

Department of Energy National Nuclear Security Administration Sandia Field Office

P. O. Box 5400 Albuquerque, NM 87185

RECEIVED

Mr. John E. Kieling
Chief
Hazardous Waste Bureau
New Mexico Environment Department
2905 Rodeo Park Dr. East, Bldg. 1
Santa Fe, NM 87505

JUN 1 0 2015

NMED Hazardous Waste Bureau

Subject: Submittal of Mixed Waste Landfill Long-Term Monitoring & Maintenance Report,

April 2014-March 2015 for Sandia National Laboratories/New Mexico, Environmental

Protection Agency Identification Number NM5890110518

Dear Mr. Kieling:

The Department of Energy/National Nuclear Security Administration and Sandia Corporation (Sandia) are submitting the *Mixed Waste Landfill Annual Long-Term Monitoring & Maintenance Report, April 2014-March 2015*, dated June 2015, to the New Mexico Environment Department. This submittal satisfies the requirements of Section 4.8.1 of the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan and includes information for monitoring and inspection activities conducted at the MWL during the annual reporting period of April 2014 through March 2015.

If you have questions, please contact David Rast of my staff at (505) 845-5349.

Sincerely,

William P. Ortiz.

Acting Assistant Manager for Engineering

Enclosure

cc: See Page 2

cc w/enclosure:

David Cobrain

NMED/HWB

2905 Rodeo Park Dr. East, Bldg. 1, Santa Fe, NM 87505

William Moats

NMED/HWB

5500 San Amonio Dr. NE, Albuquerque, NM 87109

Susan Lucas Kamat

NMED/DOE OB, MS-1396

Laurie King

US Environmental Protection Agency, Region 6
Fountain Place Suite 1200

1445 Ross Ave., Dallas, TX 75202

Zimmerman Library

MSC05 3020

1 University of New Mexico, Albuquerque, NM 87101-0001

Cynthia Wimberly, SFO/Legal

David Rast, SFO/ENG

cc w/o enclosure:

Amy Blumberg, SNL/NM

Michael Hazen, SNL/NM

David Gibson, SNL/NM

Catherine Green, SNL/NM

Pamela Puissant, SNL/NM

Michael Mitchell, SNL/NM

Anita Reiser, SNL/NM

627879

Submittal of Mixed Waste Landfill Annual Long-Term Monitoring & Maintenance Report April 2014-March 2015

Sandia National Laboratories Albuquerque, New Mexico EPA ID No. NM5890110518

CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations.

Michael W. Hazen, Vice-President

Sandia Corporation

Albuquerque, New Mexico

Operator

William P. Orths, Acting Assistant Manager

U.S. Department of Energy

National Nuclear Security Administration

Sandia Field Office

Owner

06 - 05 - 15

Enclosure A

Mixed Waste Landfill Annual Long-Term Monitoring & Maintenance Report April 2014-March 2015

June 2015

Sandia National Laboratories EPA ID No. NM5890110518

MIXED WASTE LANDFILL ANNUAL LONG-TERM MONITORING & MAINTENANCE REPORT APRIL 2014 – MARCH 2015

SANDIA NATIONAL LABORATORIES, NEW MEXICO LONG-TERM STEWARDSHIP

JUNE 2015

United States Department of Energy Sandia Field Office

ANNUAL MIXED WASTE LANDFILL LONG-TERM MONITORING AND MAINTENANCE REPORT **APRIL 2014-MARCH 2015**

Facility: Mixed Waste Landfill

Location: Sandia National Laboratories

Albuquerque, New Mexico

EPA ID No.: NM5890110518

Permit Basis: Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan,

submitted March 2012, effective January 8, 2014.

Owner: United States Department of Energy

Sandia Field Office

Technical Contact: Mr. David Rast, Long-Term Stewardship

U.S. Department of Energy, Sandia Field Office

P.O. Box 5400/MS 0184 Albuquerque, NM 87185-5400

(505) 845-5349

David.Rast@nnsa.doe.gov

Sandia Corporation **Operator:**

> **Technical Contact:** Ms. Pamela Puissant, Manager

> > Stewardship and Analytical Services Department

Sandia National Laboratories P.O. Box 5800/MS 1103

Albuquerque, NM 87185-5800

(505) 844-3185 pmpuiss@sandia.gov

TABLE OF CONTENTS

LIST OF TAE	SLES	BREVIATIONS	vi vii			
1.0 INTRODU	JCTION .		1-1			
1.1 1.2	· I · · · · · · · · · · · · · · · · · ·					
2.0 MONITO	RING AN	ID INSPECTION REQUIREMENTS	2-1			
2.1 2.2	Monito Inspect	ring Requirementstion, Maintenance, and Repair Requirements	2-1 2-1			
	2.2.1 2.2.2 2.2.3	ET Cover Biology Inspection ET Cover Surface and Physical Controls Inspection Monitoring Networks and Sampling Equipment	2-10			
3.0 RADON I	MONITO	RING RESULTS	3-1			
3.1	Radon	Sampling Field Activities	3-1			
	3.1.1 3.1.2 3.1.3	Radon Monitoring Detector Deployment and Collection Field Quality Control	3-4			
3.2	Labora	tory Results	3-4			
	3.2.1 3.2.2 3.2.3 3.2.4	Environmental Sample Results Field Quality Control Sample Results Data Quality Variances and Non-Conformances	3-6 3-6			
3.3	Data E	valuation and Monitoring Trigger Level	3-7			
4.0 TRITIUM	SURFAC	CE SOIL MONITORING RESULTS	4-1			
4.1	Tritium	Surface Soil Sampling Field Activities	4-1			
	4.1.1 4.1.2	Field Quality Control	4-1 4-3			

4.2	Labora	tory Results	4-3
	4.2.1 4.2.2 4.2.3	Environmental Sample ResultsField Quality Control Sample Results	4-3 4-4
	4.2.4	Variances and Non-Conformances	4-4
4.3	Data E	valuation and Monitoring Trigger Level	4-5
4.4	Historia	c Data Evaluation	4-5
5.0 SOIL-VA	POR MO	NITORING RESULTS	5-1
5.1	Soil-Va	apor Sampling Field Activities	5-1
	5.1.1	Well Purging	
	5.1.2	Field Quality Control	
	5.1.3	Waste Management	5-4
5.2	Labora	itory Results	5-4
	5.2.1	Environmental Sample Results	5-4
	5.2.2	Field Quality Control Sample Results	5-35
	5.2.3	Data Quality	
	5.2.4	Variances and Non-Conformances	5-38
5.3	Data E	valuation and Monitoring Trigger Level	5-38
6.0 SOIL-MO	DISTURE	MONITORING RESULTS	6-1
6.1	Soil-Mo	oisture Monitoring Field Activities	6-1
	6.1.1 6.1.2	Field Quality Control	
6.2	Monito	ring Results	6-3
6.3	Data E	valuation and Monitoring Trigger Level	6-3
7.0 GROUN	DWATER	R MONITORING RESULTS	7-1
7.1	Enviror	nmental Sampling Field Activities	7-1
	7.1.1	Well Purging	7-1
	7.1.2	Field Quality Control	
	7.1.3		

7.2	Laborat	ory Results	7-5
	7.2.1 7.2.2 7.2.3	Environmental Sample ResultsField Quality Control Sample Results	7-16
	7.2.4	Variances and Non-Conformances	
7.3	Hydroge	eologic Assessment	7-18
8.0 BIOTA N	MONITORI	NG RESULTS	8-1
8.1	Biota M	onitoring Field Activities	8-1
	8.1.1 8.1.2	Field Quality Control	
8.2	Laborat	ory Results	8-3
	8.2.1	Environmental Sample Results	8-3
	8.2.2 8.2.3	Field Quality Control Sample Results Data Quality	
8.3		valuation and Monitoring Trigger Level	
9.0 INSPEC		INTENANCE, AND REPAIR RESULTS	
9.1		over System	
	9.1.1	Biology Inspection	9-1
	9.1.2	ET Cover System/Surface Inspection	9-3
	9.1.3	ET Cover Supplemental Watering and Maintenance	9-3
9.2	Storm-V	Water Diversion Structure Inspection	9-5
9.3	Soil-Va _l	por Monitoring Network Inspection	9-5
9.4	Soil-Mo	sisture Monitoring Network Inspection	9-5
9.5	Ground	water Monitoring Well Network Inspection	9-5
9.6	Security	y Fence Inspection	9-6
10.0 REGUI	LATORY A	ACTIVITIES	10-1
10.1	MWL R	egulatory Submittals	10-1
	10.1.1 10.1.2 10.1.3	LTMMP Implementation Regulatory SubmittalsLTMMP Regulatory Submittals	10-1

		Class 3 Permit Modification Request for Corrective Action Complete With bls for the Mixed Waste Landfill	10-2
11.0 S		RY AND CONCLUSIONS	
	11.1	Monitoring Activities	11-1
	11.2	Inspections/Maintenance/Repairs Activities	11-2
		Regulatory Activities	
	11.4	Conclusions	11-3
12.0 R	EFERE	NCES	12-1

LIST OF FIGURES

Figure		Page
1-1	Location of the Mixed Waste Landfill with respect to Kirtland Air Force Base and the City of Albuquerque	1-2
1-2	Location of the Mixed Waste Landfill within Technical Area III	1-3
2-1	Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover Layer	s2-7
2-2	Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover and How it Works	2-8
2-3	Mixed Waste Landfill Engineered Storm-Water Drainage Swale	2-9
3-1	Mixed Waste Landfill Radon Detector Locations	3-2
3-2	Mixed Waste Landfill Calendar Year 2014 Quarterly Radon Air Monitoring Results	3-5
4-1	Mixed Waste Landfill Tritium Surface Soil Sampling Locations	4-2
5-1	Mixed Waste Landfill Soil-Vapor Monitoring Well Locations	5-2
6-1	Mixed Waste Landfill Soil-Moisture Monitoring Locations	6-2
6-2	Mixed Waste Landfill MWL-VZ-1 Soil-Moisture Monitoring Results	6-4
6-3	Mixed Waste Landfill MWL-VZ-2 Soil-Moisture Monitoring Results	6-5
6-4	Mixed Waste Landfill MWL-VZ-3 Soil-Moisture Monitoring Results	6-6
7-1	Mixed Waste Landfill Groundwater Monitoring Well Locations	7-2
7-2	Localized Potentiometric Surface of the Basin Fill Aquifer at the Mixed Waste Landfill, October 2014	7-19
8-1	Mixed Waste Landfill Biota Sampling Locations	8-2
10-1	Photograph of Stainless Steel Sampling Pump Removed from Mixed Waste Landfill Groundwater Well MWL-MW4 on December 16, 2014	10-3

LIST OF TABLES

Table	Pa	age
1-1	Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan Document Submittal History	.1-4
2-1	Mixed Waste Landfill Monitoring Parameters, Frequencies, and Methods	.2-2
2-2	Mixed Waste Landfill Inspection, Maintenance, and Repair Requirements	.2-4
3-1	Summary of Radon Results, Mixed Waste Landfill Air Monitoring, Calendar Year 2014	.3-3
4-1	Summary of Tritium Results (EPA Method 906.0), Mixed Waste Landfill Surface Soil Monitoring, August 2014 and January 2015	.4-4
5-1	Summary of Detected Volatile Organic Compounds (EPA Method TO-15), Mixed Waste Landfill Soil-Vapor Monitoring, September 2014	.5-6
5-2	Summary of Detected Volatile Organic Compounds (EPA Method TO-15), Mixed Waste Landfill Soil-Vapor Monitoring, October 2014	5-20
5-3	Summary of Historic, PCE, TCE, and Total VOCs Concentrations, Mixed Waste Landfill Soil-Vapor Monitoring,	5-34
5-4	Summary of Duplicate Samples, Mixed Waste Landfill Soil-Vapor Monitoring, September and October 20145	5-35
7-1	Summary of Detected Volatile Organic Compounds (EPA Method 8260B), Mixed Waste Landfill Groundwater Monitoring, April and June 2014	.7-6
7-2	Summary of Method Detection Limits for Volatile Organic Compounds (EPA Method 8260B), Mixed Waste Landfill Groundwater Monitoring, April/June and October 2014	.7-7
7-3	Summary of Cadmium, Chromium, Nickel, and Uranium Results (EPA Method 6020), Mixed Waste Landfill Groundwater Monitoring, April and October 2014	.7-8
7-4	Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results, Mixed Waste Landfill Groundwater Monitoring, April and October 2014	7-10
7-5	Summary of Field Water Quality Measurements, Mixed Waste Landfill Groundwater Monitoring, April/June and October 20147	7-14

LIST OF TABLES (Concluded)

Table		Page
7-6	Summary of Duplicate Sample Results, Mixed Waste Landfill Groundwater Monitoring, April/June and October 2014	7-16
8-1	Summary of Metals Results (EPA Method 6020/7470), Mixed Waste Landfill Biota Monitoring, August 2014	8-4
8-2	Summary of Gamma Spectroscopy Results (EPA Method 901.1), Mixed Waste Landfill Biota Monitoring, August 2014	8-6
9-1	Inspection Frequency and Dates Performed, Mixed Waste Landfill, April 2014 – March 2015 Reporting Period	9-2

LIST OF ANNEXES

Annex Annex A Mixed Waste Landfill Radon Monitoring January - December 2014 Annex B Mixed Waste Landfill Surface Soil Tritium and Biota Monitoring Forms and Reports April 2014 - March 2015 Annex C Mixed Waste Landfill Soil-Vapor Monitoring Forms and Reports April 2014 - March 2015 Annex D Mixed Waste Landfill Soil-Moisture Monitoring Forms April 2014 – March 2015 Annex E Mixed Waste Landfill Groundwater Monitoring Forms and Reports April 2014 - March 2015 Annex F Mixed Waste Landfill Inspection Forms April 2014 – March 2015 Annex G Mixed Waste Landfill Biology Report April 2014 - March 2015

ACRONYMS AND ABBREVIATIONS

AOP Administrative Operating procedure AR/COC Analysis Request/Chain-of-Custody

bgs below ground surface

CFR Code of Federal Regulations

CMI Corrective Measures Implementation

CY Calendar Year
DI deionized water
DO dissolved oxygen

DOE U.S. Department of Energy DQO data quality objective

EPA U.S. Environmental Protection Agency ERFO Environmental Resources Field Office

ET evapotranspirative

Final Order New Mexico Secretary of the Environment's Final Order in the Matter of

Request for a Class 3 Permit Modification for Corrective Measures for the

Mixed Waste Landfill No. HWB 04-11(M)

FLUTeTM Flexible Liner Underground Technology, Ltd.TM

FOP Field Operating Procedure
GEL GEL Laboratories LLC
gpm gallons per minute

HWB Hazardous Waste Bureau KAFB Kirtland Air Force Base

LTMM Long-Term Monitoring and Maintenance
LTMMP Long-Term Monitoring and Maintenance Plan

MDA minimum detectable activity
MDL method detection limit

µg/L micrograms per liter

mg/L milligrams per liter

MWL Mixed Waste Landfill

NMAC New Mexico Administrative Code NMED New Mexico Environment Department

NTU nephelometric turbidity units ORP oxidation-reduction potential

PCE tetrachloroethene pCi/L picocuries per liter pН potential of hydrogen photoionization detector PID parts per billion by volume vdqq PPE personal protective equipment ppmv parts per million by volume PQL practical quantitation limit

QC quality control

RCRA Resource Conservation and Recovery Act

RL reporting limit

RPD relative percent difference

ACRONYMS AND ABBREVIATIONS (Concluded)

SAP Sampling and Analysis Plan

Sandia Sandia Corporation
SC specific conductance
SME subject matter expert

SNL Sandia National Laboratories

SNL/NM Sandia National Laboratories, New Mexico

TA Technical Area TCE trichloroethene

VOC volatile organic compound

This page intentionally left blank.

1.0 INTRODUCTION

Sandia National Laboratories (SNL) is a multi-purpose engineering and science laboratory owned by the U.S. Department of Energy (DOE)/National Nuclear Security Administration. SNL is managed and operated by Sandia Corporation (Sandia), a wholly-owned subsidiary of Lockheed Martin Corporation. Sandia National Laboratories, New Mexico (SNL/NM) is located within the boundaries of Kirtland Air Force Base (KAFB), southeast of the City of Albuquerque in Bernalillo County, New Mexico (Figure 1-1). The Mixed Waste Landfill (MWL) is located 4 miles south of SNL/NM central facilities and 5 miles southeast of Albuquerque International Sunport, in the north-central portion of Technical Area (TA)-III (Figure 1-2).

The MWL is a Solid Waste Management Unit undergoing corrective action in accordance with the following regulatory criteria:

- New Mexico Secretary of the Environment's Final Order in the Matter of Request for a Class 3 Permit Modification for Corrective Measures for the Mixed Waste Landfill No. HWB 04-11(M) (Final Order) (Curry May 2005)
- Compliance Order on Consent (NMED April 2004)
- Facility Operating Permit for Sandia National Laboratories, EPA ID No. NM5890110518 (Permit) (NMED January 2015)

Between April 1, 2014 and February 26, 2015, the following regulatory criteria also applied to corrective action at the MWL:

- Module IV of Resource Conservation and Recovery Act (RCRA) Permit No. NM5890110518 (U.S. Environmental Protection Agency [EPA] August 1993), as revised and updated
- New Mexico Environment Department (NMED) Class 3 Permit Modification for the MWL (NMED August 2005)

On December 19, 2014, NMED signed the Final Order issuing a multiple unit Permit for Sandia National Laboratories. The Permit, which superseded Module IV of RCRA Permit NM58904110518, was formally issued January 27, 2015 (NMED January 2015) with an effective date of February 26, 2015 (Roberts January 2015). Corrective action at the MWL is not affected by issuance of the Permit.

The MWL disposal area comprises 2.6 acres. During operations, the MWL accepted containerized and other low-level radioactive waste and minor amounts of mixed waste from SNL/NM research facilities and off-site DOE and U.S. Department of Defense generators from March 1959 to December 1988. More specific information regarding the MWL inventory and past disposal practices is presented in the MWL Phase 2 RCRA Facility Investigation Report (Peace et al. September 2002) and in the MWL Long-Term Monitoring and Maintenance Plan (LTMMP) (SNL/NM March 2012).

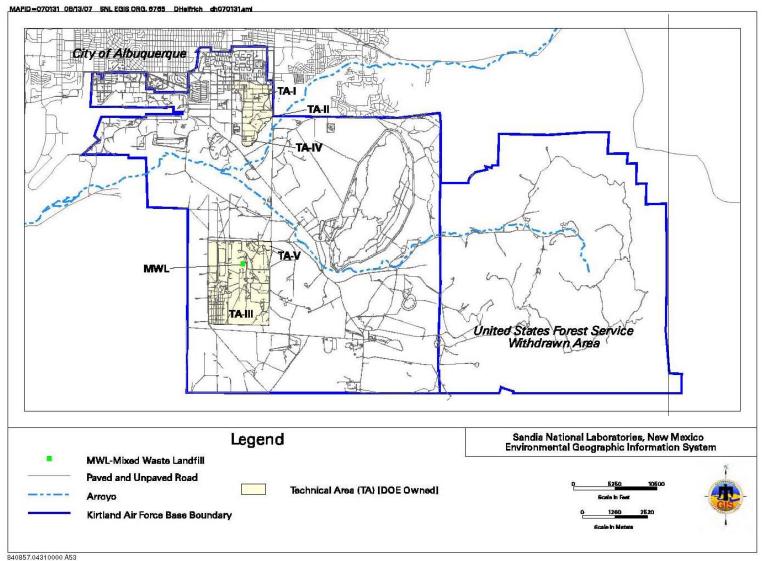


Figure 1-1
Location of the Mixed Waste Landfill with respect to Kirtland Air Force Base and the City of Albuquerque

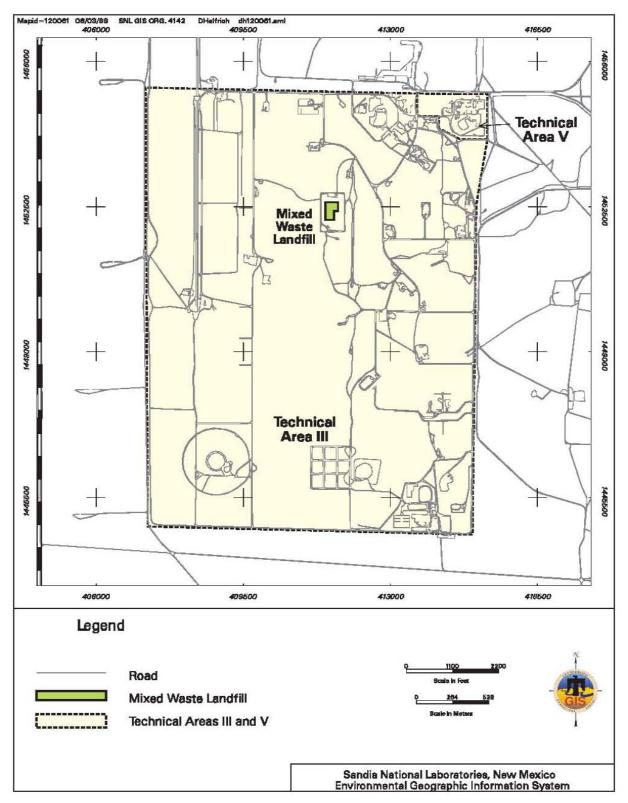


Figure 1-2
Location of the Mixed Waste Landfill within Technical Area III

On May 26, 2005, NMED issued the Final Order (Curry May 2005) selecting a vegetative soil cover with biointrusion barrier as the final remedy for the MWL, hereinafter referred to as the MWL evapotranspirative (ET) Cover. The NMED Final Order and Class 3 Permit Modification require an LTMMP to address physical controls, institutional controls, and reporting that are part of the final remedy. Deployment of the MWL ET Cover was completed in September 2009. The MWL Corrective Measures Implementation (CMI) Report (SNL/NM January 2010, Revision 1) documented ET Cover construction in accordance with the MWL CMI Plan (SNL/NM November 2005) and was approved by NMED on October 14, 2011 (Bearzi October 2011). The MWL LTMMP (SNL/NM March 2012) was submitted within 180 days of NMED approval of the CMI Report as stipulated in the NMED approval letter and as required by the Final Order (Curry May 2005).

NMED approved the MWL LTMMP on January 8, 2014 (Blaine January 2014) after a public meeting held on October 16, 2012 and a 150-day public comment period (September 2012 to February 2013). The NMED approval of the LTMMP included responses to public comments received during the 150-day public comment period (Blaine January 2014). The MWL LTMMP defines all long-term monitoring requirements. In addition to an annual report, DOE/Sandia are required to submit various documents as specified in the LTMMP. Table 1-1 summarizes MWL LTMMP-required submittals to NMED since approval of the LTMMP on January 8, 2014.

Table 1-1
Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan Document Submittal History

Date of Submittal ^a	LTMMP Requirement	Description of Submittal
March 6, 2014	Appendices C through G	Procedures, plans, and documents cited in the LTMMP used by SNL/NM personnel for air, surface soil, soil vapor, soil moisture, biota, and groundwater monitoring.
July 9, 2014	Appendices C, D, F, and G	Updates to two documents used by SNL/NM personnel to validate analytical data from contract laboratories and conduct activities related to sampling MWL soil-vapor wells. Updates to the health and safety plan for groundwater monitoring at the MWL.
February 18, 2015	Appendix F	Updates to reference documents used by SNL/NM personnel to conduct groundwater monitoring activities at the MWL.

Notes:

^aDate represents the date stamp on the DOE transmittal letter for the submittal.

DOE = U.S. Department of Energy.

LTMMP = Long-Term Monitoring and Maintenance Plan.

MWL = Mixed Waste Landfill.

SNL/NM = Sandia National Laboratories/New Mexico

1.1 Purpose and Scope

This is the second MWL Annual Long-Term Monitoring and Maintenance (LTMM) Report and the first to include a complete reporting period since approval of the MWL LTMMP on January 8, 2014. The LTMMP includes requirements for documentation of all monitoring, inspection, and maintenance/repair activities conducted during each reporting period. The purpose of this

Annual LTMM Report is to document monitoring, inspection, maintenance, and repair activities conducted during the April 1, 2014 through March 31, 2015 reporting period.

1.2 Report Organization

This report is organized as follows:

- Chapter 1 presents background information, purpose and scope, and report organization.
- Chapter 2 presents LTMMP monitoring and inspection requirements.
- Chapter 3 presents radon monitoring activities and results.
- Chapter 4 presents tritium surface soil monitoring activities and results.
- Chapter 5 presents vadose zone soil-vapor monitoring activities and results.
- Chapter 6 presents vadose zone soil-moisture monitoring activities and results.
- Chapter 7 presents groundwater monitoring activities and results.
- Chapter 8 presents biota monitoring activities and results.
- Chapter 9 presents inspection, maintenance, and repair activities and results.
- Chapter 10 summarizes regulatory activities.
- Chapter 11 presents a general summary and conclusions for the reporting period.
- Chapter 12 lists the references cited in this report.

Annexes are included that provide supporting information as follows:

- Annex A Radon Monitoring Forms
- Annex B Surface Soil Tritium and Biota Monitoring Forms and Reports
- Annex C Soil-Vapor Monitoring Forms and Reports
- Annex D Soil-Moisture Monitoring Forms
- Annex E Groundwater Monitoring Forms and Reports
- Annex F Inspection Forms
- Annex G Biology Report

April 2014 - March 2015

This page intentionally left blank.

2.0 MONITORING AND INSPECTION REQUIREMENTS

Monitoring, inspection, maintenance, and repair requirements are defined in Chapters 3 and 4 of the MWL LTMMP and are briefly summarized in this chapter. Monitoring requirements are described in Section 2.1 and generate empirical data that are evaluated to assess site conditions. Inspection requirements are described in Section 2.2 and include requirements to perform maintenance and/or repairs. As a whole, these activities ensure the physical controls at the MWL are maintained and perform as designed.

2.1 Monitoring Requirements

The primary objective of the monitoring activities at the MWL is to ensure that the ET Cover and site conditions are protective of groundwater, human health, and the environment. Monitoring activities include sampling and analysis of air, surface soil, vadose zone (volatile organic compounds [VOCs] in soil vapor and soil-moisture content), groundwater, and biota (surface soil and vegetation). The multi-media monitoring program is summarized in Table 2-1, which details information for each monitoring activity including the sampling media, monitoring parameters, frequency, number of samples, locations, and monitoring methods.

The data quality objective (DQO) of all monitoring activities is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective. The DQO is accomplished through implementation of standard operating procedures and analytical procedures/methods through the use of quality assurance measures, quality control samples, and data evaluation protocols.

Sampling and Analysis Plans (SAPs) for each monitoring activity are included in MWL LTMMP, Appendices C through G. Results for monitoring activities conducted at the MWL in the subject reporting period are presented in Chapters 3 through 8.

2.2 Inspection, Maintenance, and Repair Requirements

The primary objective of inspection, maintenance, and repair activities at the MWL is to ensure that the ET Cover, other physical controls at the site (i.e., surface-water diversion features, perimeter security fence, and survey monuments), and the monitoring systems (groundwater and vadose zone networks) perform as designed.

Inspection parameters, specifications, frequency, and repair requirements are detailed in Chapter 4 of the MWL LTMMP and summarized in Table 2-2. Repair work is initiated, as needed, based upon the results of the inspections and tracked to completion on the respective inspection forms. Long-term monitoring inspection checklists/forms are contained in the MWL LTMMP, Annex I. Results of inspection activities conducted at the MWL in the subject reporting period are presented in Chapter 9.

The following sections provide additional background information on MWL inspections and associated maintenance/repairs.

Table 2-1
Mixed Waste Landfill Monitoring Parameters, Frequencies, and Methods

Sampling Media	Monitoring Parameters ^a / Constituents of Concern	Monitoring Frequency ^a	Number of Samples Per Event	Monitoring Locations	Monitoring Method ^b	Comments
Air	Radon	Year 1 – Quarterly Year 2 – Quarterly Year 3 – Semiannual Year 4 – Semiannual Year 5 and subsequent years – Annual	17	10 detectors placed at corners and midpoints of perimeter fence 5 detectors placed on completed cover 2 detectors at background locations	Track-etch detectors (at breathing zone height); sampling and analysis per LTMMP Appendix C	Samples are time- weighted average and will be collected over a 3-month period. The first quarterly monitoring period begins in January of each year.
Surface Soil	Tritium	Annual	4	One sample collected from each corner of the MWL ET Cover.	Grab samples of soil collected; moisture extracted and analyzed for tritium using liquid scintillation per LTMMP Appendix G	Samples collected from the MWL ground surface at the four corners of the ET Cover.
Vadose Zone	VOCs in soil vapor	Year 1 – Semiannual Year 2 – Semiannual Year 3 – Semiannual Year 4 and subsequent years – Annual	17	Samples collected from 2 single-port soil-vapor monitoring points installed through the ET Cover (MWL-SV01 and MWL-SV02) and 3 perimeter multi-port FLUTe™ wells (MWL-SV03, MWL-SV04, and MWL-SV05)	Sampling and analysis of soil vapor per LTMMP Appendix D	MWL-SV01 and MWL-SV02 have a sampling port approximately 35 ft below the original ground surface. MWL-SV03, MWL-SV04, and MWL-SV05 have sampling ports at depths of approximately 50, 100, 200, 300, and 400 ft bgs.
Vadose Zone	Moisture content beneath the ET Cover	Year 1 – Semiannual Year 2 – Semiannual Year 3 and subsequent years – Annual	171	3 soil-moisture monitoring access tubes Measurements obtained at 1-ft increments from 4 ft to 25 feet bgs, then 5-ft increments to total depth of the access tube (200 linear ft)	Soil-moisture monitoring per LTMMP Appendix E	Moisture content in vadose zone beneath the cover is measured using a neutron probe to evaluate moisture infiltration through the ET Cover.

Refer to footnotes at end of table.

Table 2-1 (Concluded)
Mixed Waste Landfill Monitoring Parameters, Frequencies, and Methods

Sampling Media	Monitoring Parameters ^a / Constituents of Concern	Monitoring Frequency ^a	Number of Samples Per Event	Monitoring Locations	Monitoring Method ^b	Comments
Groundwater	VOCs, metals ^c , tritium, radon, gamma-emitting radionuclides ^d , and gross alpha/beta activity	Semiannual	4	MWL compliance groundwater monitoring well network: MWL-BW2, MWL-MW7, MWL-MW8, and MWL-MW9	Sampling and analysis of groundwater samples per LTMMP Appendix F	Monitoring wells MWL-MW4, MWL-MW5, and MWL-MW6 retained for monitoring groundwater elevation only.
Biota – Surface Soil	Metals ^e and gamma-emitting radionuclides ^f	Annual	Up to 4 (2 each, if they exist)	Variable - ant hills and animal burrows on the MWL ET Cover located during ET Cover inspections, if present	Grab sampling and analysis of surface soil at animal burrow and/or ant hill features per LTMMP Appendix G	If no features are identified, no samples will be collected.
Biota – Cover Vegetation	Gamma- emitting radionuclides (short list) in vegetation	Annual	Up to 2 if they exist	Variable - potentially deep-rooted vegetation overlying former disposal areas located during ET Cover inspections, if present	Grab sampling and analysis of vegetation, including the plant and root system per LTMMP Appendix G	If no potentially deep- rooted plants are present, no samples will be collected.

Notes:

bgs = Below ground surface. ET = Evapotranspirative.

FLUTe™ = Flexible Liner Underground Technologies, Ltd.[™]

ft = Foot (feet).

LTMMP = Long-Term Monitoring and Maintenance Plan.

MWL = Mixed Waste Landfill.

RCRA = Resource Conservation and Recovery Act.

VOC = Volatile organic compound.

^aMonitoring parameters and frequency will be reevaluated every five years in the Five-Year Reevaluation Report.

^bSampling and Analysis Plans and sampling requirements in appendices of the MWL LTMMP (SNL/NM March 2012).

^cRequired metals analyses include cadmium, chromium, nickel, and uranium (SNL/NM March 2012).

^dRadionuclide results reported for groundwater include americium-241, cesium-137, and cobalt-60.

eRequired metals analyses include RCRA metals plus copper, nickel, vanadium, zinc, cobalt, and beryllium (SNL/NM March 2012).

^fRadionuclide results reported for biota include cesium-137, cobalt-60, radium-226, thorium-232, uranium-235, and uranium-238.

Table 2-2 Mixed Waste Landfill Inspection, Maintenance, and Repair Requirements

MWL System to be Inspected	Inspection Frequency/ Performed by	Inspection Parameters	Maintenance Implementation	Maintenance/Repair Frequency ^a
ET Cover Surface	Quarterly until vegetation is established, annually	Vegetation Inventory	Soil augmentations and/or reseeding	Within 60 days of discovery of needed
Biology Inspection	thereafter by a staff biologist ^b	Contiguous areas of no vegetation >200 ft ²	Revegetate barren areas that exceed prescribed limits	repairs. Reseeding repairs may
(Cover vegetation and signs of animal activity)		Animal intrusion burrows in excess of 4 inches in diameter	Repair cover system damage that exceeds prescribed limits	be delayed to await the appropriate growing season.
ET Cover System (Surface)	Quarterly by a field technician	Settlement of cover surface in excess of 6 inches Erosion of cover soil in excess of	Repair cover system damage that exceeds prescribed limits	Within 60 days of discovery of needed repairs.
		6 inches deep Ponding of water on the ET Cover surface in excess of 100 ft ² Animal intrusion burrows in		Reseeding repairs may be delayed to await the appropriate growing season.
		excess of 4 inches in diameter Contiguous areas of no vegetation >200 ft ^{2 c}	Revegetate barren areas that exceed prescribed limits ^c	Within 60 days of discovery of needed repairs.
ET Cover Surface-Water (Storm water) Drainage Features	Quarterly by a field technician	Channel or sidewall erosion in excess of 6 inches deep	Repair erosion that exceeds prescribed limits	Within 60 days of discovery of needed
		Accumulations of sediment in excess of 6 inches deep or debris that blocks more than 1/3 of the channel width	Remove sediment and debris accumulations that exceed prescribed limits	repairs.
Soil-Vapor Monitoring Wells, Soil-Moisture Monitoring Access	Groundwater and Vadose Zone Network	Concrete pads, stanchions, and protective casings	Maintain, clean, repair, replace, re-label, as appropriate	Within 60 days of discovery of needed
Tubes, and Groundwater Monitoring Wells	Components: Field technician to inspect at	Well cover caps and Swagelok® (or equivalent) dust caps		repairs.
	same frequency/time that monitoring occurs	Monitoring wells and soil-vapor sampling port labels		
		Locks		
		Sampling pumps and tubing Neutron probe and cable system		

Refer to footnotes at end of table.

Table 2-2 (Concluded) Mixed Waste Landfill Inspection, Maintenance, and Repair Requirements

MWL System to be Inspected	Inspection Frequency/ Performed by	Inspection Parameters	Maintenance Implementation	Maintenance/Repair Frequency ^a
ET Cover Physical Controls	Quarterly by a field technician	Presence of wind-blown plants and debris Condition of fence wires, posts, gates, gate locks, warning signs, and survey monuments in the local area	Remove wind-blown plants and debris Repair broken wire sections and posts, repair/oil gates, clean/replace locks, repair/replace warning signs, clear dirt/debris from monuments	Within 60 days of discovery of needed repairs.

Notes:

ET = Evapotranspirative.

ft² = Square feet.

MWL = Mixed Waste Landfill.

^aMaintenance/repairs will be performed as necessary, based upon the results of inspections.

^bThe transition from quarterly to annual inspections by a staff biologist is based upon meeting successful revegetation criteria as determined by the staff biologist (SNL/NM March 2012).

⁶Barren areas exceeding >200 ft² will not require corrective action after ET Cover vegetation is determined to have met successful revegetation criteria if they are the result of relatively short-term climate stresses (e.g., severe short-term drought), and the staff biologist determines they will naturally fill in over time. However, these areas will be noted and tracked during inspections and reviewed annually by the staff biologist to determine whether action is required based upon comparison to surrounding vegetation.

2.2.1 ET Cover Biology Inspection

The ET Cover consists of four main layers: Compacted Subgrade, Biointrusion, Compacted Native Soil, and Topsoil Layers (Figure 2-1). A thin soil layer was placed on top of the Biointrusion Layer to fill void space and create an even surface upon which the Native Soil Layer was constructed. The Subgrade varies in thickness from 0 to 3.3 feet and the combined average thickness of the overlying ET Cover layers is 5.37 feet. The Topsoil layer was seeded with native grasses to mitigate surface erosion and promote evapotranspiration. The native grass species were selected based upon biological assessments of TA-III (Sullivan and Knight 1992; Peace et al. November 2004). A conceptual schematic profile of the ET Cover and how it works is provided in Figure 2-2.

The ET Cover slopes gently to the west (2 percent slope) and sheds surface-water runoff to the west and the cover perimeter down the side slopes. An engineered drainage swale located immediately east, north, and south of the ET Cover diverts surface run-on from the east (upgradient) side of the ET Cover and run-off from the side slopes around the northern and southern ends of ET Cover to the west (Figure 2-3).

Cover vegetation monitoring will be accomplished in two phases. During the first phase, a staff biologist conducts vegetation inspection and monitoring on a quarterly schedule. The first phase concentrates on establishing the vegetation on the ET Cover from seed to a mature plant community such that successful revegetation criteria are met. These criteria are defined in Section 4.1 of the MWL LTMMP and are presented below.

- Total percent foliar coverage equals 20 percent (i.e., 20 percent of the land surface is covered with living plants versus 80 percent bare surface area);
- Of the 20 percent total foliar coverage, 50 percent or greater comprises native perennial species, and 50 percent or less comprises annual species; and
- No contiguous bare spots greater than 200 square feet (approximately 14 by 14 feet).

In addition to inspecting and documenting the inventory of the primary flora populating the cover, the staff biologist documents signs of animal and insect activity. Once successful revegetation criteria are met, the second phase of cover vegetation inspection begins.

In phase two, the staff biologist inspection frequency changes to annual and occurs near the end of the growing season (August–September) to most accurately determine the coverage of living plants. The staff biologist continues to document the flora population and signs of animal and insect activity.

Damage to cover vegetation that exceeds the criteria listed in Section 4.2.2 of the LTMMP is noted on the Biology Inspection Checklist/Form and appropriate maintenance/repairs will be completed within 60 days of the notation. Reseeding repairs may be delayed until the appropriate time during the growing season (Table 2-2).

At the end of each reporting year, the staff biologist compiles the results of the quarterly inspections (or annual inspection), summarizes local climate trends, and presents

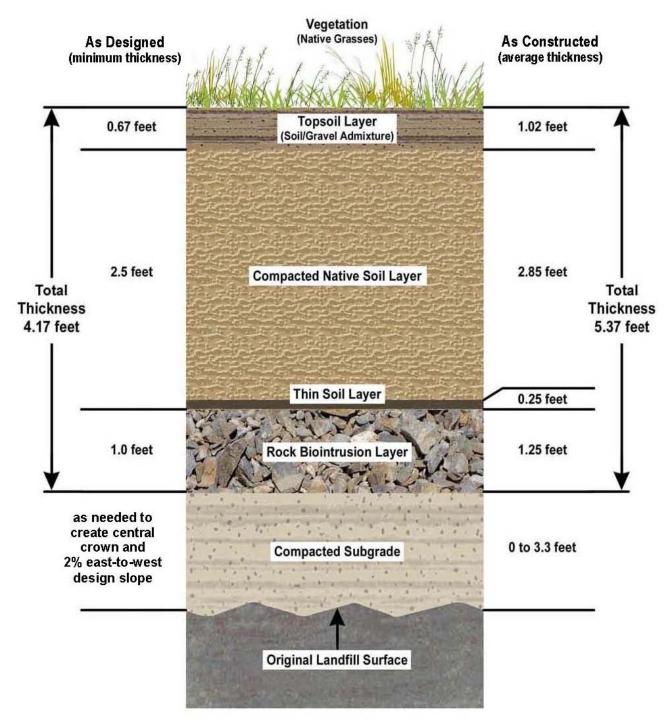


Figure 2-1
Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover Layers

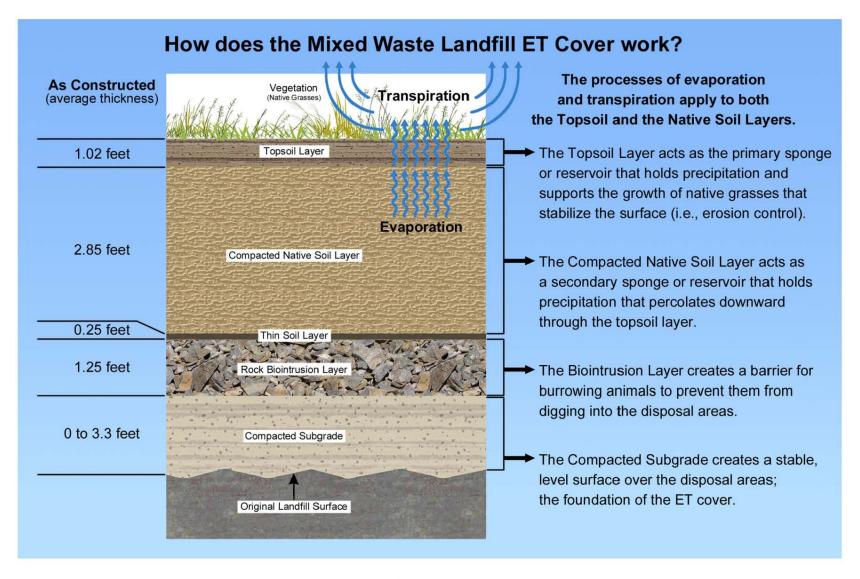


Figure 2-2
Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover and How it Works

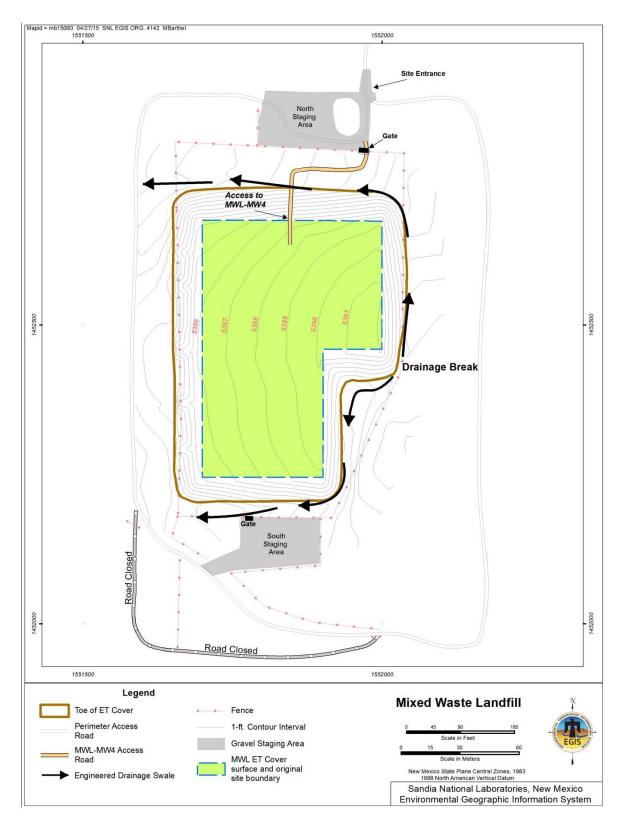


Figure 2-3
Mixed Waste Landfill Engineered Storm-Water Drainage Swale

recommendations in a summary report to be included in the Annual LTMM Report (Annex G) along with the inspection form(s).

2.2.2 ET Cover Surface and Physical Controls Inspection

The ET Cover surface, side slopes, and physical controls (i.e., storm-water drainage swale, security fence, locks, gates, signs, and survey monuments) are inspected by a field technician on a quarterly basis. Inspection parameters, specifications, frequency, and required maintenance/repair activities for the ET Cover are summarized in Table 2-2. Documentation of animal burrows in excess of 4 inches in diameter and contiguous areas lacking vegetation in excess of 200 square feet are noted on both the quarterly *Cover Inspection* and annual *Biology Inspection Checklists/Forms* once the Biology Inspection frequency changes to annual.

If parameter specifications are exceeded they will be noted on the *Cover Inspection Checklist/Form* and appropriate maintenance/repairs will be completed within 60 days of the notation. Reseeding repairs may be delayed until the appropriate time during the growing season (Table 2-2).

2.2.3 Monitoring Networks and Sampling Equipment

Groundwater monitoring wells, soil-vapor monitoring wells, soil-moisture monitoring access tubes, and associated sampling/monitoring equipment are inspected at the same frequency and during the associated monitoring events. All inspection parameters, specifications, and required maintenance/repair activities are detailed in Table 2-2. The inspections and any associated maintenance and repair activities will be documented on monitoring network-specific inspection checklists/forms. There is a separate inspection checklist/form for each of the three monitoring networks and associated sampling/monitoring equipment.

If conditions are observed that require maintenance, repair, or replacement they will be noted on the associated *Monitoring Network Inspection Checklist/Form* and appropriate actions will be completed within 60 days (Table 2-2).

3.0 RADON MONITORING RESULTS

This chapter presents radon monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with LTMMP Section 3.2.1 and Appendix C (SNL/NM March 2012). The monitoring objective is to collect data to evaluate radon gas flux (i.e., movement) to the atmosphere at the MWL. This monitoring provides an early warning detection system for changing conditions so that timely action can be taken, if necessary. Results from the monitoring stations located along the perimeter security fence (locations RN1 through RN 10) are compared to trigger levels defined in LTMMP Section 5.2.1.

Radon monitoring field activities are described in Section 3.1, analytical laboratory results and a discussion of data quality are presented in Section 3.2, and data evaluation requirements and a comparison of results to the trigger level are presented in Section 3.3. A summary of radon monitoring activities and results is provided in Section 11.1.

3.1 Radon Sampling Field Activities

This section describes radon monitoring activities conducted at the MWL in conformance with LTMMP Appendix C that describes the procedures, methods, and analytical protocols for deploying, collecting, and analyzing radon monitoring samples.

Four monitoring events were conducted during CY 2014, fulfilling the LTMMP quarterly monitoring requirement. Radon monitoring presented for this April 1, 2014 through March 31, 2015 reporting period covers the CY 2014 period January 1, 2014 through December 31, 2014 due to the time required for laboratory analysis and data review after collection of the detectors in the field. The January through March 2015 monitoring quarter will be presented in the June 2016 MWL Annual LTMM Report.

Radon sampling locations are designated as RN1 through RN17 and are shown in Figure 3-1. Table 3-1 presents the dates of detector deployment and collection for each quarter, location number, quarterly average of radon air concentrations in picocuries per liter (pCi/L), and the CY 2014 annual average radon air concentrations (pCi/L). Locations RN1 through RN10 are located on the perimeter security fence and are the compliance locations to which the trigger level applies. Locations RN11 through RN15 are located on the ET Cover surface directly above pits and trenches with known radium-226 sources. Locations RN16 and RN17 are background locations established away from the MWL, but in the general vicinity.

Quarterly monitoring results are reviewed and evaluated by an SNL/NM radiological subject matter expert (SME). The data evaluation letter reports also include the corresponding laboratory data sheets, Analysis Request/Chain-of-Custody forms (AR/COCs), and pictures of the radon monitoring station equipment and configuration. They are provided in Annex A.

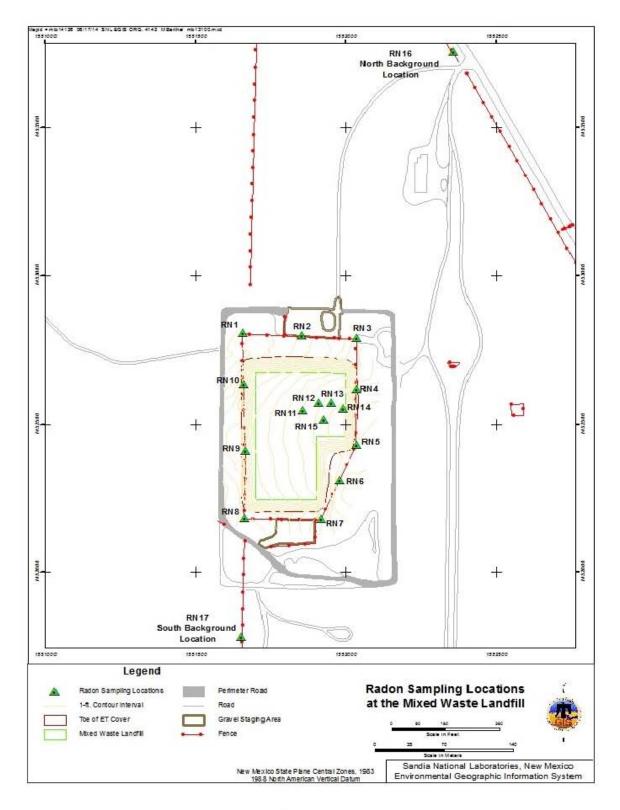


Figure 3-1
Mixed Waste Landfill Radon Detector Locations

Table 3-1 Summary of Radon Results Mixed Waste Landfill Air Monitoring Calendar Year 2014

	1 st Quarter		2 nd Quarter		3 rd Quarter		4 th Quarter			
	Detector	Detector	Detector	Detector	Detector	Detector	Detector	Detector	CY 2014	
	Deployment	Collection	Deployment	Collection	Deployment	Collection	Deployment	Collection	Average Radon	
	Date	Date	Date	Date	Date	Date	Date	Date	Air	Trigger
Sample	1/13/2014	4/2/2014	4/2/2014	7/3/2014	7/3/2014	10/2/2014	10/2/2014	1/7/2015	Concentration	Level
Locationa	Quarterly Time-Weighted Average Radon Air Concentration (pCi/L)								(pCi/L)	(pCi/L)
RN1	0.7		0.8		0.6		0.7		0.7	4
RN2	10.6 R ^b		1.4		0.6		0.6		0.9 ^c	4
RN3	0.8		0.3		0.5		0.9		0.6	4
RN4	0.4		0.3		0.4		1.1		0.6	4
RN5	0.4		0.3		0.5		0.7		0.5	4
RN6	0.4		0.3		0.5		0.8		0.5	4
RN7	0.4		0.3		0.6		0.9		0.6	4
RN8	0.4		0.3		0.5		0.9		0.5	4
RN9	0.4		0.3		0.7		1.1		0.6	4
RN10	0.4		0.3		0.4		0.4		0.4	4
RN11	0.9		0.3		0.3		0.7		0.6	NA
RN12	0.7		0.3		0.4		0.8		0.6	NA
RN13	0.4		0.3		0.4		0.5		0.4	NA
RN14	0.4		0.3		0.3		0.7		0.4	NA
RN15	0.4		0.3		0.5		0.7		0.5	NA
	Background Locations and Quality Control									
RN16	0.4		0.3		0.7		0.5		0.5	NA
RN17	0.4		0.3		0.6		0.9		0.6	NA
RNTB	d		d		0.4		1.0		0.7	NA

Notes:

CY = Calendar year. NA = Not applicable.

pCi/L = Picocuries per liter.

R = Reported result was not representative and rejected during data review.

RNTB = Trip blank.

^aBolded sample locations are the locations where the trigger level applies.

^bThe detector was found on the ground during collection on April 2, 2014. The reported result is not representative and was rejected during data review.

^cThe CY 2014 average radon concentration for location RN2 does not include the 1st quarter data.

^dA trip blank was not used to monitor the environmental samples during storage and shipment to the analytical laboratory (Section 3.2.3).

3.1.1 Radon Monitoring Detector Deployment and Collection

Radtrak® radon detectors were deployed and collected at the 17 sampling sites as shown in Table 3-1 and Figure 3-1. All detectors were found in good condition at the time of collection, except for the first quarterly monitoring period. On April 2, 2014 when the first quarter detectors were being collected, the RN2 location detector was found on the ground. A discussion of data quality impacts related to the condition of this detector are presented in Section 3.2.3 and corrective actions that have been implemented to prevent this situation in the future are discussed in Section 3.2.4.

3.1.2 Field Quality Control

Two types of field control measures are employed for quality control (QC) during each quarter monitoring event; a field control sample (trip blank) and two field background samples (representing natural environmental conditions in the vicinity of the MWL). The trip blank analysis is used to confirm detectors were not contaminated during storage and shipment to the analytical laboratory. The two field background samples (RN16 and RN17) were collected during each sampling event at areas outside of the MWL, but within TA-III (Figure 3-1). This allows the measurement of background radiation that is always present due to naturally-occurring radon. The two field background sample results are compared to the sample detectors (RN1 through RN15) that are located on top of the ET Cover and on the perimeter fence (Figure 3-1).

3.1.3 Waste Management

No waste is generated during radon monitoring field activities. Radon detectors are disposed of by the analytical laboratory.

3.2 Laboratory Results

This section summarizes radon air monitoring results for the CY 2014. The radon air measurements were obtained using Radtrak® radon detectors. Radtrak® is an alpha-track radon gas detector designed to monitor radon exposure for three months to one year to obtain a long-term average concentration over time. The detectors were submitted to Landauer® Incorporated for analysis. Analytical laboratory reports, including certificates of analyses, analytical methods, dates of analyses, results of QC analyses, and data validation findings are filed in the SNL/NM Record Center.

3.2.1 Environmental Sample Results

The compiled quarterly monitoring results are presented in Table 3-1. Figure 3-2 shows the tabulated data in graphical form along with the trigger level of 4 pCi/L. One sample location, RN2, exceeded the trigger level of 4 pCi/L with a value of 10.6 pCi/L during the first quarter (January through March 2014). The result from this detector is not representative and was rejected during data review because the detector was found on the ground in poor condition



Figure 3-2
Mixed Waste Landfill
Calendar Year 2014 Quarterly Air Monitoring Results

when it was collected (see Section 3.2.3 for more information). As shown in Table 3-1, the RN2 location results for the second, third, and fourth quarters were well below the trigger level, with activities of 1.4, 0.6, and 0.6 pCi/L, respectively. The CY 2014 average radon concentration at locations RN1 through RN15 ranged from 0.4 to 0.9 pCi/L. The CY 2014 average radon concentrations at background locations RN16 and RN17 ranged from 0.5 to 0.6 pCi/L, respectively.

3.2.2 Field Quality Control Sample Results

Trip blanks (designated as RNTB in Table 3-1) were not submitted with the detectors collected during the first and second quarter sampling events. The results from analysis of the trip blanks submitted with the third and fourth quarter sampling events confirmed there was no contamination during storage and shipment of detectors RN1 through RN17 to the analyzing laboratory.

The two field background sample results (RN16 and RN17) for each quarter are compared to the quarterly sample results for detectors RN1 through RN15 and are shown in Figure 3-2. These background sample results show that conditions at the MWL are essentially equivalent to background conditions.

3.2.3 Data Quality

The detector at sampling location RN2 was found on the ground during the collection of first quarter detectors and the deployment of second quarter detectors on April 2, 2014. It had separated from its protective casing, which is secured to a perimeter fence at a height approximately 4 feet above ground surface. The detector was exposed on the ground surface for an undetermined period of time, was covered with dirt, and, based on its condition, was exposed to rain. The internal chip that is analyzed by the laboratory was warped and damaged. Due to the conditions noted for this detector, the analytical result was rejected as not representative during SNL/NM radiological SME review (Annex A). The results for the second, third, and fourth quarter monitoring events demonstrated the first quarter RN2 results were anomalous. To provide a valid, representative result, the detector must remain approximately 4 feet above the ground surface and be protected from the weather (i.e., precipitation and wind) and surface soil by the protective casing. Corrective actions to prevent this situation and data quality issue from occurring in the future are discussed in Section 3.2.4.

3.2.4 Variances and Non-Conformances

The first quarter RN2 detector detachment from the protective casing was a variance that resulted in rejected data. After further inspection, it was determined that a faulty Velcro™ attachment was the cause (Velcro™ tab on detector was the same as the tab on the inside of the protective casing, instead of opposite). High wind events common during this time of year likely caused the detector to fall out of the casing. Corrective action implemented after a review of the situation included the following.

- Prior to deployment, all detectors will be inspected to ensure that the Velcro[™] tabs are installed appropriately. Extra detectors will be requested from the laboratory in case suspect detectors are found during inspections.
- During deployment, the integrity of the protective casing and the hardware that secures the protective casing to the fence post will also be inspected and repaired or replaced if appropriate.
- On a monthly basis, each monitoring station will be checked to make sure all detectors are in place and secure.

There was one non-conformance in both the first and second monitoring periods. A trip blank was not included when the detectors were sent to the laboratory to determine whether contamination of the detectors (RN1 through RN17) may have occurred during shipment and storage at the laboratory. There was no adverse impact on the results, as the trip blank samples were included with the third and fourth quarter detectors, and the monitoring results for the first and second quarter were comparable to the third and fourth quarter monitoring results. Comparison of the four data sets indicates contamination during shipment and storage at the laboratory of the first and second quarter detectors did not occur.

3.3 Data Evaluation and Monitoring Trigger Level

The trigger level for radon in air is 4 pCi/L, which applies to the detectors located on the perimeter fence (RN1 through RN10). The trigger level of 4 pCi/L is the same as the EPA-recommended action level for radon in households. There was no exceedance of the 4.0 pCi/L trigger level at sampling locations RN1 through RN10 during CY 2014.

April 2014 - March 2015

This page intentionally left blank.

4.0 TRITIUM SURFACE SOIL MONITORING RESULTS

This chapter presents monitoring activities for tritium-in-surface soil (i.e., sampling and analysis), analytical results, and data evaluation in accordance with LTMMP Sections 3.3 and 5.2.2.1, and Appendix G (SNL/NM March 2012). The monitoring objective is to collect data to evaluate tritium flux (i.e., movement) to the atmosphere from soil moisture in surface soil at the MWL. This monitoring provides an early warning detection system for changing conditions so that action can be taken, if necessary, in a timely manner.

Tritium surface soil monitoring field activities are described in Section 4.1 and analytical laboratory results and a discussion of data quality are presented in Section 4.2. Data evaluation and a comparison of results to the trigger level are presented in Section 4.3 and Section 4.4 presents historic data evaluation. A summary of tritium surface soil monitoring activities and results is provided in Section 11.1.

4.1 Tritium Surface Soil Sampling Field Activities

This section describes activities conducted in conformance with LTMMP Appendix G, which describes the procedures, methods, and analytical protocols for collecting and analyzing tritium surface soil samples. Annex B contains the AR/COC forms and a data evaluation memo prepared by a Sandia radiological SME that includes an evaluation and summary of the data.

Surface soil samples were collected at four monitoring locations on August 21, 2014 (Figure 4-1). Although these locations matched previous SNL/NM Terrestrial Surveillance Program monitoring locations, they did not match the locations specified in Section 3.3, Figure 3.3-1 of the LTMMP. Therefore, sampling was conducted at the LTMMP locations on January 20, 2015 to fulfill the annual monitoring requirement and provide data for comparison between locations (Figure 4-1). Historically, tritium surface soil monitoring was performed at the MWL by the SNL/NM Terrestrial Surveillance Program, and these locations have been shifted over time to accommodate construction of the subgrade (2006) and ET Cover (2009). The August 2014 sampling locations were consistent with post-ET Cover installation Terrestrial Surveillance Program locations. Comparison of current tritium results with historical Terrestrial Surveillance Program results is presented in Section 4.4 and is still useful even though the sampling locations are not identical. The August 2014 results are presented in the following sections along with the January 2015 results.

4.1.1 Field Quality Control

A field QC sample (duplicate soil sample) was collected as part of the August 21, 2014 combined tritium and biota sampling event in accordance with the Tritium and Biota SAP (Appendix G, Table G-4.2-1), which requires one duplicate sample pair collected for every twenty environmental samples. The environmental and duplicate sample pairs for the August 2014 (combined tritium and biota sampling event) and January 2015 sampling events (tritium only) were collected at the tritium monitoring location MWL TS-2NE (Figure 4-1).

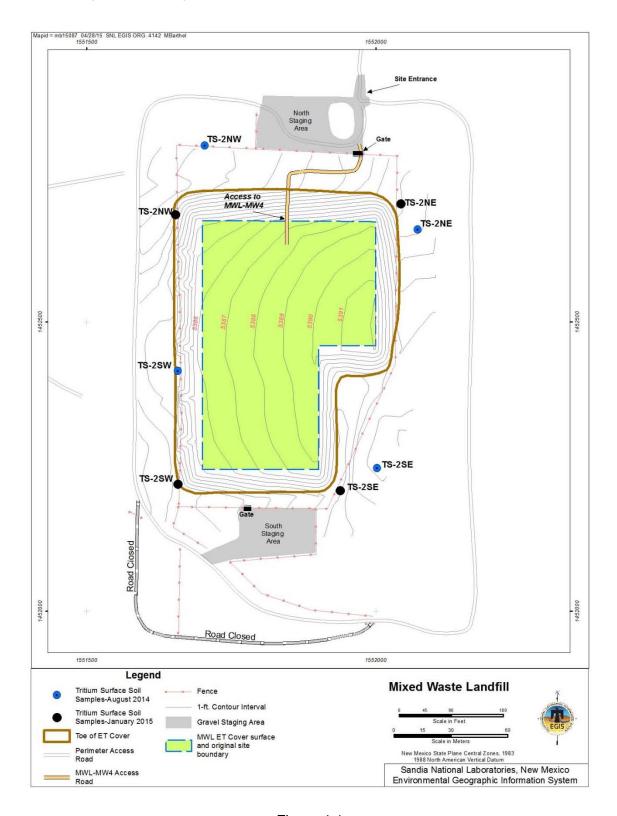


Figure 4-1
Mixed Waste Landfill Tritium Surface Soil Sampling Locations

4.1.2 Waste Management

Waste generated during sampling activities included personal protective equipment (PPE), such as gloves, and decontamination wipes. It was managed in accordance with federal, state, and city regulations, and applicable SNL/NM requirements. Analytical data collected from the sampling event was used to characterize the waste; it was determined to be non-hazardous and non-radioactive and was managed as solid waste.

4.2 Laboratory Results

Soil samples and field QC samples were submitted to GEL Laboratories LLC (GEL) for analyses. Samples were analyzed by liquid scintillation analysis, in accordance with EPA Method 906.0 (liquid scintillation analysis). Tritium activity is determined in the moisture extracted from the soil sample, so results are sensitive to in-situ moisture content of the soil collected. Analytical results that are below the minimum detectable activity (MDA) are qualified with a "U" and are designated as not detected. Analytical laboratory reports, including certificates of analyses, analytical methods, sample results, dates of analyses, results of QC analyses, and data validation reports are filed in the SNL/NM Record Center.

4.2.1 Environmental Sample Results

Table 4-1 summarizes the tritium surface soil results for the August 2014 and January 2015 sampling events. Tritium was not detected above the MDA in any of the August 2014 surface soil samples. This was due in part to the soil being very dry, despite scheduling the sampling during the summer monsoon season. Tritium assay in soil depends on the presence of measurable soil moisture, and the August 2014 samples were very dry (i.e., soil-moisture content of the samples was less than 2 percent). There was more soil moisture present during the January 2015 sampling event due to winter precipitation events and cooler temperatures (i.e., soil-moisture content of the samples ranged from 4.3 to 9.2 percent), and tritium activity was detected above the MDA in all samples. The January 2015 tritium samples exhibited very low activities, ranging from 1,010 to 1,830 pCi/L.

The variation in the two data sets is primarily related to soil-moisture content, and is not related to the minor changes in sampling locations (see the Sandia radiological SME's data evaluation memo in Annex B).

4.2.2 Field Quality Control Sample Results

Relative percent difference (RPD) values between the environmental sample and corresponding duplicate is calculated using the following formula.

$$RPD = \frac{|R_1 - R_2|}{[(R_1 + R_2)/2]} \times 100$$

where: R_1 = Analysis result.

R₂ = Duplicate analysis result.

Table 4-1 Summary of Tritium Results (EPA Method 906.0^a) Mixed Waste Landfill Surface Soil Monitoring August 2014 and January 2015

Sample	Result (pCi/L)	Laboratory Qualifier ^b	Validation Qualifier ^b	Result (pCi/L)	Laboratory Qualifier ^b	Validation Qualifier ^b	Trigger Level
Location		August 2014			January 2015		(pCi/L)
MWL TS-2NW	151 ± 136	U	BD	1210 ± 216			
MWL TS-2SW	-39.4 ± 118	U	BD	1660 ± 271			
MWL TS-2SE	-45.9 ± 115	U	BD	1830 ± 294			20,000
MWL TS-2NE	147 ± 136	U	BD	1010 ± 191			20,000
MWL TS-2NE (duplicate)	60.4 ± 125	U	BD	1370 ± 235			

Notes:

BD = Result is below the MDA.

EPA = U.S. Environmental Protection Agency.

MDA = Minimum detectable activity.

MWL = Mixed Waste Landfill. pCi/L = Picocuries per liter.

U = Analyte was not detected; the result is less than the MDA.

For the environmental-duplicate sample pair collected at MWL TS-2NE in August 2014, tritium was not detected; therefore, an RPD value was not calculated. The RPD value between the environmental-duplicate sample pair collected at MWL TS-2NE in January 2015 shows good agreement (RPD values <35) with a calculated value of 30.

4.2.3 Data Quality

Field QC sample results validated the adequacy of the field sampling procedures and protocol. Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These included laboratory control samples, method blanks, and matrix spike samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All radiochemical data were reviewed and qualified in accordance with SNL/NM Administrative Operating Procedure (AOP) AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2014a). Data Validation Reports and Contract Verification Review forms are provided in Annex B.

4.2.4 Variances and Non-Conformances

There were no variances or non-conformances for tritium surface soil sampling.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

^bBlank (--) cell means all quality control samples met acceptance criteria.

4.3 Data Evaluation and Monitoring Trigger Level

The trigger level for tritium as measured in soil moisture from surface soil samples is 20,000 pCi/L as specified in LTMMP Section 5.2.2.1 (SNL/NM March 2012). No sample results from August 2014 or January 2015 exceeded the trigger level.

4.4 Historic Data Evaluation

Tritium surface soil sampling has been conducted at the MWL by the Terrestrial Surveillance Program since August 1985 at various locations around the MWL perimeter. The tritium sampling being performed under the LTMMP is a continuation of this monitoring effort. Historic tritium data from 1985 through1999 did not go through same rigorous data quality review process as data collected since June 2000, but does provide useful information regarding tritium levels over time.

Trend plots are not presented in this Annual LTMM Report because the factors that affect tritium results in surface soil samples at these very low activities (e.g., soil-moisture content and barometric conditions) overwhelm the subtle changes in actual, measurable tritium flux. The data collected in August 2014 and January 2015 are consistent with the historical data and demonstrate consistent, tritium activity at very low levels that are close to the laboratory minimum detectable activity.

April 2014 - March 2015

This page intentionally left blank.

5.0 SOIL-VAPOR MONITORING RESULTS

This chapter presents soil-vapor monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with LTMMP Sections 3.4.1 and 5.2.3.1, and Appendix D (SNL/NM March 2012). The soil-vapor monitoring objective is to provide spatial and temporal concentration data for hazardous constituents in the soil vapor at various depths in the approximately 500-foot-thick vadose zone beneath the MWL (i.e., unsaturated soil and sediments above the regional groundwater aquifer). These monitoring data serve as an early warning detection system for the protection of groundwater. Results from the deepest sampling ports of the deepest soil-vapor wells are compared to trigger levels defined in LTMMP Section 5.2.3.

Soil-vapor monitoring field activities are described in Section 5.1, analytical laboratory results and a discussion of data quality are presented in Section 5.2, and data evaluation and comparison of results to monitoring trigger levels are presented in Section 5.3. A summary of soil-vapor monitoring activities and results is provided in Section 11.1.

5.1 Soil-Vapor Sampling Field Activities

This section describes soil-vapor monitoring activities conducted at the MWL in conformance with the MWL Soil-Vapor SAP, LTMMP Appendix D, which describes the procedures, methods, and analytical protocols for collecting and analyzing soil-vapor samples. Field forms and documentation that address calibration of equipment, well evacuation, purge volumes, and vacuum pressure readings for each sample container are provided in Annex C.

Wells MWL-SV01 and MWL-SV02 are single-sampling-port wells installed through the ET Cover; each well has one sampling port at depths 42.5 and 41.5 feet below ground surface (bgs), respectively. Wells MWL-SV03, MWL-SV04, and MWL-SV05 are multi-sampling-port wells (i.e., each has 5 sampling ports at depths of approximately 50, 100, 200, 300, 400 feet bgs), and are installed around the ET Cover perimeter. These wells were constructed in May through July 2014 using the Flexible Liner Underground Technology, Ltd.[™] (FLUTe[™]) technology after NMED approved the LTMMP (Blaine January 2014). Wells MWL-SV01 and MWL-SV02 were installed during ET Cover construction in August 2009 to minimize impact on the ET Cover. The well locations are shown in Figure 5-1.

Two soil-vapor monitoring events were conducted during the April 1, 2014 through March 31, 2015 reporting period fulfilling the LTMMP semiannual monitoring requirement. The three FLUTeTM wells were not ready for sampling until September 2014, two months after completion of drilling and installation, to allow for vadose zone equilibration. The two monitoring events were conducted in September and October 2014, to allow time for laboratory analysis and data validation so the results of two soil-vapor monitoring events could be presented in this Annual LTMM Report. Future MWL semiannual soil-vapor monitoring will be performed at the same time as the semiannual groundwater monitoring, in April and October of each annual reporting period.

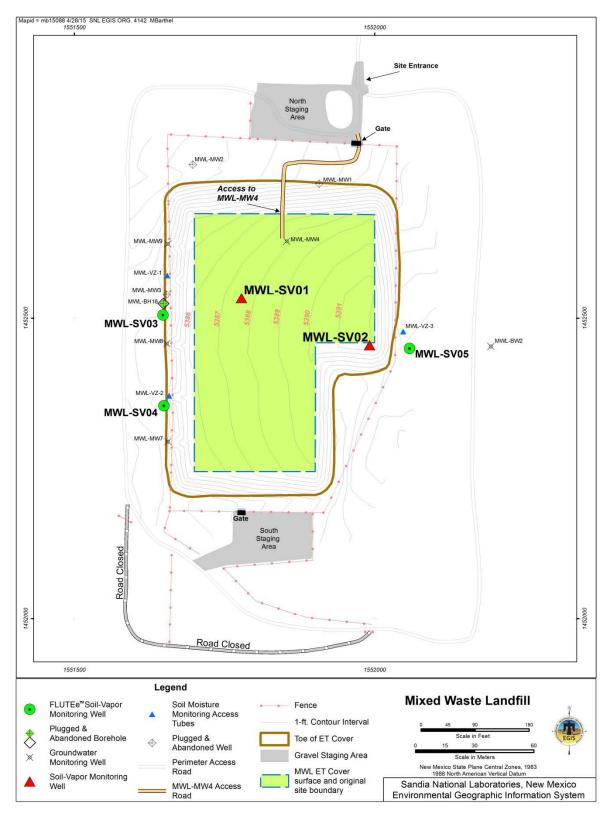


Figure 5-1
Mixed Waste Landfill Soil-Vapor Monitoring Well Locations

The two soil-vapor monitoring events are described as follows.

- The first sampling event was conducted on September 11, 2014. Soil vapor samples were collected from all monitoring wells (MWL-SV01, MWL-SV02, MWL-SV03, MWL-SV04, and MWL-SV05). Duplicate samples were collected from MWL-SV04 at the 100 and 300-foot depth sampling ports.
- The second sampling event was conducted on October 22, 2014. Soil vapor samples were collected from all monitoring wells and duplicate samples were collected from MWL-SV05 at the 200 and 400-foot depth sampling ports.

5.1.1 Well Purging

Purging removes stagnant air from each monitoring port and associated sample tubing, and draws representative soil vapor from the soil pore space surrounding the sampling port in the subsurface. All wells were purged to remove a minimum of three tubing volumes of air, and until VOC levels stabilized (3 measurements after purging 3 tubing volumes within plus or minus 10 percent), in accordance with procedures described in field operating procedure (FOP) FOP 08-22, "Soil-Vapor Sampling," (SNL/NM June 2014b), and LTMMP Appendix D. All wells were purged using a dedicated (to the MWL) vacuum pump. Real time VOC screening was performed with a photoionization detector (PID) to determine VOC stabilization during the purging process. After achieving stabilization, PID VOC concentrations ranged from 0.0 to 0.2 parts per million by volume (ppmv) for all wells and sampling ports.

5.1.2 Field Quality Control

Field QC samples include duplicate samples (minimum of two per annual monitoring event) and field blank samples. Field QC samples were submitted for analysis with the soil-gas samples and analytical results are presented in Section 5.2.2 and Annex C. Duplicate samples were collected immediately after the original environmental sample in order to reduce variability caused by time and/or sampling mechanics. These sample results were used to evaluate the reproducibility of the sampling and analytical processes.

Field blank samples were prepared in the field during sampling activities by collecting an ultrapure grade nitrogen gas sample at each monitoring well. Results were used to assess whether contamination of the samples may have resulted from ambient field conditions.

A brief explanation of the field QC sampling protocol for the September and October 2014 sampling events is provided below.

Duplicate samples were collected from the sample ports located at 100 feet bgs and 300 feet bgs at monitoring well MWL-SV04 in September, and from the sample ports located at 200 feet bgs and 400 feet bgs at monitoring well MWL-SV05 in October. A total of five QC field blank samples were submitted for analysis for each of the events.

5.1.3 Waste Management

A small volume of solid waste (e.g., PPE) was generated during the two soil-vapor monitoring events. This waste was combined with the solid waste generated during groundwater monitoring activities and managed in accordance with federal, state, and city regulations, and applicable SNL/NM requirements.

5.2 Laboratory Results

Environmental and field QC soil-vapor samples were submitted to Test America Laboratories, Inc. for analyses. Samples were analyzed in accordance with EPA Method TO-15. Analytical results that are equal to or above the analytical laboratory method detection limit (MDL) but below the reporting limit (RL) are qualified as estimated values by the laboratory and designated with a "J" qualifier. Analytical laboratory reports, including certificates of analyses, analytical methods, MDLs, RLs, dates of analyses, and data validation reports are filed in the SNL/NM Record Center.

5.2.1 Environmental Sample Results

This section summarizes soil-vapor monitoring results for the April 1, 2014 through March 31, 2015 reporting period. A summary of compounds detected in each event is provided below, along with a discussion of soil-vapor trigger levels defined in LTMMP Section 5.2.3.1.

First Semiannual Sampling Event - September 11, 2014

A total of 26 compounds were detected above laboratory MDLs in September 2014 samples. 22 of the VOCs were also detected in the October samples; the 4 highlighted VOCs were not detected in the October samples.

Acetone

Benzene

Bromodichloromethane

2-Butanone

Carbon Disulfide

Carbon Tetrachloride

Chloroform

Chloromethane

Dibromochloromethane

Dichlorodifluoromethane

1,1-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

Ethyl Benzene

2-Hexanone

Methylene Chloride

Tetrachloroethene (PCE)

Toluene

Trichloroethene (TCE)

Trichlorofluoromethane

1,1,1-Trichloroethane

1,1,2-Trichloro-1,2,2-trifluoroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

m, p-Xylene

o-Xylene

Tetrachloroethene (PCE) and trichloroethene (TCE) are the primary VOCs of concern, exhibited the highest concentrations, and were reported in all environmental samples. PCE was detected at concentrations ranging from 0.052 to 0.560 ppmv, and TCE concentrations ranged from 0.044 to 0.300 ppmv. Other VOCs detected in all samples, generally at lower concentrations, include 2-butanone, chloroform, dichlorodifluoromethane, 1,1-dichloroethane, 1,1-dichloroethane, 1,1-dichloroethane, 1,1,2-trichloro-1,2,2-trifluoroethane, 1,1,1-trichloroethane, and trichlorofluoromethane. The maximum VOC concentration was 0.560 ppmv PCE from MWL-SV01-42.5.

Second Semiannual Sampling Event - October 22, 2014

A total of 27 compounds were detected above laboratory MDLs in October 2014 samples. VOCs that are not highlighted were also detected in the September samples; the 5 highlighted VOCs were not detected in the September samples.

Acetone
Benzene
2-Butanone
Carbon Disulfide
Carbon Tetrachloride

Chloroform Chloromethane

Dibromochloromethane Dichlorodifluoromethane

1,2-Dichlorobenzene
1,4-Dichlorobenzene

1,1-Dichloroethane
1.1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

2-Hexanone

Methylene Chloride

Tetrachloroethene (PCE)

Toluene

Trichloroethene (TCE)
Trichlorofluoromethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

1,1,2-Trichloro-1,2,2-trifluoroethane

1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene

Vinyl Acetate

PCE and TCE exhibited the highest in soil vapor, and were reported in all environmental samples. PCE was detected at concentrations ranging from 0.048 ppmv to 0.400 ppmv. TCE concentrations ranged from 0.058 ppmv to 0.300 ppmv. Other VOCs detected in all samples, generally at lower concentrations, included dichlorodifluoromethane, 1,1-dichloroethane, 1,1-dichloroethane, 1,1,2-trichloro-1,2,2-trifluoroethane, 1,1,1-trichloroethane, and trichlorofluoromethane. The maximum VOC concentration was 0.400 ppmv PCE from samples MWL-SV01-42.5 and MWL-SV03-400.

Table 5-1 and Table 5-2 summarize detected VOCs results for the September 2014 and October 2014 sampling events, respectively. Table 5-3 provides results for PCE, TCE, and Total VOCs for both events. For the combined September-October data sets, PCE concentrations ranged from 0.048 ppmv (October MWL-SV05-50) to 0.560 ppmv (September MWL-SV01-42.5), and TCE concentrations ranged from 0.044 ppmv (September MWL-SV04-300) to 0.300 ppmv (September and October MWL-SV03-200). Total VOCs, as the sum of validated detected VOCs, were reported in all environmental samples at concentrations ranging from 0.20438 ppmv (September MWL-SV04-300) to 1.14010 ppmv (September MWL-SV01-42.5).

