroberne ND 59 180 Chloroferm S0 410 880 Chloroferm 530 59 180 Chloromethane ND 240 470 Dibromochloromethane ND 240 470 Dibromochloromethane (EDB) ND 120 470 1,2-Dichloromethane (EDB) ND 120 470 1,2-Dichlorotharene (EDB) ND 88 240 1,2-Dichlorotharene ND 88 240 1,2-Dichlorotharene ND 88 240 1,3-Dichlorotharene ND 88 240 1,1-Dichlorotharene ND 88 240 1,1-Dichlorotharene ND 88 240 1,1-Dichlorotharene ND	Bromodichloromethane	ND		88	180
2-Butanone (MEK) ND 240 470 Carbon disulfide ND 120 470 Carbon tetrachloride ND 120 470 Chlorobenzene ND 59 180 Chloroform 530 59 180 Chloromethane ND 240 470 Dibromochloromethane ND 59 240 1,2-Dibromoethane (EDB) ND 120 470 1,2-Dibromoethane (EDB) ND 120 470 1,2-Dichlorobenzene ND 88 240 1,2-Dichlorobenzene ND 88 240 1,2-Dichlorobenzene ND 88 240 1,3-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 Dichlorodifluoromethane ND 88 240 1,1-Dichlorobenzene ND 88 180 1,1-Dichlorothane ND 88 240 1,1-Dichlorothane ND	Bromoform	ND		120	470
Carbon disulfide ND 120 470 Carbon tetrachloride ND 120 470 Chlorobenzene ND 59 180 Chlorostehane ND 410 880 Chloromethane ND 410 880 Chloromethane ND 59 180 Chloromethane ND 240 470 Dibromochloromethane (EDB) ND 59 240 1,2-Dichnorbane (EDB) ND 120 470 1,2-Dichlorobane (EDB) ND 88 240 1,1-Dichlorobane (EDB)	Bromomethane	ND		120	470
Carbon tetrachloride ND 120 470 Chlorobenzene ND 59 180 Chloroform 530 59 180 Chloromethane ND 240 470 Dibromochloromethane ND 59 240 1.2-Dibromoethane (EDB) ND 120 470 1.2-Dishloro-1,1,2,2-tetrafluroethane ND 88 240 1.2-Dichloro-1,1,2,2-tetrafluroethane ND 88 240 1.2-Dichlorobenzene ND 88 240 1.2-Dichlorobenzene ND 88 240 1.2-Dichlorobenzene ND 88 240 1.2-Dichlorobenzene ND 88 240 1.1-Dichlorobenzene ND 88 240 1.1-Dichlorobenzene ND 88 180 1.1-Dichlorobethane ND 88 180 1.1-Dichlorobethane ND 120 470 1.1-Dichlorobethane ND 120 240 1.1-Dic	2-Butanone (MEK)	ND		240	470
Chlorobenzene ND 59 180 Chlorotethane ND 410 880 Chloromethane ND 49 480 Chloromethane ND 240 470 Dibromochloromethane ND 59 240 1,2-Diblromothane (EDB) ND 120 470 1,2-Dichlorobenzene ND 88 240 1,2-Dichlorobenzene ND 88 240 1,3-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 1,1-Dichlorobenzene ND 88 240 1,1-Dichlorobethane ND 88 240 1,1-Dichlorobethane ND 120 470 1,1-Dichlorobethene ND 120 247 1,1-Dichlorobethene ND 120 240 1,1-Dichloropropene ND 88 240 1,1-Z-Dichloropropene ND	Carbon disulfide	ND		120	470
Chlorothane ND 410 880 Chloroform 530 59 180 Chloromethane ND 240 470 Dibromochloromethane ND 59 240 1,2-Dichloromethane (EDB) ND 120 470 1,2-Dichlorothane ND 88 240 1,2-Dichlorobenzene ND 88 240 1,2-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 1,4-Dichloroethane ND 88 240 1,4-Dichloroethane ND 88 240 1,2-Dichloroethane ND 120 470 1,3-Dichloroethane ND 120 470 1,3-Dichloroethane ND 120 240 1,3-Dichloroethane ND 120 240 1,4-Dichloroethane ND 88 240 1,2-Dichloroethane ND	Carbon tetrachloride	ND		120	470
Chloroform 530 59 180 Chloromethane ND 240 470 Dibromochloromethane ND 59 240 1,2-Dibromoethane (EDB) ND 120 470 1,2-Dichlorobenzene ND 88 240 1,2-Dichlorobenzene ND 88 240 1,3-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 Dichlorofidiroomethane ND 88 240 1,4-Dichloroethane ND 88 240 1,1-Dichloroethane ND 88 240 1,1-Dichloroethane ND 120 470 1,2-Dichloroethene ND 120 470 cis-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloropropane ND 88 240 cis-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 tethylstoluene	Chlorobenzene	ND		59	180
Chloromethane ND 240 470 Dibromochloromethane ND 59 240 1,2-Dibromochloromethane ND 120 470 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 88 240 1,2-Dichlorobenzene ND 88 240 1,3-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 1,4-Dichlorodethane ND 88 240 1,1-Dichloroethane ND 88 180 1,2-Dichloroethane ND 120 470 1,1-Dichloroethane ND 120 470 1,2-Dichloroethene 630 120 470 cis-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloroethene ND 88 240 cis-1,3-Dichloropropene ND 88 240 cis-1,3-Dichloropropene ND 88 240 Ethylbrouerene ND 88 240 4	Chloroethane	ND		410	880
Dibromochloromethane ND 59 240 1,2-Dibromoethane (EDB) ND 120 470 1,2-Dibromoethane (EDB) ND 88 240 1,2-Dichlorobenzene ND 88 240 1,3-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 Dichlorodifluoromethane ND 88 240 1,4-Dichloroethane ND 88 180 1,1-Dichloroethane ND 88 180 1,1-Dichloroethane ND 120 470 1,1-Dichloroethane 630 120 470 1,1-Dichloroethane ND 120 240 1,1-Dichloroethane ND 120 240 1,1-Dichloroethane ND 120 240 1,1-Dichloroethane ND 120 240 1,1-Dichloropropane ND 88 240 1,1-S-Jückloropropane ND 88 240 Ethylloropropane <td>Chloroform</td> <td>530</td> <td></td> <td>59</td> <td>180</td>	Chloroform	530		59	180
1,2-Dibromoethane (EDB) ND 120 470 1,2-Dichloro-1,1,2,2-letrafluoroethane ND 88 240 1,2-Dichlorobenzene ND 88 240 1,3-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 Dichlorodifluoromethane ND 88 240 1,1-Dichloroethane ND 88 240 1,1-Dichloroethane ND 88 180 1,2-Dichloroethane ND 120 470 1,1-Dichloroethane 630 120 470 1,1-Dichloroethane ND 120 470 1,1-Dichloroethane ND 120 240 1,1-Dichloroethane ND 120 240 trans-1,2-Dichloroethane ND 120 240 trans-1,3-Dichloropropane ND 88 240 trans-1,3-Dichloropropane ND 88 240 trans-1,3-Dichloropropane ND 88 240 tethylbenzene ND 88 240 tethylbe	Chloromethane	ND		240	470
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 88 240 1,2-Dichlorobenzene ND 88 240 1,3-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 Dichlorodifluoromethane ND 88 240 1,1-Dichloroethane ND 88 180 1,2-Dichloroethane ND 120 470 1,1-Dichloroethane ND 120 470 1,1-Dichloroethene 630 120 470 1,1-Dichloroethene ND 120 240 trans-1,2-Dichloropropane ND 120 240 trans-1,3-Dichloropropane ND 88 240 sis-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 4-Ethylbolurene ND 88 240 4-Ethylbolurene ND 88 240 4-Ethylbolurene ND 88 240 4-Ethylbolure	Dibromochloromethane	ND		59	240
1,2-Dichlorobenzene ND 88 240 1,3-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 Dichlorodifluoromethane ND 88 240 1,1-Dichloroethane ND 88 180 1,2-Dichloroethane ND 120 470 1,1-Dichloroethene 630 120 470 cis-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloropropane ND 120 240 cis-1,3-Dichloropropane ND 88 240 cis-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 Ethylbenzene ND 88 240 Hexachlorobutadiene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK	1,2-Dibromoethane (EDB)	ND		120	470
1,3-Dichlorobenzene ND 88 240 1,4-Dichlorobenzene ND 88 240 Dichlorodiffluoromethane ND 88 240 1,1-Dichloroethane ND 88 180 1,2-Dichloroethane ND 120 470 1,1-Dichloroethene 630 120 470 1,1-Dichloroethene ND 120 240 trans-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloropropane ND 88 240 trans-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 4-Ethyltoluene ND 88 240 Hexachlorobutadiene ND 88 240 4-Hexanone ND 120 470 4-Hexanone ND 120 240 Methylene Chloride ND 88 240 Styrene ND 88 240 Till,1,2,2-Tetrachloroethane ND 88<	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		88	240
1,4-Dichlorobenzene ND 88 240 Dichlorodifluoromethane ND 88 240 1,1-Dichloroethane ND 88 180 1,2-Dichloroethane ND 120 470 1,1-Dichloroethene 630 120 470 1,2-Dichloroethene ND 120 240 trans-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloropropene ND 38 240 cis-1,3-Dichloropropene ND 88 240 cis-1,3-Dichloropropene ND 88 240 cis-1,3-Dichloropropene ND 88 240 tethylbenzene ND 88 240 4-Ethyltoluene ND 88 240 Hexachlorobutadiene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chlori	1,2-Dichlorobenzene	ND		88	240
Dichlorodifluoromethane ND 88 240 1,1-Dichloroethane ND 88 180 1,2-Dichloroethane ND 120 470 1,1-Dichloroethene 630 120 470 cis-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloropropene ND 120 240 trans-1,2-Dichloropropane ND 88 240 cis-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 Hexachlorobutadiene ND 88 240 4-Ethyltoluene ND 88 240 4-Hexachlorobutadiene ND 120 470 2-Hexanone ND 88 240 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 88 240 Styrene ND 88 240 1,1,2,2-Tetrachloroethane<	1,3-Dichlorobenzene	ND		88	240
1,1-Dichloroethane ND 88 180 1,2-Dichloroethane ND 120 470 1,1-Dichloroethene 630 120 470 cis-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloropropane ND 120 240 cis-1,3-Dichloropropane ND 88 240 cis-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 Hetylbeluene ND 88 240 Hetachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2-2-Tetrachloroethane ND 88 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane ND	1,4-Dichlorobenzene	ND		88	240
1,2-Dichloroethane ND 120 470 1,1-Dichloroethene 630 120 470 cis-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloroptehene ND 120 240 1,2-Dichloropropane ND 88 240 cis-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 +Ethyltoluene ND 88 240 +Ethyltoluene ND 88 240 +Ethyltoluene ND 88 240 +Ethyltoluene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 88 240 Styrene ND 88 240 1,1,2,2-Tetrachloroethane ND 88 240 Toluene ND 88 </td <td>Dichlorodifluoromethane</td> <td>ND</td> <td></td> <td>88</td> <td>240</td>	Dichlorodifluoromethane	ND		88	240
1,1-Dichloroethene 630 120 470 cis-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloroethene ND 120 240 1,2-Dichloropropane ND 88 240 cis-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 4-Ethyltoluene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2-2-Tetrachloroethane ND 88 240 Toluene ND 88 240 Toluene ND 88 240 Toluene ND 410 1500 1,1,2-Trichloroethane ND 88 240 1,1,1-Trichloroethane ND 88 240	1,1-Dichloroethane	ND		88	180
cis-1,2-Dichloroethene ND 120 240 trans-1,2-Dichloroethene ND 120 240 1,2-Dichloropropane ND 88 240 cis-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 4-Ethylboluene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2-Tetrachloroethane ND 88 240 Toluene ND 88 240 Toluene ND 88 240 1,1,2-Trichloroethane 1900 120 240 1,1,2-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND	1,2-Dichloroethane	ND		120	470
trans-1,2-Dichloroethene ND 120 240 1,2-Dichloropropane ND 88 240 cis-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 4-Ethyltoluene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2,2-Tetachloroethane ND 88 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,1,1-Trichloroethane ND 88 180 1,1,1,2-Trichloroethane ND 88 240 Trichloroethane	1,1-Dichloroethene	630		120	470
1,2-Dichloropropane ND 88 240 cis-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 4-Ethyltoluene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 Styrene ND 88 240 Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichloroethane ND 88 180 1,1,1-Trichloroethane ND 88 240 Trichloroethane 16000 88 240 Trichloroethene 450 88 2	cis-1,2-Dichloroethene	ND		120	240
cis-1,3-Dichloropropene ND 88 240 trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 4-Ethyltoluene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 Styrene ND 88 240 Tetrachloroethane ND 59 240 Totuene ND 88 240 Toluene ND 88 240 Toluene ND 88 240 T,1,2-Trichloroethane 1900 120 240 1,2,4-Trichloroethane ND 88 180 1,1,1,Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichloroethene 16000 88 240	trans-1,2-Dichloroethene	ND		120	240
trans-1,3-Dichloropropene ND 88 240 Ethylbenzene ND 88 240 4-Ethyltoluene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2,2-Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	1,2-Dichloropropane	ND		88	240
Ethylbenzene ND 88 240 4-Ethyltoluene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2,2-Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	cis-1,3-Dichloropropene	ND		88	240
4-Ethyltoluene ND 88 240 Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2,2-Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	trans-1,3-Dichloropropene	ND		88	240
Hexachlorobutadiene ND 120 470 2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2,2-Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethane 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	Ethylbenzene	ND		88	240
2-Hexanone ND 120 470 4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2,2-Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	4-Ethyltoluene	ND		88	240
4-Methyl-2-pentanone (MIBK) ND 88 240 Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2,2-Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	Hexachlorobutadiene	ND		120	470
Methylene Chloride ND 120 240 Styrene ND 88 240 1,1,2,2-Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	2-Hexanone	ND		120	470
Styrene ND 88 240 1,1,2,2-Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	4-Methyl-2-pentanone (MIBK)	ND		88	240
1,1,2,2-Tetrachloroethane ND 59 240 Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	Methylene Chloride	ND		120	240
Tetrachloroethene 820 88 240 Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	Styrene	ND		88	240
Toluene ND 88 240 1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	1,1,2,2-Tetrachloroethane	ND		59	240
1,1,2-Trichloro-1,2,2-trifluoroethane 1900 120 240 1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	Tetrachloroethene	820		88	240
1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	Toluene	ND		88	240
1,2,4-Trichlorobenzene ND 410 1500 1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	1,1,2-Trichloro-1,2,2-trifluoroethane	1900		120	240
1,1,1-Trichloroethane ND 88 180 1,1,2-Trichloroethane ND 88 240 Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	1,2,4-Trichlorobenzene	ND		410	1500
Trichloroethene 16000 88 240 Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	1,1,1-Trichloroethane	ND		88	180
Trichlorofluoromethane 450 88 240 1,2,4-Trimethylbenzene ND 120 470	1,1,2-Trichloroethane	ND		88	240
1,2,4-Trimethylbenzene ND 120 470	Trichloroethene	16000		88	240
	Trichlorofluoromethane	450		88	240
	1,2,4-Trimethylbenzene	ND		120	470
	1,3,5-Trimethylbenzene	ND		88	240

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093315-001/CWL-D1-160

Lab Sample ID: 340-5922-10 Date Sampled: 01/17/2013 0858

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

Analysis Date: 02/12/2013 1703 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 470 ND 120 Vinyl chloride ND 88 240 m,p-Xylene ND 470 120 o-Xylene ND 88 240

Client Sample ID: 093316-001/CWL-D1-240

 Lab Sample ID:
 340-5922-11
 Date Sampled: 01/17/2013 0902

 Client Matrix:
 Air
 Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0683.D

 Dilution:
 733
 Initial Weight/Volume:
 1.009 mL

 Analysis Date:
 02/12/2013 1744
 Final Weight/Volume:
 250 mL

Acetane ND 440 880 Benzych Chloride ND 150 290 Benzych Chloride ND 150 590 Bromodichloromethane ND 150 590 Bromonethane ND 150 590 Bromonethane ND 150 590 Bromonethane ND 150 590 Carbon disulfide ND 150 590 Carbon disulfide ND 150 590 Chloroschane ND 150 590 Chloroschane ND 150 590 Chloroschane ND 73 220 Chloromethane ND 73 220 Chloromethane ND 73 220 Dibromochloromethane ND 73 220 Dibromochloromethane ND 150 590 1,2-Dichloromethane ND 110 290 1,2-Dichloromethane ND 110 290	Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Benzy Loloride ND 150 590 Bromocilchioromethane ND 110 220 Bromocilchioromethane ND 150 590 Bromomethane ND 150 590 Seption terrachioride ND 150 590 Carbon tetrachioride ND 150 590 Chiorobenzene ND 150 590 Chiorobenzene ND 73 220 Chiorochethane ND 510 1100 Chiorochethane ND 290 590 Dibromochioromethane ND 3 220 Chioromethane (EDB) ND 150 590 1_2-Dibromoethane (EDB) ND 110 290 1_2-Dibromoethane (EDB) ND 110 290 1_2-Dichlorobenzene ND 110 290 1_2-Dichlorobenzene ND 110 290 1_2-Dichlorobenzene ND 110 290 1_2-Dichlorobenzene	Acetone				
Bromodom ND 110 220 Bromoform ND 150 590 Bromomethane ND 150 590 2-Butanone (MEK) ND 290 590 Carbon disulfide ND 150 590 Carbon tetrachloride ND 150 590 Chlorobenzene ND 150 590 Chlorobenzene ND 310 1100 Chloroform 440 73 220 Chloromethane ND 290 590 Dibromochloromethane ND 33 220 Chloromethane ND 150 590 Jaz-Dikromothane (EDB) ND 150 590 1,2-Dichlorobenzene ND 110 290 1,2-Dichlorobenzene ND 110 290 1,2-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,1-Dichlorobenzene ND 150 5	Benzene	ND		150	290
Bromorementame ND 150 590 Bromoremethane ND 150 590 2-Butanone (MEK) ND 290 590 Carbon Idrachilode ND 150 590 Carbon tetrachloride ND 150 590 Chlorobenzene ND 73 220 Chlorochane ND 510 1100 Chlorochane ND 510 1100 Chloromethane ND 33 220 Chloromethane ND 73 290 Dibromochloromethane ND 73 290 1,2-Dichlorochane ND 150 590 1,2-Dichlorochane ND 110 290 1,2-Dichlorochane ND 110 290 1,3-Dichlorochane ND 110 290 1,4-Dichlorochane ND 110 290 Dichlorodifluoromethane ND 110 290 1,1-Dichlorochane ND 150	Benzyl chloride	ND		150	590
Brommethane ND 150 590 2-Butainone (MEK) ND 290 590 Carbon disulfide ND 150 590 Carbon tetrachloride ND 150 590 Chlorocherace ND 73 220 Chlorochane ND 510 1100 Chlorochane ND 290 590 Chloromethane ND 73 220 Chloromethane ND 290 590 Dibromochloromethane (EDB) ND 150 590 12-Dichlorobaneane (EDB) ND 150 590 1,2-Dichlorochaneane ND 110 290 1,2-Dichlorobenzene ND 110 290 1,3-Dichlorobenzene ND 110 290 1,4-Dichlorochanea ND 110 290 1,4-Dichlorochanea ND 110 290 1,1-Dichlorochanea ND 150 590 1,1-Dichlorochanea ND <t< td=""><td>Bromodichloromethane</td><td>ND</td><td></td><td>110</td><td>220</td></t<>	Bromodichloromethane	ND		110	220
2-Butanone (MEK) ND 590 590 Carbon disulfide ND 150 590 Carbon tetrachloride ND 150 590 Chlorobenzene ND 73 220 Chlororofma 440 73 220 Chloromethane ND 73 220 Chloromethane ND 73 220 Chloromethane ND 73 290 1,2-Dichloromethane ND 73 290 1,2-Dichlorothanzene ND 150 590 1,2-Dichlorothanzene ND 110 290 1,2-Dichlorothanzene ND 110 290 1,3-Dichlorothanzene ND 110 290 1,4-Dichlorothane ND 110 290 1,4-Dichlorothane ND 110 290 1,1-Dichlorothane ND 150 590 1,1-Dichlorothane ND 150 590 1,1-Dichlorothane ND 150	Bromoform	ND		150	590
Carbon disulfide ND 150 590 Carbon tetrachloride ND 150 590 Chloroebrane ND 73 220 Chloroethane ND 510 1100 Chloromethane ND 73 220 Chloromethane ND 73 290 Dibromochloromethane ND 73 290 1,2-Dichnochloromethane ND 150 590 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 110 290 1,2-Dichloroethane ND 110 290 1,2-Dichloroethane ND 110 290 1,4-Dichloroethane ND 110 290 1,1-Dichloroethane ND 110 290 1,1-Dichloroethane ND 150 590 1,2-Dichloroethene ND 150 590 1,2-Dichloroethene ND 150 290 1,2-Dichloropropane ND 150 290 1,2-Dichloropropane	Bromomethane	ND		150	590
Carbon tetrachloride ND 150 590 Chlorobenzene ND 73 220 Chlorofform 440 73 220 Chloromethane ND 73 220 Chloromethane ND 290 590 Dibromochloromethane ND 73 290 1,2-Dibromoethane (EDB) ND 150 590 1,2-Dichloro-1,1,2-2-letrafluorethane ND 110 290 1,2-Dichloro-1,1,2-2-letrafluorethane ND 110 290 1,2-Dichloro-1,1,2-2-letrafluorethane ND 110 290 1,2-Dichloro-1,1,2-2-letrafluorethane ND 110 290 1,2-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,1-Dichlorobenzene ND 150 590 1,1-Dichlorobenzene ND 150 590	2-Butanone (MEK)	ND		290	590
Chlorobenzene ND 73 220 Chlorochtane ND 510 1100 Chloroform 440 73 220 Chloromethane ND 290 590 Dibromochloromethane ND 73 290 1,2-Dichloromethane (EDB) ND 150 590 1,2-Dichlorobenzene ND 110 290 1,2-Dichlorobenzene ND 110 290 1,3-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,1-Dichlorobenzene ND 150 590 1,1-Dichlorobethane ND 150 590 1,1-Dichlorobethane ND 150 290 1,1-Dichloropropene ND 150 290 1,2-Dichloropropene ND	Carbon disulfide	ND		150	590
Chloroethane ND 510 1100 Chloroform 440 73 220 Chloromethane ND 290 590 Dibromochloromethane ND 73 290 1,2-Dichlorobernaene ND 150 590 1,2-Dichlorobenzene ND 110 290 1,2-Dichlorobenzene ND 110 290 1,2-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,4-Dichlorobertene ND 110 290 1,4-Dichlorobertene ND 110 290 1,1-Dichloroethane ND 150 590 1,1-Dichloroethane ND 150 590 1,1-Dichloroethane ND 150 290 1,1-Dichloroethane ND 150 290 1,1-Dichloroethane ND 150 290 1,1-Dichloroethane ND 150 290 1,2-Dichloroethane ND	Carbon tetrachloride	ND		150	590
Chloroform 440 73 220 Chloromethane ND 290 590 Dibromochtane (EDB) ND 73 290 1,2-Dichloro-1,1,2-2-tetrafluoroethane ND 150 590 1,2-Dichlorobenzene ND 110 290 1,3-Dichlorobenzene ND 110 290 1,3-Dichlorobenzene ND 110 290 1,4-Dichloroethane ND 110 290 Dichlorodifluoromethane ND 110 290 1,1-Dichloroethane ND 110 290 1,1-Dichloroethane ND 150 590 1,1-Dichloroethane ND 150 290 1,1-Dichloroethane ND 150 290 1,1-Dichloroethane ND 150 290 1,1-Dichloroethane ND 150 290 1,2-Dichloropropane ND 150 290 1,2-Dichloropropane ND 110 290 1,2-Dichloropropa	Chlorobenzene	ND		73	220
Chloromethane ND 73 290 Dibromochloromethane ND 73 290 1,2-Dibrohethane (EDB) ND 150 590 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 110 290 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 110 290 1,2-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 1,4-Dichloroethane ND 110 290 1,1-Dichloroethane ND 110 290 1,2-Dichloroethane ND 150 590 1,1-Dichloroethane ND 150 590 1,1-Dichloroethane ND 150 290 1,2-Dichloroethane ND 150 290 1,1-Dichloroethane ND 150 290 trans-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloroethene ND 110 290 trans-1,3-Dichloropropene ND 110 290 <	Chloroethane	ND			
Dibromochloromethane ND 73 290 1,2-Dichloro-1,2,2-letrafluroethane ND 150 590 1,2-Dichloro-1,2,2-letrafluroethane ND 110 290 1,2-Dichlorobenzene ND 110 290 1,3-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 Dichlorodifluoromethane ND 110 290 1,1-Dichloroethane ND 110 290 1,1-Dichloroethane ND 150 590 1,1-Dichloroethane 1100 150 590 1,1-Dichloroethane 1100 150 590 1,1-Dichloroethane 1100 150 290 1,2-Dichloroethane ND 150 290 1,2-Dichloropropane 180 J 110 290 1,2-Dichloropropane ND 110 290 Ethylbenzene ND 110 290 Ethylberopropene ND 110 290	Chloroform	440			220
1,2-Dibromoethane (EDB) ND 150 590 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 110 290 1,2-Dichlorobenzene ND 110 290 1,3-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 Dichlorodifuoromethane ND 110 290 1,1-Dichloroethane ND 150 590 1,2-Dichloroethane ND 150 590 1,1-Dichloroethane ND 150 590 cis-1,2-Dichloroethane ND 150 290 cis-1,2-Dichloroethane ND 150 290 cis-1,2-Dichloropropane ND 150 290 cis-1,2-Dichloropropane ND 110 290 cis-1,3-Dichloropropane ND 110 290 cis-1,3-Dichloropropane ND 110 290 trans-1,3-Dichloropropene ND 110 290 t-Ethyltolune ND 150 590 Hexachlorobutadiene ND 150 590	Chloromethane	ND		290	590
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 110 290 1,2-Dichlorobenzene ND 110 290 1,3-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 Dichlorodifluoromethane ND 110 290 1,1-Dichloroethane ND 150 590 1,2-Dichloroethane ND 150 590 1,1-Dichloroethane 1100 150 590 1,1-Dichloroethane 1100 150 590 1,1-Dichloroethane ND 150 290 1,2-Dichloroethane ND 150 290 1,2-Dichloropropane 180 J 110 290 1,2-Dichloropropane ND 110 290 1,2-Dichloropropane ND 110 290 1,2-Dichloropropane ND 110 290 Ethylbenzene ND 110 290 Ethylbenzene ND 110 290	Dibromochloromethane	ND		73	290
1,2-Dichlorobenzene ND 110 290 1,3-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 Dichlorodifluoromethane ND 110 290 1,1-Dichloroethane ND 110 220 1,2-Dichloroethane ND 150 590 1,1-Dichloroethene 1100 150 590 cis-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloropropane ND 150 290 cis-1,3-Dichloropropane ND 110 290 cis-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 Ethylbenzene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 150 290 Methylene Chloride ND 150 290 Styrene ND<	1,2-Dibromoethane (EDB)	ND		150	590
1,3-Dichlorobenzene ND 110 290 1,4-Dichlorobenzene ND 110 290 Dichlorodifluoromethane ND 110 290 1,1-Dichloroethane ND 110 220 1,2-Dichloroethane ND 150 590 1,1-Dichloroethene 1100 150 590 1,1-Dichloroethene ND 150 290 trans-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloropropane 180 J 110 290 trans-1,3-Dichloropropane ND 110 290 trans-1,3-Dichloropropene ND 110 290 Ethyltonene ND 110 290 4-Ethyltoluene ND 110 290 4-Ethyltoluene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 150 290 Styrene ND 150 290 Styrene ND 10 290 Styrene ND	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		110	290
1,4-Dichlorobenzene ND 110 290 Dichlorodifluoromethane ND 110 290 1,1-Dichloroethane ND 110 220 1,2-Dichloroethane ND 150 590 1,1-Dichloroethene 1100 150 290 cis-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloropthene ND 150 290 1,2-Dichloroptopane 180 J 110 290 1,2-Dichloropropane ND 110 290 cis-1,3-Dichloropropene ND 110 290 trans-1,3-Dichloropropene ND 110 290 t-Ethylbenzene ND 110 290 4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 150 290 Styrene ND 150 290 <td< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td></td><td>110</td><td>290</td></td<>	1,2-Dichlorobenzene	ND		110	290
Dichlorodifluoromethane ND 110 290 1,1-Dichloroethane ND 110 220 1,2-Dichloroethane ND 150 590 1,1-Dichloroethene 1100 150 590 cis-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloropthene ND 150 290 trans-1,2-Dichloropropane 180 J 110 290 scis-1,3-Dichloropropane ND 110 290 trans-1,3-Dichloropropene ND 110 290 trans-1,3-Dichloropropene ND 110 290 trans-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 4-Ethylboluene ND 150 590 4-Hexachlorobutadiene ND 150 590 4-Hexachlorobutadiene ND 150 290 Styrene ND 150 290 Methylene Chloride ND 73 290	1,3-Dichlorobenzene	ND		110	290
1,1-Dichloroethane ND 110 220 1,2-Dichloroethane ND 150 590 1,1-Dichloroethene 1100 150 590 cis-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloroethene ND 150 290 1,2-Dichloropropane 180 J 110 290 cis-1,3-Dichloropropene ND 110 290 cis-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 Ethylbenzene ND 110 290 Hexachlorobutadiene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 150 590 Methylene Chloride ND 150 290 Styrene ND 110 290 Tetrachloroethane ND 110 290 Tetrachloroethane ND 150 290 1,1,2-Trichloroethane <	1,4-Dichlorobenzene	ND		110	290
1,2-Dichloroethane 1100 150 590 1,1-Dichloroethene 1100 150 590 cis-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloropthene ND 150 290 1,2-Dichloropropane 180 J 110 290 cis-1,3-Dichloropropene ND 110 290 trans-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 150 590 Methylene Chloride ND 150 290 Methylene Chloride ND 110 290 Myrene ND 110 290 1,1,2-Tetrachloroethane ND 73 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 110 290 1,2,4-Trichloroethane ND 510 1800 <td< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td></td><td>110</td><td>290</td></td<>	Dichlorodifluoromethane	ND		110	290
1,1-Dichloroethene 1100 150 590 cis-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloroethene ND 150 290 1,2-Dichloropropane 180 J 110 290 cis-1,3-Dichloropropene ND 110 290 trans-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 150 290 Methylene Chloride ND 150 290 Styrene ND 150 290 1,1,2-Tetrachloroethane ND 73 290 1,1,2-Tetrachloroethane ND 110 290 1,2,4-Trichloroethane ND 150 290 1,2,4-Trichloroethane ND 510 1800 1,1,1-Trichloroethane ND 110 290 1,1,2-Tric	1,1-Dichloroethane	ND		110	220
cis-1,2-Dichloroethene ND 150 290 trans-1,2-Dichloroethene ND 150 290 1,2-Dichloropropane 180 J 110 290 cis-1,3-Dichloropropene ND 110 290 trans-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 2-Hexanone (MIBK) ND 150 590 4-Methyl-2-pentanone (MIBK) ND 150 290 Methylene Chloride ND 150 290 Styrene ND 150 290 1,1,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichloroethane ND 110 290 <t< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>150</td><td>590</td></t<>	1,2-Dichloroethane	ND		150	590
trans-1,2-Dichloroethene ND 150 290 1,2-Dichloropropane 180 J 110 290 cis-1,3-Dichloropropene ND 110 290 trans-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 150 290 Methylene Chloride ND 150 290 Styrene ND 150 290 Styrene ND 73 290 Tetrachloroethane 530 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichloroethane ND 510 1800 1,1,1-Trichloroethane ND 110 290 1,1,2-Tri	1,1-Dichloroethene	1100		150	590
1,2-Dichloropropane 180 J 110 290 cis-1,3-Dichloropropene ND 110 290 trans-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 150 290 Methylene Chloride ND 150 290 Styrene ND 150 290 1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichloroethane ND 150 290 1,2,4-Trichloroethane ND 110 220 1,1,1-Trichloroethane ND 110 290 1,1,2-Trichloroethane ND 110 290 Trichloroethe	cis-1,2-Dichloroethene	ND		150	290
cis-1,3-Dichloropropene ND 110 290 trans-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 110 290 Methylene Chloride ND 150 290 Styrene ND 110 290 1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichloroethene 660 110 290 1,2,4	trans-1,2-Dichloroethene	ND		150	290
trans-1,3-Dichloropropene ND 110 290 Ethylbenzene ND 110 290 4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 110 290 Methylene Chloride ND 150 290 Styrene ND 110 290 1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichloroethane ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethane ND 110 290 1,1,2-Trichloroethane ND 110 290 Trichloroethane	1,2-Dichloropropane	180	J	110	290
Ethylbenzene ND 110 290 4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 110 290 Methylene Chloride ND 150 290 Styrene ND 110 290 1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane ND 110 290 1,2,4-Triichloroethane ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 1,1,2-Trichloroethane ND 110 290 Trichloroethane ND 110 290 Trichloroethane 23000 110 290 Trichloroethane 660 110 290 Trichloroethane 660 110 290 Trichloroethane 660	cis-1,3-Dichloropropene	ND		110	290
4-Ethyltoluene ND 110 290 Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 110 290 Methylene Chloride ND 150 290 Styrene ND 110 290 1,1,2,2-Tetrachloroethane ND 73 290 1 tetrachloroethane ND 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichloroethane ND 510 1800 1,1,1-Trichloroethane ND 110 290 1,1,2-Trichloroethane ND 110 290 1,1,2-Trichloroethane ND 110 290 Trichloroethane 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	trans-1,3-Dichloropropene	ND		110	290
Hexachlorobutadiene ND 150 590 2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 110 290 Methylene Chloride ND 150 290 Styrene ND 110 290 1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethane ND 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichloroethane ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethane 3000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	Ethylbenzene	ND		110	290
2-Hexanone ND 150 590 4-Methyl-2-pentanone (MIBK) ND 110 290 Methylene Chloride ND 150 290 Styrene ND 110 290 1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	4-Ethyltoluene	ND		110	290
4-Methyl-2-pentanone (MIBK) ND 110 290 Methylene Chloride ND 150 290 Styrene ND 110 290 1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	Hexachlorobutadiene	ND		150	590
Methylene Chloride ND 150 290 Styrene ND 110 290 1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	2-Hexanone	ND		150	590
Styrene ND 110 290 1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	4-Methyl-2-pentanone (MIBK)	ND		110	290
1,1,2,2-Tetrachloroethane ND 73 290 Tetrachloroethene 530 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	Methylene Chloride				
Tetrachloroethene 530 110 290 Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	Styrene	ND			
Toluene ND 110 290 1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590					
1,1,2-Trichloro-1,2,2-trifluoroethane 2800 150 290 1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	Tetrachloroethene				
1,2,4-Trichlorobenzene ND 510 1800 1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	Toluene				
1,1,1-Trichloroethane ND 110 220 1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590		2800		150	290
1,1,2-Trichloroethane ND 110 290 Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	1,2,4-Trichlorobenzene				
Trichloroethene 23000 110 290 Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	1,1,1-Trichloroethane				
Trichlorofluoromethane 660 110 290 1,2,4-Trimethylbenzene ND 150 590	1,1,2-Trichloroethane	ND		110	290
1,2,4-Trimethylbenzene ND 150 590	Trichloroethene	23000		110	290
\cdot		660		110	290
1,3,5-Trimethylbenzene ND 110 290		ND		150	590
	1,3,5-Trimethylbenzene	ND		110	290

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093316-001/CWL-D1-240

Lab Sample ID: 340-5922-11 Date Sampled: 01/17/2013 0902

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC N/A Prep Batch: N/A Lab File ID: C0683.D

Dilution: 733 Initial Weight/Volume: 1.009 mL

Analysis Date: 02/12/2013 1744 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 590 ND 150 Vinyl chloride ND 290 110 m,p-Xylene ND 150 590 o-Xylene ND 110 290

Client Sample ID: 093317-001/CWL-D1-350

Lab Sample ID: 340-5922-12 Date Sampled: 01/17/2013 0907

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0684.D

 Dilution:
 480
 Initial Weight/Volume:
 1.232 mL

 Analysis Date:
 02/12/2013 1823
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		290	580
Benzene	ND		96	190
Benzyl chloride	ND		96	380
Bromodichloromethane	ND		72	140
Bromoform	ND		96	380
Bromomethane	ND		96	380
2-Butanone (MEK)	ND		190	380
Carbon disulfide	ND		96	380
Carbon tetrachloride	ND		96	380
Chlorobenzene	ND		48	140
Chloroethane	ND		340	720
Chloroform	150		48	140
Chloromethane	ND		190	380
Dibromochloromethane	ND		48	190
1,2-Dibromoethane (EDB)	ND		96	380
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		72	190
1,2-Dichlorobenzene	ND		72	190
1,3-Dichlorobenzene	ND		72	190
1,4-Dichlorobenzene	ND		72	190
Dichlorodifluoromethane	ND		72	190
1,1-Dichloroethane	ND		72	140
1,2-Dichloroethane	ND		96	380
1.1-Dichloroethene	700		96	380
cis-1,2-Dichloroethene	ND		96	190
trans-1,2-Dichloroethene	ND		96	190
1,2-Dichloropropane	ND		72	190
cis-1,3-Dichloropropene	ND		72	190
trans-1,3-Dichloropropene	ND		72	190
Ethylbenzene	ND		72	190
4-Ethyltoluene	ND		72	190
Hexachlorobutadiene	ND		96	380
2-Hexanone	ND		96	380
4-Methyl-2-pentanone (MIBK)	ND		72	190
Methylene Chloride	ND		96	190
Styrene	ND		72	190
1,1,2,2-Tetrachloroethane	ND		48	190
Tetrachloroethene	210		72	190
Toluene	ND		72	190
1,1,2-Trichloro-1,2,2-trifluoroethane	1800		96	190
1,2,4-Trichlorobenzene	ND		340	1200
1,1,1-Trichloroethane	ND		72	140
1,1,2-Trichloroethane	ND		72	190
Trichloroethene	13000		72	190
Trichlorofluoromethane	450		72	190
1,2,4-Trimethylbenzene	ND		96	380
1,3,5-Trimethylbenzene	ND		72	190
1,5,5-11methylbenzene	ОИ		12	190

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093317-001/CWL-D1-350

Lab Sample ID: 340-5922-12 Date Sampled: 01/17/2013 0907

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

Analysis Date: 02/12/2013 1823 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 96 380 ND Vinyl chloride ND 72 190 m,p-Xylene ND 96 380 o-Xylene ND 72 190

Client Sample ID: 093318-001/CWL-D1-470

Lab Sample ID: 340-5922-13 Date Sampled: 01/17/2013 0913

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0685.D

Dilution: 2.58 Initial Weight/Volume: 250 mL Analysis Date: 02/12/2013 1904 Final Weight/Volume: 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	12		1.5	3.1
Benzene	ND		0.52	1.0
Benzyl chloride	ND		0.52	2.1
Bromodichloromethane	ND		0.39	0.77
Bromoform	ND		0.52	2.1
Bromomethane	ND		0.52	2.1
2-Butanone (MEK)	4.7		1.0	2.1
Carbon disulfide	ND		0.52	2.1
Carbon tetrachloride	ND		0.52	2.1
Chlorobenzene	ND		0.26	0.77
Chloroethane	ND		1.8	3.9
Chloroform	0.76	J	0.26	0.77
Chloromethane	ND		1.0	2.1
Dibromochloromethane	ND		0.26	1.0
1,2-Dibromoethane (EDB)	ND		0.52	2.1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.39	1.0
1,2-Dichlorobenzene	ND		0.39	1.0
1,3-Dichlorobenzene	ND		0.39	1.0
1,4-Dichlorobenzene	ND		0.39	1.0
Dichlorodifluoromethane	1.4		0.39	1.0
1,1-Dichloroethane	ND		0.39	0.77
1,2-Dichloroethane	ND		0.52	2.1
1,1-Dichloroethene	4.5		0.52	2.1
cis-1,2-Dichloroethene	ND		0.52	1.0
trans-1,2-Dichloroethene	ND		0.52	1.0
1,2-Dichloropropane	ND		0.39	1.0
cis-1,3-Dichloropropene	ND		0.39	1.0
trans-1,3-Dichloropropene	ND		0.39	1.0
Ethylbenzene	ND		0.39	1.0
4-Ethyltoluene	ND		0.39	1.0
Hexachlorobutadiene	ND		0.52	2.1
2-Hexanone	0.53	J	0.52	2.1
4-Methyl-2-pentanone (MIBK)	ND		0.39	1.0
Methylene Chloride	0.80	J	0.52	1.0
Styrene	ND		0.39	1.0
1,1,2,2-Tetrachloroethane	ND		0.26	1.0
Tetrachloroethene	1.9		0.39	1.0
Toluene	ND		0.39	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	16		0.52	1.0
1,2,4-Trichlorobenzene	ND		1.8	6.5
1,1,1-Trichloroethane	ND		0.39	0.77
1,1,2-Trichloroethane	ND		0.39	1.0
Trichloroethene	78		0.39	1.0
Trichlorofluoromethane	4.8		0.39	1.0
1,2,4-Trimethylbenzene	ND		0.52	2.1
1,3,5-Trimethylbenzene	ND		0.39	1.0

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093318-001/CWL-D1-470

Lab Sample ID: 340-5922-13 Date Sampled: 01/17/2013 0913

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0685.D

2.58 Initial Weight/Volume: 250 mL

 Dilution:
 2.58
 Initial Weight/Volume:
 250 mL

 Analysis Date:
 02/12/2013 1904
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 2.1 ND 0.52 Vinyl chloride ND 0.39 1.0 m,p-Xylene ND 0.52 2.1 o-Xylene ND 0.39 1.0

Client Sample ID: 093319-001/CWL-D1-470

Lab Sample ID: 340-5922-14 Date Sampled: 01/17/2013 0915

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0703.D

Dilution: 2.51 Initial Weight/Volume: 250 mL Analysis Date: 02/13/2013 1450 Final Weight/Volume: 250 mL

Benzene ND 0.50 1.0 Benzyl chloride ND 0.50 2.0 Bromodichloromethane ND 0.50 2.0 Bromoform ND 0.50 2.0 Bromomethane ND 0.50 2.0 2-Butanone (MEK) 1.5 J 1.0 2.0 Carbon disulfide ND 0.50 2.0 Carbon tetrachloride ND 0.50 2.0 Chlorobenzene ND 0.50 2.0 Chlorobenzene ND 0.25 0.75 Chlorobenzene ND 1.8 3.8 Chlorobenzene ND 1.0 2.0 Dibromochloromethane ND 1.0 2.0 Dibromochloromethane (EDB) ND 0.25 1.0 1.2-Dichlorobenzene ND 0.38 1.0 1.2-Dichlorobenzene ND 0.38 1.0 1.2-Dichlorobenzene ND 0.38 1.0 1.1-Dichlorobenzene <th< th=""><th>Analyte</th><th>Result (ppb v/v)</th><th>Qualifier</th><th>MDL</th><th>RL</th></th<>	Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Benzyl chloride ND 0.50 2.0 Bromodichloromethane ND 0.38 0.75 Bromofform ND 0.50 2.0 Bromomethane ND 0.50 2.0 Zebtanene (MEK) 1.5 J 1.0 2.0 Carbon disulfide ND 0.50 2.0 Carbon disulfide ND 0.50 2.0 Chlorobenzene ND 0.50 2.0 Chlorobenzene ND 0.25 0.75 Chloromethane ND 1.8 3.8 Chloromethane ND 1.0 2.0 Dibromochloromethane ND 1.0 2.0 Dibromochloromethane ND 0.25 1.0 1.2-Dibromoethane (EDB) ND 0.0 0.50 2.0 1.2-Dichloromethane ND 0.38 1.0 1.2-Dichloromethane ND 0.38 1.0 1.2-Dichloromethane ND 0.38 1.0 1.2-Dich	Acetone	ND		1.5	3.0
Bromodichloromethane ND 0.38 0.75 Bromoform ND 0.50 2.0 Bromofermane ND 0.50 2.0 Sebutanone (MEK) 1.5 J 1.0 2.0 Carbon disulfide ND 0.50 2.0 Carbon tetrachloride ND 0.50 2.0 Chlorobenzene ND 0.50 2.0 Chlorobenzene ND 1.8 3.8 Chloroform 0.40 J 0.25 0.75 Chloromethane ND 1.0 2.0 0.75 Chloromethane ND 1.0 2.0 0.75 Dibromochloromethane ND 0.25 1.0 1.2 1.2-Dichlorobenzene ND 0.50 2.0 1.0 1.2-Dichlorobenzene ND 0.38 1.0 1.2-Dichlorobenzene ND 0.38 1.0 1.1-Dichlorobenzene ND 0.38 1.0 1.1-Dichlorobenzene ND	Benzene	ND		0.50	1.0
Bromomethane	Benzyl chloride	ND		0.50	2.0
Brommethane	Bromodichloromethane	ND		0.38	0.75
2-Butanone (MEK) Carbon disulfide ND 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Bromoform	ND		0.50	2.0
Carbon disulfide ND 0.50 2.0 Carbon tetrachloride ND 0.50 2.0 Chlorobetraene ND 0.25 0.75 Chlorosthane ND 1.8 3.8 Chloromethane ND 1.8 3.8 Chloromethane ND 0.25 0.75 Chloromethane ND 0.25 0.75 Chloromethane ND 0.25 1.0 1,2-Dichromethane ND 0.50 2.0 1,2-Dichloromethane ND 0.50 2.0 1,2-Dichloromethane ND 0.38 1.0 1,2-Dichloromethane ND 0.38 1.0 1,4-Dichloromethane 2.2 0.38 1.0 1,1-Dichloromethane ND 0.38 1.0 1,1-Dichloromethane ND 0.38 0.75 1,2-Dichloromethane ND 0.50 2.0 1,1-Dichloromethane ND 0.50 2.0 1,2-Dichloromethane	Bromomethane	ND		0.50	2.0
Carbon tetrachloride ND 0.50 2.0 Chlorobenzene ND 0.25 0.75 Chloroform 0.40 J 0.25 0.75 Chloroform 0.40 J 0.25 0.75 Chloromethane ND 0.25 0.75 Chloromethane ND 0.25 1.0 1,2-Dibromoethane (EDB) ND 0.50 2.0 1,2-Dibromoethane (EDB) ND 0.50 2.0 1,2-Dichloro-1,1,2,2-tetrafluroethane ND 0.38 1.0 1,2-Dichlorobenzene ND 0.38 1.0 1,2-Dichlorobenzene ND 0.38 1.0 1,2-Dichlorobenzene ND 0.38 1.0 1,2-Dichlorobenzene ND 0.38 1.0 1,1-Dichlorothenzene ND 0.38 1.0 1,1-Dichlorothene ND 0.50 2.0 1,1-Dichlorothene ND 0.50 2.0 1,1-Dichlorothene ND 0.50 1.0	2-Butanone (MEK)	1.5	J	1.0	2.0
Chlorobenzene	Carbon disulfide	ND		0.50	2.0
Chlorothane Chlorothane O.40 O.40 O.25 O.75 Chloromethane O.40 O.40 O.25 O.75 Chloromethane ND O.20 Dibromochloromethane ND O.25 O.20 Dibromochloromethane ND O.25 O.20 O.25 O.30 O.20 O.20 O.20 O.20 O.20 O.30 O.30 O.30 O.30 O.30 O.30 O.30 O.3	Carbon tetrachloride	ND		0.50	2.0
Chloroform	Chlorobenzene	ND		0.25	0.75
Chloromethane ND 1.0 2.0 Dibromochloromethane ND 0.25 1.0 1,2-Dibromochloromethane ND 0.50 2.0 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.38 1.0 1,2-Dichlorobenzene ND 0.38 1.0 1,3-Dichlorobenzene ND 0.38 1.0 1,4-Dichlorobenzene ND 0.38 1.0 1,4-Dichlorothane 2.2 0.38 1.0 1,1-Dichlorothane ND 0.38 1.0 1,1-Dichlorothane ND 0.38 0.75 1,2-Dichlorothane ND 0.50 2.0 1,1-Dichlorothene 5.2 0.50 2.0 1,2-Dichlorothene 5.2 0.50 2.0 1,1-Dichlorothene ND 0.50 2.0 1,2-Dichlorothene ND 0.50 1.0 1,2-Dichlorothene ND 0.50 2.0 1,1-Dichlorothene ND 0.50 1.0 <t< td=""><td>Chloroethane</td><td>ND</td><td></td><td>1.8</td><td>3.8</td></t<>	Chloroethane	ND		1.8	3.8
Dibromochloromethane ND 0.25 1.0 1,2-Dibromoethane (EDB) ND 0.50 2.0 1,2-Dibromoethane (EDB) ND * 0.38 1.0 1,2-Dichlorobenzene ND 0.38 1.0 1,3-Dichlorobenzene ND 0.38 1.0 1,4-Dichlorobenzene ND 0.38 1.0 Dichlorodifluoromethane 2.2 0.38 1.0 1,1-Dichloroethane ND 0.38 0.75 1,1-Dichloroethane ND 0.50 2.0 1,1-Dichloroethane 5.2 0.50 2.0 1,1-Dichloroethane 5.2 0.50 2.0 1,1-Dichloroethane ND 0.50 2.0 1,1-Dichloroethane ND 0.50 1.0 1,2-Dichloroethane ND 0.50 1.0 1,2-Dichloropropane ND 0.50 1.0 1,2-Dichloropropane ND 0.38 1.0 1,1-Dichloroethane ND 0.38 1.0	Chloroform	0.40	J	0.25	0.75
1,2-Dibromoethane (EDB) ND 0.50 2.0 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.38 1.0 1,2-Dichlorobenzene ND 0.38 1.0 1,3-Dichlorobenzene ND 0.38 1.0 1,4-Dichlorobenzene ND 0.38 1.0 Dichlorodifluoromethane 2.2 0.38 1.0 1,1-Dichloroethane ND 0.38 0.75 1,2-Dichloroethane ND 0.50 2.0 1,1-Dichloroethane ND 0.50 2.0 1,1-Dichloroethene 5.2 0.50 2.0 1,2-Dichloroethene ND 0.50 2.0 1,1-Dichloroethene ND 0.50 1.0 1,2-Dichloropropane ND 0.50 1.0 1,2-Dichloropropane ND 0.38 1.0 1,2-Dichloropropane ND 0.38 1.0 2-Hydenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 4-Methyl-2-	Chloromethane	ND		1.0	2.0
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND * 0.38 1.0 1,2-Dichlorobenzene ND 0.38 1.0 1,3-Dichlorobenzene ND 0.38 1.0 1,4-Dichlorobenzene ND 0.38 1.0 Dichlorodifluoromethane 2.2 0.38 1.0 1,1-Dichloroethane ND 0.50 2.0 1,2-Dichloroethane ND 0.50 2.0 1,2-Dichloroethane ND 0.50 2.0 1,2-Dichloroethene ND 0.50 2.0 1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloropropane ND 0.50 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethylboluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 </td <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>0.25</td> <td>1.0</td>	Dibromochloromethane	ND		0.25	1.0
1,2-Dichlorobenzene ND 0.38 1.0 1,3-Dichlorobenzene ND 0.38 1.0 1,4-Dichlorobenzene ND 0.38 1.0 Dichlorodifluoromethane 2.2 0.38 1.0 1,1-Dichloroethane ND 0.38 0.75 1,2-Dichloroethane ND 0.50 2.0 1,1-Dichloroethene 5.2 0.50 2.0 cis-1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloropropane ND 0.50 1.0 cis-1,3-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 <	1,2-Dibromoethane (EDB)	ND		0.50	2.0
1,3-Dichlorobenzene ND 0.38 1.0 1,4-Dichlorobenzene ND 0.38 1.0 Dichlorodifluoromethane 2.2 0.38 1.0 1,1-Dichloroethane ND 0.38 0.75 1,2-Dichloroethane ND 0.50 2.0 1,1-Dichloroethene 5.2 0.50 2.0 cis-1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloropthene ND 0.50 1.0 1,2-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.38 1.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 Ti,	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*	0.38	1.0
1,4-Dichlorobenzene ND 0.38 1.0 Dichlorodifluoromethane 2.2 0.38 1.0 1,1-Dichloroethane ND 0.38 0.75 1,2-Dichloroethane ND 0.50 2.0 1,1-Dichloroethene 5.2 0.50 2.0 cis-1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloropthene ND 0.50 1.0 1,2-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Hexthyl-2-pentanone (MIBK) ND 0.38 1.0 Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0	1,2-Dichlorobenzene	ND		0.38	1.0
Dichlorodifluoromethane 2.2 0.38 1.0 1,1-Dichloroethane ND 0.38 0.75 1,2-Dichloroethane ND 0.50 2.0 1,1-Dichloroethene 5.2 0.50 2.0 cis-1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 2-Hexanone ND 0.38 1.0 Methyle-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.38 1.0	1,3-Dichlorobenzene	ND		0.38	1.0
1,1-Dichloroethane ND 0.38 0.75 1,2-Dichloroethane ND 0.50 2.0 1,1-Dichloroethene 5.2 0.50 2.0 cis-1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.38 1.0 Toluene ND 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.38 0.75	1,4-Dichlorobenzene	ND		0.38	1.0
1,2-Dichloroethane ND 0.50 2.0 1,1-Dichloroethene 5.2 0.50 2.0 cis-1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloropthene ND 0.50 1.0 1,2-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.25 1.0 Tetrachloroethene 1.3 0.38 1.0	Dichlorodifluoromethane	2.2		0.38	1.0
1,1-Dichloroethene 5.2 0.50 2.0 cis-1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloroethene ND 0.50 1.0 1,2-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2-Tetrachloroethane ND 0.38 1.0 Toluene ND 0.38 1.0 1,2,4-Trichloroethane ND 0.38 1.0 1,1,2-Trichloroethane ND 0.38 0.75 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2	1,1-Dichloroethane	ND		0.38	0.75
cis-1,2-Dichloroethene ND 0.50 1.0 trans-1,2-Dichloroethene ND 0.50 1.0 1,2-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 2-Hexanone (MIBK) ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2-Tetrachloroethane ND 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloroethane ND 0.38 1.0 1,1,2-Trichloroethane ND 0.38 0.75	1,2-Dichloroethane	ND		0.50	2.0
trans-1,2-Dichloroethene ND 0.50 1.0 1,2-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2-Z-Tetrachloroethane ND 0.38 1.0 Toluene ND 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloroethane ND 0.38 1.0 1,2,4-Trichloroethane ND 0.38 0.75 1,1,1-Trichloroethane ND 0.38 1.0	1,1-Dichloroethene	5.2		0.50	2.0
1,2-Dichloropropane ND 0.38 1.0 cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 Styrene ND 0.25 1.0 Tetrachloroethane 1.3 0.38 1.0 Toluene ND 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 0.38 0.75 1,1,1-Trichloroethane ND 0.38 1.0 Trichloroethane 51 0.38 1.0 Trichloroethane <td< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td></td><td>0.50</td><td>1.0</td></td<>	cis-1,2-Dichloroethene	ND		0.50	1.0
cis-1,3-Dichloropropene ND 0.38 1.0 trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 2-Hexanone (MIBK) ND 0.38 1.0 Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2-Tetrachloroethane ND 0.38 1.0 1,1,2-Tetrachloroethane ND 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloroethane ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethane 51 0.38 1.0 Trichloroethane 8.2 0.38 1.0 Trichloroethane	trans-1,2-Dichloroethene	ND		0.50	1.0
trans-1,3-Dichloropropene ND 0.38 1.0 Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.25 1.0 Tolluene 1.3 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichloroethane ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethane 51 0.38 1.0 Trichloroethane 8.2 0.38 1.0 Trichloromethane 8.2 0.38 1.0 Trichloromethane 8.2 0.38 1.0 Trichlor	1,2-Dichloropropane	ND		0.38	1.0
Ethylbenzene ND 0.38 1.0 4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.25 1.0 Toluene 1.3 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethane 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 Trichlorofluoromethane ND 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	cis-1,3-Dichloropropene	ND		0.38	1.0
4-Ethyltoluene ND 0.38 1.0 Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2-Tetrachloroethane ND 0.25 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichloroethane ND 1.8 6.3 1,1,1-Trichloroethane ND 1.8 6.3 1,1,2-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethane 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 Trichlorofluoromethane ND 0.50 2.0	trans-1,3-Dichloropropene	ND		0.38	1.0
Hexachlorobutadiene 0.54 J 0.50 2.0 2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.25 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethane 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	Ethylbenzene	ND		0.38	1.0
2-Hexanone ND 0.50 2.0 4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.25 1.0 Tetrachloroethene 1.3 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	4-Ethyltoluene	ND		0.38	1.0
4-Methyl-2-pentanone (MIBK) ND 0.38 1.0 Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.25 1.0 Tetrachloroethene 1.3 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	Hexachlorobutadiene	0.54	J	0.50	2.0
Methylene Chloride 1.8 0.50 1.0 Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.25 1.0 Tetrachloroethene 1.3 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	2-Hexanone	ND		0.50	2.0
Styrene ND 0.38 1.0 1,1,2,2-Tetrachloroethane ND 0.25 1.0 Tetrachloroethene 1.3 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	4-Methyl-2-pentanone (MIBK)	ND		0.38	1.0
1,1,2,2-Tetrachloroethane ND 0.25 1.0 Tetrachloroethene 1.3 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	Methylene Chloride	1.8		0.50	1.0
Tetrachloroethene 1.3 0.38 1.0 Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	Styrene	ND			1.0
Toluene ND 0.38 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	1,1,2,2-Tetrachloroethane	ND			1.0
1,1,2-Trichloro-1,2,2-trifluoroethane 24 0.50 1.0 1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	Tetrachloroethene	1.3		0.38	1.0
1,2,4-Trichlorobenzene ND 1.8 6.3 1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	Toluene	ND		0.38	1.0
1,1,1-Trichloroethane ND 0.38 0.75 1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	1,1,2-Trichloro-1,2,2-trifluoroethane	24		0.50	
1,1,2-Trichloroethane ND 0.38 1.0 Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	1,2,4-Trichlorobenzene	ND		1.8	6.3
Trichloroethene 51 0.38 1.0 Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	1,1,1-Trichloroethane	ND			
Trichlorofluoromethane 8.2 0.38 1.0 1,2,4-Trimethylbenzene ND 0.50 2.0	1,1,2-Trichloroethane	ND		0.38	1.0
1,2,4-Trimethylbenzene ND 0.50 2.0	Trichloroethene	51		0.38	1.0
	Trichlorofluoromethane	8.2		0.38	1.0
1,3,5-Trimethylbenzene ND 0.38 1.0	1,2,4-Trimethylbenzene	ND		0.50	2.0
	1,3,5-Trimethylbenzene	ND		0.38	1.0