Table 5-1
Summary of Detected Volatile Organic Compounds (EPA Method TO-15^a)
Mixed Waste Landfill Soil-Vapor Monitoring
September 2014

		Result ^b	MDL ^b	RLb	Laboratory	Validation
Well ID/Sample Port	Analyte	(ppmv)	(ppbv)	(ppbv)	Qualifier ^c	Qualifier ^c
MWL-SV01-42.5	Acetone	0.013	0.89	25	B, J	25U
11-Sep-14	Bromodichloromethane	0.00040	0.33	1.5	J	
	2-Butanone	0.0027	0.99	4.0	J	
	Carbon Disulfide	0.0031	0.39	4.0	J	4U
	Carbon Tetrachloride	0.00035	0.32	4.0	J	
	Chloroform	0.013	0.47	1.5		
	Chloromethane	0.0012	0.98	4.0	J	
	Dichlorodifluoromethane	0.100	0.72	2.0		
	1,1-Dichloroethane	0.0028	0.36	1.5		
	1,1-Dichloroethene	0.0080	0.64	4.0		
	cis-1,2-Dichloroethene	0.0015	0.44	2.0	J	
	Tetrachloroethene	0.560	0.77	6.0		
	Toluene	0.0011	0.25	2.0	J	
	Trichloroethene	0.110	0.52	2.0		
	Trichlorofluoromethane	0.190	0.98	2.0		
	1,1,1-Trichloroethane	0.055	0.32	1.5		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.094	0.81	2.0		
	Total Organics ^d	1.14010	NA	NA	NA	NA
MWL-SV02-41.5	Acetone	0.0083	0.38	11	B, J	11U
11-Sep-14	Benzene	0.00017	0.17	0.84	J	0.84U
·	2-Butanone	0.0041	0.42	1.7		
	Carbon Disulfide	0.0019	0.16	1.7		
	Chloroform	0.0031	0.20	0.63		
	Chloromethane	0.00052	0.42	1.7	J	
	Dichlorodifluoromethane	0.094	0.31	0.84		
	1,1-Dichloroethane	0.0026	0.15	0.63		
	1,1-Dichloroethene	0.011	0.27	1.7		
	cis-1,2-Dichloroethene	0.00096	0.19	0.84		
	2-Hexanone	0.00043	0.18	0.84	J	
	Methylene Chloride	0.00061	0.15	0.84	J	
	Tetrachloroethene	0.086	0.11	0.84		
	Trichloroethene	0.075	0.22	0.84		
	Trichlorofluoromethane	0.300	1.7	3.4		
	1,1,1-Trichloroethane	0.082	0.14	0.63		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.056	0.34	0.84		
	Total Organics ^d	0.71822	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-50	Acetone	0.0072	0.24	6.8	В	
11-Sep-14	Benzene	0.0060	0.11	0.54		
	2-Butanone	0.0021	0.27	1.1		
	Carbon Disulfide	0.00020	0.11	1.1	J	1.1U
	Carbon Tetrachloride	0.00022	0.086	1.1	J	
	Chloroform	0.0018	0.13	0.41		
	Dichlorodifluoromethane	0.022	0.20	0.54		
	1,1-Dichloroethane	0.0024	0.097	0.41		
	1,1-Dichloroethene	0.0085	0.17	1.1		
	cis-1,2-Dichloroethene	0.0016	0.12	0.54		
	2-Hexanone	0.00019	0.12	0.54	J	
	Methylene Chloride	0.00046	0.097	0.54	J	
	Tetrachloroethene	0.140	0.15	1.2		
	Toluene	0.0028	0.069	0.54		2.8U
	Trichloroethene	0.100	0.31	1.2		
	Trichlorofluoromethane	0.022	0.26	0.54		
	1,1,1-Trichloroethane	0.0061	0.088	0.41		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.049	0.22	0.54		
	Total Organics ^d	0.36957	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-100	Acetone	0.011	0.38	(ppbv)	B	11U
11-Sep-14	Benzene	0.00081	0.17	0.85	J	0.85U
11 CCP 14	2-Butanone	0.0021	0.42	1.7		
	Carbon Disulfide	0.00086	0.17	1.7	J	1.7U
	Carbon Tetrachloride	0.00037	0.14	1.7	J	
	Chloroform	0.0023	0.20	0.64		
	Chloromethane	0.00052	0.42	1.7	J	
	Dichlorodifluoromethane	0.040	0.31	0.85		
	1,1-Dichloroethane	0.0051	0.15	0.64		
	1,1-Dichloroethene	0.019	0.27	1.7		
	cis-1,2-Dichloroethene	0.0034	0.19	0.85		
	Methylene Chloride	0.0019	0.15	0.85		
	Tetrachloroethene	0.210	0.22	1.7		
	Toluene	0.0030	0.11	0.85		3.0U
	Trichloroethene	0.190	0.45	1.7		
	Trichlorofluoromethane	0.030	0.42	0.85		
	1,1,1-Trichloroethane	0.0066	0.14	0.64		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.100	0.35	0.85		
	m,p-Xylene	0.00022	0.21	1.7	J	
	Total Organics ^a	0.61151	NA	NA	NA	NA

Wall ID/Comple Bort	Amalista	Result ^b	MDL ^b	RL ^b	Laboratory Qualifier ^c	Validation Qualifier ^c
Well ID/Sample Port MWL-SV03-200	Analyte	(ppmv) 0.0047	(ppbv)	(ppbv) 15	B. J	15U
	Acetone		0.53 0.23	1.2	В, Ј	
11-Sep-14	Benzene	0.00068			J	1.2U
	2-Butanone	0.0013	0.59	2.4	J	
	Carbon Disulfide	0.00061	0.23	2.4	J	2.4U
	Carbon Tetrachloride	0.00056	0.19	2.4	J	
	Chloroform	0.0020	0.28	0.89		
	Dichlorodifluoromethane	0.057	0.43	1.2		
	1,1-Dichloroethane	0.0076	0.21	0.89		
	1,1-Dichloroethene	0.034	0.38	2.4		
	cis-1,2-Dichloroethene	0.0050	0.26	1.2		
	Methylene Chloride	0.0032	0.21	1.2		
	Tetrachloroethene	0.300	0.30	2.4		
	Toluene	0.0036	0.15	1.2		3.6U
	Trichloroethene	0.300	0.62	2.4		
	Trichlorofluoromethane	0.026	0.58	1.2		
	1,1,1-Trichloroethane	0.0024	0.19	0.89		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.180	0.96	2.4		
	Total Organics ^d	0.91906	NA	NA	NA	NA
MWL-SV03-300	Acetone	0.014	0.90	25	B, J	25U
11-Sep-14	Benzene	0.0012	0.40	2.0	J	2.0U
·	2-Butanone	0.0035	1.0	4.0	J	
	Carbon Disulfide	0.023	0.39	4.0		
	Chloroform	0.00081	0.48	1.5	J	
	Dichlorodifluoromethane	0.027	0.73	2.0		
	1,1-Dichloroethane	0.0020	0.36	1.5		
	1,1-Dichloroethene	0.015	0.65	4.0		
	cis-1,2-Dichloroethene	0.0020	0.45	2.0		
	Methylene Chloride	0.0011	0.38	2.0	J	
	Tetrachloroethene	0.290	0.26	2.0		
	Toluene	0.0060	0.26	2.0		
	Trichloroethene	0.190	0.53	2.0		
	Trichlorofluoromethane	0.0091	0.99	2.0		
	1.1.1-Trichloroethane	0.00066	0.33	1.5	J	
	1.1.2-Trichloro-1.2.2-trifluoroethane	0.079	0.82	2.0		
	Total Organics ^d	0.64917	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-400	Acetone	0.013	(ррву) 0.90	(ppbv) 25	B. J	25U
	Benzene	0.0015	0.90	2.0	D, J	2.0U
11-Sep-14	2-Butanone	0.0015	1.0	4.0	J 	2.00
	Carbon Disulfide	0.026	0.39	4.0		
	Carbon Tetrachloride	0.00033	0.32	4.0	J	
	Chloroform	0.0012	0.48	1.5	J	
	Chloromethane	0.0019	0.99	4.0	J	
	Dichlorodifluoromethane	0.026	0.73	2.0		
	1,1-Dichloroethane	0.0029	0.36	1.5		
	1,1-Dichloroethene	0.019	0.65	4.0		
	cis-1,2-Dichloroethene	0.0028	0.45	2.0		
	Tetrachloroethene	0.390	0.51	4.0		
	Toluene	0.022	0.26	2.0		
	Trichloroethene	0.290	0.53	2.0		
	Trichlorofluoromethane	0.0096	0.99	2.0		
	1,1,1-Trichloroethane	0.0013	0.33	1.5	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.075	0.82	2.0		
	o-Xylene	0.00027	0.27	2.0	J	
	Total Organics ^d	0.87270	NA	NA	NA	NA
MWL-SV04-50	Acetone	0.0069	0.44	12	B, J	12U
11-Sep-14	Benzene	0.0017	0.20	1.0		1.7U
•	2-Butanone	0.00064	0.50	2.0	J	
	Carbon Disulfide	0.00024	0.19	2.0	J	
	Chloroform	0.0018	0.24	0.75		
	Dichlorodifluoromethane	0.021	0.36	1.0		
	1,1-Dichloroethane	0.0013	0.18	0.75		
	1.1-Dichloroethene	0.0064	0.32	2.0		
	cis-1.2-Dichloroethene	0.00051	0.22	1.0	J	
	Tetrachloroethene	0.072	0.13	1.0		
	Toluene	0.0013	0.13	1.0		
	Trichloroethene	0.061	0.26	1.0		
	Trichlorofluoromethane	0.023	0.49	1.0		
	1.1.1-Trichloroethane	0.0063	0.16	0.75		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.064	0.41	1.0		
	Total Organics ^d	0.25949	NA	NA	NA	NA NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-100	Acetone	0.0033	0.24	6.8	B, J	6.8U
11-Sep-14	Benzene	0.00094	0.11	0.54		0.94U
	2-Butanone	0.00050	0.27	1.1	J	
	Carbon Disulfide	0.00014	0.11	1.1	J	
	Carbon Tetrachloride	0.00038	0.086	1.1	J	
	Chloroform	0.0018	0.13	0.41		
	Chloromethane	0.00029	0.27	1.1	J	
	Dichlorodifluoromethane	0.035	0.20	0.54		
	1,1-Dichloroethane	0.0029	0.097	0.41		
	1,1-Dichloroethene	0.016	0.17	1.1		
	cis-1,2-Dichloroethene	0.0017	0.12	0.54		
	Methylene Chloride	0.00045	0.097	0.54	J	
	Tetrachloroethene	0.130	0.21	1.6		
	Toluene	0.0019	0.069	0.54		
	Trichloroethene	0.130	0.42	1.6		
	Trichlorofluoromethane	0.029	0.26	0.54		
	1,1,1-Trichloroethane	0.0050	0.088	0.41		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.100	0.66	1.6		
	Total Organics ^d	0.45506	NA	NA	NA	NA

Wall ID/Comple Dort	Amalista	Result ^b	MDL ^b	RL ^b	Laboratory Qualifier ^c	Validation Qualifier ^c
Well ID/Sample Port	Analyte	(ppmv) 0.011	(ppbv) 0.44	(ppbv) 12	B. J	12U
MWL-SV04-100 (Duplicate)	Acetone Benzene	0.0085	0.44	0.99	В, Ј	0.99U
11-Sep-14	2-Butanone			2.0	J 	0.990
		0.0024	0.49			
	Carbon Disulfide	0.00045	0.19	2.0	J	
	Carbon Tetrachloride	0.00039	0.16	2.0	J	
	Chloroform	0.0018	0.24	0.74		
	Dichlorodifluoromethane	0.035	0.36	0.99		
	1,1-Dichloroethane	0.0029	0.18	0.74		
	1,1-Dichloroethene	0.016	0.32	2.0		
	cis-1,2-Dichloroethene	0.0018	0.22	0.99		
	Methylene Chloride	0.00047	0.18	0.99	J	
	Tetrachloroethene	0.130	0.13	0.99		
	Toluene	0.0021	0.13	0.99		
	Trichloroethene	0.130	0.26	0.99		
	Trichlorofluoromethane	0.031	0.49	0.99		
	1,1,1-Trichloroethane	0.0050	0.16	0.74		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.097	0.40	0.99		
	Total Organics ^d	0.45631	NA	NA	NA	NA
MWL-SV04-200	Acetone	0.0072	0.52	15	B, J	15U
I1-Sep-14	Benzene	0.00060	0.23	1.2	J	1.2U
•	2-Butanone	0.00081	0.58	2.3	J	
	Carbon Disulfide	0.00058	0.23	2.3	J	
	Carbon Tetrachloride	0.00062	0.19	2.3	J	
	Chloroform	0.0014	0.28	0.87		
	Dichlorodifluoromethane	0.051	0.42	1.2		
	1,1-Dichloroethane	0.0049	0.21	0.87		
	1.1-Dichloroethene	0.034	0.37	2.3		
	cis-1,2-Dichloroethene	0.0031	0.26	1.2		
	Methylene Chloride	0.0012	0.21	1.2		
	Tetrachloroethene	0.180	0.30	2.3		
	Toluene	0.0030	0.15	1.2		
	Trichloroethene	0.210	0.61	2.3		
	Trichlorofluoromethane	0.031	0.57	1.2		
	1,1,1-Trichloroethane	0.0020	0.19	0.87		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.160	0.47	1.2		
	Total Organics ^d	0.68361	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-300	Acetone	0.0045	0.25	7.2	B, J	7.2U
11-Sep-14	Benzene	0.00064	0.11	0.57		0.64U
	2-Butanone	0.00084	0.28	1.1	J	
	Carbon Disulfide	0.00044	0.11	1.1	J	
	Chloroform	0.00044	0.14	0.43		
	Dichlorodifluoromethane	0.016	0.21	0.57		
	1,1-Dichloroethane	0.00071	0.10	0.43		
	1,1-Dichloroethene	0.0095	0.18	1.1		
	cis-1,2-Dichloroethene	0.00071	0.13	0.57		
	Methylene Chloride	0.00026	0.10	0.57	J	
	Tetrachloroethene	0.110	0.15	1.1		
	Toluene	0.0033	0.073	0.57		
	Trichloroethene	0.076	0.15	0.57		
	Trichlorofluoromethane	0.0079	0.28	0.57		
	1,1,1-Trichloroethane	0.00046	0.093	0.43		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.039	0.23	0.57		
	1,2,4-Trimethylbenzene	0.00038	0.23	1.1	J	
	m,p-Xylene	0.00020	0.14	1.1	J	
	o-Xylene	0.00010	0.077	0.57	J	
	Total Organics ^d	0.26624	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-300 (Duplicate)	Acetone	0.0089	0.25	7.1	В	
11-Sep-14	Benzene	0.00055	0.11	0.57	J	0.57U
	2-Butanone	0.0019	0.28	1.1		
	Carbon Disulfide	0.00071	0.11	1.1	J	
	Carbon Tetrachloride	0.00019	0.091	1.1	J	
	Chloroform	0.00019	0.13	0.43	J	
	Dibromochloromethane	0.00017	0.11	0.57	J	
	Dichlorodifluoromethane	0.015	0.21	0.57		
	1,1-Dichloroethane	0.00016	0.10	0.43	J	
	1,1-Dichloroethene	0.0052	0.18	1.1		
	2-Hexanone	0.00019	0.12	0.57	J	
	Tetrachloroethene	0.082	0.072	0.57		
	Toluene	0.0034	0.072	0.57		
	Trichloroethene	0.044	0.15	0.57		
	Trichlorofluoromethane	0.0053	0.28	0.57		
	1,1,1-Trichloroethane	0.00013	0.092	0.43	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.036	0.23	0.57		
	1,2,4-Trimethylbenzene	0.00047	0.23	1.1	J	
	1,3,5-Trimethylbenzene	0.00018	0.18	0.57	J	==
	m,p-Xylene	0.00018	0.14	1.1	J	==
	o-Xylene	0.00011	0.077	0.57	J	-
	Total Organics ^d	0.20438	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-400	Acetone	0.0087	0.29	8.2	В	8.7U
11-Sep-14	Benzene	0.0012	0.13	0.65		1.2U
	2-Butanone	0.0016	0.32	1.3		
	Carbon Disulfide	0.0023	0.13	1.3		
	Carbon Tetrachloride	0.00016	0.10	1.3	J	
	Chloroform	0.00040	0.15	0.49	J	
	Chloromethane	0.0012	0.32	1.3	J	
	Dichlorodifluoromethane	0.011	0.24	0.65		
	1,1-Dichloroethane	0.00068	0.12	0.49		
	1,1-Dichloroethene	0.0073	0.21	1.3		
	cis-1,2-Dichloroethene	0.00075	0.15	0.65		
	Ethylbenzene	0.00012	0.10	0.65	J	
	Methylene Chloride	0.00026	0.12	0.65	J	
	Tetrachloroethene	0.110	0.17	1.3		
	Toluene	0.0023	0.083	0.65		
	Trichloroethene	0.075	0.17	0.65		
	Trichlorofluoromethane	0.0060	0.32	0.65		
	1,1,1-Trichloroethane	0.00039	0.11	0.49	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.030	0.27	0.65		
	1,2,4-Trimethylbenzene	0.00042	0.26	1.3	J	
	m,p-Xylene	0.00029	0.16	1.3	J	
	o-Xylene	0.00014	0.088	0.65	J	
	Total Organics ^d	0.25031	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-50	Acetone	0.012	0.24	6.8	В	
11-Sep-14	Benzene	0.00068	0.11	0.54		0.68U
	2-Butanone	0.0019	0.27	1.1		
	Carbon Disulfide	0.00021	0.11	1.1	J	
	Carbon Tetrachloride	0.00039	0.086	1.1	J	
	Chloroform	0.0015	0.13	0.41		
	Dichlorodifluoromethane	0.045	0.20	0.54		
	1,1-Dichloroethane	0.0018	0.097	0.41		
	1,1-Dichloroethene	0.011	0.17	1.1		
	cis-1,2-Dichloroethene	0.00071	0.12	0.54		
	2-Hexanone	0.00015	0.12	0.54	J	
	Methylene Chloride	0.00031	0.097	0.54	J	
	Tetrachloroethene	0.052	0.069	0.54		
	Toluene	0.0015	0.069	0.54		
	Trichloroethene	0.067	0.14	0.54		
	Trichlorofluoromethane	0.110	0.53	1.1		
	1,1,1-Trichloroethane	0.013	0.088	0.41		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.047	0.22	0.54		
	Total Organics ^d	0.36547	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-100	Acetone	0.0052	0.38	11		11U
11-Sep-14	Benzene	0.00056	0.17	0.86	.1	0.86U
11 Cop 11	2-Butanone	0.0010	0.43	1.7	j	
	Carbon Disulfide	0.00026	0.17	1.7		
	Carbon Tetrachloride	0.00070	0.14	1.7		
	Chloroform	0.0021	0.20	0.65	B, J J J J J J J J J J J J J	
	Dichlorodifluoromethane	0.066	0.31	0.86		
	1.1-Dichloroethane	0.0034	0.15	0.65		
	1,1-Dichloroethene	0.023	0.28	1.7		
	cis-1,2-Dichloroethene	0.0016	0.19	0.86		
	Methylene Chloride	0.00092	0.15	0.86		
	Tetrachloroethene	0.092	0.11	0.86		
	Toluene	0.0018	0.11	0.86		
	Trichloroethene	0.140	0.45	1.7		
	Trichlorofluoromethane	0.130	0.42	0.86		
	1.1.1-Trichloroethane	0.012	0.14	0.65		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.091	0.35	0.86		
	Total Organics ^d	0.56578	NA	NA	NA	NA
MWL-SV05-200	Acetone	0.0083	0.45	13	B, J	13U
11-Sep-14	Benzene	0.00034	0.20	1.0		1.0U
•	2-Butanone	0.0018	0.50	2.0	J	
	Carbon Disulfide	0.00027	0.20	2.0	J	
	Carbon Tetrachloride	0.0012	0.16	2.0	J J J J J J J J J J J J J J J J J J J	
	Chloroform	0.0019	0.24	0.75		
	Dichlorodifluoromethane	0.066	0.36	1.0		
	1,1-Dichloroethane	0.0049	0.18	0.75		
	1,1-Dichloroethene	0.042	0.32	2.0		
	cis-1,2-Dichloroethene	0.0023	0.22	1.0		
	Methylene Chloride	0.0025	0.18	1.0		
	Tetrachloroethene	0.140	0.13	1.0		
	Toluene	0.0042	0.13	1.0		
	Trichloroethene	0.200	0.53	2.0		
	Trichlorofluoromethane	0.072	0.49	1.0		
	1,1,1-Trichloroethane	0.0033	0.16	0.75		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.160	0.82	2.0		
	Total Organics ^d	0.70237	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-300	Acetone	0.013	0.27	7.5	В	
-Sep-14	Benzene	0.00053	0.12	0.60	J	0.6U
	2-Butanone	0.0020	0.30	1.2		
	Carbon Disulfide	0.0031	0.12	1.2		
	Carbon Tetrachloride	0.00087	0.096	1.2	J	
	Chloroform	0.00061	0.14	0.45		
	Chloromethane	0.00051	0.30	1.2	J	
	Dichlorodifluoromethane	0.024	0.22	0.60		
	1,1-Dichloroethane	0.0012	0.11	0.45		
	1,1-Dichloroethene	0.020	0.19	1.2		
	cis-1,2-Dichloroethene	0.00089	0.13	0.60		
	2-Hexanone	0.00013	0.13	0.60	J	
	Methylene Chloride	0.00072	0.11	0.60		
	Tetrachloroethene	0.090	0.077	0.60		
	Toluene	0.0061	0.077	0.60		
	Trichloroethene	0.100	0.32	1.2		
	Trichlorofluoromethane	0.019	0.29	0.60		
	1,1,1-Trichloroethane	0.00090	0.098	0.45		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.073	0.24	0.60		
	m,p-Xylene	0.00016	0.15	1.2	J	
	o-Xylene	0.000085	0.081	0.60	J	
	Total Organics ^d	0.35628	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-400	Acetone	0.014	0.52	15	B, J	15U
11-Sep-14	Benzene	0.00099	0.23	1.2	J	1.2U
	2-Butanone	0.0022	0.59	2.4	J	
	Carbon Disulfide	0.0012	0.23	2.4	J	
	Carbon Tetrachloride	0.00049	0.19	2.4	J	
	Chloroform	0.00054	0.28	0.88	J	
	Chloromethane	0.0017	0.58	2.4	J	
	Dichlorodifluoromethane	0.015	0.43	1.2		
	1,1-Dichloroethane	0.0012	0.21	0.88		
	1,1-Dichloroethene	0.014	0.38	2.4		
	cis-1,2-Dichloroethene	0.00082	0.26	1.2	J	
	Methylene Chloride	0.00071	0.21	1.2	J	
	Tetrachloroethene	0.100	0.15	1.2		
	Toluene	0.250	0.30	2.4		
	Trichloroethene	0.094	0.31	1.2		
	Trichlorofluoromethane	0.018	0.58	1.2		
	1,1,1-Trichloroethane	0.0011	0.19	0.88		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.040	0.48	1.2		
	Total Organics ^d	0.54096	NA	NA	NA	NA

Notes

B = Compound was detected in the blank and sample.

EPA = U.S. Environmental Protection Agency.

ID - Identifier

= Result detected at a level below the RL but greater than or equal to the MDL and is an approximate value.

MDL = Method detection limit. The minimum concentration that can be measured and reported with 99% confidence that the analyte is present (i.e., greater than zero).

MWL = Mixed Waste Landfill.

NA = Not applicable.

ppbv = parts per billion, by volume basis. ppmv = parts per million, by volume basis.

RL = Reporting limit. Minimum concentration that can be reported with a statistically established degree of confidence.

SV = Soil vanou

= The analyte was reported as a detection by the laboratory but was qualified during data validation review as not detected. The associated numerical value is the revised sample quantitation limit, in accordance with the data validation process.

^aU.S. Environmental Protection Agency, 1999, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15" Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^bResults are reported in ppmv. MDL and RL are reported in ppbv.

^cLaboratory/Validation Qualifier - Blank (--) cell = all quality control samples met acceptance criteria. Qualifiers "B," "J," and "U" see below.

^dTotal Organics -- Sum of validated detected organic analytes (i.e., results for analytes reported as detections by the laboratory but qualified during data validation as not detected are not included in the Total Organics value).

Table 5-2 Summary of Detected Volatile Organic Compounds (EPA Method TO-15^a) Mixed Waste Landfill Soil-Vapor Monitoring October 2014

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV01-42.5	Chloroform	0.012	2.3	7.2		
22-Oct-14	Dichlorodifluoromethane	0.110	3.5	9.6		
	1,1-Dichloroethane	0.0027	1.7	7.2	J	
	1,1-Dichloroethene	0.010	3.1	19	J	
	Tetrachloroethene	0.400	1.2	9.6		
	Trichloroethene	0.090	2.5	9.6		
	Trichlorofluoromethane	0.230	4.7	9.6		
	1,1,1-Trichloroethane	0.054	1.6	7.2		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.100	3.9	9.6		
	Total Organics ^d	1.0087	NA	NA	NA	NA
MWL-SV02-41.5	Acetone	0.0028	1.6	45	J	45U
22-Oct-14	Chloroform	0.0026	0.86	2.7	J	
	Dichlorodifluoromethane	0.089	1.3	3.6		
	1,1-Dichloroethane	0.0022	0.65	2.7	J	
	1,1-Dichloroethene	0.011	1.2	7.3		
	Tetrachloroethene	0.067	0.46	3.6		
	Trichloroethene	0.058	0.95	3.6		
	Trichlorofluoromethane	0.320	1.8	3.6		
	1,1,1-Trichloroethane	0.076	0.59	2.7		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.053	1.5	3.6		
	Total Organics ^d	0.6788	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-50	Acetone	0.0055	1.3	37	J	
22-Oct-14	Benzene	0.005	0.59	3.0		
	Chloroform	0.0016	0.71	2.2	J	
	Dichlorodifluoromethane	0.020	1.1	3.0		
	1,1-Dichloroethane	0.0021	0.54	2.2	J	
	1,1-Dichloroethene	0.0071	0.96	6.0		
	cis-1,2-Dichloroethene	0.0013	0.66	3.0	J	
	Styrene	0.00045	0.44	3.0	B, J	3.0U
	Tetrachloroethene	0.120	0.38	3.0	<u></u>	
	Toluene	0.0022	0.38	3.0	J	
	Trichloroethene	0.082	0.78	3.0		
	Trichlorofluoromethane	0.019	1.5	3.0		
	1,1,1-Trichloroethane	0.0057	0.48	2.2		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.046	1.2	3.0		
	m,p-Xylene	0.00085	0.74	6.0	B, J	6.0U
	o-Xylene	0.00046	0.40	3.0	B, J	3.0U
	Total Organics ^d	0.3175	NA	NA	NA	NA
MWL-SV03-100	Chloroform	0.0023	1.4	4.5	J	
22-Oct-14	Dichlorodifluoromethane	0.039	2.2	6.0		
	1,1-Dichloroethane	0.0053	1.1	4.5		
	1,1-Dichloroethene	0.019	1.9	12		
	cis-1,2-Dichloroethene	0.0037	1.3	6.0	J	
	Methylene Chloride	0.0017	1.1	6.0	J	
	Tetrachloroethene	0.230	0.76	6.0		
	Toluene	0.0016	0.76	6.0	J	
	Trichloroethene	0.190	1.6	6.0		
	Trichlorofluoromethane	0.029	2.9	6.0		
	1,1,1-Trichloroethane	0.0066	0.97	4.5		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.110	2.4	6.0		
	Total Organics ^d	0.6382	NA	NA	NA	NA

		Result ^b	MDL ^b	RL⁵	Laboratory	Validation
Well ID/Sample Port	Analyte	(ppmv)	(ppbv)	(ppbv)	Qualifier ^c	Qualifier ^c
MWL-SV03-200	Acetone	0.0033	1.3	37	J	
22-Oct-14	Benzene	0.00092	0.59	3.0	J	
	Carbon Disulfide	0.00059	0.58	6.0	J	
	Chlorobenzene	0.00056	0.48	2.2	B, J	2.2U
	Chloroform	0.0023	0.71	2.2		
	1,2-Dichlorobenzene	0.0011	0.97	3.0	J	
	1,3-Dichlorobenzene	0.0011	0.82	3.0	B, J	3.0U
	1,4-Dichlorobenzene	0.0012	1.1	3.0	J	
	Dichlorodifluoromethane	0.054	1.1	3.0		
	1,1-Dichloroethane	0.0081	0.54	2.2		
	1,1-Dichloroethene	0.035	0.96	6.0		
	cis-1,2-Dichloroethene	0.0057	0.66	3.0		
	Ethylbenzene	0.00061	0.47	3.0	B, J	3.0U
	Methylene Chloride	0.0034	0.54	3.0		
	Styrene	0.00085	0.44	3.0	B, J	3.0U
	1,1,2,2-Tetrachloroethane	0.00053	0.51	3.0	J	
	Tetrachloroethene	0.320	0.38	3.0		
	Toluene	0.0025	0.38	3.0	J	
	Trichloroethene	0.300	0.78	3.0		
	Trichlorofluoromethane	0.025	1.5	3.0		
	1,1,1-Trichloroethane	0.0028	0.48	2.2		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.180	1.2	3.0		
	1,3,5-Trimethylbenzene	0.0011	0.93	3.0	J	
	m,p-Xylene	0.0016	0.74	6.0	B, J	6.0U
	o-Xylene	0.00079	0.40	3.0	B, J	3.0U
	Total Organics ^d	0.94754	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-300	Acetone	0.0065	1.3	37	J	
22-Oct-14	Benzene	0.00088	0.59	3.0	J	
	Carbon Disulfide	0.0023	0.58	6.0	J	
	Chloroform	0.001	0.71	2.2	J	
	Dichlorodifluoromethane	0.024	1.1	3.0		
	1,1-Dichloroethane	0.0025	0.54	2.2		
	1,1-Dichloroethene	0.017	0.96	6.0		
	cis-1,2-Dichloroethene	0.0024	0.66	3.0	J	
	Methylene Chloride	0.00097	0.54	3.0	J	
	Tetrachloroethene	0.320	0.38	3.0		
	Toluene	0.0031	0.38	3.0		
	Trichloroethene	0.210	0.78	3.0		
	Trichlorofluoromethane	0.0085	1.5	3.0		
	1,1,1-Trichloroethane	0.0012	0.48	2.2	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.078	1.2	3.0		
	Total Organics ^d	0.67835	NA	NA	NA	NA
MWL-SV03-400	Dichlorodifluoromethane	0.023	2.7	7.4		
22-Oct-14	1,1-Dichloroethane	0.0028	1.3	5.6	J	
	1,1-Dichloroethene	0.017	2.4	15		
	cis-1,2-Dichloroethene	0.0024	1.7	7.4	J	
	Tetrachloroethene	0.400	0.95	7.4		
	Toluene	0.0062	0.95	7.4	J	
	Trichloroethene	0.280	2.0	7.4		
	Trichlorofluoromethane	0.0092	3.6	7.4		
	1,1,1-Trichloroethane	0.0015	1.2	5.6	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.072	3.0	7.4		
	Total Organics ^d	0.8141	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-50	Acetone	0.0058	0.52	15	J	
22-Oct-14	Benzene	0.0013	0.23	1.2		
	2-Butanone	0.00069	0.58	2.3	J	
	Carbon Disulfide	0.0016	0.23	2.3	J	
	Chloroform	0.0018	0.28	0.87		
	Dichlorodifluoromethane	0.019	0.42	1.2		
	1,1-Dichloroethane	0.0012	0.21	0.87		
	1,1-Dichloroethene	0.0059	0.37	2.3		
	Tetrachloroethene	0.076	0.15	1.2		
	Toluene	0.00062	0.15	1.2	J	1.2U
	Trichloroethene	0.059	0.30	1.2		
	Trichlorofluoromethane	0.021	0.57	1.2		
	1,1,1-Trichloroethane	0.0063	0.19	0.87		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.064	0.47	1.2		
	Total Organics ^d	0.26359	NA	NA	NA	NA
MWL-SV04-100	Acetone	0.005	0.89	25	J	
22-Oct-14	Benzene	0.00084	0.39	2.0	J	2.0U
	Chloroform	0.0018	0.47	1.5		
	Dichlorodifluoromethane	0.032	0.72	2.0		
	1,1-Dichloroethane	0.0028	0.36	1.5		
	1,1-Dichloroethene	0.015	0.64	4.0		
	cis-1,2-Dichloroethene	0.0017	0.44	2.0	J	
	Methylene Chloride	0.00049	0.36	2.0	J	
	Tetrachloroethene	0.120	0.25	2.0		
	Toluene	0.00099	0.25	2.0	J	2.0U
	Trichloroethene	0.120	0.52	2.0		
	Trichlorofluoromethane	0.029	0.98	2.0		
	1,1,1-Trichloroethane	0.005	0.32	1.5		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.096	0.81	2.0		
	Total Organics ^d	0.42879	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-200	Carbon Tetrachloride	0.00055	0.48	6.0	J	
22-Oct-14	Chloroform	0.0012	0.71	2.2	J	
	Dichlorodifluoromethane	0.048	1.1	3.0		
	1,1-Dichloroethane	0.0044	0.54	2.2		
	1,1-Dichloroethene	0.030	0.96	6.0		
	cis-1,2-Dichloroethene	0.003	0.66	3.0		
	Methylene Chloride	0.0011	0.54	3.0	J	
	Tetrachloroethene	0.180	0.38	3.0		
	Toluene	0.0019	0.38	3.0	J	3.0U
	Trichloroethene	0.210	0.78	3.0		
	Trichlorofluoromethane	0.029	1.5	3.0		
	1,1,1-Trichloroethane	0.0021	0.48	2.2	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.160	1.2	3.0		
	Total Organics ^d	0.66935	NA	NA	NA	NA
MWL-SV04-300	Acetone	0.010	0.88	25	J	
22-Oct-14	Benzene	0.00058	0.39	2.0	J	2.0U
	2-Butanone	0.0018	0.99	4.0	J	
	Carbon Disulfide	0.00052	0.39	4.0	J	
	Chloroform	0.00051	0.47	1.5	J	
	Dichlorodifluoromethane	0.018	0.72	2.0		
	1,1-Dichloroethane	0.00096	0.36	1.5	J	
	1,1-Dichloroethene	0.0099	0.64	4.0		
	cis-1,2-Dichloroethene	0.00067	0.44	2.0	J	
	Tetrachloroethene	0.130	0.25	2.0		
	Toluene	0.0018	0.25	2.0	J	2.0U
	Trichloroethene	0.091	0.52	2.0		
	Trichlorofluoromethane	0.0094	0.97	2.0		
	1,1,1-Trichloroethane	0.00079	0.32	1.5	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	0.81	2.0		
	Total Organics ^d	0.32355	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-400	Acetone	0.0052	0.90	25	J	
22-Oct-14	Benzene	0.0015	0.40	2.0	J	2.0U
	Carbon Disulfide	0.001	0.40	4.1	J	
	Chloroform	0.00061	0.48	1.5	J	
	Chloromethane	0.0012	1.0	4.1	J	
	Dibromochloromethane	0.00045	0.40	2.0	J	
	Dichlorodifluoromethane	0.015	0.74	2.0		
	1,1-Dichloroethane	0.0011	0.37	1.5	J	
	1,1-Dichloroethene	0.0089	0.65	4.1		
	cis-1,2-Dichloroethene	0.00095	0.45	2.0	J	
	Ethylbenzene	0.00037	0.32	2.0	B, J	2.0U
	Styrene	0.00052	0.30	2.0	B, J	2.0U
	Tetrachloroethene	0.140	0.26	2.0		
	Toluene	0.0015	0.26	2.0	B, J	2.0U
	Trichloroethene	0.096	0.53	2.0		
	Trichlorofluoromethane	0.0092	0.99	2.0		
	1,1,1-Trichloroethane	0.00099	0.33	1.5	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.044	0.83	2.0		
	m,p-Xylene	0.00098	0.51	4.1	B, J	4.1U
	o-Xylene	0.00051	0.27	2.0	B, J	2.0U
	Total Organics ^d	0.3246	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-50	Acetone	0.0083	0.52	15	J	
22-Oct-14	Benzene	0.00079	0.23	1.2	J	
	2-Butanone	0.0012	0.58	2.3	J	
	Carbon Disulfide	0.0014	0.23	2.3	J	
	Carbon Tetrachloride	0.00038	0.19	2.3	J	
	Chlorobenzene	0.00022	0.19	0.88	B, J	0.88U
	Chloroform	0.0013	0.28	0.88		
	Dichlorodifluoromethane	0.039	0.42	1.2		
	1,1-Dichloroethane	0.0015	0.21	0.88		
	1,1-Dichloroethene	0.0094	0.38	2.3		
	cis-1,2-Dichloroethene	0.00068	0.26	1.2	J	
	Ethylbenzene	0.00025	0.18	1.2	B, J	1.2U
	Methylene Chloride	0.00028	0.21	1.2	J	
	Styrene	0.00027	0.17	1.2	B, J	1.2U
	Tetrachloroethene	0.048	0.15	1.2		
	Toluene	0.0011	0.15	1.2	J	
	Trichloroethene	0.061	0.31	1.2		
	Trichlorofluoromethane	0.089	0.57	1.2		
	1,1,1-Trichloroethane	0.012	0.19	0.88		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.043	0.48	1.2		
	m,p-Xylene	0.0006	0.29	2.3	B, J	2.3U
	o-Xylene	0.00027	0.16	1.2	B, J	1.2U
	Total Organics ^d	0.31833	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-100	Acetone	0.0072	0.56	16	J	
22-Oct-14	Benzene	0.00053	0.25	1.3	J	
	2-Butanone	0.0012	0.63	2.5	J	
	Carbon Tetrachloride	0.00067	0.20	2.5	J	
	Chloroform	0.0021	0.30	0.95		
	Dichlorodifluoromethane	0.060	0.46	1.3		
	1,1-Dichloroethane	0.0033	0.23	0.95		
	1,1-Dichloroethene	0.022	0.41	2.5		
	cis-1,2-Dichloroethene	0.0017	0.28	1.3		
	Methylene Chloride	0.00086	0.23	1.3	J	
	Styrene	0.00025	0.19	1.3	B, J	1.3U
	Tetrachloroethene	0.096	0.16	1.3		
	Toluene	0.00097	0.16	1.3	B, J	1.3U
	Trichloroethene	0.130	0.33	1.3		
	Trichlorofluoromethane	0.120	0.62	1.3		
	1,1,1-Trichloroethane	0.012	0.21	0.95		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.088	0.52	1.3		
	m,p-Xylene	0.00048	0.32	2.5	B, J	2.5U
	o-Xylene	0.00025	0.17	1.3	B, J	1.3U
	Total Organics ^d	0.54556	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-200	Acetone	0.0064	1.1	31	J	
22-Oct-14	2-Butanone	0.0016	1.3	5.0	J	
	Carbon Tetrachloride	0.0012	0.40	5.0	J	
	Chloroform	0.0021	0.60	1.9		
	Dichlorodifluoromethane	0.062	0.91	2.5		
	1,1-Dichloroethane	0.0051	0.45	1.9		
	1,1-Dichloroethene	0.042	0.81	5.0		
	cis-1,2-Dichloroethene	0.0025	0.56	2.5		
	Methylene Chloride	0.0024	0.45	2.5	J	
	Tetrachloroethene	0.140	0.32	2.5		
	Toluene	0.0022	0.32	2.5	B, J	2.5U
	Trichloroethene	0.210	0.66	2.5		
	Trichlorofluoromethane	0.070	1.2	2.5		
	1,1,1-Trichloroethane	0.0036	0.41	1.9		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.160	1.0	2.5		
	m,p-Xylene	0.00077	0.63	5.0	B, J	5.0U
	o-Xylene	0.00043	0.34	2.5	B, J	2.5U
	Total Organics ^d	0.7089	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-200 (Duplicate)	Acetone	0.0043	0.18	5.0	.l	
22-Oct-14	Benzene	0.00033	0.079	0.40	ı.i	
22 000 11	2-Butanone	0.00081	0.20	0.80		
	Carbon Disulfide	0.00053	0.078	0.80	J	
	Carbon Tetrachloride	0.0012	0.064	0.80		
	Chlorobenzene	0.000076	0.064	0.30	B. J	0.30U
	Chloroform	0.0019	0.095	0.30		
	Chloromethane	0.00023	0.20	0.80	J	
	Dichlorodifluoromethane	0.071	0.93	2.6		
	1,1-Dichloroethane	0.0053	0.072	0.30		
	1,1-Dichloroethene	0.045	0.13	0.80		
	cis-1,2-Dichloroethene	0.0027	0.089	0.40		
	1,2-Dichloropropane	0.0003	0.24	0.40	J	
	Ethylbenzene	0.000071	0.063	0.40	B, J	0.40U
	2-Hexanone	0.00012	0.087	0.40	Ĵ	
	Methylene Chloride	0.0026	0.072	0.40		
	Styrene	0.000063	0.059	0.40	B, J	0.40U
	Tetrachloroethene	0.170	0.33	2.6		
	Toluene	0.0024	0.051	0.40	В	
	Trichloroethene	0.240	0.67	2.6		
	Trichlorofluoromethane	0.078	1.3	2.6		
	1,1,1-Trichloroethane	0.0033	0.065	0.30		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.190	1.0	2.6		
	1,2,4-Trimethylbenzene	0.00018	0.16	0.80	J	
	Vinyl Acetate	0.00095	0.15	0.80		
	m,p-Xylene	0.00017	0.10	0.80	B, J	0.80U
	o-Xylene	0.000093	0.054	0.40	B, J	0.40U
	Total Organics ^d	0.82115	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppbv)	RL ^b (ppbv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-300	Acetone	0.010	0.63	18	J	
22-Oct-14	Benzene	0.00033	0.28	1.4	J	
	2-Butanone	0.0019	0.71	2.8	J	
	Carbon Tetrachloride	0.00096	0.23	2.8	J	
	Chloroform	0.00079	0.34	1.1	J	
	Dichlorodifluoromethane	0.026	0.51	1.4		
	1,1-Dichloroethane	0.0017	0.26	1.1		
	1,1-Dichloroethene	0.023	0.46	2.8		
	cis-1,2-Dichloroethene	0.00098	0.32	1.4	J	
	Methylene Chloride	0.00085	0.26	1.4	J	
	Tetrachloroethene	0.120	0.18	1.4		
	Toluene	0.0027	0.18	1.4	В	
	Trichloroethene	0.130	0.37	1.4		
	Trichlorofluoromethane	0.022	0.70	1.4		
	1,1,1-Trichloroethane	0.0015	0.23	1.1		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.081	0.58	1.4		
	m,p-Xylene	0.00042	0.36	2.8	B, J	2.8U
	o-Xylene	0.00023	0.19	1.4	B, J	1.4U
	Total Organics ^d	0.42371	NA	NA	NA	NA

		Result ^b	MDL ^b	RL ^b	Laboratory	Validation
Well ID/Sample Port	Analyte	(ppmv)	(ppbv)	(ppbv)	Qualifier ^c	Qualifier ^c
MWL-SV05-400	Acetone	0.0051	0.62	18	J	
22-Oct-14	Benzene	0.00083	0.28	1.4	J	
	Carbon Disulfide	0.00063	0.27	2.8	J	
	Carbon Tetrachloride	0.00051	0.22	2.8	J	
	Chloroform	0.00067	0.33	1.1	J	
	Chloromethane	0.0022	0.69	2.8	J	
	Dichlorodifluoromethane	0.014	0.51	1.4		
	1,1-Dichloroethane	0.0014	0.25	1.1		
	1,1-Dichloroethene	0.014	0.45	2.8		
	cis-1,2-Dichloroethene	0.00077	0.31	1.4	J	
	Methylene Chloride	0.00058	0.25	1.4	J	
	Tetrachloroethene	0.110	0.18	1.4		
	Toluene	0.074	0.18	1.4	В	
	Trichloroethene	0.100	0.37	1.4		
	Trichlorofluoromethane	0.018	0.69	1.4		
	1,1,1-Trichloroethane	0.0015	0.23	1.1		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.040	0.57	1.4		
	Total Organics ^d	0.38419	NA	NA	NA	NA
MWL-SV05-400 (Duplicate)	Acetone	0.0063	0.70	20	J	
22-Oct-14	Benzene	0.0012	0.31	1.6	J	
	2-Butanone	0.00088	0.78	3.1	J	
	Carbon Disulfide	0.00039	0.31	3.1	J	
	Chloromethane	0.0033	0.77	3.1		
	Dichlorodifluoromethane	0.011	0.57	1.6		
	1.1-Dichloroethane	0.00056	0.28	1.2	J	
	1.1-Dichloroethene	0.0076	0.51	3.1		
	Methylene Chloride	0.00035	0.28	1.6	J	
	Tetrachloroethene	0.089	0.20	1.6		
	Toluene	0.170	0.20	1.6	В	
	Trichloroethene	0.060	0.41	1.6		
	Trichlorofluoromethane	0.012	0.77	1.6		
	1.1.1-Trichloroethane	0.00063	0.26	1.2	J	
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.032	0.64	1.6		
	o-Xvlene	0.00021	0.21	1.6	B. J	1.6U
	Total Organics ^d	0.39521	NA	NA	NA	NA

Notes:

^aU.S. Environmental Protection Agency, 1999, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^bResults are reported in ppmv. MDL and RL are reported in ppbv.

B = Compound was detected in the blank and sample.

EPA = U.S. Environmental Protection Agency.

ID = Identifier.

= Result detected at a level below the RL but greater than or equal to the MDL and is an approximate value.

MDL = Method detection limit. The minimum concentration that can be measured and reported with 99% confidence that the analyte is present (i.e., greater than zero).

MWL = Mixed Waste Landfill. NA = Not applicable.

ppbv = Parts per billion, by volume basis. ppmv = Parts per million, by volume basis.

RL = Reporting limit. Minimum concentration that can be reported with a statistically established degree of confidence.

SV = Soil vapor

= The analyte was reported as a detection by the laboratory but was qualified during data validation review as not detected. The associated numerical value is the revised sample quantitation limit, in accordance with the data validation process.

^cLaboratory/Validation Qualifier - Blank (--) cell = all quality control samples met acceptance criteria. Qualifiers "B," "J," and "U" see below.

^dTotal Organics -- Sum of validated detected organic analytes (i.e., results for analytes reported as detections by the laboratory but qualified during data validation as not detected are not included in the Total Organics value).

Table 5-3 Summary of Historic PCE, TCE, and Total VOCs Concentrations Mixed Waste Landfill Soil-Vapor Monitoring

	PC	E ^a	TC	E ^a	Total \	Total VOCs ^a		
Well ID & Sample Port Depth ^b	September 2014 (ppmv)	October 2014 (ppmv)	September 2014 (ppmv)	October 2014 (ppmv)	September 2014 (ppmv)	October 2014 (ppmv)		
MWL-SV01-42.5	0.560	0.400	0.110	0.090	1.14010	1.0087		
MWL-SV02-41.5	0.086	0.067	0.075	0.058	0.71822	0.6788		
	,							
MWL-SV03-50	0.140	0.120	0.100	0.082	0.36957	0.3175		
MWL-SV03-100	0.210	0.230	0.190	0.190	0.61151	0.6382		
MWL-SV03-200	0.300	0.320	0.300	0.300	0.91906	0.94754		
MWL-SV03-300	0.290	0.320	0.190	0.210	0.64917	0.67835		
MWL-SV03-400	0.390	0.400	0.290	0.280	0.87270	0.8141		
MWL-SV04-50	0.072	0.076	0.061	0.059	0.25949	0.26359		
MWL-SV04-100	0.130	0.120	0.130	0.120	0.45631	0.42879		
MWL-SV04-200	0.180	0.180	0.210	0.210	0.68361	0.66935		
MWL-SV04-300	0.110	0.130	0.076	0.091	0.26624	0.32355		
MWL-SV04-400	0.110	0.140	0.075	0.096	0.25031	0.3246		
MWL-SV05-50	0.052	0.048	0.067	0.061	0.36547	0.31833		
MWL-SV05-100	0.092	0.096	0.140	0.130	0.56578	0.54556		
MWL-SV05-200	0.140	0.170	0.200	0.240	0.70237	0.82115		
MWL-SV05-300	0.090	0.120	0.100	0.130	0.35628	0.42371		
MWL-SV05-400	0.100	0.110	0.094	0.100	0.54096	0.39521		

September and October 2014 concentrations are not rounded so they exactly match the reported concentrations in corresponding data tables.

= Identification. ID

PCE = Tetrachloroethene.

ppmv = Parts per million by volume.

TCE = Trichloroethene.

VOCs = Volatile organic compounds.

^aIf a duplicate sample was collected, the maximum concentration of the environmental-duplicate sample pair is shown. ^bPort depth is the last number in the Well ID, and is in feet below ground surface.

5.2.2 Field Quality Control Sample Results

Table 5-4 summarizes results of duplicate sample analyses and the relative percent difference (RPD) values between the environmental-duplicate sample pair results for the September and October 2014 data sets.

Table 5-4
Summary of Duplicate Samples
Mixed Waste Landfill Soil-Vapor Monitoring
September and October 2014

	Environmental Sample (R ₁)	Duplicate Sample (R ₂)	RPD^a
Well ID/Parameter	nqq)	mv)	(%)
MWL-SV04-100	,	,	
September 2014			
Dichlorodifluoromethane	0.035	0.035	< 1
1,1-Dichloroethene	0.016	0.016	< 1
Tetrachloroethene	0.13	0.13	< 1
Trichloroethene	0.13	0.13	< 1
Trichlorofluoromethane	0.029	0.031	7
1,1,1-Trichloroethane	0.005	0.005	< 1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.1	0.097	3
MWL-SV04-300			
September 2014			
Dichlorodifluoromethane	0.016	0.015	6
Tetrachloroethene	0.11	0.082	29
Toluene	0.0033	0.0034	3
Trichloroethene	0.076	0.044	53
Trichlorofluoromethane	0.0079	0.0053	39
1,1,2-Trichloro-1,2,2-trifluoroethane	0.039	0.036	8
MWL-SV05-200 October 2014			
Dichlorodifluoromethane	0.062	0.071	14
1,1-Dichloroethene	0.042	0.045	7
Tetrachloroethene	0.140	0.170	19
Trichloroethene	0.210	0.240	13
Trichlorofluoromethane	0.070	0.078	11
1,1,2-Trichloro-1,2,2-trifluoroethane	0.160	0.190	17
MWL-SV05-400			
October 2014			
Dichlorodifluoromethane	0.014	0.011	24
Tetrachloroethene	0.110	0.089	21
Toluene	0.074	0.170	79
Trichloroethene	0.100	0.060	50
Trichlorofluoromethane	0.018	0.012	40
1,1,2-Trichloro-1,2,2-trifluoroethane	0.040	0.032	22

Notes:

^aRPD = Relative percent difference is calculated with the following equation and rounded to nearest whole number. Bolded values exceed 20%.

$$RPD = \frac{|R_1 - R_2|}{[(R_1 + R_2)/2]} \times 100$$

where: R_1 = Analysis result.

R₂ = Duplicate analysis result.

ppmv = Parts per million by volume basis.

First Semi-Annual Sampling Event - September 11, 2014

An environmental-duplicate sample pair was collected from the sample ports located at 100 feet bgs and 300 feet bgs at monitoring well MWL-SV04. Each duplicate sample was collected immediately after the original environmental sample in order to reduce variability caused by time and/or sampling mechanics. Duplicate samples were analyzed for all analytical parameters. The RPD was calculated when compounds were reported in both environmental and duplicate samples at concentrations greater than or equal to five times the reporting limit.

Table 5-4 summarizes results of duplicate sample analysis and calculated RPD values. In general the duplicate sample result RPDs show good agreement. Of the 13 RPDs calculated, only 3 exceeded 20, and only one slightly exceeded 50. Ten of the 13 RPD values were below 10. The three high RPD values were for PCE (RPD of 29), trichlorofluoromethane (RPD of 39), and TCE (RPD of 53) in the 300 foot bgs sample. Based on experience from soil-vapor monitoring at the Chemical Waste Landfill, an RPD of 50 or less demonstrates acceptable reproducibility of the sampling and analytical processes (NMED October 2009 and subsequent revisions). Resampling for RPD results exceeding 20 is not stipulated in LTMMP, Appendix D, and was not conducted based on an overall evaluation of the September RPDs.

A total of five QC blank samples were submitted for analysis with the September 2014 samples. VOCs detected above laboratory MDLs in QC blank samples included acetone (all 5 field QC samples), benzene (all 5 field QC samples), carbon disulfide (2 field QC samples), methylene chloride (1 field QC sample), and toluene (4 field QC samples). Associated environmental sample results that were qualified during data validation as not detected include benzene (17 of 18 detections), carbon disulfide (4 of 19 detections), and toluene (3 of 18 detections) since the reported VOC concentrations were less than five times the associated field QC sample concentration (benzene and carbon disulfide), or less than ten times the associated field QC sample concentration for common laboratory contaminants (toluene). No results were qualified for methylene chloride as the associated environmental sample result was a non-detect. Qualification of acetone results, including environmental and field QC sample results, was related to laboratory contamination detected in laboratory control samples, which is described below. All results that were qualified based on field QC sample results were very low concentrations (<4 parts per billion by volume [ppbv]).

Second Semi-Annual Sampling Event - October 22, 2014

An environmental-duplicate sample pair was collected from the from the sample ports located at 200 feet bgs and 400 feet bgs at monitoring well MWL-SV05. Each duplicate sample was collected immediately after the original environmental sample in order to reduce variability caused by time and/or sampling mechanics. Duplicate samples were analyzed for all analytical parameters. The RPD was calculated when compounds are reported in both environmental and duplicate samples at concentrations greater than or equal to five times the reporting limit.

Table 5-4 summarizes results of duplicate sample analysis and calculated RPD values. The duplicate sample result RPDs for the MWL-SV05-200 sample show excellent agreement, with all RPD values less than 20. The duplicate sample result RPDs for the MWL-SV05-400 sample show good agreement, with all RPD values less than 50 except for the RPD for toluene (79). However, toluene was detected in the associated laboratory method blank sample indicating

laboratory contamination, and the results were qualified during data validation ("B" qualifier). Resampling for RPD results exceeding 20 is not stipulated in the LTMMP, Appendix D, and was not conducted based on an overall evaluation of the October RPDs.

A total of five QC blank samples were submitted for analysis with the October 2014 samples. VOCs detected above laboratory MDLs in QC blank samples included acetone (2 field QC samples), benzene (1 field QC sample), 2-butanone (1 field QC sample), styrene (1 field QC sample), toluene (2 field QC samples), TCE (1 field QC sample), m- & p-xylene (1 field QC sample), and o-xylene (1 field QC sample). Associated environmental sample results that were qualified during data validation as not detected include acetone (1 of 15 detections), benzene (3 of 13 detections), and toluene (4 of 17 detections) since the reported VOC concentrations were less than five times the associated field QC sample concentration (benzene), or less than ten times the associated field QC sample concentrations for common laboratory contaminants (acetone and toluene). No corrective action was required for 2-butanone (the associated environmental sample result was non-detect) and TCE (all associated environmental sample results were >5 times the field QC sample concentration). Styrene, m,p-xylene, and o-xylene were detected once each in the same field QC sample; these field QC results were qualified as not detected due to laboratory contamination detected in associated laboratory control samples. described in Section 5.2.3. These field QC results were not applied to environmental sample results. All results that were qualified based on field QC sample results were very low concentrations (<3 ppbv).

5.2.3 Data Quality

Field QC sample results met the sampling DQOs and validated the adequacy of the field sampling procedures and protocol. Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These samples included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, surrogate spike samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All chemical data were reviewed and qualified in accordance with SNL/NM AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2014a). Minor issues documented during the data validation process are summarized below.

First Semi-Annual Sampling Event - September 11, 2014

Acetone was detected in laboratory QC samples as well as all 5 field QC samples. As a result of laboratory contamination (i.e., laboratory QC sample results), the field QC sample acetone results were all qualified as non-detects, and 15 of 19 environmental sample detections were qualified as non-detects. All qualified results were very low concentrations (<15 ppbv).

Second Semi-Annual Sampling Event - October 22, 2014

Chlorobenzene, 1,3-dichlorobenzene, ethylbenzene, styrene, toluene, m,p-xylene, and o-xylene were detected in laboratory QC samples indicating very low concentration laboratory

contamination. As a result, associate field QC and environmental sample results were qualified as non-detects during data validation. Styrene, m- and p-xylene, and o-xylene field QC blank sample detections (1 detection each in the same field QC sample) were qualified as non-detects. Associated environmental sample results that were qualified as non-detects include chlorobenzene (3 detections), 1,3-dichlorobenzene (1 detection), ethylbenzene (4 detections), styrene (6 detections), m,p-xylene (8 detections), and o-xylene (9 detections). In addition to the four environmental sample results qualified as non-detects based on field QC blank sample toluene results, three additional environmental sample toluene results were qualified as non-detects based on laboratory QC sample results (total of 7 environmental sample toluene results qualified as non-detects). All results that were qualified were very low concentrations (<3 ppbv), with most results <0.1 ppbv.

Based upon the data validation and review criteria, all analytical data were determined acceptable. Reported QC samples results were in compliance with analytical method and laboratory procedure requirements, producing defensible data. Data Validation Reports and Contract Verification Review forms are provided in Annex C.

5.2.4 Variances and Non-Conformances

There were no variances or non-conformances for soil-vapor sampling. Very low VOC concentrations detected in the field and laboratory QC samples indicate the presence of very low levels of VOCs in ambient air and in the analytical laboratory environment. The resulting qualification of environmental sample results through data validation appropriately accounts for these conditions.

Overall, RPDs for environmental and duplicate sample results show good agreement. Of the 25 calculated RPDs, only 9 exceeded 20, only 2 exceeded 50, and one of these 2 exceedances (79 for toluene from the October MWL-SV05-400 sample pair) was qualified due to laboratory contamination. The SNL/NM field team is developing a specially-designed manifold for the dedicated soil-vapor vacuum sampling pump that will allow simultaneous collection of environmental and duplicate samples. This new equipment will be tested and used during the next soil-vapor monitoring event scheduled for April 2015. Results will be used to evaluate the soil-vapor sampling process, impacts on environmental and duplicate sample RPD calculations. and to continue process improvements.

5.3 **Data Evaluation and Monitoring Trigger Level**

Trigger levels for VOCs in soil vapor at the MWL are 20 ppmv for PCE and TCE (i.e., the trigger level of 20 ppmv applies to both PCE and TCE) and 25 ppmv for Total VOCs as defined in the LTMMP Section 5.2.3.1 (SNL/NM March 2012). All trigger levels apply only to samples collected from the deepest sampling port (i.e., 400 feet bgs) in each of the three FLUTeTM multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05). The results for the 400-foot bgs sampling ports for wells MWL-SV03, MWL-SV04, and MWL-SV05 are summarized below.

For the September 2014 results, the maximum PCE concentration was 0.390 ppmv and the maximum TCE concentration was 0.290 ppmv (both from MWL-SV03-400). Total VOCs

concentrations, as the sum of validated detected VOCs, ranged from 0.25031 ppmv (MWL-SV04-400) to 0.87270 ppmv (MWL-SV03-400).

For the October 2014 results, the maximum PCE concentration was 0.400 ppmv and the maximum TCE concentration was 0.280 ppmv (both from sample MWL-SV03-400). Total VOCs concentrations, as the sum of validated detected VOCs, ranged from 0.32460 ppmv (MWL-SV04-400) to 0.81410 ppmv (MWL-SV03-400).

No VOC results were reported above applicable trigger levels. In summary, soil-vapor monitoring results indicate a relatively uniform distribution of VOCs at low concentrations throughout the 500-foot thick vadose zone. This distribution is consistent with an old source which has dissipated throughout the vadose zone, and indicates the VOC soil-vapor plume is stable with no new releases from the disposal area.

This page intentionally left blank.

6.0 SOIL-MOISTURE MONITORING RESULTS

This chapter presents soil-moisture monitoring activities (i.e., data collection and analysis) in accordance with LTMMP Sections 3.4.2 and 5.2.3, and Appendix E (SNL/NM March 2012). The monitoring objective is to establish soil-moisture trends in the vadose zone beneath the MWL to evaluate ET Cover performance. The soil-moisture monitoring system functions as an early detection system for water percolation and infiltration through the ET Cover.

Soil-moisture monitoring field activities are described in Section 6.1 and data evaluation and comparison of results to the monitoring trigger level are presented in Section 6.2. A summary of soil-moisture monitoring activities and results is provided in Section 11.1.

6.1 Soil-Moisture Monitoring Field Activities

Two semiannual soil-moisture monitoring events were conducted during the April 1, 2014 through March 31, 2015 reporting period fulfilling the LTMMP semiannual monitoring requirement. The first monitoring event was conducted on April 15, 2014. The second monitoring event was conducted on October 16, 2014. Figure 6-1 shows the soil-moisture monitoring locations MWL-VZ-1, MWL-VZ-2, and MWL-VZ-3. Soil-moisture monitoring field forms and tables that compare soil-moisture content values to baseline values for the three access tubes are provided in Annex D.

Neutron count data collected in the field were correlated to percent soil-moisture content by volume as described in LTMMP Section 3.4.2 and Appendix E (SNL/NM March 2012). A baseline for soil-moisture content was determined for each access tube prior to deployment of the ET Cover subgrade work on September 27, 2006. The baseline was determined by averaging data collected during ten monitoring events between May 27, 2004 and August 8, 2006.

6.1.1 Field Quality Control

The CPN 503DR neutron probe was operated in accordance with the field operating procedure and the manufacturer's operating manual. A standard count was taken once daily during each monitoring event prior to the moisture logging to ensure the instrument was functioning properly and to confirm measurement accuracy. The results of the standard counts are provided on the MWL neutron logging data field form provided in Annex D.

6.1.2 Waste Management

No wastes were generated from soil-moisture monitoring activities.

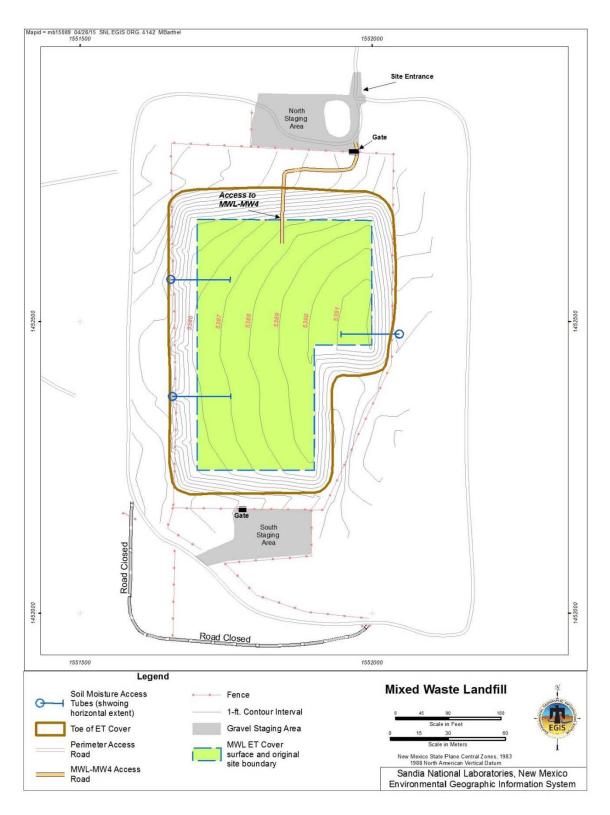


Figure 6-1
Mixed Waste Landfill Soil-Moisture Monitoring Locations

6.2 Monitoring Results

Soil-moisture monitoring data for this reporting period are presented in Figures 6-2, 6-3, and 6-4 for MW-VZ-1, MWLVZ-2, and MWL-VZ-3 respectively. The results for April and October are plotted on these figures along with the baseline soil-moisture content for comparison. Results track very closely with the established soil-moisture baseline for the three access tubes.

6.3 Data Evaluation and Monitoring Trigger Level

Soil-moisture data collected during the reporting period were compared to the trigger level, which is 23 percent by volume and applies to the shallow depth range beneath the ET Cover of 8.7 to 86.6 feet bgs for each monitoring location as specified in LTMMP Section 5.2.3.2 (SNL/NM March 2012). This comparison is shown graphically in Figures 6-2, 6-3, and 6-4.

During this reporting period, the soil-moisture content measurements for the shallow trigger level depth interval at MWL-VZ-1 ranged from 2.0 to 4.6 percent, compared to 1.7 to 5.4 percent baseline. At MWL-VZ-2 the soil-moisture content ranged from 2.1 to 4.8 percent, compared to 2.1 to 5.5 percent baseline. At MWL-VZ-3 the soil-moisture content ranged from 1.5 to 4.2 percent, compared to 1.8 to 4.5 percent baseline.

In summary, all values are below the 23 percent soil-moisture content trigger level and track closely to baseline soil-moisture values, indicating the ET Cover is performing as designed.

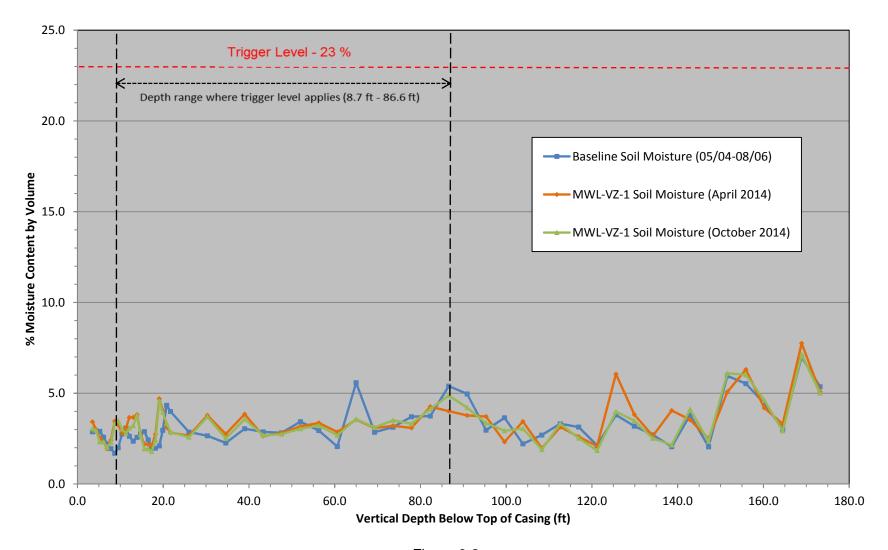


Figure 6-2
Mixed Waste Landfill MWL-VZ-1 Soil-Moisture Monitoring Results

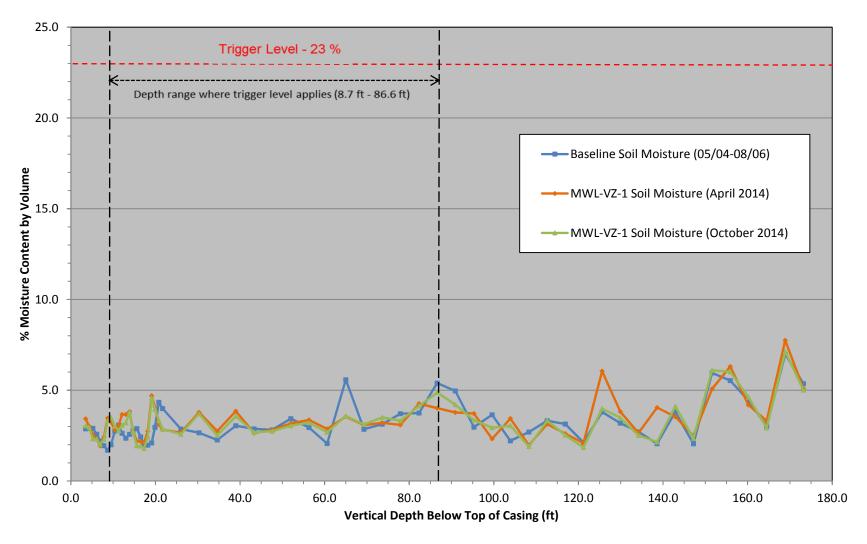


Figure 6-3
Mixed Waste Landfill MWL-VZ-2 Soil-Moisture Monitoring Results

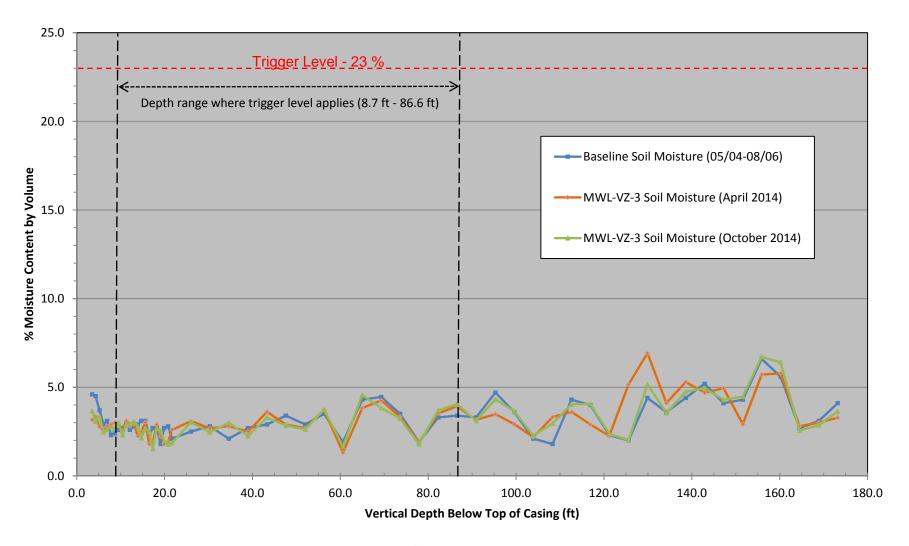


Figure 6-4
Mixed Waste Landfill MWL-VZ-3 Soil-Moisture Monitoring Results

7.0 GROUNDWATER MONITORING RESULTS

This chapter presents groundwater monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with LTMMP Sections 3.5 and 5.2.4, and Appendix F (SNL/NM March 2012). The monitoring objective is to assess concentrations of hazardous constituents in the groundwater in the uppermost aquifer beneath the MWL and compare them to the trigger levels defined in Table 5.2.4-1 of the MWL LTMMP.

Groundwater sampling field activities are described in Section 7.1, analytical laboratory results are presented and compared to trigger levels in Section 7.2, followed by a discussion of data quality. Hydrogeologic information on the regional aquifer is presented in Section 7.3. A summary of groundwater monitoring activities and results is provided in Section 11.1.

7.1 Environmental Sampling Field Activities

Two semiannual environmental sampling events were conducted during the April 1, 2014 through March 31, 2015 reporting period fulfilling the LTMMP semiannual monitoring requirement. Groundwater samples were collected from monitoring wells MWL-BW2, MWL-MW7, MWL-MW8, and MWL-MW9. Well locations are shown in Figure 7-1. The samples were analyzed for VOCs, metals (cadmium, chromium, nickel, and uranium), specific radionuclides, gross alpha and beta, tritium, and radon-222. Field forms and documentation that address calibration of equipment, well purging and water quality measurements and equipment decontamination activities are provided in Annex E.

The first sampling event was conducted between April 17 and 28, 2014. MWL-MW8 was resampled on June 30, 2014 to confirm detections of VOCs. A duplicate sample was taken at the same time of the resample.

The second sampling event was conducted between October 16 and 29, 2014. A duplicate sample was collected from MWL-MW7. MWL-MW7 was originally sampled on October 17, 2014, but was resampled for radon-222 only on October 29, 2014 due to a holding time issue with the associated equipment blank.

7.1.1 Well Purging

Purging removes stagnant water from the well so that a representative environmental sample can be obtained. In accordance with LTMMP Appendix F, the minimum purge requirement for a portable piston pump is one saturated screen volume. Purging continued until four stable field measurements for temperature, specific conductance (SC), potential of hydrogen (pH), and turbidity were obtained. Field measurements for water quality parameters were collected using an YSITM Model EXO1 Water Quality Meter, and a HACHTM Model 2100Q portable turbidity meter. Additional water quality measurements included oxidation-reduction potential (ORP) and dissolved oxygen (DO).

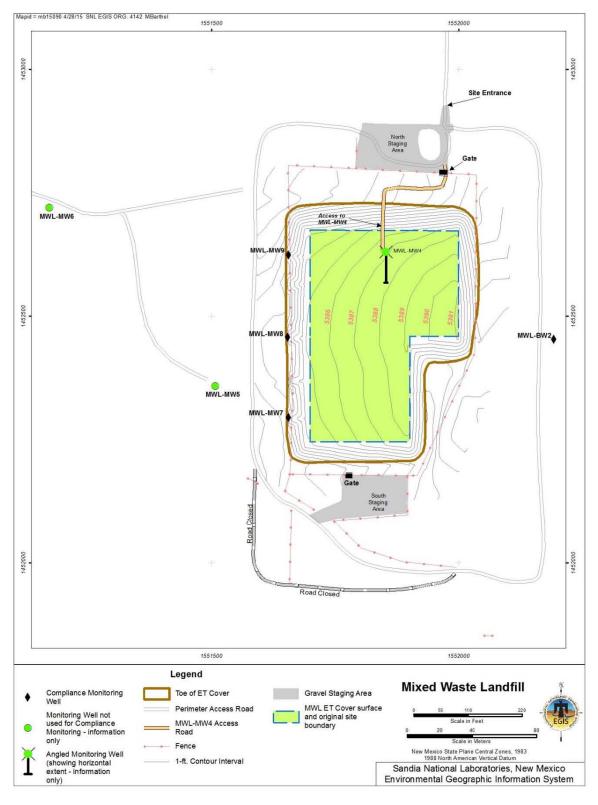


Figure 7-1
Mixed Waste Landfill Groundwater Monitoring Well Locations

A portable BennettTM groundwater sampling system was used to collect environmental samples from all wells. Purge requirements were satisfied at all monitoring wells. In accordance with LTMMP Appendix F requirements designed to decrease the purging flow rate as low as possible, the portable BennettTM groundwater sampling system was equipped with a flow meter valve located along the discharge line and with small diameter tubing (3/8-inch outer diameter and ¼-inch inner diameter). The average flow rates ranged from 0.10 gallons per minute (gpm) at MWL-MW9 to 0.24 gpm at MWL-BW2 for the April/June 2014 sampling event. The average flow rates ranged from 0.073 gpm at MWL-MW8 to 0.27 gpm at MWL-BW2 for the October 2014 sampling event.

7.1.2 Field Quality Control

Field QC samples were collected as part of each sampling event and included a duplicate, equipment blank, field blank, and trip blank samples. The sampling pump and tubing bundle used to collect environmental samples were decontaminated prior to sampling each monitoring well.

Duplicate samples were collected and analyzed to evaluate the overall reproducibility of the sampling and analysis process. The duplicate samples were collected immediately after the original groundwater sample to reduce variability caused by time and/or sampling mechanics. Duplicate samples were analyzed for the same constituents as the groundwater samples.

Equipment blank (also referred to as a rinsate blank) samples were collected after equipment decontamination to verify the equipment decontamination process. Equipment blank samples consisted of deionized (DI) water that was pumped through the sampling system and collected in sample containers. The equipment blank samples were analyzed for the same constituents as the groundwater samples.

Field blank samples were collected and analyzed for VOCs to detect any potential sample contamination resulting from ambient field conditions. The field blanks were prepared by pouring DI water into sample containers at the sample point (i.e., inside the sampling truck at each monitoring well) to simulate the transfer of environmental samples from the sampling system to the sample container. Additional field blank samples were collected at the Environmental Resources Field Office (ERFO) during the decontamination process to assess the DI water and ERFO ambient conditions. The DI water is provided by Culligan[®] in 5-gallon sealed plastic containers that are stored at ERFO.

Trip blank samples consist of laboratory reagent-grade water with hydrochloric acid preservative. They are prepared by the analytical laboratory and accompany the empty sample containers supplied by the laboratory. Trip blank samples were submitted with groundwater samples collected for VOC analysis to assess whether contamination of the samples had occurred during sampling, transportation, analysis, and/or storage.

The field QC samples were submitted for analysis with the environmental samples. A brief explanation of the field QC sampling protocol for the April/June and October sampling events is provided below. Analytical results are presented in Section 7.2.

First Semi-Annual Sampling Event - April 17-28, 2014

One equipment blank sample was collected prior to sampling monitoring well MWL-BW2. One duplicate sample was collected at MWL-BW2. One field blank sample was collected at ERFO, and four field blank samples were collected at the site (one at each monitoring well). A total of five trip blank samples were submitted for analysis with VOC groundwater samples during the sampling event.

Follow-up VOC Sampling at MWL-MW8 – June 30, 2014

One equipment blank sample was collected prior to sampling MWL-MW8. The equipment blank sample was analyzed for VOCs only. One duplicate sample was collected from MWL-MW8 and one field blank sample was collected at the MWL-MW8 location. One trip blank sample was submitted for analysis with the equipment blank sample and one with the environmental-duplicate sample pair.

Second Semi-Annual Sampling Event - October 16-29, 2014

One equipment blank sample was collected prior to sampling MWL-MW7. An additional equipment blank sample was collected prior to resampling MWL-MW7 for radon-222 on October 29, 2014 (as described in Section 7.1). One duplicate sample was collected each time MWL-MW7 was sampled (a total of two). One field blank sample was collected at ERFO, and four field blank samples were collected at the site (one at each monitoring well). A total of five trip blank samples were submitted for analysis with VOC groundwater samples during the sampling event.

7.1.3 Waste Management

Purge and decontamination wastewater generated from sampling activities was collected in 55-gallon containers and stored at the ERFO waste accumulation area. All wastewater was managed as "non-hazardous" waste based upon historical sample results and process knowledge of monitoring well locations. All wastewater was discharged to the sanitary sewer in accordance with Albuquerque Bernalillo County Water Utility Authority requirements after characterization data were compared to discharge limits. Approximately 275 gallons of wastewater were generated during the April and June 2014 groundwater sampling events and approximately 278 gallons were generated during the October 2014 sampling event.

PPE and other solid waste generated during April, June, and October 2014 monitoring activities was managed in accordance with federal, state, and city regulations, and applicable SNL/NM requirements. Analytical data collected from the sampling event was used to supplement the waste management process. All solid waste was managed as solid waste.

7.2 Laboratory Results

Environmental and field QC samples were submitted to GEL for analyses. Samples were analyzed in accordance with applicable EPA analytical methods. For comparison, trigger levels are included in the analytical results tables in this report. Analytical results that are above the analytical laboratory MDL but below the practical quantitation limit (PQL) were qualified by the laboratory as estimated values and designated with a "J" qualifier. Both analytical laboratory and data validation qualifiers are included in the groundwater data tables presented in this section. Analytical laboratory reports, including certificates of analyses, analytical methods, MDLs, PQLs, dates of analyses, results of QC analyses, and data validation reports are filed in the SNL/NM Record Center.

7.2.1 Environmental Sample Results

This section summarizes groundwater monitoring results for the reporting period. Groundwater monitoring results were compared to historical MWL groundwater monitoring results and LTMMP trigger levels. All results were below applicable LTMMP trigger levels defined in the LTMMP Section 5.2.4 (SNL/NM March 2012) and were comparable to historic MWL groundwater monitoring results.

Table 7-1 summarizes detected VOCs for the April and June sampling events; no VOCs were detected during the October sampling event. Table 7-2 summarizes MDLs for all VOCs. Table 7-3 summarizes the cadmium, chromium, nickel, and uranium results for the April and October 2014 groundwater sampling events. Table 7-4 summarizes radionuclide, gross alpha, gross beta, tritium, and radon results for the April and October 2014 sampling events.

Radionuclide activity in groundwater samples is determined through specific radiological analyses as presented in Table 7-4. In addition, gross alpha and beta activities are measured to screen for indications of other radionuclides (i.e., radiological anomalies). Gross alpha activity values are corrected to subtract naturally occurring uranium in accordance to 40 CFR Parts 9, 141, and 142, Table I-4. Uranium is measured independently and results are presented in Table 7-3. Table 7-5 summarizes field water quality measurements collected prior to sampling for all events.

Trigger levels provide early detection of potentially changing conditions that require additional testing and further investigation (SNL/NM March 2012). Groundwater radiological trigger levels for tritium (4 millirem per year), radon (1,000 pCi/L), gross alpha activity (15 pCi/L), and gross beta activity (4 millirem per year) are shown in Table 7-4. The units for the tritium and gross beta triggers relate to a dose rate and not a specific "pCi/L activity." For tritium, the approximate equivalent activity is 20,000 pCi/L, assuming an onsite resident using the groundwater as their primary drinking water source. Gross alpha and beta results are used as a broad radiological screening tool to look for other potential radionuclides besides tritium, radon, and the radionuclides already addressed by gamma spectroscopy analysis (i.e., the radionuclides of concern). These screening analyses do not provide radionuclide-specific identification necessary to calculate a dose. If the gross alpha trigger is exceeded, additional radiological analysis may be required to identify the specific radionuclide(s) that are contributing to the "gross alpha result." Gross beta results are compared to the extensive SNL/NM groundwater monitoring data set to determine if there are indications of radiological anomalies (i.e., if the

Table 7-1 Summary of Detected Volatile Organic Compounds (EPA Method 8260B^a) Mixed Waste Landfill Groundwater Monitoring April and June 2014

Well ID April 2014 Sampling Event	Analyte	Result (μg/L)	MDL (μg/L)	PQL (μg/L)	Trigger Levels (μg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
MWL-MW8	Tetrachloroethene	0.450	0.300	1.00	2.50	.I	
28-Apr-14	Trichloroethene	0.380	0.300	1.00	2.50	J	
June 2014 Resampling Event		31000				-	
MWL-MW8	Tatasahlansathasa	0.070	0.000	4.00	0.50		
30-Jun-14	Tetrachloroethene	0.370	0.300	1.00	2.50	J	
MWL-MW8							
30-Jun-14 (Duplicate)	Tetrachloroethene	0.390	0.300	1.00	2.50	J	

Notes:

EPA = U.S. Environmental Protection Agency.

ID = Identification.

J = Estimated value, the analyte concentration is below the practical quantitation limit (PQL).

MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix-specific.

 μ g/L = Micrograms per liter.

= Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

bLaboratory/Validation Qualifier - If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Table 7-2 Summary of Method Detection Limits for Volatile Organic Compounds (EPA Method 8260Ba) Mixed Waste Landfill Groundwater Monitoring April/June and October 2014

	MDL
Analyte	(μg/L)
1,1,1-Trichloroethane	0.300
1,1,2,2-Tetrachloroethane	0.300
1,1,2-Trichloroethane	0.300
1,1-Dichloroethane	0.300
1,1-Dichloroethene	0.300
1,2-Dichloroethane	0.300
1,2-Dichloropropane	0.300
2-Butanone	2.00
2-Hexanone	2.20
4-methyl-, 2-Pentanone	1.50
Acetone	2.50 - 3.00
Benzene	0.300
Bromodichloromethane	0.300
Bromoform	0.300
Bromomethane	0.300
Carbon disulfide	1.50
Carbon tetrachloride	0.300
Chlorobenzene	0.300
Chloroethane	0.300
Chloroform	0.300
Chloromethane	0.300
Dibromochloromethane	0.300
Dichlorodifluoromethane	0.300
Ethyl benzene	0.300
Methylene chloride	1.70 – 3.00
Styrene	0.300
Tetrachloroethene	0.300
Toluene	0.300
Trichloroethene	0.300
Vinyl acetate	1.50
Vinyl chloride	0.300
Xylene	0.300
cis-1,2-Dichloroethene	0.300
cis-1,3-Dichloropropene	0.300
trans-1,2-Dichloroethene	0.300
trans-1,3-Dichloropropene	0.300
Notes:	<u> </u>

Notes:

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

= U.S. Environmental Protection Agency.

= Method detection limit. The minimum concentration that can be measured and reported with 99% confidence MDL that the analyte is greater than zero.

= Micrograms per liter. μg/L

Table 7-3
Summary of Cadmium, Chromium, Nickel, and Uranium Results (EPA Method 6020^a)
Mixed Waste Landfill Groundwater Monitoring
April and October 2014

Well ID	Analyte	Result (mg/L)	MDL (mg/L)	PQL (mg/L)	Trigger Level (mg/L)	Laboratory Qualifier ^{b,c}	Validation Qualifier ^{b,d}
April 2014 Sampling Eve	ent						
MWL-BW2	Cadmium	ND	0.00011	0.001	0.0025	U	
21-Apr-14	Chromium	ND	0.002	0.010	0.043	U	
	Nickel	0.00092	0.0005	0.002	0.050	J	0.0028 U
	Uranium	0.00696	0.000067	0.0002	0.015		
MWL-BW2	Cadmium	ND	0.00011	0.001	0.0025	U	
21-Apr-14	Chromium	ND	0.002	0.010	0.043	U	
(Duplicate)	Nickel	0.000973	0.0005	0.002	0.050	J	0.0028 U
	Uranium	0.007	0.000067	0.0002	0.015		
MWL-MW7	Cadmium	ND	0.00011	0.001	0.0025	U	
22-Apr-14	Chromium	ND	0.002	0.010	0.043	U	
	Nickel	0.000942	0.0005	0.002	0.050	J	
	Uranium	0.00741	0.000067	0.0002	0.015		
MWL-MW8	Cadmium	ND	0.00011	0.001	0.0025	U	
28-Apr-14	Chromium	ND	0.002	0.010	0.043	U	
	Nickel	0.00173	0.0005	0.002	0.050	J	
	Uranium	0.00839	0.000067	0.0002	0.015		
MWL-MW9	Cadmium	ND	0.00011	0.001	0.0025	U	
23-Apr-14	Chromium	ND	0.002	0.010	0.043	U	
	Nickel	0.000815	0.0005	0.002	0.050	J	
	Uranium	0.00922	0.000067	0.0002	0.015		

Table 7-3 (Concluded) Summary of Cadmium, Chromium, Nickel, and Uranium Results (EPA Method 6020^a) Mixed Waste Landfill Groundwater Monitoring April and October 2014

Well ID	Analyte	Result (mg/L)	MDL (mg/L)	PQL (mg/L)	Trigger Level (mg/L)	Laboratory Qualifier ^{b,c}	Validation Qualifier ^{b,d}
October 2014 Sampling E	Event			, , ,			
MWL-BW2	Cadmium	ND	0.00011	0.001	0.0025	U	
16-Oct-14	Chromium	ND	0.002	0.010	0.043	U	
	Nickel	0.000914	0.0005	0.002	0.050	J	
	Uranium	0.00759	0.000067	0.0002	0.015		
MWL-MW7	Cadmium	ND	0.00011	0.001	0.0025	U	
17-Oct-14	Chromium	ND	0.002	0.010	0.043	U	
	Nickel	0.000878	0.0005	0.002	0.050	J	
	Uranium	0.00864	0.000067	0.0002	0.015		
MWL-MW7	Cadmium	ND	0.00011	0.001	0.0025	U	
17-Oct-14	Chromium	ND	0.002	0.010	0.043	U	
(Duplicate)	Nickel	0.00084	0.0005	0.002	0.050	J	
	Uranium	0.00863	0.000067	0.0002	0.015		
MWL-MW8	Cadmium	ND	0.00011	0.001	0.0025	U	
21-Oct-14	Chromium	ND	0.002	0.010	0.043	U	
	Nickel	0.000827	0.0005	0.002	0.050	J	
	Uranium	0.00798	0.000067	0.0002	0.015		
MWL-MW9	Cadmium	ND	0.00011	0.001	0.0025	U	
20-Oct-14	Chromium	ND	0.002	0.010	0.043	U	
	Nickel	0.000777	0.0005	0.002	0.050	J	
	Uranium	0.00973	0.000067	0.0002	0.015		

Notes:

J = Estimated value, the analyte concentration is below the PQL.

U = Analyte was not detected.

U = Analyte was reported as a detection by the laboratory but was qualified during data validation review as not detected due to laboratory contamination. The associated numerical value is the revised sample quantitation limit, in accordance with the data validation process.

EPA = U.S. Environmental Protection Agency.

ID = Identification

MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is matrix-specific.

mg/L = Milligrams per liter.

ND = Not detected (at MDL).

PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

^bLaboratory/Validation Qualifiers - If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples. ^cLaboratory Qualifiers:

dValidation Qualifier

Table 7-4
Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results
Mixed Waste Landfill Groundwater Monitoring
April and October 2014

Well ID	Analyte	Result ^a (pCi/L)	Trigger Level	Laboratory Qualifier ^b	Validation Qualifier ^b	Analytical Method ^c
April 2014 Sampling Event						
MWL-BW2	Americium-241	4.12 ± 12.0	NE	U	BD	EPA 901.1
21-Apr-14	Cesium-137	0.835 ± 2.88	NE	U	BD	EPA 901.1
	Cobalt-60	-0.22 ± 2.18	NE	U	BD	EPA 901.1
	Gross Alpha	3.93	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^d	12.2 ± 2.50	4 mrem/yr	==	-	EPA 900.0
	Tritium ^e	-11.4 ± 93.5	4 mrem/yr	U	BD	EPA 906.0 M
	Radon-222	416 ± 98.6	1000 pCi/L			SM7500 RnB
MWL-BW2	Americium-241	-0.40 ± 17.8	NE	U	BD	EPA 901.1
(Duplicate)	Cesium-137	-0.148 ± 17.8	NE	U	BD	EPA 901.1
21-Apr-14	Cobalt-60	0.445 ± 1.77	NE	U	BD	EPA 901.1
	Gross Alpha	3.22	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^d	6.83 ± 1.62	4 mrem/yr			EPA 900.0
	Tritium ^e	-36.9 ± 94.3	4 mrem/yr	U	BD	EPA 906.0 M
	Radon-222	394 ± 94.1	1000 pCi/L			SM7500 RnB
MWL-MW7	Americium-241	2.30 ±14.0	NE	U	BD	EPA 901.1
22-Apr-14	Cesium-137	-0.186 ± 1.85	NE	U	BD	EPA 901.1
	Cobalt-60	-1.37 ± 2.01	NE	U	BD	EPA 901.1
	Gross Alpha	4.37	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^d	6.10 ± 1.49	4 mrem/yr			EPA 900.0
	Tritium ^e	-57.2 ± 93.1	4 mrem/yr	U	BD	EPA 906.0 M
	Radon-222	156 ± 50.2	1000 pCi/L		J	SM7500 RnB
MWL-MW8	Americium-241	2.56 ± 8.68	NE NE	U	BD	EPA 901.1
28-Apr-14	Cesium-137	-0.465 ± 2.65	NE	U	BD	EPA 901.1
	Cobalt-60	-1.68 ± 2.84	NE	U	BD	EPA 901.1
	Gross Alpha	4.98	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^d	4.46 ± 1.25	4 mrem/yr			EPA 900.0
	Tritium ^e	-13.5 ± 99.5	4 mrem/yr	U	BD	EPA 906.0 M
	Radon-222	167 ± 55.6	1000 pCi/L		J	SM7500 RnB

Table 7-4 (Continued) Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results Mixed Waste Landfill Groundwater Monitoring April and October 2014

Well ID	Analyte	Result ^a (pCi/L)	Trigger Level	Laboratory Qualifier ^b	Validation Qualifier ^b	Analytical Method ^c		
April 2014 Sampling Event (Continued)								
MWL-MW9	Americium-241	1.53 ± 13.0	NE	U	BD	EPA 901.1		
23-Apr-14	Cesium-137	1.64 ± 1.95	NE	U	BD	EPA 901.1		
	Cobalt-60	-0.466 ± 2.15	NE	U	BD	EPA 901.1		
	Gross Alpha	2.99	15 pCi/L	NA	None	EPA 900.0		
	Gross Beta ^d	8.01 ± 1.99	4 mrem/yr			EPA 900.0		
	Tritium ^e	64.1 ± 98.7	4 mrem/yr	U	BD	EPA 906.0 M		
	Radon-222	375 ± 90.6	1000 pCi/L		==	SM7500 RnB		

Table 7-4 (Continued) Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results Mixed Waste Landfill Groundwater Monitoring April and October 2014

Well ID	Analyte	Result ^a (pCi/L)	Trigger Level	Laboratory Qualifier ^b	Validation Qualifier ^b	Analytical Method ^c
October 2014 Sampling Event						
MWL-BW2	Americium-241	6.07 ± 6.76	NE	U	BD	EPA 901.1
16-Oct-14	Cesium-137	1.21 ± 1.63	NE	U	BD	EPA 901.1
	Cobalt-60	0.499 ± 2.26	NE	U	BD	EPA 901.1
	Gross Alpha	1.23	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^d	5.55 ± 1.32	4 mrem/yr		J	EPA 900.0
	Tritium ^e	-21.6 ± 72.7	4 mrem/yr	U	BD	EPA 906.0 M
	Radon-222	427 ± 119	1000 pCi/L			SM7500 RnB
MWL-MW7	Americium-241	4.45 ± 6.58	NE	U	BD	EPA 901.1
17-Oct-14	Cesium-137	1.31 ± 1.87	NE	U	BD	EPA 901.1
	Cobalt-60	-1.29 ± 2.50	NE	U	BD	EPA 901.1
	Gross Alpha	0.85	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^d	5.30 ± 1.23	4 mrem/yr		J	EPA 900.0
	Tritium ^e	-9.94 ± 73.9	4 mrem/yr	U	BD	EPA 906.0 M
	Radon-222	156 ± 62.6	1000 pCi/L		J	SM7500 RnB
MWL-MW7	Americium-241	2.40 ± 19.6	NE	U	BD	EPA 901.1
(Duplicate)	Cesium-137	1.13 ± 2.08	NE	U	BD	EPA 901.1
17-Oct-14	Cobalt-60	2.52 ± 2.62	NE	U	BD	EPA 901.1
	Gross Alpha	-0.10	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^d	7.42 ± 1.56	4 mrem/yr		J	EPA 900.0
	Tritium ^e	3.05 ± 75.8	4 mrem/yr	U	BD	EPA 906.0 M
	Radon-222	110 ± 55.8	1000 pCi/L		J	SM7500 RnB
MWL-MW7 (Resample) 29-Oct-14	Radon-222	135 ± 56.4	1000 pCi/L		J	SM7500 RnB
MWL-MW7 (Resample Duplicate) 29-Oct-14	Radon-222	192 ± 66.0	1000 pCi/L		J	SM7500 RnB

Table 7-4 (Concluded) Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results Mixed Waste Landfill Groundwater Monitoring April and October 2014

Well ID	Analyte	Result ^a (pCi/L)	Trigger Level	Laboratory Qualifier ^b	Validation Qualifier ^b	Analytical Method ^c
MWL-MW8	Americium-241	10.6 ± 7.92	NE	U	BD	EPA 901.1
21-Oct-14	Cesium-137	1.17 ± 1.82	NE	U	BD	EPA 901.1
	Cobalt-60	-3.11 ± 2.63	NE	U	BD	EPA 901.1
	Gross Alpha	2.97	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^d	6.15 ± 1.43	4 mrem/yr		J	EPA 900.0
	Tritium ^e	-24.7 ± 71.3	4 mrem/yr	U	BD	EPA 906.0 M
	Radon-222	122 ± 53.0	1000 pCi/L		J	SM7500 RnB
MWL-MW9	Americium-241	12.3 ± 13.6	NE	U	BD	EPA 901.1
21-Oct-14	Cesium-137	-3.01 ± 4.22	NE	U	BD	EPA 901.1
	Cobalt-60	-0.908 ± 1.99	NE	U	BD	EPA 901.1
	Gross Alpha	4.38	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^d	7.16 ± 1.55	4 mrem/yr		J	EPA 900.0
	Tritium ^e	7.26 ± 76.3	4 mrem/yr	U	BD	EPA 906.0 M
	Radon-222	290 ± 88.8	1000 pCi/L			SM7500 RnB

Notes:

Analytical Method SM7500 RnB -- American Public Health Association, American Water Works Association, and Water Environment Federation, 1988, "Standard Methods for the Examination of Water and Wastewater," 7500-Rn B Method, 20th Edition, published jointly by American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, D.C., 1988.

BD = Below detectable activity as used in radiochemistry to identify results that are not statistically different from zero.

EPA = U.S. Environmental Protection Agency.

ID = Identification.

J = The associated value is an estimated quantity.

mrem/yr = Millirem per year.
NA = Not applicable.
NE = Not established.

None = No data validation for corrected gross alpha activity.

pCi/L = Picocuries per liter. U = Analyte was not detected.

^aGross alpha activity measurements were corrected by subtracting the total uranium activity from the total gross alpha result (40 Code of Federal Regulations Parts 9, 141, and 142, Table I-4). Negative numbers indicate the sample count or result was less than the instrument background: result is below the minimum detectable activity.

blf cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples. Qualifiers "BD" "J" and "U" see below.

^cAnalytical Methods EPA 900.0, EPA 900.6, and EPA 906.0 -- U.S. Environmental Protection Agency, 1980, "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^dRefer to Section 7.2.1 for an explanation of the gross beta trigger level.

The approximate equivalent activity for the 4 mrem/yr tritium trigger level is 20,000 pCi/L.

Table 7-5 Summary of Field Water Quality Measurements^a Mixed Waste Landfill Groundwater Monitoring April/June and October 2014

Well ID/	Temperature	SC	ORP		Turbidity	DO	DO		
Sample Date	(°C)	(µmhos/cm)	(mV)	pН	(NTU)	(% Sat)	(mg/L)		
April 2014 Sampling E	April 2014 Sampling Event								
MWL-BW2	22.44	695.7	110.0	7.41	0.20	11.0	0.95		
MWL-MW7	23.88	594.4	246.0	7.66	0.26	74.6	6.24		
MWL-MW8	18.35	528.1	202.7	7.66	0.23	40.0	3.70		
MWL-MW9	23.97	589.9	120.0	7.55	0.41	20.0	1.72		
June 2014 Resampling	June 2014 Resampling Event								
MWL-MW8	26.35	644.1	276.4	7.54	0.25	40.4	3.25		
October 2014 Samplin	October 2014 Sampling Event								
MWL-BW2	20.93	707.3	192.1	7.12	0.22	11.1	0.98		
MWL-MW7	20.94	585.8	327.2	7.37	0.26	69.7	6.19		
MWL-MW7 (resample)	19.17	571.4	37.2	7.58	0.32	73.5	6.65		
MWL-MW8	19.17	571.4	37.2	7.58	0.32	73.5	6.65		
MWL-MW9	21.42	604.4	275.0	7.43	0.37	35.6	3.14		

Notes:

^aField measurements collected prior to sampling.

°C = Degrees Celsius.

% Sat = Percent saturation.

ID = Identification.

DO = Dissolved oxygen.

mg/L = Milligrams per liter.

µmhos/cm = Micromhos per centimeter.

mV = Millivolts.

NTU = Nephelometric turbidity units.
ORP = Oxidation-reduction potential.

pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).

SC = Specific Conductance.

gross beta activity is significantly different than natural background beta activity). If there are indications of radiological anomalies, additional analysis may be required to identify the specific radionuclide that is causing the anomalous beta activity. Once the specific radionuclide is identified, the corresponding dose to a human receptor can be determined and compared to the trigger of 4 millirem per year. Additional analysis based on elevated gross alpha or gross beta screening results would only be required if the results are not explained by the other radionuclide-specific results. If performed, the new radioisotope results would then be further evaluated and the corresponding dose determined and compared to the trigger of 4 millirem per year. For these reasons, a direct comparison of gross beta results to the LTMMP trigger level is not possible. However, the screening and evaluation process ensures that if radiological contamination is present, it will be detected, evaluated, and appropriate follow up actions will be taken. As part of the groundwater data evaluation process, a Sandia radiological SME reviews and evaluates all MWL radiological groundwater monitoring results to determine if further sampling and analysis is warranted.

<u>First Semi-Annual Sampling Event – April 17-28, 2014 & Follow-up VOC Sampling at MWL-MW8 – June 30, 2014</u>

No VOCs other than PCE and TCE were detected in environmental samples above laboratory MDLs. In the April 2014 MWL-MW8 sample PCE and TCE were reported at concentrations of 0.450 μ g/L and 0.380 μ g/L, respectively. These very low, estimated concentrations are below the associated LTMMP trigger level of 2.50 micrograms per liter (μ g/L). To confirm the detections, monitoring well MWL-MW8 was resampled for VOCs in June 2014. PCE was reported in the MWL-MW8 environmental resample and duplicate resample at concentrations of 0.370 μ g/L and 0.390 μ g/L, respectively. TCE was not detected in the June resamples. All VOC detections from April and June were qualified by the laboratory as estimated concentrations (i.e., "J" qualified) because the results were between the laboratory MDL and PQL of 0.300 and 1.00 μ g/L, respectively.

Cadmium and chromium were not detected above the associated MDLs. Nickel was detected in all samples at concentrations ranging from 0.000815 milligrams per liter (mg/L) at MWL-MW9 to 0.00173 mg/L at MWL-MW8. Uranium concentrations ranged from 0.00696 mg/L at MWL-BW2 to 0.00922 mg/L at MWL-MW9. All results are consistent with historical MWL groundwater monitoring results and are below LTMMP trigger levels.

MWL environmental samples were screened for gamma-emitting radionuclides, gross alpha activity, gross beta activity, tritium, and radon-222. There were no detections of gamma-emitting radionuclides (as determined by gamma spectroscopy) or tritium (as determined by liquid scintillation counting). Negative results in Table 7-4 indicate the sample result was lower than the instrument background (i.e., below the instrument detection limit). Radon-222 was detected in all samples, with activities ranging from 156 picocuries per liter (pCi/L) at MWL-MW7 to 416 pCi/L at MWL-BW2. All radiological results were reviewed by a Sandia radiological SME to screen for potential indications of radiological contamination; there were no indications of radiological anomalies in the groundwater sample results. Results are consistent with historical results and below LTMMP trigger levels.

Second Semi-Annual Sampling Event – October 16-29, 2014

No VOCs were detected in environmental samples above laboratory MDLs.

Cadmium and chromium were not detected above the associated MDLs. Nickel was detected in all samples at concentrations ranging from 0.000777 mg/L at MWL-MW9 to 0.000914 mg/L at MWL-BW2. Uranium concentrations ranged from 0.00759 mg/L at MWL-BW2 to 0.00973 mg/L at MWL-MW9. All results are consistent with historical MWL groundwater monitoring results and below LTMMP trigger levels.

MWL groundwater samples were screened for gamma-emitting radionuclides, gross alpha activity, gross beta activity, tritium, and radon-222. Resampling of MWL-MW7 for radon-222 on October 29, 2014 was performed due to a holding time issue with the October 17, 2014 equipment blank sample. There were no detections of gamma-emitting radionuclides (as determined by gamma spectroscopy) or tritium (as determined by liquid scintillation counting). Radon-222 was detected in all samples, with activities ranging from 110 pCi/L at MWL-MW7 (October 17, 2014 duplicate) to 427 pCi/L at MWL-BW2. All radiological results were reviewed

by a Sandia radiological SME to screen for potential indications of radiological contamination; there were no indications of radiological anomalies in the groundwater sample results. Results are consistent with historical results and below LTMMP trigger levels.

7.2.2 Field Quality Control Sample Results

Table 7-6 summarizes results of duplicate sample analyses and the calculated RPD values between the environmental-duplicate sample pair results for the April, June, and October 2014 data sets. Calculated RPDs for detected constituents show good agreement (i.e., RPD values < 20 for organics and < 35 for metals) for all sampling events. A discussion of equipment, field, and trip blank results for the April/June and October sampling events is provided below.

Table 7-6
Summary of Duplicate Sample Results
Mixed Waste Landfill Groundwater Monitoring
April/June and October 2014

Well ID/Parameter	Environmental Sample (R ₁)	Duplicate Sample (R ₂)	RPD ^a						
April Sampling Event									
MWL-BW2									
Uranium (mg/L)	0.00696	0.007	1						
June Resampling Event									
MWL-MW8									
Tetrachloroethene (µg/L)	0.370	0.390	5						
October Sampling Event									
MWL-MW7									
Nickel (mg/L)	0.000878	0.00084	4						
Uranium (mg/L)	0.00864	0.00863	< 1						

Notes:

^aRPD = Relative percent difference is calculated with the following equation and rounded to the nearest whole number.

$$RPD = \frac{|R_1 - R_2|}{[(R_1 + R_2)/2]} \times 100$$

where: R_1 = Environmental sample result. R_2 = Duplicate sample result.

ID = Identification.

 μ g/L = Microgram(s) per liter. mg/L = Milligram(s) per liter.

<u>First Semi-Annual Sampling Event – April 17-28, 2014 & Follow-up VOC Sampling at MWL-MW8 – June 30, 2014</u>

Equipment blank samples were collected prior to sampling MWL-BW2 in April and prior to resampling of MWL-MW8 in June. The samples were analyzed for all constituents. Bromodichloromethane, chloroform, dibromochloromethane, nickel, and toluene were detected above laboratory MDLs. No corrective action was necessary for bromodichloromethane, chloroform, dibromochloromethane, or toluene since these compounds were not detected in the environmental samples. Bromodichloromethane, chloroform, dibromochloromethane are a by-product of the DI water purification process (i.e., chlorination) and are routinely detected in equipment blank samples at very low concentrations. Toluene is a common laboratory

contaminant. Nickel was detected in the equipment blank sample associated with MWL-BW2. The nickel concentrations for the MWL-BW2 environmental and duplicate samples were less than five times the reported concentration for the equipment blank sample. Therefore, nickel qualified as not detected during data validation for both environmental and duplicate environmental samples.

The field blank collected at ERFO during the decontamination process and the four field blanks collected at the monitoring well locations during April all showed detections of bromodichloromethane and chloroform above laboratory MDLs. Dibromochloromethane was detected in the field blank samples collected at ERFO after equipment decontamination and at the MWL-MW9 location. No corrective action was required since these compounds were not detected in associated environmental samples. No VOCs were detected in the June field blank sample.

No VOCs were detected in the seven trip blank samples associated with the April and June sampling event.

Second Semi-Annual Sampling Event - October 16-29, 2014

Equipment blank samples were collected on October 16 and October 28 prior to sampling and resampling of MWL-MW7. The equipment blank samples collected on October 16 were analyzed for all constituents. Bromodichloromethane, chloroform, and dibromochloromethane were detected above laboratory MDLs. No corrective action was necessary since these compounds were not detected in associated MWL-MW7 environmental-duplicate sample pair and they are a by-product of the DI water purification process. The equipment blank collected on October 28 was analyzed for radon-222 only to replicate the analysis of the environmental-duplicate sample pair for radon-222 only. Radon-222 was not detected in the equipment blank.

The field blank collected at ERFO during the decontamination process and the four field blanks collected at the monitoring wells all showed detections of acetone, bromodichloromethane, chloroform, and dibromochloromethane. No corrective action was required since these compounds were not detected in associated environmental samples. Acetone is a common laboratory contaminant and the other compounds are a by-product of the DI water purification process.

No VOCs were detected in the five trip blank samples associated with the October sampling event.

7.2.3 Data Quality

Field QC sample results met the sampling DQOs and validated the adequacy of the field sampling procedures and protocol. Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These samples included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, surrogate spike samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All chemical data were

reviewed and qualified in accordance with SNL/NM AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2014a).

Based upon the data validation and review criteria, all analytical data were determined to be technically defensible. Reported QC sample results were in compliance with analytical method and laboratory procedure requirements. Data Validation Reports and Contract Verification Review forms are provided in Annex E.

7.2.4 Variances and Non-Conformances

No variances, non-conformances, or project-specific issues were identified during the April/June and October 2014 semi-annual groundwater sampling events.

7.3 Hydrogeologic Assessment

A detailed conceptual site model is provided in the MWL Phase 2 RCRA Facility Investigation Report (Peace et al. 2002) and the Mixed Waste Landfill Groundwater Report, 1990 through 2001, Sandia National Laboratories, Albuquerque, New Mexico (Goering et al. 2002). An update to the conceptual site model integrating the findings from the four monitoring wells installed in 2008 is presented in the Mixed Waste Landfill Annual Groundwater Monitoring Report, Calendar Year 2009 (SNL/NM June 2010) and the Annual Groundwater Monitoring Report, Calendar Year 2012 (SNL/NM June 2013).

The upper surface of the regional aquifer at the MWL is contained within the interfingering, unconsolidated, fine-grained alluvial-fan deposits of the Santa Fe Group. The more transmissive, coarser-grained Ancestral Rio Grande sediments underlie the fine-grained alluvial deposits beneath the MWL. The depth to water is approximately 500 feet bgs and groundwater flows generally westward, away from the Manzanita Mountains and towards the Rio Grande. Several water-supply wells operated by KAFB and the Albuquerque Bernalillo County Water Utility Authority have profoundly modified the natural groundwater flow regime near the MWL by creating a trough in the water table in the western and northern portions of KAFB. As a result, water levels at the MWL have continued to decline since monitoring began in 1990.

Since 2009, the rate of groundwater elevation decline in all wells except MWL-MW4 has been relatively slow and constant, and less than 2 feet overall. The rate of groundwater elevation decline in the upper screen interval of MWL-MW4 has stabilized since April 2010. Recharge from infiltration of direct precipitation at the MWL is negligible due to high evapotranspiration, low precipitation, the thick sequence of unsaturated Santa Fe Group deposits above the water table. Groundwater recharge of the regional aquifer occurs by the infiltration of precipitation in the Manzanita Mountains located approximately 5 miles to the east.

Figure 7-2 shows the October 2014 potentiometric surface of the regional aquifer beneath the MWL. Groundwater flows towards the west and northwest. Measured orthogonally from the potentiometric surface contours, the horizontal gradient for October 2014 ranges from 0.03 to 0.08 feet per foot. Groundwater velocities in the alluvial-fan sediments were calculated using the current potentiometric surface gradient, the average hydraulic conductivity obtained from the

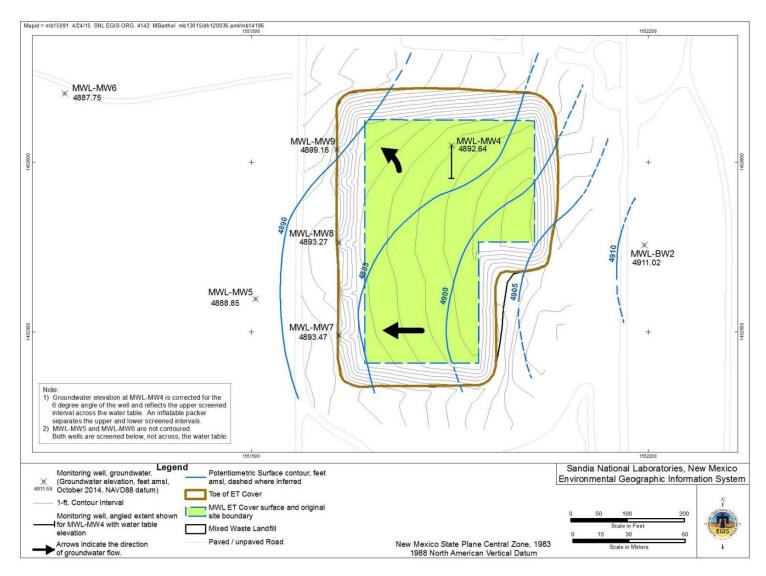


Figure 7-2
Localized Potentiometric Surface of the Basin Fill Aquifer at the Mixed Waste Landfill, October 2014

slug testing of four monitoring wells, and an effective porosity of 25 percent. The calculated groundwater velocity ranges from 0.02 to 0.06 feet per day. This is equivalent to 5.4×10^{-6} to 1.34×10^{-5} centimeters per second. The average groundwater velocity is 0.04 feet per day (equivalent to 9.4×10^{-6} centimeters per second). These very low values are consistent with previous estimates for horizontal groundwater flow at the water table in the MWL vicinity.

8.0 BIOTA MONITORING RESULTS

This chapter presents biota monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with the LTMMP, Sections 3.6 and 5.2.2, and Appendix F (SNL/NM March 2012). The monitoring objective is to provide data to evaluate biotic mobilization of contaminants (i.e., metals and radionuclides) from the subsurface to surface. Sampling of surface soil from animal burrows and ant hills is performed, as well as sampling of potentially deep-rooted vegetation if present. Biota monitoring field activities are described in Section 8.1, analytical laboratory results and a discussion of data quality are presented in Section 8.2, and data evaluation and a comparison of results to monitoring trigger levels are presented in Section 8.3. A summary of biota monitoring activities and results is provided in Section 11.1.

8.1 Biota Monitoring Field Activities

One annual sampling event was conducted during the April 1, 2014 through March 31, 2015 reporting period fulfilling the LTMMP annual monitoring requirement. The biota sampling locations were identified during the growing season ET Cover Biology Inspection performed on August 14, 2014. The sampling locations are shown in Figure 8-1 and consist of two ant hills (MWL AHSS-01 and MWL AHSS-02), two animal burrows (MWL ABSS-01 and MWL ABSS-02), and one potentially deep—rooted plant (MWL PDRV-01). Locations were selected by the staff biologist during the August14, 2014 Biology Inspection. The largest, most active ant hills and small animal burrows were selected for surface soil sampling. Only one potentially deep-rooted plant (juvenile fourwing saltbush) was identified. Sampling of these locations was conducted on August 21, 2014. One of the coolers containing samples for locations MWL AHSS-01, MWL ABSS-01, and MWL ABSS-02, arrived at the analytical laboratory out of temperature specifications for mercury. These locations were resampled for mercury on August 27, 2014. The gamma spectroscopy results were reviewed by a Sandia radiological SME and documented in a data evaluation memo. This memo and biota monitoring AR/COC forms are provided in Annex B.

8.1.1 Field Quality Control

In accordance with the Tritium and Biota SAP (MWL LTMMP Appendix G, Table G-4.2-1), only one field QC sample (duplicate sample) is required per group of twenty environmental samples collected. Since the biota and tritium monitoring were performed together and the total number of samples was less than 20, the duplicate sample for this sampling event was collected at MWL TS-2NE (a tritium surface soil sample discussed in Section 4.1.1).

8.1.2 Waste Management

Waste generated during sampling activities included PPE, such as gloves, and decontamination wipes. Analytical data collected from the sampling event was used to characterize the waste as non-hazardous; it was managed as solid waste.

Figure 8-1
Mixed Waste Landfill Biota Sampling Locations

8.2 Laboratory Results

Biota samples were submitted to GEL for analyses. Samples were analyzed in accordance with applicable EPA analytical methods. Metals results that are above the laboratory MDL but below the PQL are qualified as estimated values by the laboratory and designated with a "J" qualifier. Gamma spectroscopy analytical results that are below the MDA are qualified with a "U" and are designated as "not detected." Both laboratory and data validation qualifiers are included in the data tables presented in this section. Analytical laboratory reports, including certificates of analyses, analytical methods, sample results, dates of analyses, results of QC analyses, and data validation reports are filed in the SNL/NM Record Center.

8.2.1 Environmental Sample Results

Table 8-1 summarizes metal results and Table 8-2 summarizes gamma spectroscopy results. NMED-approved background concentrations and activities (Dinwiddie September 1997) and LTMMP trigger levels are included in Tables 8-1 and 8-2 for comparison.

All metals results are at or below the respective NMED-approved background concentrations. All cadmium, selenium, and silver results were non-detects or estimated concentrations near the MDL.

All gamma spectroscopy radionuclide results were below the respective NMED-approved background activities. Many results were non-detections, including all results for the vegetation sample MWL- PDRV-01.

8.2.2 Field Quality Control Sample Results

As discussed in Section 4.2.2, an environmental-duplicate sample pair was collected at location MWL TS-2NE. The tritium result was qualified as undetected during data validation; therefore, an RPD value between the environmental and duplicate sample was not calculated.

8.2.3 Data Quality

Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These included laboratory control samples, method blanks, and matrix spike samples (matrix spike duplicate samples also included in the metals analysis). The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All radiochemical data were reviewed and qualified in accordance with SNL/NM Administrative Operating Procedure (AOP) AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2014a). Data Validation Reports and Contract Verification Review forms are provided in Annex B.

Table 8-1 Summary of Metals Results (EPA Method 6020/7470^a) Mixed Waste Landfill Biota Monitoring August 2014

Sample Location	Parameter	NMED Background ^b (mg/kg)	Result (mg/kg)	Trigger Level ^b (mg/kg)	Laboratory Qualifier ^{c,d}	Validation Qualifier ^{c,e}
MWL AHSS-01	Arsenic	5.6	4.14	17.7		
21-Aug-14	Barium	130	74.4	100,000	N	J
and	Beryllium	0.65	0.364	2,260	J	
27-Aug-14 for mercury only	Cadmium	<1	ND (0.0956)	897		
	Chromium	17.3	6.12	63.1		
	Cobalt	5.2	2.58	20,500		
	Copper	15.4	5.50	45,400		
	Lead	21.4	6.08	800		
	Mercury	<0.25	0.00636	73.6	J	J
	Nickel	11.5	5.26	22,500		
	Selenium	<1	ND (0.478)	5,680	U	
	Silver	<1	0.141	5,680	J	0.535U, B
	Vanadium	20.4	15.9	5,680		
	Zinc	62	17.7	100,000		
MWL AHSS-02	Arsenic	5.6	3.43	17.7		
21-Aug-14	Barium	130	66.1	100,000	N	J
· ·	Beryllium	0.65	0.328	2,260	J	
	Cadmium	<1	ND (0.0988)	897	U	
	Chromium	17.3	4.90	63.1		
	Cobalt	5.2	2.14	20,500		
	Copper	15.4	4.96	45,400		
	Lead	21.4	5.57	800		
	Mercury	<0.25	0.00716	73.6	J	
	Nickel	11.5	4.55	22,500		
	Selenium	<1	1.02	5,680	J	5.2U, B
	Silver	<1	ND (0.0988)	5,680	U	
	Vanadium	20.4	13.7	5,680		
	Zinc	62	15.9	100,000		
MWL ABSS-01	Arsenic	5.6	4.27	17.7		
21-Aug-14	Barium	130	75.9	100,000	N	J
and	Beryllium	0.65	0.390	2,260	J	
27-Aug-14 for mercury only	Cadmium	<1	ND (0.0893)	897	U	
	Chromium	17.3	6.37	63.1		
	Cobalt	5.2	2.89	20,500		
	Copper	15.4	5.86	45,400		
	Lead	21.4	7.29	800		
	Mercury	<0.25	0.0163	73.6		J
	Nickel	11.5	5.72	22,500		
	Selenium	<1	ND (0.446)	5,680	U	
	Silver	<1	ND (0.0893)	5,680	U	
	Vanadium	20.4	16.6	5,680		
	Zinc	62	18.4	100,000		

Refer to notes at end of table.

Table 8-1 (Concluded) Summary of Metals Results (EPA Method 6020/7470^a) Mixed Waste Landfill Biota Monitoring August 2014

Sample Location	Parameter	NMED Background ^b (mg/kg)	Result (mg/kg)	Trigger Level (mg/kg)	Laboratory Qualifier ^{c,d}	Validation Qualifier ^{c,e}
MWL ABSS-02	Arsenic	5.6	4.57	17.7		
21-Aug-14	Barium	130	79.7	100,000	N	J
and	Beryllium	0.65	0.454	2,260	J	
27-Aug-14 for mercury only	Cadmium	<1	0.0948	897	J	
	Chromium	17.3	8.48	63.1		
	Cobalt	5.2	3.50	20,500		
	Copper	15.4	6.87	45,400		
	Lead	21.4	9.63	800		
	Mercury	< 0.25	0.0141	73.6		J
	Nickel	11.5	6.79	22,500		
	Selenium	<1	ND (0.465)	5,680	U	
	Silver	<1	0.133	5,680	J	0.535U, B
	Vanadium	20.4	20.4	5,680		
	Zinc	62	23.4	100,000		

Notes:

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

dLaboratory qualifiers:

J = Estimated value.

N = Result for the associated matrix spike had low recovery.

U = Analyte was not detected.

eValidation qualifiers:

B = The laboratory method blank was contaminated at a concentration greater than the MDL.

J = Value is estimated due to poor replicate precision (mercury results) or low matrix spike recovery (barium results).

U = The analyte was reported as a detection by the laboratory but was qualified during data validation review as not detected due to laboratory contamination. The associated numerical value is the revised sample quantitation limit, in accordance with the data validation process.

DOE = U.S. Department of Energy

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit.mg/kg = Milligram(s) per kilogram.

N = Result for the associated matrix spike had low recovery.ND = Not detected above the MDL, shown in parentheses.

NMED = New Mexico Environment Department.

^bDinwiddie September 1997, Letter from R.S. Dinwiddie (NMED) to M.J. Zamorski (DOE), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB," dated September 24, 1997.

[°]If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Table 8-2 Summary of Gamma Spectroscopy Results (EPA Method 901.1^a) Mixed Waste Landfill Biota Monitoring August 2014

			NMED		
			Background ^b	Laboratory	Validation
Sample Location	Parameter	Result (pCi/g)	(pCi/g)	Qualifier ^c	Qualifier ^c
MWL AHSS-01	Cesium-137	0.0465 ± 0.0334	1.5		J
	Cobalt-60	0.00719 ± 0.0201	NA	U	BD
	Radium-226	0.695 ± 0.104	2.7		
	Thorium-232 ^b	0.841 ± 0.0874	1.5		
	Uranium-235	0.0646 ± 0.151	0.18	U	BD
	Uranium-238	0.577 ± 1.24	2.3	U	BD
MWL AHSS-02	Cesium-137	0.0949 ± 0.0229	1.5		-
	Cobalt-60	0.0086 ± 0.016	NA	U	BD
	Radium-226	0.681 ± 0.0879	2.7		
	Thorium-232 ^d	0.858 ± 0.0966	1.5		
	Uranium-235	0.0744 ± 0.0978	0.18	U	BD
	Uranium-238	0.708 ± 0.456	2.3		J
MWL ABSS-01	Cesium-137	0.0992 ± 0.0254	1.5		
	Cobalt-60	0.00526 ± 0.0169	NA	U	BD
	Radium-226	0.772 ± 0.100	2.7		
	Thorium-232 ^d	0.858 ± 0.0924	1.5		
	Uranium-235	0.0434 ± 0.132	0.18	U	BD
	Uranium-238	0.440 ± 1.56	2.3	U	BD
MWL ABSS-02	Cesium-137	0.173 ± 0.0392	1.5		
	Cobalt-60	0.00301 ± 0.0217	NA	U	BD
	Radium-226	0.761 ± 0.0973	2.7		
	Thorium-232 ^d	1.02 ± 0.0999	1.5		
	Uranium-235	0.0351 ± 0.100	0.18	U	BD
	Uranium-238	1.16 ± 1.26	2.3	Х	R
MWL PDRV-01	Cesium-137	-0.00542 ± 0.0136	NA	U	BD
	Cobalt-60	0.0188 ± 0.0169	NA	U	BD
	Radium-226	0.0112 ± 0.0287	NA	U	BD
	Thorium-232 ^d	-0.00803 ± 0.0228	NA	U	BD
	Uranium-235	0.00297 ± 0.0718	NA	U	BD
	Uranium-238	0.452 ± 0.507	NA	U	BD

Notes:

^dThorium-232 activity is quantified and reported using the daughter isotope Lead-212 results.

ABSS = Animal burrow soil sample.

AHSS = Ant hill soil sample.

BD = Result is below the MDA.

DOE = U.S. Department of Energy.

J = The associated value is an estimated quantity.

MDA = Minimum detectable activity.

NA = Not applicable.

NMED = New Mexico Environment Department.

pCi/g = Picocuries per gram.

PDRV = Perennial deep-rooted vegetation sample.
R = Result is not valid, peak could not be identified.

U = Analytewas not detected.

X = Analytical result is not valid due to peak not meeting identification criteria.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

^bDinwiddie September 1997, Letter from R.S. Dinwiddie (NMED) to M.J. Zamorski (DOE), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB," dated September 24, 1997. Cobalt-60 is not naturally occurring; therefore, it does not have a listed background activity. There are no established background activities for vegetation.

[°]If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples. Qualifiers "BD" "J" "R" "U" and "X" see below.

Based upon the data validation and review criteria, all analytical data were determined to be technical defensible. Reported QC samples results were in compliance with analytical method and laboratory procedure requirements.

8.3 Data Evaluation and Monitoring Trigger Level

Trigger levels for metals in surface soil samples collected at animal burrows and/or ant hills are specified in the MWL LTMMP, Table 5.2.2-1 and included in Table 8-1. No surface soil metals results exceeded the trigger levels.

There are no trigger levels established for radionuclides. In accordance with the LTMMP Section 5.2.2.2, the gamma spectroscopy results are compared with NMED-approved background activity levels (Dinwiddie September 1997) for comparison only. There are no established background activities for vegetation. All radionuclide results for surface soil samples collected at animal burrows and ant hills were below the NMED-approved background activity levels. All vegetation radionuclide results were non-detections.

April 2014 - March 2015

This page intentionally left blank.

9.0 INSPECTION, MAINTENANCE, AND REPAIR RESULTS

This chapter presents a summary of inspection, maintenance, and repair activities in accordance with requirements in MWL LTMMP Section 4.0 and Appendix I, MWL Long-Term Monitoring Inspection Checklists/Forms (SNL/NM March 2012). Inspection requirements are summarized in Table 2-2 of this Annual LTMM Report. Table 9-1 lists the date(s) each type of inspection was performed during the April 1, 2014 through March 31, 2015 reporting period. Inspection results are presented in the following sections and documented on the inspection forms/checklists called out in Table 9-1 and provided in Annex F. A summary of inspection activities and results is provided in Section 11.2.

9.1 Final Cover System

The final cover system includes the ET Cover vegetation and ET Cover surface. ET Cover vegetation is inspected by an SNL/NM staff biologist and the results documented on the Biology Inspection Form/Checklist for the MWL Cover. The ET Cover surface is also inspected by a field technician together with the storm-water diversion structures, security fence, and survey monuments, and results documented on the MWL Cover Inspection Checklist/Form.

9.1.1 Biology Inspection

Two ET Cover Biology Inspections were performed by the staff biologist during the reporting period (Table 9-1). Based upon results from the inspection conducted in August 2014 (i.e., the growing season inspection), it was determined that the three criteria for successful revegetation described in MWL LTMMP Section 4.1 had been met. Since the criteria were met, this determination changed the required inspection frequency of cover vegetation inspection to an annual basis, during the growing season (i.e., August-September). The next ET Cover Biology Inspection will be performed in August-September 2015. The results of the inspections are provided below.

May 15, 2014 - Quarterly Inspection

The approximate foliar coverage on the ET Cover and side slopes was 52 percent, with 95 percent of this coverage composed of native vegetation. The foliar coverage is dominated by native grasses, with James' galleta (native grass species) comprising approximately 45 percent of the total foliar coverage. There were no contiguous areas without vegetation exceeding 200 square feet in size.

One juvenile fourwing saltbush plant was identified growing on the ET Cover. This shrub species is capable of developing deep root systems, so its location was noted for biota sampling in accordance with MWL LTTMP Section 3.6.2. This small shrub was removed on August 21, 2014 during the annual biota sampling event (described in Section 8.1). No other plants capable of developing deep root systems were observed.

Table 9-1 Inspection Frequency and Dates Performed Mixed Waste Landfill April 2014 – March 2015 Reporting Period

Inspection Type	Frequency	Form/Checklist	Date Performed
ET Cover Biology	Quarterly	Biology Inspection	May 15, 2014
Inspection	(through August 2014 then, annually) ^a	Checklist/Form	August 14, 2014
			May 21, 2014
ET Cover Surface	Quarterly	Cover Inspection	August 4, 2014
Inspection		Checklist/Form	December 3, 2014
			February 16, 2015
			May 21, 2014
Storm-Water Diversion Structure Inspection	Quarterly	Cover Inspection	August 4, 2014
		Checklist/Form	December 3, 2014
			February 16, 2015
Soil-Vapor Monitoring	Semiannually	Soil-Vapor Monitoring	September 11, 2014
Network Inspection	Semiannually	Network Checklist/Form	October 22, 2014
Groundwater Monitoring	Semiannually	Groundwater Monitoring	April 21, 2014
Network Inspection	Semiannually	Network Checklist/Form	October 16, 2014
Soil-Moisture Monitoring	Semiannually	Soil-Moisture Monitoring	April 15, 2014
Network Inspection	Semiannually	Network Checklist/Form	October 16, 2014
Security Fence Inspection			May 21, 2014
	Quarterly	Cover Inspection	August 4, 2014
	Quarterly	Checklist/Form	December 3, 2014
			February 16, 2015

Notes:

Several (less than 12) ant hills/burrows and approximately 25 small mammal burrows with a diameter less than 4 inches were observed and noted. None of the burrows appeared to be created by a species capable of burrowing 6 feet or greater, and most appeared to be test burrows (temporary, abandoned burrows). Small animal burrows were located across the cover surface and side slopes, especially the northern side slope and side slopes at the southwestern corner. Ant hills were located predominantly on the side slopes or on cover surface near the side slopes. No action or repairs were required.

August 14, 2014 - Inspection

The approximate foliar coverage on the ET Cover and side slopes was very similar to the May inspection. Total foliar coverage was the same; approximately 52 percent, with 99 percent of this coverage composed of native vegetation. James' galleta comprised approximately 42 percent of the total foliar coverage. There were no contiguous areas without vegetation exceeding 200 square feet in size.

No plants capable of developing deep root systems were identified other than the juvenile fourwing saltbush plant discussed above in the May inspection results.

^aTransition from quarterly to annual inspection frequency based upon meeting successful revegetation criteria as determined by the staff biologist during the August 2014 growing season inspection.

ET = Evapotranspirative.

Nine ant hills/burrows were identified, mostly on or near the side slopes. Seven small mammal burrows with diameters less than 4 inches were noted, near or on the northern and southern side slopes. None of the burrows appeared to be created by a species capable of burrowing 6 feet or greater. No action or repairs were required.

9.1.2 ET Cover System/Surface Inspection

Four ET Cover surface inspections were performed by a field technician during the reporting period fulfilling the LTMMP quarterly inspection requirement (Table 9-1). No inspection parameters required follow-up actions.

9.1.3 ET Cover Supplemental Watering and Maintenance

The MWL LTMMP addresses all cover maintenance and supplemental watering activities from the completion of the ET Cover in September 2009 through 2011. Supplemental watering and cover maintenance activities performed in 2012 through March 31, 2014 are summarized in the MWL Annual LTMM Report, January – March 2014 (SNL/NM June 2014b). Maintenance performed in response to the ET Cover Surface and Physical Controls Inspections, if required, is discussed separately in sections 9.1.2, 9.2, and 9.6. Routine ET Cover maintenance and supplemental watering performed from April 1, 2014 through March 31, 2015 to facilitate the healthy growth and establishment of mature native grasses is discussed below.

Supplemental watering was conducted during the reporting period at the direction of the staff biologist to augment natural precipitation and facilitate the healthy growth and establishment of the native grasses. Water was applied using the temporary irrigation system installed on top of the ET Cover surface in 2011 (SNL/NM March 2012, Appendix B) in accordance with LTMMP conditions (SNL/NM March 2012, Section 4.2.3). For each watering event, the equivalent of a 0.5-inch rain event was applied to the ET Cover and side slopes over a period of approximately 6 to 7 hours. All 2014 supplemental watering activities are summarized below. No supplemental watering activities were performed from January 1 through March 31, 2015.

Supplemental Watering & Natural Precipitation for Calendar Year 2014				
Supplemental Watering Date	Supplemental Water Applied ^a (inches)	Supplemental Water + Natural Precipitation ^b (inches)		
May 22 and 29, 2014	1.0			
June 5, 2014	0.5	2.5 + 7.48 = 9.98		
October 16 and 28, 2014	1.0			

^aSupplemental water was applied over the ET Cover area using a temporary, above-ground sprinkler system. The volume of water used was tracked and converted to "inches of precipitation" for the ET Cover surface area. ^bNatural precipitation determined from the SNL/NM Meteorological Monitoring Program.

ET Evapotranspirative.

SNL/NM = Sandia National Laboratories, New Mexico.

Maintenance activities performed on the MWL ET Cover during the April 1, 2014 through March 31, 2015 reporting period are summarized below. Most of the maintenance effort involved clearing the perimeter fence of windblown tumbleweeds and to ensure that mature, deep-rooted Russian thistle plants did not establish on the ET Cover in accordance with the

NMED conditions of approval for the Corrective Measures Implementation Plan (Bearzi December 2008). All work was done by hand (except herbicide application to the staging areas) and no vehicle traffic was allowed on the ET Cover. The number of live, annual weedy species growing on the cover during the 2014 growing season was relatively small, and has declined considerably since ET Cover installation in 2009.

March 31 - April 4, 2014

Dead weedy vegetation was removed from the MWL ET Cover and perimeter fence. This maintenance activity primarily removed loose tumbleweeds that had blown into the area and accumulated along the fence line. Approximately 60 cubic yards of highly compressed weeds were removed from the site.

June 3 - 4, 2014

Live and dead weedy vegetation was removed from the MWL ET Cover, perimeter fence, and surrounding ET cover perimeter area (including the storm-water diversion features). The majority of this maintenance activity involved clearing tumbleweeds from the perimeter fence; there were very few live weedy species present on the ET Cover. Approximately 30 cubic yards of lightly compressed weeds were removed from the site.

August 18 – 28, 2014

Loose and dead weedy vegetation was removed by hand from the MWL ET Cover, perimeter fence, and surrounding ET Cover perimeter area, including the storm-water diversion features. Growing, live non-native grass species were also removed by hand from the ET Cover and perimeter area to approximately 10 feet outside the perimeter fence. The post-emergent herbicide Strike 3[®] from Winfield Solutions was applied to the North and South Staging Areas (i.e., graveled staging areas outside the perimeter fence) to prevent additional tumbleweed growth. Approximately 10 cubic yards of highly compressed weeds were removed from the site.

October 29 - 30, 2014

Live and dead weedy vegetation was removed by hand from the MWL ET Cover, perimeter fence, and ET Cover perimeter area, including the storm-water diversion features. Growing, live non-native grass species were also removed by hand from the ET Cover and perimeter area to approximately 10 feet outside the perimeter fence. Approximately 9 cubic yards of highly compressed weeds were removed from the site.

March 4 – 5, 2015

Live and dead weedy vegetation was removed by hand from the MWL ET Cover, perimeter fence, and ET Cover perimeter area, including the storm-water diversion features. Growing, live non-native grass species were also removed by hand from the ET Cover, the western perimeter

area between the fence and road, and a 10-foot buffer area outside the fence. The preemergent herbicide Payload[®] from Valent was applied to the North and South Staging Areas (i.e., graveled staging areas outside the perimeter fence) to prevent additional tumbleweed growth. Approximately 15 cubic yards of highly compressed weeds were removed from the site.

9.2 Storm-Water Diversion Structure Inspection

Storm-water diversion structure inspections were combined with the quarterly ET Cover System/Surface Inspections during the reporting period, fulfilling the LTMMP quarterly inspection requirement (Table 9-1). These inspections addressed the storm-water diversion swale on the north, east, and south sides of the ET Cover (just outside the toe of the cover side slope) and were documented on the same Cover Inspection Checklist/Form. No inspection parameters required follow-up actions; however, windblown weeds were removed from the swale during ET Cover weed removal events described in Section 9.1.3 as a best management practice.

9.3 Soil-Vapor Monitoring Network Inspection

Soil vapor monitoring network inspections were performed in conjunction with two soil-vapor monitoring events conducted during the reporting period, fulfilling the LTMMP semiannual inspection requirement (Table 9-1). No inspection parameters required follow-up actions.

9.4 Soil-Moisture Monitoring Network Inspection

Two inspections of the soil-moisture monitoring network were performed during the reporting period fulfilling the LTMMP semiannual inspection requirement (Table 9-1). The results of the semiannual inspections are provided below.

April 15, 2014 - Semiannual Inspection

The protective casings and bollards for MWL-VZ-1, MWL-VZ-2, and MWL-VZ-3 needed repainting. The protective casings and bollards at all three monitoring locations were repainted on April 21, 2014. No other inspection parameters required action.

October 16, 2014 – Semiannual Inspection

The locks at MWL-VZ-1, MWL-VZ-2, and MWL-VZ-3 were not functioning properly and were replaced during the inspection. No other inspection parameters required action.

9.5 Groundwater Monitoring Well Network Inspection

Inspections of the groundwater monitoring well network were performed in conjunction with two groundwater monitoring events conducted during the reporting period fulfilling the LTMMP

semiannual inspection requirement (Table 9-1). No inspection parameters required follow-up actions.

Passive soil-vapor venting devices (BaroBalls™) were installed on the four compliance groundwater monitoring wells (MWL-BW2, MWL-MW7, MWL-MW8, and MWL-MW9) on February 2, 2015. These devices were installed on the wells after a review of the September 2014 soil-vapor monitoring results (low ppbv VOC concentrations at 400 feet bgs). The groundwater monitoring wells have a large screen interval above the water table that could provide a conduit for VOC soil-vapor migration into the monitoring well. BaroBall™ devices were installed as a best management practice to minimize the potential impact of VOC soil vapor on groundwater within the monitoring wells. They are designed to facilitate the upward movement and venting to the atmosphere of soil vapor in the monitoring well, and prevent downward movement from barometric pressure (i.e., barometric pumping during periods of high pressure in the atmosphere). This same technology has been successfully applied at the Chemical Waste Landfill since the late 1990s.

9.6 Security Fence Inspection

Perimeter security fence inspections were combined with the four quarterly ET Cover System/Surface Inspections during the reporting period fulfilling the LTMMP quarterly inspection requirement (Table 9-1). The inspections of the security fence, access controls (gates, locks, signs), and survey monuments were documented on the Cover Inspection Checklist/Form. Results of the quarterly inspections are provided below.

May 21, 2014 - Quarterly Inspection

Accumulation of wind-blown plant debris was identified on the security fence. The plant debris was removed from the security fence on June 4, 2014. No other inspection parameters required action.

August 4, 2014 – Quarterly Inspection

Accumulation of wind-blown plant debris was identified on the security fence. The plant debris was removed on August 27, 2014. The top barbed wire strand on the security fence in the east dog-leg area had been severed and was loose. It was repaired by the field technician performing the inspection on the day of the inspection. No other inspection parameters required action.

December 3, 2014 – Quarterly Inspection

No inspection parameters required action.

February 16, 2015 – Quarterly Inspection

Accumulation of wind-blown plant debris was identified on the security fence. The plant debris was removed on March 5, 2015. Survey monuments were not visible due to excessive weed growth. Weeds were cleared around the monuments on March 5, 2015. No other inspection parameters required action.

April 2014 - March 2015

This page intentionally left blank.

10.0 REGULATORY ACTIVITIES

On January 8, 2014, the NMED approved the MWL LTMMP (Blaine January 2014). DOE and Sandia regulatory submittals (January 2014 through March 2015) are summarized in Chapter 1. Regulatory activities at the MWL that occurred prior to and during the April 2014 through March 2015 reporting period are summarized in this Section. There were no Permit modification requests during the reporting period related to changing the LTMMP.

10.1 MWL Regulatory Submittals

This section addresses MWL regulatory submittals associated with implementation of the LTMMP (Section 10.1.1), MWL regulatory submittals that occurred during this reporting period associated with LTMMP requirements (Section 10.1.2), and other MWL regulatory submittals that occurred during this reporting period (Section 10.1.3).

10.1.1 LTMMP Implementation Regulatory Submittals

After NMED approval of the LTMMP on January 8, 2014 (Blaine January 2014), DOE and Sandia submitted two documents related to installation of three multi-port FLUTe™ soil-vapor monitoring wells. The first document was the installation work plan, submitted to NMED on January 15, 2014 (SNL/NM January 2014). The installation work plan was approved by NMED on February 14, 2014 (Blaine February 2014) and the drilling and installation field work was completed in July 2014. DOE and Sandia submitted the installation report on September 10, 2014 (SNL/NM September 2014) and NMED approved the report on September 25, 2014 (Kieling September 2014).

10.1.2 LTMMP Regulatory Submittals

On June 18, 2014, DOE and Sandia submitted the MWL LTMM Report (reporting period January 2014-March 2014) for the first reporting period of January 8, 2014 through March 31, 2014, under the LTMMP (SNL/NM June 2014c). The NMED approved the LTMM Report on August 6, 2014 (Kieling August 2014).

On July 9, 2014, DOE and Sandia submitted three updated reference documents cited in the LTMMP in accordance with requirements of the Soil-Vapor and Groundwater Sampling and Analysis Plans (Appendices D and F) of the LTMMP (Todd July 2014). Revisions included updates to keep the reference documents current and to reflect ongoing modifications and improvements in industry practices. The revised reference documents became effective on June 16, 2014.

On February 18, 2015, DOE and Sandia submitted five updated reference documents cited in the LTMMP in accordance with requirements of the Groundwater Sampling and Analysis Plan (Appendix F) of the LTMMP (Todd February 2015a). Revisions included updates to keep the

reference documents current and to reflect ongoing modifications and improvements in industry practices. The revised reference documents became effective on January 23, 2015.

10.1.3 Other MWL Regulatory Submittals

As stated in Table 2-1, groundwater wells MWL–MW4, MWL-MW5, and MWL-MW6 were retained for monitoring groundwater elevation only. During annual groundwater monitoring conducted in January and February 2013, unfiltered metals results in the groundwater sample from well MWL-MW4 were anomalously elevated. All of the unfiltered sample results for chromium, cobalt, copper, iron, and nickel were historic maximum concentrations for well MWL-MW4, which has been monitored since 1993. On May 20, 2014, DOE and Sandia submitted a report to NMED documenting the results and providing recommendations for follow-up work (Todd May 2014). The suspected source of the elevated metals concentrations in the samples was corrosion by-products from the dedicated stainless steel sampling pump, which was required in well MWL-MW4 due to the unique well configuration. MWL-MW4 is angled 6 degrees from vertical and has two screens that require an inflatable packer in the well to isolate the screen intervals. On July 24, 2014, the NMED provided recommendations to DOE/Sandia for pumping/purging and sampling to remove sediment and corrosion particles from groundwater monitoring well MWL-MW4 (Kieling July 2014).

From September 8 through September 29, 2014, pumping and sampling of MWL-MW4 was conducted to remove sediment and corrosion particles from the well in accordance with the NMED recommendations (Kieling July 2014). The pumping and sampling results included decreasing trends of field turbidity measurements and unfiltered metals analytical results that were all much lower than the anomalous 2013 unfiltered results. On December 16, 2014 the packer and dedicated stainless steel sampling pump were removed from the well and inspected. The visual inspection of the pump provided conclusive evidence of substantial corrosion capable of causing elevated, anomalous metals results in groundwater samples – a source within the well. A photograph of the pump after removal is provided in Figure 10-1. The September and December 2014 field work and results were documented in a report submitted to NMED (Todd February 2015b) that was approved by NMED on March 10, 2015 (Kieling March 2015).

10.2 Class 3 Permit Modification Request for Corrective Action Complete With Controls for the Mixed Waste Landfill

DOE and Sandia requested a Certification of Completion for the MWL in accordance with Section VII.D.6 of the Consent Order on September 25, 2014 (Beausoleil September 2014). On October 8, 2014, NMED determined that all LTMMP monitoring systems are deployed for long-term controls and issued the Certificate of Completion (Cobrain October 2014).

Figure 10-1
Photograph of Stainless Steel Sampling Pump Removed from
Mixed Waste Landfill Groundwater Well MWL-MW4 on December 16, 2014

DOE and Sandia submitted a request dated October 17, 2014 to NMED for a Class 3 Permit Modification for Corrective Action Complete with Controls at the MWL (Beausoleil October 2014). The request and associated legal notice initiated the DOE and Sandia 60-day public comment period that ended on January 5, 2015. Activities associated with this Class 3 Permit Modification request included:

- Delivery to NMED of one printed copy and one copy in electronic format of an eight-volume set of documents titled Justification for Class 3 Permit Modification for Corrective Action Complete with Controls, Solid Waste Management Unit 76, Mixed Waste Landfill (SNL/NM October 2014),
- Delivery of two printed sets of the eight-volume justification binders to the University of New Mexico Zimmerman Library for the SNL/NM public reading room, and
- Hosting a public meeting/poster session on November 18, 2014 in Albuquerque, New Mexico at the Manzano Mesa Multigenerational Center.

After DOE and Sandia completed their public comment period on January 5, 2015, NMED initiated a 60-day public comment period that started on January 12, 2015 (Cobrain January 2015). On March 17, 2015 NMED extended this public comment period an additional 30 days, to April 13, 2015.

April 2014 - March 2015

This page intentionally left blank.

11.0 SUMMARY AND CONCLUSIONS

This chapter presents a summary and conclusions of all MWL LTMMP monitoring, inspection, and maintenance/repair activities in this reporting period.

11.1 Monitoring Activities

All monitoring activities for the April 1, 2014 through March 31, 2015 reporting period were completed in accordance with LTMMP requirements. The results for each monitoring activity are summarized as follows.

Radon Monitoring

The radon air monitoring frequency is quarterly. During the first quarter monitoring event the result for the RN2 location was rejected due to the detector dislodging from the protective casing during the monitoring period. Quarterly average radon concentrations ranged from 0.4 to 0.9 pCi/L at monitoring locations RN1 through RN15, and average background radon concentrations at locations RN16 and RN17 ranged from 0.5 to 0.6 pCi/L. The trigger level applies data collected from detectors located along the perimeter fence, locations RN1 through RN10. All results for locations RN1 through RN10 were well below the trigger level of 4.0 pCi/L.

Tritium Surface Soil Monitoring

The tritium surface soil monitoring frequency is annual. Soil samples were collected on August 21, 2014. Samples were also collected on January 20, 2015 to address sample location issues and to obtain soil samples with higher moisture content. Tritium levels for the August 2014 samples were all non-detections, and for the January 2015 sampling event they were all detections, with activities ranging from 1,010 to 1,830 pCi/L. All values were well below the trigger level of 20,000 pCi/L.

Soil-Vapor Monitoring

The vadose zone soil-vapor monitoring frequency is semiannual. Installation of the three FLUTe™ multi-port soil-vapor monitoring wells was completed in July 2014, and the wells were ready for sampling in September 2014, (after 2 months to allow for vadose zone equilibration). For this reporting period only, semiannual sampling was performed in September and October 2014 to allow for two monitoring events to be included in this report. Future soil-vapor monitoring will be performed in April and October of each annual reporting period, consistent with groundwater and soil-moisture semiannual monitoring. A total of 31 compounds were detected above laboratory MDLs between the two sampling events. Results for PCE, TCE, and Total VOCs from the deepest port of wells MWL-SV03, MWL-SV04, and MWL-SV05 were below the 20 ppmv trigger level for PCE and TCE, and the 25 ppmv trigger level for total organics. The maximum concentrations detected for PCE and TCE at the 400 feet bgs sampling

ports were 0.400 ppmv and 0.290 ppmv, respectively. The maximum concentration for total organics was 0.87270 ppmv.

Soil-Moisture Monitoring

The vadose zone soil-moisture monitoring frequency is semiannual. The trigger level for soil moisture applies to the shallow depth interval of 8.7 to 86.6 feet bgs at the three monitoring locations. The soil-moisture content by volume for this depth interval ranged from 1.5 to 4.8 percent, below the 23 percent soil-moisture content by volume trigger level.

Groundwater Monitoring

The groundwater monitoring frequency is semiannual. No groundwater constituents were detected at concentrations exceeding trigger levels and the results are consistent with historical MWL groundwater monitoring results.

Biota Monitoring

Biota monitoring frequency is annual. All results were below the trigger levels and radionuclide results were below background activities.

11.2 Inspections/Maintenance/Repairs Activities

The ET Cover Biology Inspection was performed quarterly until the August 2014 growing season inspection when the staff biologist determined the ET Cover met LTMMP successful revegetation criteria. This transitioned the Biology Inspection frequency to annual. No issues requiring maintenance or repairs were identified.

The ET Cover System inspection was performed quarterly. There were no issues identified.

The engineered storm-water drainage swale inspection was performed quarterly. There were no issues identified.

The soil-vapor monitoring network inspection was performed semiannually. There were no issues identified.

The soil-moisture monitoring network inspection was performed semiannually. The protective casings and bollards for MWL-VZ-1, MWL-VZ-2, and MWL-VZ-3 were repainted and the locks were replaced. The corrective actions were completed within 60 days of being identified. There were no other issues identified.

The groundwater monitoring network inspection was performed semiannually. There were no issues identified. Passive soil-vapor venting devices (i.e., BaroBalls™) were installed on groundwater monitoring wells MWL-BW2, MWL-MW7, MWL-MW8, and MWL-MW9 as a best

management practice on February 2, 2015 after a review of the September 2014 soil-vapor monitoring results that showed "ppbv" VOC soil-vapor concentrations at 400 feet bgs.

The perimeter security fence inspection which also includes access controls (i.e., gates, locks, signs), and survey monuments was performed quarterly. Accumulation of wind-blown plant debris was identified on the security fence in three of the inspections. A strand of barbed wire on the security fence was repaired during one inspection. Excessive weed growth was identified around the survey monuments during one of the inspections. All repairs were completed within 60 days of being identified. There were no other issues identified.

11.3 Regulatory Activities

Regulatory activities during the April 2014 – March 2015 reporting period include submittal and NMED approval of a soil-vapor well installation report in September 2014; the MWL LTMM Report, January – March 2014; and two separate submittals of updated reference documents cited in the LTMMP in July 2014 and February 2015.

Other MWL regulatory submittals included a February 2015 report that presented sampling results and subsequent field work documenting corrosion of the dedicated stainless steel sampling pump in well MWL-MW4 as the cause of anomalous unfiltered metals results from the annual CY 2013 sampling event. This MWL-MW4 report was approved by NMED on March 10, 2015 (Kieling March 2015).

DOE and Sandia also requested a Class 3 Permit Modification for Corrective Action Complete with Controls for the MWL in October 2014, and held a public comment period and public meeting associated with the request.

11.4 Conclusions

SNL/NM has performed and documented all required MWL LTMMP monitoring and inspection requirements. This first full-year Annual LTMM Report presents the monitoring, inspection, and repair activities and results for the April 1, 2014 through March 31, 2015 reporting period as required by the MWL LTMMP, Section 4.8.1. The monitoring and inspection results indicate the final remedy, which includes the ET Cover and related physical and institutional controls, is performing as designed. Site conditions continue to be protective of groundwater, human health and the environment.

April 2014 - March 2015

This page intentionally left blank.

12.0 REFERENCES

American Public Health Association American Water Works Association, and Water Environment Federation, 1988. "Standard Methods for the Examination of Water and Wastewater," 7500-Rn B Method, 20th Edition, published jointly by American Public Health Association, American Water Works Association, and Water Environment Federation. Washington, D.C., 1998.

Bearzi, J.P. (New Mexico Environment Department), December 2008. Letter to K. Davis (U.S. Department of Energy NNSA/Sandia Site Office) and F.B. Nimick (Sandia National Laboratories/New Mexico), "Conditional Approval, Mixed Waste Landfill Corrective Measures Implementation Plan, November 2005, Sandia National Laboratories, EPA ID# NM5890110518, SNL-05-025," December 22, 2008.

Bearzi, J.P. (New Mexico Environment Department), October 2011. Letter to P. Wagner (U.S. Department of Energy NNSA/Sandia Site Office) and S. Andrew Orrell (Sandia National Laboratories/New Mexico), "Notice of Approval, Mixed Waste Landfill Corrective Measures Implementation Report, January 2010, Sandia National Laboratories, EPA ID# NM5890110518, SNL-10-005," October 14, 2011.

Beausoleil, G. L. (U.S. Department of Energy), September 2014. Letter to J.E. Kieling (New Mexico Environment Department Hazardous Waste Bureau), "Department of Energy/National Nuclear Security Administration Sandia Corporation Request for Certificate of Completion for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico," September 25, 2014.

Beausoleil, G. L. (U.S. Department of Energy), October 2014. Letter to J.E. Kieling (New Mexico Environment Department Hazardous Waste Bureau), "Request for Class 3 Modification to Module IV of Hazardous Waste Permit for Sandia National Laboratories/New Mexico, EPA ID NM5890110518, New Mexico," October 17, 2014.

Blaine, T. (New Mexico Environment Department), January 2014. Letter to G.L. Beausoleil (U.S. Department of Energy NNSA/Sandia Site Office) and S. Andrew Orrell (Sandia National Laboratories/New Mexico), "Approval, Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan, March 2012, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-12-007," January 8, 2014.

Blaine, T. (New Mexico Environment Department), February 2014. Letter to G. Beausoleil (U.S. Department of Energy NNSA/Sandia Site Office) and S.A. Orrell (Sandia National Laboratories, New Mexico), "Approval, Work Plan for the Installation of Three Soil-Vapor Monitoring Wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill, January 2014, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-14-001," February 14, 2014.

Cobrain, D. (New Mexico Environment Department), October 2014. Letter to G. Beausoleil (U.S. Department of Energy NNSA/Sandia Site Office) and S.A. Orrell (Sandia National Laboratories, New Mexico), "Certificate of Completion for the Mixed Waste Landfill, September 25, 2014, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-14-MISC," October 8, 2014.

Cobrain, D. (New Mexico Environment Department), January 2015. Letter to G. Beausoleil (U.S. Department of Energy NNSA/Sandia Site Office) and P.B. Davies (Sandia National Laboratories, New Mexico), "Notice of Public Comment Period for Proposed Determination of Corrective Action Complete With Controls for Sandia National Laboratories Mixed Waste Landfill, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-14-014," January 12, 2015.

Curry, R. (New Mexico Environment Department), May 2005. "Final Order, State of New Mexico Before the Secretary of the Environment in the Matter of Request for a Class 3 Permit Modification for Corrective Measures for the Mixed Waste Landfill, Sandia National Laboratories, Bernalillo County, New Mexico," EPA ID# 5890110518." May 26, 2005.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB," September 24, 1997.

EPA, see U.S. Environmental Protection Agency.

Garcia, B.J. (New Mexico Environment Department Hazardous and Radioactive Materials Bureau), November 1998. Letter to M. Zamorski (U.S. Department of Energy Kirtland Area Office) and J. B. Woodard (Sandia Corporation), "Approval, SNL Background Study," November 25, 1998.

Goering, T.J., G.M. Haggerty, D. Van Hart, and J.L. Peace, December 2002. "Mixed Waste Landfill Groundwater Report, 1990 through 2001, Sandia National Laboratories, Albuquerque, New Mexico," SAND2002-4098, Sandia National Laboratories, Albuquerque, New Mexico.

Kieling, J.E. (New Mexico Environment Department), July 2014. Letter to G. Beausoleil (U.S. Department of Energy NNSA/Sandia Field Office) and P. Davies (Sandia National Laboratories, New Mexico), "Mixed Waste Landfill Groundwater Monitoring Report – Groundwater Monitoring Well MWL-MW4 – Calendar Year 2013, May 20, 2014, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-14-009," July 24, 2014.

Kieling, J.E. (New Mexico Environment Department), August 2014. Letter to G. Beausoleil (U.S. Department of Energy NNSA/Sandia Field Office) and M. Hazen (Sandia National Laboratories, New Mexico), "Approval, Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, January – March 2014, June 2014, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-14-010," August 6, 2014.

Kieling, J.E. (New Mexico Environment Department), September 2014. Letter to G. Beausoleil (U.S. Department of Energy NNSA/Sandia Field Office) and P.B. Davies (Sandia National Laboratories, New Mexico), "Approval, Installation of Three FLUTe™ Soil-Vapor Monitoring Wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill, September 2014, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-14-012," September 25, 2014.

Kieling, J.E. (New Mexico Environment Department), March 2015. Letter to G. Beausoleil (U.S. Department of Energy NNS A/Sandia Field Office) and P.B. Davies (Sandia National Laboratories, New Mexico), "Approval, Mixed Waste Landfill Groundwater Monitoring Report, Monitoring Well MWL-MW4 Metals Data, September 2014 Pumping and Sampling, January 2015, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-15-0104," March 10, 2015.