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093319-001/CWL-D1-470

Lab Sample ID: 340-5922-14 Date Sampled: 01/17/2013 0915

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0703.D

Dilution: 2.51 Initial Weight/Volume: 250 mL Analysis Date: 02/13/2013 1450 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 2.0 ND 0.50 Vinyl chloride ND 0.38 1.0 m,p-Xylene ND 0.50 2.0 o-Xylene ND 0.38 1.0

Client Sample ID: 093320-001/CWL--FB3

Lab Sample ID: 340-5922-15 Date Sampled: 01/17/2013 0918

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0700.D

Dilution: 1.0 Initial Weight/Volume: 534 mL Analysis Date: 02/13/2013 1246 Final Weight/Volume: 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		0.60	1.2
Benzene	ND		0.20	0.40
Benzyl chloride	ND		0.20	0.80
Bromodichloromethane	ND		0.15	0.30
Bromoform	ND		0.20	0.80
Bromomethane	ND		0.20	0.80
2-Butanone (MEK)	ND		0.40	0.80
Carbon disulfide	ND		0.20	0.80
Carbon tetrachloride	ND		0.20	0.80
Chlorobenzene	ND		0.10	0.30
Chloroethane	ND		0.70	1.5
Chloroform	ND		0.10	0.30
Chloromethane	ND		0.40	0.80
Dibromochloromethane	ND		0.10	0.40
1,2-Dibromoethane (EDB)	ND		0.20	0.80
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*	0.15	0.40
1,2-Dichlorobenzene	ND		0.15	0.40
1,3-Dichlorobenzene	ND		0.15	0.40
1,4-Dichlorobenzene	ND		0.15	0.40
Dichlorodifluoromethane	ND		0.15	0.40
1,1-Dichloroethane	ND		0.15	0.30
1,2-Dichloroethane	ND		0.20	0.80
1,1-Dichloroethene	ND		0.20	0.80
cis-1,2-Dichloroethene	ND		0.20	0.40
trans-1,2-Dichloroethene	ND		0.20	0.40
1,2-Dichloropropane	ND		0.15	0.40
cis-1,3-Dichloropropene	ND		0.15	0.40
trans-1,3-Dichloropropene	ND		0.15	0.40
Ethylbenzene	ND		0.15	0.40
4-Ethyltoluene	ND		0.15	0.40
Hexachlorobutadiene	ND		0.20	0.80
2-Hexanone	ND		0.20	0.80
4-Methyl-2-pentanone (MIBK)	ND		0.15	0.40
Methylene Chloride	ND		0.20	0.40
Styrene	ND		0.15	0.40
1,1,2,2-Tetrachloroethane	ND		0.10	0.40
Tetrachloroethene	ND		0.15	0.40
Toluene	0.17	J	0.15	0.40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.20	0.40
1,2,4-Trichlorobenzene	ND		0.70	2.5
1,1,1-Trichloroethane	ND		0.15	0.30
1,1,2-Trichloroethane	ND		0.15	0.40
Trichloroethene	ND		0.15	0.40
Trichlorofluoromethane	ND		0.15	0.40
1,2,4-Trimethylbenzene	ND		0.20	0.80
1,3,5-Trimethylbenzene	ND		0.15	0.40

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093320-001/CWL--FB3

Lab Sample ID: 340-5922-15 Date Sampled: 01/17/2013 0918

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0700.D

Dilution: 1.0 Initial Weight/Volume: 534 mL Analysis Date: 02/13/2013 1246 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate ND 0.20 0.80 Vinyl chloride ND 0.15 0.40 m,p-Xylene ND 0.20 0.80 o-Xylene ND 0.15 0.40

Client Sample ID: 093321-001/CWL-D2-120

Lab Sample ID: 340-5922-16 Date Sampled: 01/17/2013 0939

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0689.D

 Dilution:
 603
 Initial Weight/Volume:
 0.9513 mL

 Analysis Date:
 02/12/2013 2149
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		360	720
Benzene	ND		120	240
Benzyl chloride	ND		120	480
Bromodichloromethane	ND		90	180
Bromoform	ND		120	480
Bromomethane	ND		120	480
2-Butanone (MEK)	ND		240	480
Carbon disulfide	ND		120	480
Carbon tetrachloride	ND		120	480
Chlorobenzene	ND		60	180
Chloroethane	ND		420	900
Chloroform	770		60	180
Chloromethane	ND		240	480
Dibromochloromethane	ND		60	240
1,2-Dibromoethane (EDB)	ND		120	480
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		90	240
1,2-Dichlorobenzene	ND		90	240
1,3-Dichlorobenzene	ND		90	240
1,4-Dichlorobenzene	ND		90	240
Dichlorodifluoromethane	ND		90	240
1,1-Dichloroethane	ND		90	180
1,2-Dichloroethane	ND		120	480
1,1-Dichloroethene	690		120	480
cis-1,2-Dichloroethene	ND		120	240
trans-1,2-Dichloroethene	ND		120	240
1,2-Dichloropropane	210	J	90	240
cis-1,3-Dichloropropene	ND		90	240
trans-1,3-Dichloropropene	ND		90	240
Ethylbenzene	ND		90	240
4-Ethyltoluene	ND		90	240
Hexachlorobutadiene	ND		120	480
2-Hexanone	ND		120	480
4-Methyl-2-pentanone (MIBK)	ND		90	240
Methylene Chloride	ND		120	240
Styrene	ND		90	240
1,1,2,2-Tetrachloroethane	ND		60	240
Tetrachloroethene	720		90	240
Toluene	ND		90	240
1,1,2-Trichloro-1,2,2-trifluoroethane	2100		120	240
1,2,4-Trichlorobenzene	ND		420	1500
1,1,1-Trichloroethane	ND		90	180
1,1,2-Trichloroethane	ND		90	240
Trichloroethene	19000		90	240
Trichlorofluoromethane	560		90	240
1,2,4-Trimethylbenzene	ND		120	480
1,3,5-Trimethylbenzene	ND		90	240

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093321-001/CWL-D2-120

Lab Sample ID: 340-5922-16 Date Sampled: 01/17/2013 0939

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

Analysis Date: 02/12/2013 2149 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 480 ND 120 Vinyl chloride ND 90 240 m,p-Xylene ND 480 120 o-Xylene ND 90 240

Client Sample ID: 093322-001/CWL-D2-240

Lab Sample ID: 340-5922-17 Date Sampled: 01/17/2013 0946

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0707.D

 Dilution:
 783
 Initial Weight/Volume:
 0.772 mL

 Analysis Date:
 02/13/2013 1734
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		470	940
Benzene	ND		160	310
Benzyl chloride	ND		160	630
Bromodichloromethane	ND		120	230
Bromoform	ND		160	630
Bromomethane	ND		160	630
2-Butanone (MEK)	ND		310	630
Carbon disulfide	ND		160	630
Carbon tetrachloride	ND		160	630
Chlorobenzene	ND		78	230
Chloroethane	ND		550	1200
Chloroform	640		78	230
Chloromethane	ND		310	630
Dibromochloromethane	ND		78	310
1,2-Dibromoethane (EDB)	ND		160	630
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*	120	310
1,2-Dichlorobenzene	ND		120	310
1,3-Dichlorobenzene	ND		120	310
1,4-Dichlorobenzene	ND		120	310
Dichlorodifluoromethane	ND		120	310
1,1-Dichloroethane	ND		120	230
1,2-Dichloroethane	ND		160	630
1,1-Dichloroethene	880		160	630
cis-1,2-Dichloroethene	ND		160	310
trans-1,2-Dichloroethene	ND		160	310
1,2-Dichloropropane	260	J	120	310
cis-1,3-Dichloropropene	ND		120	310
trans-1,3-Dichloropropene	ND		120	310
Ethylbenzene	ND		120	310
4-Ethyltoluene	ND		120	310
Hexachlorobutadiene	ND		160	630
2-Hexanone	ND		160	630
4-Methyl-2-pentanone (MIBK)	ND		120	310
Methylene Chloride	ND		160	310
Styrene	ND		120	310
1,1,2,2-Tetrachloroethane	ND		78	310
Tetrachloroethene	580		120	310
Toluene	ND		120	310
1,1,2-Trichloro-1,2,2-trifluoroethane	2400		160	310
1,2,4-Trichlorobenzene	ND		550	2000
1,1,1-Trichloroethane	ND		120	230
1,1,2-Trichloroethane	ND		120	310
Trichloroethene	23000		120	310
Trichlorofluoromethane	620		120	310
1,2,4-Trimethylbenzene	ND		160	630
1,3,5-Trimethylbenzene	ND		120	310

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093322-001/CWL-D2-240

Lab Sample ID: 340-5922-17 Date Sampled: 01/17/2013 0946

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0707.D

Dilution: 783 Initial Weight/Volume: 0.772 mL

Analysis Date: 02/13/2013 1734 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 630 ND 160 Vinyl chloride ND 120 310 m,p-Xylene ND 630 160 o-Xylene ND 120 310

Client Sample ID: 093323-001/CWL-D2-350

Lab Sample ID: 340-5922-18 Date Sampled: 01/17/2013 0952

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0690.D

 Dilution:
 209
 Initial Weight/Volume:
 2.656 mL

 Analysis Date:
 02/12/2013 2228
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		130	250
Benzene	ND		42	84
Benzyl chloride	ND		42	170
Bromodichloromethane	ND		31	63
Bromoform	ND		42	170
Bromomethane	ND		42	170
2-Butanone (MEK)	ND		84	170
Carbon disulfide	ND		42	170
Carbon tetrachloride	ND		42	170
Chlorobenzene	ND		21	63
Chloroethane	ND		150	310
Chloroform	250		21	63
Chloromethane	ND		84	170
Dibromochloromethane	ND		21	84
1,2-Dibromoethane (EDB)	ND		42	170
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		31	84
1,2-Dichlorobenzene	ND		31	84
1,3-Dichlorobenzene	ND		31	84
1,4-Dichlorobenzene	ND		31	84
Dichlorodifluoromethane	51	J	31	84
1,1-Dichloroethane	ND		31	63
1,2-Dichloroethane	ND		42	170
1,1-Dichloroethene	510		42	170
cis-1,2-Dichloroethene	ND		42	84
trans-1,2-Dichloroethene	ND		42	84
1,2-Dichloropropane	90		31	84
cis-1,3-Dichloropropene	ND		31	84
trans-1,3-Dichloropropene	ND		31	84
Ethylbenzene	ND		31	84
4-Ethyltoluene	ND		31	84
Hexachlorobutadiene	ND		42	170
2-Hexanone	ND		42	170
4-Methyl-2-pentanone (MIBK)	ND		31	84
Methylene Chloride	58	J	42	84
Styrene	ND		31	84
1,1,2,2-Tetrachloroethane	ND		21	84
Tetrachloroethene	300		31	84
Toluene	ND		31	84
1,1,2-Trichloro-1,2,2-trifluoroethane	1400		42	84
1,2,4-Trichlorobenzene	ND		150	520
1,1,1-Trichloroethane	ND		31	63
1,1,2-Trichloroethane	ND		31	84
Trichlorofluoromethane	350		31	84
1,2,4-Trimethylbenzene	ND		42	170
1,3,5-Trimethylbenzene	ND		31	84
Vinyl acetate	ND		42	170

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093323-001/CWL-D2-350

Lab Sample ID: 340-5922-18 Date Sampled: 01/17/2013 0952

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC N/A Prep Batch: N/A Lab File ID: C0690.D

Dilution: Initial Weight/Volume: 209 2.656 mL 250 mL

Analysis Date: 02/12/2013 2228 Final Weight/Volume:

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl chloride 84 ND 31 m,p-Xylene ND 170 42 o-Xylene ND 31 84

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093323-001/CWL-D2-350

Lab Sample ID: 340-5922-18 Date Sampled: 01/17/2013 0952

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0701.D
460 Initial Weight/Volume: 1.206 mL

 Dilution:
 460
 Initial Weight/Volume:
 1.206 mL

 Analysis Date:
 02/13/2013 1327
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RL
Trichloroethene 13000 69 180