New Mexico Environment Department (NMED), April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act § 74-4-10," prepared by the New Mexico Environment Department in the matter of Respondents U.S. Department of Energy and Sandia Corporation, Sandia National Laboratories, Bernalillo County, New Mexico, April 29, 2004.

New Mexico Environment Department (NMED), August 2005. Letter from J. Kieling (Manager, Permits Management Program) to P. Wagner (U.S. Department of Energy Sandia Site Office/NNSA) and P. Davies (Sandia National Laboratories/New Mexico), "Remedy Decision and Class 3 Permit Modification Request to Incorporate into RCRA Permit Corrective Measures for Mixed Waste Landfill (SWMU 76) Sandia National Laboratories EPA ID# NM5890110518 HWB-SNL-04-021," August 2, 2005.

New Mexico Environment Department (NMED), October 2009 and subsequent revisions. "Resource Conservation and Recovery Act, Post-Closure Care Permit, EPA ID No. NM5890110518, to the U.S. Department of Energy/Sandia Corporation, for the Sandia National Laboratories Chemical Waste Landfill," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, October 15, 2009. Revised November 7, 2013.

New Mexico Environment Department (NMED), January 2015. "Resource Conservation and Recovery Act Facility Operating Permit EPA ID Number NM5890110518 Issued to the US Department of Energy/Sandia Corporation for the Sandia National Laboratories Hazardous and Mixed Waste Treatment and Storage Units and Post-Closure Care of the Corrective Action Management Unit," January 27, 2015.

Peace, J.L., P.J. Knight, T.S. Ashton, and T.J. Goering, November 2004. "Vegetation Study in Support of the Design and Optimization of Vegetative Soil Covers, Sandia National Laboratories, Albuquerque, New Mexico," SAND2004-6144, Sandia National Laboratories, Albuquerque, New Mexico.

Peace, J.L., T.J. Goering, M.D. McVey, September 2002. "Report of the Mixed Waste Landfill Phase 2 RCRA Facility Investigation, Sandia National Laboratories, Albuquerque, New Mexico," SAND2002-2997, Sandia National Laboratories, Albuquerque, New Mexico.

Roberts, K., January 2015. "Final Permit Decision and Response to Comments on SNL Hazardous Waste Permit and Proposals to Grant Corrective Action Complete for 24 SWMUs and AOCs, Sandia National Laboratory, EPA ID Number NM5890110518, No. HWB-SNL-02-002," January 27, 2015.

Sandia National Laboratories/New Mexico (SNL/NM), November 2005. "Mixed Waste Landfill Corrective Measures Implementation Plan," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), January 2010, Revision 1. "Mixed Waste Landfill Corrective Measures Implementation Report," Environmental Restoration Project, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2010. "Mixed Waste Landfill Groundwater Monitoring Report, Calendar Year 2009," Sandia National Laboratories, Albuquerque, New Mexico, June 7, 2010.

Sandia National Laboratories/New Mexico (SNL/NM), March 2012. "Long-Term Monitoring and Maintenance Plan for the Mixed Waste Landfill," Environmental Restoration Operations, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2013. "Annual Groundwater Monitoring Report, Calendar Year 2012," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), January 2014. "Work Plan for the Installation of Three Soil-Vapor Monitoring Wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill," Environmental Restoration Operations, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2014a. "Data Validation Procedure for Chemical and Radiochemical Data," AOP 00-03, Revision 4, Sample Management Office, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2014b. "Field Operating Procedure, Soil Vapor Monitoring, Revision 03," SNL/NM FOP 08-22, Long-Term Stewardship Department, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2014c. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, January – March 2014," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), September 2014. "Installation of Three FLUTe™ Soil-Vapor Monitoring Wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill," Environmental Restoration Operations, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), October 2014. "Justification for Class 3 Permit Modification, Corrective Action Complete With Controls, Solid Waste Management Unit 76 Mixed Waste Landfill, Volumes I through VIII," Environmental Restoration Operations, Sandia National Laboratories, Albuquerque, New Mexico.

Sullivan, R.M., and P.J. Knight, 1992. "Biological Assessment for the Sandia National Laboratories Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico," Special Technical Report 1 (Contract AB4892), Physical Sciences Laboratory, Las Cruces, New Mexico.

Todd, J.W. (U.S. Department of Energy), May 2014. "Mixed Waste Landfill Groundwater Monitoring Report - Monitoring Well MWL -MW4 Metals Data – Calendar Year 2013," May 20, 2014.

Todd, J.W. (U.S. Department of Energy), July 2014. "Submittal of Updated Reference Documents Cited in the Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan for Sandia National Laboratories/New Mexico, Environmental Protection Agency Identification Number NM 5890110518," July 9, 2014.

Todd, J.W. (U.S. Department of Energy), February 2015a. "Submittal of Updated Reference Documents Cited in the Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan for Sandia National Laboratories/New Mexico, Environmental Protection Agency Identification Number NM 5890110518," February 18, 2015.

Todd, J.W. (U.S. Department of Energy), February 2015b. "Mixed Waste Landfill Groundwater Monitoring Report – Monitoring Well MWL-MW4 Metals Data – September 2014 Pumping and Sampling, January 2015," February 18, 2015.

- U.S. Environmental Protection Agency (EPA), 1980. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA), November 1986. "Test Methods for Evaluating Solid Waste," Third Edition, Update 3, SW-846, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), August 1993. "Module IV. Special Conditions Pursuant to the 1984 Hazardous and Solid Waste Amendments (HSWA) to RCRA for Sandia National Laboratories/New Mexico, EPA I.D. Number NM 5890880518," U.S. Environmental Protection Agency, Region VI, Dallas, Texas, August 26, 1993.
- U.S. Environmental Protection Agency (EPA), January 1999. "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

April 2014 - March 2015

This page intentionally left blank.

ANNEX A

Mixed Waste Landfill Radon Monitoring

January-December 2014

Data Evaluation Memos
Field Forms
Inspection Forms

MIXED WASTE LANDFILL RADON MONITORING

January-March 2014 Monitoring Period

Operated for the U.S. Department of Energy by **Sandia Corporation**

Albuquerque, New Mexico 87185-

date: June 26, 2014

to: Mike Mitchell (6234), Robert Ziock (4142), and Annemarie Rader (4143)

from: Mark Miller (41281), CHP

subject: Review of MWL Radon-in-Air Data – 1st Quarter 2014 (January – March 2014)

More J. Mille

The purpose of this memo is to document my review of the radon-in-air monitoring data results for the 1st Quarter of Calendar Year 2014 relative to the data quality objectives (DQOs) in the MWL Long-Term Monitoring and Maintenance Plan (Appendix C), approved by the NMED on January 8, 2014. The radon-in-air monitoring measurements per the NMED-approved LTMMP are made by exposure of Radtrak® radon detectors manufactured by Landauer® Incorporated (or equivalent type detectors) which are exposed and exchanged quarterly (for year 1 and year 2) (January 13, 2014 – April 2, 2014 in this instance), per AR/COC #61440 and submitted to Landauer® Incorporated for analysis. With the exception of the anomalous reading observed for detector RN2 (discussed below), the results meets the LTMMP DQOs found in Appendix C, *Air Sampling and Analysis Plan for the Mixed Waste Landfill* (...radon measurement procedures are consistent and can be used to establish radon emission trends. The DQO is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective (i.e., provide radon emission data). This DQO will be accomplished through the implementation and use of standard operating procedures, analytical procedures/methods, quality assurance (QA) measures, quality control (QC) samples, and data evaluation protocols.).

During the routine exchange of radon Track Etch® dosimeters (i.e., detectors) on April 2, 2014, detector RN2 was discovered lying on the ground approximately 2 feet from its protective casing, which is secured to a perimeter fence post along the northern edge of the MWL. The detector was covered with dirt, was likely exposed to rain and blowing dust/soil, and the internal chip that is analyzed by the laboratory was warped and damaged. This detector was deployed on January 13, 2014 at the standard monitoring height of approximately 3-feet above the ground surface. When it fell to the ground is unknown. The field technician noted these conditions on the field collection log and sent the detector to the analytical laboratory for analysis. Based on an inspection performed after collection of the RN2 detector, faulty VelcroTM that secures the detector cup inside the protective casing was the reason this particular detector fell to the ground. Strong winds typical of this time of year also were a likely contributor to the situation. The result reported by the analytical laboratory for the RN2 detector was 10.6 pCi/L, and exceeded the 4 pCi/L MWL LTMMP trigger level.

Because of the conditions noted for this detector, the analytical result is not a valid, representative result and does not meet the DQOs as specified above. To provide a valid, representative result, the detector must remain approximately 3-feet above the ground surface and be protected from the weather (i.e., precipitation and wind) and surface soil by the protective casing. The RN2 detector was exposed on the ground surface for an undetermined period of time. Because the detector was submitted for laboratory analysis, the result should be logged into the data base with a notation that it is a rejected, non-valid result along with a brief note in the "comments" column explaining the conditions/reason for the data qualification.

Since this type of situation was not anticipated, I recommend that the field protocol for this monitoring be revised as follows:

- If this situation or something similar were to re-occur in the future, the project leader (Mike Mitchell), Robert Ziock (Air Monitoring Lead), and I should be notified and the detector should not be sent to the laboratory for analysis.
- Upon discovery, additional documentation would be "good practice" and include photographs of the detector as it was discovered.
- A "pre-deployment/exchange inspection" should be performed and documented to ensure the faulty VelcroTM or other potential manufacturer's flaws are caught prior to deployment of the detectors. In addition, the integrity of the protective casing and the hardware that secures the protective casing to the fence post should also be inspected and repaired or replaced if appropriate.
- On a monthly basis, as time permits, the detectors should be visually inspected to make sure the detectors are in place. These monthly inspections can be documented on the deployment inspection form.

Recent radon results are available for the RN2 location. Radon-in-air monitoring at the MWL began in July 2013 in anticipation of NMED approval of the LTMMP. Data sets for July 18 – October 29, 2013 and October 29, 2013 through January 13, 2014 have been reviewed and the results for the RN2 location for both of these previous monitoring periods were "non-detects" (i.e., less than the 0.4 pCi/L laboratory detection limit). Consistent with the MWL LTMMP requirements, re-sampling is being performed as part of the monitoring for the next quarterly period, which began on April 2, 2014 when all the remaining MWL detectors were collected and new detectors were deployed. No other actions are required at this time.

Photographs of the Environmental Track Etch® detectors are provided below for your information. They look like an inverted plastic cup with a filter across the open face and are attached to a fence post as described earlier and shown below. This configuration helps to keep rain water, dust, and dirt away from the track etch chip where it could damage the chip or make the chip difficult for the lab to process.

For monitoring outdoors, the detector is fastened to the bottom of a clear plastic cup. The cup is then installed inside a protective canister that has been attached to a post or other location.

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

AOP 95-16

Internal Lab														Page 1 of 2
Batch No.	VIA					SMO Use /					111	1	AR/COC	615440
Project Name		MWL Radon n	nonitoring	Date Samples	Shipped	4/10/19			thorization		19. h	~	Waste Characterization	
Project/Task				Carrier/Waybi	II No.		15	SMO C	ontact Phone	e:	Pr -	9mg	RMMA	
Project/Task		146422/10.11.	.08	Lab Contact		Landauer 800.528	.8327			Miller/505.2	284.2107	11.0	Released by COC No.	
Service Orde	r.	CFO 378-14		Lab Destination	on	Landauer, INC.		Send Re	eport to SM					☐ 4° Celsius
	The transfer of the same of th			Contract No.:		Acct # 0410548			Rita Kav	ranaugh/50	5.284.2553		Bill to: Sandia National Laboratori	es (Accounts Payable
Tech Area: 1	A3 MWL	-											P.O. Box 5800, MS-0154	
Building:	_	Room:		Operationa			T- 1	-		T-			Albuquerque, NM 87185-0154	
Sample No.	Fraction	Sample	Location D	etail	Depth (ft)	Date/Time Collected	Sample Matrix	Туре	Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample II
095786	001 •	RN 1/489370	9		N/A	1/13/2014*	F	N/A	N/A	None	Collection	Sample	Radon	
095787	-001 4	RN 2/ 489371	0		N/A	1/13/14	F	N/A	N/A	None	Collection	Sample	Radon	
095788	001 •	RN 3/489371	1		N/A	1/13/14	F	N/A	N/A	None	Collection	Sample	Radon	
095789	001 -	RN 4/ 489371	2		N/A	1/13/14	F	N/A	N/A	None	Collection	Sample	Radon	
095790	001 •	RN 5/ 489371	3		N/A	1/13/14	F	N/A	N/A	None	Collection	Sample	Radon	
095791	001 *	RN 6/ 489371	4		N/A	1/13/14	F	N/A	N/A	None	Collection	Sample	Radon	
095792	001	001 RN 7/ 4893715		N/A	1/13/14	F	N/A	N/A	None	Collection	Sample	Radon		
095793	-001 •	RN 8/ 489792	1		N/A	1/13/14	F	N/A	N/A	None	Collection	Sample	Radon	
095794	001 "	RN 9/ 489792	2		N/A	1/13/14	F	N/A	N/A	None	Collection	Sample	Radon	
095795	001	RN 10/489792	23		N/A	1/13/14	F	N/A	N/A	None	Collection		Radon	
Last Chair		Yes				Tracking	SMC	Use		structions	/QC Require			Conditions on
Validation		Yes			Date En				EDD		✓ Yes		No Common No	Receipt
Backgroun		Yes			Entered				Turnarou		7 Day		15 Day* 30 Day	
Confirmate	-	L Yes	Signati		QC inits	Company/Organi	antine (Dhan	-10-11	Negotiate Sample D		Don	n to Clien	t	
Sample Team	_	101111111111111111111111111111111111111	of Ren	ure	10 DIL	SNL/4143/844-2640		ie/Ceii		amples By		n to Chen	t Disposal by Lab	
Members	Aimenta	ne Radei	(of the		auc	3141/4143/044-2040		_	Comment					
wembers									Comment					
									*Sample	s put ou	on 01/13/	14 and	picked up on 04/2/14	
		1				100 0				,	1			Lab Use
1.Relinquish	ed by	The	_	Org. 4143	Date	4/8/14 Time	1588	3.Relin	quished by/	1-		Org	Date	Time
1. Received	by v	Me G. In	Gu	Org. 414	2 Date			3. Rece	eived by	John	who	Org		4 Time
2.Relinquish	ed by	192		Org. 4/4		4/19/14 Time	080t	4.Relin	quished by			Org		Time
2. Received	by	10100		Org.	Date	Time		4. Rece	eived by			Org	. Date	Time
*Prior confi	rmation v	vith SMO require	ed for 7 and	d 15 day TA	r									

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

AOP 95-16

		0.11.08	146422/	k No.:	Project/Tas			Miller	sk Manager: M.	Project/Tas	MWL Radon Monitoring		roject Nam
Lab use	Parameter & Method Requested		Acct # 0410548						+	Room:	300000000000000000000000000000000000000	ech Area: 1 Building:	
Lat		ample Type	Collection Method	Preserv- ative	ntainer Volume		Sample Matrix	oth Date/Time	Depth (ft)		No. Fraction Sample Location D		
	Radon	ample F	Collection	None	N/A	N/A	F	1/13/14	N/A		RN 11/4897924	001 8	095796
	Radon	ample F	Collection	None	N/A	N/A	F	1/13/14	N/A		RN 12/ 4893706	001 *	095797
	Radon	ample F	Collection	None	N/A	N/A	F	1/13/14	N/A	3716		001 •	095798
	Radon	ample F	Collection	None	N/A	N/A	F	1/13/14	N/A	37/7	RN 14/4893708 459	001 °	095799
	Radon	ample F	Collection	None	N/A	N/A	F	1/13/14	N/A		RN 15/ 4897867	-001 *	095800
	Radon	ample F	Collection	None	N/A	N/A	F	1/13/14	N/A		RN BKG N/ 4897868	001 •	095801
	Radon	ample F	Collection	None	N/A	N/A	F	1/13/14	N/A		RN BKG S/ 4897869	001 •	095802

Radon Monitoring Report

NATIONAL LAB ARK MILLER O, RM108, MS1103 BANK SE RDUE, NM 87123

LICENSES: 101146AL,100584RT

Acct. No. 0410548

LANDAUER

Landauer, Inc. 2 Science Road Glawood, Illinois 60425-1586 Telephoret (800) 528-8327 Facsande, (708) 725-7030

integtor Typin	Starting Date	Ending Date	Field Data / Commonts	Exposure pCin-days	Avg. Radon Conc. pGM	
HNF.	13-JAN-14	02-APR-14	RN 12	51.9 ±4.29	0.7 ±0.05	
RNF	13-JAN-14	02-APR-14	RN 1	53.8 ±4.42	0.7 ±0.06	
RNF	13-JAN-14	02-APR-14	RN 2 THIS SAMPLE WAS FOUND ON GRND	840.7 ±27.3	10.6 ±0.35	Anomalous Readin
RNF	13-JAN-14	02-APR-14	RN3	64.3 ±5.10	0.8 ±0.06	
FIME	13-JAN-14	02-APR-14	* - LESS THAN INDICATED VALUE RN 4	* 30.0	* 0.4 ±0.03	
RNF	13-JAN-14	02-APR-14	* - LESS THAN INDICATED VALUE RN 5	* 30.0	* 0.4 ±0.04	
RNF	13-JAN-14	02-APR-14	* - LESS THAN INDICATED VALUE RN 6	* 30.0	* 0.4 ±0.03	
RNF	13-JAN-14	02-APR-14	* - LESS THAN INDICATED VALUE RN 7	* 30.0	* 0.4 ±0.04	
RNF	13-JAN-14	02-APR-14	* - LESS THAN INDICATED VALUE RN 13	* 30.0	* 0.4 ±0.04	
RNF	13-JAN-14	02-APR-14	+ - LESS THAN INDICATED VALUE RN 14	* 30.0	* 0.4 ±0.04	
(2)	(3)	(1)	(6)	6	(7)	(ñ)
	ONLY TO MON ANDAUER.	ITORS	O.C. Folesse Francis No. Proport Date LMR A22926 25-APR-14	Date Received 11-APR-14	PAGE	1 OF 2

Radon Monitoring Report

NATIONAL LAB ARK MILLER O, RM108, M51103 BANK SE ROUE, NM 87123

LICENSES: 101146AL,100584RT

Acct. No. 0419548

LANDAUER

Landau-r, Inc. 2 Reionee Rond Glepwood, Illinois 60 (25-15) (Telephane: (300) 528-727. Fac imile: (703) 755-7048.

glector Type	Starting Date	Ending Date	Fold Onta / Comments	Exposure p Gi/Fdays	Avg. Raddin Conc. pCvt	
RMF	13-JAN-14	02-APR-14	* - LESS THAN INDICATED VALUE RN 15	¥ 30.0	* 0.4 ±0.04	
RNF	13-JAN-14	02-APR-14	* - LESS THAN INDICATED VALUE RN BKG N	* 30.0	* 0.4 ±0.04	
RNF	13-JAN-14	02-APR-14	* - LESS THAN INDICATED VALUE RN BKG S	# 30.0	* 0.4 ±0.04	
RNF	13-JAN-14	OZ-APR-14	* - LESS THAN INDICATED VALUE RN 8	* 30.0	* 0.4 ±0.04	
RMF	13-JAN-14	02-APR-14	* - LESS THAN INDICATED VALUE RN 9	* 30.0	* 0.4 ±0.03	
RNF ·	13-JAN-14	02-APR-14	* LESS THAN INDICATED VALUE RN 10	* 30.0	* 0.4 ±0.04	
RNF	13-JAN-14	02-APR-14	RN 11	68.6 ±5.31	0.9 ±0.07	
2)	(3)	(4)	(5)	(b)	<u></u>	(g)
	ONLY TO MON ANDAUER.	IITORS	C.C. Release Process No. Report Date LMR A22926 25-APR-14	Date Received 11-APR-14	PAGE	2 DF 2

cc: CFRC

LANDAUER®

RADTRAK® RADON TEST DATA SHEET

Site Information:

ASA
Radtank
4556750

Compan	y: Sandia Natil Lobs
	ımber:
Contact:	Mark Miller
	(505) 284-2107
Email: _	mmillar@sandia.gol

Send	Radon	Re	port	To:
(If differen	t from account	settings)	

Company: Sandin Nat! Laboratorios

Attn: Mark Miller

Address: DO Box 5800

MS-0729

City: Albuquaque

ST/Prov: NM Post Code: 87/85

Country: () SA

Phone: (505) 284-2107

Email: MMiller O sandia. 900

	mation on where detectors are being deployed. Reports will be value provided in 'Site Name' below.)
Site Name:	SNL/MWK
Site Type:	Outdoor
Additional I	nformation:
-	
If Applicabl	
Technician	Name: A.L.Rader
Technician .	Number:
Technician	Signature:

Please include all detector numbers, exposure periods and location information to appear on report

Detector Number	Building Name / Nbr	Unit Nbr	Floor	Comment / Note	Start Date mm/dd/yyyy	End Date mm/dd/yyyy
please	see attac	hed Li	st			
			w 10 v 1000			
			12-1			
					-	

Landauer Use Only: Processed By: Date	Page of

LOC #

		A754			
Detector #	Location	Unit #	Start Date	End Date	Comments
4893709	RN 1	095786-001	01/13/2014	04/02/2014	
4893710	RN 2	095787-00	01/13/2014	04/02/2014	This sample was
4893711	RN 3	095788-001	01/13/2014	04/02/2014	
4893712	RN 4	095789-001	01/13/2014	04/02/2014	
4893713	RN 5	095790-01	01/13/2014	04/02/2014	
4893714	RN 6	095791-001	01/13/2014	04/02/2014	
4893715	RN 7	095792-001	01/13/2014	04/02/2014	
4897921	RN 8	095793001	01/13/2014	04/02/2014	
4897922	RN 9	095714-01	01/13/2014	04/02/2014	
4897923	RN 10	095795-601	01/13/2014	04/02/2014	
4897924	RN 11	095716-001	01/13/2014	04/02/2014	
489376 CUL		095797-001	01/13/2014	04/02/2014	
4893706 aug	RN 13	095798-001	01/13/2014	04/02/2014	
4893708 au	RN 14	095799-001	01/13/2014	04/02/2014	
4897867	RN 15	095800-01	01/13/2014	04/02/2014	
4897868	RN BKG N	695802-001	01/13/2014	04/02/2014	
4897869	RN BKG S	095803-001	01/13/2014	04/02/2014	

MIXED WASTE LANDFILL RADON MONITORING

April-June 2014 Monitoring Period

Operated for the U.S. Department of Energy by Sandia Corporation

Albuquerque, New Mexico 87185-

date: July 25, 2014

to: Mike Mitchell (6234), Robert Ziock (4142), Bonnie Little (4142) and Annemarie Rader (4143)

from: Mark Miller (41281), CHP

subject: Review of MWL Radon-in-Air Data – 2nd Quarter of 2014, April through June 2014

The purpose of this memo is to document my review of the radon-in-air monitoring data results for the 2nd Quarter of Calendar Year (CY) 2014, April through June 2014, relative to the data quality objective (DQO) and monitoring objectives specified in the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (Appendix C, *Air Sampling and Analysis Plan for the Mixed Waste Landfill*). The DQO for this monitoring is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective. Monitoring results provide radon emission data from across the site and at two background locations (Figure 1). These results are compared to historic results to evaluate radon air emission trends and for direct comparison to the LTMMP trigger level of 4 picocuries per liter. This DQO and these monitoring objectives are met through the implementation of standard operating procedures, analytical procedures/methods, quality assurance and control measures, and data evaluation protocol.

The radon-in-air monitoring measurements for the monitoring period April through June 2014 were obtained using Radtrak® radon detectors that were submitted to Landauer® Incorporated for analysis on Analysis Request/Chain of Custody (AR/COC) #615614. On April 2, 2014, the detectors were deployed on and around the MWL (locations RN1 through RN15 at the MWL, and background locations RN16 and RN17) in accordance with the requirements of Section 3.2.1 of the LTMMP. These detectors remained in the field for approximately 3 months (one quarter), and were collected on July 3, 2014. The protective casing and mounting hardware were inspected during the collection effort and repairs were made if needed. The location of these detectors is shown in Figure 1.

I have reviewed the results for this monitoring period along with supporting field documentation and determined the results meet the LTMMP DQO and monitoring objectives. The radon trigger level was not exceeded by any of the individual sample results; however, it only applies to the results from the perimeter locations (locations RN1 through RN10, Figure 1). The results from this quarterly monitoring event will be presented in the next MWL Annual LTMM Report that will be submitted to NMED in June 2015 (reporting period is April 1, 2014 through March 31, 2015).

Attachments

Analysis Request/Chain of Custody #615614 Landauer Radon Monitoring Report (analytical laboratory results) Figure 1 Location of the Radon Track Etch® Detectors at the MWL

O 2012-ARC	OC (4-20	12)		ANA	ALY	CONT SIS REQU	RACT LA				STODY	′			AOP 95
Internal Lab														_	Page 1 of 2
Batch No. N	IA					SMO Use				1	11	7		AR/COC	615614
Project Name Project/Task Project/Task Service Orde	Manager Number	M Miller		Date Samples St Carrier/Waybill N Lab Contact Lab Destination	10	220 Landauer 800.52 Landauer, INC.		SMO C	ontact Phone Mark I	Miller/505	284.2107	me 9me	RMMA	Characterization ed by COC No.	4º Celsius
7311111222122				Contract No.		Acct # 0410548		2011017			5.284.2553		Bill to: Sand	dia National Laboratorie	
Tech Area: T	A3 MWL	7											P.O. Box 58	00, MS-0154	
Building:		Room:		Operational S				_		,				e, NM 87185-0154	
Sample No.	Fraction	San	nple Location D		epth (ft)	Date/Time Collected	Sample Matrix	Туре	Volume	Preserv- ative	Collection	Sample Type	Pa	rameter & Method Requested	Lab Sample ID
096208	001	RN 1/489	3707		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon		
096209	001	RN 2/ 489	3708		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon		
096210	001	RN 3/489	7886		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon		
096211	001	RN 4/ 489	7887		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon		
096212	001	RN 5/ 489	7888		N/A	7/3/14	F	N/A	N/A	None	Collection		Radon		
096213	001	RN 6/ 489	7892		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	ample Radon		
096214	001	RN 7/ 489	7893		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample			
096215	001	RN 8/ 489	7894		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon		
096216	001	RN 9/ 489	7911		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon		
096217	001	RN 10/48	97912		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon		
Last Chain		Yes		Sa	ample	Tracking	SMC	Use	Special In	structions	/QC Requi	rements:			Conditions on
Validation		Yes		-	ate Ent				EDD		✓ Yes		No	-	Receipt
Backgroun		Yes			ntered	by:			Turnarour		7 Da	у*	15 Day*	√ 30 Day	
Confirmato		Yes			C inits.				Negotiate		H			1	
Sample		lame	Signat	ure	Init.	Company/Orga		ie/Cell	Sample D			m to Client	1	Disposal by Lab	
Team Members	Annema	marie Rader ASC SNL/4143/844-2640 Return Samples By: Comments:													
wembers		n 7									on 04/02/	14 and co	llected on	07/03/14	Lab Use
1.Relinguishe	ed by	1/4/	1	Org. 4143	Date	7-9-14 Tim	e'1100	3.Relin	quished by			Org		Date	Time
1. Received t		24.0	Para Su	oOrg. 4142	Date			3. Rece	-			Org		Date	Time
2.Relinquishe	-	2/19		Org. 41.42	-	7-10-14Tim			quished by			Org		Date	Time
2. Received I	-	11	710	Org.	Date	Tim		-	lived by			Org		Date	Time

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

AOP 95-16

Project Nam	e:	MWL Radon Monitoring	Project/Ta	sk Manager: M. S	Aller:			Project/Ta	sk No.:	146422	/10.11.08		
Tech Area: 1								_					200000000000000000000000000000000000000
Building:		Room:		Acct # 0410548 Depth Date/Time Sample Container Preserv Collection Sample							Parameter & Method	Lab use	
Sample No.	Fraction	Sample Location I	Detail	(ft)	Collected	Matrix	Туре	Volume	Preserv- ative	Method	Type	Requested	Sample II
096218	001	RN 11/4897913		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon	
096219	-001	RN 12/4897914		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon	
096220	-001	RN 13/4897915		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon	
096221	-001	RN 14/4897916		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon	
096222	001	RN 15/4897917		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon	
096223	001	RN 16/4897918		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon	
096224	001	RN 17/ 4897920		N/A	7/3/14	F	N/A	N/A	None	Collection	Sample	Radon	
		F											
						-							
				+									

Radon Monitoring Report

SANDIA NATIONAL LABORATORIES ATTN: RITA KAVANAUGH DEPT. 4142, MS 0729 PO BOX 5800 ALBUGUERQUE, NM 87185

LICENSES: 101146AL,100584RT

Acct. No. 0410548

LANDAUER

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048

Detector Number	Detector Type	Starting Date	Ending Date	Field Data / Comments	Exposure pCi/l-days	Avg. Radon Conc. pCi/li	
4893707	DRNF	02-APR-14	03-JUL-14	096208-001 RN 1	77.5 ±5.68	0.8 ±0.06	
4893708	DRNF	02-APR-14	03-JUL-14	096209-001 RN 2	130.3 ±8.4	1.4	
4897886	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096210-001 RN 3	* 30.0	* 0.3 ±0.03	
4897887	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096211-001 RN 4	* 30.0	* 0.3 ±0.03	
4897888	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096212-001 RN 5	* 30.0	* 0.3 ±0.03	
9897892	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096213-001 RN 6	* 30.0	* 0.3 ±0.04	
4897893	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096214-001 RN 7	* 30.0	* 0.3 ±0.03	
4897894	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096215-001 RN 8	* 30.0	* 0.3 ±0.03	
(1)	2	3	4	5	6	2	8

Radon Monitoring Report

SANDIA NATIONAL LABORATORIES ATTN: RITA KAVANAUGH DEPT. 4142, MS 0729 PG BOX 5800 ALBUQUERQUE, NM 87185

LICENSES: 101145AL,100584RT

0410548 Acct. No.

LANDAUER

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048

Detector Number	Detector Type	Starting Date	Ending Date	Field Data / Comments	Exposure pCi/l-days	Avg. Radon Conc. pCi/l	
4897911	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096216-001 RN 9	* 30.0	* 0.3 ±0.03	11
1897912	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096217-001 RN 10	* 30.0	* 0.3 ±0.03	
4897913	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096218-001 RN 11	* 30.0	* 0.3 ±0.03	
1897914	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096219-001 RN 12	* 30.0	* 0.3 ±0.03	
8897915	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096220-001 RN 13	* 30.0	* 0.3 ±0.04	
1897916	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096221-001 RN 14	* 30.0	* 0.3 ±0.03	
1897917	DRNF	02-APR-14	03-JUL-14	* - LESS THAN INDICATED VALUE 096222-001	* 30.0	* 0.3 ±0.04	
(1)	(2)	(3)	(4)	(§)	(6)	7)	(8)
BULTS RE	LATED	ONLY TO MON		Q.C. Release Process No. Report Date	Date Received	PAGE	2 OF 3

Radon Monitoring Report SANDIA NATIONAL LABORATORIES ATTN: RITA KAVANAUGH DEPT. 4142, MS 0729 PD BOX 5800 LANDAUER LICENSES: 101146AL,100584RT Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048 ALBUQUERQUE, NM 87185 0410548 Acct. No. Detector Number Detector Type Starting Date Ending Date Field Data / Comments Exposure pCi/l-days Avg. Radon Conc. pCi/l * - LESS THAN INDICATED VALUE 096223-001 4897918 DRNP 02-APR-14 03-JUL-14 30.0 0.3 ±0.03 RN 16 * - LESS THAN INDICATED VALUE 096224-001 RN 17 03-JUL-14 * 30.0 ±0.03 2 3 4 7 8 6 RESULTS RELATED ONLY TO MONITORS AS RECEIVED BY LANDAUER. A23045 16-JUL-14 11-JUL-14 PAGE 3 OF

Radon Track Etch® Results for the 2nd Quarter of CY 2014 at the MWL

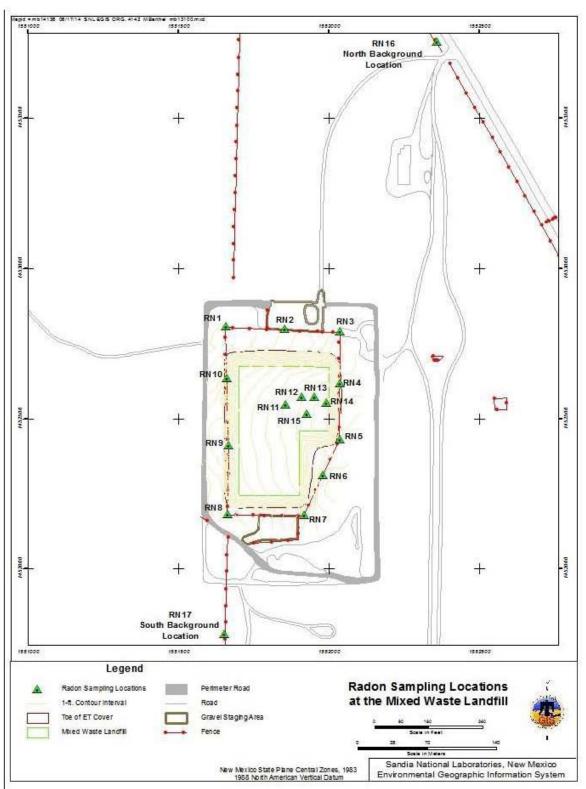


Figure 1. Location of the Radon Track Etch® Detectors at the MWL

RADTRAK® RADON TEST DATA SHEET

Company: Sandia Nati Lobs

Acct. Number: C410548

Contact: Mark Miller

Phone: (505) 284-2107

Email: Mailler & Sandia 301

	Email: mmiller@sandia.go
Send Radon Report To: (If different from account settings)	Site Information: (Please provide information on where detectors are being deployed. Reports will be labeled and sorted by value provided in 'Site Name' below.)
Company: Sandin Nat 1 Laboratorios	Site Name: SNI/MWL
Attn: Mark Miller	Site Type: Outdoor
Address: NO Box 5800	Additional Information:
MS-0729	
City: Albuquaque	
ST/Prov: NM Post Code: 87/85	If Applicable:
Country: () SA	Technician Name: AMMOMORIO Rader
	Technician Number: 505-434-2640
Phone: (505) 284-2107	Technician Signature:
Email: MMiller @ soulia ogov	isominian Dignature.
I.	y

Please include all detector numbers, exposure periods and location information to appear on report

Detector Number	Building Name / Nbr	Unit Nbr	Floor	Comment / Note	Start Date mm/dd/yyyy	End Date mm/dd/yyyy
			j		î _	
-	Please <	-ce	a Ha	ched she	25.	
				-		
		- -	-			
	-					

5
u

Detector #	COC Sample #	Location #	Start Date	End Date	Comments
4893707	096208-001	RN 1	04/02/2014	07/03/2014	
4893708	096209-001	RN 2	04/02/2014	07/03/2014	
4897886	096210-001	RN 3	04/02/2014	07/03/2014	
4897887	096211-001	RN 4	04/02/2014	07/03/2014	etamaninin termenen en er et et a statum, et en en jelgen die et anven en en en gelegen planteret.
4897888	096212-001	RN 5	04/02/2014	07/03/2014	
4897892	096213-001	RN 6	04/02/2014	07/03/2014	
4897893	096214-001	RN 7	04/02/2014	07/03/2014	
4897894	096215-001	RN 8	04/02/2014	07/03/2014	
4897911	096216-001	RN 9	04/02/2014	07/03/2014	
4897912	096217-001	RN 10	04/02/2014	07/03/2014	
4897913	096218-001	RN 11	04/02/2014	07/03/2014	
4897914	096219-001	RN 12	04/02/2014	07/03/2014	
4897915	096220-001	RN 13	04/02/2014	07/03/2014	
4897916	096221-001	RN 14	04/02/2014	07/03/2014	
4897917	096222-001	RN 15	04/02/2014	07/03/2014	
4897918	096223-001	RN 16	04/02/2014	07/03/2014	
4897920	096224-001	RN 17	04/02/2014	07/03/2014	'

Mixed Waste Landfill Radon Monitoring Detector Collection/Deployment Inspection Form

Name of Inspector Angemane Kader	
Collection Date 7-3-14	
Deployment Date 4-2-14	¢q
Radon Monitoring Frequency: 🔀 QuarterlySemiannually_	_Annually

Ra	idon Monitoring Location Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Action Required at Location Numbers	
A.	Monitoring location identification labeling.	Ves	NO		
В.	Mounting (fence) post condition.	yes	No		
c.	Radon monitoring outer housing securely fastened (stainless steel hose clamps).	1/18	y 15	RNIO	
D.	Radon monitoring apparatus components assembly (outer housing, 2-wingnuts, plastic retaining ring and plastic cup)	yer	NO		
E.	Radon monitoring apparatus interior clean of debris (dirt, insects, spider webs, etc.)	Jes	NO	,	
F.	Radon monitoring apparatus assembled with detector securely fastened with Velcro.	149	NO		
Rai	don Monitoring Detectors Inspection Parameters				
Α.	Condition of detector at time of collection.	good	NO		
В.	Condition of detector at time of deployment.	good	NO		

Mixed Waste Landfill Radon Monitoring Detector Collection/Deployment Inspection Form

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	None
RN2	None
R _N 3	None
RN4	None
RN5	None
RN6	None
RN7	None
. RN8	None
RN9	None
RN10	This unit needed a stainless steel have damp. Clamp was installed on 7-3-14. Depr
RN11	None
RN12	None
RN13	None
RN14	None
RN15	None
RN16	None None None None
RN17	None

Inspector's Signature Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

MIXED WASTE LANDFILL RADON MONITORING

July-September 2014 Monitoring Period

Operated for the U.S. Department of Energy by **Sandia Corporation**

Albuquerque, New Mexico 87185-

date: October 27, 2014

to: Mike Mitchell (6234), Robert Ziock (4142), Bonnie Little (4142) and Annemarie Rader (4143)

from: Mark Miller (41281), CHP

subject: Review of MWL Radon-in-Air Data –3rd Quarter of 2014, July through September 2014

The purpose of this memo is to document my review of the radon-in-air monitoring data results for the 3rd Quarter of Calendar Year (CY) 2014, July through September 2014, relative to the data quality objective (DQO) and monitoring objectives specified in the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (Appendix C, *Air Sampling and Analysis Plan for the Mixed Waste Landfill*). The DQO for this monitoring is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective. Monitoring results provide radon emission data from across the site and at two background locations (Figure 1). These results are compared to historic results to evaluate radon air emission trends and for direct comparison to the LTMMP trigger level of 4 picocuries per liter. This DQO and these monitoring objectives are met through the implementation of standard operating procedures, analytical procedures/methods, quality assurance and control measures, and data evaluation protocol.

The radon-in-air monitoring measurements for the monitoring period July through September 2014 were obtained using Radtrak® radon detectors that were submitted to Landauer® Incorporated for analysis on Analysis Request/Chain of Custody (AR/COC) #615861. On July 3, 2014, the detectors were deployed on and around the MWL (locations RN1 through RN15 at the MWL, and background locations RN16 and RN17) in accordance with the requirements of Section 3.2.1 of the LTMMP. These detectors remained in the field for approximately 3 months (one quarter), and were collected on October 2, 2014. The protective casing and mounting hardware were inspected during the collection effort and repairs were made if needed. The location of these detectors is shown in Figure 1.

I have reviewed the results for this monitoring period along with supporting field documentation and determined the results meet the LTMMP DQO and monitoring objectives. The radon trigger level was not exceeded by any of the individual sample results; however, it only applies to the results from the perimeter locations (locations RN1 through RN10, Figure 1). The results from this quarterly monitoring event will be presented in the next MWL Annual LTMM Report that will be submitted to NMED in June 2015 (reporting period is April 1, 2014 through March 31, 2015).

Attachments

Analysis Request/Chain of Custody #615861 Landauer Radon Monitoring Report (analytical laboratory results) Figure 1 Location of the Radon Track Etch® Detectors at the MWL

AOP 95-16 SMO 2012-ARCOC (4-2012) CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY Page 1 of 2 Internal Lab AR/COC 615861 SMO Use Batch No. MWL Radon monitoring Date Samples Shipp Project Name roject/Task Manager SMO Centact Phone enier/WayGill No. 146422/10.11.08 oject/Task Num Landauer 800 528 8327 Mark Miter 505-284-2107 4° Celsius CFO 378-15 Service Order Lab Desirate end Report to SMD: Rita Kayanaugh/505 284 2553 il lio: Bandia National Lationalories (Accounts Payable Contract No Tech Area: TA3 MWL P.O. Bija 1800, MS-0104 al Site: TA3 MWL Albutuerque, NM 87185-6154 Building Date/Time Preserv- Collection Sample Depth Sample Container Parameter & Method Lab Type Volum (10) Matrix Method Type Requested Sample ID Sample No. Sample Location Detail 10/2/14/17/0 F 966777 -001 RN 1/4943943 NIA NIA NA None Collection Sample Radon F Collection Sample 966778 -001 RN 2/4943942 NA 10/2/14 NIA NIA None Radon 966779 -001 RN 3/4943941 = N/A 10/2/14 F N/A None Collection Sample Radon 10/2/14/1730 Collection Sample 966780 -001 RN 4/4943940 N/A N/A None 10/2/14/1725 None 966781 -001 RN 5/ 4943939 * N/A N/A Collection Sample 966782 -001 RN 6/4943938 N/A 10/2/14/ N/A Collection Sample NA None 10/2/14 / 17/8 986783 -001 RN 7/4943907 -N/A N/A NA None Collection Sample 10/2/14 / 17/5 Radon 966784 -001 RN 8/4943936 N/A F N/A None Collection Sample 10/2/14 / 17 53 966785 -001 RN 9/4943935 -NA N/A None Collection Sample Rator 10/2/14/17/2 None Collection Sample 966786 -001 RN 10/4943904 N/A N/A NA. Parameter & Method ample Tracking Last Chair SMO Use pecial Instructions/QC Requirements: Validation Reg'd Yes Date Entered EDD Receipt 2 30 Day Turnaround Time 7.Day 15 Day Background: Yes Entered by Negotiated TAT QC inits Yes. Company/Organization/Pho Sample Name Sample Disposal Hatum to Client Disposal by La Team Annumarie Rader SNL/4143/644-2640 Return Samples By: Members Samples deployed on 07/03/14 and collected on 10/02/14 Lab Use 1 Reinquished by Date 16/3/14 Time 1403 1 Refinquished by Org. 4143 Org. Date Time I Received by Donnal 2 Org 46 42 Date 10/3/14 Time 1403 3. Received by Org Date Time 4.Refinquished by Date Time 2.Retinquished by Org Org. on with SMO required for 7 and 15 day TAT

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

AOP 95-16

Project Nam	W:	MWL Radon Monitoring	Project/Ta	ok Manager: M. 1	Willer				Project/Ta	sk No.:	146422	110.11.08		
Tech Area: 1						itar	Street Septemb	GOMES	150					1000
Building:		Room:	Acct # 0410548										Lab use	
Sample No.	Fraction	Sample Location D	etail	Depth (ft)	30000	Time sched	Sample Matrix	Type	Volume Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample I
986787	-001	RN 11/494390	3 -	N/A:	10/2/14	/1739	Ŧ	N/A	N/A	None	Collection	Sample	Radon	
966788	-001	RN 12/494391	9 +	N/A	10/2/14	/1741	F	N/A	N/A	None	Collection	Sample	Raden	
966789	-001	RN 13/494391	8 +	N/A	10/2/14	11775	F	N/A	N/A	None	Collection	Sample	Radon	
966790	001	RN 14/494391	7 +	N/A	10/2/14	/1747	F	N/A	N/A	None	Collection	Sample	Radon	
966791	-001	RN 15/494391	6 -	N/A	10/2/14	/17.50	F	N/A	NA	None	Collection	Sample	Radon	
966792	-001	RN 16/494391	5 +	N/A	10/2/14	/1655	F	N/A	N/A	None	Collection	Sample	Radon	
966793	-001	RN 17/ 494391	4 1	N/A	10/2/14	/1801	F	N/A	N/A	None	Collection	Sample	Radon	
966794	-001	RNTB/ 494390	2 +	N/A	10/2/14	1630	F	N/A	N/A	None	Collection	Sample	Raden	
	-		_							_				
	_			-						-				
	-			-						-				
	-			-			-	_		-				
			_	-				_	-	-	-			
	-			-				_		-		-		
_	-			-	-		-			-	-			
	-			+	-	_								
	+			+		_			_	-				
	-		_	+	_					-				
	-		_	+				-	_	+				

Radon Monitoring Report

BANDIA NATIONAL LABORATORIES ATTN: RITA KAVANALDH 1815 EUBANK SE- DRS 4142 RLDE 1090/120- NB1103 ALBUQUERQUE, NM 87123

Acct. No. 0410548

LANDAUER

London, No. J Science Read Climwood, Illinois 69425-1386 Telephone: (RDC) 528-8327 Teminole: (700) 715-7048

Detector Feature	Detector Type	Starting Date	Ending Date		Field Date / Cor	nmunds	Exposure pCM-days	Avg. Radon Conc. pCM		
4943902	DHNF	03-30-14	02-0CT-14	CYA796-	001		33.4 14.31	0.4 ±0.05		
4943903	DRMF	03-JUL-14	02-001-14	* - LEB 076787-4 RN 11		ICATED VALUE	* 30.0	* 0,3 20,05		
4943904	DRNF	03-JUL-14	0Z-0CT-14	098788-	001		38.9	20.05		
4942900	DRIVET	03-JUL-14	02-007-14	096760-	001		80.0 16.36	0.7 10.01		
4943906	DRIVET	03-JUL-14	02-0CT-14	096784- FN B	001		41.7 15.01	20,06		
8943907	Dittal	03~JUL-14	02-007-14	096783-0 RN 7	001		35.4 16.05	0.6 ±0.07		
4943914	DRMF	03-JUL-14	02-0CT-14	096793-0 RN 17	001		57.3 26.17	0.6 ±0.07		
47427712	DRNF	03~JUL~14	02-007-14	096792-0 RN 16	1001		65.5 16.72	0.7 ±0.07		
4743916	DRNF	03-JUL-14	02-0CT-14	096791-0 RN 15	001		49.9	0.5 ±0.06		
0	②	(3)	•	-	0			Ð		(8)
MEDE IVE	D BY L	ONLY TO MON ANDAUER. R OX - EPA 40	ADDN IN	KUT TUR	AZ31Z0	15-OCT-14	Date Roce/ved 09=DCT=1.4	PAGE	1 OF	2

Radon Monitoring Report

EANDIA NATIONAL LABORATORICS ATTHI RITA EAVANGLEM 1818 ELBERNE SE. DRG 4142 RLDG 1090/120- NE1103 ALBUQUERDUE: NM 87123

Acct. No. 0410048

LANDAUER

Landmert, Inc. J. Science Bond Classwood, Siliada 60425-1256 Telephone: (809) 528-8327 Janaisolle: (709) 955-7846

Datasetor	Type	Date Date	Entire Date	Pleat Oyla / Controrts	pCif-days	Avg. Radori Como gCM	
943917	DANE	03-JUL-14	02-00T-14	* - LEBS THAN INDICATED VALUE 096790-001 RN 14	* 30.0	* 0.3 ±0.04	
943910	DRNF	03-JUL-14	02-007-14	CY6789-001 RN 13	38.0 ±4.71	10.05	
943919	DANE	03-JUL-14	02-0CT-14	096788-001 RN 12	33.4 14.31	0,4 ±0.00	
943938	DRNF	03~JUL-14	02-0CT-14	096792-001 RN 6	44.4 15.23	10.06	
943939	DRNF	03-JJL-14	02-0CT-14	096781-001 RN S	47.2 15.45	10.06	
913910	Sukt,	03-JUL-14	02-0CT-14	0%6780-001 RN 4	40.7 ±4.98	20.05	
943941	DRNF	03-JUL-14	02-001-14	096779-001 RN 3	43.5 15.16	20.06	
1943942	DANE	03-JUL-14	02-DCT+14	095778-001 RN 2	51.7 15.79	10.06	
1943943	DRNF	03-JUL-14	02-DCT-14	096777-001 RN 1	51.7 ±5.79	20.06	
0	2	3	@ _	0	(B) Date Received	0	(6)
		ANDAUER. F	NITCHS RADON IN	G.C. Heleane Process No. Report Date K.J.T. A2312.0 18-0CT-14	09-0CT-14	PAGE	2 DF 2

Radon Track Etch® Results for the 2nd Quarter of CY 2014 at the MWL

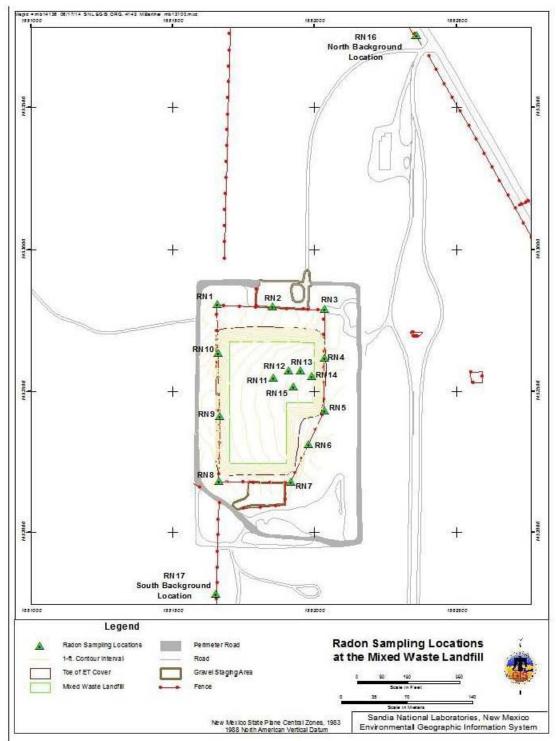


Figure 1. Location of the Radon Track Etch® Detectors at the MWL

RADTRAK® RADON TEST DATA SHEET

Company: Sandia Natilebs
Acct. Number: 0410548

Contact: Mark Miller

Phone: (505) 284-2107

Email: mmiller@sandia.gav

Send Radon Report To: (If different from account settings)	Site Information: (Please provide information on where detectors are being deployed. Reports will be labeled and sorted by value provided in 'Site Name' below.)
Company: Sandin Nat'l Laboratorius Attn: Mark Miller	Site Name: SNL/MWL Site Type: Outdoor
Address: <u>AO Box 5800</u> MS-0729	Additional Information:
City: Albuquer que ST/Prov: NM Post Code: \$7/85 Country: () SA Phone: (505) 284-2107 Email: MM; // 27 @ sandia. 90V	If Applicable: Technician Name: ANNYMOTA ROLL Technician Number: 4143 Technician Signature:

Please include all detector numbers, exposure periods and location information to appear on report

Detector Number	Building Name / Nbr	Unit Nbr	Floor	Comment / Note	Start Date mm/dd/yyyy	End Date
		000	<u> </u>			
	. 0	<i>Se</i>	3			
	Nease		1			
	\ X	achad			7.	
	Α',					

Landauer Use Only:	Processed By:	Date:	Page of

Detector #	Location	Start Date	End Date	Time	Comments
4943943	RN 1	07/03/2014	10/02/2014	1710	
4943942	RN 2	07/03/2014	10/02/2014	1705	
4943941	RN 3	07/03/2014	10/02/2014	1707	
4943940	RN 4	07/03/2014	10/02/2014	1730	
4943939	RN 5	07/03/2014	10/02/2014	1725	
4943938	RN 6	07/03/2014	10/02/2014	1721	
4943907	RN 7	07/03/2014	10/02/2014	1718	
4943906	RN 8	07/03/2014	10/02/2014	1715	
4943905	RN 9	07/03/2014	10/02/2014	1733	
4943904	RN 10	07/03/2014	10/02/2014	1712	
4943903	RN 11	07/03/2014	10/02/2014	1739	
4943919	RN 12	07/03/2014	10/02/2014	1741	
4943918	RN 13	07/03/2014	10/02/2014	1743	
4943917	RN 14	07/03/2014	10/02/2014	1947	.v
4943916	RN 15	07/03/2014	10/02/2014	1750	
4943915	RN 16	07/03/2014	10/02/2014	1655	
4943914	RN 17	07/03/2014	10/02/2014	1801	
4943902	RNTB	07/03/2014	10/02/2014	1630	

Mixed Waste Landfill Radon Monitoring Location Monthly Inspection Form

Inspection parameters:	Identification labeling; mounting post & hose clamps; radon monitoring apparatus
components (outer house	sing, 2 wing nuts, plastic retaining ring, plastic cup, Velcro, detector).

Name of Inspector _Annemarie Rader _ Date of Inspection ___08/21/2014_

Location	Findings (Note any findings and date resolved, otherwise note "None")
RN1	NONE
RN2	NONE
RN3	NONE
RN4	NONE
RN5	NONE
RN6	NONE
RN7	NONE
RN8	NONE
RN9	NONE
RN10	NONE
RN11	NONE
RN12	NONE
RN13	NONE
RN14	NONE
RN15	NONE
RN16	NONE
RN17	NONE

Inspector's Signature

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Mixed Waste Landfill Radon Monitoring Detector Collection/Deployment Inspection Form

Name of Inspector	Anneum	Keder		
Collection Date	10-2-14			
Deployment Date_	7-3-14		_	
Radon Monitoring	Frequency: 🗴	Quarterly	_Semiannually_	Annually

Ra	don Monitoring Location Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Action Required at Location Numbers
Α.	Monitoring location identification labeling	good	N	
В.	Mounting (fence) post condition.	good	N	
C.	Radon monitoring outer housing securely fastened (stainless steel hose clamps).	yes	V.	
D.	Radon monitoring apparatus components assembly (outer housing, 2-wingnus, plastic retaining ring and plastic cup)	good	Non	
E.	Radon monitoring apparatus interior clean of debris (dirt, insects, spider webs, etc.)	yes	yes - had to clear a carpie webs.	pot not distriction months.
F.	Radon monitoring apparatus assembled with detector securely fastened with Velcro.	y+5	Naen	
Rad	on Monitoring Detectors Inspection Parameters			
A.	Condition of detector at time of collection.	good	N alu_	
3.	Condition of detector at time of deployment.	Song	N	

Mixed Waste Landfill Radon Monitoring Detector Collection/Deployment Inspection Form

Location	(Note any action	Action Required on required and date resolved, otherwise note "None")
RNI	None	Formin spiles and cucon like
RN2	None	tretted in all of the Cups.
RN3	New	The spicers and crebo herene
RN4	None	The spiders and crebs were on the sides of the Leidan
RN5	Noine	Munitary not obstruction
RN6	1/the_	monutary.
RN7	Non	0.00
RN8	Non	to and is
RN9	None	Spicers Engale
RN10	Non	Coleon,
RNII	A) on	
RN12	None	
RNI3	Vone	
RN14	Va	
RN15	None	
RN16	k /	
RN17	None	

Inspector's Signature Of A 16/02/1014
Original to: Mixed Waste Landfill Operating Record
Copy to: SNL/NM Records Center

MIXED WASTE LANDFILL RADON MONITORING

October-December 2014 Monitoring Period

Operated for the U.S. Department of Energy by **Sandia Corporation**

Albuquerque, New Mexico 87185-

date: February 10, 2015

to: Mike Mitchell (6234), Robert Ziock (4142), Bonnie Little (4142) and Annemarie Rader (4143)

from: Mark Miller (41281), CHP

subject: Review of MWL Radon-in-Air Data – 4th Quarter of 2014, October through December 2014

The purpose of this memo is to document my review of the radon-in-air monitoring data results for the 4th Quarter of Calendar Year (CY) 2014, October through December 2014, relative to the data quality objective (DQO) and monitoring objectives specified in the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (Appendix C, *Air Sampling and Analysis Plan for the Mixed Waste Landfill*). The DQO for this monitoring is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective. Monitoring results provide radon emission data from across the site and at two background locations (Figure 1). These results are compared to historic results to evaluate radon air emission trends and for direct comparison to the LTMMP trigger level of 4 picocuries per liter. This DQO and these monitoring objectives are met through the implementation of standard operating procedures, analytical procedures/methods, quality assurance and control measures, and data evaluation protocol.

The radon-in-air monitoring measurements for the monitoring period October through December 2014 were obtained using Radtrak® radon detectors that were submitted to Landauer® Incorporated for analysis on Analysis Request/Chain of Custody (AR/COC) #615960. On October 2, 2014, the detectors were deployed on and around the MWL (locations RN1 through RN15 at the MWL, background locations RN16 and RN17, and a trip blank that was never exposed, RN18) in accordance with the requirements of Section 3.2.1 of the LTMMP. These detectors remained in the field for approximately 3 months (one quarter), and were collected on January 7, 2015. The protective casing and mounting hardware were inspected during the collection effort and repairs were made if needed. The location of these detectors is shown in Figure 1.

I have reviewed the results for this monitoring period along with supporting field documentation and determined the results meet the LTMMP DQO and monitoring objectives. The radon trigger level was not exceeded by any of the individual sample results; however, it only applies to the results from the perimeter locations (locations RN1 through RN10, Figure 1). The results from this quarterly monitoring event will be presented in the next MWL Annual LTMM Report that will be submitted to NMED in June 2015 (reporting period is April 1, 2014 through March 31, 2015).

Attachments:

Analysis Request/Chain of Custody #615960 Landauer Radon Monitoring Report (analytical laboratory results) Figure 1 Location of the Radon Track Etch® Detectors at the MWL

*Prior confirmation with SMO required for 7 and 15 day TAT

AOP 95-16 SMO 2012-ARCOC (4-2012) CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY Page 1 of 2 Internal Lab 615960 AR/COC SMO Use Batch No. 1/12/18 MWL Radon monitoring Date Samples Shipped Weste Characterization Project Name SMO Authorization **42 82 / 8** Landauer 800.528.8327 RMMA Project/Task Manager: M Miller SMO Contact Phone arrier/Waybill No. Project/Task Number: 146422/10.11.08 Mark Miller/505.284.2107 Released by COC No. ab Contact Landauer, INC. 4º Celsius Service Order CFO 378-15 Send Report to SMO. ab Destriation. Acct # 0410548 Sil to: Sandia National Laboratories (Accounts Payable) Contract No Rita Kavanaugh/505.284 2553 Tech Area: TA3 MWL C. Box 5/800, MS-0154 Building: Room: Operational Site: TA3 MWL Albuquerque, NM 87185-0154 Preserv-Collection Sample Parameter & Method Depth Date/Time Sample Container Method Sample ID Sample Location Detail Requested Sample No. Fraction (ft) Collected Matrix Type Volume ative Type 097047 -001 RN 1/4956321 N/A N/A Collection Sample Radon 1/7/15 1607 None 097048 -001 RN 2/4956322 NIA 1/7/15 1555 F N/A N/A None Collection Sample Radon 097049 -001 RN 3/4956323 N/A 1/7/15 1706 F N/A N/A None Collection Sample Radon F 097050 -001 RN 4/ 4956325 N/A 1/7/15 1701 N/A N/A None Collection Sample Radon -001 N/A 1/7/15 1653 F N/A Collection Sample 097051 RN 5/4956152 Radon 097052 -001 RN 6/4956153 N/A 1/7/15 1648 N/A Collection Radon N/A None 097053 --001 RN 7/4956154 N/A 1/7/15 1644 N/A NIA None Collection Sample Radon --001 RN 8/4956155 1628 N/A Collection Sample Radon 097054 N/A 1/7/15 N/A None 097055 --001 RN 9/4956156 N/A 1/7/15 1613 F N/A N/A None Collection Sample Radon 097056 -001 RN 10/4956363 N/A 1/7/15 1620 N/A Collection Sample Radon Parameter & Method Conditions on Last Chain: ☐ Yes SMO Use Special Instructions/QC Requirements: Sample Tracking □ No Validation Reg'd: EDD ☑ Yes Receipt Date Entered ☐ 15 Day* Background: **Turnaround Time** 7 Day 2 30 Day Yes Entered by: Confirmatory: Yes QC inits Negotiated TAT Company/Organization/Phone/Cell Sample Disposal Return to Client Disposal by Lab Name Init. Sample ALP SNL/4143/844-2640 Return Samples By: Annemarie Rader Team Members Samples deployed on 10/02/14 and collected on 01/07/15 Lab Use Org. 4143 Relinquished by Date@-08-15 Time |61| 3.Relinquished by Org. Date Time 9140rg 4/42 Date Time Received by Date 1-8-15 Time 1611 3. Received by Org. Time 1000 4.Relinquished by Org. Date Time 2. Relinquished by 500 4/42 Date 1-12-15 Time 4. Received by Date Received by Date Time Org

Page 2 of 2

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

AOP 95-16

Project Nam	ie:	MWL Radon Monitoring	Project/Ter	sk Manager: M. I	Aither				Project/Tar	sk No.:	146422	/10.11.08		
Tech Area: 1	A# MWL					500	I Attas	TOTAL			-			
Building:		Room:		Acct # 0410548 Depth Date/Time Sample Container Preserv Collection Sample									Lab use	
Sample No.	Fraction	Sample Location 0	Detail	Depth (ft)	Date/ Colle		Sample Matrix	Туре	Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample I
097057	001	RN 11/495636	4	N/A	1/7/15	1534	F	N/A	N/A	None	Collection	Sample	Radon	
097058	-001	RN 12/494966	7	N/A	1/7/15	1530	F	N/A	N/A	None	Collection	Sample	Radon	
097059	001	RN 13/ 494966	8	N/A	1/7/15	1542	F	N/A	N/A	None	Collection	Sample	Radon	
097060	-001	RN 14/494966	9	N/A	1/7/15	1547	F	N/A	N/A	None	Collection	Sample	Radon	
097061	-001	RN 15/ 494967	0	N/A	1/7/15	1520	F	N/A	N/A	None	Collection	Sample	Radon	
097062	001	RN 16/494967	1	N/A	1/7/15	1511	F	N/A	N/A	None	Collection	Sample	Radon	
097063	001	RN 17/ 494967	2	N/A	1/7/15	1637	F	N/A	N/A	None	Collection	Sample	Radon	
097064	001	RNTB/ 495636	5	N/A	1/7/15	NA	F	N/A	N/A	None	Collection	Sample	Radon	
								57.1						
											/			

SANDIA NATIONAL LABORATORIES ATTN: RITA KAVANAUGH

Correction Data: START DATES CHANGED

1515 EUBANK SE, ORG 4142 BLDG 1090/120, MS1103 ALBUQUERQUE, NM 87123

Radon Monitoring Report

LANDAUER®

LICENSES: 101146AL, 100584RT

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800)528-8327 Facsimile: (708) 755-7048

Acct. No.

0410548

*** CORRECTED REPORT ***

Detector Number	Detector Type	Starting Date	Ending Date	Field Data / Comments	Exposure pCi/I-days	Avg. Radon Conc. pCi/l	
4949667	DRNF	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097058	80.2	0.8	
				SAMPLE LOCATION RN 12	±7.20	±0.07	
4949668	DRNF	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097059	44.2	0.5	
				SAMPLE LOCATION RN 13	±4.82	±0.05	
4949669	DRNF	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097060	71.2	0.7	
	130.001000.000	COMPANIE OF SOME	20000	SAMPLE LOCATION RN 14	±6.67	±0.07	
4949670	DRNF	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097061	64.9	0.7	
			Seven material seven	SAMPLE LOCATION RN 15	±6.27	±0.06	
4949671	DRNF	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097062	53.2	0.5	
				SAMPLE LOCATION RN 16	±5,49	±0.06	
4949672	DRNF	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097063	86.5	0.9	
				SAMPLE LOCATION RN 17	±7.56	±0.08	
4956152	DRN	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097051	65.1	0.7	
				SAMPLE LOCATION RN 5	±6.67	±0.07	
4956153	DRN	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097052	75.7	0.8	
				SAMPLE LOCATION RN 6	±7.32	±0.08	
4956154	DRN	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097053	82.9	0.9	
				SAMPLE LOCATION RN 7	±7.73	±0.08	
4956155	DRN	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097054	88.2	0.9	
				SAMPLE LOCATION RN 8	±8.02	±0.08	
1	2	3	4	(S)	6	7	8

RESULTS RELATED ONLY TO MONITORS AS RECEIVED BY LANDAUER. RADON IN AIR BY ALPHA TRACK - EPA 402-R92-004. (5) (6)

Q.C. Release Process No. Report Date Date Received
LMR A23168 30-JAN-15 13-JAN-15

Mark Salasky
Radon Measurement Specialist

SANDIA NATIONAL LABORATORIES ATTN: RITA KAVANAUGH 1515 EUBANK SE, ORG 4142 BLDG 1090/120, MS1103 ALBUQUERQUE, NM 87123

Correction Data: START DATES CHANGED

Radon Monitoring Report

LANDAUER®

LICENSES: 101146AL, 100584RT

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800)528-8327 Facsimile: (708) 755-7048

Acct. No.

0410548

*** CORRECTED REPORT ***

Detector Number	Detector Type	Starting Date	Ending Date	Field Data / Comments	Exposure pCi/I-days	Avg. Radon Conc. pCi/l	
4956156	DRN	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097055	106.1	1.1	
				SAMPLE LOCATION RN 9	±8.9	±0.09	
4956321	DRN	02-0CT-14	07-JAN-15	SAMPLE NUMBER 097047	63.3	0.7	
				SAMPLE LOCATION RN1	±6.56	±0.07	
4956322	DRN	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097048	58.8	0.6	
				SAMPLE LOCATION RN2	±6.27	±0.07	
4956323	DRN	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097049	82.9	0.9	
				SAMPLE LOCATION RN 3	±7.73	±0.08	
4956325	DRN	02-OCT-14	07-JAN-15	SAMPLE NUMBER 97050	83.8	1.1	
				SAMPLE LOCATION RN 4	±7.78	±0.10	
4956363	DRN	02-0CT-14	07-JAN-15	SAMPLE NUMBER 097056	39.2	0.4	
				SAMPLE LOCATION RN 10	±4.83	±0.05	
4956364	DRN	02-0CT-14	07-JAN-15	SAMPLE NUMBER 097057	70.4	0.7	
				SAMPLE LOCATION RN 11	±7.00	±0.07	
4956365	DRN	02-OCT-14	07-JAN-15	SAMPLE NUMBER 097064	94.5	1.0	
				SAMPLE LOCATION RNTB	±8.35	±0.09	
1	2	3	④	(5)	6	Ø	8

RESULTS RELATED ONLY TO MONITORS
AS RECEIVED BY LANDAUER. RADON IN
AIR BY ALPHA TRACK - EPA 402-R92-004.

Q.C. Release Process No. Report Date Date Received 13-JAN-15

Mark Salasky
Radon Measurement Specialist

The United States Environmental Protection Agency recommends fixing your home if the results of one long-term test or the average of two short-term tests taken in the lowest lived-in level of the home show radon levels of 4.0 pCi/l or higher. A short term test remains in your home for two days to 90 days, whereas a long-term test remains in your home for more than 90 days under these guidelines.

Column 7 of this report indicates the radon test result, i.e., the average radon concentration in pCi/l for the test period. If you did not provide us the starting and ending dates (days the detector was exposed) we are unable to calculate the average radon concentration. To calculate the average radon concentration, divide the total exposure in pCi/l-days (column 6) by the number of days the detector was exposed.

For more information about the interpretation of your test result or about other radon related issues we suggest you contact your state radon office. Your state radon office should have available the following EPA publications:

- A Citizen's Guide to Radon
- Home Buyer's and Seller's Guide to Radon
- Consumer's Guide to Radon Reduction

DISCLAIMER

Landauer, Inc. makes no warranty of any kind, express or implied, as regards to the use, operation or analysis of any Landauer, Inc. monitor. Landauer, Inc. specifically disclaims implied warranties of merchantability and fitness for a particular purpose. Landauer, Inc. is not responsible for any damage, including consequential damages, to persons or property resulting from the use of the monitor or the resulting data.

LANDAUER®

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048
Email: radon@landauer.com Website: www.landauer.com

Page 3 of 3

Radon Track Etch® Results for the 4th Quarter of CY 2014 at the MWL

RADTRAK® RADON TEST DATA SHEET

Company: Sandia Natilebs
Acct. Number: Oil 0548
Contact: Mark Miller
Phone: (505) 284 - 2107
Email: mm. 11 ar & sandia. gov

Send	Radon	Re	port	To:
(If differen	I from account	settings)	

Company: Sandin Nat 1 Lebaic tories

Attn: Mark Miller

Address: DO Bex 5800

M5-0729

City: Albuquarque

ST/Prov: NM Post Code: \$7185

Country: (1) SA

Phone: (505) 284-2107

Email: MMiller O sandia gov

	non on where detectors are being deployed. Reports will be lue provided in 'Site Name' below.)
Site Name: _	SNL/ MWIS
Site Type: _	Outdoor
Additional Inf	ormation:
15	

Technician Name	. A.L. Rader
Technician Numb	
Teehnician Signat	ture:

Please include all detector numbers, exposure periods and location information to appear on report

Detector Number	Building Name / Nbr	Unit Nbr	Floor	Comment / Note	Start Date mm/dd/yyyy	End Date
)		
	\eas.	182	Cher			
	P	7 /	K and	2		
		O(Sail			

7
_
-
U
C
U
ċ
-
-

Landauer Use Only:	Processed By:	Date:	Page of
--------------------	---------------	-------	---------

LTS RDN-2012-001 (12-2014) FOP 14-03

Mixed Waste Landfill Radon Detector Deployment / Collection Form

COC # 615960

Detector Serial Number	Sample Number	Sampling Location	Deployment Date	Collection Date	Time/Comments
4956321	097047-001	RN1	10/02/2014	01/07/2015	1607
4956322	097048-001	RN2	10/02/2014	01/07/2015	1555
4956323	097049-001	RN3	10/02/2014	01/07/2015	1706
4956325	097050-001	RN4	10/02/2014	01/07/2015	1701
4956152	097051-001	RN5	10/02/2014	01/07/2015	1653
4956153	097052-001	RN6	10/02/2014	01/07/2015	1648
4956154	097053-001	RN7	10/02/2014	01/07/2015	1644
4956155	097054-001	RN8	10/02/2014	01/07/2015	1628
4956363	097055-001	RN9	10/02/2014	01/07/2015	1613
4956364	097056-001	RNI0	10/02/2014	01/07/2015	1620
4949667	097057-001	RNII	10/02/2014	01/07/2015	1534
4949667	097058-001	RN12	10/02/2014	01/07/2015	1530
4949668	097059-001	RN13	10/02/2014	01/07/2015	1542
4949669	097060-001	RN14	10/02/2014	01/07/2015	1547
4949670	097061-001	RN15	10/02/2014	01/07/2015	1520
4949671	097062-001	RN16	10/02/2014	01/07/2015	1511
4949672	097063-001	RN17	10/02/2014	01/07/2015	1637
4956365	097064-001	RNTB	10/02/2014	01/07/2015	NA

aur_01/07/15

Mixed Waste Landfill Radon Monitoring Location Monthly Inspection Form

Name of Inspector Annemarie Rader

Date of Inspection 11/26/2014

Inspection parameters: Identification labeling; mounting post & hose clamps; radon monitoring apparatus components (outer housing, 2 wing nuts, plastic retaining ring, plastic cup, Velcro, detector).

Location	Findings (Note any findings and date resolved, otherwise note "None")
RNI	None
RN2	None
RN3	None
RN4	None
RN5	None
RN6	None
RN7	None
RN8	None
RN9	None
RN10	None
RN11	None
RN12	None
RN13	None
RN14	None
RNI5	None
RN16	None
RN17	None

Inspector's Signature
Original to: Mixed Waste Landfill Operating Record
Copy to: SNL/NM Records Center

Mixed Waste Landfill Radon Monitoring Location Monthly Inspection Form

Name of Inspector Annemarie Rader Date of Inspection 12/24/2014	2/24/2014
Inspection parameters: Identification labeling; mounting post; mounting bracket and stainless steel claim radon monitoring apparatus components (outer metal housing, 2 wing nuts, plastic retaining ring, plastic retaining r	

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RNI	None
RN2	None
RN3	None
RN4	None
RN5	None
RN6	None
RN7	None
RN8	None
RN9	None
RN10	None
RNII	None
RN12	None
RNI3	None
RN14	None
RN15	None
RN16	None
RN17	None

Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center

Mixed Waste Landfill Radon Detector Collection Inspection Form

Name of Inspector Annemarie Rader		
Collection Date 01/07/2015	_ ,	
Deployment Date 10/02/2014	$-\mathcal{U}$	
Radon Monitoring Frequency: ~ Quarterly	~ Semiannually	~ Annually

Rac	ion Monitoring Location Inspection Parameters	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Action Required at Location Numbers
A.	Monitoring location identification labeling.	No		
B.	Mounting (fence) post condition.	No		
C.	Radon monitoring outer metal housing securely fastened (mounting bracket and stainless steel clamp).	Yes	No	
D.	Radon monitoring apparatus components (outer metal housing, 2 wing nuts, plastic retaining ring, and plastic cup)	Yes	No	
E.	Radon monitoring apparatus interior clean of debris (dirt, insects, spider webs, etc.).	Yes	No	
F.	Radon monitoring apparatus assembled and detector securely fastened with Velcro® to inside of plastic cup.	Yes	No	
Ra	don Monitoring Detectors Inspection Parameters			
Α.	Condition of Radtrak® detector at time of collection.	No		
В.	Condition of Radtrak® detector at time of deployment.	No		

FOP 14-03 LTS RDN-2012-002 (12-2014)

Mixed Waste Landfill Radon Detector Collection / Deployment Inspection Form

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RNI	None
RN2	None
RN3	None
RN4	None
RN5	None
RN6	None
RN7	None
RN8	None
RN9	None
RN10	None
RNII	None
RN12	None
RN13	None
RN14	None
RNI5	None
RNI6	None
RN17	None

Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center

ANNEX B

Mixed Waste Landfill Surface Soil Tritium and Biota Monitoring Forms and Reports

April 2014-March 2015

Data Evaluation Memo

Data Validation Reports

Contract Verification Reports

Operated for the U.S. Department of Energy by **Sandia Corporation**

Albuquerque, New Mexico 87185-

date: March 26, 2015

to: Mike Mitchell (6234), Robert Ziock (4142), and Bonnie Little (4142)

from: Mark Miller (41281), CHP

subject: Review of Tritium-in-Soil Results for LTMMP Monitoring at the Mixed Waste Landfill

Mark J. Mille

The purpose of this memo is to document my review of the tritium-in-soil monitoring data results for the 8/21/14 and the 1/20/15 sample events.

Sample Date	Location	Concentration	Units	Comments
8/21/2014	MWL TS-2NW	151	pCi/L	U
8/21/2014	MWL TS-2SW	-39.4	pCi/L	U
8/21/2014	MWL TS-2SE	-45.9	pCi/L	U
8/21/2014	MWL TS-2NE	147	pCi/L	U
1/20/2015	MWL TS-2NW	1210	pCi/L	
1/20/2015	MWL TS-2SW	1660	pCi/L	
1/20/2015	MWL TS-2SE	1830	pCi/L	
1/20/2015	MWL TS-2NE	1010	pCi/L	

These results are consistent with the historic monitoring data collected at the MWL as part of the routine Terrestrial Surveillance Program, where the data collected between 2000 and 2014 ranged from 182 pCi/L ("not detected, or "U" qualified) to 6140 pCi/L. The August 2014 sampling locations were consistent with those established for the routine Terrestrial Surveillance monitoring program, however, even these locations have been shifted over time to accommodate construction of the subgrade (2006) and evapotranspirative (ET) cover (2009). The January 2015 locations were shifted to be consistent with the locations shown in the MWL Long-Term Monitoring and Maintenance Plan (LTMMP).

The data from the August 2014 sampling event were all "U" since the soil was very dry and tritium assay in soil depends on the presence of measurable soil moisture. There was more soil moisture present during the January 2015 sampling event due to winter precipitation events and cooler temperatures. Based on the large tritium surface-soil data set for the MWL, the nature of tritium flux from the MWL with the final ET cover in place, and my professional judgement, the variation in the two sets of results are mostly related to soil-moisture content and not the minor changes in sampling locations.

As previously stated, these results are consistent with historical sampling at the MWL and far below the LTMMP trigger level of 20,000 pCi/L. However, given the myriad of factors (soil moisture, tritium flux, barometric conditions, etc.) that affect the results observed at these very low concentrations that are very close to or less than the analytical method minimum detectable activity, plotting the data to show trends will not be useful or meaningful. In other words, the variation in sample results due to changes in soil moisture content will overwhelm any slight changes in actual tritium flux at low levels.

I recommend results be presented in tabular form and be evaluated relative to the historic data set and the LTMMP trigger level of 20,000 pCi/L. If the tritium flux from the disposal areas increases in the future due to changing conditions, they will be detected, compared to the trigger level, and reported appropriately.

cc: CFRC

Mixed Waste Landfill Surface Soil Tritium and Biota Monitoring August 2014 Sampling Event

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: September 25, 2014

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL Surface Soil AR/COC: 615736 SDG: 355364

Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

Four soil samples were prepared and analyzed with approved procedures using methods EPA 6010B (ICP-AES). One soil sample was prepared and analyzed for Hg with approved procedures using method EPA 7471A (CVAA mercury). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

ICP-AES:

- 1. Ag was detected in a bracketing CCB at a concentration < the PQL. The associated results for samples 355364006 and -012 were detects ≤5X the blank concentration and will be **qualified 0.535U,B3** at 5X the blank value.
- 2. Se was detected in the ICB and a bracketing CCB at concentrations < the PQL. The associated result for sample -008 was a detect ≤5X the highest blank concentration and will be **qualified 5.2U,B3** at 5X the highest blank value.
- 3. The MS %R was <75% but ≥30% for Ba. The associated sample results were detects and will be **qualified J,MS3** due to low matrix spike recovery.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and properly preserved except as follows. Samples -006, -010 and -012 were received at 27° C and not at the method-specified temperature of \leq 6°C for Hg; the analysis for those samples was cancelled by the client.