Client Sample ID: 093324-001/CWL-D2-440

Lab Sample ID: 340-5922-19 Date Sampled: 01/17/2013 0957

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0691.D

 Dilution:
 5.77
 Initial Weight/Volume:
 100 mL

 Analysis Date:
 02/12/2013 2308
 Final Weight/Volume:
 250 mL

Acetone 9.7 3.5 6.9 Benzych Lohorde ND 12 2.3 Bernych Lohorder ND 1.2 4.6 Bromodichloromethane ND 0.87 1.7 Bromomethane ND 1.2 4.6 Bromomethane ND 1.2 4.6 Bromomethane ND 1.2 4.6 Carbon disulfide ND 1.2 4.6 Carbon tetrachloride ND 1.2 4.6 Chlorobenzene ND 0.58 1.7 Chlororoethane ND 0.58 1.7 Chlororoethane ND 0.58 1.7 Chloromoethane ND 0.58 1.7 Chloromoethane (EDB) ND 1.2 4.6 1.2-Dichloroethane (EDB) ND 1.2 4.6 1.2-Dichloroethane (EDB) ND 0.87 2.3 1.2-Dichloroethane ND 0.87 2.3 1.2-Dichloroethane ND 0.87 </th <th>Analyte</th> <th>Result (ppb v/v)</th> <th>Qualifier</th> <th>MDL</th> <th>RL</th>	Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Benzy chloride ND 1.2 4.6 Bromodichloromethane ND 0.87 1.7 Bromodichloromethane ND 1.2 4.6 Bromomethane ND 1.2 4.6 Bromodiffer ND 2.3 4.6 Carbon disulfide ND 1.2 4.6 Carbon disulfide ND 1.2 4.6 Chlorobenzene ND 1.2 4.6 Chlorochane ND 1.2 4.6 Chlorochane ND 0.58 1.7 Chlorochane ND 0.89 1.7 Chlorochane ND 0.89 1.7 Chlorochane ND 0.88 1.7 Chlorochane ND 0.88 1.7 Chlorochane ND 0.88 2.3 1,2-Dichlorochane ND 0.87 2.3 1,2-Dichlorochane ND 0.87 2.3 1,2-Dichlorochane ND 0.87 2.3	Acetone	9.7			
Bromoform ND 0.87 1.7 Bromoform ND 1.2 4.6 Bromomethane ND 1.2 4.6 2-Butanone (MEK) ND 2.3 4.6 Carbon disulfide ND 1.2 4.6 Carbon tetrachloride ND 1.2 4.6 Chlorobenzene ND 1.2 4.6 Chlorobenzene ND 4.0 8.7 Chloroberne ND 4.0 8.7 Chlorobrome 2.8 0.58 1.7 Chloroomethane ND 2.3 4.6 Dibromochloromethane ND 2.3 4.6 1.2-Dichlorobenae (EDB) ND 1.2 4.6 1.2-Dichloroethane (EDB) ND 0.87 2.3 1.2-Dichloroethane (EDB) ND 0.87 2.3 1.2-Dichloroethane (EDB) ND 0.87 2.3 1.2-Dichloroethane ND 0.87 2.3 1.4-Dichloroethane ND	Benzene	ND		1.2	2.3
Bromoferm ND 1.2 4.6 Bromomethane ND 1.2 4.6 2-Bulanone (MEK) ND 2.3 4.6 Carbon disulfide ND 1.2 4.6 Carbon tetrachloride ND 1.2 4.6 Chlorobenzene ND 0.58 1.7 Chloroform 2.8 0.58 1.7 Chloromethane ND 4.0 8.7 Chloromethane ND 2.3 4.6 Dibromochloromethane ND 0.58 1.7 Chloromethane (EDB) ND 0.58 2.3 1,2-Dibromoethane (EDB) ND 0.87 2.3 1,2-Dichloro-Li, 1,2-Letrafluorethane ND 0.87 2.3 1,2-Dichloro-Li, 1,2-Letrafluorethane ND 0.87 2.3 1,2-Dichloro-Li, 1,2-Letrafluorethane ND 0.87 2.3 1,1-Dichloro-Dichace ND 0.87 2.3 1,1-Dichloro-Dichace ND 0.87 2.3	Benzyl chloride	ND		1.2	4.6
Bromomethane ND 1.2 4.6 2-Butannone (MEK) ND 2.3 4.6 Carbon disulfide ND 1.2 4.6 Carbon tetrachloride ND 1.2 4.6 Chlorocherane ND 0.58 1.7 Chlorochtane ND 4.0 8.7 Chlorochtane ND 4.0 8.7 Chlorochtane ND 2.3 4.6 Dibromochloromethane ND 0.58 2.3 L2-Dichlorochtane ND 0.58 2.3 1,2-Dichlorochtane (EDB) ND 1.2 4.6 1,2-Dichlorochtane (EDB) ND 0.87 2.3 1,3-Dichlorochtane ND 0.87 2.3 1,4-Dichlorochtane ND 0.87 2.3 1,1-Dichlorochtane ND 0.87 2.3 1,1-Dichlorochtane ND 1.2 4.6 1,1-Dichlorochtane ND 1.2 2.3 1,1-Dichlorochtane ND	Bromodichloromethane	ND			1.7
2-Butanone (MEK) ND 2.3 4.6 Carbon disulfide ND 1.2 4.6 Carbon tetrachloride ND 1.2 4.6 Chlorobenzene ND 0.58 1.7 Chloroform 2.8 0.58 1.7 Chloroform 2.8 0.58 1.7 Chloromethane ND 0.58 2.3 Chloromethane ND 0.58 2.3 1,2-Dichrorothane ND 0.58 2.3 1,2-Dichlorothane ND 0.87 2.3 1,2-Dichlorothane ND 0.87 2.3 1,2-Dichlorothane ND 0.87 2.3 1,2-Dichlorothane ND 0.87 2.3 1,1-Dichlorothane ND 0.87 2.3 1,1-Dichlorothane ND 0.87 2.3 1,1-Dichlorothane ND 1.2 4.6 1,1-Dichlorothane ND 1.2 4.6 1,1-Dichlorothane ND 1.2 <td>Bromoform</td> <td>ND</td> <td></td> <td>1.2</td> <td>4.6</td>	Bromoform	ND		1.2	4.6
Carbon disulfide ND 1.2 4.6 Carbon tetrachioride ND 1.2 4.6 Chiloroberace ND 0.58 1.7 Chilorocheme ND 4.0 8.7 Chiloroform 2.8 0.58 1.7 Chiloromethane ND 2.3 4.6 Dibromochloromethane ND 0.58 2.3 L2-Dichlorobeneme ND 0.58 2.3 1,2-Dichloromethane ND 0.87 2.3 1,2-Dichlorobeneme ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,3-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 1,1-Dichlorobenzene ND 0.87 2.3 1,1-Dichlorobenzene ND 0.87 2.3 1,1-Dichlorobenzene ND 1.2 4.6 cis-1,2-Dichloroptopene	Bromomethane	ND		1.2	4.6
Cathon tetrachloride ND 1.2 4.6 Chlorobenzene ND 0.58 1.7 Chloroffame ND 4.0 8.7 Chloroffam 2.8 0.58 1.7 Chloromethane ND 2.3 4.6 Dibromochloromethane ND 0.58 2.3 1.2-Dichloro-1,12,2-letrafluoroethane ND 0.87 2.3 1,2-Dichloro-1,12,2-letrafluoroethane ND 0.87 2.3 1,2-Dichloro-1,12,2-letrafluoroethane ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 1,1-Dichlorobenzene ND 0.87 2.3 1,1-Dichlorobenzene ND 0.87 2.3 1,1-Dichlorobethane ND 1.2 4.6 1,1-Dichlorobenzene ND 1.2 4.6 1,1-1,2-Dichloroptopene ND 0.87 2.3	2-Butanone (MEK)	ND		2.3	4.6
Chlorobenzene ND 0.58 1.7 Chloroform 2.8 0.58 1.7 Chloromethane ND 2.3 4.6 Dibromochloromethane ND 0.58 2.3 1,2-Dibromochloromethane (EDB) ND 0.58 2.3 1,2-Dichlorobenzene (EDB) ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,3-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 1,1-Dichlorobenzene ND 0.87 1.7 1,2-Dichlorobethane ND 1.2 4.6 1,1-Dichlorobethane ND 1.2 4.6 1,1-Dichloropropene ND 1.2 2.3 1,2-Dichloropropene ND 0.87 2.3 1,2-Di	Carbon disulfide	ND		1.2	4.6
Chlorochtane ND 4.0 8.7 Chlorofrom 2.8 0.58 1.7 Chloromethane ND 2.3 4.6 Dibromochloromethane ND 0.58 2.3 1,2-Dichlorobenzene ND 1.2 4.6 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 1,4-Dichloroethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 1.7 1,2-Dichloroethane ND 1.2 4.6 1,1-Dichloroethane ND 1.2 4.6 1,1-Dichloroethane ND 1.2 4.6 1,1-Dichloroethane ND 1.2 4.6 1,1-Dichloroethane ND 1.2 4.6 1,2-Dichloroptopp	Carbon tetrachloride	ND		1.2	4.6
Chlorofrom 2.8 0.58 1.7 Chloromethane ND 2.3 4.6 Dibromochloromethane ND 0.58 2.3 1,2-Dichloro-1,1,2-Petrafluoroethane ND 1.2 4.6 1,2-Dichloro-1,1,2-Petrafluoroethane ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,3-Dichlorobenzene ND 0.87 2.3 1,4-Dichloroethane ND 0.87 2.3 1,4-Dichloroethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 1.7 1,2-Dichloroethane ND 1.2 4.6 1,1-Dichloroethane ND 1.2 4.6 1,1-Dichloroethane ND 1.2 2.3 1,2-Dichloroethane ND 1.2 2.3 1,2-Dichloroethane ND 1.2 4.6 1,3-Dichloroethane ND 0.87 2.3 1,2-Dichloroethane ND 0.87 2.3	Chlorobenzene	ND			1.7
Chloromethane ND 2.3 4.6 Dibromochloromethane (EDB) ND 0.58 2.3 1.2-Dibromothane (EDB) ND 1.2 4.6 1,2-Dichlorobenzene ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,3-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorothane ND 0.87 2.3 1,1-Dichlorothane ND 0.87 2.3 1,1-Dichlorothane ND 0.87 1.7 1,2-Dichlorothane ND 0.87 1.7 1,2-Dichlorothane 5.7 1.2 4.6 1,1-Dichlorothane ND 1.2 4.6 1,1-Dichlorothane ND 1.2 2.3 trans-1,2-Dichlorothane ND 1.2 4.6 1,2-Dichlorothane ND 0.87 2.3 trans-1,2-Dichloropropane ND 0.87 2.3 trans-1	Chloroethane	ND		4.0	8.7
Dibromochloromethane ND 0.58 2.3 1,2-Dibromoethane (EDB) ND 1.2 4.6 1,2-Dibromoethane (EDB) ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,3-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 Dichlorodifluoromethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 1.7 1,2-Dichloroethane ND 1.2 4.6 1,1-Dichloroethane 5.7 1.2 4.6 1,1-Dichloroethane ND 1.2 2.3 1,2-Dichloroethane ND 1.2 2.3 1,2-Dichloroethane ND 1.2 2.3 1,2-Dichloropropane 1.0 J 0.87 2.3 1,2-Dichloropropane ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 <tr< td=""><td>Chloroform</td><td>2.8</td><td></td><td></td><td>1.7</td></tr<>	Chloroform	2.8			1.7
1,2-Dibromoethane (EDB) ND 1,2 decidioro-1,1,2,2-letrafluoroethane ND 0.87 2.3 1,2-Dichloro-1,1,2,2-letrafluoroethane ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,3-Dichlorobenzene ND 0.87 2.3 1,4-Dichloroethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 2.3 1,1-Dichloroethane ND 1.2 4.6 1,1-Dichloroethane ND 1.2 4.6 cis-1,2-Dichloroethane ND 1.2 4.6 cis-1,2-Dichloroethane ND 1.2 2.3 trans-1,2-Dichloropropene ND 1.2 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 Hexachlorobutadiene ND 0.87 2.3 Hexachloroethane ND 0.87 2.3 Styrene <td>Chloromethane</td> <td>ND</td> <td></td> <td>2.3</td> <td>4.6</td>	Chloromethane	ND		2.3	4.6
1,2-Dichloro-1,1,2,2-letrafluoroethane ND 0.87 2.3 1,2-Dichlorobenzene ND 0.87 2.3 1,3-Dichlorobenzene ND 0.87 2.3 1,4-Dichloroethane ND 0.87 2.3 Dichlorodifluoromethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 1.7 1,2-Dichloroethane ND 1.2 46 1,1-Dichloroethane ND 1.2 46 1,1-Dichloroethane ND 1.2 2.3 1,1-Dichloroethene ND 1.2 2.3 cis-1,2-Dichloroethene ND 1.2 2.3 trans-1,3-Dichloropropane 1.0 J 0.87 2.3 1,2-Dichloropropane ND 0.87 2.3 cis-1,2-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 Hexachlorobutadiene ND 0.87 2.3 <	Dibromochloromethane	ND		0.58	2.3
1,2-Dichlorobenzene ND 0.87 2.3 1,3-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 Dichlorodifluoromethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 1.7 1,2-Dichloroethane ND 1.2 4.6 1,1-Dichloroethene 5.7 1.2 4.6 cis-1,2-Dichloroethene ND 1.2 2.3 trans-1,2-Dichloroptopene ND 1.2 2.3 trans-1,2-Dichloropropane 1.0 J 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 Hexachlorobutadiene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanne ND 0.87 2.3 Hexanne ND 0.87 2.3 Styrene ND 0.87 2.3 Attentholoroetha	1,2-Dibromoethane (EDB)	ND			4.6
1,3-Dichlorobenzene ND 0.87 2.3 1,4-Dichlorobenzene ND 0.87 2.3 Dichlorodifloromethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 1.7 1,2-Dichloroethane ND 1.2 4.6 1,1-Dichloroethene 5.7 1.2 4.6 1,2-Dichloroethene ND 1.2 2.3 trans-1,2-Dichloroethene ND 1.2 2.3 1,2-Dichloropropane 1.0 J 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 4-Ethylbourene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Styrene ND 0.87 2.3 Styrene ND 0.87 2.3 Tetrachloroethane	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.87	2.3
1,4-Dichlorobenzene ND 0.87 2.3 Dichlorodifluoromethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 1.7 1,2-Dichloroethane ND 1.2 4.6 1,1-Dichloroethene 5.7 1.2 4.6 1,1-Dichloroethene ND 1.2 2.3 cis-1,2-Dichloroptehene ND 1.2 2.3 1,2-Dichloroptopane 1.0 J 0.87 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 4-Ethylbuene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Hethyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2-Tetrachloroethane ND 0.87 2.3 <td< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td></td><td>0.87</td><td>2.3</td></td<>	1,2-Dichlorobenzene	ND		0.87	2.3
Dichlorodifluoromethane ND 0.87 2.3 1,1-Dichloroethane ND 0.87 1.7 1,2-Dichloroethane ND 1.2 4.6 1,1-Dichloroethene 5.7 1.2 4.6 cis-1,2-Dichloroethene ND 1.2 2.3 trans-1,2-Dichloroethene ND 1.2 2.3 1,2-Dichloropropane 1.0 J 0.87 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 Hexachlorobutadiene ND 0.87 2.3 4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 0.87 2.3 Methyl-2-pentanone (MIBK) ND 0.87 2.3 Styrene ND 0.87 2.3 1,1,2-Tetrachloroethane ND 0.87 2.3	1,3-Dichlorobenzene	ND		0.87	2.3
1,1-Dichloroethane ND 0.87 1.7 1,2-Dichloroethane ND 1.2 4.6 1,1-Dichloroethene 5.7 1.2 4.6 cis-1,2-Dichloroethene ND 1.2 2.3 trans-1,2-Dichloroptopene ND 1.2 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 Hexachlorobutadiene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 Tetrachloroethane ND 0.87 2.3 Tetrachloroethene ND 0.87 2.3 Ti,2-Trichloroethane ND 0.87 2.3 1,1,2-Trichloroethane<	1,4-Dichlorobenzene	ND		0.87	2.3
1,2-Dichloroethane ND 1,2 4.6 1,1-Dichloroethene 5.7 1,2 4.6 cis-1,2-Dichloroethene ND 1,2 2.3 trans-1,2-Dichloropthene ND 1,2 2.3 1,2-Dichloropropane 1.0 J 0.87 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 0.87 2.3 4-Hexanone ND 0.87 2.3 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2-Tetrachloroethane ND 0.87 2.3 Tolluene ND 0.87 2.3 1,2,4-Trichloro-1,2,2-trifluoroethane ND 4.0 14 <td>Dichlorodifluoromethane</td> <td>ND</td> <td></td> <td>0.87</td> <td>2.3</td>	Dichlorodifluoromethane	ND		0.87	2.3
1,1-Dichloroethene 5.7 1.2 4.6 cis-1,2-Dichloroethene ND 1.2 2.3 trans-1,2-Dichloroethene ND 1.2 2.3 1,2-Dichloropropane 1.0 J 0.87 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 0.87 2.3 4-Hexanone ND 1.2 4.6 4-Hexanone (MIBK) ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2-Tetrachloroethane ND 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloroethane ND 4.0 14 1,1,1-Trichloroethane ND 0.87 2.3 1,2	1,1-Dichloroethane	ND		0.87	1.7
cis-1,2-Dichloroethene ND 1.2 2.3 trans-1,2-Dichloroethene ND 1.2 2.3 1,2-Dichloropropane 1.0 J 0.87 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 2-Hexanone ND 1.2 4.6 2-Hexanone ND 1.2 4.6 2-Hexanone ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2-Terfachloroethane ND 0.87 2.3 Tollone ND 0.87 2.3 1,2-Trichloroethan	1,2-Dichloroethane	ND		1.2	4.6
trans-1,2-Dichloroethene ND 1.2 2.3 1,2-Dichloropropane 1.0 J 0.87 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2,2-Tetrachloroethane ND 0.58 2.3 Tetrachloroethene 3.3 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trinchloroethane ND 0.87 2.3 1,1,2-Trichloroethane ND 0.87	1,1-Dichloroethene	5.7		1.2	4.6
1,2-Dichloropropane 1.0 J 0.87 2.3 cis-1,3-Dichloropropene ND 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2-Tetrachloroethane ND 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloroethane ND 0.87 2.3 1,1,2-Trichloroethane ND 0.87 2.3 1,2,4-Trichloroethane ND 0.87 2.3 1,1,2-Trichloroethane ND 0.87 2.3 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethane ND 0.87 2.3 Tr	cis-1,2-Dichloroethene	ND			2.3
cis-1,3-Dichloropropene ND 0.87 2.3 trans-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2-Tetrachloroethane ND 0.87 2.3 Tetrachloroethene ND 0.87 2.3 1,1,2-Trichloroethane 11 1.2 2.3 1,1,2-Trichloroethane ND 0.87 2.3 1,1,2-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethane 110 0.87 2.3 </td <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td></td> <td>1.2</td> <td>2.3</td>	trans-1,2-Dichloroethene	ND		1.2	2.3
trans-1,3-Dichloropropene ND 0.87 2.3 Ethylbenzene ND 0.87 2.3 4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2,2-Tetrachloroethane ND 0.87 2.3 Tetrachloroethene 3.3 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichloroethane ND 0.87 2.3 1,1,2-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethane ND 0.87 2.3 Trichloroethane 1.0 0.87 2.3	1,2-Dichloropropane	1.0	J	0.87	
Ethylbenzene ND 0.87 2.3 4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2,2-Tetrachloroethane ND 0.58 2.3 Tetrachloroethene 3.3 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethane ND 0.87 2.3 Trichloroethane 110 0.87 2.3 Trichloroethane 3.4 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylben	cis-1,3-Dichloropropene	ND		0.87	2.3
4-Ethyltoluene ND 0.87 2.3 Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2,2-Tetrachloroethane ND 0.58 2.3 Tetrachloroethene 3.3 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,1,4-Trichloroethane ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	trans-1,3-Dichloropropene	ND		0.87	2.3
Hexachlorobutadiene ND 1.2 4.6 2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2,2-Tetrachloroethane ND 0.58 2.3 Tetrachloroethane ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichloroethane ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethane ND 0.87 2.3 Trichloroethane 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	Ethylbenzene	ND		0.87	
2-Hexanone ND 1.2 4.6 4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2,2-Tetrachloroethane ND 0.58 2.3 Tetrachloroethene 3.3 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichlorobenzene ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	4-Ethyltoluene	ND			2.3
4-Methyl-2-pentanone (MIBK) ND 0.87 2.3 Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2,2-Tetrachloroethane ND 0.58 2.3 Tetrachloroethene ND 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichlorobenzene ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	Hexachlorobutadiene	ND		1.2	4.6
Methylene Chloride 1.2 J 1.2 2.3 Styrene ND 0.87 2.3 1,1,2,2-Tetrachloroethane ND 0.58 2.3 Tetrachloroethene 3.3 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichlorobenzene ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	2-Hexanone	ND		1.2	4.6
Styrene ND 0.87 2.3 1,1,2,2-Tetrachloroethane ND 0.58 2.3 Tetrachloroethene 3.3 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichlorobenzene ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	4-Methyl-2-pentanone (MIBK)	ND		0.87	2.3
1,1,2,2-Tetrachloroethane ND 0.58 2.3 Tetrachloroethene 3.3 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichlorobenzene ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	Methylene Chloride	1.2	J		2.3
Tetrachloroethene 3.3 0.87 2.3 Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichlorobenzene ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	Styrene	ND		0.87	
Toluene ND 0.87 2.3 1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichlorobenzene ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	1,1,2,2-Tetrachloroethane	ND			
1,1,2-Trichloro-1,2,2-trifluoroethane 11 1.2 2.3 1,2,4-Trichlorobenzene ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethane 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	Tetrachloroethene	3.3		0.87	2.3
1,2,4-Trichlorobenzene ND 4.0 14 1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6	Toluene	ND			2.3
1,1,1-Trichloroethane ND 0.87 1.7 1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6		11		1.2	2.3
1,1,2-Trichloroethane ND 0.87 2.3 Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6					
Trichloroethene 110 0.87 2.3 Trichlorofluoromethane 3.4 0.87 2.3 1,2,4-Trimethylbenzene ND 1.2 4.6					
Trichlorofluoromethane3.40.872.31,2,4-TrimethylbenzeneND1.24.6	1,1,2-Trichloroethane	ND			
1,2,4-Trimethylbenzene ND 1.2 4.6	Trichloroethene	110		0.87	2.3
·	Trichlorofluoromethane	3.4			2.3
1,3,5-Trimethylbenzene ND 0.87 2.3		ND		1.2	4.6
	1,3,5-Trimethylbenzene	ND		0.87	2.3

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093324-001/CWL-D2-440

Lab Sample ID: 340-5922-19 Date Sampled: 01/17/2013 0957

Client Matrix: Air Date Received: 01/25/2013 1010

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0691.D
5.77 Initial Weight/Volume: 100 mL

 Dilution:
 5.77
 Initial Weight/Volume:
 100 mL

 Analysis Date:
 02/12/2013 2308
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 4.6 ND 1.2 Vinyl chloride ND 2.3 0.87 m,p-Xylene ND 1.2 4.6 o-Xylene ND 0.87 2.3

Client Sample ID: 093325-001/CWL-D2-470

Lab Sample ID: 340-5922-20 Date Sampled: 01/17/2013 1003

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0702.D

 Dilution:
 224
 Initial Weight/Volume:
 2.768 mL

 Analysis Date:
 02/13/2013 1408
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		130	270
Benzene	ND		45	90
Benzyl chloride	ND		45	180
Bromodichloromethane	ND		34	67
Bromoform	ND		45	180
Bromomethane	ND		45	180
2-Butanone (MEK)	ND		90	180
Carbon disulfide	ND		45	180
Carbon tetrachloride	ND		45	180
Chlorobenzene	ND		22	67
Chloroethane	ND		160	340
Chloroform	360		22	67
Chloromethane	ND		90	180
Dibromochloromethane	ND		22	90
1,2-Dibromoethane (EDB)	ND		45	180
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*	34	90
1,2-Dichlorobenzene	ND		34	90
1,3-Dichlorobenzene	ND		34	90
1,4-Dichlorobenzene	ND		34	90
Dichlorodifluoromethane	ND		34	90
1,1-Dichloroethane	ND		34	67
1,2-Dichloroethane	ND		45	180
1,1-Dichloroethene	130	J	45	180
cis-1,2-Dichloroethene	ND		45	90
trans-1,2-Dichloroethene	ND		45	90
1,2-Dichloropropane	99		34	90
cis-1,3-Dichloropropene	ND		34	90
trans-1,3-Dichloropropene	ND		34	90
Ethylbenzene	ND		34	90
4-Ethyltoluene	ND		34	90
Hexachlorobutadiene	ND		45	180
2-Hexanone	ND		45	180
4-Methyl-2-pentanone (MIBK)	ND		34	90
Methylene Chloride	ND		45	90
Styrene	ND		34	90
1,1,2,2-Tetrachloroethane	ND		22	90
Tetrachloroethene	340		34	90
Toluene	ND		34	90
1,1,2-Trichloro-1,2,2-trifluoroethane	390		45	90
1,2,4-Trichlorobenzene	ND		160	560
1,1,1-Trichloroethane	36	J	34	67
1,1,2-Trichloroethane	ND	-	34	90
Trichloroethene	7000		34	90
	130		34	90
Trichlorofluoromethane 1,2,4-Trimethylbenzene	130 ND		34 45	90 180

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093325-001/CWL-D2-470

Lab Sample ID: 340-5922-20 Date Sampled: 01/17/2013 1003

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

Analysis Date: 02/13/2013 1408 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 45 ND 180 Vinyl chloride ND 34 90 m,p-Xylene ND 45 180 o-Xylene ND 34 90

Client Sample ID: 093326-001/CWL-D2-470

Lab Sample ID: 340-5922-21 Date Sampled: 01/17/2013 1006

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0693.D

 Dilution:
 171
 Initial Weight/Volume:
 3.525 mL

 Analysis Date:
 02/13/2013 0026
 Final Weight/Volume:
 250 mL

Benzene ND 34 68 Benzyl chloride ND 34 140 Bromodichloromethane ND 26 51 Bromoform ND 34 140 Bromomethane ND 34 140 2-Butanone (MEK) ND 34 140 Carbon disulfide ND 34 140 Carbon tetrachloride ND 34 140 Chlorotencene ND 17 51 Chlorotenzene ND 120 260 Chlororomethane ND 17 51 Chloromethane ND 17 51 Chlororomethane ND 17 68 140 Dibromochioromethane ND 17 68 140 1,2-Dichloromethane ND 26 68 140 1,2-Dichloromethane ND 26 68 1,2-Dichloromethane ND 26 68 1,4-Dichloromethane ND 34 </th <th>Analyte</th> <th>Result (ppb v/v)</th> <th>Qualifier</th> <th>MDL</th> <th>RL</th>	Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Benzy chloride ND 34 140 Bromodichloromethane ND 26 51 Bromodichloromethane ND 34 140 Bromomethane ND 34 140 2-Butanone (MEK) ND 34 140 Carbon tetrachloride ND 34 140 Carbon tetrachloride ND 34 140 Chlorobenzene ND 17 51 Chlorocheane ND 17 51 Chloroform 250 17 51 Chlororomethane ND 120 260 Chlororomethane ND 68 140 Dibromochloromethane (EDB) ND 17 68 1,2-Dichloro-1,12,2-tetrafluoroethane ND 26 68 1,2-Dichloroethane (EDB) ND 26 68 1,2-Dichloroethazene ND 26 68 1,2-Dichloroethazene ND 26 68 1,1-Dichloroethazene ND	Acetone	ND		100	210
Bromodorm ND 26 51 Bromoform ND 34 140 Bromomethane ND 34 140 2-Butanone (MEK) ND 68 140 Carbon disulfide ND 34 140 Carbon tetrachloride ND 34 140 Carbon tetrachloride ND 34 140 Chlorobenzene ND 17 51 Chlorobenzene ND 120 260 Chloroform 250 17 51 Chloromethane ND 68 140 Dbromochloromethane ND 68 140 Dbromochloromethane ND 34 140 1,2-Dichlorobane ND 34 140 1,2-Dichlorobane ND 26 68 1,2-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 34 140 <t< td=""><td>Benzene</td><td>ND</td><td></td><td>34</td><td>68</td></t<>	Benzene	ND		34	68
Bromnorm ND 34 140 Permomethane ND 34 140 2-Butanone (MEK) ND 68 140 Carbon disulfide ND 34 140 Carbon tetrachloride ND 34 140 Chlorobenzene ND 17 51 Chlorochethane ND 120 260 Chlororomethane ND 120 260 Chloromethane ND 17 51 Chloromethane ND 68 140 Dibromochloromethane ND 17 68 1,2-Dibromoethane (EDB) ND 34 140 1,2-Dichloromethane (EDB) ND 26 68 1,2-Dichloromethane ND 26 68 1,3-Dichlorobenzene ND 26 68 Dichlorodethane ND 26 68 1,1-Dichlorotethane ND 34 140 1,1-Dichlorotethane ND 34 140 </td <td>Benzyl chloride</td> <td>ND</td> <td></td> <td>34</td> <td>140</td>	Benzyl chloride	ND		34	140
Bromomethane	Bromodichloromethane	ND		26	51
2-Butanone (MEK) ND 68 140 Carbon disulfide ND 34 140 Carbon tetrachloride ND 34 140 Chlorobenzene ND 17 51 Chloroform 250 17 51 Chloroform 250 17 51 Chloromethane ND 88 140 Dibromochloromethane ND 17 68 1,2-Dibromoethane (EDB) ND 34 140 1,2-Dichloro-1,2-2-tetraflurocethane ND 34 140 1,2-Dichlorobenzene ND 26 68 1,2-Dichlorobenzene ND 26 68 1,2-Dichloroethane ND 26 68 1,2-Dichloroethane ND 26 68 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34	Bromoform	ND		34	140
Carbon disulfide ND 34 140 Carbon tetrachloride ND 34 140 Chlorobenzene ND 17 51 Chlorodethane ND 120 260 Chloromethane ND 180 19 Chloromethane ND 68 140 Dibromochloromethane ND 17 68 1,2-Dichnochloromethane ND 34 140 1,2-Dichnochloromethane ND 34 140 1,2-Dichlorochlane ND 26 68 1,2-Dichlorochlane ND 26 68 1,4-Dichlorochlane ND 26 68 1,1-Dichlorochlane ND 26 68 1,1-Dichlorochlane ND 34 140 1,1-Dichlorochlane ND 34 140 1,1-Dichlorochlane ND 34 68 1,1-Dichlorochlane ND 34 68 1,2-Dichlorochlane ND 34	Bromomethane	ND		34	140
Carbon tetrachloride ND 34 140 Chlorobenzene ND 17 51 Chlorofform 250 17 51 Chlorofform 250 17 51 Chloromethane ND 17 68 Chloromethane ND 17 68 1,2-Dichlorophane ND 34 140 1,2-Dichlorophane ND 34 140 1,2-Dichlorophane ND 26 68 1,2-Dichlorophane ND 26 68 1,2-Dichlorophane ND 26 68 1,4-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 26 68 1,1-Dichlorobenzene ND 34 140 1,1-Dichlorobenzene ND 34 140 1,1-Dichlorobenzene ND 34 140 1,1-Dichlorobenzene ND 34 140	2-Butanone (MEK)	ND		68	140
Chlorobenzene ND 17 51 Chloroterbane ND 120 260 Chloromethane ND 17 51 Chloromethane ND 68 140 Dibromochloromethane ND 17 68 1,2-Dichloromethane (EDB) ND 34 140 1,2-Dichlorobenzene ND 26 68 1,2-Dichlorobenzene ND 26 68 1,3-Dichlorobenzene ND 26 68 1,3-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 26 68 1,1-Dichlorobethane ND 34 140 1,1-Dichlorobethane ND 34 140 1,1-Dichlorobethane ND 34 140 1,1-Dichloropropane 62 J 34 140 1,1-Dichloropropane 62 J 26 68 Ethylbenzene	Carbon disulfide	ND		34	140
Chloroethane ND 120 260 Chloroform 250 17 51 Chloromethane ND 68 140 Dibromochloromethane ND 17 68 1,2-Dichloromethane (EDB) ND 34 140 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 26 68 1,2-Dichlorobenzene ND 26 68 1,2-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane 97 J 34 68 trans-1,2-Dichloroethane ND 34 68 trans-1,2-Dichloroethane ND 26 68 trans-1,3-Dic	Carbon tetrachloride	ND		34	140
Chloroform 250 17 51 Chloromethane ND 68 140 Dibromochloromethane ND 17 68 1,2-Dibromoethane (EDB) ND 34 140 1,2-Dichloro-1,1,2-2-tetrafluoroethane ND 26 68 1,2-Dichlorobenzene ND 26 68 1,3-Dichlorobenzene ND 26 68 1,4-Dichloroethane ND 26 68 Dichlorodifluoromethane ND 26 68 Dichloroethane ND 26 68 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethene ND 34 140 1,1-Dichloroethene ND 34 68 1,2-Dichloropropane 62 J 26 68 1,2-Dichloropropane ND 34 68 1,2-Dichloropropane ND 26 68 1,2-Tichloropropane <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>17</td> <td>51</td>	Chlorobenzene	ND		17	51
Chloromethane ND 68 140 Dibromochloromethane ND 17 68 1,2-Dibromethane (EDB) ND 34 140 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 26 68 1,2-Dichlorobenzene ND 26 68 1,3-Dichlorobenzene ND 26 68 1,4-Dichloroethane ND 26 68 1,4-Dichloroethane ND 26 68 1,4-Dichloroethane ND 26 68 1,1-Dichloroethane ND 26 51 1,2-Dichloroethane ND 34 140 1,1-Dichloroethane 97 J 34 140 1,1-Dichloroethene 97 J 34 140 1,1-Dichloroethene 97 J 34 140 1,1-Dichloroethene ND 34 68 1,1-Dichloroethene ND 34 68 1,1-Dichloroethene ND 34 68	Chloroethane	ND			
Dibromochloromethane ND 17 68 1,2-Dibromoethane (EDB) ND 34 140 1,2-Dibromoethane (EDB) ND 26 68 1,2-Dichlorobenzene ND 26 68 1,3-Dichlorobenzene ND 26 68 1,3-Dichlorobenzene ND 26 68 Dichlorodifluoromethane ND 26 68 Dichlorodethane ND 26 68 1,1-Dichloroethane ND 26 51 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 68 1,1-Dichloroethane ND 34 68 1,1-Dichloroethane ND 34 68 1,2-Dichloroptopane 62 J 36 68 1,2-Dichloroptopane 62 J 26 68 trans-1,3-Dichloroptopane ND 26 68 t	Chloroform	250			51
1,2-Dibromoethane (EDB) ND 34 140 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 26 68 1,2-Dichlorobenzene ND 26 68 1,3-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 26 68 Dichloroditurormethane ND 26 68 1,1-Dichloroethane ND 26 51 1,2-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 68 1,2-Dichloroethene ND 34 68 1,2-Dichloropropane 62 J 26 68 1,2-Dichloropropane ND 34 68 1,2-Dichloropropane ND 26 68 1,3-Dichloropropene ND 26 68 1,4-Bityllouene ND 26 68 4-Ethyllouene ND 34 140 4-Hexanone ND 34 140 4-Hexanone ND 34 68 Styrene ND 36 68 Styrene	Chloromethane	ND		68	140
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 26 68 1,2-Dichlorobenzene ND 26 68 1,3-Dichlorobenzene ND 26 68 1,4-Dichloroethane ND 26 68 1,4-Dichloroethane ND 26 68 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 140 1,1-Dichloroethane ND 34 68 1,2-Dichloroethane ND 34 68 trans-1,2-Dichloropropane 62 J 26 68 trans-1,2-Dichloropropane 62 J 26 68 trans-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 Ethylbenzene ND 26 68 Ethylbenzene ND 34 140 4-Ethylbelure ND 34 140 2-Exanone ND </td <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td></td> <td>68</td>	Dibromochloromethane	ND			68
1,2-Dichlorobenzene ND 26 68 1,3-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 26 68 Dichlorodifluoromethane ND 26 68 1,1-Dichloroethane ND 26 51 1,2-Dichloroethane ND 34 140 1,1-Dichloroethene 97 J 34 140 cis-1,2-Dichloroethene ND 34 68 trans-1,2-Dichloropthene ND 34 68 trans-1,2-Dichloropropane 62 J 26 68 cis-1,3-Dichloropropene ND 26 68 cis-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 Ethylbenzene ND 34 140 4-Ethyltoluene ND 34 140 4-Ethyltoluene ND 34 140 4-Methyl-2-pentanone (MIBK) ND 34 68 Methylene Chloride ND 34 68 Styrene ND<	1,2-Dibromoethane (EDB)	ND			140
1,3-Dichlorobenzene ND 26 68 1,4-Dichlorobenzene ND 26 68 Dichlorodifluoromethane ND 26 68 1,1-Dichloroethane ND 26 51 1,2-Dichloroethane ND 34 140 1,1-Dichloroethene ND 34 140 cis-1,2-Dichloroethene ND 34 68 trans-1,2-Dichloroethene ND 34 68 1,2-Dichloropropane 62 J 26 68 st-1,3-Dichloropropane ND 26 68 st-1,3-Dichloropropene ND 26 68 trans-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 4-Ethyltoluene ND 34 140 8-Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Hexanone ND 36 68 Styrene ND 36 68 Styrene ND 26 68	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		26	68
1,4-Dichlorobenzene ND 26 68 Dichlorodifluoromethane ND 26 68 1,1-Dichloroethane ND 26 51 1,2-Dichloroethane ND 34 140 1,1-Dichloroethene ND 34 140 cis-1,2-Dichloroethene ND 34 68 trans-1,2-Dichloropthene ND 34 68 1,2-Dichloropropane 62 J 26 68 cis-1,3-Dichloropropene ND 26 68 cis-1,3-Dichloropropene ND 26 68 trans-1,3-Dichloropropene ND 26 68 4-Ethyltoluene ND 26 68 4-Ethyltoluene ND 34 140 4-Exanone ND 34 140 4-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 34 68 Methylene Chloride ND 34 68 Styrene ND 26 68 Tetrachloroethane ND 26	1,2-Dichlorobenzene	ND		26	68
Dichlorodifluoromethane ND 26 68 1,1-Dichloroethane ND 26 51 1,2-Dichloroethane ND 34 140 1,1-Dichloroethene 97 J 34 140 cis-1,2-Dichloroethene ND 34 68 trans-1,2-Dichloroethene ND 34 68 1,2-Dichloropropane 62 J 26 68 cis-1,3-Dichloropropane ND 26 68 cis-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 4-Ethyltoluene ND 26 68 4-Ethyltoluene ND 34 140 2-Hexanone ND 34 140 2-Hexanone ND 34 68 Methylene Chloride ND 34 68 Styrene ND 34 68 1,1,2,2-Tertarchloroethane ND 17 68 Tetrachloroethane <t< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>26</td><td>68</td></t<>	1,3-Dichlorobenzene	ND		26	68
1,1-Dichloroethane ND 26 51 1,2-Dichloroethane ND 34 140 1,1-Dichloroethene 97 J 34 140 cis-1,2-Dichloroethene ND 34 68 trans-1,2-Dichloroptopene ND 34 68 trans-1,2-Dichloropropane 62 J 26 68 cis-1,3-Dichloropropene ND 26 68 trans-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 Ethylbenzene ND 26 68 4-Ethyltoluene ND 26 68 Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 34 68 Methylene Chloride ND 34 68 Styrene ND 34 68 Tetrachloroethane ND 26 68 Tetrachloroethane ND 26 68 Tollene ND 34	1,4-Dichlorobenzene	ND		26	68
1,2-Dichloroethane ND 34 140 1,1-Dichloroethene 97 J 34 140 cis-1,2-Dichloroethene ND 34 68 trans-1,2-Dichloropthene ND 34 68 1,2-Dichloropropane 62 J 26 68 cis-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 4-Ethyltoluene ND 26 68 Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Ethyltoluene ND 34 140 4-Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 68 Methyl-2-pentanone (MIBK) ND 36 68 Methylene Chloride ND 26 68 Styrene ND 34 68 Styrene ND 17 68 Tetrachloroethane ND 26 68 Toluene ND 34 68 <td>Dichlorodifluoromethane</td> <td>ND</td> <td></td> <td>26</td> <td>68</td>	Dichlorodifluoromethane	ND		26	68
1,1-Dichloroethene 97 J 34 140 cis-1,2-Dichloroethene ND 34 68 trans-1,2-Dichloroethene ND 34 68 1,2-Dichloropropane 62 J 26 68 cis-1,3-Dichloropropene ND 26 68 trans-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 4-Ethyltoluene ND 26 68 Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 34 68 Methylene Chloride ND 34 68 Styrene ND 34 68 1,1,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane ND 120 430 1,1,1-Trichloroethane ND 26 68 1,1,2-Trichloroethane	1,1-Dichloroethane	ND		26	51
cis-1,2-Dichloroethene ND 34 68 trans-1,2-Dichloroptopene ND 34 68 1,2-Dichloropropane 62 J 26 68 cis-1,3-Dichloropropene ND 26 68 trans-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 4-Ethyltoluene ND 26 68 Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 34 68 Methylene Chloride ND 34 68 Styrene ND 17 68 1,1,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichloroethane ND 26 68 1,1,1-Trichloroethane ND 26 68 1,1,2-Trichloroethane ND 26 68 1,1,1-Trichloroethane	1,2-Dichloroethane	ND		34	140
trans-1,2-Dichloroethene ND 34 68 1,2-Dichloropropane 62 J 26 68 cis-1,3-Dichloropropene ND 26 68 trans-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 4-Ethyltoluene ND 34 140 4-exachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 34 68 Methylene Chloride ND 34 68 Styrene ND 34 68 Styrene ND 17 68 Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 1,1,2-Trichloroethane ND 34 68 1,2,4-Trichloroethane ND 34 68 1,1,2-Trichloroethane ND 26 68 1,1,2-Trichloroethane ND	1,1-Dichloroethene	97	J	34	140
1,2-Dichloropropane 62 J 26 68 cis-1,3-Dichloropropene ND 26 68 trans-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 +Ethyltoluene ND 26 68 Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 34 140 4-Methyl-2-pentanone (MIBK) ND 34 68 Styrene ND 26 68 Styrene ND 26 68 1,1,2-Tetrachloroethane 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichloroethane ND 26 68 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 1,1,1-Trichloroethane ND 26 68 1,1,1-Trichloroethane 4400	cis-1,2-Dichloroethene	ND		34	68
cis-1,3-Dichloropropene ND 26 68 trans-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 4-Ethyltoluene ND 26 68 Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 26 68 Methylene Chloride ND 34 68 Styrene ND 34 68 Styrene ND 26 68 1,1,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 Toluene ND 26 68 1,1,2-Trichloroethane 270 34 68 1,2,4-Triichloroethane ND 26 51 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 6	trans-1,2-Dichloroethene	ND		34	68
trans-1,3-Dichloropropene ND 26 68 Ethylbenzene ND 26 68 4-Ethyltoluene ND 26 68 Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 26 68 Methylene Chloride ND 34 68 Styrene ND 26 68 1,1,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane ND 34 68 1,2,4-Trichloroethane ND 34 68 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethane 4400 26 68 Trichloroethane 4400 26 68 Trichloroethane 4400 26<	1,2-Dichloropropane	62	J	26	68
Ethylbenzene ND 26 68 4-Ethyltoluene ND 26 68 Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 26 68 Methylene Chloride ND 34 68 Styrene ND 26 68 1,1,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane ND 26 68 1,1,2-Trichloroethane ND 26 68 1,1,4-Trichloroethane ND 120 430 1,1,2-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethane 4400 26 68 Trichloroethane 4400 26 68 Trichloroethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	cis-1,3-Dichloropropene	ND		26	68
4-Ethyltoluene ND 26 68 Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 26 68 Methylene Chloride ND 34 68 Styrene ND 26 68 1,1,2,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichloroethane ND 26 51 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	trans-1,3-Dichloropropene	ND			68
Hexachlorobutadiene ND 34 140 2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 26 68 Methylene Chloride ND 34 68 Styrene ND 26 68 1,1,2,2-Tetrachloroethane ND 17 68 Tetrachloroethane 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichloroethane ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethane ND 26 68 Trichloroethane 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	Ethylbenzene	ND			
2-Hexanone ND 34 140 4-Methyl-2-pentanone (MIBK) ND 26 68 Methylene Chloride ND 34 68 Styrene ND 26 68 1,1,2,2-Tetrachloroethane ND 17 68 Tetrachloroethane 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichlorobenzene ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	4-Ethyltoluene	ND			68
4-Methyl-2-pentanone (MIBK) ND 26 68 Methylene Chloride ND 34 68 Styrene ND 26 68 1,1,2,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichlorobenzene ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	Hexachlorobutadiene	ND		34	140
Methylene Chloride ND 34 68 Styrene ND 26 68 1,1,2,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichlorobenzene ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	2-Hexanone	ND			140
Styrene ND 26 68 1,1,2,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichlorobenzene ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	4-Methyl-2-pentanone (MIBK)	ND		26	68
1,1,2,2-Tetrachloroethane ND 17 68 Tetrachloroethene 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichlorobenzene ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	Methylene Chloride				
Tetrachloroethene 220 26 68 Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichlorobenzene ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	Styrene	ND			
Toluene ND 26 68 1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichlorobenzene ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140					
1,1,2-Trichloro-1,2,2-trifluoroethane 270 34 68 1,2,4-Trichlorobenzene ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	Tetrachloroethene				
1,2,4-Trichlorobenzene ND 120 430 1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140	Toluene				68
1,1,1-Trichloroethane ND 26 51 1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140		270		34	68
1,1,2-Trichloroethane ND 26 68 Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140					
Trichloroethene 4400 26 68 Trichlorofluoromethane 84 26 68 1,2,4-Trimethylbenzene ND 34 140					
Trichlorofluoromethane8426681,2,4-TrimethylbenzeneND34140					
1,2,4-Trimethylbenzene ND 34 140	Trichloroethene				
1,3,5-Trimethylbenzene ND 26 68					
	1,3,5-Trimethylbenzene	ND		26	68

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093326-001/CWL-D2-470

Lab Sample ID: 340-5922-21 Date Sampled: 01/17/2013 1006

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0693.D

Dilution: 171 Initial Weight/Volume: 3.525 mL

Analysis Date: 02/13/2013 0026 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 34 140 ND Vinyl chloride ND 26 68 m,p-Xylene ND 34 140 o-Xylene ND 26 68

Client Sample ID: 093327-001/CWL-FB4

Lab Sample ID: 340-5922-22 Date Sampled: 01/17/2013 1015

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4051 Instrument ID: MSC C0718.D

N/A Prep Batch: N/A Lab File ID:

Dilution: Initial Weight/Volume: 5.92 100.8 mL 250 mL Analysis Date: 02/14/2013 1224 Final Weight/Volume:

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		3.6	7.1
Benzene	ND		1.2	2.4
Benzyl chloride	ND		1.2	4.7
Bromodichloromethane	ND		0.89	1.8
Bromoform	ND		1.2	4.7
Bromomethane	ND	*	1.2	4.7
2-Butanone (MEK)	ND		2.4	4.7
Carbon disulfide	ND		1.2	4.7
Carbon tetrachloride	ND		1.2	4.7
Chlorobenzene	ND		0.59	1.8
Chloroethane	ND		4.1	8.9
Chloroform	ND		0.59	1.8
Chloromethane	ND		2.4	4.7
Dibromochloromethane	ND		0.59	2.4
1,2-Dibromoethane (EDB)	ND		1.2	4.7
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*	0.89	2.4
1,2-Dichlorobenzene	ND		0.89	2.4
1,3-Dichlorobenzene	ND		0.89	2.4
1,4-Dichlorobenzene	ND		0.89	2.4
Dichlorodifluoromethane	ND		0.89	2.4
1,1-Dichloroethane	ND		0.89	1.8
1,2-Dichloroethane	ND		1.2	4.7
1,1-Dichloroethene	ND		1.2	4.7
cis-1,2-Dichloroethene	ND		1.2	2.4
trans-1,2-Dichloroethene	ND		1.2	2.4
1,2-Dichloropropane	ND		0.89	2.4
cis-1,3-Dichloropropene	ND		0.89	2.4
trans-1,3-Dichloropropene	ND		0.89	2.4
Ethylbenzene	ND		0.89	2.4
4-Ethyltoluene	ND		0.89	2.4
Hexachlorobutadiene	ND		1.2	4.7
2-Hexanone	ND		1.2	4.7
4-Methyl-2-pentanone (MIBK)	ND		0.89	2.4
Methylene Chloride	ND		1.2	2.4
Styrene	ND		0.89	2.4
1,1,2,2-Tetrachloroethane	ND		0.59	2.4
Tetrachloroethene	ND		0.89	2.4
Toluene	ND		0.89	2.4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.2	2.4
1,2,4-Trichlorobenzene	ND		4.1	15
1,1,1-Trichloroethane	ND		0.89	1.8
1,1,2-Trichloroethane	ND		0.89	2.4
Trichloroethene	ND		0.89	2.4
Trichlorofluoromethane	ND		0.89	2.4
1,2,4-Trimethylbenzene	ND		1.2	4.7
1,3,5-Trimethylbenzene	ND		0.89	2.4

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093327-001/CWL-FB4

Lab Sample ID: 340-5922-22 Date Sampled: 01/17/2013 1015

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4051 Instrument ID: MSC

 N/A
 Prep Batch:
 N/A
 Lab File ID:
 C0718.D

 Dilution:
 5.92
 Initial Weight/Volume:
 100.8 mL

 Analysis Date:
 02/14/2013 1224
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 4.7 ND 1.2 Vinyl chloride ND 2.4 0.89 m,p-Xylene ND 1.2 4.7 o-Xylene ND 0.89 2.4

Client Sample ID: 093328-001/CWL-D3-120

Lab Sample ID: 340-5922-23 Date Sampled: 01/17/2013 1030

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0695.D

 Dilution:
 183
 Initial Weight/Volume:
 3.247 mL

 Analysis Date:
 02/13/2013 0145
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		110	220
Benzene	ND		37	73
Benzyl chloride	ND		37	150
Bromodichloromethane	ND		27	55
Bromoform	ND		37	150
Bromomethane	ND		37	150
2-Butanone (MEK)	ND		73	150
Carbon disulfide	ND		37	150
Carbon tetrachloride	ND		37	150
Chlorobenzene	ND		18	55
Chloroethane	ND		130	270
Chloroform	160		18	55
Chloromethane	ND		73	150
Dibromochloromethane	ND		18	73
1,2-Dibromoethane (EDB)	ND		37	150
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		27	73
1,2-Dichlorobenzene	ND		27	73
1,3-Dichlorobenzene	ND		27	73
1,4-Dichlorobenzene	ND		27	73
Dichlorodifluoromethane	29	J	27	73
1,1-Dichloroethane	ND		27	55
1,2-Dichloroethane	ND		37	150
1,1-Dichloroethene	200		37	150
cis-1,2-Dichloroethene	ND		37	73
trans-1,2-Dichloroethene	ND		37	73
1,2-Dichloropropane	80		27	73
cis-1,3-Dichloropropene	ND		27	73
trans-1,3-Dichloropropene	ND		27	73
Ethylbenzene	ND		27	73
4-Ethyltoluene	ND		27	73
Hexachlorobutadiene	ND		37	150
2-Hexanone	ND		37	150
4-Methyl-2-pentanone (MIBK)	ND		27	73
Methylene Chloride	62	J	37	73
Styrene	ND		27	73
1,1,2,2-Tetrachloroethane	ND		18	73
Tetrachloroethene	110		27	73
Toluene	ND		27	73
1,1,2-Trichloro-1,2,2-trifluoroethane	670		37	73
1,2,4-Trichlorobenzene	ND		130	460
1,1,1-Trichloroethane	ND		27	55
1,1,2-Trichloroethane	ND		27	73
Trichloroethene	5300		27	73
Trichlorofluoromethane	190		27	73
1,2,4-Trimethylbenzene	ND		37	150
1,3,5-Trimethylbenzene	ND		27	73

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093328-001/CWL-D3-120

Lab Sample ID: 340-5922-23 Date Sampled: 01/17/2013 1030

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

 N/A
 Prep Batch:
 N/A
 Lab File ID:
 C0695. D

 Dilution:
 183
 Initial Weight/Volume:
 3.247 mL

Analysis Date: 02/13/2013 0145 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 150 ND 37 Vinyl chloride ND 27 73 m,p-Xylene ND 37 150 o-Xylene ND 27 73

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093329-001/CWL-D3-170

Lab Sample ID: 340-5922-24 Date Sampled: 01/17/2013 1035

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0696.D

 Dilution:
 266
 Initial Weight/Volume:
 2.248 mL

 Analysis Date:
 02/13/2013 0225
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		160	320
Benzene	ND		53	110
Benzyl chloride	ND		53	210
Bromodichloromethane	ND		40	80
Bromoform	ND		53	210
Bromomethane	ND		53	210
2-Butanone (MEK)	ND		110	210
Carbon disulfide	ND		53	210
Carbon tetrachloride	ND		53	210
Chlorobenzene	ND		27	80
Chloroethane	ND		190	400
Chloroform	180		27	80
Chloromethane	ND		110	210
Dibromochloromethane	ND		27	110
1,2-Dibromoethane (EDB)	ND		53	210
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		40	110
1,2-Dichlorobenzene	ND		40	110
1,3-Dichlorobenzene	ND		40	110
1,4-Dichlorobenzene	ND		40	110
Dichlorodifluoromethane	ND		40	110
1,1-Dichloroethane	ND		40	80
1,2-Dichloroethane	ND		53	210
1,1-Dichloroethene	290		53	210
cis-1,2-Dichloroethene	ND		53	110
trans-1,2-Dichloroethene	ND		53	110
1,2-Dichloropropane	110		40	110
cis-1,3-Dichloropropene	ND		40	110
trans-1,3-Dichloropropene	ND		40	110
Ethylbenzene	ND		40	110
4-Ethyltoluene	ND		40	110
Hexachlorobutadiene	ND		53	210
2-Hexanone	ND		53	210
4-Methyl-2-pentanone (MIBK)	ND		40	110
Methylene Chloride	71	J	53	110
Styrene	ND		40	110
1,1,2,2-Tetrachloroethane	ND		27	110
Tetrachloroethene	130		40	110
Toluene	ND		40	110
1,1,2-Trichloro-1,2,2-trifluoroethane	950		53	110
1,2,4-Trichlorobenzene	ND		190	670
1,1,1-Trichloroethane	ND		40	80
1,1,2-Trichloroethane	ND		40	110
Trichloroethene	7200		40	110
Trichlorofluoromethane	250		40	110
1,2,4-Trimethylbenzene	ND		53	210
1,3,5-Trimethylbenzene	ND		40	110

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093329-001/CWL-D3-170

Lab Sample ID: 340-5922-24 Date Sampled: 01/17/2013 1035

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0696.D

Dilution: 266 Initial Weight/Volume: 2.248 mL

Analysis Date: 02/13/2013 0225 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 210 ND 53 Vinyl chloride ND 40 110 m,p-Xylene ND 53 210 o-Xylene ND 40 110 Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093330-001/CWL-D3-350

Lab Sample ID: 340-5922-25 Date Sampled: 01/17/2013 1039

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0708.D

 Dilution:
 224
 Initial Weight/Volume:
 2.76 mL

 Analysis Date:
 02/13/2013 1816
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND	Qua	130	270
Benzene	ND		45	90
Benzyl chloride	ND		45	180
Bromodichloromethane	ND		34	67
Bromoform	ND		45	180
Bromomethane	ND		45	180
2-Butanone (MEK)	ND		90	180
Carbon disulfide	ND		45	180
Carbon tetrachloride	ND		45	180
Chlorobenzene	ND		22	67
Chloroethane	ND		160	340
Chloroform	130		22	67
Chloromethane	ND		90	180
Dibromochloromethane	ND		22	90
1,2-Dibromoethane (EDB)	ND		45	180
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*	34	90
1,2-Dichlorobenzene	ND		34	90
1,3-Dichlorobenzene	ND		34	90
1,4-Dichlorobenzene	ND		34	90
Dichlorodifluoromethane	46	J	34	90
1,1-Dichloroethane	ND		34	67
1,2-Dichloroethane	ND		45	180
1,1-Dichloroethene	320		45	180
cis-1,2-Dichloroethene	ND		45	90
trans-1,2-Dichloroethene	ND		45	90
1,2-Dichloropropane	100		34	90
cis-1,3-Dichloropropene	ND		34	90
trans-1,3-Dichloropropene	ND		34	90
Ethylbenzene	ND		34	90
4-Ethyltoluene	ND		34	90
Hexachlorobutadiene	ND		45	180
2-Hexanone	ND		45	180
4-Methyl-2-pentanone (MIBK)	ND		34	90
Methylene Chloride	540		45	90
Styrene	ND		34	90
1,1,2,2-Tetrachloroethane	ND		22	90
Tetrachloroethene	120		34	90
Toluene	ND		34	90
1,1,2-Trichloro-1,2,2-trifluoroethane	1100		45	90
1,2,4-Trichlorobenzene	ND		160	560
1,1,1-Trichloroethane	ND		34	67
1,1,2-Trichloroethane	ND		34	90
Trichloroethene	7800		34	90
Trichlorofluoromethane	280		34	90
1,2,4-Trimethylbenzene	ND		45	180
1,3,5-Trimethylbenzene	ND		34	90

Client: Sandia National Laboratories Job Number: 340-5922-1

093330-001/CWL-D3-350 Client Sample ID:

Lab Sample ID: 340-5922-25 Date Sampled: 01/17/2013 1039

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0708.D 224 Dilution: Initial Weight/Volume: 2.76 mL

250 mL Analysis Date: 02/13/2013 1816 Final Weight/Volume:

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 45 ND 180 Vinyl chloride ND 34 90 m,p-Xylene ND 45 180 o-Xylene ND 34 90

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093331-001/CWL-D3-440

Lab Sample ID: 340-5922-26 Date Sampled: 01/17/2013 1045

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC C0709.D

N/A Prep Batch: N/A Lab File ID:

Dilution: 405 Initial Weight/Volume: 1.428 mL Analysis Date: 02/13/2013 1857 Final Weight/Volume: 250 mL

Acetone ND Benzene ND Benzyl chloride ND Bromodichloromethane ND Bromoform ND Bromomethane ND 2-Butanone (MEK) ND Carbon disulfide ND Carbon tetrachloride ND		240 81 81 61 81 81 160 81	490 160 320 120 320 320 320
Benzyl chloride ND Bromodichloromethane ND Bromoform ND Bromomethane ND 2-Butanone (MEK) ND Carbon disulfide ND		81 61 81 81 160 81	320 120 320 320 320
Bromodichloromethane ND Bromoform ND Bromomethane ND 2-Butanone (MEK) ND Carbon disulfide ND		61 81 81 160 81	120 320 320 320
Bromoform ND Bromomethane ND 2-Butanone (MEK) ND Carbon disulfide ND		81 81 160 81	320 320 320
Bromomethane ND 2-Butanone (MEK) ND Carbon disulfide ND		81 160 81	320 320
2-Butanone (MEK) ND Carbon disulfide ND		160 81	320
Carbon disulfide ND		81	
			000
Carbon tetrachloride ND		0.1	320
			320
Chlorobenzene ND		41	120
Chloroethane		280	610
Chloroform 250		41	120
Chloromethane ND		160	320
Dibromochloromethane		41	160
1,2-Dibromoethane (EDB)		81	320
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND	*	61	160
1,2-Dichlorobenzene ND		61	160
1,3-Dichlorobenzene ND		61	160
1,4-Dichlorobenzene ND		61	160
Dichlorodifluoromethane 89	J	61	160
1,1-Dichloroethane ND		61	120
1,2-Dichloroethane ND		81	320
1,1-Dichloroethene 470		81	320
cis-1,2-Dichloroethene ND		81	160
trans-1,2-Dichloroethene ND		81	160
1,2-Dichloropropane 210		61	160
cis-1,3-Dichloropropene ND		61	160
trans-1,3-Dichloropropene ND		61	160
Ethylbenzene ND		61	160
4-Ethyltoluene ND		61	160
Hexachlorobutadiene ND		81	320
2-Hexanone ND		81	320
4-Methyl-2-pentanone (MIBK) ND		61	160
Methylene Chloride 1200		81	160
Styrene ND		61	160
1,1,2,2-Tetrachloroethane ND		41	160
Tetrachloroethene 220		61	160
Toluene ND		61	160
1,1,2-Trichloro-1,2,2-trifluoroethane 1800		81	160
1,2,4-Trichlorobenzene ND		280	1000
1,1,1-Trichloroethane ND		61	120
1,1,2-Trichloroethane ND		61	160
Trichloroethene 13000		61	160
Trichlorofluoromethane 490		61	160
1,2,4-Trimethylbenzene ND		81	320
1,3,5-Trimethylbenzene ND		61	160