ICP-MS Instrument Tune

The ICP-MS tunes met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All CRI recoveries associated with the samples met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section and as follows. Ag was detected in a bracketing CCB at a concentration < the PQL. The associated results for samples -008 and -010 were non-detects and will not be qualified.

As was detected in bracketing CCB at a concentration <PQL. All associated sample results were detects >5X the CCB concentration and will not be qualified.

Pb was detected in bracketing CCB at a negative concentration with an absolute value > the MDL but \le PQL. The associated sample results were detects >5X the MDL and will not be qualified.

Se was detected in the ICB and a bracketing CCB at concentrations < the PQL. The associated results for samples -006, -010 and -012 were non-detects and will not be qualified.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria except as noted above in the Summary section.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations of Ca, Mg, Al and Fe were < that in the ICS solution except as noted.

ICP Serial Dilution

The serial dilutions met all QC acceptance criteria.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 09/30/14

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date: September 26, 2014

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL Surface Soil

AR/COC: 615736 SDG: 355634 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

Five soil samples were prepared and analyzed with approved procedures using method HASL 300 (gamma spec, solid – long list) and GL-RAD-A-002 (LSC,tritium). Problems were identified with the data package that resulted in the qualification of data.

Gamma Spec and tritium:

1. All sample results which were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.**

Gamma Spec:

- 1. The Th-234 and U-238 results for sample 355364013 were rejected by the laboratory due to the peak not meeting identification criteria and will be **qualified R,Z2**.
- 2. According to the case narrative, no peaks were identified for Bi-212 in sample -011. The associated sample result is considered ND at the calculated MDA and will be **qualified BD,Z2**.
- 3. All sample results that were > the MDA but $\le 3X$ the MDA will be **qualified J,FR7.**

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were properly preserved and prepared and analyzed within the prescribed holding time.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracers or carriers were not required for these methods.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Laboratory Control Sample (LCS)

All LCS recoveries met QC acceptance criteria,

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

One field duplicate was submitted with ARCOC 615736. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski **Level I Date:** 09/30/14

Sample Findings Summary

AR/COC: 615736 Page 1 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
DOE HASL 300, 4.5.2.3/Ga-			
	096501-002/MWL AHSS-01	Americium-241 (14596-10-2)	BD, FR3
	096501-002/MWL AHSS-01	Beryllium-7 (13966-02-4)	BD, FR3
	096501-002/MWL AHSS-01	Cesium-137 (10045-97-3)	J, FR7
	096501-002/MWL AHSS-01	Cobalt-60 (10198-40-0)	BD, FR3
	096501-002/MWL AHSS-01	Neptunium-237 (13994-20-2)	BD, FR3
	096501-002/MWL AHSS-01	Radium-223 (15623-45-7)	BD, FR3
	096501-002/MWL AHSS-01	Radium-224 (13233-32-4)	BD, FR3
	096501-002/MWL AHSS-01	Sodium-22 (13966-32-0)	BD, FR3
	096501-002/MWL AHSS-01	Thorium-227 (15623-47-9)	BD, FR3
	096501-002/MWL AHSS-01	Thorium-231 (14932-40-2)	BD, FR3
	096501-002/MWL AHSS-01	Thorium-234 (15065-10-8)	BD, FR3
	096501-002/MWL AHSS-01	Uranium-235 (15117-96-1)	BD, FR3
	096501-002/MWL AHSS-01	Uranium-238 (7440-61-1)	BD, FR3
	096502-002/MWL AHSS-02	Americium-241 (14596-10-2)	BD, FR3
	096502-002/MWL AHSS-02	Beryllium-7 (13966-02-4)	J, FR7
	096502-002/MWL AHSS-02	Cobalt-60 (10198-40-0)	BD, FR3
	096502-002/MWL AHSS-02	Neptunium-237 (13994-20-2)	BD, FR3
	096502-002/MWL AHSS-02	Radium-223 (15623-45-7)	BD, FR3
	096502-002/MWL AHSS-02	Sodium-22 (13966-32-0)	BD, FR3
	096502-002/MWL AHSS-02	Thorium-227 (15623-47-9)	BD, FR3
	096502-002/MWL AHSS-02	Thorium-231 (14932-40-2)	BD, FR3
	096502-002/MWL AHSS-02	Thorium-234 (15065-10-8)	J, FR7
	096502-002/MWL AHSS-02	Uranium-235 (15117-96-1)	BD, FR3
	096502-002/MWL AHSS-02	Uranium-238 (7440-61-1)	J, FR7

AR/COC: 615736 Page 2 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	096503-002/MWL ABSS-01	Americium-241 (14596-10-2)	BD, FR3
	096503-002/MWL ABSS-01	Beryllium-7 (13966-02-4)	BD, FR3
	096503-002/MWL ABSS-01	Bismuth-212 (14913-49-6)	BD, Z2
	096503-002/MWL ABSS-01	Cobalt-60 (10198-40-0)	BD, FR3
	096503-002/MWL ABSS-01	Neptunium-237 (13994-20-2)	BD, FR3
	096503-002/MWL ABSS-01	Radium-223 (15623-45-7)	BD, FR3
	096503-002/MWL ABSS-01	Radium-224 (13233-32-4)	BD, FR3
	096503-002/MWL ABSS-01	Sodium-22 (13966-32-0)	BD, FR3
	096503-002/MWL ABSS-01	Thorium-227 (15623-47-9)	BD, FR3
	096503-002/MWL ABSS-01	Thorium-231 (14932-40-2)	BD, FR3
	096503-002/MWL ABSS-01	Thorium-234 (15065-10-8)	BD, FR3
	096503-002/MWL ABSS-01	Uranium-235 (15117-96-1)	BD, FR3
	096503-002/MWL ABSS-01	Uranium-238 (7440-61-1)	BD, FR3
	096504-002/MWL ABSS-02	Americium-241 (14596-10-2)	BD, FR3
	096504-002/MWL ABSS-02	Beryllium-7 (13966-02-4)	BD, FR3
	096504-002/MWL ABSS-02	Cobalt-60 (10198-40-0)	BD, FR3
	096504-002/MWL ABSS-02	Neptunium-237 (13994-20-2)	BD, FR3
	096504-002/MWL ABSS-02	Radium-223 (15623-45-7)	BD, FR3
	096504-002/MWL ABSS-02	Radium-224 (13233-32-4)	J, FR7
	096504-002/MWL ABSS-02	Sodium-22 (13966-32-0)	BD, FR3
	096504-002/MWL ABSS-02	Thorium-227 (15623-47-9)	BD, FR3
	096504-002/MWL ABSS-02	Thorium-231 (14932-40-2)	BD, FR3
	096504-002/MWL ABSS-02	Thorium-234 (15065-10-8)	R, Z2
	096504-002/MWL ABSS-02	Uranium-235 (15117-96-1)	BD, FR3
	096504-002/MWL ABSS-02	Uranium-238 (7440-61-1)	R, Z2
	096505-001/MWL PDRV-01	Actinium-228 (14331-83-0)	BD, FR3
	096505-001/MWL PDRV-01	Americium-241 (14596-10-2)	BD, FR3
	096505-001/MWL PDRV-01	Bismuth-212 (14913-49-6)	BD, FR3

AR/COC: 615736 Page 3 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	096505-001/MWL PDRV-01	Bismuth-214 (14733-03-0)	BD, FR3
	096505-001/MWL PDRV-01	Cesium-137 (10045-97-3)	BD, FR3
	096505-001/MWL PDRV-01	Cobalt-60 (10198-40-0)	BD, FR3
	096505-001/MWL PDRV-01	Lead-212 (15092-94-1)	BD, FR3
	096505-001/MWL PDRV-01	Lead-214 (15067-28-4)	BD, FR3
	096505-001/MWL PDRV-01	Neptunium-237 (13994-20-2)	BD, FR3
	096505-001/MWL PDRV-01	Radium-223 (15623-45-7)	BD, FR3
	096505-001/MWL PDRV-01	Radium-224 (13233-32-4)	BD, FR3
	096505-001/MWL PDRV-01	Radium-226 (13982-63-3)	BD, FR3
	096505-001/MWL PDRV-01	Radium-228 (15262-20-1)	BD, FR3
	096505-001/MWL PDRV-01	Sodium-22 (13966-32-0)	BD, FR3
	096505-001/MWL PDRV-01	Thorium-227 (15623-47-9)	BD, FR3
	096505-001/MWL PDRV-01	Thorium-231 (14932-40-2)	BD, FR3
	096505-001/MWL PDRV-01	Thorium-234 (15065-10-8)	BD, FR3
	096505-001/MWL PDRV-01	Uranium-235 (15117-96-1)	BD, FR3
	096505-001/MWL PDRV-01	Uranium-238 (7440-61-1)	BD, FR3
GL-RAD-A-002			
	096496-001/MWL TS-2NW	Tritium (10028-17-8)	BD, FR3
	096497-001/MWL TS-2SW	Tritium (10028-17-8)	BD, FR3
	096498-001/MWL TS-2SE	Tritium (10028-17-8)	BD, FR3
	096499-001/MWL TS-2NE	Tritium (10028-17-8)	BD, FR3
	096500-001/MWL TS-2NE	Tritium (10028-17-8)	BD, FR3
SW846 3050B/6010B	000504 004 /MANU ALICE 04	Davium (7440-20-2)	LAACO
	096501-001/MWL AHSS-01	Barium (7440-39-3)	J, MS3
	096501-001/MWL AHSS-01	Silver (7440-22-4)	0.535U, B3
	096502-001/MWL AHSS-02	Barium (7440-39-3)	J, MS3
	096502-001/MWL AHSS-02	Selenium (7782-49-2)	5.2U, B3
	096503-001/MWL ABSS-01	Barium (7440-39-3)	J, MS3
	096504-001/MWL ABSS-02	Barium (7440-39-3)	J, MS3

AR/COC: 615736 Page 4 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	096504-001/MWL ABSS-02	Silver (7440-22-4)	0.535U, B3

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615736		Site/F	Project: M	WL Surface	Soil		Validation	Date: 09/25/14	
SDG #: 355364		Labo	ratory: GE	L Laborator	ries, LLC		Validator:	Mary Donivan	
Matrix: Soil	# of Samples	: 14	C	VR present	: Yes		Analysis Ty	pe: 🗆 Organic	$X\square$ Metals
AR/COC(s) present: Yes		Sample Cont	ainer Integ	grity: OK			$X \;\square\; Rad$	☐ Gen Chem	
		Requ	uested Ar	nalyses No	t Reported				
Sample Number	Laboratory ID	organic	genchen	n metals	rad		Com	ments	
None									
	<u>'</u>		1						
		Holo	d Time/P	reservatio	n Outliers				
Carrella Narrala are	I abanatan ID	A I		Davis	C-II D-4-	D D. 4.	A1 D-4-	Anal. within	Anal. beyond
Sample Number	Laboratory ID	Analys	SIS	Pres.	Coll. Date	Prep. Date	Anal. Date	2X HT	2X HT
096501-001, 096503-001,	355364006, -010 and	Hg		eceived @					
096504-001	-012		27	7°C					
Comments: Samples collected 08/21/	/2014; samples 096501-001, 0	96503-001 ar	nd 096504	-001were rec	eived at 27°C and	not at method-spe	cified temperature	e of ≤6°C for Hg,	analysis
cancelled by client									
									Revised 7/2007

Validated By: Mary A. Donwan

Inorganic Metals Worksheet

AR/COC #: 615736 SDG #: 355364 Matrix: Soil

Laboratory Sample IDs: 355364006, -008, -010 and -012

Method/Batch #s: **3050B/6010B:** 1414864/1414865 **7471A:** 1417518/1417519

ICPMS Mass Cal (pass/fail) NA

ICPMS Resolution (pass/fail) NA

Analyte						Method Blank	5X Blank or	LCS	MS	Lab Rep.	Serial Dil.	ICS	ICS A	CRI			
(outliers)	Int.	\mathbb{R}^2	ICV	ccv	ICB μg/L	CCB µg/L	mg/kg	(5X MDL) mg/kg	%R	%R	RPD	%D	AB %R	MDL	%R		
Ba	✓	✓	✓	✓	✓	✓	✓	NA	✓	51	✓	✓	✓	✓	✓		
Ag	✓	✓	✓	✓	1.07	✓	✓	0.535	✓	✓	✓	✓	✓	✓	✓		
As	✓	✓	✓	✓	✓	7.85	✓	3.92	✓	✓	✓	✓	✓	✓	✓		
Pb	✓	✓	✓	✓	✓	-5.06	✓	(1.65)	✓	✓	✓	✓	✓	✓	✓		
Se	✓	✓	✓	✓	7.89	10.4	✓	5.2	✓	✓	✓	✓	✓	✓	✓		

	IS Outliers	60-125%		IS Outliers 80-120%							
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery				
None				None							

Comments:_HTs OK; Matrix QC -006 (ICP-AES) and -008 (CVAA)

Radiochemistry Worksheet

AR/COC #: <u>615736</u>					S	DG #: <u>3</u>	55364			Ma	trix: <u>Soil</u>			
Laboratory Sample IDs:3	55364– see bel	low												
Method/Batch#s: HASL 30	0 (Gammaspec	c) 1414754 /1	414869 -0	07, -009, -01	1 and -013	1414754/	1414872	-014						
Method/Batch#s:GL-RAD-	-A-002 (LSC,	Tritium Vac	uum) 1415	5004 -001, -00	02, -003, -0	004 and -00	<u>)5</u>							
Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	N	MS/ MSD RER	Lab Rep. RER				
None														
				Tracer/C	arrier Re	covery Ou	tliers							
Sample ID	Tracer/Ca	arrier %F	. 1	Sample ID			Carrier	%R		Sample	ID	Troc	er/Carrier	%R
NA	Tracer/Ca	111101 /01		Sample 1D		11acei/	Carrier	/0K		Sample	ID .	Trac	ei/Cairiei	/0K
NA .												+-		
												+-		
												+-		
Comments: HTs OK, GS DU Data rejected by the lab due to					-234 and U	J-238)					Revised 7/20			

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab																_	Page	_1_ of _2_
Batch No. N	lA					SMO	Use						101			AR/COC	615	5736
Project Name	:	MWL Surf	ace Soil	Date Sample	s Shipped:		8/22	2 [14	4	SMO Au	thorization	DA	7. 1	11	Waste Chara	cterization		
Project/Task	Manager:	R. Ziock		Carrier/Wayb	ill No.		222	85	1	SMO Co	ntact Phone	: 07			RMMA			
Project/Task	Number:	146422/10	0.11.08	Lab Contact:		Edie	Kent				Wendy Pa	alencia/50	5.844.3132		Released by	COC No.		-
Service Orde	r:	CF426-14		Lab Destinati	on:	GEL				Send Re	port to SMC):				√ 4º Celsius		
				Contract No.:	.: 1303873						Rita Kava	naugh/50	5.284.2553		Bill to: Sandia Na	ational Laboratories	s (Accour	nts Payable),
Tech Area:															P.O. Box 5800, N	IS-0154		
Building:		Room:		Operationa	al Site:	-				,					Albuquerque, NM	87185-0154		35536
Sample No.	Fraction	San	nple Location [Detail	Depth (ft)	Date/Time Collected			Sample Matrix	Container Type Volume		Preserv- ative			1	eter & Method equested		Lab Sample ID
096496	-001	MWL TS-2	2NW		N/A	e/2	1/1409	00	S	Р	2 x 1L	None	G	SA	Tritium			001
096497	-001	MWL TS-2	2SW		N/A	1	09	Oif	S	Р	2 x 1L	None	G	SA	Tritium			
096498	-001	MWL TS-2	2SE		N/A		09		s	Р	2 x 1L	None	G	SA	Tritium			003
096499	-001	MWL TS-	2NE		N/A		09	20	S	Р	2 x 1L	None	G	SA	Tritium			004
096500	-001	MWL TS-	2NE		N/A	W		V-	S	Р	2 x 1L	None	G	DU	Tritium			
-	-				-	<u>_</u>	1 (0		راء.			-	-		-			
096501	-001	MWL AHS	SS-01		N/A	8/2	114 8	20.	S	Р	250ml	None	G	SA	RCRA Metals*			
096501	-002	MWL AHS	SS-01		N/A	1		1.	S	Р	250ml	None	G	SA	Gamma Spec			- 1
096502	-001	MWL AH	SS-02		N/A	2/2	4/14 8	45	s	Р	250ml	None	G	SA	RCRA Metals*			008
096502	-002	MWL AHS	SS-02		N/A	1	1	1	S	Р	250ml	None	G	SA	Gamma Spec			009
Last Chain	1:	✓ Yes			Sample	Track	ding		SMC) Use	Special In	structions	s/QC Requi	rements:			Cond	ditions on
Validation	Req'd:	Yes			Date Er	itered:					EDD		✓ Yes		No		Re	eceipt
Backgroun	nd:	Yes			Entered	by:					Turnarour	nd Time	7 Da	ıy*	15 Day*	✓ 30 Day		
Confirmate	ory:	Yes			QC inits	s.:					Negotiate	d TAT						
Sample	N	lame	Signe	iture	Init.	С	ompany/Org	ganiza	tion/Phor	ne/Cell	Sample D	isposal	Retur	n to Clien	t 🗸 Di	sposal by Lab		
Team	Danielle	M. Nieto	Dale M	Nulo	al		4143/845-7			,	Return Sa	mples By	:					
Members																		
											* Include	CU, Ni	V, Zn, Co	o, and B	е			
1				ν.														
		. 1	ANC			١.,	- 1 - 1											ab Use
1. Relinquisl		211	1200	3		e 2/.		ime	460	_	quished by			Org		ate	Time	
1. Received		R/6) 9	7 /2 50	6 Org. 414		_			945	3. Rece				Org		ate	Time	
2. Relinquis		2/1/2	- Comment		42 Date			-	0900	_	quished by			Org		ate	Time	
2. Received	by	Re	tou	Org. (e	∠ Date	e % ~	13-14 T	ime (2915	4. Rece	eived by		/	Org	j. Da	ate	Time	}

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

Page 2 of 2 AR/COC 615736 **Project Name:** MWL Surface Soil R. Ziock Project/Task Manager: Project/Task No.: 146422/10.11.08 Tech Area: Room: Building: Lab use Depth Date/Time Sample Container Collection Sample Parameter & Method Lab Preserv-Sample No. Fraction Sample Location Detail (ft) Collected Matrix Type Volume ative Method Requested Sample ID Type 096503 MWL ABSS-01 -001 N/A S 250ml None G SA RCRA Metals* 096503 -002 MWL ABSS-01 N/A S P G 250ml None SA Gamma Spec 850 096504 -001 MWL ABSS-02 N/A P 250ml None G SA RCRA Metals* 096504 -002 MWL ABSS-02 N/A P G 250ml None SA Gamma Spec 8/2/14 230 096505 P G -001 MWL PDRV-01 1 Gal None SA Gamma Spec 096506 MWL PDRV-02 1 Gal None Gamma Spec -001 Recipient Initials_M/

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab														_	Page _1_ of _2_
Batch No. N	/IA					SMO Us	е					10	1	AR/COC	615736
Project Name Project/Task Project/Task Service Orde	Manager: Number:	MWL Surf R. Ziock 146422/10 CF426-14	0.11.08	Date Sample Carrier/Wayb Lab Contact: Lab Destinati	oill No.		22/19 2851		SMO Co	thorization intact Phone Wendy Pa eport to SMC	alencia/50	7. C 5.844.3132	-	Waste Characterization RMMA Released by COC No.	✓ 4º Celsius
Dervice Orde	1.	01 420-14		Contract No.		1303873			Jena ne	•		5.284.2553		Bill to: Sandia National Laboratorie	
Tech Area: Building:		Room:		Operation	al Site:									P.O. Box 5800, MS-0154 Albuguerque, NM 87185-0154	355369
Sample No.	Fraction		mple Location D		Depth (ft)		e/Time Ilected	Sample Matrix	Type	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	
096496	-001	MWL TS-	2NW		N/A	0/21/1	10900	s	Р	2 x 1L	None	G	SA	Tritium	
096497	-001	MWL TS-	2SW		N/A	1	0910	S	Р	2 x 1L	None	G	SA	Tritium	002
096498	-001	MWL TS-	2SE		N/A		0915	s	Р	2 x 1L	None	G	SA	Tritium	
096499	-001	MWL TS-	2NE		N/A		0920	s	Р	2 x 1L	None	G	SA	Tritium	
096500	-001	MWL TS-	2NE		N/A	W	1	S	Р	2 x 1L	None	G	DU	Tritium	005
096501	-001	MWL AHS	SS-01	į.	N/A	elzili	4 820.	S	Р	250ml	None	G	SA	RCRA Metals*	006
096501	-002	MWL AHS	SS-01		N/A	1	, 1	s	Р	250ml	None	G	SA	Gamma Spec	007
096502	-001	MWL AHS	SS-02		N/A	2/21/1	4 845	s	Р	250ml	None	G	SA	RCRA Metals*	
096502	-002	MWL AHS	SS-02		N/A	1,1	V	s	Р	250ml	None	G	SA	Gamma Spec	
Last Chain Validation		✓ Yes Yes			Sample Date En	Tracking		SMC) Use	Special Ins	structions	QC Requir	rements:	No	Conditions on Receipt
Backgrour		Yes			Entered					Turnaroun	d Time	7 Da	y*	15 Day* 30 Day	neceipt
Confirmate		Yes			QC inits					Negotiated	TAT				
Sample	N	ame .	Signat		Init.	Comp	any/Organiza	tion/Phon	ne/Cell	Sample Di	sposal	Retur	n to Client	Disposal by Lab	
Team	Danielle	M. Nieto		Nulo	de		3/845-7706		,	Return Samples By:					
Members Robert Ziock SNL/4142/				2/845-0485	200	Comments: * Include CU, Ni, V, Zn, Co, and Be					e				
		1		0 111	12.5	-12:1	11.6-	3	I	L					Lab Use
Relinquish			of the	Org. 4		8/21/	Time 9			quished by			Org.		Time
Received Relinquist	-	2/4/6	The Su	Org. 4/4		-	14 Time 0		3. Rece				Org.		Time
 Relinquish Received 		Dalous.	Auelres	Org. 4/4	2 Date Date			0900		uished by			Org.		Time
Z. neceived	Uy //	Wille.	Auellies	Oly.	Date	3-110	19 Time	0100	4. nece	ived by			Org.	. Dale	THILE

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

Page 2 of 2 AR/COC 615736 Project Name: MWL Surface Soil Project/Task Manager: R. Ziock Project/Task No.: 146422/10.11.08 Tech Area: Building: Room: Lab use Date/Time Depth Sample Container Lab Preserv-Collection Sample Parameter & Method Collected Sample No. Fraction Sample Location Detail (ft) Matrix Type Volume ative Method Requested Sample ID Type 096503 -001 MWL ABSS-01 N/A S 010 250ml None G RCRA Metals* SA 096503 MWL ABSS-01 N/A S Ρ 011 -002 250ml G None Gamma Spec 012 096504 -001 MWL ABSS-02 N/A S Р G 250ml None RCRA Metals* 013 S P 096504 MWL ABSS-02 -002 250ml None G SA Gamma Spec 8/2/14 230 014 096505 -001 MWL PDRV-01 N/A 1 Gal None G Gamma Spec 1 Gal 096506 MWL PDRV-02 None Gamma Spec Recipient Initials_

SMO-2012-CVR (11-2013) Contract Verification Review (CVR) SMO-05-03

Project Leader	ZIOCK	Project Name	MWL SURFACE SOIL	Project/Task No	. 146422_10.11.08
ARCOC No.	615736	Analytical Lab	GEL	SDG No.	355364

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

	· · ·			
Line		Com	olete?	
No.	ltem	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Х		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross	X		
	referenced and correct			
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line		Com	olete?	
No.	Item	Yes	No	If no, explain
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Χ		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and L _c	X		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Χ		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Χ		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		Hg CANCELED FOR SAMPLES 096501-001, 096503- 001 & 096504-001 DUE TO TEMPERATURE ISSUE

SMO-2012-CVR (11-2013)

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
Accuracy a) Laboratory control sample accuracy reported and met for all samples	Х		
b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
c) Matrix spike recovery data reported and met		Х	BARIUM OUTSIDE RECOVERY LIMITS FOR MATRIX SPIKE
3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		
b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
Blank data a) Method or reagent blank data reported and met for all samples	Х		
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	N/A		
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

2 COC 615736

SMO-2012-CVR (11-2013)

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)			
a) 12-hour tune check provided	N/A		
b) Initial calibration provided	N/A		
	NI/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		
e) Instrument run logs provided	N/A		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
o) motiument ingo provided			
4.3 HRGC/HRMS (1668)			
a) 12-hour tune check provided	N/A		
b) Initial calibration provided	N/A		
a) Continuing polity action provided	N/A		
c) Continuing calibration provided	IN/A		
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		

3 COC 615736

f) RRTs for samples and standards provided	N/A	
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)		
a) Initial calibration provided	N/A	
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	X	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry		
a) Instrument run logs provided	X	

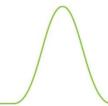
SMO-2012-CVR (11-2013) SMO-05-03

Contract Verification Review (Concluded)

5.0 Data Anomaly Report

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted	N/A		
5.3 Verification or reanalysis requested from lab	N/A		

6.0 Problem Resolution


Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Analysis	Problems/Comments/Resolutions
	Analysis

Were deficiencies unresolved?	θ Yes	X No				
Based on the review, this data packag	e is comple	ete.		X Yes	θ Νο	
If no, provide nonconformance report of	or correctio	n request	number		and date correction request was submitted:	
Reviewed by: W. Palenc	ia_p	ate:	9.25.2014			
Were resolutions adequate and data p	ackage co	mplete?	θ Yes	θ Νο		
Closed by:	С	ate:				

5 COC 615736

Mixed Waste Landfill Surface Soil Tritium and Biota Monitoring January 2015 Tritium Re-sampling Event

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date: February 25, 2015

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL Surface Soil

AR/COC: 615978 SDG: 365592 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

Five soil samples were prepared and analyzed with approved procedures using method GL-RAD-A-002 (LSC,tritium). No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were properly preserved and prepared and analyzed within the prescribed holding time.

Quantification

All quantification criteria were met.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracers or carriers were not required for these methods.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Laboratory Control Sample (LCS)

All LCS recoveries met QC acceptance criteria,

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

One field duplicate was submitted with ARCOC 615978. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 02/25/15

Sample Findings Summary

AR/COC: 615978 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC

All other analyses met QC acceptance criteria; no further data should be qualified.

Radiochemistry Worksheet

AR/COC #: 615978 SDG #: 365592 Matrix: Soil

Laboratory Sample IDs: 365592 - see below

Method/Batch#s: GL-RAD-A-002 (LSC, Tritium Vacuum)/1454287: -001, -002, -003, -004 and -005

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	N	MS/ MSD RER	Lab Rep. RER				
None														
				Two con/C	auniau Da		41:							
				1 racer/C	arrier Ke	covery Ou								
Sample ID	Tracer/Ca	rrier %	R	Sample ID	1	Tracer/	Carrier	%R		Sample	ID	Trac	er/Carrier	%R
NA														
						-								

	Revised 7/2007	
All samples were realiquotted and recounted to verify analysis results. The original results were confirmed and reported.		
Comments: H1s OK, MS and DUP -004		

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab													Page 1 of 1
Batch No. N	117				SMO Use					10		AR/COC	615978
Project Name	9:	MWL Surface Soil	Date Samples S	hipped:	1/2/115		SMO A	uthorizationa	12/4	7, 71		Waste Characterization	
Project/Task			Carrier/Waybill N	lo.	QQ 457	9	2	ontact Phon			grus	RMMA	
Project/Task		146422/10.11.08	Lab Contact:		Edie Kent			Wendy P	alencia/50	5.844.3132	1. 1. 199	Released by COC No.	
Service Orde		CF426-15	Lab Destination:		GEL		Send Re	eport to SM				1	√ 4º Celsius
ľ			Contract No.:		1303873			•		5.284.2553		Bill to: Sandia National Laborator	ies (Accounts Payable)
Tech Area:		······································								 		P.O. Box 5800, MS-0154	, , ,
Building:		Room:	Operational S	Site:								Albuquerque, NM 87185-0154	36559
	T			epth	Date/Time	Sample	Co	ontainer	Preserv-	Collection	Sample		i Lab
Sample No.	Fraction	Sample Location	5	(ft)	Collected	Matrix	Туре	Volume	ative	Method	Type	Requested	Sample II
097125	-001	MWL TS-2NW		N/A	1-20-15/13/5	s	Р	2 x 1L	None	G	SA	Tritium	001
097126	-001	MWL TS-2SW		N/A	1-20-15 / 1325	s	Р	2 x 1L	None	G	SA	Tritium	002
097127	-001	MWL TS-2SE		N/A	1-20-15/1330	s	Р	2 x 1L	None	G	SA	Tritium	003
097128	-001	MWL TS-2NE		N/A	1-20-15/1335	s	Р	2 x 1L	None	G	SA	Tritium	004
097128	-002	MWL TS-2NE		N/A	1-20-15/1335	s	Р	2 x 1L	None	G	DU	Tritium	005
					1 1 7 7 7								
						†							
Last Chain	 ::	✓ Yes	Sa	ample	Tracking	SMC) Use	Special In	structions	/QC Requir	rements:		Conditions on
Validation	Rea'd:	Yes	Da	ate Ent	tered:			EDD		✓ Yes]No	Receipt
Backgroun		Yes	Ei	ntered	by:		and the same	Turnarour	nd Time	7 Da		15 Day*	
Confirmato		Yes		C inits.				Negotiate	d TAT		 		•
Sample			natule/	Init.	Company/Organiza	tion/Phon	e/Cell	Sample Di		Retur	n to Client	t 🔃 Disposal by Lab	
Team	Danielle			~_	SNL/4143/845-7706			Return Sa					
Members			128 1 20 20 20 20 20 20 20 20 20 20 20 20 20		SNL/4142/845-0485			Comment					
				0				* Include	CU. Ni.	V, Zn, Co	o, and B	e	
								1	,,	.,,	,		
								1					Lab Use
1. Relinguish	ed by	Meller bron	Org. 4147	Date	1/20/15 Time /	354	3. Relin	quished by			Org.	. Date	Time
1. Received		2 /2 /2 /2 00	wr Prg. 4/4			354	3. Rece	 			Org.		Time
2. Relinquish			Per Org. 4147		14 1			uished by			Org.		Time
2. Received		Mary Mary	Org. 6782	Date			4. Rece	<u> </u>			Org.		Time
L		ith SMO required for 7 a		-410	1, 00.13 (15734	1				<u> </u>	. 240	1 711

Contract Verification Form (CVR)

Project Leader Ziock Project Name MWL Surface Soil Project/Task No. 146422_10.11.08

ARCOC No. 615978 Analytical Lab GEL SDG No. 365592

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	lete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Х		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line	Item	Comp	olete?	If no avalain
No.	itein	Yes	No	If no, explain
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Χ		

3.0 Data Quality Evaluation

SMO-2012-CVR (11-2013)

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Χ		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	Х		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	N/A		

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	N/A		
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) lon abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		

Line No.	Item	Yes	No	Comments
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		
	e) Instrument run logs provided	N/A		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Data Anomaly Report

Line No.	Item	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? ○ Yes ○ No

Reviewed by: Wendy Palencia Date: 02-23-2015 13:11:00

Closed by: Wendy Palencia Date: 02-23-2015 13:11:00

ANNEX C

Mixed Waste Landfill Soil-Vapor Monitoring Forms and Reports

April 2014-March 2015

Field Forms

Data Validation Reports

Contract Verification Reports

Certificates of Analysis – provided on compact disc in plastic sleeve insert

FIELD SAMPLING FORMS MWL LONG-TERM MONITORING AND MAINTENANCE SOIL-VAPOR MONITORING

Form Title	Corresponding Procedure
Tailgate Safety Briefing	PLA 05-09
SUMMA® Canister Log	FOP 08-22
Soil Vapor Sampling Form	FOP 08-22
Analysis Request and Chain of Custody*	LOP 94-03

^{*}Completed AR/COC forms are provided in the Data Validation Section of this Annex.

FIELD SAMPLING FORMS SEPTEMBER 2014 SOIL-VAPOR MONITORING

TAILGATE SAI	FETY MEETING FORM
Dept: 4142 Well Location: MWL	Date: 09/11/14 Time: 08/
Activities: Soil Vapor Monitoring and Sampling (Anyone has the right to cease field activities for sa	fety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: °F Wind Speed: MPH	Humidity: % Wind Chill °F
Chemicals Used: Acids in sample containers, stands Other:	ard solutions, Hach ACCU VAC ampules 19 glul 4
Safety T	opics Presented
☑ Be aware of slips, trips, and falls. Keep	Be aware of environmental conditions
work area clean and use a stepping stool when necessary.	(heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
Wear safety boots.	☑ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	図 Be aware of pressure hazards.
Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	No eating or drinking at sampling counter.
⊞ Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	☑ Wear communication device (cell phone, EOC pager).
Wear chemical safety goggles.	■ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911 Attendees
x (uris Armije Printed Name	Signature
Printed Name	alues of
Rick Dotson	Riel Doto
Printed Name	Signature
Printed Name	Signature A 1 : 4 1
	Signature It may not be the document currently in effect. The official version is
Tim Julisu-	ed Network (SRN), department home page
Cilbert L. Quintana	Milux 29 miline

SUMMA® Canister Log

Serial#	Date Received	Date Tested for Initial VAC	Initial VAC at 5400 ft (in. Hg)	Date Used	End VAC at 5400 ft (in. Hg)	Date Returned to SMO
34001413	9/9/14	9/11/14	-27	9/11/14	-8	9/12/14
34000217	1	1	-25	1	-8	<u> </u>
0497			-25		-8 -8	
0493			-25 -25	,	-8	
0/64			-25		-4	
0433			-25		-4	<u> </u>
0022			-26		-8 -4 -4 -4 -4	
1393			-25		-4	
0457			-25 -25 -25		- G	
0017			-25		-8	
\$249			-25 -25 -25		-4	
1802			-25		-8	
0381			-25		-8	
0055			- 26		-8 -8 -8	
0116			~26		-8	1 .
0225			-25		-8	
0030			-25		-8	
1424			-25		78	
1479			-25		-8	
0/04			-25		-4	
0050			-26		-4 -4	
1202			-26 -25 -25 -25 -25 -25 -26 -26		-8	
1451			-26		-4	
1364	4	U	-25	1	-8	1

SUMMA® Canister Log completed by:	- 1
Tim Jacksu	T-4-des
Printed Name	Signature

1012

Soil Vapor Sampling Log

Location	Date	Time	Canister #	PID (ppm)	Starting Vacuum (in. Hg)	Ending Vacuum (in. Hg)	Location Comments
MWL-5183-50	9/11/14	541	34001413	Na	-27	- V	mwc-FB3
MHC-5403-50	<u> </u>	847	n/a	_ O.Z	116	nla	
<u> </u>		848	34000217	0.2	- 2 5	- 8	
MWL-5403-100		852	7/4	0,2	NIA	NIa	
		853	nla	0.1	nla	1/4	
4		854	34000497	0,2	-25	- 8	
mm1-5003- 200		857	1/9	0,2	0/4	A(2)	
1		858	nla	0,2	nla	nla	
Ţ		859	3400493	0.2	-25	-8	
MNL-5403-300		902	n/9	0.1	Ala	n/9	
1		903	nla	0.2	1/9	nla	
V		904	34000164	0,2	- 25	-5	difficult Filling 17
nac-5003-484		911	n/9	1.2	1/4	113	
		917	119	0.2	1/4	1/4	
J		913	34000433	0. 2	-24	-4	79 min (umED OR)
MWL-5V04		942	1	1/9	-26	~%	MWL-FB4
mwl-5v04-50		948	114	0,1	119	n/a	
1		749	34801393	0.2	-25	-6	
MAL-5004-100		951	114	0.2	nla	nla	THE RESERVE THE PROPERTY OF TH
1		952	3400045)	0.2	-25	- 8	
+		954	34000077	119	-25	-8	Duplicate
MWC-5004-200		455	nla	ø. 2	nla	7/4	V • • • • • • • • • • • • • • • • • • •
)		1	34631249	0,1	-25		
14L-5004-300		950	nla	0.1	n 15	1/9	
1		959	1/4	0,2	MIS	nla	
			34001802	0.2	-25	, \	
J			34000381	n/9	-25	-8	Duplicate CAME
46L-5404 -400		1006	1900000	0,1	nla	nla	Vugar,
Ţ	J	1067	Ala	0.1	nla	1/9	

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

710# 110-008538 Backflound = 0.2pp

2 0 = 2

Soil Vapor Sampling Log

Location	Date	Time	Canister #	PID (ppm)	Starting Vacuum (in. Hg)	Ending Vacuum (in. Hg)	Location Comments
nul-5004-400	9/11/14	1004	34000055	aty 7	-25	-8	LWED OLD
n#L-5005		1030	34000/16	119	-26	- 8	MWL-FBS
4WL-5405-50		1031	nla	0,2	nla	1/4	
4		1032	34000225	0.2	-25	-8	
1WL-5V05-10U		1034	nla	0.2	1/4	1/4	
<u> </u>		1037	34000030	0.1	- 25	~ &	
hwe-5005.200		1039	nla	0,1	nla	nla	
L		1040	34001424	0,2	-25_	- 'ठ	
ne-5085-300		1042	A/5	o, Z	n /g	nla	
		1043	nla	0,2	nla	nla	
Į.		1044	34001479	0.2	-25	-8	NMEDOB
wi-suds- 400		1048	19	0.2	n(G	nia	
1		1049	114	0;1	nla	nla	
4		1050	34000104	0.1	-25	-8	NMED OB
MWC-5401		1059	3400050	ا , ن	-26	-5	MWL-FB/
MNC-5401-425		1122	nla	0.1	Nla	1/6	-
·		1123	34001202	0,1	-24	-8	MMED OB
mwc-svoz		1105	34001451	1/9	-260	- ' 6	MALLER Z
INL-5002-41,5		1131	1/4	0./	1/4	n/s	
<u> </u>	J.	(13)	34001364	0.1	-15	-8	nmed of
		*					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			*****		
		***************************************		and the state of t			
	· · ·	W _A	THE PART OF THE PA	•		17.7	
and the same of th		······································	The state of the s		********		· ·
7-4-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		······································					
1	1		5				

## FIELD SAMPLING FORMS OCTOBER 2014 SOIL-VAPOR MONITORING

Printed Name

### TAILGATE SAFETY MEETING FORM

Date: _10/22/14 Time: _0730
fety eoneerns. The buddy system will be used when needed.)
Humidity: 32.6 % Wind Chill NA °F
ard solutions, Hach ACCU-VAC ampules PL
opics Presented
⊠ Be aware of environmental conditions (heat / cold stress). Dress accordingly.     Wear sunscreen if necessary. Stay hydrated.
⊠ Be aware of electrical hazards
⊠ Be aware of pressure hazards.
☑ No eating or drinking at sampling counter.
☑ Be aware of biohazards (snakes, spiders, etc.)
<ul><li>☑ Wear communication device (cell phone, EOC pager).</li></ul>
☐ Avoid spilling purge / decon water.
844-0911/911
Signature Signature Signature Signature Signature

Signature

## SUMMA® Canister Log

	Serial #	Date Received	Date Tested for Initial VAC	Initial VAC at 5400 ft (in. Hg)	Date Used	End VAC at 5400 ft (in. Hg)	Date Returned to SMO
*	304000039	10/21/14	10/02/14	~25	10/22/14		10/22/14
	34000823		1	-25	\\\\\	-8	1
FB-1 ×	34000389			-26	terral 44 veri	-8	
FB-2	34000378			-26		- 8 - 8	
FB-3	34000173			-26		- 50	4
,	34002059			-24		-4	
	7704			~25		-4	
	3900 0820			-25		-4	
	34001490		****	-26			
	34001324			-26		-4	
PBY	3400/688			<del>-27</del>		-8	
	34000726			-25		~ 4	
	34001558			~2Y		-4	
	34000406			-25		-4	And the state of t
	34001208			-25		-4	Annania
	34000464			-25		-8	
FB5	34001248			-26	-	~ <del>~</del>	
	34000896			->-5	A. Av. etc. and a. Av.	~ 4	
	34000456			-25	in the Add Add and an analysis of the Add Add and an analysis of the Add Add and an analysis of the Ad	%	
	8437			-25		- 4	
	34001574			-25		<u>-</u> *8	
	34001132			-24		-8	
	34001279			-25		ר'ק '	
	34001444		<u> </u>	-25	<u> </u>	-8	4
			7	And the second			***************************************
ļ.							
-							
							MARRIMON

SUMMA® Canister Log completed by:		
Tim Jadisu-	TEANS	
Printed Name	Signature	***************************************

_FOP 08-22 Revision 2 _Page 47 of 51

### Soil Vapor Sampling Log

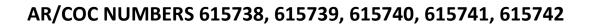
Location	Date	Time	Canister #	PID (ppm)	Starting Vacuum (in. Hg)	Ending Vacuum (in. Hg)	Location Comments
MWL-5V02	10/22/14	0831	34000239	0.1	-25	-8	
MWL-SUOI		0841	34000823	0,0	-25	-y	ADVISABLE TO THE TOTAL T
FBI		0852	34000384	NA	-24	-y	and the second s
FBZ		0854	340087 8		-26	-8	40.00
FB3		0857	34000173	<u> </u>	-26	-4	100
MWL-5403-50		0914	NA	0,0	NA	NA	
Ĵ.		0916	34002059	0,0	-24	-8	***************************************
MWL-5003-100	**************************************	0918	NA	0,0	NA	NA	
1		0921	1704	0,0	-25	-8	·
MW-5003-200		0922	NA	0,0	NA	NA	
7		0924	34000870	0.1	-2-5	-8	
MWG-5103-300		0426	NA	0,0	NA	NA	end punge @ 0424
J		0929	3400 14 90	0,0	-26	-8	st allection = 0932
mwl-503-40)		0932	NA	0.1	NA	NA	end purse @ 8935
1		0935	3400 1324	0.1	-25	-8	sa collection = 0945
F34	-	0953	34001588	MA	-27	-8	
MAR-5004-50		0155	NA	0.0	NA.	NA	
J		0966	34000726	1.0	-2-5	-8	
MWL-5V04-10D		0957	NA	0, 1	NA	NA	
4			34001658	0.1	-24	-ধ	
mul-5084-200		100/	NA	0,0	NA	NA	
¥			34000406	0,0	- 26	-8	
MWL-5004-300		1005	NA	0,0	NA	NA	
$oldsymbol{\perp}$			34001208	0,0	-25	-8	
MWL-5004-400		1009	NA	0,0	NA	NA	
4		1012	34020464	0,0	-25	-8	
FB5			34001248		-26	-8	
мик-3005-50		1076	NA	0,0	NA	NA	
<b>1</b>	7		34000896	0,0	-25	-8	

### Soil Vapor Sampling Log

Date :	Time	Canister #	PID (ppm)	Starting Vacuum (in. Hg)	Ending Vacuum (in. Hg)	Location Comments
10/22/14	1029	NA	0,0	NA	NA	
	1030	34000456	0,0	-25	-8	
	1032	NA	U,U	NA	NA	
	1034	8437	0,0	725	-8	
	1036	34001574	NA	-25	-8	Duplicate
	1037	NA	1,0	NA	NA	
	1039	3400/132	1.0	-24	-8	
	1041	NA	0,0	N4	NA	
	1043	3400 1279	0,0	-25	-&_	,
	1045	3400 1444	NA	-25	-8	Duplicate
	***					
			***************************************			
					-	dame as the control of the control o
						MAAFEE
-	,		_			
A THE PARTY OF THE						
	<u> </u>			<del>-, </del>		
		j	-			*
					,	*
	***************************************		······································	-	,	·
	***************************************					**************************************
		***************************************				· · · · · · · · · · · · · · · · · · ·
	***************************************	3.6.4		CONTROL OF STRUCTURE AND AREA		
		,.	-	the AAA Particularies	***************************************	**************************************
	-	1012214 1029 1030 1032 1034 1036 1037 1039 1041	Date 1 Time #  1012114 1029 NA  1030 34000456  1032 NA  1034 8437  1036 34001574  1037 NA  1039 3400132  1041 NA  1043 34001279	Date 1 Time # (ppm)  10/12/14 1029 NA 0.0  1030 34000456 0.0  1032 NA 0.0  1034 8437 0.0  1036 34001574 NA  1037 NA 0.0  1039 3400132 0.0  1041 NA 0.0  1043 34001279 0.0	Date Time # (ppm) Vacuum (in. Hg)  1012114 1029 NA 0.0 NA  1030 34000456 0.0 -25  1032 NA 0.0 NA  1034 8437 0.0 -25  1036 34001574 NA -25  1037 NA 0.0 NA  1039 3400132 0.0 -24  1041 NA 0.0 NA  1043 34001279 0.0 -25	Date Time # (ppm) Vacuum (in. Hg) Vacuum (in. Hg)  1012114 1029 NA 0.0 NA NA  1030 34000456 0.0 -25 -8  1032 NA 0.0 NA NA  1034 8437 0.0 -25 -8  1036 34001574 NA -26 -8  1037 NA 0.0 NA NA  1039 34801132 0.0 -24 -8  1041 NA 0.0 NA NA  1043 34001279 0.0 -25 -8

## SUMMARY SHEET FOR SEPTEMBER 2014 SOIL-VAPOR SAMPLES

### Sample Summary for September 2014 MWL Soil Vapor Monitoring


Well ID	Sample Date	Sample ID / Port	SUMMA Number	ARCOC	Sample Number	Sample Type	Associated Field Blank (ARCOC #/Sample #)	Comments			
Mixed Waste Landfill Soil Vapor Monitoring: Project Task Number 146422.10.11.08 / Service Order Number CF 01-15											
MWL-SV01	11-Sep-14	MWL-SV01-42.5	34001202	615738	096510	Environmental	615738 / 096511				
IVIVVL-SVUI	11-3ep-14	MWL-FB1	34000050	013736	096511	Field QC	n/a	Ultra Pure N2			
MWL-SV02	11-Sep-14	MWL-SV02-41.5	34001364	615739	096512	Environmental	615739 / 096513				
WWL-3V02	11-3ep-14	MWL-FB2	34001451	013739	096513	Field QC	n/a	Ultra Pure N2			
		MWL-SV03-50	34000217		096514	Environmental					
		MWL-SV03-100	34000497		096515	Environmental					
MWL-SV03	11-Sep-14	MWL-SV03-200	34000493	615740	096516	Environmental	615740 / 096519				
MVVL-3V03		MWL-SV03-300	34000164	013740	096517	Environmental					
		MWL-SV03-400	34000433		096518	Environmental					
		MWL-FB3	34001413		096519	Field QC	n/a	Ultra Pure N2			
		MWL-SV04-50	34001393		096520	Environmental					
	I 11-Sep-14	MWL-SV04-100	34000457		096521	Environmental					
		MWL-SV04-100	34000077		096522	Duplicate					
MWL-SV04		MWL-SV04-200	34001249	615741	096523	Environmental	615741 / 096527				
111112-0104		MWL-SV04-300	34001802	010741	096524	Environmental					
		MWL-SV04-300	34000381		096525	Duplicate					
		MWL-SV04-400	34000055		096526	Environmental					
		MWL-FB4	34000022		096527	Field QC	n/a	Ultra Pure N2			
		MWL-SV05-50	34000225		096528	Environmental					
		MWL-SV05-100	34000030		096529	Environmental					
MWL-SV05	11-Sep-14	MWL-SV05-200	34001424	615742	096530	Environmental	615742 / 096533				
	11-00p-14	MWL-SV05-300	34001479	010172	096531	Environmental					
		MWL-SV05-400	34000104		096532	Environmental					
		MWL-FB5	34000116		096533	Field QC	n/a	Ultra Pure N2			

## SUMMARY SHEET FOR OCTOBER 2014 SOIL-VAPOR SAMPLES

### Sample Summary for October 2014 MWL Soil Vapor Monitoring

Well ID	Sample Date	Sample ID / Port	SUMMA Number	ARCOC	Sample Number	Sample Type	Associated Field Blank (ARCOC #/Sample #)	Comments
Mixed Waste	Landfill Soil \	/apor Monitoring: F	Project Task N	lumber 1464	22.10.11.08	/ Service Orde	r Number CF 01-15	
MWL-SV01	22-Oct-14	MWL-SV01-42.5	34000823	615830	096712	Environmental	615830 / 096713	
WWL-3VUI	22-001-14	MWL-SV-FB1	34000389	013030	096713	Field QC	n/a	Ultra Pure N2
MWL-SV02	22-Oct-14	MWL-SV02-41.5	34000239	615831	096714	Environmental	615831 / 096715	
WWL-3VUZ	22-001-14	MWL-SV-FB2	34000378	013031	096715	Field QC	n/a	Ultra Pure N2
		MWL-SV03-50	34002059		096716	Environmental		
		MWL-SV03-100	7704		096717	Environmental		
MWL-SV03	22-Oct-14	MWL-SV03-200	34000820	615832	096718	Environmental	615832 / 096721	
WWL-3VU3	22-001-14	MWL-SV03-300	34001490	013032	096719	Environmental		
		MWL-SV03-400	34001324		096720	Environmental		
		MWL-SV-FB3	34000173		096721	Field QC	n/a	Ultra Pure N2
		MWL-SV04-50	34000226	615833	096722	Environmental		
	22-Oct-14	MWL-SV04-100	34001558		096723	Environmental		
MWL-SV04		MWL-SV04-200	34000406		096724	Environmental	615833 / 096727	
WWL-3V04		MWL-SV04-300	34001208	013033	096725	Environmental		
		MWL-SV04-400	34000464		096726	Environmental		
		MWL-SV-FB4	34001588		096727	Field QC	n/a	Ultra Pure N2
		MWL-SV05-50	34000896		096728	Environmental		
		MWL-SV05-100	34000456		096729	Environmental		
		MWL-SV05-200	8437		096730	Environmental		
MWL-SV05	22-Oct-14	MWL-SV05-200	34001574	615834	096731	Duplicate	615834 / 096735	
WW3 V U S	22-001-14	MWL-SV05-300	34001132	013034	096732	Environmental		
		MWL-SV05-400	34001279		096733	Environmental		
		MWL-SV05-400	34001444		096734	Duplicate		
		MWL-SV-FB5	34001248		096735	Field QC	n/a	Ultra Pure N2

DATA VALIDATION REP	PORTS FOR ENVIRO	ONMENTAL SAMPLES







PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

### www.againc.net

### Memorandum

Date: October 14, 2014

To: File

From: Monica Dymerski

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL SVM

AR/COC: 615738, 615739, 615740, 615741 and 615742

SDG: 320-9478-1

Laboratory: TestAmerica Laboratories, Inc. – West Sacramento

Project/Task: 146422.10.11.08

Analysis: TO-15 VOCs in Ambient Air

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 4.

### Summary

Twenty-four samples were prepared and analyzed with accepted procedures using method EPA TO-15a (VOCs in Ambient Air). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. Acetone was detected in the method blanks associated with all samples at concentrations < the PQL. All samples <u>except</u> -5, -16, -19, -22, and -17 were detects ≤ the PQL and will be **qualified** U,B at the PQL. Sample -17 was a detect > the PQL but ≤10X the MB concentration and will be **qualified 8.7U,B**, at the reported concentration.
- 2. Benzene was detected in all FB samples (-2, -4, -10, -18, and -24), associated with all field samples, at concentrations < the PQL. The associated results for samples -11, -12, -15, -17, and -19 were detects > the PQL but ≤5X the FB concentrations, and will be **qualified U,B2** at their reported values. All field samples *except* -1, -5, -11, -12, -15, -17, and -19 were < the PQL and ≤5X the method blank concentration and will be **qualified U,B2** at the PQL.
- 3. Carbon disulfide was detected in FB1 and FB3 samples -2 and -10, associated with samples -1 and 5 through 9, respectively. The associated results for samples -1, -5, -6, and -7 were detects ≤the PQL and ≤5X the FB concentrations and will be **qualified U,B2** at the PQL.
- 4. Toluene was detected in FB2, FB3, FB4, and FB5 samples -4, -10, -18, and -24, associated with all samples *except* sample -1. The associated results for samples -5, -6, and -7 were detects > the PQL but ≤10X the FB concentration and will be **qualified U,B2** at the reported concentrations.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

### **Holding Times**

The samples were analyzed within the prescribed holding time and were properly preserved.

### **Instrument Tune**

All instrument tune requirements were met.

### Calibration

The initial calibration and continuing calibration data met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in the blanks except as noted above in the Summary section and as follows. Acetone was detected in the method blanks at concentrations < the PQL. Samples -5, -16, -19, and -22, were detects > the PQL and >10X the blanks concentration and will not be qualified.

Benzene was detected in all FB samples (-2, -4, -10, -18, and -24), associated with all field samples. The associated result for sample -1 was a non-detect and will not be qualified. The associated result for sample -5 was a detect >5X the FB result and > the PQL and will not be qualified.

Carbon disulfide was detected in FB1 and FB3 samples -2 and -10, associated with samples -1 and 5 through 9, respectively. The associated results for samples -8 and -9 were detects > the PQL and >5X the FB concentration and will not be qualified.

Methylene chloride was detected in FB1 sample -2, associated with sample -1. The methylene chloride result for sample -1 was a non-detect and will not be qualified.

Toluene was detected in FB2, FB3, FB4, and FB5 samples -4, -10, -18, and -24, associated with all field samples <u>except</u> sample -1. The associated result for sample -3 was a non-detect and will not be qualified. The associated results for all samples <u>except</u> 3, -5, -6, and -7 were detects > the PQL and >10X the FB concentrations and will not be qualified.

Acetone was detected in the method blanks at concentrations < the PQL. Acetone results for all field blanks were qualified U due to method blank contamination and will not be applied to field sample results.

### **Surrogates**

All surrogate recoveries met OC acceptance criteria.

### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses are not required for this method.

#### Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCS/LCSD)

All LCS/LCSD acceptance criteria were met.

### **Detection Limits/Dilutions**

All detection limits were properly reported. Initial dilution factors were applied to all samples. Additional dilution factors were applied to samples -1, -3, -5, -6, -7, -9, -12, -14, -15, -17, -19, -20, -21, -22, and -23 to bring over range analytes into calibration range.

### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.

### Other QC

Five FBs were submitted, one for each ARCOC. Two field duplicate pairs were submitted with ARCOC 615741. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

**Reviewed by**: Mary Donivan Level: I Date: 10/14/14



## Sample Findings Summary



AR/COC: 615738, 615739, 615740, 615741, 615742

Page 1 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
TO15			
	096510-001/MWL-SV01-42.5	ACETONE (67-64-1)	25U, B
	096510-001/MWL-SV01-42.5	CARBON DISULFIDE (75-15-0)	4U, B2
	096511-001/MWL-FB1	ACETONE (67-64-1)	6.6U, B
	096512-001/MWL-SV02-41.5	ACETONE (67-64-1)	11U, B
	096512-001/MWL-SV02-41.5	BENZENE (71-43-2)	0.84U, B2
	096513-001/MWL-FB2	ACETONE (67-64-1)	6.5U, B
	096514-001/MWL-SV03-50	CARBON DISULFIDE (75-15-0)	1.1U, B2
	096514-001/MWL-SV03-50	TOLUENE (108-88-3)	2.8U, B2
	096515-001/MWL-SV03-100	ACETONE (67-64-1)	11U, B
	096515-001/MWL-SV03-100	BENZENE (71-43-2)	0.85U, B2
	096515-001/MWL-SV03-100	CARBON DISULFIDE (75-15-0)	1.7U, B2
	096515-001/MWL-SV03-100	TOLUENE (108-88-3)	3.0U, B2
	096516-001/MWL-SV03-200	ACETONE (67-64-1)	15U, B
	096516-001/MWL-SV03-200	BENZENE (71-43-2)	1.2U, B2
	096516-001/MWL-SV03-200	CARBON DISULFIDE (75-15-0)	2.4U, B2
	096516-001/MWL-SV03-200	TOLUENE (108-88-3)	3.6U, B2
	096517-001/MWL-SV03-300	ACETONE (67-64-1)	25U, B
	096517-001/MWL-SV03-300	BENZENE (71-43-2)	2.0U, B2
	096518-001/MWL-SV03-400	ACETONE (67-64-1)	25U, B
	096518-001/MWL-SV03-400	BENZENE (71-43-2)	2.0U, B2
	096519-001/MWL-FB3	ACETONE (67-64-1)	6.6U, B
	096520-001/MWL-SV04-50	ACETONE (67-64-1)	12U, B
	096520-001/MWL-SV04-50	BENZENE (71-43-2)	1.7U, B2
	096521-001/MWL-SV04-100	ACETONE (67-64-1)	6.8U, B

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	096521-001/MWL-SV04-100	BENZENE (71-43-2)	0.94U, B2
	096522-001/MWL-SV04-100	ACETONE (67-64-1)	12U, B
	096522-001/MWL-SV04-100	BENZENE (71-43-2)	0.99U, B2
	096523-001/MWL-SV04-200	ACETONE (67-64-1)	15U, B
	096523-001/MWL-SV04-200	BENZENE (71-43-2)	1.2U, B2
	096524-001/MWL-SV04-300	ACETONE (67-64-1)	7.2U, B
	096524-001/MWL-SV04-300	BENZENE (71-43-2)	0.64U, B2
	096525-001/MWL-SV04-300	BENZENE (71-43-2)	0.57U, B2
	096526-001/MWL-SV04-400	ACETONE (67-64-1)	8.7U, B
	096526-001/MWL-SV04-400	BENZENE (71-43-2)	1.2U, B2
	096527-001/MWL-FB4	ACETONE (67-64-1)	6.5U, B
	096528-001/MWL-SV05-50	BENZENE (71-43-2)	0.68U, B2
	096529-001/MWL-SV05-100	ACETONE (67-64-1)	11U, B
	096529-001/MWL-SV05-100	BENZENE (71-43-2)	0.86U, B2
	096530-001/MWL-SV05-200	ACETONE (67-64-1)	13U, B
	096530-001/MWL-SV05-200	BENZENE (71-43-2)	1.0U, B2
	096531-001/MWL-SV05-300	BENZENE (71-43-2)	0.6U, B2
	096532-001/MWL-SV05-400	ACETONE (67-64-1)	15U, B
	096532-001/MWL-SV05-400	BENZENE (71-43-2)	1.2U, B2
	096533-001/MWL-FB5	ACETONE (67-64-1)	6.4U, B

All other analyses met QC acceptance criteria; no further data should be qualified.

### **Data Validation Summary Worksheet**

Site/Project: MWL SVM

AR/COC #: 615738, 615739, 615740, 615741 and 615742

Validation Date: 10/14/14

Mourca & Dymersk

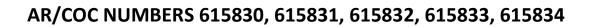
Validated By: ____

SDG #: 320-9478-1 Laboratory: TestAmerica Laboratories, Inc. West Sacramento Validator: Monica Dymerski # of Samples: 24 CVR present: Yes Analysis Type: X Organic Metals Matrix: Air AR/COC(s) present: Yes Sample Container Integrity: Intact Rad Gen Chem **Requested Analyses Not Reported** Sample Number **Laboratory ID Comments** organic genchem metals rad None **Hold Time/Preservation Outliers** Anal. within Anal. beyond Sample Number **Laboratory ID Analysis** Prep. Date Coll. Date Anal. Date Pres. **2X HT 2X HT** None Comments: Samples collected 09/11/14. Revised 7/2007

## CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Batch No. NAME SMO Use  Project Name: MWL SVM Date Samples Shipped Project/Task Manager: Mike Mitchell Carrier/Waybill No SMO Contact Phone: SMO C	615738		
Project/Task Manager: Mike Mitchell Carrier/Waybill No 221974 SMO Contact Phone: 9100 RMMA			
	RMMA		
Project/Task Number: 146422.10.11.08 Lab Contact Both Project/Task Number: 146422.10.11.08 Lab Contact Lorraine Herrera/505-844-3199 Released by COC No.			
Service Order: CF01-14 Lab Destination: Test America/CA SAC. Send Report to SMO:	☐ 4º Celsius		
	Bill to Sandia National Laboratories (Accounts Payable),		
Tech Area: P.O Box 5800, MS-0154	,		
Building: Room: Operational Site: Albuquerque, NM 87185-0154			
Sample Date/Time Sample Container Presery-Collection Sample Parameter & Metho	d Lab		
Sample No. Fraction Sample Location Detail Port Collected Matrix Type Volume ative Method Type Requested	Sample ID		
096510 -001 MWL-SV01-42.5 1 9/11/14 11:23 SG SC 6 L None G SA VOC-TO-15			
096511 -001 MWL-FB1 NA 9/11/14 10:59 UPN SC 6 L None G FB VOC-TO-15	·		
090311 -001 MVVL-FB1 NA 9/11/14 10.59 OPN SC 61 Noile G FB VOC-10-13	· ·		
<del>                                     </del>	<del></del>		
	,		
<del> </del>			
320-9478 Chain of Custody			
<u> </u>			
	Ì		
Last Chain: Yes Sample Tracking SMO Use Special Instructions/QC Requirements:	Conditions on		
Validation Req'd: ✓ Yes Date Entered: EDD ✓ Yes No	Receipt		
Background: Yes Entered by: Turnaround Time 7 Day* 15 Day* 30 Day			
Confirmatory: Yes QC inits.: Negotiated TAT			
Sample Name Signature Init. Company/Organization/Phone/Cell Sample Disposal Return to Client Disposal by Lab	-		
Team Robert Lynch Colfonol & SNL/4142/505-844-4013/505-250-7090 Return Samples By:	1 -		
Members         Gilbert Quintana         Send report to Tim Jackson/4142/MS 0729/284-2547	-		
William Gibson (1) (1) SNL/4142/505-284-3307/505-239-7367			
The state of the s	-		
	Lab Use		
1. Relinquished by William D. L. V. Org. 4142 Date 09/2/14 Time 0920 3. Relinquished by 114 Jan 910 Org. 4142 Date 9/15/1	7 Time 0 805		
If Received by Taylor 4 Org. 4/42 Date 0 9/2/4 Time 09/20 3. Received by What Date 09/18/14	Time (1915		
2 Relinquished by T- A Mily Org. 4/42 Date 9-12-14 Time 0945 4. Relinquished by Org. Date	Time		
2. Received by Bold 9 for Org. 4/47 Date 9-12-14 Time 0945 4. Received by Org. Date	Time		
Prior confirmation with SMO required for 7 and 15 day TAT			

## CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY


Internal Lab																Page	of
Batch No.	V/A					SMO Use	, ,	_			_	10			AR/COC	614	<del>57</del> 39
Project Name		MWL SV		Date Sample	oles Shipped. 9/15/14				SMO A	uthorization	1	4 7.1	1	Waste	Characterization		
Project/Task	Project/Task Manager: Mike Mitchell Carrier/Wayt				bill No 221974				SMO Contact Phone: 9MO					RMMA	4		
Project/Task Number: 146422.10.11.08 Lab Contact:									Lorraine Herrera/505-844-3199					sed by COC No.	_		
Service Orde	er:	CF01-1/4		Lab Destinati						eport to SM0	D:			1			4º Celsius
		13	5	Contract No.:		PO 69143	7-			Rita Kava	naugh/50	5-284-2553		Bill to Sandia National Laboratories (Accounts Payable			nts Payable),
Tech Area:	<u> </u>	14			_									P.O Box 5800, MS-0154			
Building:	-	Room:		Operationa	al Site:									Albuquerque,	NM 87185-0154		
		İ	<del></del>		Sample	Date/	Time	Sample	C	ontainer	Preserv-	Collection	Sample	Para	ameter & Method		Lab
Sample No.	Fraction	Sa	mple Location D		Port		ected	Matrix	Туре	Volume	ative	Method	Туре		Requested		Sample ID
096512	-001	MWL-SV	02-41.5		1	9/11/14	11:31	SG	sc	6 L	None	G	SA	VOC-TO-1	5		
096513	-001	MWL-FB:	2		NA	9/11/14	11:05	UPN	sc	6 L	None	G	FB	VOC-TO-1	5		
<del>ប</del> ខ			<del></del>	_							•		<del> </del>		<u> </u>		<del></del>
Page	<del>                                     </del>				_					<del> </del>			L	<del>                                     </del>	<u> </u>		
1632					_			1		<del> </del>							<del></del>
2 Of								<del> </del>			-						-
		<u> </u>						1		<del> </del>			<u> </u>	··-	<u> </u>		
1636								1		_					<del></del>		
Jon		<u> </u>						<del> </del>		<del> </del> -	<del> </del>			<del>                                     </del>			
Last Chain	 :	Yes			Sample	Tracking		SMC	Use	Special Ins	tructions	/QC Requir	ements.	<u></u>		Condi	itions on
Validation		✓ Yes			Date En	_		00		EDD		✓ Yes		No			eceipt
Backgroun		Yes			Entered			_		Turnaround Time 7 Day*				15 Day*	√ 30 Day	110	COIPE
Confirmato		Yes			QC inits.	-		_		Negotiated TAT				<u> </u>	Para reas—1	-	
Sample	N	ame	Signat	ure	Init. Company/Organization/Phone/Ce									V	Disposal by Lab		
Team	Robert Ly	vnch	West In	rk.	W	SNL/4142/5				Return Sar	nples By:						
Members	Gilbert Q		AsTUT ZM	استلام	621	SNL/4144/5				Comments	<del></del>	Send report to	Tım Jackson	/4142/MS 0729/2	84-2547		
	William C		Jedla 1/2	.//	70108	SNL/4142/5										-	
			y s							1							
	··-									1	12	. 1				Lat	b Use
1.Relinquishe	1. Relinquished by 1/4 Milliam Fully Org. 4/4				2 Date	09-12-19	Time (	920	3.Relino	Relinquished by Rhile for Grus Org.				4142	Date 9/05/14		0805
犬 Received I		-4-419		Org.4/42		09-12-1	<del>_</del>		3. Rece		MI	^~	Org.		Date 9/18/14		0915
2:Relinquishe	ed by	<del>-/                                    </del>	4-1	Org.4/42		9-12-1	•	945		uished by			Org.		Date	Time	<u></u>
2. Received I		01.0	<del>/ //</del>	Org. 4( Y		9-12-1			4. Rece				Org.	<del></del> .	Date	Time	
Prior confirmation with SMO required for 7 and 15 day TAT																	

Internal Lab	,															Page _	<u>1</u> of <u>1</u>
Batch No. /	V A					SMO Use	,					10	0		AR/COC	615	740
Project Name	<del></del>	MWL SVI	<u>И</u>	Date Sample	s Shipped	9/15	5/14		SMO A	ıthorization:	21	7. 1.	1/10	Waste	Characterization		
Project/Task	Manager:	Mike Mitcl	hell	Carrier/Wayb	ıll No.		1974	Z	SMO C	ontact Phone	<del></del>			RMMA			
Project/Task	Number:	146422.10	0.11.08	Lab Contact:		BETH R	ILEY	_	1	Lorraine H	Herrera/50	5-844-3199		Releas	ed by COC No.		
Service Orde	r.	CF01-1/		Lab Destinati	ion.	Test Amer	ica/CA	SACRE.	Send R	eport to SMC	);			1		4°	Celsius
		5		Contract No		PO 69143	7			Rita Kava	naugh/505	-284-2553		Bill to Sandia N	lational Laboratories	(Accounts	Payable),
Tech Area:		-	<del>NU</del>		<u>-</u>									P O. Box 5800.	, MS-0154		
Building:	<u>-</u>	Room:		Operation	al Site:									Albuquerque, NM 87185-01			
		Ì			Sample	Date/	Time	Sample	Co	ntainer	Preserv-	Collection	Sample	Para	meter & Method	- 1	Lab
Sample No.	Fraction	San	nple Location D		Port	Colle	cted	Matrix	Туре	Volume	ative	Method	Туре		Requested	s	ample ID
096514	-001	MWL-Syc	03-50		1_	9/11/14	8:48	SG	sc	6 L	None	G	SA	VOC-TO-15			
096515	-001	MWL-SV	03-100		2	9/11/14	8:54	SG	sc	6 L_	None	G	SA	VOC-TO-15			
096516	-001	MWL-SV	03-200		3_	9/11/14	8:59	SG	sc	6 L_	None	G	SA	VOC-TO-15			
096517	-001	MWL-SV	03-300		4	9/11/14	9:04	SG	sc	6 L	None	G	SA	VOC-TO-15			
⊔ 096518	<del></del> -				5	9/11/14 9:13 SG			sc	6 L_	None G SA			VOC-TO-15			-
ည္ကိ 096519	96519 -001 MWL-FB3				NA	9/11/14	9:41	UPN	sc	6 L	None	G	FB	VOC-TO-15			
o f					<u> </u>										_		
1 6																	
36																	
Last Chain	:	Yes			Sample	Tracking		SMO	Use	Special Ins	tructions	QC Requir	ements:	-		Conditi	ons on
Validation	Req'd:	√ Yes			Date Ent	ered:				EDD		✓ Yes		No		Rec	eipt
Backgroun	d:	Yes	- <u>-</u>		Entered	by.		_		Turnaroun	d Time	7 Day	<u></u>	15 Day*	✓ 30 Day		
Confirmato	ry:	Yes			QC inits.	:				Negotiated	TAT			<u> </u>			
Sample	N:	ame	Şignatı	ıre	Init.	Company	y/Organiza	tion/Phone	e/Cell	Sample Dis	sposal	Return	to Client	✓ <u>[</u>	Disposal by Lab		
-	Robert L	ynch	lattere	T	Rc	SNL/4142/5	05-844-40	13/505-25	0-7090	Return Sar	nples By:						
	Gilbert Q	uintana	MATZA		As red	SNL/4144/50	05-228-26	 06		Comments		Send report to	Tım Jackson	/4142/MS 0729/28	4-2547		J
	William C		11/11/	2///-		SNL/4142/50		_	9-7367							-	
	William Gibson					<del></del>											
<del></del>								_	_			1				Lab	ا مواا
1. Relinquished by William Silv. Org. 4/4					7 Date	9-12-19	/ Time	0970	3 Relina	uished day	2/16	the se	Orn	4/47 n	ate 9/15/10	Time	
件. Received b		2 9-115		Org. 4/42					3. Recei		Univ	700 T	Org.	org. 4/42 Date 4/15/14 org. Date 4/1/14			0915
<del></del> -				Org. 4/42		9-12-14		0445	4.Reling	uished by		- <del></del>	Org.	D	ate	Time	
	P. Received by P. 4 9. for Some Org. 4/1					<del></del>			4. Recei				Org.	D		Time	
KPrior confir	mation	ith SMO FE	uired for 7 and			<del></del>								-			

Internal Lab																rage	
Batch No. 🐧	//A					SMO Use	,	_				,,,	0		AR/COC	614	5741
Project Name Project/Task Project/Task Service Orde	Manager. Number:	MWL SVI Mike Mito 146422.1 CF01-14	hell 0.11.08	Date Sample Carrier/Wayl Lab Contact Lab Destinat	oill <b>N</b> o.	221	74 774 RILTY ica/CA		SMO C	uthorization ontact Phone Lorraine H eport to SMC	e: -lerrera/50	5-844-3199	Eno	🔚 кими	Characterization		1º Celsius
			ixud	Contract No.	:	PO 69143		<u>, , , , , , , , , , , , , , , , , , , </u>		Rita Kava	anaugh/505	-284-2553		Bill to:Sandia	National Laboratories		
Tech Area:			5-71						····					P O Box 580			
Building:		Room:		Operation	al Site:									Albuquerque,	NM 87185-0154		
-	Fraction	Sar	mple Location	n Detail	Sample Port	Date/ Colle		Sample Matrix	Co Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type	Para	ameter & Method Requested		Lab Sample ID
096520	-001	MWL-SV	04-50		1	9/11/14	9:49	SG	sc	6 L	None	G	SA	VOC-TO-1	5	}	
096521	-001	MWL-SV	04-100		2	9/11/14	9:52	SG	sc	6 L	None	G	SA	VOC-TO-1	5		
096522	-001	MWL-SV	04-100		2	9/11/14	9:54	SG	sc	6 L	None	G	DU	VOC-TO-18	5		
096523	-001	MWL-SV	04-200		3	9/11/14	9:56	SG	sc	6 L	None	G	SA	VOC-TO-15	5 _		
」 □ 096524	-001	MWL-SV	04-300		4	9/11/14	10:00	SG	sc	6 L	None	G	SA	VOC-TO-1	5		
ກ 096525	-001	MWL-SV	04-300		4	9/11/14	10:03	SG	sc	6 L	None	G	DU	VOC-TO-1	5		
096526	-001	MWL-SV	04-400		5	9/11/14	10:08	SG	sc	6 L	None	G	SA	VOC-TO-1	5		<u>-</u>
o 096527	-001	MWL-FB4	4		NA	9/11/14	9:42	UPN	sc	6 L	None	G	FB	VOC-TO-1	5		
ν γ													_				
		-															
Last Chain:		Yes			Sample	Tracking		SMO	Use	Special Ins	structions	QC Requir	ements:			Condi	itions on
Validation I	Req'd:	✓ Yes			Date Ent	ered:		_		EDD		✓ Yes		No		Re	ceipt
Backgroun	d:	Yes			Entered	by:				Turnaroun	d Time	7 Da	<u>v</u> * []	15 Day*	√ 30 Day		
Confirmato	гу:	Yes		- "	QC inits.	:				Negotiated	TAT						
Sample	N;	ame	Sign	nature	Init.	Compan	y/Organiza	tion/Phone	e/Cell	Sample Dis	sposal	Return	to Client	<u> </u>	Dîsposal by Lab		
Team	Robert Ly	ynch	Tolten	ist	20	SNL/4142/5	05-844-40°	13/505-25	0-7090	Return Sar	nples By:						
Members	Gilbert Q	uintana	siet &	4-6	10 US	SNL/4144/5	05-228-260	06		Comments	<b>s:</b>	Send report to	Tım Jackson	/4142/MS 0729/2	84-2547	-	
	William G	Gibson 4	Willed	BULL	1012	SNL/4142/5	05-284-330	07/505-23	9-7367							-	
					0.			_			,	1				-	-
			L <u> </u>					_		<u> </u>		<u> </u>	=		, ,	Lat	Use
1.Relinquishe		ullia	11 Sel	Org.4/4		09-12-1			3.Reling	uished by	W/47.	Jug	w Org.	4142 1	Date 9/15/14		2805
f. Received b	<del></del>	- A -day		Org.4/42	2 Date	09-12-1			3. Rece	ved by	Mm	my	Org.	l	Date 9/14/19	Time	0915
ટ્રે.Relinquishe	d by	=9-115		Org.4/4		9-12-17				uished by	•	<i>y</i> •	Org.	į	Date	Time	
2. Received b		269-	h 91	Org. 414	<b>Z</b> Date	9-12-16	/ Time &	2945	4. Rece	ved by			Org.	1	Date	Time	
Prior confire	nation w	th SMO re	quired for 7 a	and 15 day TA	Γ		-	-									

## ORIGINALS **CONTRACT LABORATORY** ANAI VOIC DECLIEST AND CHAIN OF CLISTODY

				A	MALI	SIS KE	QUES	) I AN		TAIN O	r Cu	וטטופ	ſ			
Internal Lab															Pag	je <u>1</u> of <u>1</u>
Batch No.	NA					SMO Use								AR/CO	oc 61	5742
Project Nam	e:	MWL SV	<u>—</u> ——	Date Sample	es Shipped	9 15	14		SMO A	uthorization;	21	4970		Waste Characteriza		
Project/Task	Manager	Mike Mito	hell	Carriet/Way		22	97	4	-	ontact Phone			Smo	T RMMA		
Project/Task	Number:	146422.1	0.11.08	Lab Contact			RILBY	,	1	Lorraine H	Herrera/50	5-844-3199		Released by COC N	No.	
Service Orde	∍r.	CF01-1/	<u>′</u> 5	Lab Destinat	tion.	Test Ameri			Send R	eport to SMC	D:			<u> </u>		4º Celsius
L			rl I	Contract No	<u>:</u>	PO 691437	-		ļ	Rita Kava	naugh/50	5-284-2553		Bill to Sandia National Labo	ratories (Accor	unts Payable),
Tech Area:	<u> </u>		<u> </u>						<u>-</u>			-		P.O. Box 5800, MS-0154		
Building:		Room:		Operation	al Site:									Albuquerque, NM 87185-01	154	
		Ī			Sample	Date/1		Sample	C	ontainer	Preserv-	Collection	Sample	Parameter & Me	ethod	Lab
Sample No.	Fraction	Saı	mple Location [	Detail	Port	Colle	cted	Matrix	Туре	Volume	ative	Method	Туре	Requested	<u>i</u>	Sample ID
_096528	-001	MWL-SV	05-50	_	1	.9/11/14	10:32	SG_	sc	6 L	None	G	SA	VOC-TO-15		
096529	-001	MWL-SV	05-100		2	•9/11/14	10:37	sg	sc	6L	None	G	SA	VOC-TO-15		<u> </u>
096530	-001	MWL-SV	05-200		3	•9/11/14	10:40	sg	sc	6 L	None	G	SA	VOC-TO-15		
096531	-001	MWL-SV	05-300		4	9/11/14	10:44 -	sG	sc	6 L	None	G	SA	VOC-TO-15	_	
096532	-001	MWL-SV	 05-400		5	9/11/14	10:50	sg	sc	6 L	None	G	SA	VOC-TO-15		T
ர் 096533	-001	MWL-FB:	 5		NA	9/11/14	10:30	UPN	sc	6 L	None	G	FB	VOC-TO-15		Ţ·
0																
1636							5			_			<u> </u>			
<u> </u>				<del></del>			_	1	_	-		<del></del>				<del> </del>
			-								<u> </u>	t —		<del>                                     </del>		<del>                                     </del>
Last Chain	  :	Yes		-	Sample	Tracking		SMO	L Use	Special Ins	tructions	/QC Requir	L rements:	<u> </u>	Con	ditions on
Validation		√ Yes		<del></del>	Date En	_		00	455	EDD		☑ Yes		No		Receipt
Backgroun		Yes			Entered		_			Turnaroun	d Time	7 Da		15 Day* 30 D	<del></del>	
Confirmato		Yes			QC inits			·		Negotiated			<del>_</del>		=	
Sample	N	ame	, Şignat	ure	Init.	Company	/Organizat	ion/Phone	e/Cell	Sample Dis		Retur	to Client	Disposal by	Lab	-
Team	Robert L	ynch	Tolfein	ch	RC	SNL/4142/50	)5-84 <b>4-</b> 401	3/505-25	0-7090	Return Sar	nples By:					
Members	Gilbert C	uintana		antone	276	SNL/4144/50	5-228-260	6		Comments	i:	Send report to	Tım Jacksor	n/4142/MS 0729/284-2547	<u> </u>	
1	William (	Gibson	Willen 82	Telor		SNL/4142/50	5-284-330	7/505-23	9-7367	1						
				$T_{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline$	0.1						,	1			-	_
		,	-				_					0/	_		_/ Li	ab Use
1.Relinquishe	ed by 🛭	Villa	Still	Org. 4/4		09-12-14			3.Relino	uished by	2/4 T	112 4	Org.	4142 Date 9/15	-/19 Time	e 0805
Received	<del></del>	9-14-		Org. <u>47</u> 47	ZDate	09-12-19	<u>∕</u> Time <i>0</i>	920	3. Rece	ived by	1/m	0	Org.		19/4 Time	e 0915
2.Relinquishe	ed by 7	=47/15	<u> </u>	Org. 4 142		9-12-14			4.Relino	uished by		0	Org.	Date	Time	<u> </u>
2. Received 1	by C	1 9	fra 840	Org. 414	Z Date	9-12-14	Time /	745	4. Rece	ived by			Org.	Date	Time	<del>)</del>
Prior confir	mation w	Ith SMO re	qtired for 7 and	1 15 day TA	Γ	-										
14			quired for 7 and													







PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

#### www.againc.net

#### Memorandum

Date: December 3, 2014

To: File

From: Mary Donivan

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL SVM

AR/COC: 615830, 615831, 615832, 615833 and 615834

SDG: 320-10172-1

Laboratory: TestAmerica Laboratories, Inc. – West Sacramento

Project/Task: 146422.10.11.08

Analysis: TO-15 VOCs in Ambient Air

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 4.