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093331-001/CWL-D3-440

Lab Sample ID: 340-5922-26 Date Sampled: 01/17/2013 1045

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0709.D ion: 405 Initial Weight/Volume: 1.428 mL

 Dilution:
 405
 Initial Weight/Volume:
 1.428 mL

 Analysis Date:
 02/13/2013 1857
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 320 ND 81 Vinyl chloride ND 61 160 m,p-Xylene ND 81 320 o-Xylene ND 61 160 Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093332-001/CWL-D3-480

Lab Sample ID: 340-5922-27 Date Sampled: 01/17/2013 1051

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0697.D

Dilution: 2.47 Initial Weight/Volume: 250 mL Analysis Date: 02/13/2013 0306 Final Weight/Volume: 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	6.5		1.5	3.0
Benzene	ND		0.49	0.99
Benzyl chloride	ND		0.49	2.0
Bromodichloromethane	ND		0.37	0.74
Bromoform	ND		0.49	2.0
Bromomethane	ND		0.49	2.0
2-Butanone (MEK)	1.6	J	0.99	2.0
Carbon disulfide	ND		0.49	2.0
Carbon tetrachloride	ND		0.49	2.0
Chlorobenzene	ND		0.25	0.74
Chloroethane	ND		1.7	3.7
Chloroform	0.67	J	0.25	0.74
Chloromethane	1.2	J	0.99	2.0
Dibromochloromethane	ND		0.25	0.99
1,2-Dibromoethane (EDB)	ND		0.49	2.0
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.37	0.99
1,2-Dichlorobenzene	ND		0.37	0.99
1,3-Dichlorobenzene	ND		0.37	0.99
1,4-Dichlorobenzene	ND		0.37	0.99
Dichlorodifluoromethane	0.78	J	0.37	0.99
1,1-Dichloroethane	ND		0.37	0.74
1,2-Dichloroethane	ND		0.49	2.0
1,1-Dichloroethene	1.2	J	0.49	2.0
cis-1,2-Dichloroethene	ND		0.49	0.99
trans-1,2-Dichloroethene	ND		0.49	0.99
1,2-Dichloropropane	0.52	J	0.37	0.99
cis-1,3-Dichloropropene	ND		0.37	0.99
trans-1,3-Dichloropropene	ND		0.37	0.99
Ethylbenzene	ND		0.37	0.99
4-Ethyltoluene	ND		0.37	0.99
Hexachlorobutadiene	ND		0.49	2.0
2-Hexanone	ND		0.49	2.0
4-Methyl-2-pentanone (MIBK)	ND		0.37	0.99
Methylene Chloride	2.8		0.49	0.99
Styrene	ND		0.37	0.99
1,1,2,2-Tetrachloroethane	ND		0.25	0.99
Tetrachloroethene	0.70	J	0.37	0.99
Toluene	ND		0.37	0.99
1,1,2-Trichloro-1,2,2-trifluoroethane	4.1		0.49	0.99
1,2,4-Trichlorobenzene	ND		1.7	6.2
1,1,1-Trichloroethane	ND		0.37	0.74
1,1,2-Trichloroethane	ND		0.37	0.99
Trichloroethene	34		0.37	0.99
Trichlorofluoromethane	1.2		0.37	0.99
1,2,4-Trimethylbenzene	ND		0.49	2.0
1,3,5-Trimethylbenzene	ND		0.37	0.99

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093332-001/CWL-D3-480

Lab Sample ID: 340-5922-27 Date Sampled: 01/17/2013 1051

Client Matrix: Air Date Received: 01/25/2013 1010

Analysis Method: TO-15 Analysis Batch: 340-4031 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0697.D

2.47 Lab File ID: C0697.D

Initial Weight/Volume: 250 mL

Dilution: 2.47 Initial Weight/Volume: 250 mL Analysis Date: 02/13/2013 0306 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 2.0 ND 0.49 Vinyl chloride ND 0.37 0.99 m,p-Xylene ND 0.49 2.0 o-Xylene ND 0.37 0.99 Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093333-001/CWL-FB5

Lab Sample ID: 340-5922-28 Date Sampled: 01/17/2013 1023

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0710.D

Dilution: 1.0 Initial Weight/Volume: 640 mL Analysis Date: 02/13/2013 1943 Final Weight/Volume: 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		0.60	1.2
Benzene	ND		0.20	0.40
Benzyl chloride	ND		0.20	0.80
Bromodichloromethane	ND		0.15	0.30
Bromoform	ND		0.20	0.80
Bromomethane	ND		0.20	0.80
2-Butanone (MEK)	ND		0.40	0.80
Carbon disulfide	ND		0.20	0.80
Carbon tetrachloride	ND		0.20	0.80
Chlorobenzene	ND		0.10	0.30
Chloroethane	ND		0.70	1.5
Chloroform	ND		0.10	0.30
Chloromethane	ND		0.40	0.80
Dibromochloromethane	ND		0.10	0.40
1,2-Dibromoethane (EDB)	ND		0.20	0.80
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*	0.15	0.40
1,2-Dichlorobenzene	ND		0.15	0.40
1,3-Dichlorobenzene	ND		0.15	0.40
1,4-Dichlorobenzene	ND		0.15	0.40
Dichlorodifluoromethane	ND		0.15	0.40
1,1-Dichloroethane	ND		0.15	0.30
1,2-Dichloroethane	ND		0.20	0.80
1,1-Dichloroethene	ND		0.20	0.80
cis-1,2-Dichloroethene	ND		0.20	0.40
trans-1,2-Dichloroethene	ND		0.20	0.40
1,2-Dichloropropane	ND		0.15	0.40
cis-1,3-Dichloropropene	ND		0.15	0.40
trans-1,3-Dichloropropene	ND		0.15	0.40
Ethylbenzene	ND		0.15	0.40
4-Ethyltoluene	ND		0.15	0.40
Hexachlorobutadiene	ND		0.20	0.80
2-Hexanone	ND		0.20	0.80
4-Methyl-2-pentanone (MIBK)	ND		0.15	0.40
Methylene Chloride	ND		0.20	0.40
Styrene	ND		0.15	0.40
1,1,2,2-Tetrachloroethane	ND		0.10	0.40
Tetrachloroethene	ND		0.15	0.40
Toluene	ND		0.15	0.40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.20	0.40
1,2,4-Trichlorobenzene	ND		0.70	2.5
1,1,1-Trichloroethane	ND		0.15	0.30
1,1,2-Trichloroethane	ND		0.15	0.40
Trichloroethene	ND		0.15	0.40
Trichlorofluoromethane	ND		0.15	0.40
1,2,4-Trimethylbenzene	ND		0.20	0.80
1,3,5-Trimethylbenzene	ND		0.15	0.40

Client: Sandia National Laboratories Job Number: 340-5922-1

Client Sample ID: 093333-001/CWL-FB5

Lab Sample ID: 340-5922-28 Date Sampled: 01/17/2013 1023

Client Matrix: Air Date Received: 01/25/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4039 Instrument ID: MSC

N/A Prep Batch: N/A Lab File ID: C0710.D

 Dilution:
 1.0
 Initial Weight/Volume:
 640 mL

 Analysis Date:
 02/13/2013 1943
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate ND 0.20 0.80 Vinyl chloride ND 0.15 0.40 m,p-Xylene ND 0.20 0.80 o-Xylene ND 0.15 0.40

DATA REPORTING QUALIFIERS

Client: Sandia National Laboratories Job Number: 340-5922-1

Lab Section	Qualifier	Description
Air - GC/MS VOA		
	*	LCS or LCSD exceeds the control limits
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	*	RPD of the LCS and LCSD exceeds the control limits

MARCH 2013 SOIL-GAS SAMPLING RESULTS CERTIFICATES OF ANALYSIS

CWL Well D1 470-foot sampling port

CWL Well D2 470-foot sampling port

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093727-001/CWL-D1-470

 Lab Sample ID:
 340-6754-1
 Date Sampled: 03/27/2013 0857

 Client Matrix:
 Air
 Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:	TO-15	Analysis Batch:	340-4452	Instrument ID:	MSG
	A L / A	D D 1 1	N1/A		04040

N/A Prep Batch: N/A Lab File ID: G4813.d

 Dilution:
 5.48
 Initial Weight/Volume:
 100 mL

 Analysis Date:
 04/02/2013 1748
 Final Weight/Volume:
 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	3.3	J	3.3	6.6
Benzene	ND		1.1	2.2
Benzyl chloride	ND		1.1	4.4
Bromodichloromethane	ND		0.82	1.6
Bromoform	ND		1.1	4.4
Bromomethane	ND		1.1	4.4
2-Butanone (MEK)	ND		2.2	4.4
Carbon disulfide	ND		1.1	4.4
Carbon tetrachloride	1.5	J	1.1	4.4
Chlorobenzene	ND		0.55	1.6
Chloroethane	ND		3.8	8.2
Chloroform	1.1	J	0.55	1.6
Chloromethane	ND		2.2	4.4
Dibromochloromethane	ND		0.55	2.2
1,2-Dibromoethane (EDB)	ND		1.1	4.4
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.82	2.2
1,2-Dichlorobenzene	ND		0.82	2.2
1,3-Dichlorobenzene	ND		0.82	2.2
1,4-Dichlorobenzene	ND		0.82	2.2
Dichlorodifluoromethane	8.4		0.82	2.2
1,1-Dichloroethane	ND		0.82	1.6
1,2-Dichloroethane	ND		1.1	4.4
1,1-Dichloroethene	19		1.1	4.4
cis-1,2-Dichloroethene	ND		1.1	2.2
trans-1,2-Dichloroethene	ND		1.1	2.2
1,2-Dichloropropane	ND		0.82	2.2
cis-1,3-Dichloropropene	ND		0.82	2.2
trans-1,3-Dichloropropene	ND		0.82	2.2
Ethylbenzene	ND		0.82	2.2
4-Ethyltoluene	ND		0.82	2.2
Hexachlorobutadiene	ND		1.1	4.4
2-Hexanone	ND		1.1	4.4
4-Methyl-2-pentanone (MIBK)	ND		0.82	2.2
Methylene Chloride	4.3		1.1	2.2
Styrene	ND		0.82	2.2
1,1,2,2-Tetrachloroethane	ND		0.55	2.2
Tetrachloroethene	3.1		0.82	2.2
Toluene	ND		0.82	2.2
1,1,2-Trichloro-1,2,2-trifluoroethane	110		1.1	2.2
1,2,4-Trichlorobenzene	ND		3.8	14
1,1,1-Trichloroethane	ND		0.82	1.6
1,1,2-Trichloroethane	ND		0.82	2.2
Trichloroethene	130		0.82	2.2
Trichlorofluoromethane	32		0.82	2.2
1,2,4-Trimethylbenzene	ND		1.1	4.4
1,3,5-Trimethylbenzene	ND		0.82	2.2

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093727-001/CWL-D1-470

Lab Sample ID: 340-6754-1 Date Sampled: 03/27/2013 0857

Client Matrix: Air Date Received: 04/01/2013 1010

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4813.d ution: 5.48 Initial Weight/Volume: 100 mL

Dilution: 5.48 Initial Weight/Volume: 100 mL Analysis Date: 04/02/2013 1748 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 4.4 ND 1.1 Vinyl chloride ND 2.2 0.82 m,p-Xylene ND 4.4 1.1 o-Xylene ND 0.82 2.2 Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093728-001/CWL-D1-470

Lab Sample ID: 340-6754-2 Date Sampled: 03/27/2013 0900

Client Matrix: Air Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4814.d

Dilution: 5.57 Initial Weight/Volume: 100 mL Analysis Date: 04/02/2013 1829 Final Weight/Volume: 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		3.3	6.7
Benzene	ND		1.1	2.2
Benzyl chloride	ND		1.1	4.5
Bromodichloromethane	ND		0.84	1.7
Bromoform	ND		1.1	4.5
Bromomethane	ND		1.1	4.5
2-Butanone (MEK)	ND		2.2	4.5
Carbon disulfide	ND		1.1	4.5
Carbon tetrachloride	2.7	J	1.1	4.5
Chlorobenzene	ND		0.56	1.7
Chloroethane	ND		3.9	8.4
Chloroform	2.0		0.56	1.7
Chloromethane	ND		2.2	4.5
Dibromochloromethane	ND		0.56	2.2
1,2-Dibromoethane (EDB)	ND		1.1	4.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.84	2.2
1,2-Dichlorobenzene	ND		0.84	2.2
1,3-Dichlorobenzene	ND		0.84	2.2
1,4-Dichlorobenzene	ND		0.84	2.2
Dichlorodifluoromethane	15		0.84	2.2
1,1-Dichloroethane	ND		0.84	1.7
1,2-Dichloroethane	ND		1.1	4.5
1,1-Dichloroethene	36		1.1	4.5
cis-1,2-Dichloroethene	ND		1.1	2.2
trans-1,2-Dichloroethene	ND		1.1	2.2
1,2-Dichloropropane	ND		0.84	2.2
cis-1,3-Dichloropropene	ND		0.84	2.2
trans-1,3-Dichloropropene	ND		0.84	2.2
Ethylbenzene	ND		0.84	2.2
4-Ethyltoluene	ND		0.84	2.2
Hexachlorobutadiene	ND		1.1	4.5
2-Hexanone	ND		1.1	4.5
4-Methyl-2-pentanone (MIBK)	ND		0.84	2.2
Methylene Chloride	7.5		1.1	2.2
Styrene	ND		0.84	2.2
1,1,2,2-Tetrachloroethane	ND		0.56	2.2
Tetrachloroethene	5.8		0.84	2.2
Toluene	ND		0.84	2.2
1,1,2-Trichloro-1,2,2-trifluoroethane	210		1.1	2.2
1,2,4-Trichlorobenzene	ND		3.9	14
1,1,1-Trichloroethane	ND		0.84	1.7
1,1,2-Trichloroethane	ND		0.84	2.2
Trichlorofluoromethane	58		0.84	2.2
1,2,4-Trimethylbenzene	ND		1.1	4.5
1,3,5-Trimethylbenzene	ND		0.84	2.2
Vinyl acetate	ND		1.1	4.5

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093728-001/CWL-D1-470

Lab Sample ID: 340-6754-2 Date Sampled: 03/27/2013 0900

Client Matrix: Air Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4814.d 5.57 Initial Weight/Volume: 100 mL

 Dilution:
 5.57
 Initial Weight/Volume:
 100 mL

 Analysis Date:
 04/02/2013 1829
 Final Weight/Volume:
 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl chloride 2.2 ND 0.84 m,p-Xylene ND 1.1 4.5 o-Xylene ND 0.84 2.2

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093728-001/CWL-D1-470

Lab Sample ID: 340-6754-2 Date Sampled: 03/27/2013 0900

Client Matrix: Air Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4819.d
11.1 Lab File ID: G4819.d
Initial Weight/Volume: 250 mL

Dilution: 11.1 Initial Weight/Volume: 250 mL Analysis Date: 04/03/2013 0934 Final Weight/Volume: 50 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RL
Trichloroethene 230 1.7 4.4

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093729-001/CWL-D1-FB1

 Lab Sample ID:
 340-6754-3
 Date Sampled: 03/27/2013 0852

 Client Matrix:
 Air
 Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4815.d

Dilution: 1.0 Initial Weight/Volume: 547 mL Analysis Date: 04/02/2013 1914 Final Weight/Volume: 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	ND		0.60	1.2
Benzene	ND		0.20	0.40
Benzyl chloride	ND		0.20	0.80
Bromodichloromethane	ND		0.15	0.30
Bromoform	ND		0.20	0.80
Bromomethane	ND		0.20	0.80
2-Butanone (MEK)	ND		0.40	0.80
Carbon disulfide	ND		0.20	0.80
Carbon tetrachloride	ND		0.20	0.80
Chlorobenzene	ND		0.10	0.30
Chloroethane	ND		0.70	1.5
Chloroform	ND		0.10	0.30
Chloromethane	ND		0.40	0.80
Dibromochloromethane	ND		0.10	0.40
1,2-Dibromoethane (EDB)	ND		0.20	0.80
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.15	0.40
1,2-Dichlorobenzene	ND		0.15	0.40
1,3-Dichlorobenzene	ND		0.15	0.40
1,4-Dichlorobenzene	ND		0.15	0.40
Dichlorodifluoromethane	ND		0.15	0.40
1,1-Dichloroethane	ND		0.15	0.30
1,2-Dichloroethane	ND		0.20	0.80
1,1-Dichloroethene	ND		0.20	0.80
cis-1,2-Dichloroethene	ND		0.20	0.40
trans-1,2-Dichloroethene	ND		0.20	0.40
1,2-Dichloropropane	ND		0.15	0.40
cis-1,3-Dichloropropene	ND		0.15	0.40
trans-1,3-Dichloropropene	ND		0.15	0.40
Ethylbenzene	ND		0.15	0.40
4-Ethyltoluene	ND		0.15	0.40
Hexachlorobutadiene	ND		0.20	0.80
2-Hexanone	ND		0.20	0.80
4-Methyl-2-pentanone (MIBK)	ND		0.15	0.40
Methylene Chloride	ND		0.20	0.40
Styrene	ND		0.15	0.40
1,1,2,2-Tetrachloroethane	ND		0.10	0.40
Tetrachloroethene	ND		0.15	0.40
Toluene	ND		0.15	0.40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.20	0.40
1,2,4-Trichlorobenzene	ND		0.70	2.5
1,1,1-Trichloroethane	ND		0.15	0.30
1,1,2-Trichloroethane	ND		0.15	0.40
Trichloroethene	ND		0.15	0.40
Trichlorofluoromethane	ND		0.15	0.40
1,2,4-Trimethylbenzene	ND		0.20	0.80
1,3,5-Trimethylbenzene	ND		0.15	0.40

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093729-001/CWL-D1-FB1

Lab Sample ID: 340-6754-3 Date Sampled: 03/27/2013 0852

Client Matrix: Air Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4815.d on: 1.0 Initial Weight/Volume: 547 mL

Dilution: 1.0 Initial Weight/Volume: 547 mL Analysis Date: 04/02/2013 1914 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate ND 0.20 0.80 Vinyl chloride ND 0.15 0.40 m,p-Xylene ND 0.20 0.80 o-Xylene ND 0.15 0.40

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093730-001/CWL-D2-470

 Lab Sample ID:
 340-6754-4
 Date Sampled: 03/27/2013 0918

 Client Matrix:
 Air
 Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4816.d

Dilution: 228 Initial Weight/Volume: 2.5 mL Analysis Date: 04/02/2013 2001 Final Weight/Volume: 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	1300		140	270
Benzene	ND		46	91
Benzyl chloride	ND		46	180
Bromodichloromethane	ND		34	68
Bromoform	ND		46	180
Bromomethane	ND		46	180
2-Butanone (MEK)	120	J	91	180
Carbon disulfide	1000		46	180
Carbon tetrachloride	ND		46	180
Chlorobenzene	ND		23	68
Chloroethane	ND		160	340
Chloroform	330		23	68
Chloromethane	94	J	91	180
Dibromochloromethane	ND		23	91
1,2-Dibromoethane (EDB)	ND		46	180
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		34	91
1,2-Dichlorobenzene	ND		34	91
1,3-Dichlorobenzene	ND		34	91
1,4-Dichlorobenzene	ND		34	91
Dichlorodifluoromethane	80	J	34	91
1,1-Dichloroethane	ND		34	68
1,2-Dichloroethane	ND		46	180
1,1-Dichloroethene	300		46	180
cis-1,2-Dichloroethene	ND		46	91
trans-1,2-Dichloroethene	ND		46	91
1,2-Dichloropropane	110		34	91
cis-1,3-Dichloropropene	ND		34	91
trans-1,3-Dichloropropene	ND		34	91
Ethylbenzene	75	J	34	91
4-Ethyltoluene	ND		34	91
Hexachlorobutadiene	ND		46	180
2-Hexanone	ND		46	180
4-Methyl-2-pentanone (MIBK)	580		34	91
Methylene Chloride	2100		46	91
Styrene	51	J	34	91
1,1,2,2-Tetrachloroethane	ND		23	91
Tetrachloroethene	310		34	91
Toluene	290		34	91
1,1,2-Trichloro-1,2,2-trifluoroethane	760		46	91
1,2,4-Trichlorobenzene	ND		160	570
1,1,1-Trichloroethane	44	J	34	68
1,1,2-Trichloroethane	ND		34	91
Trichloroethene	7100		34	91
Trichlorofluoromethane	230		34	91
1,2,4-Trimethylbenzene	120	J	46	180
1,3,5-Trimethylbenzene	ND		34	91

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093730-001/CWL-D2-470

Lab Sample ID: 340-6754-4 Date Sampled: 03/27/2013 0918

Client Matrix: Air Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4816.d Initial Weight/Volume: 2.5 mL

Dilution: 228 Initial Weight/Volume: 2.5 mL Analysis Date: 04/02/2013 2001 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 46 ND 180 Vinyl chloride ND 34 91 m,p-Xylene 180 46 180 o-Xylene 140 34 91

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093731-001/CWL-D2-470

 Lab Sample ID:
 340-6754-5
 Date Sampled: 03/27/2013 0920

 Client Matrix:
 Air
 Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4817.d

Dilution: 228 Initial Weight/Volume: 2.5 mL Analysis Date: 04/02/2013 2046 Final Weight/Volume: 250 mL

Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Acetone	1000		140	270
Benzene	ND		46	91
Benzyl chloride	ND		46	180
Bromodichloromethane	ND		34	68
Bromoform	ND		46	180
Bromomethane	ND		46	180
2-Butanone (MEK)	120	J	91	180
Carbon disulfide	450		46	180
Carbon tetrachloride	ND		46	180
Chlorobenzene	ND		23	68
Chloroethane	ND		160	340
Chloroform	240		23	68
Chloromethane	ND		91	180
Dibromochloromethane	ND		23	91
1,2-Dibromoethane (EDB)	ND		46	180
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		34	91
1,2-Dichlorobenzene	ND		34	91
1,3-Dichlorobenzene	ND		34	91
1,4-Dichlorobenzene	ND		34	91
Dichlorodifluoromethane	ND		34	91
1,1-Dichloroethane	ND		34	68
1,2-Dichloroethane	ND		46	180
1,1-Dichloroethene	230		46	180
cis-1,2-Dichloroethene	ND		46	91
trans-1,2-Dichloroethene	ND		46	91
1,2-Dichloropropane	79	J	34	91
cis-1,3-Dichloropropene	ND		34	91
trans-1,3-Dichloropropene	ND		34	91
Ethylbenzene	130		34	91
4-Ethyltoluene	54	J	34	91
Hexachlorobutadiene	ND		46	180
2-Hexanone	ND		46	180
4-Methyl-2-pentanone (MIBK)	350		34	91
Methylene Chloride	360		46	91
Styrene	69	J	34	91
1,1,2,2-Tetrachloroethane	ND		23	91
Tetrachloroethene	220		34	91
Toluene	420		34	91
1,1,2-Trichloro-1,2,2-trifluoroethane	560		46	91
1,2,4-Trichlorobenzene	ND		160	570
1,1,1-Trichloroethane	ND		34	68
1,1,2-Trichloroethane	ND		34	91
Trichloroethene	4900		34	91
Trichlorofluoromethane	160		34	91
1,2,4-Trimethylbenzene	150	J	46	180

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093731-001/CWL-D2-470

Lab Sample ID: 340-6754-5 Date Sampled: 03/27/2013 0920

Client Matrix: Air Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4817.d

Dilution: 228 Initial Weight/Volume: 2.5 mL

Analysis Date: 04/02/2013 2046 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 46 ND 180 Vinyl chloride ND 34 91 m,p-Xylene 270 46 180 o-Xylene 230 34 91

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093732-001/CWL-D2-FB2

 Lab Sample ID:
 340-6754-6
 Date Sampled: 03/27/2013 0906

 Client Matrix:
 Air
 Date Received: 04/01/2013 1010

TO-15 Volatile Organic Compounds in Ambient Air

Analysis Method:	TO-15	Analysis Batch:	340-4452	Instrument ID:	MSG
	NI/A	Dean Databa	NI/A	Lab Cila ID.	04040

N/A Prep Batch: N/A Lab File ID: G4818.d

Dilution: 1.0 Initial Weight/Volume: 539 mL Analysis Date: 04/02/2013 2134 Final Weight/Volume: 250 mL