#### **Summary**

Twenty-four samples were prepared and analyzed with accepted procedures using method EPA TO-15A (VOCs in Ambient Air). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. Styrene, m,p-xylene and o-xylene were detected in the method blanks associated with all samples <u>except</u> 320-10172-1 through -4 at concentrations < the PQL. All associated results for samples -5, -7, -15,-16, -17, -18 and -20, the m,p-xylene and o-xylene results for samples -19 and -21 and the o-xylene result for sample -23 were detects ≤ the PQL and will be **qualified U,B** at the PQL.
- 2. Chlorobenzene, 1,3-dichlorobenzene and ethylbenzene were detected in the method blank associated with samples -7, -16 and -17 at concentrations < the PQLs. The chlorobenzene and ethylbenzene results for samples -7 and -17 and the 1,3-dichlorobenzene result for sample -7 were detects ≤ the PQLs and will be **qualified U,B** at the PQL.
- 3. Chlorobenzene, ethylbenzene and toluene were detected in the method blank associated with samples -15 and -18 through -24 at concentrations < the PQLs. The chlorobenzene result for sample -20, the ethylbenzene results for samples -15 and -20 and the toluene results for samples -15, -18 and -19 were detects ≤ the PQLs and will be **qualified U,B** at the PQL.
- 4. Acetone was detected in FB2 sample -4, associated with sample -003, at a concentration < the PQL. The associated sample result was a detect < the PQL and ≤10X the method blank concentration and will be **qualified 45U,B2** at the PQL.
- 5. Benzene and toluene were detected in FB4 sample -16, associated with samples -11 through -15, at concentrations <the PQL. The benzene results for samples -12, -14 and -15 and the toluene results for all associated samples were detects ≤ the PQLs and will be **qualified U,B2** at the PQL.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

### **Holding Times**

The samples were analyzed within the prescribed holding time and were properly preserved.

#### **Instrument Tune**

All instrument tune requirements were met.

#### **Calibration**

The initial calibration and continuing calibration data met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in the blanks except as noted above in the Summary section and as follows. Styrene, m,p-xylene and o-xylene were detected in the method blanks associated with all samples *except* 320-10172-1 through -4 at concentrations < the PQL. The remaining associated sample results were non-detects and will not be qualified. Styrene, m,p-xylene and o-xylene results for FB4 sample -16 associated with samples -11 through -15, were qualified U due to MB contamination and will not be applied to field sample results.

Chlorobenzene, 1,3-dichlorobenzene and ethylbenzene were detected in the method blank associated with samples -7, -16 and -17 at concentrations < the PQLs. All associated results for sample -16, and the 1,3-dichlorobenzene result for sample -17 were non-detects and will not be qualified.

Chlorobenzene, ethylbenzene and toluene were detected in the method blank associated with samples -15 and -18 through -24 at concentrations < the PQLs. The toluene results for samples -020, -21, -22 and -23 were detects >10X the MB concentration and > the PQL and will not be qualified. The chlorobenzene result for sample -15; the chlorobenzene and ethylbenzene results for samples -18, -19, and 20 through -23, and all associated results for sample -24 were non-detects and will not be qualified.

Acetone and toluene were detected in FB1 sample -2, associated with sample -001, at concentrations < the PQLs. The associated sample results were non-detects and will not be qualified.

2-Butanone was detected in FB2 sample -4, associated with sample -003, at a concentration < the PQL. The associated sample result was non-detect and will not be qualified.

Benzene and toluene were detected in FB4 sample -16, associated with samples -11 through -15, at concentrations <the PQL. The benzene result for sample -11 was a detect >5X the FB concentration and > the PQL and the result for sample -13 was non-detect. These sample results will not be qualified.

Trichloroethene was detected in FB5 sample -24, associated with samples -17 through -19, -20DL and -21through -23, at a concentration < the PQL. All associated sample results were detects >5X the FB concentration and >the PQL and will not be qualified.

#### **Surrogates**

All surrogate recoveries met QC acceptance criteria.

#### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses are not required for this method.

#### Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCS/LCSD)

All LCS/LCSD acceptance criteria were met except as follows. The %Rs were > the upper acceptance limit for 1,2,4-trichlorobenzene for the LCSs associated with samples -5 through -14, -16, and -17 (Batches 58105 and 58139). Three recoveries per LCS are allowed to fall outside acceptance criteria since 50 analytes were reported. No sample data will be qualified as a result.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. Initial dilution factors were applied to all samples. An additional dilution factor was applied to sample -20 to bring over range analytes into calibration range.

#### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.

#### Other QC

Five FBs were submitted, one for each ARCOC. Two field duplicate pairs were submitted with ARCOC 615834. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Monica Dymerski Level I Date: 12/04/14



# Sample Findings Summary



AR/COC: 615830, 615831, 615832, 615833, 615834

Page 1 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
TO15			
	096714-001/MWL-SV02-41.5	ACETONE (67-64-1)	45U, B2
	096716-001/MWL-SV03-50 (port 1)	M,P-XYLENE (179601-23-1)	6U, B
	096716-001/MWL-SV03-50 (port 1)	O-XYLENE (95-47-6)	3U, B
	096716-001/MWL-SV03-50 (port 1)	STYRENE (100-42-5)	3U, B
	096718-001/MWL-SV03-200 (port 3)	1,3-DICHLOROBENZENE (541-73-1)	3U, B
	096718-001/MWL-SV03-200 (port 3)	CHLOROBENZENE (108-90-7)	2.2U, B
	096718-001/MWL-SV03-200 (port 3)	ETHYLBENZENE (100-41-4)	3U, B
	096718-001/MWL-SV03-200 (port 3)	M,P-XYLENE (179601-23-1)	6U, B
	096718-001/MWL-SV03-200 (port 3)	O-XYLENE (95-47-6)	3U, B
	096718-001/MWL-SV03-200 (port 3)	STYRENE (100-42-5)	3U, B
	096722-001/MWL-SV04-50 (port 1)	TOLUENE (108-88-3)	1.2U, B2
	096723-001/MWL-SV04-100 (port 2)	BENZENE (71-43-2)	2U, B2
	096723-001/MWL-SV04-100 (port 2)	TOLUENE (108-88-3)	2U, B2
	096724-001/MWL-SV04-200 (port 3)	TOLUENE (108-88-3)	3U, B2
	096725-001/MWL-SV04-300 (port 4)	BENZENE (71-43-2)	2U, B2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	096725-001/MWL-SV04-300 (port 4)	TOLUENE (108-88-3)	2U, B2
	096726-001/MWL-SV04-400 (port 5)	BENZENE (71-43-2)	2U, B2
	096726-001/MWL-SV04-400 (port 5)	ETHYLBENZENE (100-41-4)	2U, B
	096726-001/MWL-SV04-400 (port 5)	M,P-XYLENE (179601-23-1)	4.1U, B
	096726-001/MWL-SV04-400 (port 5)	O-XYLENE (95-47-6)	2U, B
	096726-001/MWL-SV04-400 (port 5)	STYRENE (100-42-5)	2U, B
	096726-001/MWL-SV04-400 (port 5)	TOLUENE (108-88-3)	2U, B,B2
	096727-001/MWL-SV-FB4	M,P-XYLENE (179601-23-1)	0.8U, B
	096727-001/MWL-SV-FB4	O-XYLENE (95-47-6)	0.4U, B
	096727-001/MWL-SV-FB4	STYRENE (100-42-5)	0.4U, B
	096728-001/MWL-SV05-50 (port 1)	CHLOROBENZENE (108-90-7)	0.88U, B
	096728-001/MWL-SV05-50 (port 1)	ETHYLBENZENE (100-41-4)	1.2U, B
	096728-001/MWL-SV05-50 (port 1)	M,P-XYLENE (179601-23-1)	2.3U, B
	096728-001/MWL-SV05-50 (port 1)	O-XYLENE (95-47-6)	1.2U, B
	096728-001/MWL-SV05-50 (port 1)	STYRENE (100-42-5)	1.2U, B
	096729-001/MWL-SV05-100 (port 2)	M,P-XYLENE (179601-23-1)	2.5U, B
	096729-001/MWL-SV05-100 (port 2)	O-XYLENE (95-47-6)	1.3U, B
	096729-001/MWL-SV05-100 (port 2)	STYRENE (100-42-5)	1.3U, B
	096729-001/MWL-SV05-100 (port 2)	TOLUENE (108-88-3)	1.3U, B

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	096730-001/MWL-SV05-200 (port 3)	M,P-XYLENE (179601-23-1)	5U, B
	096730-001/MWL-SV05-200 (port 3)	O-XYLENE (95-47-6)	2.5U, B
	096730-001/MWL-SV05-200 (port 3)	TOLUENE (108-88-3)	2.5U, B
	096731-001/MWL-SV05-200 (port 3)	CHLOROBENZENE (108-90-7)	0.3U, B
	096731-001/MWL-SV05-200 (port 3)	ETHYLBENZENE (100-41-4)	0.4U, B
	096731-001/MWL-SV05-200 (port 3)	M,P-XYLENE (179601-23-1)	0.8U, B
	096731-001/MWL-SV05-200 (port 3)	O-XYLENE (95-47-6)	0.4U, B
	096731-001/MWL-SV05-200 (port 3)	STYRENE (100-42-5)	0.4U, B
	096732-001/MWL-SV05-300 (port 4)	M,P-XYLENE (179601-23-1)	2.8U, B
	096732-001/MWL-SV05-300 (port 4)	O-XYLENE (95-47-6)	1.4U, B
	096734-001/MWL-SV05-400 (port 5)	O-XYLENE (95-47-6)	1.6U, B

All other analyses met QC acceptance criteria; no further data should be qualified.

# **Data Validation Summary Worksheet**

AR/COC #: 615830, 615831, 615832, 615833 and 615834 Site/Project: MWL SVM Validation Date: 12/03/14 SDG #: 320-10172-1 Laboratory: TestAmerica Laboratories, Inc. West Sacramento Validator: Mary Donivan Matrix: Air # of Samples: 24 CVR present: Yes Analysis Type: X Organic Metals

AR/COC(s) present: Yes Sample Container Integrity: Intact Rad Gen Chem

	Requested Analyses Not Reported														
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments									
None															
		1	1												

Hold Time/Preservation Outliers														
Sample Number Laboratory ID Analysis Pres. Coll. Date Prep. Date Anal. Date Anal. Date Anal. within Anal. be 2X HT 2X HT														
None														

Comments: Samples collected 10/22/2014	
	Revised 7/2007

Validated By: Mary A. Donwan

# **Organic Worksheet (GC/MS)**

AR/COC #: 615830, 615831, 615832, 615833 and 615834 SDG #:320-10172-1 Matrix: Air

Laboratory Sample IDs: 320-10172-1 through -24

Method/Batch #s: **EPA TO-15:** A58064, B58105, C58139 and D58224 Tuning (pass/fail): pass TICs Required? (yes/no) no

	T I DE DOD D		ı					LCS/					
Analyte (outliers)	Int.	RF	RSD/R ²	CCV (ICV) %D	Method Blank	5X (10X) Blank	k CS %R	LCSD %R	LCSD RPD	FB1 - 2	5X (10X) FB		
acetone	NA	<b>✓</b>	✓	✓	✓	NA	✓	✓	✓	0.75J	(7.5)		
toluene	NA	✓	✓	✓	✓	NA	✓	✓	✓	0.065J	(0.65)		
										FB2-4	5X (10X) FB		
acetone	NA	✓	✓	✓	✓	NA	✓	✓	✓	1.5J	(15)		
2-butanone	NA	✓	✓	✓	✓	NA	✓	✓	✓	0.22J	(2.2)		
										FB3-10	5X (10X) FB		
styrene	NA	✓	✓	✓	^B 0.0995J	0.498	✓	✓	✓	✓	✓		
m,p-xylene	NA	✓	✓	✓	0.174J	0.87	✓	✓	✓	✓	✓		
o-xylene	NA	✓	✓	✓	0.0892J	0.446	✓	✓	✓	✓	✓		
1,2,4-trichlorobenzene	NA	✓	✓	✓	✓	NA	151	156	✓	✓	✓		
										FB4-16	5X (10X) FB		
benzene	NA	✓	✓	✓	✓			✓	✓	0.083J	0.415		
chlorobenzene	NA	✓	✓	✓	^C 0.0795J			✓	✓	✓	✓		
1,3-dichlorobenzene	NA	✓	✓	✓	0.118J 0.59		✓	✓	✓	✓	✓		
ethylbenzene					0.0886J	0.443	✓	✓	✓	✓	✓		
styrene	NA	✓	✓	✓	0.112J	0.56	✓	✓	✓	0.064J	0.32	NA*	
toluene	NA	✓	✓	✓	✓	NA	✓	✓	✓	0.051J	(0.51)		
m,p-xylene	NA	✓	✓	✓	0.230J	1.15	✓	✓	✓	0.15J	0.75	NA*	
o-xylene	NA	✓	✓	✓	0.0992J	0.496	✓	✓	✓	0.067J	0.34	NA*	
1,2,4-trichlorobenzene	NA	✓	✓	✓	✓	NA	156	154	✓	✓	✓		
										FB5-24	5X (10X) FB		
chlorobenzene	NA	✓	✓	✓	D _{0.0787} J	0.394	✓	✓	✓	✓	✓		
ethylbenzene	NA	✓	✓	✓	0.0891J	0.456	✓	✓	✓	✓	✓		
styrene	NA	✓	✓	✓	0.112J	0.56	✓	✓	✓	✓	✓		
toluene	NA	✓	✓	✓	0.0549J	(0.549)	✓	✓	✓	✓	✓		
trichloroethene	NA	✓	✓	✓	✓	NA	✓	✓	✓	0.17J	0.85		
m,p-xylene	NA	✓	✓	✓	0.224J	1.12	✓	✓	✓	✓	✓		
o-xylene	NA	✓	✓	✓	0.0982J	0.491	✓	✓	✓	✓	✓		
					Surrogate	Recovery Outli	iers						•
Sample ID													
NA													
					IS	S Outliers							
Sample ID Area	RT	Area	RT	A	rea	RT A	rea	RT	A	rea	RT	Area	RT
None													

Comments: HTs OK, ICAL MS2 11/13/14. ABatch 58064 (11/15/14), samples -1 through -4. ICAL MS7 10/01/14 Batch 58105 (11/16/14), samples -5 through -6,-8 through -14. Batch 58139 (11/16-17/14), samples -7, -16 and -17. Batch 58224 (11/17-18/14), samples -15, -18 through -24 and -20 dilution. *Qualified U in the FB sample. FB result not applied to associated field samples.

Revised 2007

Internal Lab															_	Page	<u>1</u> of <u>1</u>
Batch No						SMO Use					_	,	_		AR/COC	61	5830
Project Name	e:	MWL SVI	м	Date Sample	s Shipped	- Ban			SMO A	uthorization:	Jan	11		Was	te Characterization		
Project/Task	Manager	Tim Jack	son	Carrier/Wayl	oll No	225	573		змо с	ontact Phone	e:			T RMN	IA.		
Project/Task				Lab Contact:		Beth Riley,		5600	1	Lorraine I	Herrera/50	5-844-31	99	Rele	ased by COC No.		
Service Orde		CF01-15		Lab Destinat	ion.	TA/West S			Send R	eport to SMC	<b>D</b> :			7	·		4º Celsius
		•		Contract No.	-	PO 691437	7		1	•	anaugh/50	5-284-25	53	Bill to:Sandi	a National Laboratorie		
Tech Area:				<del>                                     </del>	·			-						-	00, MS-0154		-to i ajabioj,
Building:		Room:		Operation	al Site:									Albuquerque	e, NM 87185-0154		
			·		Depth	Date/	Гime	Sample	Co	ontainer	Preserv-	Collecti	on Sample	Pa	rameter & Method	1	Lab
Sample No.	Fraction	Sar	mple Location	Detail	(ft)	Colle	cted	Matrix	Туре	Volume	ative	Metho		_	Requested		Sample ID
096712	-001	MWL-SV	01-42.5			10/22/14	8:41	SG	sc	6 L	None	G	SA	VOC-TO-	15		L
096713	-001	MWL-SV-	-FB1			10/22/14	8:52	UPN	sc	6 L	None	G	FB	VOC-TO-	15		
<del>d</del>	<del> </del>						<del></del>	-			<u> </u>		_				<del></del>
Q Q										<u> </u>	<u> </u>						
<b>"</b>										1.	J _	1		1			
<u></u>						<del>                                     </del>		+	<u> </u>		II <b>LE</b> II			1			<del>-</del>
٦									<u> </u>								
2	1		4			1			1			11111111111111					
										320-10172 C		etody •					
4	}							4	<u> </u>	320-10172	main or Cu	siody					
3	Ì										1	1	1			:	İ
								T	]								
Last Chain	:	Yes			Sample	Tracking		SMC	L Use	Special Ins	structions	/QC Rea	l Uirements:	I.,		Cond	litions on
Validation		⊻ Yes			Date En	_		•		EDD		✓ Ye	<b></b>	No			eceipt
Backgroun		Yes			Entered					Turnaroun	d Time		Day*	15 Day*	√ 30 Day		
Confirmato		Yes			QC inits	.;			-	Negotiated	I TAT						
Sample	·	ame	Şigna ر وسر	ture .	Init.	Company	/Organiza	tion/Phone	e/Cell	Sample Di	sposal		urn to Clien	· /	Disposal by Lab		
Team	Robert L	ynch	Fattyn	ch	RL	SNL/4142/50	)5-844-40°	13/505-25	0-7090	Return Sar	nples By:						
	Alfred Sa	intillanes	Allelsa	EM.		SNL/4142/50				Comments	):	Send repor	t lo Tım Jackso	1/4142/MS 0729	V284-2547		
	1/2//-			Fill!		SNL/4142/50				1							
	Tim Jackson T= 14/5			<del>// / / /</del>	#)	SNL/4142/50				1							
	724-019				ŕ			····		i						Lal	b Use
1.Relinquishe	1. Relinquished by Wellan Bell Org. 4142			Date	10-22-14	/ Time /	120	3.Reling	uished by			Org		Date	Time		
1. Received b	y D	mil.	dent	_Org.4/42	- Date	10-22-1	4 Time //	120	3. Rece	ived by		!	Org		Date	Time	
2.Relinquishe	ed by	ne)	den	برب .Org. برب	2 Date	10/27/10	/ Time C	2500	4.Reling	uished by			Org	Org. Date		Time	
2 Received b	by W	h ha	·	Org. Th W					4. Rece	ived by			Org		Date	Time	
V*Prior confir	rior confirmation with SMO required for 7 and 15 day																

Internal Lab																Page	_1_ of _1_
Batch No.						SMO Use							_		AR/COC	615	5831
Project Name	e:	MWL SV	M	Date Samples	Shipped	100/0	2/27/19	1	SMO A	uthorization:	Vones	12	~~	Waste	haracterization		
Project/Task				Carrier/Waybi	ll No.	2255			]ѕмо с	ontact Phone	∋:		· · · · · · · · · · · · · · · · · · ·	RMMA			
Project/Task	Number.			Lab Contact.		Beth Riley,	916-373-	5600		Lorraine l	Herrera/50	5-844-31	99	Release	ed by COC No.		
Service Orde	r:	CF01-15		Lab Destinatio	on.	TA/West S	acramen	to	Send R	eport to SMO	D:					4	lº Celsius
				Contract No :		PO 691437	•		1	Rita Kava	naugh/50	5-284-25	53	Bill to:Sandia N	ational Laboratories	(Accoun	ts Payable),
Tech Area:												·· <del>-</del>		P O. Box 5800,	MS-0154		
Building:		Room:		Operationa	l Site:									Albuquerque, N	M 87185-0154		
				· · · · · · · · · · · · · · · · · · ·	Depth	Date/1	ime	Sample	C	ontainer	Preserv-	Collect	on Sample		neter & Method	I	Lab
Sample No.	Fraction	Sa	mple Location D	etail	(ft)	Colle		Matrix	Туре	Volume	ative	Metho	-		Requested		Sample ID
096714	-001	MWL-SV	02-41.5			10/22/14	8:31	SG	sc	6 L	None	G	SA	VOC-TO-15			
096715	-001	MWL-SV	-FB2			10/22/14	8:54	UPN	sc	6 L	None	G	FB	VOC-TO-15			
						}											
20																	
							-										
29				<u> </u>									-				
	ļ <u>.</u>				<del></del>								<del></del>			<del> </del>	
<u> </u>	İ									<u> </u>		<del>                                     </del>					<del></del>
<del>‡</del>								<del> </del>		-	<u> </u>						
<del></del>														<del> </del>			
Last Chain	<u> </u>	Yes				Tlei		CMC	Use	Cassial las		100 Da	uirements:	<u></u>	<del></del>	0	******
Validation		✓ Yes	<del></del>		Sample Date En	Tracking tered:		SIVIC	ose	EDD	structions	Ye	_	No			tions on ceipt
Backgroun		Yes	·		Entered					Turnaroun	d Time		Day* ☐	15 Day*	☑ 30 Day	110	30.pt
Confirmato	гу:	Yes			QC inits.	.:				Negotiated	TAT			-			
Sample	N	ame	Signatu		Init.	Company	/Organiza	tion/Phon	e/Cell	Sample Dis	sposal	Re	urn to Clien	t ⊻ D	sposal by Lab		
Team	Robert Ly	ynch	Zall 9"	rch	EL	SNL/4142/50	5 <b>-844-40</b> 1	13/505-25	0-7090	Return Sar	nples By:						
Members	7744 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					SNL/4142/50	5-844-513	30/505-22	8-0710	Comments	:	Send repo	t to Tim Jackso	n/4142/MS 0729/284	-2547		
	William Gibson William Sold					SNL/4142/50	5-284-330	07/505-23	9-7367								
	Tim Jackson 7-1-dig				47	SNL/4142/50	5-284-254	17		]							
<u></u>																Lab	Use
1. Relinquished by Welle Walth Org. 4142								3 Relinq	uished by			Org	. Da	ate	Time		
1. Received b	<del></del>	welf		Org. 4/42		10-22-14			3. Recei				Org	. Da	ate	Time	
2. Relinquished by Lew Lorg. 447 L						Time 🌶		4.Relinq	Relinquished by Org				. Da	Date Time			
				W 5 Date 10 /3 0/14 Time 1000 4 Receiv			Received by Org.				. Da	ate	Time				
Prior confin	Prior confirmation with SMO required for 7 and 15 day TA					•						_					

Internal Lab														_	Page _	1_ of _1_
Batch No.						SMO Use					_			AR/COC	6158	332
Project Name	):	MWL SVI	M	Date Sample	s Shipped	1012	7/14		SMO At	thorization:	Bour	de		Waste Characterization		
Project/Task	Manager:	Tim Jacks	son	Carrier/Wayt	ill No.	7225	<del>5 5 73</del>		SMO Co	ontact Phone	e:			RMMA		
Project/Task	Number:	146422.1	0.11.08	Lab Contact:		Beth Riley	916-373-	5600	Lorraine Herrera/505-844-3				9	Released by COC No.		
Service Orde	г:	CF01-15		Lab Destinat	ion:	TA/West S	A/West Sacramento S			port to SMC	D:			1 —	<b>□</b> 4°	Celsius
				Contract No.	-	PO 691437	,			Rita Kava	naugh/50	5-284-255	3	Bill to:Sandia National Laboratorio		
Tech Area:		<u></u>		<u> </u>										P.O. Box 5800, MS-0154	•	,
Building:		Room:		Operation	al Site:									Aibuquerque, NM 87185-0154		
				To porture	Depth	Date/1	lime	Sample	Cr	ntainer	Preserv-	Collection	n Sample	<del>                                     </del>	- T	Lab
Sample No.	Fraction	Sar	mple Location D	)etail	(ft)	Collec		Matrix	Туре	Volume	ative	Method		Requested		ample ID
•			<u> </u>		1 1 1								<del> </del>		<del>_</del> `	211101010
096716	-001	MWL-SV	03-50 (port 1)			10/22/14	9:16	SG	sc	6L	None	G	SA	VOC-TO-15		
096717	-001	MWL-SV	03-100 (port 2)			10/22/14	9:21	SG	sc	6 L	None	G	SA	VOC-TO-15		
						<del> </del>		<del>                                     </del>								$\overline{}$
096718	-001	MWL-SV	03-200 (port 3)			10/22/14	9:24	ŞG	sc	6 L	None	G	SA	VOC-TO-15		
096719	-001	MWL-SV	03-300 (port 4)			10/22/14	9:32	SG	sc	6 L	None	G	SA	VOC-TO-15		
096720	-001	MWL-SV	03-400 (port 5)		<u></u>	10/22/14	9:45	SG	sc	6 L	None	G	SA	VOC-TO-15		
096721	-001	MWL-SV-	FB3			10/22/14	8:57	UPN	sc	6 L	None	l G	FB	VOC-TO-15		
			<u> </u>										<del>-                                    </del>			
<u> </u>								ļ								
1															İ	
-													_			$\neg \neg$
		_			_							<u> </u>	_			
					[ [	ľ		[			ĺ	<b>í</b> (			ĺ	ľ
Last Chain:		Yes			Sample	Tracking		SMO	Use	Special Instructions/QC Requireme				1	Conditio	ns on
Validation F		Yes	<del></del>		Date Ent	•				EDD		✓ Yes		No	Rece	
Background		Yes			Entered					Turnaroun	d Time		av*	15 Day* 7 30 Day		Ψ'
Confirmato		Yes			QC inits.					Negotiated			<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>		
Sample	· · · · ·	ame	, Signati	ure	Init	Company	/Organizat	tion/Phone	e/Cell	Sample Dis		Retu	rn to Client	t 🖳 Disposal by Lab		
- ·	Robert Ly	/nch		01_	EL.	SNL/4142/50				Return San	•					
	Alfred Sa		Alfal Sa	<del></del>	164	SNL/4142/50	5-844-513	0/505-228	3-0710	Comments		Send report	to Tim Jackson	n/4142/MS 0729/284-2547		ļ
Michigers	William G		14.11.	Delor		SNL/4142/50					•		100,000,000			
ŀ	Tim Jack		T- A del	70-7		SNL/4142/50										
ŀ	TIIII Jack	9011	1-11-414			3ND 4 142/30	3-207-207								Lab U	laa
	d by		12011	Org. 4/42	7 Date	10-22-14	/ Time /	120	2 Poling	uished by			Org.	l Date	Time	se
1. Received b		Men	4/4/ces/	Org. <b>4/4</b>		10-22-19	Time //		3. Recei	<u> </u>					Time	
							Time 7			<del></del>		<del>+</del>	Org.			
2.Relinquished		<u> </u>		<del>- // -</del>		W 27 /14				uished by			Org.	Date	Time	
2. Received b	<del>,</del>	<del>- , , </del>	quired for 7 and	Org. 17 W		10/20/14	Time /	100	4 Recei	vea by		<del></del>	Org.	Date	Time	
CHOI COUNTY	nauçii Wi		quired for / and	i i Juay IA I												

Internal Lab														_	Page <u>1</u> of <u>1</u>
Batch No.					_	SMO Use								AR/COC	615833
Project Name		MWL SVI		Date Samples S	Shipped		27/14		SMO Ā	uthorization:	1	Jet	June	Waste Characterization	
Project/Task	_			Carrier/Waybill	No.	225			]ѕмо с	ontact Phone	- <b></b>		•	] [] RMMA	
Project/Task	Number:	146422.10	0.11.08	Lab Contact.		Beth Riley,	916-373-	5600		Lorraine l	Herrera/50	5-844 <u>-31</u> 9	9	Released by COC No.	
Service Orde	er:	CF01-15		Lab Destination	ı	TA/West Sacramento Ser			Send R	eport to SMC	D:				4º Celsius
			<u> </u>	Contract No.:		PO 691437	,	,	1	Rita Kava	naugh/50	5-284-255	3	Bill to:Sandia National Laboratorie	s (Accounts Payable),
Tech Area:		<u></u> -												P.O. Box 5800, MS-0154	
Building:		Room:		Operational	Site:									Albuquerque, NM 87185-0154	
					epth	Date/1	ime	Sample	C	ontainer	Preserv-	Collection	on Sample	<del> </del>	Lab
Sample No.	Fraction	San	nple Location D		(ft)	Collec		Matrix	Туре	Volume	ative	Method		Requested	Sample ID
096722	-001	MWL-SV0	04-50 (port 1)			10/22/14	9:56	ŞG	sc	6 L	None	G	SA	VOC-TO-15	
096723	-001	MWL-SVC	04-100 (port 2)			10/22/14	9:59	SG	sc	6 L	None	G	SA	VOC-TO-15	
096724	-001	MWL-SVC	04-200 (port 3)			10/22/14	10:03	SG	sc	6 L	None	G	SA	VOC-TO-15	
096725	-001	MWL-SVC	04-300 (port 4)			10/22/14	10:07	SG	sc	6L	None	G	SA	VOC-TO-15	
096726	-001	MWL-SVC	04-400 (port 5)			10/22/14	10:12	SG	sc	6 L	None	G	SA	VOC-TO-15	
096727	-001	MWL-SV-	FB4				9:53	UPN	sc	6 L	6 L None G FB VOC-TO-15			VOC-TO-15	
d 													ļ		
# # #													_		
N															
		7=5							Ĺ		<u> </u>				
Last Chain:		Yes		s	ample	Tracking		SMC	) Use	Special Instructions/QC Requireme					Conditions on
Validation I		Yes		D	ate Ent	ered:				EDD		☑ Yes		No	Receipt
Backgroun	d:	Yes		E	ntered	by:		_		Turnaroun	d Time	7.0	)ay* ☐	<u>15 Day</u> *	
Confirmato	гу:	<u></u> Yes		lo lo	C inits.	:				Negotiated	I TAT				
Sample	N	ame	Signatu	ıre	init,	Company	/Organizat	tion/Phone	e/Cell	Sample Dis	sposal	Reti	ırn to Client	Disposal by Lab	
Team	Robert Ly	/nch	Lory 14	ch	RL	SNL/4142/50	5-844-401	3/505-25	0-7090	Return Sar	nples By:				
Members	Alfred Sa	ntillanes	HU/90 5-4	Till 1	61	<del>SN</del> L/4142/50	5-844-513	30/505-22	8-0710	Comments	::	Send report	to Tim Jacksor	1/4142/MS 0729/284-2547	
	William G	ibson	7///	161- 11	<del></del>	SNL/4142/50	5-284-330	07/505-23	9-7367	1		1			
J	Tim Jack	<del></del> -	T=4-106	- F	-44	SNL/4142/50									
			1- 1-2123				<del></del>			ĺ		ĺ			Lab Use
1.Relinquishe	d by	Mula	Nails	Org. 4/42	l Date	10 - 22-1	∉Time ℓ	120	3.Reling	ushed by			Org.		Time
J. Received b		- )./		Org. 4/42		10-22-19			3. Rece				Org.	Date	Time
2.Relinguishe	<del>· ~~ ×</del>	200/11		Org. 6/4 6		10/27/14	Time 7		_	uished by		_	Org.		Time
2. Received b	<del>- ' '/</del>	2. 17	<del></del>	Org. TAW	-	10/30/14	Time /		4. Rece				Org.	Date	Time
		th SMO rec	quired for 7 and			10/3//1		v -							

Internal Lab															Page	e <u>1</u> of <u>1</u>
Batch No.						SMO Use					۸			AR/CO	C 61	5834
Project Name	):	MWL SVI	M	Date Samples	s Shipped	10/2	7/14		SMO At	thorization:	Down	de		Waste Characterization	חכ	
Project/Task				Carrier/Wayb	ıll No.	725	573		SMO Contact Phone:					RMMA		
Project/Task	Number:	146422.1	0.11.08	Lab Contact:		Beth Riley,	916-373-	5600	Lorraine Herrera/505-844-3199					Released by COC No.		
Service Orde	r:	CF01-15		Lab Destinate	on:	TA/West S	acrament	to	Send Re	eport to SM(	<b>)</b> :					4º Celsius
				Contract No.:			7			Rita Kava	anaugh/50	5-284-255	3	Bill to Sandia National Laborat	ories (Accou	ınts Payable),
Tech Area:														P.O Box 5800, MS-0154		
Building:		Room:	· · · · · ·	Operationa	l Site:									Albuquerque, NM 87185-0154	ı	
			<del></del>	<u> </u>	Depth	Date/	Time	Sample	Co	ntainer	Preserv-	Collection	on Sample			Lab
Sample No.	Fraction	Sar	nple Location D	etail	(ft)	Colle		Matrix	Туре	Volume	ative	Method		Requested		Sample ID
096728	-001	MWL-SV	05-50 (port 1)			10/22/14	10:28	SG	sc	6 L	None	G	SA	VOC-TO-15		
096729	-001	MWL-SV	05-100 (port 2)			10/22/14	10:30	SG	sc	<u>6</u> L	None	G	SA	VOC-TO-15		
096730	-001	MWL-SV	05-200 (port 3)			10/22/14	10:34	\$G_	sc	6 L	None	G	SA	VOC-TO-15		
096731	-001	MWL-SV	05-200 (port 3)			10/22/14	10:36	SG	sc	6 L	None	G	DU	VOC-TO-15		
096732	-001	MWL-SV	05-300 (port 4)			10/22/14	10:39	SG	sc	6 L	None	G	SA	VOC-TO-15		
096733	-001	MWL-SV	05-400 (port 5)			10/22/14	10:43	sg	sc	6 L	None	G	SA	VOC-TO-15		
096734	-001	MWL-SV	05-400 (port 5)			10/22/14	10:45	SG	sc	6 L	None	G	DU	VOC-TO-15		_
096735	-001	MWL-SV-	FB5			10/22/14	10:24	UPN	sc	6 L	None	G	FB	VOC-TO-15		<u> </u>
•																<u></u>
															<del></del>	
Last Chain:		√ Yes			·	Tracking		SMC	Use	Special Ins	structions				1	ditions on
Validation I		⊻ Yes		·	Date Ent	tered:				EDD		Ves Yes		No	_	eceipt
Backgroun		Yes			Entered					Turnaroun	d Time	7.0	ay* ☐	<b>15 Day*</b>	_	
Confirmato	гу:	└ Yes			QC inits	<u>:</u>				Negotiated	I TAT			, - <del>,</del>	_	
Sample	Na	ame	Signatu		lnit.	Company	/Organizat	tion/Phone	e/Cell	Sample Dis	sposal	Retu	ɪrn to Client	Disposal by La	b	
Team	Robert Ly	ynch	Levet 72	ich	ZL	SNL/4142/50	)5-844 <b>-</b> 401	3/505-25	0-7090	Return Sar	mples By:					
Members	Alfred Sa	ntillanes	1/4 Sent	tilla.	do	SNL/4142/50	5-844-513	0/505-22	3-0710	Comments	s:	Send report	to Tim Jackson	1/4142/MS 0729/284-2547	7	ł
	William G		Willey V.	JUST 1	WIS	\$NL/4142/50	5-284-330	7/505-239	9-7367							
	Tim Jack:	son	T- Audis		70 6	SNL/4142/50										
									-						La	nb Use
1.Relinquishe	d by	11/1/11	18.ld	Org.4/4/2	Date	10-22-14	/ Time //	12.0	3.Relina	uished by			Org.	Date	Time	
1. Received b	y Den	w de		Org. 4142	Date	10-22-19		_	3. Recei	<u>-</u> _			Org.	Date	Time	
2.Relinquishe	d by	~//	~	Org. 4(4)	Date	10/27/14	Time 04	íai 💮	4.Reling	uished by			Org.	Date	Time	
2. Received b		. 7		Org. #A W		10/30/1			4. Recei	ved by			Org.	Date	Time	
Prior confire	nation wi	ith SMO red	quired for 7 and			- / * / '					•					

# **CONTRACT VERIFICATION REVIEW FORMS**

AR/COC Number	Sample Type
615738	Environmental*
615739	Environmental*
615740	Environmental*
615741	Environmental*
615742	Environmental*
615830	Environmental*
615831	Environmental*
615832	Environmental*
615833	Environmental*
615834	Environmental*

^{*} AR/COC forms are provided in the Data Validation Section of this Annex.

# SMO-2012-CVR (11-2013) Contract Verification Review (CVR)

# Project Leader MITCHELL Project Name MWL SVM Project/Task No. 146422_10.11.08 ARCOC No. 615738, 615739, 615740, 615741 & 615742 Analytical Lab SACRAMENTO TEST AMERICA- WEST SACRAMENTO SDG No. 320-9478-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

## 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Com	olete?	
No.	ltem	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Х		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

## 2.0 Analytical Laboratory Report

Line		Comp	olete?	
No.	ltem	Yes	No	If no, explain
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	N/A		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	X		
2.6	QC batch numbers provided	Χ		
2.7	Dilution factors provided and all dilution levels reported	X		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Χ		

# **Contract Verification Review (Continued)**

# 3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2 Quantitation limit met for all samples	Х		
3.3 Accuracy     a) Laboratory control sample accuracy reported and met for all samples	х		
b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
c) Matrix spike recovery data reported and met	N/A		
3.4 Precision     a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		
b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
3.5 Blank data     a) Method or reagent blank data reported and met for all samples		Х	ACETONE DETECTED IN BLANKS
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		ALL HITS IN FIELD BLANKS LOWER THAN RL
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

# **Contract Verification Review (Continued)**

## **4.0 Calibration and Validation Documentation**

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)			
a) 12-hour tune check provided	Х		
b) Initial calibration provided	Х		
c) Continuing calibration provided	X		
d) Internal standard performance data provided	Х		
	1		
e) Instrument run logs provided	Х		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
	11/0		
b) Continuing calibration provided	N/A		
	N/A		
c) Instrument run logs provided	IN/A		
4.3 HRGC/HRMS (1668)			
a) 12-hour tune check provided	N/A		
a) 12-110ul turie crieck provided			
b) Initial calibration provided	N/A		
b) Illitial calibration provided	1071		
c) Continuing calibration provided	N/A		
-,			
d) Internal standard performance data provided	N/A		
,			
e) Labeled compound recovery data provided	N/A		
		l	

# Contract Verification Review (Continued)

f) RRTs for samples and standards provided	N/A	
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)		
a) Initial calibration provided	N/A	
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	N/A	
b) Continuing calibration provided	N/A	
c) ICP interference check sample data provided	N/A	
d) ICP serial dilution provided	N/A	
e) Instrument run logs provided	N/A	
4.6 Radiochemistry and General Chemistry		
a) Instrument run logs provided	N/A	

SMO-2012-CVR (11-2013) SMO-05-03

# **Contract Verification Review (Concluded)**

**5.0 Data Anomaly Report** 

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted	N/A		
5.3 Verification or reanalysis requested from lab	N/A		

### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? $\theta$ Ye	s X No				
Based on the review, this data package is co	omplete.	×	(Yes	θ Νο	
If no, provide nonconformance report or corr	ection request r	number		and date correction request was submitted:	
Reviewed by: W. Palencia		10.13.2014			
Were resolutions adequate and data packag	e complete?	θ Yes	θ Νο		
Closed by:	Date:				

# SMO-2012-CVR (11-2013) Contract Verification Review (CVR) SMO-05-03

# Project Leader MITCHELL Project Name MWL SVM Project/Task No. 146422_10.11.08 ARCOC No. 615830, 615831, 615832, 615834 Analytical Lab SACRAMENTO TEST AMERICA- WEST SACRAMENTO SDG No. 320-10172-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

## 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Comp	olete?	
No.	Item	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Х		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	X		

## 2.0 Analytical Laboratory Report

Line		Comp	olete?	
No.	Item	Yes	No	If no, explain
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	N/A		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	X		
2.6	QC batch numbers provided	Χ		
2.7	Dilution factors provided and all dilution levels reported	X		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Χ		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Χ		

# **Contract Verification Review (Continued)**

# 3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2 Quantitation limit met for all samples	Х		
3.3 Accuracy     a) Laboratory control sample accuracy reported and met for all samples		Х	1,2,4-TRICHLOROBENZENE FAILED RECOVERY LIMITS FOR LCS/LCSD (BATCH 58105 & 58139)
<ul> <li>Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique</li> </ul>	Х		
c) Matrix spike recovery data reported and met	N/A		
3.4 Precision     a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		
b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
Blank data     a) Method or reagent blank data reported and met for all samples		х	STYRENE, M&P-XYLENE & O-XYLENE DETECTED IN BLANK (58105) CHLOROBENZENE, 1,3-DICHLOROBENZENE, ETHYLBENZENE, STYRENE, M&P-XYLENE & O-XYLENE DETECTED IN BLANK (58139) CHLOROBENZENE, ETHYLBENZENE, STYRENE, TOLUENE, M&P-XYLENE & O-XYLENE DETECTED IN BLANK (58224)
b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		ALL HITS IN FIELD BLANKS LOWER THAN RL
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8 Narrative included, correct, and complete	Х		

3.9 Second column confirmation data provided for methods 8330 (high	N/A	
explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	IN/A	

# **Contract Verification Review (Continued)**

## **4.0 Calibration and Validation Documentation**

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)			
a) 12-hour tune check provided	Х		
b) Initial calibration provided	Х		
c) Continuing calibration provided	Х		
d) Internal standard performance data provided	Х		
e) Instrument run logs provided	Х		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
	N1/A		
b) Continuing calibration provided	N/A		
a) Hastowasat was large gravidad	N/A		
c) Instrument run logs provided	IN/A		
4.3 HRGC/HRMS (1668)			
a) 12-hour tune check provided	N/A		
a) 12-110ul tulie check provided			
b) Initial calibration provided	N/A		
b) Initial calibration provided	'''		
c) Continuing calibration provided	N/A		
5, 2			
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		
• • •			
	1	l	

# **Contract Verification Review (Continued)**

f) RRTs for samples and standards provided	N/A	
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)		
a) Initial calibration provided	N/A	
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	N/A	
b) Continuing calibration provided	N/A	
c) ICP interference check sample data provided	N/A	
d) ICP serial dilution provided	N/A	
e) Instrument run logs provided	N/A	
4.6 Radiochemistry and General Chemistry		
a) Instrument run logs provided	N/A	

SMO-2012-CVR (11-2013) SMO-05-03

# **Contract Verification Review (Concluded)**

**5.0 Data Anomaly Report** 

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	х		
5.2 Problems or outliers noted		Х	
5.3 Verification or reanalysis requested from lab	Х		

### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved?	$\theta$ Yes	X No				
Based on the review, this data packag	je is comp	lete.	:	X Yes	θ Νο	
If no, provide nonconformance report	or correcti	on request	number		and date correction request was submitted:	
Reviewed by: W. Palene	ia_ı	Date:	11.24.2014			
Were resolutions adequate and data p	ackage co	omplete?	$\theta$ Yes	θ Νο		
Closed by:		Date:				

# SOIL-VAPOR SAMPLING RESULTS CERTIFICATES OF ANALYSIS

# Mixed Waste Landfill April 2014-March 2015 Reporting Period

Note: Certificates of Analysis are provided on compact disc only, for printed copies of this report.

# SEPTEMBER 2014 SOIL-VAPOR SAMPLING RESULTS CERTIFICATES OF ANALYSIS

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096510-001/MWL-SV01-42.5 Lab Sample ID: 320-9478-1

Date Collected: 09/11/14 11:23 Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Lab Saiiik	JIE	יטו.	321	J-34 <i>1</i>	0-1
			N	/latrix:	: Air

TestAmerica Job ID: 320-9478-1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	13	JB	25	0.89	ppb v/v			10/04/14 00:25	4.9
Benzene	ND		2.0	0.39	ppb v/v			10/04/14 00:25	4.9
Benzyl chloride	ND		4.0	0.81	ppb v/v			10/04/14 00:25	4.9
Bromodichloromethane	0.40	J	1.5	0.33	ppb v/v			10/04/14 00:25	4.9
Bromoform	ND		2.0	0.35	ppb v/v			10/04/14 00:25	4.9
Bromomethane	ND		4.0	1.7	ppb v/v			10/04/14 00:25	4.9
2-Butanone (MEK)	2.7	J	4.0	0.99	ppb v/v			10/04/14 00:25	4.9
Carbon disulfide	3.1	J	4.0	0.39	ppb v/v			10/04/14 00:25	4.9
Carbon tetrachloride	0.35	J	4.0	0.32	ppb v/v			10/04/14 00:25	4.9
Chlorobenzene	ND		1.5	0.32	ppb v/v			10/04/14 00:25	4.9
Chloroethane	ND		4.0	1.5	ppb v/v			10/04/14 00:25	4.9
Chloroform	13		1.5	0.47	ppb v/v			10/04/14 00:25	4.9
Chloromethane	1.2		4.0	0.98	ppb v/v			10/04/14 00:25	4.9
Dibromochloromethane	ND		2.0		ppb v/v			10/04/14 00:25	4.9
1,2-Dibromoethane (EDB)	ND		4.0		ppb v/v			10/04/14 00:25	4.9
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.0		ppb v/v			10/04/14 00:25	4.9
1,2-Dichlorobenzene	ND		2.0		ppb v/v			10/04/14 00:25	4.9
1,3-Dichlorobenzene	ND		2.0		ppb v/v			10/04/14 00:25	4.9
1,4-Dichlorobenzene	ND		2.0		ppb v/v			10/04/14 00:25	4.9
Dichlorodifluoromethane	100		2.0		ppb v/v			10/04/14 00:25	4.9
1,1-Dichloroethane	2.8		1.5		ppb v/v			10/04/14 00:25	4.9
1,2-Dichloroethane	ND		4.0		ppb v/v			10/04/14 00:25	4.9
	8.0		4.0		ppb v/v			10/04/14 00:25	4.9
1,1-Dichloroethene	1.5		2.0		ppb v/v			10/04/14 00:25	4.9
cis-1,2-Dichloroethene	ND								4.8
trans-1,2-Dichloroethene	ND ND		2.0		ppb v/v			10/04/14 00:25	
1,2-Dichloropropane			2.0		ppb v/v			10/04/14 00:25	4.9
cis-1,3-Dichloropropene	ND		2.0		ppb v/v			10/04/14 00:25	4.9
trans-1,3-Dichloropropene	ND		2.0		ppb v/v			10/04/14 00:25	4.9
Ethylbenzene	ND		2.0		ppb v/v			10/04/14 00:25	4.9
4-Ethyltoluene	ND		2.0		ppb v/v			10/04/14 00:25	4.9
Hexachlorobutadiene	ND		10		ppb v/v			10/04/14 00:25	4.9
2-Hexanone	ND		2.0		ppb v/v			10/04/14 00:25	4.9
4-Methyl-2-pentanone (MIBK)	ND		2.0		ppb v/v			10/04/14 00:25	4.9
Methylene Chloride	ND		2.0		ppb v/v			10/04/14 00:25	4.9
Styrene	ND		2.0	0.29	ppb v/v			10/04/14 00:25	4.9
1,1,2,2-Tetrachloroethane	ND		2.0		ppb v/v			10/04/14 00:25	4.9
Toluene	1.1	J	2.0	0.25	ppb v/v			10/04/14 00:25	4.9
1,1,2-Trichloro-1,2,2-trifluoroetha	94		2.0	0.81	ppb v/v			10/04/14 00:25	4.9
ne			40		. ,			10/04/14 00 05	
1,2,4-Trichlorobenzene	ND		10		ppb v/v			10/04/14 00:25	4.9
1,1,1-Trichloroethane	55		1.5		ppb v/v			10/04/14 00:25	4.9
1,1,2-Trichloroethane	ND		2.0		ppb v/v			10/04/14 00:25	4.9
Trichloroethene	110		2.0		ppb v/v			10/04/14 00:25	4.9
Trichlorofluoromethane	190		2.0		ppb v/v			10/04/14 00:25	4.9
1,2,4-Trimethylbenzene	ND		4.0		ppb v/v			10/04/14 00:25	4.9
1,3,5-Trimethylbenzene	ND		2.0		ppb v/v			10/04/14 00:25	4.9
Vinyl acetate	ND		4.0	0.72	ppb v/v			10/04/14 00:25	4.9

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-9478-1

Client Sample ID: 096510-001/MWL-SV01-42.5

Lab Sample ID: 320-9478-1

Date Collected: 09/11/14 11:23 Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Vlati	rix:	Air

Lab Sample ID: 320-9478-2

Method: TO-15 - Volatile Organic (	Compounds in Ambient	Air (Continued)			
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared

١	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	m,p-Xylene	ND		4.0	0.50	ppb v/v			10/04/14 00:25	4.99
l	o-Xylene	ND		2.0	0.27	ppb v/v			10/04/14 00:25	4.99

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130		10/04/14 00:25	4.99
1,2-Dichloroethane-d4 (Surr)	92		70 - 130		10/04/14 00:25	4.99
Toluene-d8 (Surr)	99		70 - 130		10/04/14 00:25	4.99

Method: TO-15 - Volatile Organic Compounds in Ambient Air - DL

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	560	6.0	0.77 ppb v/v			10/05/14 15:53	15

ı	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	86		70 - 130		10/05/14 15:53	15
ı	1,2-Dichloroethane-d4 (Surr)	92		70 - 130		10/05/14 15:53	15
	Toluene-d8 (Surr)	96		70 - 130		10/05/14 15:53	15

Client Sample ID: 096511-001/MWL-FB1

Date Collected: 09/11/14 10:59 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.29	JB	6.6	0.23	ppb v/v			10/04/14 01:23	1.31
Benzene	0.44	J	0.52	0.10	ppb v/v			10/04/14 01:23	1.31
Benzyl chloride	ND		1.0	0.21	ppb v/v			10/04/14 01:23	1.31
Bromodichloromethane	ND		0.39	0.086	ppb v/v			10/04/14 01:23	1.31
Bromoform	ND		0.52	0.092	ppb v/v			10/04/14 01:23	1.31
Bromomethane	ND		1.0	0.44	ppb v/v			10/04/14 01:23	1.31
2-Butanone (MEK)	ND		1.0	0.26	ppb v/v			10/04/14 01:23	1.31
Carbon disulfide	0.19	J	1.0	0.10	ppb v/v			10/04/14 01:23	1.31
Carbon tetrachloride	ND		1.0	0.084	ppb v/v			10/04/14 01:23	1.31
Chlorobenzene	ND		0.39	0.084	ppb v/v			10/04/14 01:23	1.31
Chloroethane	ND		1.0	0.40	ppb v/v			10/04/14 01:23	1.31
Chloroform	ND		0.39	0.12	ppb v/v			10/04/14 01:23	1.31
Chloromethane	ND		1.0	0.26	ppb v/v			10/04/14 01:23	1.31
Dibromochloromethane	ND		0.52	0.10	ppb v/v			10/04/14 01:23	1.31
1,2-Dibromoethane (EDB)	ND		1.0	0.098	ppb v/v			10/04/14 01:23	1.31
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.52	0.20	ppb v/v			10/04/14 01:23	1.31
1,2-Dichlorobenzene	ND		0.52	0.17	ppb v/v			10/04/14 01:23	1.31
1,3-Dichlorobenzene	ND		0.52	0.14	ppb v/v			10/04/14 01:23	1.31
1,4-Dichlorobenzene	ND		0.52	0.20	ppb v/v			10/04/14 01:23	1.31
Dichlorodifluoromethane	ND		0.52	0.19	ppb v/v			10/04/14 01:23	1.31
1,1-Dichloroethane	ND		0.39	0.094	ppb v/v			10/04/14 01:23	1.31
1,2-Dichloroethane	ND		1.0	0.12	ppb v/v			10/04/14 01:23	1.31
1,1-Dichloroethene	ND		1.0	0.17	ppb v/v			10/04/14 01:23	1.31
cis-1,2-Dichloroethene	ND		0.52	0.12	ppb v/v			10/04/14 01:23	1.31
trans-1,2-Dichloroethene	ND		0.52	0.13	ppb v/v			10/04/14 01:23	1.31

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-9478-1

Client Sample ID: 096511-001/MWL-FB1

Lab Sample ID: 320-9478-2 Date Collected: 09/11/14 10:59 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile	Organic Compounds in	n Ambient Air (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		0.52	0.31	ppb v/v			10/04/14 01:23	1.31
cis-1,3-Dichloropropene	ND		0.52	0.14	ppb v/v			10/04/14 01:23	1.31
trans-1,3-Dichloropropene	ND		0.52	0.12	ppb v/v			10/04/14 01:23	1.31
Ethylbenzene	ND		0.52	0.083	ppb v/v			10/04/14 01:23	1.31
4-Ethyltoluene	ND		0.52	0.24	ppb v/v			10/04/14 01:23	1.31
Hexachlorobutadiene	ND		2.6	0.57	ppb v/v			10/04/14 01:23	1.31
2-Hexanone	ND		0.52	0.11	ppb v/v			10/04/14 01:23	1.31
4-Methyl-2-pentanone (MIBK)	ND		0.52	0.18	ppb v/v			10/04/14 01:23	1.31
Methylene Chloride	0.12	J	0.52	0.094	ppb v/v			10/04/14 01:23	1.31
Styrene	ND		0.52	0.077	ppb v/v			10/04/14 01:23	1.31
1,1,2,2-Tetrachloroethane	ND		0.52	0.090	ppb v/v			10/04/14 01:23	1.31
Tetrachloroethene	ND		0.52	0.067	ppb v/v			10/04/14 01:23	1.31
Toluene	ND		0.52	0.067	ppb v/v			10/04/14 01:23	1.31
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.52	0.21	ppb v/v			10/04/14 01:23	1.31
1,2,4-Trichlorobenzene	ND		2.6	0.57	ppb v/v			10/04/14 01:23	1.31
1,1,1-Trichloroethane	ND		0.39	0.085	ppb v/v			10/04/14 01:23	1.31
1,1,2-Trichloroethane	ND		0.52	0.088	ppb v/v			10/04/14 01:23	1.31
Trichloroethene	ND		0.52	0.14	ppb v/v			10/04/14 01:23	1.31
Trichlorofluoromethane	ND		0.52	0.26	ppb v/v			10/04/14 01:23	1.31
1,2,4-Trimethylbenzene	ND		1.0	0.21	ppb v/v			10/04/14 01:23	1.31
1,3,5-Trimethylbenzene	ND		0.52	0.16	ppb v/v			10/04/14 01:23	1.31
Vinyl acetate	ND		1.0	0.19	ppb v/v			10/04/14 01:23	1.31
Vinyl chloride	ND		0.52	0.16	ppb v/v			10/04/14 01:23	1.31
m,p-Xylene	ND		1.0	0.13	ppb v/v			10/04/14 01:23	1.31
o-Xylene	ND		0.52	0.071	ppb v/v			10/04/14 01:23	1.31
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130			-		10/04/14 01:23	1.31
1,2-Dichloroethane-d4 (Surr)	98		70 - 130					10/04/14 01:23	1.31
Toluene-d8 (Surr)	89		70 - 130					10/04/14 01:23	1.31

Client Sample ID: 096512-001/MWL-SV02-41.5

Date Collected: 09/11/14 11:31

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Lab Sample ID: 320-9478-3

Matrix: Air

Method: TO-15 -	Volatile	Organic	Compounds	s in /	<b>Amb</b>	ient	Αi	ľ
-----------------	----------	---------	-----------	--------	------------	------	----	---

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	8.3	JB	11	0.38	ppb v/v			10/04/14 02:19	2.11
Benzene	0.17	J	0.84	0.17	ppb v/v			10/04/14 02:19	2.11
Benzyl chloride	ND		1.7	0.34	ppb v/v			10/04/14 02:19	2.11
Bromodichloromethane	ND		0.63	0.14	ppb v/v			10/04/14 02:19	2.11
Bromoform	ND		0.84	0.15	ppb v/v			10/04/14 02:19	2.11
Bromomethane	ND		1.7	0.71	ppb v/v			10/04/14 02:19	2.11
2-Butanone (MEK)	4.1		1.7	0.42	ppb v/v			10/04/14 02:19	2.11
Carbon disulfide	1.9		1.7	0.16	ppb v/v			10/04/14 02:19	2.11
Carbon tetrachloride	ND		1.7	0.14	ppb v/v			10/04/14 02:19	2.11
Chlorobenzene	ND		0.63	0.14	ppb v/v			10/04/14 02:19	2.11
Chloroethane	ND		1.7	0.65	ppb v/v			10/04/14 02:19	2.11

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096512-001/MWL-SV02-41.5 Lab Sample ID: 320-9478-3

Date Collected: 09/11/14 11:31 Eab Sample 1B. 520-5476-5

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloroform	3.1		0.63	0.20	ppb v/v			10/04/14 02:19	2.1
Chloromethane	0.52	J	1.7	0.42	ppb v/v			10/04/14 02:19	2.1
Dibromochloromethane	ND		0.84	0.17	ppb v/v			10/04/14 02:19	2.1
1,2-Dibromoethane (EDB)	ND		1.7	0.16	ppb v/v			10/04/14 02:19	2.1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.84	0.33	ppb v/v			10/04/14 02:19	2.1
1,2-Dichlorobenzene	ND		0.84	0.27	ppb v/v			10/04/14 02:19	2.1
1,3-Dichlorobenzene	ND		0.84	0.23	ppb v/v			10/04/14 02:19	2.1
1,4-Dichlorobenzene	ND		0.84	0.31	ppb v/v			10/04/14 02:19	2.1
Dichlorodifluoromethane	94		0.84	0.31	ppb v/v			10/04/14 02:19	2.1
1,1-Dichloroethane	2.6		0.63	0.15	ppb v/v			10/04/14 02:19	2.1
1,2-Dichloroethane	ND		1.7	0.19	ppb v/v			10/04/14 02:19	2.1
1,1-Dichloroethene	11		1.7	0.27	ppb v/v			10/04/14 02:19	2.1
cis-1,2-Dichloroethene	0.96		0.84	0.19	ppb v/v			10/04/14 02:19	2.1
trans-1,2-Dichloroethene	ND		0.84	0.21	ppb v/v			10/04/14 02:19	2.1
1,2-Dichloropropane	ND		0.84	0.51	ppb v/v			10/04/14 02:19	2.1
cis-1,3-Dichloropropene	ND		0.84	0.22	ppb v/v			10/04/14 02:19	2.1
trans-1,3-Dichloropropene	ND		0.84	0.19	ppb v/v			10/04/14 02:19	2.1
Ethylbenzene	ND		0.84	0.13	ppb v/v			10/04/14 02:19	2.1
4-Ethyltoluene	ND		0.84	0.39	ppb v/v			10/04/14 02:19	2.1
Hexachlorobutadiene	ND		4.2	0.91	ppb v/v			10/04/14 02:19	2.1
2-Hexanone	0.43	J	0.84	0.18	ppb v/v			10/04/14 02:19	2.1
4-Methyl-2-pentanone (MIBK)	ND		0.84	0.28	ppb v/v			10/04/14 02:19	2.1
Methylene Chloride	0.61		0.84	0.15	ppb v/v			10/04/14 02:19	2.1
Styrene	ND		0.84	0.12	ppb v/v			10/04/14 02:19	2.1
1,1,2,2-Tetrachloroethane	ND		0.84		ppb v/v			10/04/14 02:19	2.1
Tetrachloroethene	86		0.84	0.11	ppb v/v			10/04/14 02:19	2.1
Toluene	ND		0.84		ppb v/v			10/04/14 02:19	2.1
1,1,2-Trichloro-1,2,2-trifluoroetha	56		0.84		ppb v/v			10/04/14 02:19	2.1
ne									
1,2,4-Trichlorobenzene	ND		4.2	0.91	ppb v/v			10/04/14 02:19	2.1
1,1,1-Trichloroethane	82		0.63	0.14	ppb v/v			10/04/14 02:19	2.1
1,1,2-Trichloroethane	ND		0.84	0.14	ppb v/v			10/04/14 02:19	2.1
Trichloroethene	75		0.84	0.22	ppb v/v			10/04/14 02:19	2.1
1,2,4-Trimethylbenzene	ND		1.7	0.34	ppb v/v			10/04/14 02:19	2.1
1,3,5-Trimethylbenzene	ND		0.84	0.26	ppb v/v			10/04/14 02:19	2.1
Vinyl acetate	ND		1.7	0.31	ppb v/v			10/04/14 02:19	2.1
Vinyl chloride	ND		0.84	0.25	ppb v/v			10/04/14 02:19	2.1
m,p-Xylene	ND		1.7	0.21	ppb v/v			10/04/14 02:19	2.1
o-Xylene	ND		0.84	0.11	ppb v/v			10/04/14 02:19	2.1
Surrogate	%Recovery	Qualifier	Limits			=	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		70 - 130			_		10/04/14 02:19	2.1
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					10/04/14 02:19	2.1
Toluene-d8 (Surr)	99		70 - 130					10/04/14 02:19	2.1
Method: TO-15 - Volatile Organic	Compounds i	n Ambient	Air - DL						
Analyte	Popult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa

TestAmerica Job ID: 320-9478-1

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096512-001/MWL-SV02-41.5 Lab Sample ID: 320-9478-3

Date Collected: 09/11/14 11:31 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88	70 - 130		10/05/14 16:48	8.43
1,2-Dichloroethane-d4 (Surr)	93	70 - 130		10/05/14 16:48	8.43
Toluene-d8 (Surr)	93	70 - 130		10/05/14 16:48	8.43

Date Collected: 09/11/14 11:05

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.75	J B	6.5	0.23	ppb v/v			10/04/14 03:20	1.29
Benzene	0.44	J	0.52	0.10	ppb v/v			10/04/14 03:20	1.29
Benzyl chloride	ND		1.0	0.21	ppb v/v			10/04/14 03:20	1.29
Bromodichloromethane	ND		0.39	0.085	ppb v/v			10/04/14 03:20	1.29
Bromoform	ND		0.52	0.090	ppb v/v			10/04/14 03:20	1.29
Bromomethane	ND		1.0	0.43	ppb v/v			10/04/14 03:20	1.29
2-Butanone (MEK)	ND		1.0	0.26	ppb v/v			10/04/14 03:20	1.29
Carbon disulfide	ND		1.0	0.10	ppb v/v			10/04/14 03:20	1.29
Carbon tetrachloride	ND		1.0	0.083	ppb v/v			10/04/14 03:20	1.29
Chlorobenzene	ND		0.39	0.083	ppb v/v			10/04/14 03:20	1.29
Chloroethane	ND		1.0	0.40	ppb v/v			10/04/14 03:20	1.29
Chloroform	ND		0.39	0.12	ppb v/v			10/04/14 03:20	1.29
Chloromethane	ND		1.0	0.25	ppb v/v			10/04/14 03:20	1.29
Dibromochloromethane	ND		0.52	0.10	ppb v/v			10/04/14 03:20	1.29
1,2-Dibromoethane (EDB)	ND		1.0	0.097	ppb v/v			10/04/14 03:20	1.29
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.52	0.20	ppb v/v			10/04/14 03:20	1.29
1,2-Dichlorobenzene	ND		0.52	0.17	ppb v/v			10/04/14 03:20	1.29
1,3-Dichlorobenzene	ND		0.52	0.14	ppb v/v			10/04/14 03:20	1.29
1,4-Dichlorobenzene	ND		0.52	0.19	ppb v/v			10/04/14 03:20	1.29
Dichlorodifluoromethane	ND		0.52	0.19	ppb v/v			10/04/14 03:20	1.29
1,1-Dichloroethane	ND		0.39	0.093	ppb v/v			10/04/14 03:20	1.29
1,2-Dichloroethane	ND		1.0	0.11	ppb v/v			10/04/14 03:20	1.29
1,1-Dichloroethene	ND		1.0	0.17	ppb v/v			10/04/14 03:20	1.29
cis-1,2-Dichloroethene	ND		0.52	0.11	ppb v/v			10/04/14 03:20	1.29
trans-1,2-Dichloroethene	ND		0.52	0.13	ppb v/v			10/04/14 03:20	1.29
1,2-Dichloropropane	ND		0.52	0.31	ppb v/v			10/04/14 03:20	1.29
cis-1,3-Dichloropropene	ND		0.52	0.13	ppb v/v			10/04/14 03:20	1.29
trans-1,3-Dichloropropene	ND		0.52	0.11	ppb v/v			10/04/14 03:20	1.29
Ethylbenzene	ND		0.52		ppb v/v			10/04/14 03:20	1.29
4-Ethyltoluene	ND		0.52		ppb v/v			10/04/14 03:20	1.29
Hexachlorobutadiene	ND		2.6	0.56	ppb v/v			10/04/14 03:20	1.29
2-Hexanone	ND		0.52	0.11	ppb v/v			10/04/14 03:20	1.29
4-Methyl-2-pentanone (MIBK)	ND		0.52	0.17	ppb v/v			10/04/14 03:20	1.29
Methylene Chloride	ND		0.52		ppb v/v			10/04/14 03:20	1.29
Styrene	ND		0.52		ppb v/v			10/04/14 03:20	1.29
1,1,2,2-Tetrachloroethane	ND		0.52		ppb v/v			10/04/14 03:20	1.29
Tetrachloroethene	ND		0.52		ppb v/v			10/04/14 03:20	1.29
Toluene	0.10	1	0.52		ppb v/v			10/04/14 03:20	1.29

TestAmerica Sacramento

TestAmerica Job ID: 320-9478-1

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096513-001/MWL-FB2 Lab Sample ID: 320-9478-4

Date Collected: 09/11/14 11:05 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.52	0.21	ppb v/v			10/04/14 03:20	1.29
1,2,4-Trichlorobenzene	ND		2.6	0.56	ppb v/v			10/04/14 03:20	1.29
1,1,1-Trichloroethane	ND		0.39	0.084	ppb v/v			10/04/14 03:20	1.29
1,1,2-Trichloroethane	ND		0.52	0.086	ppb v/v			10/04/14 03:20	1.29
Trichloroethene	ND		0.52	0.14	ppb v/v			10/04/14 03:20	1.29
Trichlorofluoromethane	ND		0.52	0.25	ppb v/v			10/04/14 03:20	1.29
1,2,4-Trimethylbenzene	ND		1.0	0.21	ppb v/v			10/04/14 03:20	1.29
1,3,5-Trimethylbenzene	ND		0.52	0.16	ppb v/v			10/04/14 03:20	1.29
Vinyl acetate	ND		1.0	0.19	ppb v/v			10/04/14 03:20	1.29
Vinyl chloride	ND		0.52	0.15	ppb v/v			10/04/14 03:20	1.29
m,p-Xylene	ND		1.0	0.13	ppb v/v			10/04/14 03:20	1.29
o-Xylene	ND		0.52	0.070	ppb v/v			10/04/14 03:20	1.29

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76	70 - 130		10/04/14 03:20	1.29
1,2-Dichloroethane-d4 (Surr)	95	70 - 130		10/04/14 03:20	1.29
Toluene-d8 (Surr)	99	70 - 130		10/04/14 03:20	1.29

Client Sample ID: 096514-001/MWL-SV03-50

Date Collected: 09/11/14 08:48

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Lab Sample ID: 320-9478-5

TestAmerica Job ID: 320-9478-1

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.2	В	6.8	0.24	ppb v/v			10/04/14 04:18	1.35
Benzene	6.0		0.54	0.11	ppb v/v			10/04/14 04:18	1.35
Benzyl chloride	ND		1.1	0.22	ppb v/v			10/04/14 04:18	1.35
Bromodichloromethane	ND		0.41	0.089	ppb v/v			10/04/14 04:18	1.35
Bromoform	ND		0.54	0.095	ppb v/v			10/04/14 04:18	1.35
Bromomethane	ND		1.1	0.45	ppb v/v			10/04/14 04:18	1.35
2-Butanone (MEK)	2.1		1.1	0.27	ppb v/v			10/04/14 04:18	1.35
Carbon disulfide	0.20	J	1.1	0.11	ppb v/v			10/04/14 04:18	1.35
Carbon tetrachloride	0.22	J	1.1	0.086	ppb v/v			10/04/14 04:18	1.35
Chlorobenzene	ND		0.41	0.086	ppb v/v			10/04/14 04:18	1.35
Chloroethane	ND		1.1	0.42	ppb v/v			10/04/14 04:18	1.35
Chloroform	1.8		0.41	0.13	ppb v/v			10/04/14 04:18	1.35
Chloromethane	ND		1.1	0.27	ppb v/v			10/04/14 04:18	1.35
Dibromochloromethane	ND		0.54	0.11	ppb v/v			10/04/14 04:18	1.35
1,2-Dibromoethane (EDB)	ND		1.1	0.10	ppb v/v			10/04/14 04:18	1.35
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.54	0.21	ppb v/v			10/04/14 04:18	1.35
1,2-Dichlorobenzene	ND		0.54	0.18	ppb v/v			10/04/14 04:18	1.35
1,3-Dichlorobenzene	ND		0.54	0.15	ppb v/v			10/04/14 04:18	1.35
1,4-Dichlorobenzene	ND		0.54	0.20	ppb v/v			10/04/14 04:18	1.35
Dichlorodifluoromethane	22		0.54	0.20	ppb v/v			10/04/14 04:18	1.35
1,1-Dichloroethane	2.4		0.41	0.097	ppb v/v			10/04/14 04:18	1.35
1,2-Dichloroethane	ND		1.1	0.12	ppb v/v			10/04/14 04:18	1.35
1,1-Dichloroethene	8.5		1.1	0.17	ppb v/v			10/04/14 04:18	1.35
cis-1,2-Dichloroethene	1.6		0.54	0.12	ppb v/v			10/04/14 04:18	1.35

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-9478-1

#### Client Sample ID: 096514-001/MWL-SV03-50

Date Collected: 09/11/14 08:48 Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Lab Sample ID: 320-9478-5

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		0.54	0.14	ppb v/v			10/04/14 04:18	1.35
1,2-Dichloropropane	ND		0.54	0.32	ppb v/v			10/04/14 04:18	1.35
cis-1,3-Dichloropropene	ND		0.54	0.14	ppb v/v			10/04/14 04:18	1.35
trans-1,3-Dichloropropene	ND		0.54	0.12	ppb v/v			10/04/14 04:18	1.35
Ethylbenzene	ND		0.54	0.085	ppb v/v			10/04/14 04:18	1.35
4-Ethyltoluene	ND		0.54	0.25	ppb v/v			10/04/14 04:18	1.35
Hexachlorobutadiene	ND		2.7	0.58	ppb v/v			10/04/14 04:18	1.35
2-Hexanone	0.19	J	0.54	0.12	ppb v/v			10/04/14 04:18	1.35
4-Methyl-2-pentanone (MIBK)	ND		0.54	0.18	ppb v/v			10/04/14 04:18	1.35
Methylene Chloride	0.46	J	0.54	0.097	ppb v/v			10/04/14 04:18	1.35
Styrene	ND		0.54	0.080	ppb v/v			10/04/14 04:18	1.35
1,1,2,2-Tetrachloroethane	ND		0.54	0.093	ppb v/v			10/04/14 04:18	1.35
Toluene	2.8		0.54	0.069	ppb v/v			10/04/14 04:18	1.35
1,1,2-Trichloro-1,2,2-trifluoroetha	49		0.54	0.22	ppb v/v			10/04/14 04:18	1.35
ne									
1,2,4-Trichlorobenzene	ND		2.7	0.58	ppb v/v			10/04/14 04:18	1.35
1,1,1-Trichloroethane	6.1		0.41	0.088	ppb v/v			10/04/14 04:18	1.35
1,1,2-Trichloroethane	ND		0.54	0.090	ppb v/v			10/04/14 04:18	1.35
Trichlorofluoromethane	22		0.54	0.26	ppb v/v			10/04/14 04:18	1.35
1,2,4-Trimethylbenzene	ND		1.1	0.22	ppb v/v			10/04/14 04:18	1.35
1,3,5-Trimethylbenzene	ND		0.54	0.17	ppb v/v			10/04/14 04:18	1.35
Vinyl acetate	ND		1.1	0.20	ppb v/v			10/04/14 04:18	1.35
Vinyl chloride	ND		0.54	0.16	ppb v/v			10/04/14 04:18	1.35
m,p-Xylene	ND		1.1	0.14	ppb v/v			10/04/14 04:18	1.35
o-Xylene	ND		0.54	0.073	ppb v/v			10/04/14 04:18	1.35
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			-		10/04/14 04:18	1.35
1,2-Dichloroethane-d4 (Surr)	94		70 - 130					10/04/14 04:18	1.35
Toluene-d8 (Surr)	100		70 - 130					10/04/14 04:18	1.35
Method: TO-15 - Volatile Organic	: Compounds i	n Ambient	Air - DL						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	140		1.2	0.15	ppb v/v			10/05/14 17:45	2.97
Trichloroethene	100		1.2	0.31	ppb v/v			10/05/14 17:45	2.97

Client Sample ID: 096515-001/MWL-SV03-100

%Recovery Qualifier

97

93

98

Date Collected: 09/11/14 08:54

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Surrogate

Toluene-d8 (Surr)

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic C	ompounds i	n Ambient Ai	r						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	11	В	11	0.38	ppb v/v			10/05/14 18:44	2.13
Benzene	0.81	J	0.85	0.17	ppb v/v			10/05/14 18:44	2.13

Limits

70 - 130

70 - 130

70 - 130

TestAmerica Sacramento

Analyzed

10/05/14 17:45

10/05/14 17:45

10/05/14 17:45

Lab Sample ID: 320-9478-6

Dil Fac

2.97

2.97

2.97

Matrix: Air

Prepared

Client: Sandia National Laboratories TestAmerica Job ID: 320-9478-1

Project/Site: MWL SVM

Client Sample ID: 096515-001/MWL-SV03-100

Lab Sample ID: 320-9478-6 Date Collected: 09/11/14 08:54 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzyl chloride	ND		1.7	0.35	ppb v/v			10/05/14 18:44	2.1
Bromodichloromethane	ND		0.64	0.14	ppb v/v			10/05/14 18:44	2.1
Bromoform	ND		0.85	0.15	ppb v/v			10/05/14 18:44	2.1
Bromomethane	ND		1.7	0.71	ppb v/v			10/05/14 18:44	2.1
2-Butanone (MEK)	2.1		1.7	0.42	ppb v/v			10/05/14 18:44	2.1
Carbon disulfide	0.86	J	1.7	0.17	ppb v/v			10/05/14 18:44	2.1
Carbon tetrachloride	0.37	J	1.7	0.14	ppb v/v			10/05/14 18:44	2.1
Chlorobenzene	ND		0.64	0.14	ppb v/v			10/05/14 18:44	2.1
Chloroethane	ND		1.7	0.66	ppb v/v			10/05/14 18:44	2.1
Chloroform	2.3		0.64	0.20	ppb v/v			10/05/14 18:44	2.1
Chloromethane	0.52	J	1.7	0.42	ppb v/v			10/05/14 18:44	2.1
Dibromochloromethane	ND		0.85	0.17	ppb v/v			10/05/14 18:44	2.1
1,2-Dibromoethane (EDB)	ND		1.7	0.16	ppb v/v			10/05/14 18:44	2.1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.85		ppb v/v			10/05/14 18:44	2.1
1,2-Dichlorobenzene	ND		0.85		ppb v/v			10/05/14 18:44	2.1
1,3-Dichlorobenzene	ND		0.85	0.23	ppb v/v			10/05/14 18:44	2.1
1,4-Dichlorobenzene	ND		0.85		ppb v/v			10/05/14 18:44	2.1
Dichlorodifluoromethane	40		0.85	0.31	ppb v/v			10/05/14 18:44	2.1
1,1-Dichloroethane	5.1		0.64	0.15	ppb v/v			10/05/14 18:44	2.1
1,2-Dichloroethane	ND		1.7		ppb v/v			10/05/14 18:44	2.1
1,1-Dichloroethene	19		1.7	0.27	ppb v/v			10/05/14 18:44	2.1
cis-1,2-Dichloroethene	3.4		0.85	0.19	ppb v/v			10/05/14 18:44	2.1
trans-1,2-Dichloroethene	ND		0.85		ppb v/v			10/05/14 18:44	2.1
1,2-Dichloropropane	ND		0.85	0.51	ppb v/v			10/05/14 18:44	2.1
cis-1,3-Dichloropropene	ND		0.85	0.22	ppb v/v			10/05/14 18:44	2.1
trans-1,3-Dichloropropene	ND		0.85	0.19	ppb v/v			10/05/14 18:44	2.1
Ethylbenzene	ND		0.85	0.13	ppb v/v			10/05/14 18:44	2.1
4-Ethyltoluene	ND		0.85		ppb v/v			10/05/14 18:44	2.1
Hexachlorobutadiene	ND		4.3		ppb v/v			10/05/14 18:44	2.1
2-Hexanone	ND		0.85		ppb v/v			10/05/14 18:44	2.1
4-Methyl-2-pentanone (MIBK)	ND		0.85	0.29	ppb v/v			10/05/14 18:44	2.1
Methylene Chloride	1.9		0.85		ppb v/v			10/05/14 18:44	2.1
Styrene	ND		0.85		ppb v/v			10/05/14 18:44	2.1
1,1,2,2-Tetrachloroethane	ND		0.85		ppb v/v			10/05/14 18:44	2.1
Toluene	3.0		0.85		ppb v/v			10/05/14 18:44	2.1
1,1,2-Trichloro-1,2,2-trifluoroetha	100		0.85	0.35	ppb v/v			10/05/14 18:44	2.1
ne 1,2,4-Trichlorobenzene	ND		4.3	0.02	ppb v/v			10/05/14 18:44	2.1
1,1,1-Trichloroethane	6.6		0.64		ppb v/v			10/05/14 18:44	2.1
1,1,2-Trichloroethane	ND		0.85		ppb v/v			10/05/14 18:44	2.1
Trichlorofluoromethane	30		0.85		ppb v/v			10/05/14 18:44	2.1
1,2,4-Trimethylbenzene	ND		1.7		ppb v/v			10/05/14 18:44	2.1
1,3,5-Trimethylbenzene	ND		0.85		ppb v/v ppb v/v			10/05/14 18:44	2.1
Vinyl acetate	ND		1.7		ppb v/v			10/05/14 18:44	2.1
Vinyl acetate Vinyl chloride	ND ND		0.85		ppb v/v			10/05/14 18:44	2.1
•	0.22		1.7		ppb v/v			10/05/14 18:44	2.1
<b>m,p-Xylene</b> o-Xylene	ND	3	0.85		ppb v/v			10/05/14 18:44	2.1