Acetone ND 0.60 1.2 Benzyle chloride ND 0.20 0.40 Benzyl chloride ND 0.20 0.80 Bromodichioromethane ND 0.15 0.30 Bromonethane ND 0.20 0.80 Bromonethane ND 0.20 0.80 Zebtanone (MEK) ND 0.40 0.80 Carbon disulfide ND 0.20 0.80 Carbon disulfide ND 0.20 0.80 Chlorobenzene ND 0.10 0.30 Chlorocethane ND 0.10 0.30 Chlorocethane ND 0.70 1.5 Chloroform ND 0.70 1.5 Chlorocethane ND 0.70 0.30 Chlorocethane ND 0.70 0.30 Chlorocethane ND 0.70 0.50 Dibromochloromethane ND 0.10 0.40 1,2-Dichlorocethane ND 0.15	Analyte	Result (ppb v/v)	Qualifier	MDL	RL
Benzy Ichloride ND 0.20 0.80 Bromodichloromethane ND 0.15 0.30 Bromomethane ND 0.20 0.80 Bromomethane ND 0.20 0.80 2-Butanone (MEK) ND 0.40 0.80 Carbon disulfide ND 0.20 0.80 Carbon tetrachloride ND 0.20 0.80 Chiorobenzene ND 0.10 0.30 Chioroethane ND 0.10 0.30 Chioroethane ND 0.10 0.30 Chioromethane ND 0.10 0.30 Chioromethane ND 0.10 0.40 0.80 Dibromochioromethane ND 0.10 0.40 0.80 1.2-Dichioro-1.1, 2.2-bertane ND 0.15 0.40 0.80 1.2-Dichiorosethane ND 0.15 0.40 0.15 0.40 1.2-Dichiorosethane ND 0.15 0.40 0.15 0.40	Acetone	ND			1.2
Bromotichloromethane ND 0.15 0.30 Promotorm ND 0.20 0.80 Promotorm ND 0.20 0.80 Promotorm ND 0.20 0.80 Promotormiane ND 0.20 0.80 Promotormiane ND 0.20 0.80 Promotormiane ND 0.40 0.80 Promotormiane ND 0.20 0.80 Promotormiane ND 0.20 0.80 Promotormiane ND 0.20 0.80 Promotormiane ND 0.10 0.30 Promotormiane ND 0.10 0.30 Promotormiane ND 0.10 0.30 Promotormiane ND 0.10 0.30 Promotoriane ND 0.10 0.40 Promotoriane Promotoriane ND 0.15 0.40 Promotoriane ND 0.20 0.80 Promotoriane ND 0.20 0.80 Promotoriane ND 0.20 0.40 Promotoriane ND 0.20 0.40 Promotoriane ND 0.15	Benzene	ND		0.20	0.40
Bromoform ND 0.20 0.80 Bromomethane ND 0.20 0.80 2-Butanone (MEK) ND 0.40 0.80 Carbon disulfide ND 0.20 0.80 Carbon tetrachloride ND 0.20 0.80 Chlorobenzene ND 0.10 0.30 Chlorobenzene ND 0.70 1.5 Chloroform ND 0.10 0.30 Chloromethane ND 0.40 0.80 Dibromochloromethane ND 0.10 0.40 1,2-Dichlorobromethane (EDB) ND 0.10 0.40 1,2-Dichloro-1,1,2-2-tetrafluoroethane ND 0.15 0.40 1,2-Dichloro-1,1,2-2-tetrafluoroethane ND 0.15 0.40 1,2-Dichloroethoenzene ND 0.15 0.40 1,3-Dichloroetherazene ND 0.15 0.40 Dichorodifluoromethane ND 0.15 0.40 1,1-Dichloroethene ND 0.15 0.40 <td>Benzyl chloride</td> <td>ND</td> <td></td> <td>0.20</td> <td>0.80</td>	Benzyl chloride	ND		0.20	0.80
Brommethane	Bromodichloromethane	ND		0.15	0.30
2-Butanone (MEK) Carbon disulfide ND Carbon disulfide ND 0.20 0.80 Carbon tetrachloride ND 0.20 0.80 Chlorobenzene ND 0.10 0.30 Chlorobenzene ND 0.10 0.70 1.5 Chloroform ND 0.10 0.30 Chloromethane ND 0.10 0.30 Chloromethane ND 0.10 0.30 Chloromethane ND 0.10 0.30 Chloromethane ND 0.10 0.40 1,2-Dibromochloromethane ND 0.10 0.40 1,2-Dibromochloromethane ND 0.15 0.40 1,2-Dibromochloromethane ND 0.15 0.40 1,2-Dibromochloromethane ND 0.15 0.40 1,3-Dibrlorot-1,2-2-letrafluroethane ND 0.15 0.40 1,3-Dibrlorothenzene ND 0.15 0.40 1,3-Dibrlorothenzene ND 0.15 0.40 1,1-Dibrlorothenzene ND 0.15 0.40 1,1-Dibrlorothenzene ND 0.15 0.40 1,1-Dibrlorothenzene ND 0.15 0.40 1,1-Dibrlorothenzene ND 0.15 0.40 1,1-Dibrlorothene ND 0.15 0.40 1,1-Dibrlorothene ND 0.15 0.40 1,1-Dibrlorothene ND 0.20 0.80 1,1-Dibrlorothene ND 0.15 0.40 1,1-Dibrlorothen	Bromoform	ND		0.20	0.80
Carbon disulfide ND 0.20 0.80 Carbon tetrachloride ND 0.20 0.80 Chlorobenzene ND 0.10 0.30 Chlorofethane ND 0.70 1.5 Chloromethane ND 0.10 0.30 Chloromethane ND 0.40 0.80 Dibromochloromethane ND 0.10 0.40 1,2-Dichlorobethane ND 0.10 0.40 1,2-Dichlorobethane ND 0.15 0.40 1,2-Dichlorobenzene ND 0.15 0.40 1,3-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 1,1-Dichlorobenzene ND 0.15 0.40 1,1-Dichlorobenzene ND 0.15 0.40 1,1-Dichlorobethane ND 0.20 0.80 1,2-Dichl	Bromomethane	ND		0.20	0.80
Carbon tetrachloride ND 0.20 0.80 Chlorobenzene ND 0.10 0.30 Chloroform ND 0.10 0.30 Chloroform ND 0.10 0.30 Chloromethane ND 0.40 0.80 Dibromochloromethane ND 0.10 0.40 1,2-Dichloro-1,1,22-eltrafluoroethane ND 0.15 0.40 1,2-Dichlorobenzene ND 0.15 0.40 1,2-Dichlorobenzene ND 0.15 0.40 1,2-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 1,1-Dichlorobenzene ND 0.20 0.80 1,1-Dichlorobenzene ND 0.20 0.80	2-Butanone (MEK)	ND		0.40	0.80
Chlorobenzene	Carbon disulfide	ND		0.20	0.80
Chloroethane ND 0.70 1.5 Chloroform ND 0.10 0.30 Chloromethane ND 0.40 0.80 Dibromochloromethane ND 0.10 0.40 1,2-Dichlorothemethane (EDB) ND 0.20 0.80 1,2-Dichlorothane ND 0.15 0.40 1,2-Dichlorothane ND 0.15 0.40 1,2-Dichlorothane ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorothane ND 0.15 0.40 1,4-Dichlorothane ND 0.15 0.40 1,1-Dichlorothane ND 0.15 0.40 1,2-Dichlorothane ND 0.20 0.80 1,1-Dichlorothane ND 0.20 0.80 1,1-Dichlorothane ND 0.20 0.80 1,1-Dichlorothane ND 0.20 0.80 1,1-Dichlorothane ND 0.15 0.40 trans-1,2-Dichloro	Carbon tetrachloride	ND		0.20	0.80
Chloroform ND 0.10 0.30 Chloromethane ND 0.40 0.80 Dibromochloromethane ND 0.10 0.40 1,2-Dichlorobethane (EDB) ND 0.20 0.80 1,2-Dichloro-1,1,2-2-tetrafluoroethane ND 0.15 0.40 1,2-Dichlorobenzene ND 0.15 0.40 1,3-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 Dichlorodifluoromethane ND 0.15 0.40 1,4-Dichloroethane ND 0.15 0.40 1,1-Dichloroethane ND 0.15 0.30 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethene ND 0.20 0.80 1,1-Dichloroethene ND 0.20 0.40 1,2-Dichloropropane ND 0.20 0.40 1,2-Dichloropropane ND 0.15 0.40 1,2-Dichloropropane ND 0.15 0.40	Chlorobenzene	ND		0.10	0.30
Chloromethane ND 0.40 0.80 Dibromochloromethane ND 0.10 0.40 1,2-Dibrhorethane (EDB) ND 0.20 0.80 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.15 0.40 1,2-Dichlorobenzene ND 0.15 0.40 1,3-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 1,4-Dichloroethane ND 0.15 0.40 1,1-Dichloroethane ND 0.15 0.30 1,2-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethene ND 0.15 0.40 </td <td>Chloroethane</td> <td>ND</td> <td></td> <td>0.70</td> <td>1.5</td>	Chloroethane	ND		0.70	1.5
Dibromochloromethane ND 0.10 0.40 1,2-Dibromoethane (EDB) ND 0.20 0.80 1,2-Dichloro-1,1,2/2-tetrafluoroethane ND 0.15 0.40 1,2-Dichlorobenzene ND 0.15 0.40 1,3-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 Dichlorodifluoromethane ND 0.15 0.40 1,4-Dichloroethane ND 0.15 0.30 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.40 1,2-Dichloroethane ND 0.20 0.40 1,2-Dichloroethane ND 0.15 0.40 1,2-Dichloropropane ND 0.15 0.40 1,2-Dichloropropane ND 0.15 0.40	Chloroform	ND		0.10	0.30
1,2-Dibromoethane (EDB) ND 0.20 0.80 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.15 0.40 1,2-Dichlorobenzene ND 0.15 0.40 1,3-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 Dichlorodifluoromethane ND 0.15 0.40 1,1-Dichloroethane ND 0.15 0.30 1,2-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.40 1,1-Dichloroethane ND 0.20 0.40 1,1-Dichloroethane ND 0.20 0.40 1,2-Dichloropropane ND 0.15 0.40 1,2-Dichloropropane ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 Hethyloropropane ND 0.15 0.40	Chloromethane	ND		0.40	0.80
1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.15 0.40 1,2-Dichlorobenzene ND 0.15 0.40 1,3-Dichlorobenzene ND 0.15 0.40 1,4-Dichloroethane ND 0.15 0.40 1,1-Dichloroethane ND 0.15 0.30 1,2-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.80 1,1-Dichloroethane ND 0.20 0.40 1,1-Dichloroethane ND 0.20 0.40 1,1-Dichloroethane ND 0.20 0.40 1,2-Dichloropropane ND 0.15 0.40 1,2-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropane ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 Hexas-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 <	Dibromochloromethane	ND		0.10	0.40
1,2-Dichlorobenzene ND 0.15 0.40 1,3-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 Dichlorodifluoromethane ND 0.15 0.40 1,1-Dichloroethane ND 0.15 0.30 1,2-Dichloroethane ND 0.20 0.80 1,1-Dichloroethene ND 0.20 0.80 cis-1,2-Dichloroethene ND 0.20 0.40 trans-1,2-Dichloropthene ND 0.20 0.40 trans-1,2-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 Hexachlorobutadiene ND 0.15 0.40 Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80	1,2-Dibromoethane (EDB)	ND		0.20	0.80
1,3-Dichlorobenzene ND 0.15 0.40 1,4-Dichlorobenzene ND 0.15 0.40 Dichlorodifluoromethane ND 0.15 0.40 1,1-Dichloroethane ND 0.15 0.30 1,2-Dichloroethane ND 0.20 0.80 1,1-Dichloroethene ND 0.20 0.80 cis-1,2-Dichloroethene ND 0.20 0.40 trans-1,2-Dichloroethene ND 0.20 0.40 trans-1,2-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropane ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 Ethyltonene ND 0.15 0.40 Ethyltonene ND 0.15 0.40 Hexachlorobutadiene ND 0.15 0.40 2-Hexanone ND 0.15 0.40 4-Hexanone ND 0.20 0.80 2-Hexanone ND 0.20 0.80 4-Hexanone ND 0.15 0.40 Methylene Chloride	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.15	0.40
1,4-Dichlorobenzene ND 0.15 0.40 Dichlorodifluoromethane ND 0.15 0.40 1,1-Dichloroethane ND 0.15 0.30 1,2-Dichloroethane ND 0.20 0.80 1,1-Dichloroethene ND 0.20 0.40 cis-1,2-Dichloroethene ND 0.20 0.40 trans-1,2-Dichloropthene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 thylacene ND 0.15 0.40 t-Ethyltoune ND 0.15 0.40 Hexachlorobutailene ND 0.15	1,2-Dichlorobenzene	ND		0.15	0.40
Dichlorodifluoromethane ND 0.15 0.40 1,1-Dichloroethane ND 0.15 0.30 1,2-Dichloroethane ND 0.20 0.80 1,1-Dichloroethene ND 0.20 0.80 cis-1,2-Dichloroethene ND 0.20 0.40 trans-1,2-Dichloroethene ND 0.15 0.40 t;s-1,3-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 4-Ethyltoluene ND 0.15 0.40 4-Ethyltoluene ND 0.15 0.40 4-Hexanone ND 0.20 0.80 2-Hexanone ND 0.15 0.40 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Styrene ND 0.15 0.40	1,3-Dichlorobenzene	ND		0.15	0.40
1,1-Dichloroethane ND 0.15 0.30 1,2-Dichloroethane ND 0.20 0.80 1,1-Dichloroethene ND 0.20 0.80 cis-1,2-Dichloroethene ND 0.20 0.40 trans-1,2-Dichloroethene ND 0.15 0.40 1,2-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 ternas-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 Hexachlorobutadiene ND 0.15 0.40 Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Styrene ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.15 0.40	1,4-Dichlorobenzene	ND		0.15	0.40
1,2-Dichloroethane ND 0.20 0.80 1,1-Dichloroethene ND 0.20 0.80 cis-1,2-Dichloroethene ND 0.20 0.40 trans-1,2-Dichloroethene ND 0.15 0.40 1,2-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 +Ethyltoluene ND 0.15 0.40 +Ethyltoluene ND 0.15 0.40 +Ethyltoluene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 2-Hexanone ND 0.15 0.40 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Styrene ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.15 0.40 1,1,2-Tri	Dichlorodifluoromethane	ND		0.15	0.40
1,1-Dichloroethene ND 0.20 0.80 cis-1,2-Dichloroethene ND 0.20 0.40 trans-1,2-Dichloroethene ND 0.20 0.40 1,2-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 4-Ethyltoluene ND 0.15 0.40 Hexachlorobutadiene ND 0.15 0.40 2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Styrene ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.15 0.40 1,2,4-Trichloroethane ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.15 0.40	1,1-Dichloroethane	ND		0.15	0.30
cis-1,2-Dichloroethene ND 0.20 0.40 trans-1,2-Dichloroptopene ND 0.20 0.40 1,2-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 4-Ethyltoluene ND 0.15 0.40 Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Styrene ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 1,2,4-Trichloroethane ND 0.15 0.40 1,2,4-Trichloroethane ND 0.15 0.30 1,1,1-Trichloroethane ND 0.15 0.40	1,2-Dichloroethane	ND		0.20	0.80
trans-1,2-Dichloroethene ND 0.20 0.40 1,2-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 4-Ethyltoluene ND 0.15 0.40 Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Styrene ND 0.15 0.40 Styrene ND 0.15 0.40 Tetrachloroethane ND 0.15 0.40 Tetrachloroethene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.15 0.40 1,2,4-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40	1,1-Dichloroethene	ND		0.20	0.80
1,2-Dichloropropane ND 0.15 0.40 cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 +Ethyltoluene ND 0.15 0.40 Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Styrene ND 0.15 0.40 Styrene ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 Toluene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.15 0.40 1,2,4-Trichloroethane ND 0.15 0.30 1,1,1-Trichloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.15 0.40 1,1,1-Trichloroethane ND 0.15 0.40 1,1,1-Tric	cis-1,2-Dichloroethene	ND		0.20	0.40
cis-1,3-Dichloropropene ND 0.15 0.40 trans-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 4-Ethyltoluene ND 0.15 0.40 Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 2-Hexanone (MIBK) ND 0.15 0.40 Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Styrene ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethane ND 0.15 0.40	trans-1,2-Dichloroethene	ND		0.20	0.40
trans-1,3-Dichloropropene ND 0.15 0.40 Ethylbenzene ND 0.15 0.40 4-Ethyltoluene ND 0.15 0.40 Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.15 0.40 Styrene ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 1,1,2-Trichloroethene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichloroethene ND 0.15 0.40 <tr< td=""><td>1,2-Dichloropropane</td><td>ND</td><td></td><td>0.15</td><td>0.40</td></tr<>	1,2-Dichloropropane	ND		0.15	0.40
Ethylbenzene ND 0.15 0.40 4-Ethyltoluene ND 0.15 0.40 Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.20 0.40 Styrene ND 0.15 0.40 1,1,2-Tetrachloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.15 0.30 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethane	cis-1,3-Dichloropropene	ND		0.15	0.40
4-Ethyltoluene ND 0.15 0.40 Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.20 0.40 Styrene ND 0.15 0.40 1,1,2,2-Tetrachloroethane ND 0.10 0.40 Tetrachloroethene ND 0.15 0.40 Toluene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.15 0.40 1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.40 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethane ND 0.15 0.40 Trichloroethane ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.15 0.40	trans-1,3-Dichloropropene	ND		0.15	0.40
Hexachlorobutadiene ND 0.20 0.80 2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.20 0.40 Styrene ND 0.15 0.40 1,1,2,2-Tetrachloroethane ND 0.10 0.40 Tetrachloroethane ND 0.15 0.40 10uene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethane ND 0.15 0.40 Trichloroethane ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40	Ethylbenzene	ND		0.15	0.40
2-Hexanone ND 0.20 0.80 4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.20 0.40 Styrene ND 0.15 0.40 1,1,2,2-Tetrachloroethane ND 0.10 0.40 Tetrachloroethene ND 0.15 0.40 Toluene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.20 0.40 1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.15 0.40	4-Ethyltoluene	ND		0.15	0.40
4-Methyl-2-pentanone (MIBK) ND 0.15 0.40 Methylene Chloride ND 0.20 0.40 Styrene ND 0.15 0.40 1,1,2,2-Tetrachloroethane ND 0.10 0.40 Tetrachloroethene ND 0.15 0.40 Toluene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.20 0.40 1,2,4-Trichloroethane ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.15 0.40	Hexachlorobutadiene	ND		0.20	0.80
Methylene Chloride ND 0.20 0.40 Styrene ND 0.15 0.40 1,1,2,2-Tetrachloroethane ND 0.10 0.40 Tetrachloroethene ND 0.15 0.40 Toluene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.20 0.40 1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	2-Hexanone	ND		0.20	0.80
Styrene ND 0.15 0.40 1,1,2,2-Tetrachloroethane ND 0.10 0.40 Tetrachloroethene ND 0.15 0.40 Toluene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.20 0.40 1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	4-Methyl-2-pentanone (MIBK)	ND		0.15	0.40
1,1,2,2-Tetrachloroethane ND 0.10 0.40 Tetrachloroethene ND 0.15 0.40 Toluene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.20 0.40 1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	Methylene Chloride	ND		0.20	0.40
Tetrachloroethene ND 0.15 0.40 Toluene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.20 0.40 1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	Styrene	ND		0.15	0.40
Toluene ND 0.15 0.40 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.20 0.40 1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	1,1,2,2-Tetrachloroethane	ND		0.10	0.40
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.20 0.40 1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	Tetrachloroethene	ND		0.15	0.40
1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	Toluene	ND		0.15	0.40
1,2,4-Trichlorobenzene ND 0.70 2.5 1,1,1-Trichloroethane ND 0.15 0.30 1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.20	0.40
1,1,2-Trichloroethane ND 0.15 0.40 Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80		ND		0.70	2.5
Trichloroethene ND 0.15 0.40 Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	1,1,1-Trichloroethane	ND		0.15	0.30
Trichlorofluoromethane ND 0.15 0.40 1,2,4-Trimethylbenzene ND 0.20 0.80	1,1,2-Trichloroethane	ND		0.15	0.40
1,2,4-Trimethylbenzene ND 0.20 0.80	Trichloroethene	ND		0.15	0.40
	Trichlorofluoromethane	ND		0.15	0.40
	1,2,4-Trimethylbenzene	ND		0.20	0.80
		ND		0.15	0.40

Client: Sandia National Laboratories Job Number: 340-6754-1

Client Sample ID: 093732-001/CWL-D2-FB2

Lab Sample ID: 340-6754-6 Date Sampled: 03/27/2013 0906

Client Matrix: Air Date Received: 04/01/2013 1010

Analysis Method: TO-15 Analysis Batch: 340-4452 Instrument ID: MSG

N/A Prep Batch: N/A Lab File ID: G4818.d

1.0 Initial Weight/Volume: 539 mL

Dilution: 1.0 Initial Weight/Volume: 539 mL Analysis Date: 04/02/2013 2134 Final Weight/Volume: 250 mL

Prep Date: N/A Injection Volume:

Analyte Result (ppb v/v) Qualifier MDL RLVinyl acetate 0.20 ND 0.80 Vinyl chloride ND 0.15 0.40 m,p-Xylene ND 0.20 0.80 o-Xylene ND 0.15 0.40

DATA REPORTING QUALIFIERS

Client: Sandia National Laboratories Job Number: 340-6754-1

Lab Section	Qualifier	Description
Air - GC/MS VOA		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

ANNEX C
Chemical Waste Landfill
CY 2013 Post-Closure Inspection Forms

1.	Date of Inspection	3/15/13	
2.	Time of Inspection	1125	
3	Name of Inspector	Robert	Bock

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

Any

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

I.	COVER SYSTEM [Quarterly]			
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
В.	Erosion of the soil cover in excess of 6 inches deep.	yes	No	
C.	Evidence of water ponding on the CWL cover surface in excess of 100 square feet.	yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	

Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
B. Channel sediment accumulation in excess of 6 inches deep.	yes	No	
C. Debris that blocks more than 1/3 of the channel width.	yes	16	

III. SECURITY FENCE [Quarterly]			
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	No	
B. Fence wires and posts in need of repair/maintenance.	yes	No	
C. Gates in need of oiling/repair/maintenance.	yes	No	
D. Locks in need of cleaning or replacement.	485	No	
E. Warning signs in need of repair or replacement.	yes	No	
F. Survey monuments in vicinity of CWL visible.	yes	No	•••••••••••••••••••••••••••••

IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA		1

NOTES

Note Number	Description

Action (Note Number)	assigned to	Date action completed	
Action (Note Number)	assigned to	Date action completed	
Action (Note Number)	assigned to	Date action completed	
Action (Note Number)	assigned to	Date action completed	
Action (Note Number)	assigned to	Date action completed	
Additional Comments:			
			www.cv
			-
		-	
	1/2:1		

Inspector's Signature

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

1.	Date of Inspection _	6/3/13
2.	Time of Inspection_	1300
3.	Name of Inspector	Robert Zibek

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

I,	COVER SYSTEM [Quarterly]			
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
В.	Erosion of the soil cover in excess of 6 inches deep.	yes	No	AND MALE AND AND AND AND AND AND AND AND AND AND
C.	Evidence of water ponding on the CWL cover surface in excess of 100 square feet.	yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	

II. SURFACE-WATER (STORM-WATER) DIVERSION STRUCTURES [Quarterly]			
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
B. Channel sediment accumulation in excess of 6 inches deep.	yes	No	
C. Debris that blocks more than 1/3 of the channel width.	zes	No	

III. SECURITY FENCE [Quarterly]			
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	No	***************************************
B. Fence wires and posts in need of repair/maintenance.	yes	No	
C. Gates in need of oiling/repair/maintenance.	yes	No	The second secon
D. Locks in need of cleaning or replacement.	yes	16	
E. Warning signs in need of repair or replacement.	yes	No	
F. Survey monuments in vicinity of CWL visible.	yes	No	

IV. PREVIOUS DEFICIENCIES			16 Page 1
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA		The state of the s

NOTES

Note Number	Description
	<u>.</u>
	,

Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	_Date action completed
Additional Comments:		
,		
	•	
,		
		•
	0 1 1 : 1	

Inspector's Signature

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

1.	Date of Inspection _	9/13/13	
2.	Time of Inspection	0720	
3.	Name of Inspector	Robert	Zbek

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

Ry

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

r.	COVER SYSTEM [Quarterly]		* * * * * * * * * * * * * * * * * * *	
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	monotory department which is department of the second seco
В.	Erosion of the soil cover in excess of 6 inches deep.	yes	No	
C.	Evidence of water ponding on the CWL cover surface in excess of 100 square feet.	yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No	

II. SURFACE-WATER (STORM-WATER) DIVERSION	STRUCTURES [Quarterly]	
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall crosion in excess of 6 inches deep.	yes_	No	
B. Channel sediment accumulation in excess of 6 inches deep.	yes	No	communication and a five city communication and a five city city city city city city city city
C. Debris that blocks more than 1/3 of the channel width.	yes	No	and the second s

III. SECURITY FENCE [Quarterly]			
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	No	
B. Fence wires and posts in need of repair/maintenance.	405	No	
C. Gates in need of oiling/repair/maintenance.	ye.s	No	
D. Locks in need of cleaning or replacement.	yes	No	
E. Warning signs in need of repair or replacement.	yes	No	
F. Survey monuments in vicinity of CWL visible.	yes	No	

IV. PREVIOUS DEFICIENCIES		<u>:</u>	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA		

NOTES

Note Number	Description
-	
•	
	•

Action (Note Number)	assigned to	Date action completed	.e.
Action (Note Number)	assigned to	Date action completed	м.
	•	Date action completed	-
Action (Note Number)	assigned to	Date action completed	-
Action (Note Number)	assigned to	Date action completed	e eer
Additional Comments:	.	,	
•	_	·	*
		-	THE PROPERTY OF THE PROPERTY O
			<u>f</u>

		·	
		:* - -	-
=	-	·	_
		1	

Inspector's Signature ___

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

1	Date of Inspection _	12/	2/	13
1.	Date of mapeenon			

2. Time of Inspection ____/33 o - 1417

3. Name of Inspector Robert Zock

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

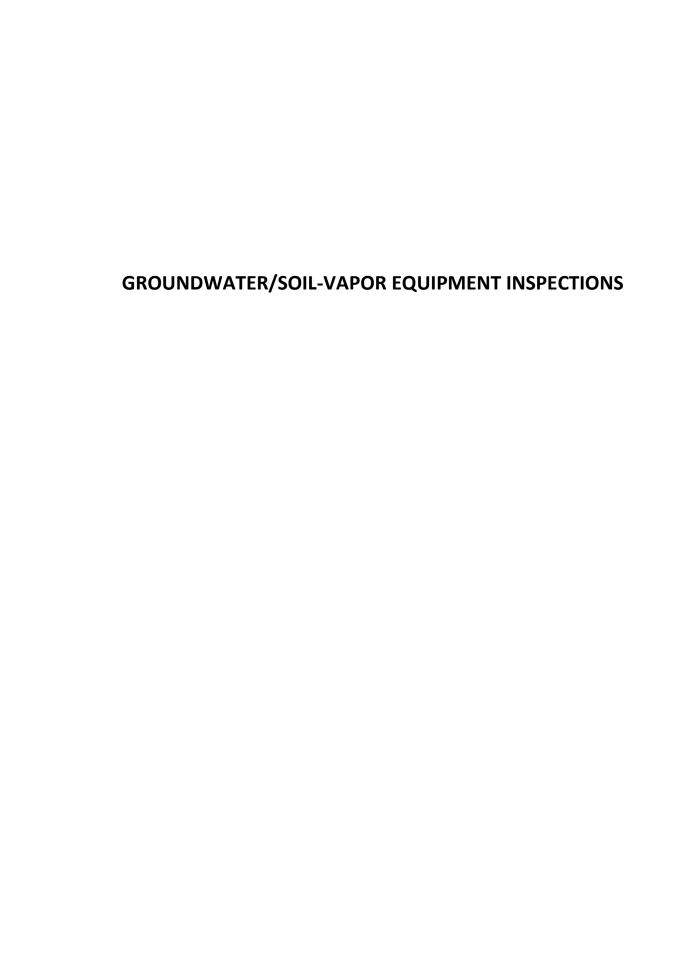
I.	I. COVER SYSTEM [Quarterly]				
Ins	Inspection Parameter		Action Required (Yes or No)	Note Number	
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	No		
В.	Erosion of the soil cover in excess of 6 inches deep.	yes	No		
C.	Evidence of water ponding on the CWL cover surface in excess of 100 square feet.	yes	No		
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No		
Ē.	Contiguous areas of no vegetation greater than 200 ft ² . Note: For first 3 to 5 years this inspection requirement may be covered on the Cover Biology Checklist.	yes	No		

Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
B. Channel sediment accumulation in excess of 6 inches deep.	yes	16	
C. Debris that blocks more than 1/3 of the channel width.	yes	yes	1

III. SECURITY FENCE [Quarterly]				
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number	
A. Accumulation of wind-blown plants and debris.	yes	No		
B. Fence wires and posts in need of repair/maintenance.	yes	No		
C. Gates in need of oiling/repair/maintenance.	yes	No		
D. Locks in need of cleaning or replacement.	yes	No		
E. Warning signs in need of repair or replacement.	yes	No		
F. Survey monuments in vicinity of CWL visible.	yes	No		

IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

NOTES


Note Number	Description
1	Tumbleweed debris has accumulated in the drainage sump located on the south side of the site paved road. The debris was removed at time of the inspection.
	was removed at time of the inspection.

Action (Note Number)	assigned to Robert Bock	Date action completed 12/2/13
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Additional Comments:		
_	_	
		
	_	

Inspector's Signature

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Groundwater Monitoring Locations / Sampling Equipment

1.	Date of Inspection	01-08-13
	Time of Inspection	50 10 10 10 10 10 10 10 10 10 10 10 10 10
3.	Name of Inspector	RoberTLynch

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

PL

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Concrete pads, bollards, and protective casings in need of repair/maintenance.	K	Мо	a
B.	Well cover caps (e.g., PVC caps, J-Plug, or equivalent) in need of repair/maintenance.	YES	ИО	}
C.	Well casing in need of repair/maintenance.	YES	NO	
D.	Monitoring well properly labeled.	YES	NO	
E.	Locks in need of cleaning or replacement.	YES	НО	

II. GROUNDWATER SAMPLING EQUIPMENT [Semi-ann	nually]		
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	Yes	NO	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	YES	MO	

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Groundwater Monitoring Locations / Sampling Equipment (continued)

III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

NOTES

Note Number	Description			
ł	Baroball assembly installed on all wells after			
	discussion with NMEP personnel on March 5 2012.			
	CWL-BW5, CWL-MW9, CWL-MW10, CWL-MW11			
	,			
J	A concrete pad associated with the P/A of			
	CWL-MW 2BU/L was observed to be			
_	damaged. The concrete well pad will be			
	repaired as soon as possible			
	,			
,				

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Groundwater Monitoring Locations / Sampling Equipment (continued)

Action (Note Number) 2 assigned to D. Schofield Date action completed 2/11/13 Thadis
Action (Note Number) assigned toDate action completed
Action (Note Number) assigned toDate action completed
Action (Note Number) assigned toDate action completed
Action (Note Number) assigned toDate action completed
Additional Comments: 2/7/13 - Remove damage nell Pad at Cul-MuzB, and
pour new concrete pad. New pudis reinforced
with steel re-bas.
2/11/13 - Remove turp all repairs completed.
PHOTOGRaphy are attached. Tild-1/12/13

Inspector's Signature

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

Repair of CWL-MW 2BU/L Concrete Pad February 2013

Repair of CWL-MW 2BU/L Concrete Pad February 2013

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Soil-Gas Monitoring Locations / Sampling Equipment

1.	Date of Inspection _	01/17/13
	Time of Inspection_	* *
3.	Name of Inspector _	RoberTLynch

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

PL

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

I.	I. SOIL-GAS MONITORING LOCATIONS [Annually]				
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number	
A.	Concrete pads, bollards, and protective casings in need of repair/maintenance.	YES	No		
В.	Well cover caps (e.g., PVC caps, J-Plug, Swagelok® dust caps, passive venting Baroballs™, or equivalent) in need of repair/maintenance.	YES	No		
C.	Well casing or sampling ports in need of repair/maintenance.	YES	NO		
D.	Monitoring location and sampling ports properly labeled.	YES	20		
E.	Locks in need of cleaning or replacement.	N/A			

II. SAMPLING EQUIPMENT [Annually]			
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	YES	NO	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	YES	NO	

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Soil-Gas Monitoring Locations / Sampling Equipment (continued)

III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	N/A		

NOTES

Note Number	Description
٠	

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Soil-Gas Monitoring Locations / Sampling Equipment (continued)

Action (Note Number)	assigned to	Date action completed	_
Action (Note Number)	assigned to	Date action completed	_
Action (Note Number)	assigned to	Date action completed	_
Action (Note Number)	assigned to	Date action completed	_
Action (Note Number)	assigned to	Date action completed	_
Additional Comments:			
N			

Inspector's Signature

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Groundwater Monitoring Locations / Sampling Equipment

l.	Date of Inspection _	7/8/13
	Time of Inspection	0749
3.	Name of Inspector	Robert Lynch

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

PL

Training records maintained at CAMU Administrative Trailer.

Provide explanatory notes for each parameter not inspected or each action required. Include any remedial steps required.

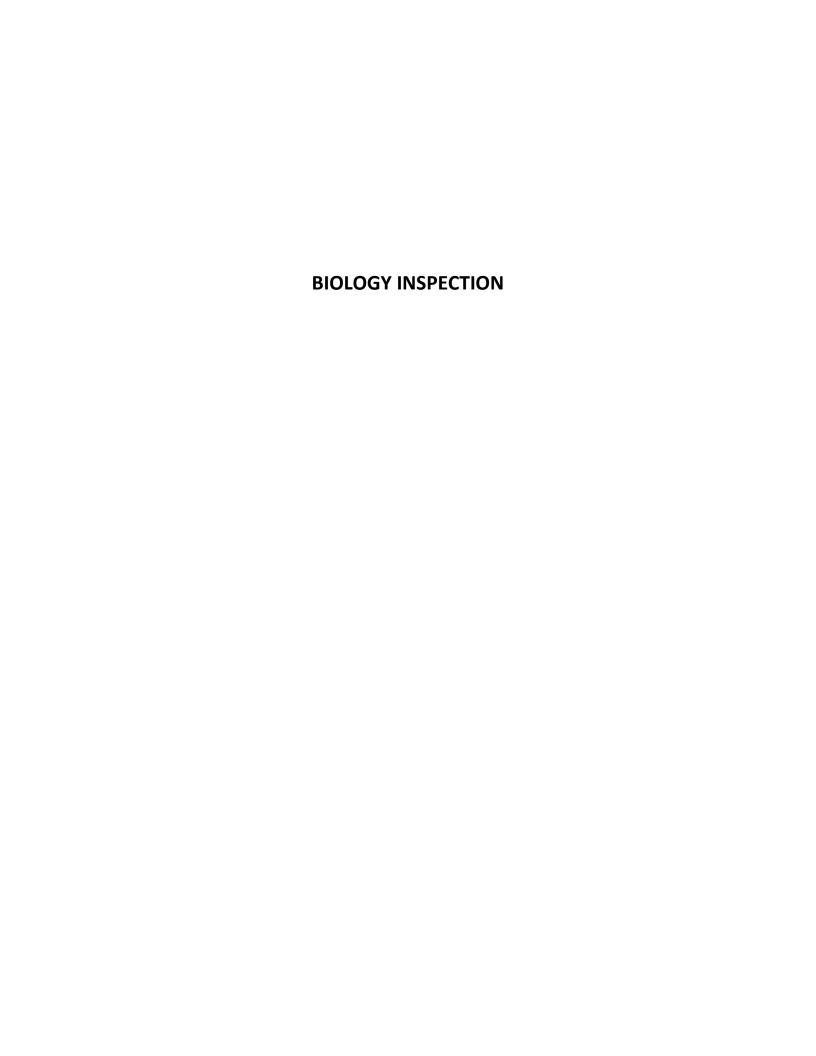
Ins	spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α.	Concrete pads, bollards, and protective easings in need of repair/maintenance.	Yes	<i>N</i> 0	
В.	Well cover caps (e.g., PVC caps, J-Plug, or equivalent) in need of repair/maintenance.	Yes	No	And Andreas Andreas
C.	Well casing in need of repair/maintenance.	Yes	No	
D.	Monitoring well properly labeled.	Yes	NO	
E.	Locks in need of cleaning or replacement.	Yes	NO	

II. GROUNDWATER SAMPLING EQUIPMENT [Semi-annually]						
Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number			
A. Sampling pump in need of repair/maintenance.	Yes	No				
 B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance. 	Yes	Νo	And the state of t			

Chemical Waste Landfill Post-Closure Inspection Form Checklist for Groundwater Monitoring Locations / Sampling Equipment (continued)

III. PREVIOUS DEFICIENCIES						
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number			
Uncorrected/undocumented previous deficiencies.	NA					

NOTES


Note Number	Description
	Baroball assembly installed on all wells after
	Baroball assembly installed on all wells after discussion with MMED personnel on March 5, 2012.
	CWL-BW5, CWL-MW9, CWL-MW10, CWL-MW11

Chemical Waste Landfill **Post-Closure Inspection Form** Checklist for Groundwater Monitoring Locations / Sampling Equipment (continued)

Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Additional Comments:		
		-
	-	•
4	141.1	/

Original to: Chemical Waste Landfill Operating Record

Copy to: Environmental Safety and Health (ES&H) and Security Records Center

Chemical Waste Landfill Post-Closure Inspection Form Biology Inspection Checklist for the CWL Cover

Mandatory requirement:

The inspector has read the CWL Post-Closure Care Permit and activity-related procedures in the last 12 months, and completed all required training: (Inspector must initial box before proceeding with the inspection.)

Approximate vegetative coverage (actively photosynthesizing*): 38 %

Approximate percent native vegetation of the total vegetative cover: 90 %

Listed below are the main plant species identified growing on the CWL cover and the approximate percent cover for each species.

Scientific Name	Common Name (optional)	% of Cover ¹
Bouteloua gracilis	Blue grama	18%
Bouteloua barbata	Six-weeks grama	4%
Salsola tragus	Russian thistle	trace
Pleuraphis jamesii	Galleta grass	8%
Sporobolus flexuosus	Mesa dropseed	3%
Kallstroemia parviflora	Warty caltrop	trace
Panicum capillare	Witchgrass	trace
Eragrostis cilianensis	Stinkgrass	4%
Aristida adscensionis	Six-weeks three-awn	1%
Setaria viridis	Green bristlegrass	trace
Chenopodium species	Goosefoot	trace
Chamaesyce species	Spurge	trace

^{*} The intent of "Approximate vegetative coverage (actively photosynthesizing)" is to indicate the percent coverage of live plants on the CWL cover. This percent cover includes plants that are photosynthesizing at the time of inspection as well as live dormant plants that are poised to uptake soil moisture as soon as it becomes available and begin photosynthesizing.

Note: ¹Percentage of total CWL cover populated by actively-photosynthesizing plants of this species

Chemical Waste Landfill Biology Inspection Checklist for the CWL Cover (Continued)

Are there any contiguous areas of no vegetation greater than 200 square feet? (Approximately 14 x14 ft.): No

If "Yes," mark such areas on a map and attach to this checklist, and improve such area(s) with native vegetation via soil augmentation, scarification, and/or reseeding.

Are there any very deeply rooted (roots greater than 8 feet deep at maturity) plant species present on the cover? No

If "Yes," mark such areas on a map and attach to this checklist, and remove plant(s) from the cover.

,
š
(
sion into CWL cover
Yes
Yes
ies that is able to burrow 6 feet deep or
es that is able to burrow 6 feet or greater, I of this checklist, and take appropriate
ver. Only ant burrows were observed on rows of a species that is able to burrow 6

No map necessary, please see "Notes"

Biological Aspects Map - [note: sketch map to locate specific features will be attached]

Survey Biologist Name:

Original to: Chemical Waste Landfill Operating Record

ANNEX D
CY 2013 Chemical Waste Landfill Biology Report

2013 CWL Biology Report

Introduction

As required by the Chemical Waste Landfill (CWL) Post-Closure Care Permit (PCCP) (NMED 2009), Attachment 1, Section 1.9.1.1, this summary report for Calendar Year (CY) 2013 presents the results of vegetation inspection and monitoring activities performed by the staff biologist on the CWL evapotranspirative (ET) Cover. The purpose of this report is to provide relevant background information, describe local climate trends over the 2013 growing season, expand on the inspection results, and provide recommendations for future ET Cover vegetation monitoring and maintenance. The annual CWL Post-Closure Biology Inspection of the ET Cover vegetation for CY 2013 was conducted on September 9, 2013. The inspection observations are documented in the "Chemical Waste Landfill Post-Closure Inspection Form Biology Inspection Checklist for the CWL Cover."

A self-sustaining plant community is an important component of overall ET Cover performance. Vegetation minimizes erosion by stabilizing the ET Cover surface and moves soil moisture from the ET Cover Topsoil and Native Soil Layers to the atmosphere through transpiration. Vegetation species that are native to the area create the optimal, self-sustaining plant community because the species are specifically adapted to the local climate and soil conditions. The CWL is located at a relatively high elevation and in a challenging semi-arid climate that experiences high temperatures throughout the summer, cold temperatures in the winter, drying winds in the spring, and infrequent precipitation. Perennial native grass species provide the best ET Cover performance due to their extensive near-surface root systems that are poised to uptake moisture throughout the year and prevent precipitation from percolating more deeply into the subsurface soil. The deeper, permanent roots of perennial native grasses enable them to best withstand drought conditions, provide soil stabilization, and remove moisture from deeper soil layers of the ET Cover relative to non-native or annual species.

Background Information

The CWL ET Cover was unsuccessfully seeded in September 2005 after cover construction was completed. To meet the criteria for successful revegetation in the timeframe specified in the PCCP (i.e., within 5 years of the Permit becoming effective), the CWL was weeded, reseeded, and supplemental watering was conducted for approximately two months during the end of the 2009 growing season. The September 2011 CWL ET Cover Biology Inspection determined the ET Cover met the criteria for successful revegetation as defined in the PCCP. Successful revegetation criteria are defined in the CWL PCCP (Attachment 1, Section 1.9) and were presented along with inspection results in the CY 2011 CWL Annual Report (SNL/NM March 2012).

1

The September 2012 CWL Biology Inspection documented cover conditions that continued to meet the criteria for successful revegetation. Three plant species were documented in 2012: four-wing saltbush (*Atriplex canescens*) was determined to cover approximately 2% of the surface area; Russian thistle (*Salsola tragus*), an annual weedy species, was present in trace amounts; and blue grama grass (*Bouteloua gracilis*) was the dominant species, covering approximately 45% of the ET Cover surface area. Although very little of the grass was green and actively photosynthesizing at the time of the 2012 inspection due to lack of soil moisture (a result of no significant wetting rains and a very dry previous winter season), the native blue grama grasses were determined to be dormant but alive. The CY 2012 Biology Report and Biology Inspection are included in the CY 2012 CWL Annual Report (SNL/NM March 2013).

The small and tightly spaced juvenile clump grasses present across the ET Cover in 2011 and 2012 provided very good and relatively uniform coverage. Anticipated future successional change under conditions of normal climatic stress included the more genetically fit grass clumps developing into larger, more mature clumps as space becomes available due to less fit grass clumps dying. As the native clump grasses mature and grow in size their root systems expand, which enhances their ability to withstand significant climate stresses (i.e., extended drought, extreme temperature variations, etc.) much better than the small, juvenile grass clumps observed in 2011 and 2012.

Local Climate Trends for 2013 Growing Season

Climate trends for north-central New Mexico are presented in this section as they have a significant impact on the ET Cover vegetation. Since the reseeding effort in August 2009, the local climate has been dominated by an intense drought with temperature extremes across the seasons. In 2013 the winter and spring seasons were very dry, followed by heavy monsoonal rains during July and September. Table 1 provides meteorological data for the 12-month period preceding and including the CY 2013 growing season. The CY2013 annual Biology Inspection was performed in September at the end of the growing season.

Precipitation, Relative Humidity and Winds

More than two years of drought preceded the 2013 growing season, with 2010 being the only year with close to average precipitation since 2008. Only 1.45 inches of precipitation occurred in the 9-month time span from October 2012 through June 2013. The relative humidity was also well below average at the CWL during these months. Below average relative humidity increases the rate of water loss from the surface of plants and from the

soil, compounding the stress on plants. The winds throughout the year were near-normal; with stronger winds in April, May and June contributing to extremely dry soil

Table 1 Summary of 2013 Growing Season Meteorological Data at the CWL^a

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
	<u>2012</u>	2012	<u>2012</u>	<u>2013</u>	<u>Annual</u>								
Temperature (°F)													
Monthly Mean	60.82	49.24	37.30	32.68	38.15	51.08	56.48	66.24	79.61	74.79	75.48	69.32	57.60
17-year Temp Means	57.66	46.42	37.03	37.77	41.80	48.49	55.52	66.22	74.82	76.80	74.84	68.84	57.18
Precipitation (Inches)													
Monthly Total	0.00	0.17	0.23	0.16	0.14	0.16	0.08	0.06	0.45	4.75	0.50	4.12	10.82
19-year Precip Means	1.04	0.45	0.54	0.35	0.48	0.60	0.51	0.40	0.52	1.41	1.79	0.90	9.00
Relative Humidity (%)													
Monthly Mean	26.6	35.5	47.0	47.0	40.7	27.1	23.8	20.4	19.3	49.4	44.2	49.7	35.9
17-year RH Means	43.8	44.7	53.4	51.2	45.2	37.6	31.0	26.7	26.0	40.3	44.9	42.1	40.6
Wind (Miles/hour)													
Monthly Mean	1.56	1.20	1.30	1.34	1.76	1.73	2.01	2.03	2.05	1.65	1.47	1.51	1.63
17-year Wind Means	1.56	1.42	1.37	1.38	1.61	1.81	2.12	1.98	1.95	1.68	1.59	1.60	3.65

^aInformation Source: SNL/NM meteorological monitoring program.

and plant conditions prior to the 2013 growing season. The 2013 monsoonal rains brought well above-average moisture, 9.37 inches during July-September, and raised the relative humidity considerably. However, the precipitation received during these months was not enough to end the current drought according to the National Drought Mitigation Center.

Temperature

The CWL experienced nearly one-hundred degrees of temperature variability in 2013, with a low of 5.59°F in January and a high of 104.05°F in June. Mean temperatures for two winter months, January and February, were well below normal. January had four consecutive days at or below freezing which is a substantial and prolonged temperature departure of 16°F below normal based on data available from the National Weather Service (NOAA 2013). Conversely, temperatures in October and November of 2012 and, March and June of 2013 were significantly above normal.

Cover Development and Maintenance

The successional development of the native grasses on the CWL ET Cover was pronounced in 2013, with the less robust blue grama grass clumps dying and creating barren interspaces for the remaining, better adapted grass clumps to expand their root systems and grow. The succession involved a much greater die-off of juvenile clump grasses than anticipated due to extreme climatic conditions as outlined in the previous climate section. Forty-percent or more of the native grass clumps were estimated to have died. This

3

unusually abrupt die-off created significant unoccupied interspaces which became filled with weedy annual plant species when the monsoon rains began. Weeds were removed in August, prior to the annual inspection. Native grass seed was then applied and the ET Cover was watered to provide consistent moisture in order to facilitate germination and seedling development. A post-inspection weeding event occurred in October to support new seedling development.

Maintenance activities performed on the CWL ET Cover in 2013 had a significant impact on addressing the negative impacts of the drought on ET Cover vegetation. These activities are summarized below; more information on Cover maintenance activities is presented in Section 6.1.2 of the 2013 CWL Annual Post-Closure Care Report.

February: Four-wing saltbush shrubs were clipped by hand at ground level and removed from the site. The perimeter fence was cleared of dead vegetation.

August: All non-grass species were removed; all weeds greater than 3 inches tall and 6-8 inches wide were pulled by hand and all smaller weeds were spot-sprayed with a commercial herbicide. After the site was weeded a native grass seed mixture (Table 2) was applied to the CWL ET cover at a rate exceeding 60 pounds of pure live seed per acre.

Common Name	Pure Live Seed (PLS), Pounds/Acre	% of Mix
"Paloma" Indian rice grass:	23	38%
"Viva" Galleta grass:	12	20%
"Hatchita" Black grama:	17	28%
Sand Dropseed:	4	7%
Alkali sacaton:	4	7%
Approximate Total:	60	100%

Table 2 Seed Mix Applied in August 2013

A drop-spreader applied the seed, which was then settled down through the gravel by a chain drag attached behind the drop spreader. A light 5-0-5 fertilizer was then applied at a rate of approximately 1 pound per 200 square feet by walk-behind rotary spreaders to give the native grasses and new seed a nitrogen boost without overloading the soil, considering the application was late in the growing season.

September: Four supplemental watering events occurred. Each event applied the equivalent of 0.5-inches of water on September 5, 10, 19 & 24. Water was applied by a large-scale commercial sprinkler.

October: One weeding event and one final 0.5-inch supplemental watering event occurred. The weeding event removed all non-grass weeds from the ET Cover and surrounding

perimeter by hand and also included spot spraying of smaller weeds that could not be effectively pulled by hand with a commercial herbicide. On the west side of the ET Cover, between the road and perimeter fence, a pre-emergent granular herbicide was applied to control future growth of annual invasive weedy species.

September 2013 Inspection Results

The September biology inspection determined the CWL ET Cover to have approximately 38% coverage, approximately 90% of which is native vegetation (Figure 1). Blue grama was the dominant grass species, and along with other native grasses comprised the majority of the ET Cover vegetation. No four-wing saltbush was observed. Many weedy species, including weedy grasses, were present that have not previously been documented on the cover.

The northwest corner of the ET Cover had the least amount of native grass coverage (Figure 1). This is the only access point to the ET Cover so the more sparse coverage in this area is anticipated and not of concern from a ET Cover performance standpoint.

A greater diversity of native grasses was observed in 2013 than in 2012. Potential reasons for this increased diversity include: species may have been present in very low amounts in 2012 but overlooked because the grasses were not green and lacking seed heads for positive identification, species respond differently to climate influences, and/or as niches opened up across the cover in 2013 some species may have been better able to quickly occupy the open spaces. Every vegetation community is dynamic and is most resilient when a variety of native species and their seed bank are present. Wet growing seasons such as 2013 will typically enhance the diversity of vegetation, which is positive for the ET Cover.

Although many native grass clumps died due to the prolonged drought, the open spaces left behind allowed for more resilient clumps to begin their development into bigger and more mature grasses. The open spaces also allowed for many annual weeds to grow, but two weed-removal events were conducted to reduce weed seed dispersal and reduce competition by weeds with the desired native grasses. The seeding event and the robust development of seed heads on the existing native grasses late in the 2013 growing season should facilitate native grass species growth in these open spaces. In addition, weedy grass species will also likely continue to grow and fill in sparse areas. This is part of the natural succession and over time these species should be outcompeted by the more desirable native grasses. The active maintenance of the ET Cover, including weed removal and supplemental watering, had a significant, positive impact on the native ET Cover vegetation in CY2013.

5

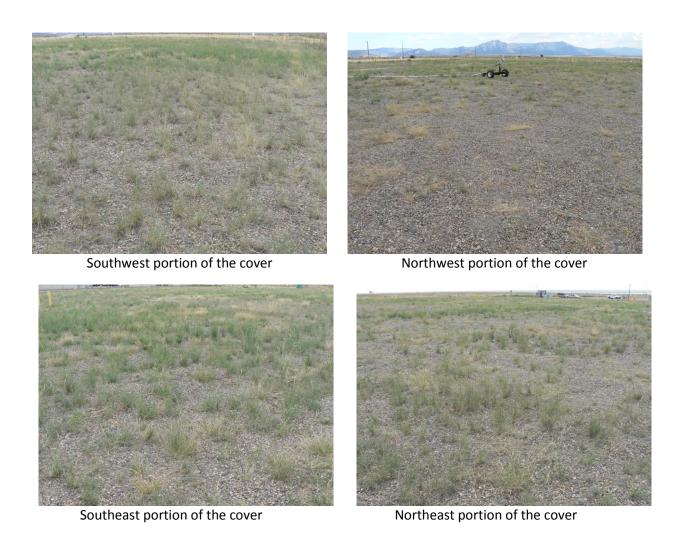


Figure 1 September 9, 2013 CWL ET Cover Photos

Recommendations

Weeding events should be conducted in 2014 to continue to reduce weeds and further assist establishment of native perennial grasses in the open spaces on the CWL ET Cover.

As of January 2014 Bernalillo County, where Sandia National Laboratories is located, remains in moderate to severe drought. At this time the National Drought Mitigation Center predicts that drought conditions are anticipated to persist or intensify across most of New Mexico into the spring of 2014 (NOAA 2014). If this forecast is accurate, early season supplemental watering of the CWL ET Cover starting as early as May 2014 is recommended. This will assist maturation of the larger bunch grasses and potentially assist in germination and/or seedling development.

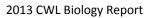
The CWL ET Cover will continue to be inspected annually as required under the PCCP. Additionally, the northwest corner of the ET Cover should be monitored periodically by the staff biologist during the CY2014 growing season. This portion of the cover has the lowest percentage of foliar coverage due to the unavoidable impact of site entry and exit for all required monitoring, maintenance, inspection, and repair/weeding activities. Based upon this monitoring, additional maintenance and/or repair work may be recommended.

References

Bearzi, J.P. (New Mexico Environment Department), July 2009. Letter to K. Davis (U.S. Department of Energy) and F. Nimick (Sandia Corporation), "Approval: Chemical Waste Landfill Evapotranspirative Cover Plan, June 2009, Sandia National Laboratories NM5890110518, HWB-SNL-09-010." July 31, 2009.

National Drought Mitigation Center (NOAA), 2014. "U.S. Seasonal Drought Outlook: Drought Tendency During the Valid Period; Valid for January 16 – April 30, 2014." Accessed January 2014.

http://www.cpc.ncep.noaa.gov/products/expert assessment/seasonal drought.pdf


National Weather Service (NOAA), 2013. "Observed Weather Reports for January 2013 for Albuquerque, New Mexico." Accessed November 2013. http://www.nws.noaa.gov/climate/index.php?wfo=abq

New Mexico Environment Department (NMED), October 2009. "Resource Conservation and Recovery Act, Post Closure Care Permit, EPA ID No. NM5890110518, to the U.S. Department of Energy/Sandia Corporation, for the Sandia National Laboratories Chemical Waste Landfill," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, October 15, 2009.

Sandia National Laboratories/New Mexico (SNL/NM), March 2013. "Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2012," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), March 2012. "Chemical Waste Landfill Annual Post-Closure Care Report, Calendar Year 2011," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), September 2010. "Chemical Waste Landfill Final Resource Conservation and Recovery Act Closure Report," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories

Page Intentionally Left Blank