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096515-001/MWL-SV03-100 Lab Sample ID: 320-9478-6

Date Collected: 09/11/14 08:54 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130		10/05/14 18:44	2.13
1,2-Dichloroethane-d4 (Surr)	94		70 - 130		10/05/14 18:44	2.13
Toluene-d8 (Surr)	99		70 - 130		10/05/14 18:44	2.13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	210		1.7	0.22	ppb v/v			10/06/14 03:43	4.25
Trichloroethene	190		1.7	0.45	ppb v/v			10/06/14 03:43	4.25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			-		10/06/14 03:43	4.25
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					10/06/14 03:43	4.25
Toluene-d8 (Surr)	98		70 ₋ 130					10/06/14 03:43	4.25

Client Sample ID: 096516-001/MWL-SV03-200

Method: TO-15 - Volatile Organic Compounds in Ambient Air - DL

Lab Sample ID: 320-9478-7 Date Collected: 09/11/14 08:59 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	4.7	JB	15	0.53	ppb v/v			10/05/14 19:42	2.96
Benzene	0.68	J	1.2	0.23	ppb v/v			10/05/14 19:42	2.96
Benzyl chloride	ND		2.4	0.48	ppb v/v			10/05/14 19:42	2.96
Bromodichloromethane	ND		0.89	0.20	ppb v/v			10/05/14 19:42	2.96
Bromoform	ND		1.2	0.21	ppb v/v			10/05/14 19:42	2.96
Bromomethane	ND		2.4	0.99	ppb v/v			10/05/14 19:42	2.96
2-Butanone (MEK)	1.3	J	2.4	0.59	ppb v/v			10/05/14 19:42	2.96
Carbon disulfide	0.61	J	2.4	0.23	ppb v/v			10/05/14 19:42	2.96
Carbon tetrachloride	0.56	J	2.4	0.19	ppb v/v			10/05/14 19:42	2.96
Chlorobenzene	ND		0.89	0.19	ppb v/v			10/05/14 19:42	2.96
Chloroethane	ND		2.4	0.91	ppb v/v			10/05/14 19:42	2.96
Chloroform	2.0		0.89	0.28	ppb v/v			10/05/14 19:42	2.96
Chloromethane	ND		2.4	0.58	ppb v/v			10/05/14 19:42	2.96
Dibromochloromethane	ND		1.2	0.23	ppb v/v			10/05/14 19:42	2.96
1,2-Dibromoethane (EDB)	ND		2.4	0.22	ppb v/v			10/05/14 19:42	2.96
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.2	0.46	ppb v/v			10/05/14 19:42	2.96
1,2-Dichlorobenzene	ND		1.2	0.38	ppb v/v			10/05/14 19:42	2.96
1,3-Dichlorobenzene	ND		1.2	0.33	ppb v/v			10/05/14 19:42	2.96
1,4-Dichlorobenzene	ND		1.2	0.44	ppb v/v			10/05/14 19:42	2.96
Dichlorodifluoromethane	57		1.2	0.43	ppb v/v			10/05/14 19:42	2.96
1,1-Dichloroethane	7.6		0.89	0.21	ppb v/v			10/05/14 19:42	2.96
1,2-Dichloroethane	ND		2.4	0.26	ppb v/v			10/05/14 19:42	2.96
1,1-Dichloroethene	34		2.4	0.38	ppb v/v			10/05/14 19:42	2.96
cis-1,2-Dichloroethene	5.0		1.2	0.26	ppb v/v			10/05/14 19:42	2.96
trans-1,2-Dichloroethene	ND		1.2	0.30	ppb v/v			10/05/14 19:42	2.96
1,2-Dichloropropane	ND		1.2	0.71	ppb v/v			10/05/14 19:42	2.96
cis-1,3-Dichloropropene	ND		1.2	0.31	ppb v/v			10/05/14 19:42	2.96
trans-1,3-Dichloropropene	ND		1.2	0.26	ppb v/v			10/05/14 19:42	2.96
Ethylbenzene	ND		1.2	0.19	ppb v/v			10/05/14 19:42	2.96

TestAmerica Sacramento

TestAmerica Job ID: 320-9478-1

Client: Sandia National Laboratories

Project/Site: MWL SVM

•

Client Sample ID: 096516-001/MWL-SV03-200

Lab Sample ID: 320-9478-7

Date Collected: 09/11/14 08:59

Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Ethyltoluene	ND		1.2	0.55	ppb v/v			10/05/14 19:42	2.96
Hexachlorobutadiene	ND		5.9	1.3	ppb v/v			10/05/14 19:42	2.96
2-Hexanone	ND		1.2	0.26	ppb v/v			10/05/14 19:42	2.96
4-Methyl-2-pentanone (MIBK)	ND		1.2	0.40	ppb v/v			10/05/14 19:42	2.96
Methylene Chloride	3.2		1.2	0.21	ppb v/v			10/05/14 19:42	2.96
Styrene	ND		1.2	0.17	ppb v/v			10/05/14 19:42	2.96
1,1,2,2-Tetrachloroethane	ND		1.2	0.20	ppb v/v			10/05/14 19:42	2.96
Toluene	3.6		1.2	0.15	ppb v/v			10/05/14 19:42	2.96
1,2,4-Trichlorobenzene	ND		5.9	1.3	ppb v/v			10/05/14 19:42	2.96
1,1,1-Trichloroethane	2.4		0.89	0.19	ppb v/v			10/05/14 19:42	2.96
1,1,2-Trichloroethane	ND		1.2	0.20	ppb v/v			10/05/14 19:42	2.96
Trichlorofluoromethane	26		1.2	0.58	ppb v/v			10/05/14 19:42	2.96
1,2,4-Trimethylbenzene	ND		2.4	0.48	ppb v/v			10/05/14 19:42	2.96
1,3,5-Trimethylbenzene	ND		1.2	0.37	ppb v/v			10/05/14 19:42	2.96
Vinyl acetate	ND		2.4	0.43	ppb v/v			10/05/14 19:42	2.96
Vinyl chloride	ND		1.2	0.36	ppb v/v			10/05/14 19:42	2.96
m,p-Xylene	ND		2.4	0.30	ppb v/v			10/05/14 19:42	2.96
o-Xylene	ND		1.2	0.16	ppb v/v			10/05/14 19:42	2.96
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			-		10/05/14 19:42	2.96
1,2-Dichloroethane-d4 (Surr)	94		70 - 130					10/05/14 19:42	2.96
Toluene-d8 (Surr)	99		70 - 130					10/05/14 19:42	2.96

33							10/00/11/10:12	2.50
Compounds i	n Ambient /	Air - DL						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
300		2.4	0.30	ppb v/v			10/06/14 04:41	5.9
180		2.4	0.96	ppb v/v			10/06/14 04:41	5.91
300		2.4	0.62	ppb v/v			10/06/14 04:41	5.9
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
94		70 - 130			_		10/06/14 04:41	5.9
94		70 - 130					10/06/14 04:41	5.9
98		70 - 130					10/06/14 04:41	5.9
	Compounds i  Result  300 180 300  %Recovery 94 94	Compounds in Ambient A  Result Qualifier  300 180 300  %Recovery Qualifier  94 94	Compounds in Ambient Air - DL           Result         Qualifier         RL           300         2.4           180         2.4           300         2.4           **Recovery         Qualifier         Limits           94         70 - 130           94         70 - 130	Compounds in Ambient Air - DL           Result         Qualifier         RL         MDL           300         2.4         0.30           180         2.4         0.96           300         2.4         0.62           %Recovery         Qualifier         Limits           94         70 - 130           94         70 - 130	Compounds in Ambient Air - DL   Result   Qualifier   RL     MDL   Unit	Compounds in Ambient Air - DL   Result   Qualifier   RL   MDL   Unit   D	Compounds in Ambient Air - DL   Result   Qualifier   RL   MDL   Unit   D   Prepared	Compounds in Ambient Air - DL           Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed           300         2.4         0.30         ppb v/v         10/06/14 04:41           180         2.4         0.96         ppb v/v         10/06/14 04:41           300         2.4         0.62         ppb v/v         10/06/14 04:41           %Recovery         Qualifier         Limits         Prepared         Analyzed           94         70 - 130         10/06/14 04:41           94         70 - 130         10/06/14 04:41

Client Sample ID: 096517-001/MWL-SV03-300 Lab Sample ID: 320-9478-8

Date Collected: 09/11/14 09:04 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	14	JB	25	0.90	ppb v/v			10/05/14 20:38	5.05
Benzene	1.2	J	2.0	0.40	ppb v/v			10/05/14 20:38	5.05
Benzyl chloride	ND		4.0	0.82	ppb v/v			10/05/14 20:38	5.05
Bromodichloromethane	ND		1.5	0.33	ppb v/v			10/05/14 20:38	5.05
Bromoform	ND		2.0	0.35	ppb v/v			10/05/14 20:38	5.05
Bromomethane	ND		4.0	1.7	ppb v/v			10/05/14 20:38	5.05
2-Butanone (MEK)	3.5	J	4.0	1.0	ppb v/v			10/05/14 20:38	5.05

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096517-001/MWL-SV03-300 Lab Sample ID: 320-9478-8 Date Collected: 09/11/14 09:04 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon disulfide	23		4.0	0.39	ppb v/v			10/05/14 20:38	5.0
Carbon tetrachloride	ND		4.0	0.32	ppb v/v			10/05/14 20:38	5.0
Chlorobenzene	ND		1.5	0.32	ppb v/v			10/05/14 20:38	5.0
Chloroethane	ND		4.0	1.6	ppb v/v			10/05/14 20:38	5.0
Chloroform	0.81	J	1.5	0.48	ppb v/v			10/05/14 20:38	5.0
Chloromethane	ND		4.0	0.99	ppb v/v			10/05/14 20:38	5.0
Dibromochloromethane	ND		2.0	0.40	ppb v/v			10/05/14 20:38	5.0
1,2-Dibromoethane (EDB)	ND		4.0	0.38	ppb v/v			10/05/14 20:38	5.0
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.0	0.78	ppb v/v			10/05/14 20:38	5.0
1,2-Dichlorobenzene	ND		2.0	0.66	ppb v/v			10/05/14 20:38	5.0
1,3-Dichlorobenzene	ND		2.0	0.56	ppb v/v			10/05/14 20:38	5.0
1,4-Dichlorobenzene	ND		2.0		ppb v/v			10/05/14 20:38	5.0
Dichlorodifluoromethane	27		2.0		ppb v/v			10/05/14 20:38	5.0
1,1-Dichloroethane	2.0		1.5		ppb v/v			10/05/14 20:38	5.0
1,2-Dichloroethane	ND		4.0		ppb v/v			10/05/14 20:38	5.0
1,1-Dichloroethene	15		4.0		ppb v/v			10/05/14 20:38	5.0
cis-1,2-Dichloroethene	2.0		2.0		ppb v/v			10/05/14 20:38	5.0
trans-1,2-Dichloroethene	ND		2.0		ppb v/v			10/05/14 20:38	5.0
1,2-Dichloropropane	ND		2.0		ppb v/v			10/05/14 20:38	5.0
cis-1,3-Dichloropropene	ND		2.0		ppb v/v			10/05/14 20:38	5.0
trans-1,3-Dichloropropene	ND		2.0		ppb v/v			10/05/14 20:38	5.0
Ethylbenzene	ND		2.0		ppb v/v			10/05/14 20:38	5.0
4-Ethyltoluene	ND		2.0		ppb v/v			10/05/14 20:38	5.0
Hexachlorobutadiene	ND		10		ppb v/v			10/05/14 20:38	5.0
2-Hexanone	ND		2.0		ppb v/v			10/05/14 20:38	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.0		ppb v/v			10/05/14 20:38	5.0
Methylene Chloride	1.1		2.0		ppb v/v			10/05/14 20:38	5.0
Styrene	ND	3	2.0		ppb v/v			10/05/14 20:38	5.0
1,1,2,2-Tetrachloroethane	ND ND		2.0		ppb v/v				5.0
								10/05/14 20:38	
Tetrachloroethene	290		2.0		ppb v/v			10/05/14 20:38 10/05/14 20:38	5.0 5.0
Toluene	6.0		2.0		ppb v/v				
1,1,2-Trichloro-1,2,2-trifluoroetha	79		2.0	0.62	ppb v/v			10/05/14 20:38	5.0
ne 1,2,4-Trichlorobenzene	ND		10	2.2	ppb v/v			10/05/14 20:38	5.0
1.1.1-Trichloroethane	0.66	J.	1.5		ppb v/v			10/05/14 20:38	5.0
1,1,2-Trichloroethane	ND		2.0		ppb v/v			10/05/14 20:38	5.0
Trichloroethene	190		2.0		ppb v/v			10/05/14 20:38	5.0
Trichlorofluoromethane	9.1		2.0		ppb v/v			10/05/14 20:38	5.0
1,2,4-Trimethylbenzene	ND		4.0		ppb v/v			10/05/14 20:38	5.0
1,3,5-Trimethylbenzene	ND		2.0		ppb v/v			10/05/14 20:38	5.0
Vinyl acetate	ND		4.0		ppb v/v			10/05/14 20:38	5.0
Vinyl chloride	ND		2.0		ppb v/v			10/05/14 20:38	5.0
m,p-Xylene	ND		4.0		ppb v/v			10/05/14 20:38	5.0
o-Xylene	ND ND		2.0		ppb v/v			10/05/14 20:38	5.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	97		70 - 130			-	-1	10/05/14 20:38	5.0
1,2-Dichloroethane-d4 (Surr)	94		70 - 130 70 - 130					10/05/14 20:38	5.0
Toluene-d8 (Surr)	99		70 - 130 70 - 130					10/05/14 20:38	5.0

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096518-001/MWL-SV03-400 Lab Sample ID: 320-9478-9

Date Collected: 09/11/14 09:13 East Gample 15: 525-5476-5

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	13	JB	25	0.90	ppb v/v			10/05/14 21:30	5.0
Benzene	1.5	J	2.0	0.40	ppb v/v			10/05/14 21:30	5.0
Benzyl chloride	ND		4.0	0.82	ppb v/v			10/05/14 21:30	5.0
Bromodichloromethane	ND		1.5	0.33	ppb v/v			10/05/14 21:30	5.0
Bromoform	ND		2.0	0.35	ppb v/v			10/05/14 21:30	5.0
Bromomethane	ND		4.0		ppb v/v			10/05/14 21:30	5.0
2-Butanone (MEK)	4.4		4.0	1.0	ppb v/v			10/05/14 21:30	5.0
Carbon disulfide	26		4.0	0.39	ppb v/v			10/05/14 21:30	5.0
Carbon tetrachloride	0.33	J	4.0	0.32	ppb v/v			10/05/14 21:30	5.0
Chlorobenzene	ND		1.5	0.32	ppb v/v			10/05/14 21:30	5.0
Chloroethane	ND		4.0	1.6	ppb v/v			10/05/14 21:30	5.0
Chloroform	1.2	J	1.5		ppb v/v			10/05/14 21:30	5.0
Chloromethane	1.9		4.0		ppb v/v			10/05/14 21:30	5.0
Dibromochloromethane	ND		2.0		ppb v/v			10/05/14 21:30	5.0
1,2-Dibromoethane (EDB)	ND		4.0		ppb v/v			10/05/14 21:30	5.0
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.0		ppb v/v			10/05/14 21:30	5.0
1,2-Dichlorobenzene	ND		2.0		ppb v/v			10/05/14 21:30	5.0
1,3-Dichlorobenzene	ND		2.0		ppb v/v			10/05/14 21:30	5.0
1,4-Dichlorobenzene	ND		2.0		ppb v/v			10/05/14 21:30	5.0
Dichlorodifluoromethane	26		2.0		ppb v/v			10/05/14 21:30	5.0
1,1-Dichloroethane	2.9		1.5		ppb v/v			10/05/14 21:30	5.0
1,2-Dichloroethane	ND		4.0		ppb v/v			10/05/14 21:30	5.0
	19		4.0		ppb v/v			10/05/14 21:30	5.0
1,1-Dichloroethene			2.0					10/05/14 21:30	5.0
cis-1,2-Dichloroethene	2.8				ppb v/v				
trans-1,2-Dichloroethene	ND		2.0		ppb v/v			10/05/14 21:30	5.0
1,2-Dichloropropane	ND		2.0		ppb v/v			10/05/14 21:30	5.0
cis-1,3-Dichloropropene	ND		2.0		ppb v/v			10/05/14 21:30	5.0
trans-1,3-Dichloropropene	ND		2.0		ppb v/v			10/05/14 21:30	5.0
Ethylbenzene	ND		2.0		ppb v/v			10/05/14 21:30	5.0
4-Ethyltoluene	ND		2.0		ppb v/v			10/05/14 21:30	5.0
Hexachlorobutadiene	ND		10		ppb v/v			10/05/14 21:30	5.0
2-Hexanone	ND		2.0		ppb v/v			10/05/14 21:30	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.0		ppb v/v			10/05/14 21:30	5.0
Methylene Chloride	ND		2.0		ppb v/v			10/05/14 21:30	5.0
Styrene	ND		2.0		ppb v/v			10/05/14 21:30	5.0
1,1,2,2-Tetrachloroethane	ND		2.0		ppb v/v			10/05/14 21:30	5.0
Toluene	22		2.0	0.26	ppb v/v			10/05/14 21:30	5.0
1,1,2-Trichloro-1,2,2-trifluoroetha	75		2.0	0.82	ppb v/v			10/05/14 21:30	5.0
ne	ND		40	0.0	and and			10/05/11 01:00	
1,2,4-Trichlorobenzene	ND		10		ppb v/v			10/05/14 21:30	5.0
1,1,1-Trichloroethane	1.3	J	1.5		ppb v/v			10/05/14 21:30	5.0
1,1,2-Trichloroethane	ND		2.0		ppb v/v			10/05/14 21:30	5.0
Trichloroethene	290		2.0		ppb v/v			10/05/14 21:30	5.0
Trichlorofluoromethane	9.6		2.0		ppb v/v			10/05/14 21:30	5.0
1,2,4-Trimethylbenzene	ND		4.0		ppb v/v			10/05/14 21:30	5.0
1,3,5-Trimethylbenzene	ND		2.0	0.63	ppb v/v			10/05/14 21:30	5.0
Vinyl acetate	ND		4.0		ppb v/v			10/05/14 21:30	5.0
Vinyl chloride	ND		2.0	0.60	ppb v/v			10/05/14 21:30	5.0
m,p-Xylene	ND		4.0	0.50	ppb v/v			10/05/14 21:30	5.0

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: MWL SVM

Toluene-d8 (Surr)

Toluene-d8 (Surr)

Client Sample ID: 096518-001/MWL-SV03-400 Lab Sample ID: 320-9478-9

Date Collected: 09/11/14 09:13 Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Orga	nic Compounds i	n Ambient	Air (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	0.27	J	2.0	0.27	ppb v/v			10/05/14 21:30	5.04
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130			-		10/05/14 21:30	5.04
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					10/05/14 21:30	5.04

70 - 130

Method: TO-15 - Volatile Orga	nic Compounds i	n Ambient	Air - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	390		4.0	0.51	ppb v/v			10/06/14 05:37	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			-		10/06/14 05:37	10
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					10/06/14 05:37	10

Client Sample ID: 096519-001/MWL-FB3 Lab Sample ID: 320-9478-10

70 - 130

97

Date Collected: 09/11/14 09:41 Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1.1	JB	6.6	0.23	ppb v/v			10/06/14 17:30	1.31
Benzene	0.45	J	0.52	0.10	ppb v/v			10/06/14 17:30	1.31
Benzyl chloride	ND		1.0	0.21	ppb v/v			10/06/14 17:30	1.31
Bromodichloromethane	ND		0.39	0.086	ppb v/v			10/06/14 17:30	1.31
Bromoform	ND		0.52	0.092	ppb v/v			10/06/14 17:30	1.31
Bromomethane	ND		1.0	0.44	ppb v/v			10/06/14 17:30	1.31
2-Butanone (MEK)	ND		1.0	0.26	ppb v/v			10/06/14 17:30	1.31
Carbon disulfide	0.22	J	1.0	0.10	ppb v/v			10/06/14 17:30	1.31
Carbon tetrachloride	ND		1.0	0.084	ppb v/v			10/06/14 17:30	1.31
Chlorobenzene	ND		0.39	0.084	ppb v/v			10/06/14 17:30	1.31
Chloroethane	ND		1.0	0.40	ppb v/v			10/06/14 17:30	1.31
Chloroform	ND		0.39	0.12	ppb v/v			10/06/14 17:30	1.31
Chloromethane	ND		1.0	0.26	ppb v/v			10/06/14 17:30	1.31
Dibromochloromethane	ND		0.52	0.10	ppb v/v			10/06/14 17:30	1.31
1,2-Dibromoethane (EDB)	ND		1.0	0.098	ppb v/v			10/06/14 17:30	1.31
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.52	0.20	ppb v/v			10/06/14 17:30	1.31
1,2-Dichlorobenzene	ND		0.52	0.17	ppb v/v			10/06/14 17:30	1.31
1,3-Dichlorobenzene	ND		0.52	0.14	ppb v/v			10/06/14 17:30	1.31
1,4-Dichlorobenzene	ND		0.52	0.20	ppb v/v			10/06/14 17:30	1.31
Dichlorodifluoromethane	ND		0.52	0.19	ppb v/v			10/06/14 17:30	1.31
1,1-Dichloroethane	ND		0.39	0.094	ppb v/v			10/06/14 17:30	1.31
1,2-Dichloroethane	ND		1.0	0.12	ppb v/v			10/06/14 17:30	1.31
1,1-Dichloroethene	ND		1.0	0.17	ppb v/v			10/06/14 17:30	1.31
cis-1,2-Dichloroethene	ND		0.52	0.12	ppb v/v			10/06/14 17:30	1.31
trans-1,2-Dichloroethene	ND		0.52	0.13	ppb v/v			10/06/14 17:30	1.31
1,2-Dichloropropane	ND		0.52	0.31	ppb v/v			10/06/14 17:30	1.31

TestAmerica Sacramento

TestAmerica Job ID: 320-9478-1

10/05/14 21:30

10/06/14 05:37

Matrix: Air

5.04

10

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096519-001/MWL-FB3 Lab Sample ID: 320-9478-10

Date Collected: 09/11/14 09:41

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

TestAmerica Job ID: 320-9478-1

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		0.52	0.14	ppb v/v			10/06/14 17:30	1.31
trans-1,3-Dichloropropene	ND		0.52	0.12	ppb v/v			10/06/14 17:30	1.31
Ethylbenzene	ND		0.52	0.083	ppb v/v			10/06/14 17:30	1.31
4-Ethyltoluene	ND		0.52	0.24	ppb v/v			10/06/14 17:30	1.31
Hexachlorobutadiene	ND		2.6	0.57	ppb v/v			10/06/14 17:30	1.31
2-Hexanone	ND		0.52	0.11	ppb v/v			10/06/14 17:30	1.31
4-Methyl-2-pentanone (MIBK)	ND		0.52	0.18	ppb v/v			10/06/14 17:30	1.31
Methylene Chloride	ND		0.52	0.094	ppb v/v			10/06/14 17:30	1.31
Styrene	ND		0.52	0.077	ppb v/v			10/06/14 17:30	1.31
1,1,2,2-Tetrachloroethane	ND		0.52	0.090	ppb v/v			10/06/14 17:30	1.31
Tetrachloroethene	ND		0.52	0.067	ppb v/v			10/06/14 17:30	1.31
Toluene	0.41	J	0.52	0.067	ppb v/v			10/06/14 17:30	1.31
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.52	0.21	ppb v/v			10/06/14 17:30	1.31
1,2,4-Trichlorobenzene	ND		2.6	0.57	ppb v/v			10/06/14 17:30	1.31
1,1,1-Trichloroethane	ND		0.39	0.085	ppb v/v			10/06/14 17:30	1.31
1,1,2-Trichloroethane	ND		0.52	0.088	ppb v/v			10/06/14 17:30	1.31
Trichloroethene	ND		0.52	0.14	ppb v/v			10/06/14 17:30	1.31
Trichlorofluoromethane	ND		0.52	0.26	ppb v/v			10/06/14 17:30	1.31
1,2,4-Trimethylbenzene	ND		1.0	0.21	ppb v/v			10/06/14 17:30	1.31
1,3,5-Trimethylbenzene	ND		0.52	0.16	ppb v/v			10/06/14 17:30	1.31
Vinyl acetate	ND		1.0	0.19	ppb v/v			10/06/14 17:30	1.31
Vinyl chloride	ND		0.52	0.16	ppb v/v			10/06/14 17:30	1.31
m,p-Xylene	ND		1.0	0.13	ppb v/v			10/06/14 17:30	1.31
o-Xylene	ND		0.52	0.071	ppb v/v			10/06/14 17:30	1.31
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130			-		10/06/14 17:30	1.31
1,2-Dichloroethane-d4 (Surr)	92		70 - 130					10/06/14 17:30	1.31

Client Sample ID: 096520-001/MWL-SV04-50

97

Date Collected: 09/11/14 09:49 Date Received: 09/18/14 09:15

Toluene-d8 (Surr)

Sample Container: Summa Canister 6L

Lab Sample ID: 320-9478-11

10/06/14 17:30

Matrix: Air

1.31

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	6.9	JB	12	0.44	ppb v/v			10/05/14 23:49	2.49
Benzene	1.7		1.0	0.20	ppb v/v			10/05/14 23:49	2.49
Benzyl chloride	ND		2.0	0.41	ppb v/v			10/05/14 23:49	2.49
Bromodichloromethane	ND		0.75	0.16	ppb v/v			10/05/14 23:49	2.49
Bromoform	ND		1.0	0.17	ppb v/v			10/05/14 23:49	2.49
Bromomethane	ND		2.0	0.83	ppb v/v			10/05/14 23:49	2.49
2-Butanone (MEK)	0.64	J	2.0	0.50	ppb v/v			10/05/14 23:49	2.49
Carbon disulfide	0.24	J	2.0	0.19	ppb v/v			10/05/14 23:49	2.49
Carbon tetrachloride	ND		2.0	0.16	ppb v/v			10/05/14 23:49	2.49
Chlorobenzene	ND		0.75	0.16	ppb v/v			10/05/14 23:49	2.49
Chloroethane	ND		2.0	0.77	ppb v/v			10/05/14 23:49	2.49
Chloroform	1.8		0.75	0.24	ppb v/v			10/05/14 23:49	2.49

70 - 130

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096520-001/MWL-SV04-50 Lab Sample ID: 320-9478-11

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	ND		2.0	0.49	ppb v/v			10/05/14 23:49	2.4
Dibromochloromethane	ND		1.0	0.20	ppb v/v			10/05/14 23:49	2.4
1,2-Dibromoethane (EDB)	ND		2.0	0.19	ppb v/v			10/05/14 23:49	2.4
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.0	0.39	ppb v/v			10/05/14 23:49	2.49
1,2-Dichlorobenzene	ND		1.0	0.32	ppb v/v			10/05/14 23:49	2.4
1,3-Dichlorobenzene	ND		1.0	0.27	ppb v/v			10/05/14 23:49	2.49
1,4-Dichlorobenzene	ND		1.0	0.37	ppb v/v			10/05/14 23:49	2.49
Dichlorodifluoromethane	21		1.0	0.36	ppb v/v			10/05/14 23:49	2.49
1,1-Dichloroethane	1.3		0.75	0.18	ppb v/v			10/05/14 23:49	2.49
1,2-Dichloroethane	ND		2.0	0.22	ppb v/v			10/05/14 23:49	2.49
1,1-Dichloroethene	6.4		2.0	0.32	ppb v/v			10/05/14 23:49	2.49
cis-1,2-Dichloroethene	0.51	J	1.0	0.22	ppb v/v			10/05/14 23:49	2.49
trans-1,2-Dichloroethene	ND		1.0	0.25	ppb v/v			10/05/14 23:49	2.49
1,2-Dichloropropane	ND		1.0	0.60	ppb v/v			10/05/14 23:49	2.4
cis-1,3-Dichloropropene	ND		1.0	0.26	ppb v/v			10/05/14 23:49	2.49
trans-1,3-Dichloropropene	ND		1.0	0.22	ppb v/v			10/05/14 23:49	2.49
Ethylbenzene	ND		1.0	0.16	ppb v/v			10/05/14 23:49	2.49
4-Ethyltoluene	ND		1.0	0.47	ppb v/v			10/05/14 23:49	2.49
Hexachlorobutadiene	ND		5.0	1.1	ppb v/v			10/05/14 23:49	2.49
2-Hexanone	ND		1.0	0.22	ppb v/v			10/05/14 23:49	2.49
4-Methyl-2-pentanone (MIBK)	ND		1.0	0.34	ppb v/v			10/05/14 23:49	2.49
Methylene Chloride	ND		1.0	0.18	ppb v/v			10/05/14 23:49	2.4
Styrene	ND		1.0	0.15	ppb v/v			10/05/14 23:49	2.4
1,1,2,2-Tetrachloroethane	ND		1.0	0.17	ppb v/v			10/05/14 23:49	2.4
Tetrachloroethene	72		1.0	0.13	ppb v/v			10/05/14 23:49	2.4
Toluene	1.3		1.0	0.13	ppb v/v			10/05/14 23:49	2.49
1,1,2-Trichloro-1,2,2-trifluoroetha	64		1.0	0.41	ppb v/v			10/05/14 23:49	2.49
ne								40/05/44 00/40	
1,2,4-Trichlorobenzene	ND		5.0		ppb v/v			10/05/14 23:49	2.49
1,1,1-Trichloroethane	6.3 ND		0.75		ppb v/v			10/05/14 23:49	2.49
1,1,2-Trichloroethane	ND		1.0		ppb v/v			10/05/14 23:49	2.4
Trichloroethene	61		1.0		ppb v/v			10/05/14 23:49	2.49
Trichlorofluoromethane	23 ND		1.0		ppb v/v			10/05/14 23:49	2.4
1,2,4-Trimethylbenzene	ND		2.0		ppb v/v			10/05/14 23:49	2.49
1,3,5-Trimethylbenzene	ND		1.0		ppb v/v			10/05/14 23:49	2.49
Vinyl acetate	ND		2.0		ppb v/v			10/05/14 23:49	2.4
Vinyl chloride	ND		1.0		ppb v/v			10/05/14 23:49	2.49
m,p-Xylene	ND ND		2.0		ppb v/v			10/05/14 23:49	2.49
o-Xylene	ND		1.0	0.13	ppb v/v			10/05/14 23:49	2.4
Surrogate	%Recovery		Limits			_	Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	92		70 - 130					10/05/14 23:49	2.4
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					10/05/14 23:49	2.49
Toluene-d8 (Surr)	98		70 - 130					10/05/14 23:49	2.49

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096521-001/MWL-SV04-100

Date Collected: 09/11/14 09:52 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	3.3	J B	6.8	0.24	ppb v/v			10/06/14 00:46	1.3
Benzene	0.94		0.54	0.11	ppb v/v			10/06/14 00:46	1.3
Benzyl chloride	ND		1.1	0.22	ppb v/v			10/06/14 00:46	1.3
Bromodichloromethane	ND		0.41	0.089	ppb v/v			10/06/14 00:46	1.3
Bromoform	ND		0.54	0.095	ppb v/v			10/06/14 00:46	1.3
Bromomethane	ND		1.1	0.45	ppb v/v			10/06/14 00:46	1.3
2-Butanone (MEK)	0.50	J	1.1	0.27	ppb v/v			10/06/14 00:46	1.3
Carbon disulfide	0.14	J	1.1	0.11	ppb v/v			10/06/14 00:46	1.3
Carbon tetrachloride	0.38	J	1.1	0.086	ppb v/v			10/06/14 00:46	1.3
Chlorobenzene	ND		0.41	0.086	ppb v/v			10/06/14 00:46	1.3
Chloroethane	ND		1.1	0.42	ppb v/v			10/06/14 00:46	1.3
Chloroform	1.8		0.41	0.13	ppb v/v			10/06/14 00:46	1.3
Chloromethane	0.29	J	1.1	0.27	ppb v/v			10/06/14 00:46	1.3
Dibromochloromethane	ND		0.54	0.11	ppb v/v			10/06/14 00:46	1.3
1,2-Dibromoethane (EDB)	ND		1.1	0.10	ppb v/v			10/06/14 00:46	1.3
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.54	0.21	ppb v/v			10/06/14 00:46	1.3
1,2-Dichlorobenzene	ND		0.54	0.18	ppb v/v			10/06/14 00:46	1.3
1,3-Dichlorobenzene	ND		0.54	0.15	ppb v/v			10/06/14 00:46	1.3
1,4-Dichlorobenzene	ND		0.54	0.20	ppb v/v			10/06/14 00:46	1.3
Dichlorodifluoromethane	35		0.54	0.20	ppb v/v			10/06/14 00:46	1.3
1,1-Dichloroethane	2.9		0.41	0.097	ppb v/v			10/06/14 00:46	1.3
1,2-Dichloroethane	ND		1.1	0.12	ppb v/v			10/06/14 00:46	1.3
1,1-Dichloroethene	16		1.1	0.17	ppb v/v			10/06/14 00:46	1.3
cis-1,2-Dichloroethene	1.7		0.54	0.12	ppb v/v			10/06/14 00:46	1.3
rans-1,2-Dichloroethene	ND		0.54	0.14	ppb v/v			10/06/14 00:46	1.3
1,2-Dichloropropane	ND		0.54	0.32	ppb v/v			10/06/14 00:46	1.3
cis-1,3-Dichloropropene	ND		0.54	0.14	ppb v/v			10/06/14 00:46	1.3
rans-1,3-Dichloropropene	ND		0.54	0.12	ppb v/v			10/06/14 00:46	1.3
Ethylbenzene	ND		0.54	0.085	ppb v/v			10/06/14 00:46	1.3
4-Ethyltoluene	ND		0.54	0.25	ppb v/v			10/06/14 00:46	1.3
Hexachlorobutadiene	ND		2.7	0.58	ppb v/v			10/06/14 00:46	1.3
2-Hexanone	ND		0.54	0.12	ppb v/v			10/06/14 00:46	1.3
4-Methyl-2-pentanone (MIBK)	ND		0.54	0.18	ppb v/v			10/06/14 00:46	1.3
Methylene Chloride	0.45	J	0.54	0.097	ppb v/v			10/06/14 00:46	1.3
Styrene	ND		0.54	0.080	ppb v/v			10/06/14 00:46	1.3
1,1,2,2-Tetrachloroethane	ND		0.54	0.093	ppb v/v			10/06/14 00:46	1.3
Toluene	1.9		0.54	0.069	ppb v/v			10/06/14 00:46	1.3
1,2,4-Trichlorobenzene	ND		2.7	0.58	ppb v/v			10/06/14 00:46	1.3
1,1,1-Trichloroethane	5.0		0.41	0.088	ppb v/v			10/06/14 00:46	1.3
1,1,2-Trichloroethane	ND		0.54	0.090	ppb v/v			10/06/14 00:46	1.3
Trichlorofluoromethane	29		0.54	0.26	ppb v/v			10/06/14 00:46	1.3
1,2,4-Trimethylbenzene	ND		1.1	0.22	ppb v/v			10/06/14 00:46	1.3
1,3,5-Trimethylbenzene	ND		0.54	0.17	ppb v/v			10/06/14 00:46	1.3
Vinyl acetate	ND		1.1	0.20	ppb v/v			10/06/14 00:46	1.3
Vinyl chloride	ND		0.54	0.16	ppb v/v			10/06/14 00:46	1.3
m,p-Xylene	ND		1.1	0.14	ppb v/v			10/06/14 00:46	1.3

TestAmerica Job ID: 320-9478-1

Lab Sample ID: 320-9478-12

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096521-001/MWL-SV04-100 Lab Sample ID: 320-9478-12

Date Collected: 09/11/14 09:52 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air - DL

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103	70 - 130		10/06/14 00:46	1.35
1,2-Dichloroethane-d4 (Surr)	92	70 - 130		10/06/14 00:46	1.35
Toluene-d8 (Surr)	96	70 - 130		10/06/14 00:46	1.35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	130		1.6	0.21	ppb v/v			10/06/14 18:27	4.03
1,1,2-Trichloro-1,2,2-trifluoroetha	100		1.6	0.66	ppb v/v			10/06/14 18:27	4.03
ne Trichloroethene	130		1.6	0.42	ppb v/v			10/06/14 18:27	4.03
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			_		10/06/14 18:27	4.03
1,2-Dichloroethane-d4 (Surr)	92		70 - 130					10/06/14 18:27	4.03
Toluene-d8 (Surr)	99		70 - 130					10/06/14 18:27	4.03

Client Sample ID: 096522-001/MWL-SV04-100 Lab Sample ID: 320-9478-13

Date Collected: 09/11/14 09:54 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	11	JB	12	0.44	ppb v/v			10/06/14 01:47	2.48
Benzene	0.85	J	0.99	0.20	ppb v/v			10/06/14 01:47	2.48
Benzyl chloride	ND		2.0	0.40	ppb v/v			10/06/14 01:47	2.48
Bromodichloromethane	ND		0.74	0.16	ppb v/v			10/06/14 01:47	2.48
Bromoform	ND		0.99	0.17	ppb v/v			10/06/14 01:47	2.48
Bromomethane	ND		2.0	0.83	ppb v/v			10/06/14 01:47	2.48
2-Butanone (MEK)	2.4		2.0	0.49	ppb v/v			10/06/14 01:47	2.48
Carbon disulfide	0.45	J	2.0	0.19	ppb v/v			10/06/14 01:47	2.48
Carbon tetrachloride	0.39	J	2.0	0.16	ppb v/v			10/06/14 01:47	2.48
Chlorobenzene	ND		0.74	0.16	ppb v/v			10/06/14 01:47	2.48
Chloroethane	ND		2.0	0.76	ppb v/v			10/06/14 01:47	2.48
Chloroform	1.8		0.74	0.24	ppb v/v			10/06/14 01:47	2.48
Chloromethane	ND		2.0	0.49	ppb v/v			10/06/14 01:47	2.48
Dibromochloromethane	ND		0.99	0.20	ppb v/v			10/06/14 01:47	2.48
1,2-Dibromoethane (EDB)	ND		2.0	0.19	ppb v/v			10/06/14 01:47	2.48
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.99	0.38	ppb v/v			10/06/14 01:47	2.48
1,2-Dichlorobenzene	ND		0.99	0.32	ppb v/v			10/06/14 01:47	2.48
1,3-Dichlorobenzene	ND		0.99	0.27	ppb v/v			10/06/14 01:47	2.48
1,4-Dichlorobenzene	ND		0.99	0.37	ppb v/v			10/06/14 01:47	2.48
Dichlorodifluoromethane	35		0.99	0.36	ppb v/v			10/06/14 01:47	2.48
1,1-Dichloroethane	2.9		0.74	0.18	ppb v/v			10/06/14 01:47	2.48
1,2-Dichloroethane	ND		2.0	0.22	ppb v/v			10/06/14 01:47	2.48
1,1-Dichloroethene	16		2.0	0.32	ppb v/v			10/06/14 01:47	2.48
cis-1,2-Dichloroethene	1.8		0.99	0.22	ppb v/v			10/06/14 01:47	2.48
trans-1,2-Dichloroethene	ND		0.99	0.25	ppb v/v			10/06/14 01:47	2.48
1,2-Dichloropropane	ND		0.99	0.60	ppb v/v			10/06/14 01:47	2.48
cis-1,3-Dichloropropene	ND		0.99	0.26	ppb v/v			10/06/14 01:47	2.48

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096522-001/MWL-SV04-100 Lab Sample ID: 320-9478-13

Date Collected: 09/11/14 09:54 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		0.99	0.22	ppb v/v			10/06/14 01:47	2.48
Ethylbenzene	ND		0.99	0.16	ppb v/v			10/06/14 01:47	2.48
4-Ethyltoluene	ND		0.99	0.46	ppb v/v			10/06/14 01:47	2.48
Hexachlorobutadiene	ND		5.0	1.1	ppb v/v			10/06/14 01:47	2.48
2-Hexanone	ND		0.99	0.22	ppb v/v			10/06/14 01:47	2.48
4-Methyl-2-pentanone (MIBK)	ND		0.99	0.33	ppb v/v			10/06/14 01:47	2.48
Methylene Chloride	0.47	J	0.99	0.18	ppb v/v			10/06/14 01:47	2.48
Styrene	ND		0.99	0.15	ppb v/v			10/06/14 01:47	2.48
1,1,2,2-Tetrachloroethane	ND		0.99	0.17	ppb v/v			10/06/14 01:47	2.48
Tetrachloroethene	130		0.99	0.13	ppb v/v			10/06/14 01:47	2.48
Toluene	2.1		0.99	0.13	ppb v/v			10/06/14 01:47	2.48
1,1,2-Trichloro-1,2,2-trifluoroetha	97		0.99	0.40	ppb v/v			10/06/14 01:47	2.48
ne									
1,2,4-Trichlorobenzene	ND		5.0	1.1	ppb v/v			10/06/14 01:47	2.48
1,1,1-Trichloroethane	5.0		0.74	0.16	ppb v/v			10/06/14 01:47	2.48
1,1,2-Trichloroethane	ND		0.99	0.17	ppb v/v			10/06/14 01:47	2.48
Trichloroethene	130		0.99	0.26	ppb v/v			10/06/14 01:47	2.48
Trichlorofluoromethane	31		0.99	0.49	ppb v/v			10/06/14 01:47	2.48
1,2,4-Trimethylbenzene	ND		2.0	0.40	ppb v/v			10/06/14 01:47	2.48
1,3,5-Trimethylbenzene	ND		0.99	0.31	ppb v/v			10/06/14 01:47	2.48
Vinyl acetate	ND		2.0	0.36	ppb v/v			10/06/14 01:47	2.48
Vinyl chloride	ND		0.99	0.30	ppb v/v			10/06/14 01:47	2.48
m,p-Xylene	ND		2.0	0.25	ppb v/v			10/06/14 01:47	2.48
o-Xylene	ND		0.99	0.13	ppb v/v			10/06/14 01:47	2.48
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130			-		10/06/14 01:47	2.48
1,2-Dichloroethane-d4 (Surr)	91		70 - 130					10/06/14 01:47	2.48

Client Sample ID: 096523-001/MWL-SV04-200

Date Collected: 09/11/14 09:56

Toluene-d8 (Surr)

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.2	JB	15	0.52	ppb v/v			10/06/14 02:45	2.9
Benzene	0.60	J	1.2	0.23	ppb v/v			10/06/14 02:45	2.9
Benzyl chloride	ND		2.3	0.47	ppb v/v			10/06/14 02:45	2.9
Bromodichloromethane	ND		0.87	0.19	ppb v/v			10/06/14 02:45	2.9
Bromoform	ND		1.2	0.20	ppb v/v			10/06/14 02:45	2.9
Bromomethane	ND		2.3	0.97	ppb v/v			10/06/14 02:45	2.9
2-Butanone (MEK)	0.81	J	2.3	0.58	ppb v/v			10/06/14 02:45	2.9
Carbon disulfide	0.58	J	2.3	0.23	ppb v/v			10/06/14 02:45	2.9
Carbon tetrachloride	0.62	J	2.3	0.19	ppb v/v			10/06/14 02:45	2.9
Chlorobenzene	ND		0.87	0.19	ppb v/v			10/06/14 02:45	2.9
Chloroethane	ND		2.3	0.89	ppb v/v			10/06/14 02:45	2.9
Chloroform	1.4		0.87	0.28	ppb v/v			10/06/14 02:45	2.9

70 - 130

98

TestAmerica Sacramento

10/06/14 01:47

Lab Sample ID: 320-9478-14

2.48

Matrix: Air

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096523-001/MWL-SV04-200 Lab Sample ID: 320-9478-14

Date Collected: 09/11/14 09:56 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	ND		2.3	0.57	ppb v/v			10/06/14 02:45	2.9
Dibromochloromethane	ND		1.2	0.23	ppb v/v			10/06/14 02:45	2.9
1,2-Dibromoethane (EDB)	ND		2.3	0.22	ppb v/v			10/06/14 02:45	2.9
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.2	0.45	ppb v/v			10/06/14 02:45	2.9
1,2-Dichlorobenzene	ND		1.2	0.38	ppb v/v			10/06/14 02:45	2.9
1,3-Dichlorobenzene	ND		1.2	0.32	ppb v/v			10/06/14 02:45	2.9
1,4-Dichlorobenzene	ND		1.2	0.43	ppb v/v			10/06/14 02:45	2.9
Dichlorodifluoromethane	51		1.2	0.42	ppb v/v			10/06/14 02:45	2.9
1,1-Dichloroethane	4.9		0.87	0.21	ppb v/v			10/06/14 02:45	2.9
1,2-Dichloroethane	ND		2.3	0.26	ppb v/v			10/06/14 02:45	2.9
1,1-Dichloroethene	34		2.3	0.37	ppb v/v			10/06/14 02:45	2.9
cis-1,2-Dichloroethene	3.1		1.2	0.26	ppb v/v			10/06/14 02:45	2.9
trans-1,2-Dichloroethene	ND		1.2	0.29	ppb v/v			10/06/14 02:45	2.9
1,2-Dichloropropane	ND		1.2	0.70	ppb v/v			10/06/14 02:45	2.9
cis-1,3-Dichloropropene	ND		1.2	0.30	ppb v/v			10/06/14 02:45	2.9
trans-1,3-Dichloropropene	ND		1.2	0.26	ppb v/v			10/06/14 02:45	2.9
Ethylbenzene	ND		1.2	0.18	ppb v/v			10/06/14 02:45	2.9
4-Ethyltoluene	ND		1.2	0.54	ppb v/v			10/06/14 02:45	2.9
Hexachlorobutadiene	ND		5.8	1.3	ppb v/v			10/06/14 02:45	2.9
2-Hexanone	ND		1.2	0.25	ppb v/v			10/06/14 02:45	2.9
4-Methyl-2-pentanone (MIBK)	ND		1.2	0.39	ppb v/v			10/06/14 02:45	2.9
Methylene Chloride	1.2		1.2	0.21	ppb v/v			10/06/14 02:45	2.9
Styrene	ND		1.2	0.17	ppb v/v			10/06/14 02:45	2.9
1,1,2,2-Tetrachloroethane	ND		1.2	0.20	ppb v/v			10/06/14 02:45	2.9
Toluene	3.0		1.2	0.15	ppb v/v			10/06/14 02:45	2.9
1,1,2-Trichloro-1,2,2-trifluoroetha	160		1.2	0.47	ppb v/v			10/06/14 02:45	2.9
ne									
1,2,4-Trichlorobenzene	ND		5.8	1.3	ppb v/v			10/06/14 02:45	2.9
1,1,1-Trichloroethane	2.0		0.87	0.19	ppb v/v			10/06/14 02:45	2.9
1,1,2-Trichloroethane	ND		1.2	0.19	ppb v/v			10/06/14 02:45	2.9
Trichlorofluoromethane	31		1.2	0.57	ppb v/v			10/06/14 02:45	2.9
1,2,4-Trimethylbenzene	ND		2.3	0.47	ppb v/v			10/06/14 02:45	2.9
1,3,5-Trimethylbenzene	ND		1.2	0.36	ppb v/v			10/06/14 02:45	2.9
Vinyl acetate	ND		2.3	0.42	ppb v/v			10/06/14 02:45	2.9
Vinyl chloride	ND		1.2	0.35	ppb v/v			10/06/14 02:45	2.9
m,p-Xylene	ND		2.3	0.29	ppb v/v			10/06/14 02:45	2.9
o-Xylene	ND		1.2	0.16	ppb v/v			10/06/14 02:45	2.9
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		70 - 130					10/06/14 02:45	2.
1,2-Dichloroethane-d4 (Surr)	93		70 - 130					10/06/14 02:45	2.
Toluene-d8 (Surr)	98		70 - 130					10/06/14 02:45	2.
Method: TO-15 - Volatile Organic									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Tetrachloroethene	180		2.3	0.30	ppb v/v			10/06/14 19:21	5.79

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096523-001/MWL-SV04-200 Lab Sample ID: 320-9478-14

Date Collected: 09/11/14 09:56

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Matrix: Air

Matrix: Air

TestAmerica Job ID: 320-9478-1

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	70 - 130		10/06/14 19:21	5.79
1,2-Dichloroethane-d4 (Surr)	91	70 - 130		10/06/14 19:21	5.79
Toluene-d8 (Surr)	98	70 - 130		10/06/14 19:21	5.79

Client Sample ID: 096524-001/MWL-SV04-300 Lab Sample ID: 320-9478-15

Date Collected: 09/11/14 10:00

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	4.5	JB	7.2	0.25	ppb v/v			10/06/14 20:31	1.43
Benzene	0.64		0.57	0.11	ppb v/v			10/06/14 20:31	1.43
Benzyl chloride	ND		1.1	0.23	ppb v/v			10/06/14 20:31	1.43
Bromodichloromethane	ND		0.43	0.094	ppb v/v			10/06/14 20:31	1.43
Bromoform	ND		0.57	0.10	ppb v/v			10/06/14 20:31	1.43
Bromomethane	ND		1.1	0.48	ppb v/v			10/06/14 20:31	1.43
2-Butanone (MEK)	0.84	J	1.1	0.28	ppb v/v			10/06/14 20:31	1.43
Carbon disulfide	0.44	J	1.1	0.11	ppb v/v			10/06/14 20:31	1.43
Carbon tetrachloride	ND		1.1	0.092	ppb v/v			10/06/14 20:31	1.43
Chlorobenzene	ND		0.43	0.092	ppb v/v			10/06/14 20:31	1.43
Chloroethane	ND		1.1	0.44	ppb v/v			10/06/14 20:31	1.43
Chloroform	0.44		0.43	0.14	ppb v/v			10/06/14 20:31	1.43
Chloromethane	ND		1.1	0.28	ppb v/v			10/06/14 20:31	1.43
Dibromochloromethane	ND		0.57	0.11	ppb v/v			10/06/14 20:31	1.43
1,2-Dibromoethane (EDB)	ND		1.1	0.11	ppb v/v			10/06/14 20:31	1.43
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.57	0.22	ppb v/v			10/06/14 20:31	1.43
1,2-Dichlorobenzene	ND		0.57	0.19	ppb v/v			10/06/14 20:31	1.43
1,3-Dichlorobenzene	ND		0.57	0.16	ppb v/v			10/06/14 20:31	1.43
1,4-Dichlorobenzene	ND		0.57	0.21	ppb v/v			10/06/14 20:31	1.43
Dichlorodifluoromethane	16		0.57	0.21	ppb v/v			10/06/14 20:31	1.43
1,1-Dichloroethane	0.71		0.43	0.10	ppb v/v			10/06/14 20:31	1.43
1,2-Dichloroethane	ND		1.1	0.13	ppb v/v			10/06/14 20:31	1.43
1,1-Dichloroethene	9.5		1.1	0.18	ppb v/v			10/06/14 20:31	1.43
cis-1,2-Dichloroethene	0.71		0.57	0.13	ppb v/v			10/06/14 20:31	1.43
trans-1,2-Dichloroethene	ND		0.57	0.14	ppb v/v			10/06/14 20:31	1.43
1,2-Dichloropropane	ND		0.57	0.34	ppb v/v			10/06/14 20:31	1.43
cis-1,3-Dichloropropene	ND		0.57	0.15	ppb v/v			10/06/14 20:31	1.43
trans-1,3-Dichloropropene	ND		0.57	0.13	ppb v/v			10/06/14 20:31	1.43
Ethylbenzene	ND		0.57	0.090	ppb v/v			10/06/14 20:31	1.43
4-Ethyltoluene	ND		0.57	0.27	ppb v/v			10/06/14 20:31	1.43
Hexachlorobutadiene	ND		2.9	0.62	ppb v/v			10/06/14 20:31	1.43
2-Hexanone	ND		0.57	0.12	ppb v/v			10/06/14 20:31	1.43
4-Methyl-2-pentanone (MIBK)	ND		0.57	0.19	ppb v/v			10/06/14 20:31	1.43
Methylene Chloride	0.26	J	0.57	0.10	ppb v/v			10/06/14 20:31	1.43
Styrene	ND		0.57	0.084	ppb v/v			10/06/14 20:31	1.43
1,1,2,2-Tetrachloroethane	ND		0.57	0.099	ppb v/v			10/06/14 20:31	1.43
Toluene	3.3		0.57	0.073	ppb v/v			10/06/14 20:31	1.43

Client: Sandia National Laboratories

Project/Site: MWL SVM

riojosa elle: m·ri_ evin

Client Sample ID: 096524-001/MWL-SV04-300

Lab Sample ID: 320-9478-15

Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroetha	39		0.57	0.23	ppb v/v			10/06/14 20:31	1.43
ne									
1,2,4-Trichlorobenzene	ND		2.9	0.62	ppb v/v			10/06/14 20:31	1.43
1,1,1-Trichloroethane	0.46		0.43	0.093	ppb v/v			10/06/14 20:31	1.43
1,1,2-Trichloroethane	ND		0.57	0.096	ppb v/v			10/06/14 20:31	1.43
Trichloroethene	76		0.57	0.15	ppb v/v			10/06/14 20:31	1.43
Trichlorofluoromethane	7.9		0.57	0.28	ppb v/v			10/06/14 20:31	1.43
1,2,4-Trimethylbenzene	0.38	J	1.1	0.23	ppb v/v			10/06/14 20:31	1.43
1,3,5-Trimethylbenzene	ND		0.57	0.18	ppb v/v			10/06/14 20:31	1.43
Vinyl acetate	ND		1.1	0.21	ppb v/v			10/06/14 20:31	1.43
Vinyl chloride	ND		0.57	0.17	ppb v/v			10/06/14 20:31	1.43
m,p-Xylene	0.20	J	1.1	0.14	ppb v/v			10/06/14 20:31	1.43
o-Xylene	0.10	J	0.57	0.077	ppb v/v			10/06/14 20:31	1.43

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130	_		10/06/14 20:31	1.43
1,2-Dichloroethane-d4 (Surr)	91		70 - 130			10/06/14 20:31	1.43
Toluene-d8 (Surr)	98		70 - 130			10/06/14 20:31	1.43

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	110	1.1	0.15 ppb v/v			10/07/14 17:10	2.86

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	70 - 130		10/07/14 17:10	2.86
1,2-Dichloroethane-d4 (Surr)	92	70 - 130		10/07/14 17:10	2.86
Toluene-d8 (Surr)	99	70 - 130		10/07/14 17:10	2.86

Client Sample ID: 096525-001/MWL-SV04-300

Date Collected: 09/11/14 10:03

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Lab Sample	ID: 320-9478-16
------------	-----------------

TestAmerica Job ID: 320-9478-1

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	8.9	В	7.1	0.25	ppb v/v			10/06/14 21:30	1.42
Benzene	0.55	J	0.57	0.11	ppb v/v			10/06/14 21:30	1.42
Benzyl chloride	ND		1.1	0.23	ppb v/v			10/06/14 21:30	1.42
Bromodichloromethane	ND		0.43	0.094	ppb v/v			10/06/14 21:30	1.42
Bromoform	ND		0.57	0.099	ppb v/v			10/06/14 21:30	1.42
Bromomethane	ND		1.1	0.48	ppb v/v			10/06/14 21:30	1.42
2-Butanone (MEK)	1.9		1.1	0.28	ppb v/v			10/06/14 21:30	1.42
Carbon disulfide	0.71	J	1.1	0.11	ppb v/v			10/06/14 21:30	1.42
Carbon tetrachloride	0.19	J	1.1	0.091	ppb v/v			10/06/14 21:30	1.42
Chlorobenzene	ND		0.43	0.091	ppb v/v			10/06/14 21:30	1.42
Chloroethane	ND		1.1	0.44	ppb v/v			10/06/14 21:30	1.42
Chloroform	0.19	J	0.43	0.13	ppb v/v			10/06/14 21:30	1.42
Chloromethane	ND		1.1	0.28	ppb v/v			10/06/14 21:30	1.42
Dibromochloromethane	0.17	J	0.57	0.11	ppb v/v			10/06/14 21:30	1.42
1,2-Dibromoethane (EDB)	ND		1.1	0.11	ppb v/v			10/06/14 21:30	1.42

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096525-001/MWL-SV04-300 Lab Sample ID: 320-9478-16

Date Collected: 09/11/14 10:03 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.57	0.22	ppb v/v			10/06/14 21:30	1.42
1,2-Dichlorobenzene	ND		0.57	0.18	ppb v/v			10/06/14 21:30	1.42
1,3-Dichlorobenzene	ND		0.57	0.16	ppb v/v			10/06/14 21:30	1.42
1,4-Dichlorobenzene	ND		0.57	0.21	ppb v/v			10/06/14 21:30	1.42
Dichlorodifluoromethane	15		0.57	0.21	ppb v/v			10/06/14 21:30	1.42
1,1-Dichloroethane	0.16	J	0.43	0.10	ppb v/v			10/06/14 21:30	1.42
1,2-Dichloroethane	ND		1.1	0.12	ppb v/v			10/06/14 21:30	1.42
1,1-Dichloroethene	5.2		1.1	0.18	ppb v/v			10/06/14 21:30	1.42
cis-1,2-Dichloroethene	ND		0.57	0.13	ppb v/v			10/06/14 21:30	1.42
trans-1,2-Dichloroethene	ND		0.57	0.14	ppb v/v			10/06/14 21:30	1.42
1,2-Dichloropropane	ND		0.57	0.34	ppb v/v			10/06/14 21:30	1.42
cis-1,3-Dichloropropene	ND		0.57	0.15	ppb v/v			10/06/14 21:30	1.42
trans-1,3-Dichloropropene	ND		0.57	0.12	ppb v/v			10/06/14 21:30	1.42
Ethylbenzene	ND		0.57	0.089	ppb v/v			10/06/14 21:30	1.42
4-Ethyltoluene	ND		0.57	0.27	ppb v/v			10/06/14 21:30	1.42
Hexachlorobutadiene	ND		2.8	0.61	ppb v/v			10/06/14 21:30	1.42
2-Hexanone	0.19	J	0.57	0.12	ppb v/v			10/06/14 21:30	1.42
4-Methyl-2-pentanone (MIBK)	ND		0.57	0.19	ppb v/v			10/06/14 21:30	1.42
Methylene Chloride	ND		0.57	0.10	ppb v/v			10/06/14 21:30	1.42
Styrene	ND		0.57	0.084	ppb v/v			10/06/14 21:30	1.42
1,1,2,2-Tetrachloroethane	ND		0.57	0.098	ppb v/v			10/06/14 21:30	1.42
Tetrachloroethene	82		0.57	0.072	ppb v/v			10/06/14 21:30	1.42
Toluene	3.4		0.57	0.072	ppb v/v			10/06/14 21:30	1.42
1,1,2-Trichloro-1,2,2-trifluoroetha	36		0.57	0.23	ppb v/v			10/06/14 21:30	1.42
ne									
1,2,4-Trichlorobenzene	ND		2.8		ppb v/v			10/06/14 21:30	1.42
1,1,1-Trichloroethane	0.13	J	0.43		ppb v/v			10/06/14 21:30	1.42
1,1,2-Trichloroethane	ND		0.57	0.095	ppb v/v			10/06/14 21:30	1.42
Trichloroethene	44		0.57	0.15	ppb v/v			10/06/14 21:30	1.42
Trichlorofluoromethane	5.3		0.57	0.28	ppb v/v			10/06/14 21:30	1.42
1,2,4-Trimethylbenzene	0.47	J	1.1	0.23	ppb v/v			10/06/14 21:30	1.42
1,3,5-Trimethylbenzene	0.18	J	0.57	0.18	ppb v/v			10/06/14 21:30	1.42
Vinyl acetate	ND		1.1	0.21	ppb v/v			10/06/14 21:30	1.42
Vinyl chloride	ND		0.57	0.17	ppb v/v			10/06/14 21:30	1.42
m,p-Xylene	0.18	J	1.1	0.14	ppb v/v			10/06/14 21:30	1.42
o-Xylene	0.11	J	0.57	0.077	ppb v/v			10/06/14 21:30	1.42
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	102		70 - 130			<del>-</del>		10/06/14 21:30	1.42
1,2-Dichloroethane-d4 (Surr)	89		70 - 130					10/06/14 21:30	1.42
Toluene-d8 (Surr)	98		70 - 130					10/06/14 21:30	1.42

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096526-001/MWL-SV04-400 Lab Sample ID: 320-9478-17

Date Collected: 09/11/14 10:08 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	8.7	В	8.2	0.29	ppb v/v			10/06/14 22:27	1.63
Benzene	1.2		0.65	0.13	ppb v/v			10/06/14 22:27	1.63
Benzyl chloride	ND		1.3	0.27	ppb v/v			10/06/14 22:27	1.63
Bromodichloromethane	ND		0.49	0.11	ppb v/v			10/06/14 22:27	1.63
Bromoform	ND		0.65	0.11	ppb v/v			10/06/14 22:27	1.63
Bromomethane	ND		1.3	0.55	ppb v/v			10/06/14 22:27	1.63
2-Butanone (MEK)	1.6		1.3	0.32	ppb v/v			10/06/14 22:27	1.63
Carbon disulfide	2.3		1.3	0.13	ppb v/v			10/06/14 22:27	1.63
Carbon tetrachloride	0.16	J	1.3		ppb v/v			10/06/14 22:27	1.63
Chlorobenzene	ND		0.49	0.10	ppb v/v			10/06/14 22:27	1.63
Chloroethane	ND		1.3	0.50	ppb v/v			10/06/14 22:27	1.63
Chloroform	0.40	J	0.49		ppb v/v			10/06/14 22:27	1.63
Chloromethane	1.2		1.3		ppb v/v			10/06/14 22:27	1.6
Dibromochloromethane	ND		0.65		ppb v/v			10/06/14 22:27	1.63
1,2-Dibromoethane (EDB)	ND		1.3		ppb v/v			10/06/14 22:27	1.63
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.65		ppb v/v			10/06/14 22:27	1.63
1,2-Dichlorobenzene	ND		0.65		ppb v/v			10/06/14 22:27	1.6
1,3-Dichlorobenzene	ND		0.65		ppb v/v			10/06/14 22:27	1.6
1,4-Dichlorobenzene	ND		0.65		ppb v/v			10/06/14 22:27	1.63
Dichlorodifluoromethane	11		0.65		ppb v/v			10/06/14 22:27	1.63
1,1-Dichloroethane	0.68		0.49		ppb v/v			10/06/14 22:27	1.6
1,2-Dichloroethane	ND		1.3		ppb v/v			10/06/14 22:27	1.63
1,1-Dichloroethene	7.3		1.3		ppb v/v			10/06/14 22:27	1.63
cis-1,2-Dichloroethene	0.75		0.65		ppb v/v			10/06/14 22:27	1.63
trans-1,2-Dichloroethene	ND		0.65		ppb v/v			10/06/14 22:27	1.6
1,2-Dichloropropane	ND		0.65		ppb v/v			10/06/14 22:27	1.6
cis-1,3-Dichloropropene	ND		0.65		ppb v/v			10/06/14 22:27	1.6
trans-1,3-Dichloropropene	ND		0.65		ppb v/v			10/06/14 22:27	1.6
	0.12		0.65		ppb v/v			10/06/14 22:27	1.6
Ethylbenzene 4-Ethyltoluene	ND	3	0.65		ppb v/v			10/06/14 22:27	1.6
Hexachlorobutadiene	ND		3.3		ppb v/v			10/06/14 22:27	1.6
2-Hexanone	ND		0.65		ppb v/v			10/06/14 22:27	1.6
4-Methyl-2-pentanone (MIBK)	ND		0.65		ppb v/v			10/06/14 22:27	1.6
			0.65		ppb v/v			10/06/14 22:27	1.6
Methylene Chloride	<b>0.26</b> ND	J	0.65		ppb v/v ppb v/v			10/06/14 22:27	1.6
Styrene									
1,1,2,2-Tetrachloroethane	ND		0.65		ppb v/v			10/06/14 22:27	1.6
Toluene	2.3		0.65		ppb v/v			10/06/14 22:27	1.63
1,1,2-Trichloro-1,2,2-trifluoroetha	30		0.65	0.27	ppb v/v			10/06/14 22:27	1.63
ne 1,2,4-Trichlorobenzene	ND		3.3	0.71	ppb v/v			10/06/14 22:27	1.63
1,1,1-Trichloroethane	0.39		0.49		ppb v/v			10/06/14 22:27	1.6
1,1,2-Trichloroethane	ND		0.65		ppb v/v			10/06/14 22:27	1.63
Trichloroethene	75		0.65		ppb v/v			10/06/14 22:27	1.6
Trichlorofluoromethane	6.0		0.65		ppb v/v			10/06/14 22:27	1.6
1,2,4-Trimethylbenzene	0.42	a.	1.3		ppb v/v			10/06/14 22:27	1.6
1,3,5-Trimethylbenzene	ND	•	0.65		ppb v/v ppb v/v			10/06/14 22:27	1.6
Vinyl acetate	ND		1.3		ppb v/v			10/06/14 22:27	1.6
Vinyl acetate Vinyl chloride	ND ND		0.65		ppb v/v ppb v/v				
m,p-Xylene	0.29	_	1.3		ppb v/v ppb v/v			10/06/14 22:27 10/06/14 22:27	1.6 1.6

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096526-001/MWL-SV04-400 Lab Sample ID: 320-9478-17

Date Collected: 09/11/14 10:08

Matrix: Air

Matrix: Air

TestAmerica Job ID: 320-9478-1

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Orga	nic Compounds i	n Ambient	Air (Continued)	)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	0.14	J	0.65	0.088	ppb v/v			10/06/14 22:27	1.63
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130			-		10/06/14 22:27	1.63
1,2-Dichloroethane-d4 (Surr)	89		70 - 130					10/06/14 22:27	1.63
Toluene-d8 (Surr)	97		70 - 130					10/06/14 22:27	1.63

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	110		1.3	0.17	ppb v/v			10/07/14 18:05	3.25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			-		10/07/14 18:05	3.25
1,2-Dichloroethane-d4 (Surr)	92		70 - 130					10/07/14 18:05	3.25
Toluene-d8 (Surr)	98		70 ₋ 130					10/07/14 18:05	3.25

Client Sample ID: 096527-001/MWL-FB4 Lab Sample ID: 320-9478-18

Date Collected: 09/11/14 09:42 Date Received: 09/18/14 09:15

Date Received. 09/16/14 09.15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.87	JB	6.5	0.23	ppb v/v			10/06/14 23:25	1.29
Benzene	0.43	J	0.52	0.10	ppb v/v			10/06/14 23:25	1.29
Benzyl chloride	ND		1.0	0.21	ppb v/v			10/06/14 23:25	1.29
Bromodichloromethane	ND		0.39	0.085	ppb v/v			10/06/14 23:25	1.29
Bromoform	ND		0.52	0.090	ppb v/v			10/06/14 23:25	1.29
Bromomethane	ND		1.0	0.43	ppb v/v			10/06/14 23:25	1.29
2-Butanone (MEK)	ND		1.0	0.26	ppb v/v			10/06/14 23:25	1.29
Carbon disulfide	ND		1.0	0.10	ppb v/v			10/06/14 23:25	1.29
Carbon tetrachloride	ND		1.0	0.083	ppb v/v			10/06/14 23:25	1.29
Chlorobenzene	ND		0.39	0.083	ppb v/v			10/06/14 23:25	1.29
Chloroethane	ND		1.0	0.40	ppb v/v			10/06/14 23:25	1.29
Chloroform	ND		0.39	0.12	ppb v/v			10/06/14 23:25	1.29
Chloromethane	ND		1.0	0.25	ppb v/v			10/06/14 23:25	1.29
Dibromochloromethane	ND		0.52	0.10	ppb v/v			10/06/14 23:25	1.29
1,2-Dibromoethane (EDB)	ND		1.0	0.097	ppb v/v			10/06/14 23:25	1.29
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.52	0.20	ppb v/v			10/06/14 23:25	1.29
1,2-Dichlorobenzene	ND		0.52	0.17	ppb v/v			10/06/14 23:25	1.29
1,3-Dichlorobenzene	ND		0.52	0.14	ppb v/v			10/06/14 23:25	1.29
1,4-Dichlorobenzene	ND		0.52	0.19	ppb v/v			10/06/14 23:25	1.29
Dichlorodifluoromethane	ND		0.52	0.19	ppb v/v			10/06/14 23:25	1.29
1,1-Dichloroethane	ND		0.39	0.093	ppb v/v			10/06/14 23:25	1.29
1,2-Dichloroethane	ND		1.0	0.11	ppb v/v			10/06/14 23:25	1.29
1,1-Dichloroethene	ND		1.0	0.17	ppb v/v			10/06/14 23:25	1.29
cis-1,2-Dichloroethene	ND		0.52	0.11	ppb v/v			10/06/14 23:25	1.29
trans-1,2-Dichloroethene	ND		0.52	0.13	ppb v/v			10/06/14 23:25	1.29
1,2-Dichloropropane	ND		0.52	0.31	ppb v/v			10/06/14 23:25	1.29

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096527-001/MWL-FB4 Lab Sample ID: 320-9478-18

Date Collected: 09/11/14 09:42 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		0.52	0.13	ppb v/v			10/06/14 23:25	1.29
trans-1,3-Dichloropropene	ND		0.52	0.11	ppb v/v			10/06/14 23:25	1.29
Ethylbenzene	ND		0.52	0.081	ppb v/v			10/06/14 23:25	1.29
4-Ethyltoluene	ND		0.52	0.24	ppb v/v			10/06/14 23:25	1.29
Hexachlorobutadiene	ND		2.6	0.56	ppb v/v			10/06/14 23:25	1.29
2-Hexanone	ND		0.52	0.11	ppb v/v			10/06/14 23:25	1.29
4-Methyl-2-pentanone (MIBK)	ND		0.52	0.17	ppb v/v			10/06/14 23:25	1.29
Methylene Chloride	ND		0.52	0.093	ppb v/v			10/06/14 23:25	1.29
Styrene	ND		0.52	0.076	ppb v/v			10/06/14 23:25	1.29
1,1,2,2-Tetrachloroethane	ND		0.52	0.089	ppb v/v			10/06/14 23:25	1.29
Tetrachloroethene	ND		0.52	0.066	ppb v/v			10/06/14 23:25	1.29
Toluene	0.10	J	0.52	0.066	ppb v/v			10/06/14 23:25	1.29
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.52	0.21	ppb v/v			10/06/14 23:25	1.29
1,2,4-Trichlorobenzene	ND		2.6	0.56	ppb v/v			10/06/14 23:25	1.29
1,1,1-Trichloroethane	ND		0.39	0.084	ppb v/v			10/06/14 23:25	1.29
1,1,2-Trichloroethane	ND		0.52	0.086	ppb v/v			10/06/14 23:25	1.29
Trichloroethene	ND		0.52	0.14	ppb v/v			10/06/14 23:25	1.29
Trichlorofluoromethane	ND		0.52	0.25	ppb v/v			10/06/14 23:25	1.29
1,2,4-Trimethylbenzene	ND		1.0	0.21	ppb v/v			10/06/14 23:25	1.29
1,3,5-Trimethylbenzene	ND		0.52	0.16	ppb v/v			10/06/14 23:25	1.29
Vinyl acetate	ND		1.0	0.19	ppb v/v			10/06/14 23:25	1.29
Vinyl chloride	ND		0.52	0.15	ppb v/v			10/06/14 23:25	1.29
m,p-Xylene	ND		1.0	0.13	ppb v/v			10/06/14 23:25	1.29
o-Xylene	ND		0.52	0.070	ppb v/v			10/06/14 23:25	1.29
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130			-		10/06/14 23:25	1.29
1,2-Dichloroethane-d4 (Surr)	89		70 - 130					10/06/14 23:25	1.29
Toluene-d8 (Surr)	97		70 - 130					10/06/14 23:25	1.29

Client Sample ID: 096528-001/MWL-SV05-50

Date Collected: 09/11/14 10:32

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	12	В	6.8	0.24	ppb v/v			10/07/14 00:25	1.35
Benzene	0.68		0.54	0.11	ppb v/v			10/07/14 00:25	1.35
Benzyl chloride	ND		1.1	0.22	ppb v/v			10/07/14 00:25	1.35
Bromodichloromethane	ND		0.41	0.089	ppb v/v			10/07/14 00:25	1.35
Bromoform	ND		0.54	0.095	ppb v/v			10/07/14 00:25	1.35
Bromomethane	ND		1.1	0.45	ppb v/v			10/07/14 00:25	1.35
2-Butanone (MEK)	1.9		1.1	0.27	ppb v/v			10/07/14 00:25	1.35
Carbon disulfide	0.21	J	1.1	0.11	ppb v/v			10/07/14 00:25	1.35
Carbon tetrachloride	0.39	J	1.1	0.086	ppb v/v			10/07/14 00:25	1.35
Chlorobenzene	ND		0.41	0.086	ppb v/v			10/07/14 00:25	1.35
Chloroethane	ND		1.1	0.42	ppb v/v			10/07/14 00:25	1.35
Chloroform	1.5		0.41	0.13	ppb v/v			10/07/14 00:25	1.35

TestAmerica Sacramento

Lab Sample ID: 320-9478-19

Matrix: Air

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096528-001/MWL-SV05-50 Lab Sample ID: 320-9478-19

Date Collected: 09/11/14 10:32 Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloromethane	ND		1.1	0.27	ppb v/v			10/07/14 00:25	1.3
Dibromochloromethane	ND		0.54	0.11	ppb v/v			10/07/14 00:25	1.3
1,2-Dibromoethane (EDB)	ND		1.1	0.10	ppb v/v			10/07/14 00:25	1.3
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.54	0.21	ppb v/v			10/07/14 00:25	1.3
1,2-Dichlorobenzene	ND		0.54	0.18	ppb v/v			10/07/14 00:25	1.3
1,3-Dichlorobenzene	ND		0.54	0.15	ppb v/v			10/07/14 00:25	1.3
1,4-Dichlorobenzene	ND		0.54	0.20	ppb v/v			10/07/14 00:25	1.3
Dichlorodifluoromethane	45		0.54	0.20	ppb v/v			10/07/14 00:25	1.3
1,1-Dichloroethane	1.8		0.41	0.097	ppb v/v			10/07/14 00:25	1.3
1,2-Dichloroethane	ND		1.1	0.12	ppb v/v			10/07/14 00:25	1.3
1,1-Dichloroethene	11		1.1	0.17	ppb v/v			10/07/14 00:25	1.3
cis-1,2-Dichloroethene	0.71		0.54	0.12	ppb v/v			10/07/14 00:25	1.3
trans-1,2-Dichloroethene	ND		0.54	0.14	ppb v/v			10/07/14 00:25	1.3
1,2-Dichloropropane	ND		0.54	0.32	ppb v/v			10/07/14 00:25	1.3
cis-1,3-Dichloropropene	ND		0.54	0.14	ppb v/v			10/07/14 00:25	1.3
trans-1,3-Dichloropropene	ND		0.54	0.12	ppb v/v			10/07/14 00:25	1.3
Ethylbenzene	ND		0.54	0.085	ppb v/v			10/07/14 00:25	1.3
4-Ethyltoluene	ND		0.54	0.25	ppb v/v			10/07/14 00:25	1.3
Hexachlorobutadiene	ND		2.7	0.58	ppb v/v			10/07/14 00:25	1.3
2-Hexanone	0.15	J	0.54	0.12	ppb v/v			10/07/14 00:25	1.3
4-Methyl-2-pentanone (MIBK)	ND		0.54	0.18	ppb v/v			10/07/14 00:25	1.3
Methylene Chloride	0.31	J	0.54	0.097	ppb v/v			10/07/14 00:25	1.3
Styrene	ND		0.54	0.080	ppb v/v			10/07/14 00:25	1.3
1,1,2,2-Tetrachloroethane	ND		0.54	0.093	ppb v/v			10/07/14 00:25	1.3
Tetrachloroethene	52		0.54	0.069	ppb v/v			10/07/14 00:25	1.3
Toluene	1.5		0.54	0.069	ppb v/v			10/07/14 00:25	1.3
1,1,2-Trichloro-1,2,2-trifluoroetha	47		0.54	0.22	ppb v/v			10/07/14 00:25	1.3
1,2,4-Trichlorobenzene	ND		2.7	0.58	ppb v/v			10/07/14 00:25	1.3
1,1,1-Trichloroethane	13		0.41	0.088	ppb v/v			10/07/14 00:25	1.3
1,1,2-Trichloroethane	ND		0.54	0.090	ppb v/v			10/07/14 00:25	1.3
Trichloroethene	67		0.54	0.14	ppb v/v			10/07/14 00:25	1.3
1,2,4-Trimethylbenzene	ND		1.1	0.22	ppb v/v			10/07/14 00:25	1.3
1,3,5-Trimethylbenzene	ND		0.54	0.17	ppb v/v			10/07/14 00:25	1.3
Vinyl acetate	ND		1.1	0.20	ppb v/v			10/07/14 00:25	1.3
Vinyl chloride	ND		0.54		ppb v/v			10/07/14 00:25	1.3
m,p-Xylene	ND		1.1	0.14	ppb v/v			10/07/14 00:25	1.3
o-Xylene	ND		0.54	0.073	ppb v/v			10/07/14 00:25	1.3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	95		70 - 130			-	<u> </u>	10/07/14 00:25	1.3
1,2-Dichloroethane-d4 (Surr)	90		70 - 130					10/07/14 00:25	1.3
Toluene-d8 (Surr)	97		70 - 130					10/07/14 00:25	1.3
Method: TO-15 - Volatile Organic	Compounds i	n Ambient	Air - DL						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Trichlorofluoromethane	110		1.1		ppb v/v	— – -	•	10/07/14 19:01	2.7

TestAmerica Job ID: 320-9478-1

Client: Sandia National Laboratories TestAmerica Job ID: 320-9478-1

Project/Site: MWL SVM

Client Sample ID: 096528-001/MWL-SV05-50

Lab Sample ID: 320-9478-19 Date Collected: 09/11/14 10:32

Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	70 - 130		10/07/14 19:01	2.71
1,2-Dichloroethane-d4 (Surr)	90	70 - 130		10/07/14 19:01	2.71
Toluene-d8 (Surr)	97	70 - 130		10/07/14 19:01	2.71

Client Sample ID: 096529-001/MWL-SV05-100 Lab Sample ID: 320-9478-20

Date Collected: 09/11/14 10:37 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 3L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	5.2	JB	11	0.38	ppb v/v			10/07/14 01:24	2.1
Benzene	0.56	J	0.86	0.17	ppb v/v			10/07/14 01:24	2.1
Benzyl chloride	ND		1.7	0.35	ppb v/v			10/07/14 01:24	2.1
Bromodichloromethane	ND		0.65	0.14	ppb v/v			10/07/14 01:24	2.1
Bromoform	ND		0.86	0.15	ppb v/v			10/07/14 01:24	2.1
Bromomethane	ND		1.7	0.72	ppb v/v			10/07/14 01:24	2.1
2-Butanone (MEK)	1.0	J	1.7	0.43	ppb v/v			10/07/14 01:24	2.1
Carbon disulfide	0.26	J	1.7	0.17	ppb v/v			10/07/14 01:24	2.1
Carbon tetrachloride	0.70	J	1.7	0.14	ppb v/v			10/07/14 01:24	2.1
Chlorobenzene	ND		0.65	0.14	ppb v/v			10/07/14 01:24	2.1
Chloroethane	ND		1.7	0.66	ppb v/v			10/07/14 01:24	2.1
Chloroform	2.1		0.65	0.20	ppb v/v			10/07/14 01:24	2.1
Chloromethane	ND		1.7	0.42	ppb v/v			10/07/14 01:24	2.1
Dibromochloromethane	ND		0.86	0.17	ppb v/v			10/07/14 01:24	2.1
1,2-Dibromoethane (EDB)	ND		1.7	0.16	ppb v/v			10/07/14 01:24	2.1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.86	0.33	ppb v/v			10/07/14 01:24	2.1
1,2-Dichlorobenzene	ND		0.86	0.28	ppb v/v			10/07/14 01:24	2.1
1,3-Dichlorobenzene	ND		0.86	0.24	ppb v/v			10/07/14 01:24	2.1
1,4-Dichlorobenzene	ND		0.86	0.32	ppb v/v			10/07/14 01:24	2.1
Dichlorodifluoromethane	66		0.86	0.31	ppb v/v			10/07/14 01:24	2.1
1,1-Dichloroethane	3.4		0.65	0.15	ppb v/v			10/07/14 01:24	2.1
1,2-Dichloroethane	ND		1.7	0.19	ppb v/v			10/07/14 01:24	2.1
1,1-Dichloroethene	23		1.7	0.28	ppb v/v			10/07/14 01:24	2.1
cis-1,2-Dichloroethene	1.6		0.86	0.19	ppb v/v			10/07/14 01:24	2.1
trans-1,2-Dichloroethene	ND		0.86	0.22	ppb v/v			10/07/14 01:24	2.1
1,2-Dichloropropane	ND		0.86	0.52	ppb v/v			10/07/14 01:24	2.1
cis-1,3-Dichloropropene	ND		0.86	0.22	ppb v/v			10/07/14 01:24	2.1
trans-1,3-Dichloropropene	ND		0.86	0.19	ppb v/v			10/07/14 01:24	2.1
Ethylbenzene	ND		0.86	0.14	ppb v/v			10/07/14 01:24	2.1
4-Ethyltoluene	ND		0.86	0.40	ppb v/v			10/07/14 01:24	2.1
Hexachlorobutadiene	ND		4.3	0.93	ppb v/v			10/07/14 01:24	2.1
2-Hexanone	ND		0.86	0.19	ppb v/v			10/07/14 01:24	2.1
4-Methyl-2-pentanone (MIBK)	ND		0.86	0.29	ppb v/v			10/07/14 01:24	2.1
Methylene Chloride	0.92		0.86	0.15	ppb v/v			10/07/14 01:24	2.1
Styrene	ND		0.86	0.13	ppb v/v			10/07/14 01:24	2.1
1,1,2,2-Tetrachloroethane	ND		0.86		ppb v/v			10/07/14 01:24	2.1
Tetrachloroethene	92		0.86		ppb v/v			10/07/14 01:24	2.1
Toluene	1.8		0.86		ppb v/v			10/07/14 01:24	2.1

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096529-001/MWL-SV05-100 Lab Sample ID: 320-9478-20

Date Collected: 09/11/14 10:37 Date Received: 09/18/14 09:15

Sample Container: Summa Canister 3L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroetha	91	0.86	0.35	ppb v/v			10/07/14 01:24	2.15
ne								
1,2,4-Trichlorobenzene	ND	4.3	0.93	ppb v/v			10/07/14 01:24	2.15
1,1,1-Trichloroethane	12	0.65	0.14	ppb v/v			10/07/14 01:24	2.15
1,1,2-Trichloroethane	ND	0.86	0.14	ppb v/v			10/07/14 01:24	2.15
Trichlorofluoromethane	130	0.86	0.42	ppb v/v			10/07/14 01:24	2.15
1,2,4-Trimethylbenzene	ND	1.7	0.35	ppb v/v			10/07/14 01:24	2.15
1,3,5-Trimethylbenzene	ND	0.86	0.27	ppb v/v			10/07/14 01:24	2.15
Vinyl acetate	ND	1.7	0.31	ppb v/v			10/07/14 01:24	2.15
Vinyl chloride	ND	0.86	0.26	ppb v/v			10/07/14 01:24	2.15
m,p-Xylene	ND	1.7	0.22	ppb v/v			10/07/14 01:24	2.15
o-Xylene	ND	0.86	0.12	ppb v/v			10/07/14 01:24	2.15

Surrogate	%Recovery	Qualifier	Limits	,	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			10/07/14 01:24	2.15
1,2-Dichloroethane-d4 (Surr)	88		70 - 130			10/07/14 01:24	2.15
Toluene-d8 (Surr)	97		70 - 130			10/07/14 01:24	2.15

Method: 10-15 - Volatile 0	rganic Compounds in Ambient Air - DL			
A I4 -	Daniel Original	ъ.	ME	11

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Trichloroethene	140	1.7	0.45 ppb v/v		10/07/14 19:58	4.3
Surrogate	%Recovery Qualifier	l imite		Propared	Analyzed	Dil Fac

II rac
4.3
4.3
4.3

Client Sample ID: 096530-001/MWL-SV05-200

Date Collected: 09/11/14 10:40 Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Lab Sample ID: 320-9478-21

TestAmerica Job ID: 320-9478-1

Matrix: Air

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	8.3	JB	13	0.45	ppb v/v			10/07/14 02:23	2.51
Benzene	0.34	J	1.0	0.20	ppb v/v			10/07/14 02:23	2.51
Benzyl chloride	ND		2.0	0.41	ppb v/v			10/07/14 02:23	2.51
Bromodichloromethane	ND		0.75	0.17	ppb v/v			10/07/14 02:23	2.51
Bromoform	ND		1.0	0.18	ppb v/v			10/07/14 02:23	2.51
Bromomethane	ND		2.0	0.84	ppb v/v			10/07/14 02:23	2.51
2-Butanone (MEK)	1.8	J	2.0	0.50	ppb v/v			10/07/14 02:23	2.51
Carbon disulfide	0.27	J	2.0	0.20	ppb v/v			10/07/14 02:23	2.51
Carbon tetrachloride	1.2	J	2.0	0.16	ppb v/v			10/07/14 02:23	2.51
Chlorobenzene	ND		0.75	0.16	ppb v/v			10/07/14 02:23	2.51
Chloroethane	ND		2.0	0.77	ppb v/v			10/07/14 02:23	2.51
Chloroform	1.9		0.75	0.24	ppb v/v			10/07/14 02:23	2.51
Chloromethane	ND		2.0	0.49	ppb v/v			10/07/14 02:23	2.51
Dibromochloromethane	ND		1.0	0.20	ppb v/v			10/07/14 02:23	2.51
1,2-Dibromoethane (EDB)	ND		2.0	0.19	ppb v/v			10/07/14 02:23	2.51
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.0	0.39	ppb v/v			10/07/14 02:23	2.51

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096530-001/MWL-SV05-200

Date Collected: 09/11/14 10:40

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Lab Sample ID: 320-9478-21

	Matrix:	Air
	mati ix.	<b>/</b>

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		1.0	0.33	ppb v/v			10/07/14 02:23	2.51
1,3-Dichlorobenzene	ND		1.0	0.28	ppb v/v			10/07/14 02:23	2.51
1,4-Dichlorobenzene	ND		1.0	0.37	ppb v/v			10/07/14 02:23	2.51
Dichlorodifluoromethane	66		1.0	0.36	ppb v/v			10/07/14 02:23	2.51
1,1-Dichloroethane	4.9		0.75	0.18	ppb v/v			10/07/14 02:23	2.51
1,2-Dichloroethane	ND		2.0	0.22	ppb v/v			10/07/14 02:23	2.51
1,1-Dichloroethene	42		2.0	0.32	ppb v/v			10/07/14 02:23	2.51
cis-1,2-Dichloroethene	2.3		1.0	0.22	ppb v/v			10/07/14 02:23	2.51
trans-1,2-Dichloroethene	ND		1.0	0.25	ppb v/v			10/07/14 02:23	2.51
1,2-Dichloropropane	ND		1.0	0.60	ppb v/v			10/07/14 02:23	2.51
cis-1,3-Dichloropropene	ND		1.0	0.26	ppb v/v			10/07/14 02:23	2.51
trans-1,3-Dichloropropene	ND		1.0	0.22	ppb v/v			10/07/14 02:23	2.51
Ethylbenzene	ND		1.0	0.16	ppb v/v			10/07/14 02:23	2.51
4-Ethyltoluene	ND		1.0	0.47	ppb v/v			10/07/14 02:23	2.51
Hexachlorobutadiene	ND		5.0	1.1	ppb v/v			10/07/14 02:23	2.51
2-Hexanone	ND		1.0	0.22	ppb v/v			10/07/14 02:23	2.51
4-Methyl-2-pentanone (MIBK)	ND		1.0	0.34	ppb v/v			10/07/14 02:23	2.51
Methylene Chloride	2.5		1.0	0.18	ppb v/v			10/07/14 02:23	2.51
Styrene	ND		1.0	0.15	ppb v/v			10/07/14 02:23	2.51
1,1,2,2-Tetrachloroethane	ND		1.0	0.17	ppb v/v			10/07/14 02:23	2.51
Tetrachloroethene	140		1.0	0.13	ppb v/v			10/07/14 02:23	2.51
Toluene	4.2		1.0	0.13	ppb v/v			10/07/14 02:23	2.51
1,2,4-Trichlorobenzene	ND		5.0	1.1	ppb v/v			10/07/14 02:23	2.51
1,1,1-Trichloroethane	3.3		0.75	0.16	ppb v/v			10/07/14 02:23	2.51
1,1,2-Trichloroethane	ND		1.0	0.17	ppb v/v			10/07/14 02:23	2.51
Trichlorofluoromethane	72		1.0	0.49	ppb v/v			10/07/14 02:23	2.51
1,2,4-Trimethylbenzene	ND		2.0	0.41	ppb v/v			10/07/14 02:23	2.51
1,3,5-Trimethylbenzene	ND		1.0	0.31	ppb v/v			10/07/14 02:23	2.51
Vinyl acetate	ND		2.0	0.36	ppb v/v			10/07/14 02:23	2.51
Vinyl chloride	ND		1.0	0.30	ppb v/v			10/07/14 02:23	2.51
m,p-Xylene	ND		2.0	0.25	ppb v/v			10/07/14 02:23	2.51
o-Xylene	ND		1.0	0.14	ppb v/v			10/07/14 02:23	2.51
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			=		10/07/14 02:23	2.51
1,2-Dichloroethane-d4 (Surr)	89		70 - 130					10/07/14 02:23	2.51
Toluene-d8 (Surr)	97		70 - 130					10/07/14 02:23	2.51

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroetha	160		2.0	0.82	ppb v/v			10/07/14 20:51	5.03
ne									
Trichloroethene	200		2.0	0.53	ppb v/v			10/07/14 20:51	5.03
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130			_		10/07/14 20:51	5.03
1,2-Dichloroethane-d4 (Surr)	90		70 - 130					10/07/14 20:51	5.03
Toluene-d8 (Surr)	93		70 - 130					10/07/14 20:51	5.03

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096531-001/MWL-SV05-300 Lab Sample ID: 320-9478-22

Date Collected: 09/11/14 10:44 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	13	В	7.5	0.27	ppb v/v			10/07/14 03:22	1.
Benzene	0.53	J	0.60	0.12	ppb v/v			10/07/14 03:22	1.
Benzyl chloride	ND		1.2	0.24	ppb v/v			10/07/14 03:22	1.
Bromodichloromethane	ND		0.45	0.099	ppb v/v			10/07/14 03:22	1.
Bromoform	ND		0.60		ppb v/v			10/07/14 03:22	1.
Bromomethane	ND		1.2		ppb v/v			10/07/14 03:22	1.
2-Butanone (MEK)	2.0		1.2		ppb v/v			10/07/14 03:22	1.
Carbon disulfide	3.1		1.2		ppb v/v			10/07/14 03:22	1.
Carbon tetrachloride	0.87	J	1.2		ppb v/v			10/07/14 03:22	1.
Chlorobenzene	ND		0.45		ppb v/v			10/07/14 03:22	1.
Chloroethane	ND		1.2		ppb v/v			10/07/14 03:22	1.
Chloroform	0.61		0.45		ppb v/v			10/07/14 03:22	1.
Chloromethane	0.51		1.2		ppb v/v			10/07/14 03:22	1.
Dibromochloromethane	ND		0.60		ppb v/v			10/07/14 03:22	1.
1,2-Dibromoethane (EDB)	ND		1.2		ppb v/v			10/07/14 03:22	1.
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.60		ppb v/v			10/07/14 03:22	1.
1,2-Dichlorobenzene	ND		0.60		ppb v/v			10/07/14 03:22	1.
1,3-Dichlorobenzene	ND		0.60		ppb v/v			10/07/14 03:22	1.
1,4-Dichlorobenzene	ND		0.60		ppb v/v			10/07/14 03:22	1.
Dichlorodifluoromethane	24		0.60		ppb v/v			10/07/14 03:22	1.
1,1-Dichloroethane	1.2		0.45		ppb v/v			10/07/14 03:22	1.
1,2-Dichloroethane	ND		1.2		ppb v/v			10/07/14 03:22	1.
1,1-Dichloroethene	20		1.2		ppb v/v			10/07/14 03:22	1.
cis-1,2-Dichloroethene	0.89		0.60		ppb v/v			10/07/14 03:22	1.
trans-1,2-Dichloroethene	ND		0.60		ppb v/v			10/07/14 03:22	1.
1,2-Dichloropropane	ND		0.60		ppb v/v			10/07/14 03:22	1.
cis-1,3-Dichloropropene	ND		0.60		ppb v/v			10/07/14 03:22	1.
trans-1,3-Dichloropropene	ND		0.60		ppb v/v			10/07/14 03:22	1.
Ethylbenzene	ND ND		0.60		ppb v/v			10/07/14 03:22	1.
4-Ethyltoluene	ND ND		0.60					10/07/14 03:22	1.
Hexachlorobutadiene	ND				ppb v/v				
			3.0		ppb v/v			10/07/14 03:22	1.
2-Hexanone	0.13	J	0.60		ppb v/v			10/07/14 03:22	1.
4-Methyl-2-pentanone (MIBK)	ND		0.60		ppb v/v			10/07/14 03:22	1.
Methylene Chloride	0.72		0.60		ppb v/v			10/07/14 03:22	1.
Styrene	ND		0.60		ppb v/v			10/07/14 03:22	1.
1,1,2,2-Tetrachloroethane	ND		0.60		ppb v/v			10/07/14 03:22	1.
Tetrachloroethene	90		0.60		ppb v/v			10/07/14 03:22	1.
Toluene	6.1		0.60		ppb v/v			10/07/14 03:22	1.
1,1,2-Trichloro-1,2,2-trifluoroetha	73		0.60	0.24	ppb v/v			10/07/14 03:22	1.
ne 1,2,4-Trichlorobenzene	ND		3.0	0.65	ppb v/v			10/07/14 03:22	1.
1,1,1-Trichloroethane	<b>0.90</b> ND		0.45 0.60		ppb v/v ppb v/v			10/07/14 03:22	1. 1.
1,1,2-Trichloroethane								10/07/14 03:22	
Trichlorofluoromethane	19 ND		0.60		ppb v/v			10/07/14 03:22	1.
1,2,4-Trimethylbenzene	ND		1.2		ppb v/v			10/07/14 03:22	1.
1,3,5-Trimethylbenzene	ND		0.60		ppb v/v			10/07/14 03:22	1.
Vinyl acetate	ND		1.2		ppb v/v			10/07/14 03:22	1.
Vinyl chloride	ND		0.60	0.18	ppb v/v			10/07/14 03:22	1.

TestAmerica Sacramento

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096531-001/MWL-SV05-300

Lab Sample ID: 320-9478-22

Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)										
.	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	o-Xylene	0.085	J	0.60	0.081	ppb v/v			10/07/14 03:22	1.5
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	99		70 - 130			-		10/07/14 03:22	1.5

Toluene-d8 (Surr)	96	70 - 130	10/07/14 03:22	1.5
1,2-Dichloroethane-d4 (Surr)	87	70 - 130	10/07/14 03:22	1.5
4-Bromotiuoropenzene (Surr)	99	70 - 130	10/07/14 03:22	7.5

Method: TO-15 - Volatile Organic Compounds in Ambient Air - DL
Analyte Result Qualifier

Allalyte	Result	Quanner	IXL.	WIDE	Oilit		riepaieu	Allalyzeu	Diriac
Trichloroethene	100		1.2	0.32	ppb v/v			10/07/14 21:48	3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130					10/07/14 21:48	3
1,2-Dichloroethane-d4 (Surr)	91		70 - 130					10/07/14 21:48	3
Toluene-d8 (Surr)	98		70 - 130					10/07/14 21:48	3
	Trichloroethene  Surrogate  4-Bromofluorobenzene (Surr)  1,2-Dichloroethane-d4 (Surr)	Surrogate         %Recovery           4-Bromofluorobenzene (Surr)         97           1,2-Dichloroethane-d4 (Surr)         91	Trichloroethene 100  Surrogate %Recovery 4-Bromofluorobenzene (Surr) 97 1,2-Dichloroethane-d4 (Surr) 91	Trichloroethene         100         1.2           Surrogate         %Recovery         Qualifier         Limits           4-Bromofluorobenzene (Surr)         97         70 - 130           1,2-Dichloroethane-d4 (Surr)         91         70 - 130	Trichloroethene         100         1.2         0.32           Surrogate         %Recovery         Qualifier         Limits           4-Bromofluorobenzene (Surr)         97         70 - 130           1,2-Dichloroethane-d4 (Surr)         91         70 - 130	Trichloroethene         100         1.2         0.32         ppb v/v           Surrogate         %Recovery         Qualifier         Limits           4-Bromofluorobenzene (Surr)         97         70 - 130           1,2-Dichloroethane-d4 (Surr)         91         70 - 130	Trichloroethene         100         1.2         0.32         ppb v/v           Surrogate         %Recovery         Qualifier         Limits           4-Bromofluorobenzene (Surr)         97         70 - 130           1,2-Dichloroethane-d4 (Surr)         91         70 - 130	Trichloroethene         100         1.2         0.32         ppb v/v           Surrogate         %Recovery 4-Bromofluorobenzene (Surr)         Qualifier         Limits         Prepared           4-Bromofluorobenzene (Surr)         97         70 - 130           1,2-Dichloroethane-d4 (Surr)         91         70 - 130	Trichloroethene         100         1.2         0.32 ppb v/v         10/07/14 21:48           Surrogate         %Recovery 4-Bromofluorobenzene (Surr)         Qualifier         Limits         Prepared         Analyzed           4-Bromofluorobenzene (Surr)         97         70 - 130         10/07/14 21:48           1,2-Dichloroethane-d4 (Surr)         91         70 - 130         10/07/14 21:48

MDI Unit

Client Sample ID: 096532-001/MWL-SV05-400 Lab Sample ID: 320-9478-23

Date Collected: 09/11/14 10:50

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	14	JB	15	0.52	ppb v/v			10/07/14 04:19	2.94
Benzene	0.99	J	1.2	0.23	ppb v/v			10/07/14 04:19	2.94
Benzyl chloride	ND		2.4	0.48	ppb v/v			10/07/14 04:19	2.94
Bromodichloromethane	ND		0.88	0.19	ppb v/v			10/07/14 04:19	2.94
Bromoform	ND		1.2	0.21	ppb v/v			10/07/14 04:19	2.94
Bromomethane	ND		2.4	0.98	ppb v/v			10/07/14 04:19	2.94
2-Butanone (MEK)	2.2	J	2.4	0.59	ppb v/v			10/07/14 04:19	2.94
Carbon disulfide	1.2	J	2.4	0.23	ppb v/v			10/07/14 04:19	2.94
Carbon tetrachloride	0.49	J	2.4	0.19	ppb v/v			10/07/14 04:19	2.94
Chlorobenzene	ND		0.88	0.19	ppb v/v			10/07/14 04:19	2.94
Chloroethane	ND		2.4	0.91	ppb v/v			10/07/14 04:19	2.94
Chloroform	0.54	J	0.88	0.28	ppb v/v			10/07/14 04:19	2.94
Chloromethane	1.7	J	2.4	0.58	ppb v/v			10/07/14 04:19	2.94
Dibromochloromethane	ND		1.2	0.23	ppb v/v			10/07/14 04:19	2.94
1,2-Dibromoethane (EDB)	ND		2.4	0.22	ppb v/v			10/07/14 04:19	2.94
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.2	0.46	ppb v/v			10/07/14 04:19	2.94
1,2-Dichlorobenzene	ND		1.2	0.38	ppb v/v			10/07/14 04:19	2.94
1,3-Dichlorobenzene	ND		1.2	0.32	ppb v/v			10/07/14 04:19	2.94
1,4-Dichlorobenzene	ND		1.2	0.44	ppb v/v			10/07/14 04:19	2.94
Dichlorodifluoromethane	15		1.2	0.43	ppb v/v			10/07/14 04:19	2.94
1,1-Dichloroethane	1.2		0.88	0.21	ppb v/v			10/07/14 04:19	2.94
1,2-Dichloroethane	ND		2.4	0.26	ppb v/v			10/07/14 04:19	2.94
1,1-Dichloroethene	14		2.4	0.38	ppb v/v			10/07/14 04:19	2.94
cis-1,2-Dichloroethene	0.82	J	1.2	0.26	ppb v/v			10/07/14 04:19	2.94
trans-1,2-Dichloroethene	ND		1.2	0.29	ppb v/v			10/07/14 04:19	2.94
1,2-Dichloropropane	ND		1.2	0.71	ppb v/v			10/07/14 04:19	2.94

TestAmerica Job ID: 320-9478-1

Analyzed

Prenared

Dil Fac

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096532-001/MWL-SV05-400 Lab Sample ID: 320-9478-23

Date Collected: 09/11/14 10:50 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,3-Dichloropropene	ND		1.2	0.31	ppb v/v			10/07/14 04:19	2.94
trans-1,3-Dichloropropene	ND		1.2	0.26	ppb v/v			10/07/14 04:19	2.94
Ethylbenzene	ND		1.2	0.19	ppb v/v			10/07/14 04:19	2.94
4-Ethyltoluene	ND		1.2	0.55	ppb v/v			10/07/14 04:19	2.94
Hexachlorobutadiene	ND		5.9	1.3	ppb v/v			10/07/14 04:19	2.94
2-Hexanone	ND		1.2	0.26	ppb v/v			10/07/14 04:19	2.94
4-Methyl-2-pentanone (MIBK)	ND		1.2	0.40	ppb v/v			10/07/14 04:19	2.94
Methylene Chloride	0.71	J	1.2	0.21	ppb v/v			10/07/14 04:19	2.94
Styrene	ND		1.2	0.17	ppb v/v			10/07/14 04:19	2.94
1,1,2,2-Tetrachloroethane	ND		1.2	0.20	ppb v/v			10/07/14 04:19	2.94
Tetrachloroethene	100		1.2	0.15	ppb v/v			10/07/14 04:19	2.94
1,1,2-Trichloro-1,2,2-trifluoroetha	40		1.2	0.48	ppb v/v			10/07/14 04:19	2.94
ne									
1,2,4-Trichlorobenzene	ND		5.9		ppb v/v			10/07/14 04:19	2.94
1,1,1-Trichloroethane	1.1		0.88		ppb v/v			10/07/14 04:19	2.94
1,1,2-Trichloroethane	ND		1.2		ppb v/v			10/07/14 04:19	2.94
Trichloroethene	94		1.2		ppb v/v			10/07/14 04:19	2.94
Trichlorofluoromethane	18		1.2	0.58	ppb v/v			10/07/14 04:19	2.94
1,2,4-Trimethylbenzene	ND		2.4	0.48	ppb v/v			10/07/14 04:19	2.94
1,3,5-Trimethylbenzene	ND		1.2	0.37	ppb v/v			10/07/14 04:19	2.94
Vinyl acetate	ND		2.4	0.43	ppb v/v			10/07/14 04:19	2.94
Vinyl chloride	ND		1.2	0.35	ppb v/v			10/07/14 04:19	2.94
m,p-Xylene	ND		2.4	0.29	ppb v/v			10/07/14 04:19	2.94
o-Xylene	ND		1.2	0.16	ppb v/v			10/07/14 04:19	2.94
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130			-		10/07/14 04:19	2.94
1,2-Dichloroethane-d4 (Surr)	88		70 - 130					10/07/14 04:19	2.94
Toluene-d8 (Surr)	96		70 - 130					10/07/14 04:19	2.94

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	250		2.4	0.30	ppb v/v			10/07/14 22:44	5.88
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130			-		10/07/14 22:44	5.88
1,2-Dichloroethane-d4 (Surr)	90		70 - 130					10/07/14 22:44	5.88
Toluene-d8 (Surr)	99		70 - 130					10/07/14 22:44	5.88

Client Sample ID: 096533-001/MWL-FB5 Lab Sample ID: 320-9478-24

Date Collected: 09/11/14 10:30 Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organ	nic Compounds i	n Ambient Ai	r						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	1.2	JB	6.4	0.23	ppb v/v			10/07/14 05:20	1.28
Benzene	0.42	J	0.51	0.10	ppb v/v			10/07/14 05:20	1.28
Benzyl chloride	ND		1.0	0.21	ppb v/v			10/07/14 05:20	1.28
Bromodichloromethane	ND		0.38	0.084	ppb v/v			10/07/14 05:20	1.28

TestAmerica Sacramento

TestAmerica Job ID: 320-9478-1

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096533-001/MWL-FB5 Lab Sample ID: 320-9478-24

Date Collected: 09/11/14 10:30

Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromoform	ND		0.51	0.090	ppb v/v			10/07/14 05:20	1.28
Bromomethane	ND		1.0	0.43	ppb v/v			10/07/14 05:20	1.2
2-Butanone (MEK)	ND		1.0	0.25	ppb v/v			10/07/14 05:20	1.28
Carbon disulfide	ND		1.0	0.10	ppb v/v			10/07/14 05:20	1.28
Carbon tetrachloride	ND		1.0	0.082	ppb v/v			10/07/14 05:20	1.28
Chlorobenzene	ND		0.38	0.082	ppb v/v			10/07/14 05:20	1.28
Chloroethane	ND		1.0		ppb v/v			10/07/14 05:20	1.28
Chloroform	ND		0.38	0.12	ppb v/v			10/07/14 05:20	1.28
Chloromethane	ND		1.0	0.25	ppb v/v			10/07/14 05:20	1.28
Dibromochloromethane	ND		0.51	0.10	ppb v/v			10/07/14 05:20	1.28
1,2-Dibromoethane (EDB)	ND		1.0		ppb v/v			10/07/14 05:20	1.28
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.51	0.20	ppb v/v			10/07/14 05:20	1.28
1,2-Dichlorobenzene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
1,3-Dichlorobenzene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
1,4-Dichlorobenzene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
Dichlorodifluoromethane	ND		0.51		ppb v/v			10/07/14 05:20	1.28
1,1-Dichloroethane	ND		0.38		ppb v/v			10/07/14 05:20	1.28
1,2-Dichloroethane	ND		1.0		ppb v/v			10/07/14 05:20	1.28
1,1-Dichloroethene	ND		1.0		ppb v/v			10/07/14 05:20	1.28
cis-1,2-Dichloroethene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
trans-1,2-Dichloroethene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
1,2-Dichloropropane	ND		0.51		ppb v/v			10/07/14 05:20	1.28
cis-1,3-Dichloropropene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
trans-1,3-Dichloropropene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
Ethylbenzene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
4-Ethyltoluene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
Hexachlorobutadiene	ND		2.6		ppb v/v			10/07/14 05:20	1.28
2-Hexanone	ND		0.51		ppb v/v			10/07/14 05:20	1.28
4-Methyl-2-pentanone (MIBK)	ND		0.51		ppb v/v			10/07/14 05:20	1.28
Methylene Chloride	ND		0.51		ppb v/v			10/07/14 05:20	1.28
Styrene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
1,1,2,2-Tetrachloroethane	ND		0.51		ppb v/v			10/07/14 05:20	1.28
Tetrachloroethene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
Toluene	0.11	4	0.51		ppb v/v			10/07/14 05:20	1.28
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.51		ppb v/v			10/07/14 05:20	1.28
1,2,4-Trichlorobenzene	ND		2.6		ppb v/v			10/07/14 05:20	1.28
1,1,1-Trichloroethane	ND		0.38		ppb v/v			10/07/14 05:20	1.28
1,1,2-Trichloroethane	ND		0.51		ppb v/v			10/07/14 05:20	1.28
Trichloroethene	ND ND		0.51		ppb v/v			10/07/14 05:20	1.28
Trichlorofluoromethane	ND		0.51		ppb v/v			10/07/14 05:20	1.28
1,2,4-Trimethylbenzene	ND		1.0		ppb v/v			10/07/14 05:20	1.28
1,3,5-Trimethylbenzene	ND		0.51		ppb v/v			10/07/14 05:20	1.28
Vinyl acetate	ND		1.0		ppb v/v			10/07/14 05:20	1.28
Vinyl acetate Vinyl chloride	ND		0.51		ppb v/v			10/07/14 05:20	1.20
m,p-Xylene	ND		1.0		ppb v/v			10/07/14 05:20	1.28
o-Xylene	ND ND		0.51		ppb v/v			10/07/14 05:20	1.28
3-Aylene	ND		0.51	0.009	bhn ala			10/07/14 05.20	1.20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	94		70 - 130			-	• • • • •	10/07/14 05:20	1.28

TestAmerica Sacramento

Client: Sandia National Laboratories TestAmerica Job ID: 320-9478-1

Project/Site: MWL SVM

Client Sample ID: 096533-001/MWL-FB5 Lab Sample ID: 320-9478-24

Date Collected: 09/11/14 10:30 Matrix: Air

Date Received: 09/18/14 09:15

Sample Container: Summa Canister 6L

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88	70 - 130		10/07/14 05:20	1.28
Toluene-d8 (Surr)	95	70 - 130		10/07/14 05:20	1.28

# OCTOBER 2014 SOIL-VAPOR SAMPLING RESULTS CERTIFICATES OF ANALYSIS

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-1 Client Sample ID: 096712-001/MWL-SV01-42.5

Date Collected: 10/22/14 08:41 Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL MI	DL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		120 4	1.3	ppb v/v			11/15/14 02:15	2
Benzene	ND		9.6	1.9	ppb v/v			11/15/14 02:15	2
Benzyl chloride	ND		19 3	3.9	ppb v/v			11/15/14 02:15	2
Bromodichloromethane	ND		7.2	1.6	ppb v/v			11/15/14 02:15	2
Bromoform	ND		9.6 1	1.7	ppb v/v			11/15/14 02:15	2
Bromomethane	ND		19 8	3.0	ppb v/v			11/15/14 02:15	2
2-Butanone (MEK)	ND		19 4	1.8	ppb v/v			11/15/14 02:15	2
Carbon disulfide	ND		19 1	1.9	ppb v/v			11/15/14 02:15	2
Carbon tetrachloride	ND		19 1	1.5	ppb v/v			11/15/14 02:15	2
Chlorobenzene	ND		7.2	1.5	ppb v/v			11/15/14 02:15	2
Chloroethane	ND		19 7	7.4	ppb v/v			11/15/14 02:15	2
Chloroform	12				ppb v/v			11/15/14 02:15	2
Chloromethane	ND		19 4	1.7	ppb v/v			11/15/14 02:15	2
Dibromochloromethane	ND		9.6	1.9	ppb v/v			11/15/14 02:15	2
1,2-Dibromoethane (EDB)	ND				ppb v/v			11/15/14 02:15	2
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		9.6	3.7	ppb v/v			11/15/14 02:15	2
1,2-Dichlorobenzene	ND				ppb v/v			11/15/14 02:15	2
1,3-Dichlorobenzene	ND				ppb v/v			11/15/14 02:15	2
1,4-Dichlorobenzene	ND				ppb v/v			11/15/14 02:15	
Dichlorodifluoromethane	110				ppb v/v			11/15/14 02:15	2
1,1-Dichloroethane	2.7	J			ppb v/v			11/15/14 02:15	2
1,2-Dichloroethane	ND				ppb v/v			11/15/14 02:15	
1,1-Dichloroethene	10	J			ppb v/v			11/15/14 02:15	2
cis-1,2-Dichloroethene	ND				ppb v/v			11/15/14 02:15	2
trans-1,2-Dichloroethene	ND				ppb v/v			11/15/14 02:15	2
1,2-Dichloropropane	ND				ppb v/v			11/15/14 02:15	2
cis-1,3-Dichloropropene	ND				ppb v/v			11/15/14 02:15	2
trans-1,3-Dichloropropene	ND				ppb v/v			11/15/14 02:15	<u>.</u> 2
Ethylbenzene	ND				ppb v/v			11/15/14 02:15	2
4-Ethyltoluene	ND				ppb v/v			11/15/14 02:15	2
Hexachlorobutadiene	ND				ppb v/v			11/15/14 02:15	
2-Hexanone	ND				ppb v/v			11/15/14 02:15	2
4-Methyl-2-pentanone (MIBK)	ND				ppb v/v			11/15/14 02:15	2
Methylene Chloride	ND				ppb v/v			11/15/14 02:15	
Styrene	ND				ppb v/v			11/15/14 02:15	2
1,1,2,2-Tetrachloroethane	ND				ppb v/v			11/15/14 02:15	2
Tetrachloroethene	400				ppb v/v			11/15/14 02:15	<u>.</u> 2
Toluene	ND				ppb v/v			11/15/14 02:15	2
1,1,2-Trichloro-1,2,2-trifluoroetha	100				ppb v/v			11/15/14 02:15	2
ne	100		0.0		pps w			11/10/11 02:10	-
1,2,4-Trichlorobenzene	ND		48	10	ppb v/v			11/15/14 02:15	2
1,1,1-Trichloroethane	54		7.2	1.6	ppb v/v			11/15/14 02:15	2
1,1,2-Trichloroethane	ND				ppb v/v			11/15/14 02:15	2
Trichloroethene	90				ppb v/v			11/15/14 02:15	<u>.</u> 2
Trichlorofluoromethane	230				ppb v/v			11/15/14 02:15	2
1,2,4-Trimethylbenzene	ND				ppb v/v			11/15/14 02:15	2
1,3,5-Trimethylbenzene	ND				ppb v/v			11/15/14 02:15	2
Vinyl acetate	ND				ppb v/v			11/15/14 02:15	2

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

11/15/14 02:15

11/15/14 02:15

24

24

#### Client Sample ID: 096712-001/MWL-SV01-42.5

Lab Sample ID: 320-10172-1 Date Collected: 10/22/14 08:41

Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Orga	nic Compounds i	n Ambient /	Air (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		9.6	2.9	ppb v/v			11/15/14 02:15	24
m,p-Xylene	ND		19	2.4	ppb v/v			11/15/14 02:15	24
o-Xylene	ND		9.6	1.3	ppb v/v			11/15/14 02:15	24
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			-		11/15/14 02:15	24

Client Sample ID: 096713-001/MWL-SV-FB1 Lab Sample ID: 320-10172-2

70 - 130

70 - 130

107

97

Date Collected: 10/22/14 08:52 Matrix: Air

Date Received: 10/30/14 10:00

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.75	J	5.0	0.18	ppb v/v			11/15/14 03:05	1
Benzene	ND		0.40	0.079	ppb v/v			11/15/14 03:05	1
Benzyl chloride	ND		0.80	0.16	ppb v/v			11/15/14 03:05	1
Bromodichloromethane	ND		0.30	0.066	ppb v/v			11/15/14 03:05	1
Bromoform	ND		0.40	0.070	ppb v/v			11/15/14 03:05	1
Bromomethane	ND		0.80	0.34	ppb v/v			11/15/14 03:05	1
2-Butanone (MEK)	ND		0.80	0.20	ppb v/v			11/15/14 03:05	1
Carbon disulfide	ND		0.80	0.078	ppb v/v			11/15/14 03:05	1
Carbon tetrachloride	ND		0.80	0.064	ppb v/v			11/15/14 03:05	1
Chlorobenzene	ND		0.30	0.064	ppb v/v			11/15/14 03:05	1
Chloroethane	ND		0.80	0.31	ppb v/v			11/15/14 03:05	1
Chloroform	ND		0.30	0.095	ppb v/v			11/15/14 03:05	1
Chloromethane	ND		0.80	0.20	ppb v/v			11/15/14 03:05	1
Dibromochloromethane	ND		0.40	0.079	ppb v/v			11/15/14 03:05	1
1,2-Dibromoethane (EDB)	ND		0.80	0.075	ppb v/v			11/15/14 03:05	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40	0.16	ppb v/v			11/15/14 03:05	1
1,2-Dichlorobenzene	ND		0.40	0.13	ppb v/v			11/15/14 03:05	1
1,3-Dichlorobenzene	ND		0.40	0.11	ppb v/v			11/15/14 03:05	1
1,4-Dichlorobenzene	ND		0.40	0.15	ppb v/v			11/15/14 03:05	1
Dichlorodifluoromethane	ND		0.40	0.15	ppb v/v			11/15/14 03:05	1
1,1-Dichloroethane	ND		0.30	0.072	ppb v/v			11/15/14 03:05	1
1,2-Dichloroethane	ND		0.80	0.088	ppb v/v			11/15/14 03:05	1
1,1-Dichloroethene	ND		0.80	0.13	ppb v/v			11/15/14 03:05	1
cis-1,2-Dichloroethene	ND		0.40	0.089	ppb v/v			11/15/14 03:05	1
trans-1,2-Dichloroethene	ND		0.40	0.10	ppb v/v			11/15/14 03:05	1
1,2-Dichloropropane	ND		0.40	0.24	ppb v/v			11/15/14 03:05	1
cis-1,3-Dichloropropene	ND		0.40	0.10	ppb v/v			11/15/14 03:05	1
trans-1,3-Dichloropropene	ND		0.40	0.088	ppb v/v			11/15/14 03:05	1
Ethylbenzene	ND		0.40		ppb v/v			11/15/14 03:05	1
4-Ethyltoluene	ND		0.40	0.19	ppb v/v			11/15/14 03:05	1
Hexachlorobutadiene	ND		2.0	0.43	ppb v/v			11/15/14 03:05	1
2-Hexanone	ND		0.40		ppb v/v			11/15/14 03:05	1
4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14	ppb v/v			11/15/14 03:05	1

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-2

#### Client Sample ID: 096713-001/MWL-SV-FB1

Date Collected: 10/22/14 08:52 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND		0.40	0.072	ppb v/v			11/15/14 03:05	1
Styrene	ND		0.40	0.059	ppb v/v			11/15/14 03:05	1
1,1,2,2-Tetrachloroethane	ND		0.40	0.069	ppb v/v			11/15/14 03:05	1
Tetrachloroethene	ND		0.40	0.051	ppb v/v			11/15/14 03:05	1
Toluene	0.065	J	0.40	0.051	ppb v/v			11/15/14 03:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40	0.16	ppb v/v			11/15/14 03:05	1
1,2,4-Trichlorobenzene	ND		2.0	0.43	ppb v/v			11/15/14 03:05	1
1,1,1-Trichloroethane	ND		0.30	0.065	ppb v/v			11/15/14 03:05	1
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			11/15/14 03:05	1
Trichloroethene	ND		0.40	0.11	ppb v/v			11/15/14 03:05	1
Trichlorofluoromethane	ND		0.40	0.20	ppb v/v			11/15/14 03:05	1
1,2,4-Trimethylbenzene	ND		0.80	0.16	ppb v/v			11/15/14 03:05	1
1,3,5-Trimethylbenzene	ND		0.40	0.13	ppb v/v			11/15/14 03:05	1
Vinyl acetate	ND		0.80	0.15	ppb v/v			11/15/14 03:05	1
Vinyl chloride	ND		0.40	0.12	ppb v/v			11/15/14 03:05	1
m,p-Xylene	ND		0.80	0.10	ppb v/v			11/15/14 03:05	1
o-Xylene	ND		0.40	0.054	ppb v/v			11/15/14 03:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130			-		11/15/14 03:05	1
1,2-Dichloroethane-d4 (Surr)	99		70 - 130					11/15/14 03:05	1
Toluene-d8 (Surr)	104		70 - 130					11/15/14 03:05	1

Client Sample ID: 096714-001/MWL-SV02-41.5

Date Collected: 10/22/14 08:31 Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 320-10172-3

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	2.8	J	45	1.6	ppb v/v			11/15/14 03:48	9.08
Benzene	ND		3.6	0.72	ppb v/v			11/15/14 03:48	9.08
Benzyl chloride	ND		7.3	1.5	ppb v/v			11/15/14 03:48	9.08
Bromodichloromethane	ND		2.7	0.60	ppb v/v			11/15/14 03:48	9.08
Bromoform	ND		3.6	0.64	ppb v/v			11/15/14 03:48	9.08
Bromomethane	ND		7.3	3.0	ppb v/v			11/15/14 03:48	9.08
2-Butanone (MEK)	ND		7.3	1.8	ppb v/v			11/15/14 03:48	9.08
Carbon disulfide	ND		7.3	0.71	ppb v/v			11/15/14 03:48	9.08
Carbon tetrachloride	ND		7.3	0.58	ppb v/v			11/15/14 03:48	9.08
Chlorobenzene	ND		2.7	0.58	ppb v/v			11/15/14 03:48	9.08
Chloroethane	ND		7.3	2.8	ppb v/v			11/15/14 03:48	9.08
Chloroform	2.6	J	2.7	0.86	ppb v/v			11/15/14 03:48	9.08
Chloromethane	ND		7.3	1.8	ppb v/v			11/15/14 03:48	9.08
Dibromochloromethane	ND		3.6	0.72	ppb v/v			11/15/14 03:48	9.08
1,2-Dibromoethane (EDB)	ND		7.3	0.68	ppb v/v			11/15/14 03:48	9.08
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		3.6	1.4	ppb v/v			11/15/14 03:48	9.08
1,2-Dichlorobenzene	ND		3.6	1.2	ppb v/v			11/15/14 03:48	9.08
1,3-Dichlorobenzene	ND		3.6	1.0	ppb v/v			11/15/14 03:48	9.08
1,4-Dichlorobenzene	ND		3.6	1.4	ppb v/v			11/15/14 03:48	9.08

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Client Sample ID: 096714-001/MWL-SV02-41.5

Lab Sample ID: 320-10172-3 Date Collected: 10/22/14 08:31 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	89		3.6	1.3	ppb v/v			11/15/14 03:48	9.08
1,1-Dichloroethane	2.2	J	2.7	0.65	ppb v/v			11/15/14 03:48	9.08
1,2-Dichloroethane	ND		7.3	0.80	ppb v/v			11/15/14 03:48	9.08
1,1-Dichloroethene	11		7.3	1.2	ppb v/v			11/15/14 03:48	9.08
cis-1,2-Dichloroethene	ND		3.6	0.81	ppb v/v			11/15/14 03:48	9.08
trans-1,2-Dichloroethene	ND		3.6	0.91	ppb v/v			11/15/14 03:48	9.08
1,2-Dichloropropane	ND		3.6	2.2	ppb v/v			11/15/14 03:48	9.08
cis-1,3-Dichloropropene	ND		3.6	0.94	ppb v/v			11/15/14 03:48	9.08
trans-1,3-Dichloropropene	ND		3.6	0.80	ppb v/v			11/15/14 03:48	9.08
Ethylbenzene	ND		3.6	0.57	ppb v/v			11/15/14 03:48	9.08
4-Ethyltoluene	ND		3.6	1.7	ppb v/v			11/15/14 03:48	9.08
Hexachlorobutadiene	ND		18	3.9	ppb v/v			11/15/14 03:48	9.08
2-Hexanone	ND		3.6	0.79	ppb v/v			11/15/14 03:48	9.08
4-Methyl-2-pentanone (MIBK)	ND		3.6	1.2	ppb v/v			11/15/14 03:48	9.08
Methylene Chloride	ND		3.6	0.65	ppb v/v			11/15/14 03:48	9.08
Styrene	ND		3.6	0.54	ppb v/v			11/15/14 03:48	9.08
1,1,2,2-Tetrachloroethane	ND		3.6	0.63	ppb v/v			11/15/14 03:48	9.08
Tetrachloroethene	67		3.6	0.46	ppb v/v			11/15/14 03:48	9.08
Toluene	ND		3.6	0.46	ppb v/v			11/15/14 03:48	9.08
1,1,2-Trichloro-1,2,2-trifluoroetha	53		3.6	1.5	ppb v/v			11/15/14 03:48	9.08
ne									
1,2,4-Trichlorobenzene	ND		18		ppb v/v			11/15/14 03:48	9.08
1,1,1-Trichloroethane	76		2.7		ppb v/v			11/15/14 03:48	9.08
1,1,2-Trichloroethane	ND		3.6		ppb v/v			11/15/14 03:48	9.08
Trichloroethene	58		3.6		ppb v/v			11/15/14 03:48	9.08
Trichlorofluoromethane	320		3.6		ppb v/v			11/15/14 03:48	9.08
1,2,4-Trimethylbenzene	ND		7.3	1.5	ppb v/v			11/15/14 03:48	9.08
1,3,5-Trimethylbenzene	ND		3.6	1.1	ppb v/v			11/15/14 03:48	9.08
Vinyl acetate	ND		7.3	1.3	ppb v/v			11/15/14 03:48	9.08
Vinyl chloride	ND		3.6	1.1	ppb v/v			11/15/14 03:48	9.08
m,p-Xylene	ND		7.3	0.91	ppb v/v			11/15/14 03:48	9.08
o-Xylene	ND		3.6	0.49	ppb v/v			11/15/14 03:48	9.08
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			-		11/15/14 03:48	9.08
1,2-Dichloroethane-d4 (Surr)	107		70 - 130					11/15/14 03:48	9.08
Toluene-d8 (Surr)	99		70 - 130					11/15/14 03:48	9.08

Client Sample ID: 096715-001/MWL-SV-FB2

Date Collected: 10/22/14 08:54 Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 320-10172-4

Method: TO-15 - Volatile Organic Compounds in Ambient Air										
A	nalyte Re	sult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
A	cetone	1.5	J	5.0	0.18	ppb v/v			11/15/14 04:38	1
В	enzene	ND		0.40	0.079	ppb v/v			11/15/14 04:38	1
В	enzyl chloride	ND		0.80	0.16	ppb v/v			11/15/14 04:38	1
Bı	omodichloromethane	ND		0.30	0.066	ppb v/v			11/15/14 04:38	1

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

## Client Sample ID: 096715-001/MWL-SV-FB2

Date Collected: 10/22/14 08:54

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 320-10172-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromoform	ND		0.40	0.070	ppb v/v			11/15/14 04:38	
Bromomethane	ND		0.80	0.34	ppb v/v			11/15/14 04:38	
2-Butanone (MEK)	0.22	J	0.80	0.20	ppb v/v			11/15/14 04:38	
Carbon disulfide	ND		0.80	0.078	ppb v/v			11/15/14 04:38	
Carbon tetrachloride	ND		0.80	0.064	ppb v/v			11/15/14 04:38	
Chlorobenzene	ND		0.30	0.064	ppb v/v			11/15/14 04:38	
Chloroethane	ND		0.80	0.31	ppb v/v			11/15/14 04:38	
Chloroform	ND		0.30		ppb v/v			11/15/14 04:38	
Chloromethane	ND		0.80		ppb v/v			11/15/14 04:38	
Dibromochloromethane	ND		0.40		ppb v/v			11/15/14 04:38	
1,2-Dibromoethane (EDB)	ND		0.80		ppb v/v			11/15/14 04:38	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40		ppb v/v			11/15/14 04:38	
1,2-Dichlorobenzene	ND		0.40		ppb v/v			11/15/14 04:38	
1,3-Dichlorobenzene	ND		0.40		ppb v/v			11/15/14 04:38	
1,4-Dichlorobenzene	ND		0.40		ppb v/v			11/15/14 04:38	
Dichlorodifluoromethane	ND		0.40		ppb v/v			11/15/14 04:38	
1,1-Dichloroethane	ND		0.30		ppb v/v			11/15/14 04:38	
1,2-Dichloroethane	ND		0.80		ppb v/v			11/15/14 04:38	
1,1-Dichloroethene	ND		0.80		ppb v/v			11/15/14 04:38	
cis-1,2-Dichloroethene	ND		0.40		ppb v/v			11/15/14 04:38	
trans-1,2-Dichloroethene	ND		0.40		ppb v/v			11/15/14 04:38	
	ND		0.40		ppb v/v			11/15/14 04:38	
1,2-Dichloropropane	ND		0.40					11/15/14 04:38	
cis-1,3-Dichloropropene					ppb v/v				
trans-1,3-Dichloropropene	ND		0.40		ppb v/v			11/15/14 04:38	
Ethylbenzene	ND		0.40		ppb v/v			11/15/14 04:38	
4-Ethyltoluene	ND		0.40		ppb v/v			11/15/14 04:38	
Hexachlorobutadiene	ND		2.0		ppb v/v			11/15/14 04:38	
2-Hexanone	ND		0.40		ppb v/v			11/15/14 04:38	
4-Methyl-2-pentanone (MIBK)	ND		0.40		ppb v/v			11/15/14 04:38	
Methylene Chloride	ND		0.40		ppb v/v			11/15/14 04:38	
Styrene	ND		0.40		ppb v/v			11/15/14 04:38	
1,1,2,2-Tetrachloroethane	ND		0.40	0.069	ppb v/v			11/15/14 04:38	
Tetrachloroethene	ND		0.40	0.051	ppb v/v			11/15/14 04:38	
Toluene	ND		0.40	0.051	ppb v/v			11/15/14 04:38	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40	0.16	ppb v/v			11/15/14 04:38	
1,2,4-Trichlorobenzene	ND		2.0	0.43	ppb v/v			11/15/14 04:38	
1,1,1-Trichloroethane	ND		0.30	0.065	ppb v/v			11/15/14 04:38	
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			11/15/14 04:38	
Trichloroethene	ND		0.40	0.11	ppb v/v			11/15/14 04:38	
Trichlorofluoromethane	ND		0.40	0.20	ppb v/v			11/15/14 04:38	
1,2,4-Trimethylbenzene	ND		0.80	0.16	ppb v/v			11/15/14 04:38	
1,3,5-Trimethylbenzene	ND		0.40	0.13	ppb v/v			11/15/14 04:38	
Vinyl acetate	ND		0.80	0.15	ppb v/v			11/15/14 04:38	
Vinyl chloride	ND		0.40	0.12	ppb v/v			11/15/14 04:38	
m,p-Xylene	ND		0.80	0.10	ppb v/v			11/15/14 04:38	
o-Xylene	ND		0.40	0.054	ppb v/v			11/15/14 04:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

# Client Sample ID: 096715-001/MWL-SV-FB2

Date Collected: 10/22/14 08:54

Date Received: 10/30/14 10:00 Sample Container: Summa Canister 6L Lab Sample ID: 320-10172-4

Lab Sample ID: 320-10172-5

Matrix: Air

Matrix: Air

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	70 - 130		11/15/14 04:38	1
Toluene-d8 (Surr)	104	70 - 130		11/15/14 04:38	1

Client Sample ID: 096716-001/MWL-SV03-50 (port 1)

Date Collected: 10/22/14 09:16

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.5 J	37	1.3	ppb v/v			11/16/14 02:23	7.44
Benzene	5.0	3.0	0.59	ppb v/v			11/16/14 02:23	7.44
Benzyl chloride	ND	6.0	1.2	ppb v/v			11/16/14 02:23	7.44
Bromodichloromethane	ND	2.2	0.49	ppb v/v			11/16/14 02:23	7.44
Bromoform	ND	3.0	0.52	ppb v/v			11/16/14 02:23	7.44
Bromomethane	ND	6.0	2.5	ppb v/v			11/16/14 02:23	7.44
2-Butanone (MEK)	ND	6.0	1.5	ppb v/v			11/16/14 02:23	7.44
Carbon disulfide	ND	6.0	0.58	ppb v/v			11/16/14 02:23	7.44
Carbon tetrachloride	ND	6.0	0.48	ppb v/v			11/16/14 02:23	7.44
Chlorobenzene	ND	2.2	0.48	ppb v/v			11/16/14 02:23	7.44
Chloroethane	ND	6.0	2.3	ppb v/v			11/16/14 02:23	7.44
Chloroform	1.6 J	2.2	0.71	ppb v/v			11/16/14 02:23	7.44
Chloromethane	ND	6.0	1.5	ppb v/v			11/16/14 02:23	7.44
Dibromochloromethane	ND	3.0	0.59	ppb v/v			11/16/14 02:23	7.44
1,2-Dibromoethane (EDB)	ND	6.0	0.56	ppb v/v			11/16/14 02:23	7.44
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	3.0	1.2	ppb v/v			11/16/14 02:23	7.44
1,2-Dichlorobenzene	ND	3.0	0.97	ppb v/v			11/16/14 02:23	7.44
1,3-Dichlorobenzene	ND	3.0	0.82	ppb v/v			11/16/14 02:23	7.44
1,4-Dichlorobenzene	ND	3.0	1.1	ppb v/v			11/16/14 02:23	7.44
Dichlorodifluoromethane	20	3.0	1.1	ppb v/v			11/16/14 02:23	7.44
1,1-Dichloroethane	2.1 J	2.2	0.54	ppb v/v			11/16/14 02:23	7.44
1,2-Dichloroethane	ND	6.0	0.65	ppb v/v			11/16/14 02:23	7.44
1,1-Dichloroethene	7.1	6.0	0.96	ppb v/v			11/16/14 02:23	7.44
cis-1,2-Dichloroethene	1.3 J	3.0	0.66	ppb v/v			11/16/14 02:23	7.44
trans-1,2-Dichloroethene	ND	3.0	0.74	ppb v/v			11/16/14 02:23	7.44
1,2-Dichloropropane	ND	3.0	1.8	ppb v/v			11/16/14 02:23	7.44
cis-1,3-Dichloropropene	ND	3.0	0.77	ppb v/v			11/16/14 02:23	7.44
trans-1,3-Dichloropropene	ND	3.0	0.65	ppb v/v			11/16/14 02:23	7.44
Ethylbenzene	ND	3.0	0.47	ppb v/v			11/16/14 02:23	7.44
4-Ethyltoluene	ND	3.0	1.4	ppb v/v			11/16/14 02:23	7.44
Hexachlorobutadiene	ND	15	3.2	ppb v/v			11/16/14 02:23	7.44
2-Hexanone	ND	3.0	0.65	ppb v/v			11/16/14 02:23	7.44
4-Methyl-2-pentanone (MIBK)	ND	3.0	1.0	ppb v/v			11/16/14 02:23	7.44
Methylene Chloride	ND	3.0	0.54	ppb v/v			11/16/14 02:23	7.44
Styrene	0.45 JB	3.0	0.44	ppb v/v			11/16/14 02:23	7.44
1,1,2,2-Tetrachloroethane	ND	3.0	0.51	ppb v/v			11/16/14 02:23	7.44
Tetrachloroethene	120	3.0	0.38	ppb v/v			11/16/14 02:23	7.44
Toluene	2.2 J	3.0	0.38	ppb v/v			11/16/14 02:23	7.44

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-5

Lab Sample ID: 320-10172-6

Matrix: Air

# Client Sample ID: 096716-001/MWL-SV03-50 (port 1)

Date Collected: 10/22/14 09:16 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroetha	46		3.0	1.2	ppb v/v			11/16/14 02:23	7.44
ne									
1,2,4-Trichlorobenzene	ND	*	15	3.2	ppb v/v			11/16/14 02:23	7.44
1,1,1-Trichloroethane	5.7		2.2	0.48	ppb v/v			11/16/14 02:23	7.44
1,1,2-Trichloroethane	ND		3.0	0.50	ppb v/v			11/16/14 02:23	7.44
Trichloroethene	82		3.0	0.78	ppb v/v			11/16/14 02:23	7.44
Trichlorofluoromethane	19		3.0	1.5	ppb v/v			11/16/14 02:23	7.44
1,2,4-Trimethylbenzene	ND		6.0	1.2	ppb v/v			11/16/14 02:23	7.44
1,3,5-Trimethylbenzene	ND		3.0	0.93	ppb v/v			11/16/14 02:23	7.44
Vinyl acetate	ND		6.0	1.1	ppb v/v			11/16/14 02:23	7.44
Vinyl chloride	ND		3.0	0.89	ppb v/v			11/16/14 02:23	7.44
m,p-Xylene	0.85	JB	6.0	0.74	ppb v/v			11/16/14 02:23	7.44
o-Xylene	0.46	JB	3.0	0.40	ppb v/v			11/16/14 02:23	7.44
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130			=		11/16/14 02:23	7.44
1,2-Dichloroethane-d4 (Surr)	78		70 - 130					11/16/14 02:23	7.44
Toluene-d8 (Surr)	96		70 ₋ 130					11/16/14 02:23	7.44

Client Sample ID: 096717-001/MWL-SV03-100 (port 2)

Date Collected: 10/22/14 09:21

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		75	2.7	ppb v/v			11/16/14 03:14	14.9
Benzene	ND		6.0	1.2	ppb v/v			11/16/14 03:14	14.9
Benzyl chloride	ND		12	2.4	ppb v/v			11/16/14 03:14	14.9
Bromodichloromethane	ND		4.5	0.98	ppb v/v			11/16/14 03:14	14.9
Bromoform	ND		6.0	1.0	ppb v/v			11/16/14 03:14	14.9
Bromomethane	ND		12	5.0	ppb v/v			11/16/14 03:14	14.9
2-Butanone (MEK)	ND		12	3.0	ppb v/v			11/16/14 03:14	14.9
Carbon disulfide	ND		12	1.2	ppb v/v			11/16/14 03:14	14.9
Carbon tetrachloride	ND		12	0.95	ppb v/v			11/16/14 03:14	14.9
Chlorobenzene	ND		4.5	0.95	ppb v/v			11/16/14 03:14	14.9
Chloroethane	ND		12	4.6	ppb v/v			11/16/14 03:14	14.9
Chloroform	2.3 J	J	4.5	1.4	ppb v/v			11/16/14 03:14	14.9
Chloromethane	ND		12	2.9	ppb v/v			11/16/14 03:14	14.9
Dibromochloromethane	ND		6.0	1.2	ppb v/v			11/16/14 03:14	14.9
1,2-Dibromoethane (EDB)	ND		12	1.1	ppb v/v			11/16/14 03:14	14.9
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		6.0	2.3	ppb v/v			11/16/14 03:14	14.9
1,2-Dichlorobenzene	ND		6.0	1.9	ppb v/v			11/16/14 03:14	14.9
1,3-Dichlorobenzene	ND		6.0	1.6	ppb v/v			11/16/14 03:14	14.9
1,4-Dichlorobenzene	ND		6.0	2.2	ppb v/v			11/16/14 03:14	14.9
Dichlorodifluoromethane	39		6.0	2.2	ppb v/v			11/16/14 03:14	14.9
1,1-Dichloroethane	5.3		4.5	1.1	ppb v/v			11/16/14 03:14	14.9
1,2-Dichloroethane	ND		12	1.3	ppb v/v			11/16/14 03:14	14.9
1,1-Dichloroethene	19		12	1.9	ppb v/v			11/16/14 03:14	14.9

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-6

# Client Sample ID: 096717-001/MWL-SV03-100 (port 2)

Date Collected: 10/22/14 09:21 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	3.7	J	6.0	1.3	ppb v/v			11/16/14 03:14	14.9
trans-1,2-Dichloroethene	ND		6.0	1.5	ppb v/v			11/16/14 03:14	14.9
1,2-Dichloropropane	ND		6.0	3.6	ppb v/v			11/16/14 03:14	14.9
cis-1,3-Dichloropropene	ND		6.0	1.5	ppb v/v			11/16/14 03:14	14.9
trans-1,3-Dichloropropene	ND		6.0	1.3	ppb v/v			11/16/14 03:14	14.9
Ethylbenzene	ND		6.0	0.94	ppb v/v			11/16/14 03:14	14.9
4-Ethyltoluene	ND		6.0	2.8	ppb v/v			11/16/14 03:14	14.9
Hexachlorobutadiene	ND		30	6.4	ppb v/v			11/16/14 03:14	14.9
2-Hexanone	ND		6.0	1.3	ppb v/v			11/16/14 03:14	14.9
4-Methyl-2-pentanone (MIBK)	ND		6.0	2.0	ppb v/v			11/16/14 03:14	14.9
Methylene Chloride	1.7	J	6.0	1.1	ppb v/v			11/16/14 03:14	14.9
Styrene	ND		6.0	0.88	ppb v/v			11/16/14 03:14	14.9
1,1,2,2-Tetrachloroethane	ND		6.0	1.0	ppb v/v			11/16/14 03:14	14.9
Tetrachloroethene	230		6.0	0.76	ppb v/v			11/16/14 03:14	14.9
Toluene	1.6	J	6.0	0.76	ppb v/v			11/16/14 03:14	14.9
1,1,2-Trichloro-1,2,2-trifluoroetha	110		6.0	2.4	ppb v/v			11/16/14 03:14	14.9
ne									
1,2,4-Trichlorobenzene	ND	*	30		ppb v/v			11/16/14 03:14	14.9
1,1,1-Trichloroethane	6.6		4.5		ppb v/v			11/16/14 03:14	14.9
1,1,2-Trichloroethane	ND		6.0	1.0	ppb v/v			11/16/14 03:14	14.9
Trichloroethene	190		6.0	1.6	ppb v/v			11/16/14 03:14	14.9
Trichlorofluoromethane	29		6.0	2.9	ppb v/v			11/16/14 03:14	14.9
1,2,4-Trimethylbenzene	ND		12	2.4	ppb v/v			11/16/14 03:14	14.9
1,3,5-Trimethylbenzene	ND		6.0	1.9	ppb v/v			11/16/14 03:14	14.9
Vinyl acetate	ND		12	2.2	ppb v/v			11/16/14 03:14	14.9
Vinyl chloride	ND		6.0	1.8	ppb v/v			11/16/14 03:14	14.9
m,p-Xylene	ND		12	1.5	ppb v/v			11/16/14 03:14	14.9
o-Xylene	ND		6.0	0.80	ppb v/v			11/16/14 03:14	14.9
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			_		11/16/14 03:14	14.9
1,2-Dichloroethane-d4 (Surr)	79		70 - 130					11/16/14 03:14	14.9
Toluene-d8 (Surr)	96		70 - 130					11/16/14 03:14	14.9

Client Sample ID: 096718-001/MWL-SV03-200 (port 3)

Date Collected: 10/22/14 09:24

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Lab	Sample	ID:	320-1	0172-7

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	3.3	J	37	1.3	ppb v/v			11/16/14 19:40	7.44
Benzene	0.92	J	3.0	0.59	ppb v/v			11/16/14 19:40	7.44
Benzyl chloride	ND		6.0	1.2	ppb v/v			11/16/14 19:40	7.44
Bromodichloromethane	ND		2.2	0.49	ppb v/v			11/16/14 19:40	7.44
Bromoform	ND		3.0	0.52	ppb v/v			11/16/14 19:40	7.44
Bromomethane	ND		6.0	2.5	ppb v/v			11/16/14 19:40	7.44
2-Butanone (MEK)	ND		6.0	1.5	ppb v/v			11/16/14 19:40	7.44
Carbon disulfide	0.59	J	6.0	0.58	ppb v/v			11/16/14 19:40	7.44

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-7

Client Sample ID: 096718-001/MWL-SV03-200 (port 3)

Date Collected: 10/22/14 09:24 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
Carbon tetrachloride	ND		6.0	0.48	ppb v/v			11/16/14 19:40	7.4
Chlorobenzene	0.56	JB	2.2	0.48	ppb v/v			11/16/14 19:40	7.44
Chloroethane	ND		6.0	2.3	ppb v/v			11/16/14 19:40	7.44
Chloroform	2.3		2.2	0.71	ppb v/v			11/16/14 19:40	7.44
Chloromethane	ND		6.0	1.5	ppb v/v			11/16/14 19:40	7.44
Dibromochloromethane	ND		3.0	0.59	ppb v/v			11/16/14 19:40	7.44
1,2-Dibromoethane (EDB)	ND		6.0	0.56	ppb v/v			11/16/14 19:40	7.44
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		3.0	1.2	ppb v/v			11/16/14 19:40	7.44
1,2-Dichlorobenzene	1.1	J	3.0	0.97	ppb v/v			11/16/14 19:40	7.44
1,3-Dichlorobenzene	1.1	JB	3.0	0.82	ppb v/v			11/16/14 19:40	7.44
1,4-Dichlorobenzene	1.2	J	3.0	1.1	ppb v/v			11/16/14 19:40	7.44
Dichlorodifluoromethane	54		3.0	1.1	ppb v/v			11/16/14 19:40	7.44
1,1-Dichloroethane	8.1		2.2	0.54	ppb v/v			11/16/14 19:40	7.44
1,2-Dichloroethane	ND		6.0		ppb v/v			11/16/14 19:40	7.44
1,1-Dichloroethene	35		6.0		ppb v/v			11/16/14 19:40	7.44
cis-1,2-Dichloroethene	5.7		3.0		ppb v/v			11/16/14 19:40	7.44
trans-1,2-Dichloroethene	ND		3.0		ppb v/v			11/16/14 19:40	7.44
1,2-Dichloropropane	ND		3.0		ppb v/v			11/16/14 19:40	7.44
cis-1,3-Dichloropropene	ND		3.0		ppb v/v			11/16/14 19:40	7.44
trans-1,3-Dichloropropene	ND		3.0		ppb v/v			11/16/14 19:40	7.44
	0.61	LB	3.0		ppb v/v			11/16/14 19:40	7.44
Ethylbenzene 4-Ethyltoluene	ND	JB	3.0		ppb v/v ppb v/v			11/16/14 19:40	7.44
Hexachlorobutadiene	ND		15						7.42
					ppb v/v			11/16/14 19:40	
2-Hexanone	ND		3.0		ppb v/v			11/16/14 19:40	7.44
4-Methyl-2-pentanone (MIBK)	ND		3.0		ppb v/v			11/16/14 19:40	7.44
Methylene Chloride	3.4		3.0		ppb v/v			11/16/14 19:40	7.44
Styrene	0.85		3.0		ppb v/v			11/16/14 19:40	7.44
1,1,2,2-Tetrachloroethane	0.53	J	3.0		ppb v/v			11/16/14 19:40	7.44
Tetrachloroethene	320		3.0		ppb v/v			11/16/14 19:40	7.44
Toluene	2.5	J	3.0		ppb v/v			11/16/14 19:40	7.44
1,1,2-Trichloro-1,2,2-trifluoroetha ne	180		3.0	1.2	ppb v/v			11/16/14 19:40	7.44
1,2,4-Trichlorobenzene	ND	*	15	3.2	ppb v/v			11/16/14 19:40	7.44
1,1,1-Trichloroethane	2.8		2.2	0.48	ppb v/v			11/16/14 19:40	7.44
1,1,2-Trichloroethane	ND		3.0	0.50	ppb v/v			11/16/14 19:40	7.44
Trichloroethene	300		3.0	0.78	ppb v/v			11/16/14 19:40	7.44
Trichlorofluoromethane	25		3.0	1.5	ppb v/v			11/16/14 19:40	7.44
1,2,4-Trimethylbenzene	ND		6.0	1.2	ppb v/v			11/16/14 19:40	7.44
1,3,5-Trimethylbenzene	1.1	J	3.0	0.93	ppb v/v			11/16/14 19:40	7.44
Vinyl acetate	ND		6.0	1.1	ppb v/v			11/16/14 19:40	7.44
Vinyl chloride	ND		3.0		ppb v/v			11/16/14 19:40	7.44
m,p-Xylene		JB	6.0		ppb v/v			11/16/14 19:40	7.44
o-Xylene	0.79		3.0		ppb v/v			11/16/14 19:40	7.44
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		70 - 130			_		11/16/14 19:40	7.44
1,2-Dichloroethane-d4 (Surr)	79		70 - 130					11/16/14 19:40	7.44
Toluene-d8 (Surr)	95		70 - 130					11/16/14 19:40	7.44

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Client Sample ID: 096719-001/MWL-SV03-300 (port 4)

Lab Sample ID: 320-10172-8 Date Collected: 10/22/14 09:32 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	6.5	J	37	1.3	ppb v/v			11/16/14 04:59	7.4
Benzene	0.88	J	3.0	0.59	ppb v/v			11/16/14 04:59	7.4
Benzyl chloride	ND		6.0	1.2	ppb v/v			11/16/14 04:59	7.4
Bromodichloromethane	ND		2.2	0.49	ppb v/v			11/16/14 04:59	7.4
Bromoform	ND		3.0	0.52	ppb v/v			11/16/14 04:59	7.4
Bromomethane	ND		6.0	2.5	ppb v/v			11/16/14 04:59	7.4
2-Butanone (MEK)	ND		6.0	1.5	ppb v/v			11/16/14 04:59	7.4
Carbon disulfide	2.3	J	6.0		ppb v/v			11/16/14 04:59	7.4
Carbon tetrachloride	ND		6.0	0.48	ppb v/v			11/16/14 04:59	7.4
Chlorobenzene	ND		2.2	0.48	ppb v/v			11/16/14 04:59	7.4
Chloroethane	ND		6.0	2.3	ppb v/v			11/16/14 04:59	7.4
Chloroform	1.0	J	2.2		ppb v/v			11/16/14 04:59	7.4
Chloromethane	ND		6.0		ppb v/v			11/16/14 04:59	7.4
Dibromochloromethane	ND		3.0		ppb v/v			11/16/14 04:59	7.4
1,2-Dibromoethane (EDB)	ND		6.0		ppb v/v			11/16/14 04:59	7.4
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		3.0		ppb v/v			11/16/14 04:59	7.4
1,2-Dichlorobenzene	ND		3.0		ppb v/v			11/16/14 04:59	7.4
1,3-Dichlorobenzene	ND		3.0		ppb v/v			11/16/14 04:59	7.4
1,4-Dichlorobenzene	ND		3.0		ppb v/v			11/16/14 04:59	7.4
Dichlorodifluoromethane	24		3.0		ppb v/v			11/16/14 04:59	7.4
1,1-Dichloroethane	2.5		2.2		ppb v/v			11/16/14 04:59	7.4
1,1-Dictrioroethane	ND		6.0		ppb v/v			11/16/14 04:59	7.4
			6.0						7.4
1,1-Dichloroethene	17				ppb v/v			11/16/14 04:59	
cis-1,2-Dichloroethene	2.4	J	3.0		ppb v/v			11/16/14 04:59	7.4
rans-1,2-Dichloroethene	ND		3.0		ppb v/v			11/16/14 04:59	7.4
1,2-Dichloropropane	ND		3.0		ppb v/v			11/16/14 04:59	7.4
cis-1,3-Dichloropropene	ND		3.0		ppb v/v			11/16/14 04:59	7.4
trans-1,3-Dichloropropene	ND		3.0		ppb v/v			11/16/14 04:59	7.4
Ethylbenzene	ND		3.0		ppb v/v			11/16/14 04:59	7.4
4-Ethyltoluene	ND		3.0		ppb v/v			11/16/14 04:59	7.4
Hexachlorobutadiene	ND		15		ppb v/v			11/16/14 04:59	7.4
2-Hexanone	ND		3.0	0.65	ppb v/v			11/16/14 04:59	7.4
4-Methyl-2-pentanone (MIBK)	ND		3.0	1.0	ppb v/v			11/16/14 04:59	7.4
Methylene Chloride	0.97	J	3.0	0.54	ppb v/v			11/16/14 04:59	7.4
Styrene	ND		3.0	0.44	ppb v/v			11/16/14 04:59	7.4
1,1,2,2-Tetrachloroethane	ND		3.0	0.51	ppb v/v			11/16/14 04:59	7.4
Tetrachloroethene	320		3.0	0.38	ppb v/v			11/16/14 04:59	7.4
Toluene	3.1		3.0	0.38	ppb v/v			11/16/14 04:59	7.4
1,1,2-Trichloro-1,2,2-trifluoroetha	78		3.0	1.2	ppb v/v			11/16/14 04:59	7.4
ne									
1,2,4-Trichlorobenzene	ND		15		ppb v/v			11/16/14 04:59	7.4
1,1,1-Trichloroethane	1.2	J	2.2		ppb v/v			11/16/14 04:59	7.4
1,1,2-Trichloroethane	ND		3.0		ppb v/v			11/16/14 04:59	7.4
Trichloroethene	210		3.0		ppb v/v			11/16/14 04:59	7.4
Trichlorofluoromethane	8.5		3.0	1.5	ppb v/v			11/16/14 04:59	7.4
1,2,4-Trimethylbenzene	ND		6.0	1.2	ppb v/v			11/16/14 04:59	7.4
1,3,5-Trimethylbenzene	ND		3.0	0.93	ppb v/v			11/16/14 04:59	7.4
Vinyl acetate	ND		6.0	1.1	ppb v/v			11/16/14 04:59	7.4
Vinyl chloride	ND		3.0		ppb v/v			11/16/14 04:59	

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-9

Client Sample ID: 096719-001/MWL-SV03-300 (port 4)

Lab Sample ID: 320-10172-8

Matrix: Air

Date Collected: 10/22/14 09:32 Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Method: TO-15 - V	/olatile Organic	Compounds in	Ambient Air	(Continued)
modiou. IO IO I	olutilo Olguillo	Oumpoundo m		oon ara

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		6.0	0.74	ppb v/v			11/16/14 04:59	7.44
o-Xylene	ND		3.0	0.40	ppb v/v			11/16/14 04:59	7.44
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Quaimer	Limits	Prepared	Anaryzea	DII Fac	
4-Bromofluorobenzene (Surr)	90		70 - 130		11/16/14 04:59	7.44	
1,2-Dichloroethane-d4 (Surr)	80		70 - 130		11/16/14 04:59	7.44	
Toluene-d8 (Surr)	95		70 - 130		11/16/14 04:59	7.44	
	4-Bromofluorobenzene (Surr) 1,2-Dichloroethane-d4 (Surr)	4-Bromofluorobenzene (Surr) 90 1,2-Dichloroethane-d4 (Surr) 80	4-Bromofluorobenzene (Surr) 90 1,2-Dichloroethane-d4 (Surr) 80	4-Bromofluorobenzene (Surr)       90       70 - 130         1,2-Dichloroethane-d4 (Surr)       80       70 - 130	4-Bromofluorobenzene (Surr)     90     70 - 130       1,2-Dichloroethane-d4 (Surr)     80     70 - 130	4-Bromofluorobenzene (Surr)       90       70 - 130       11/16/14 04:59         1,2-Dichloroethane-d4 (Surr)       80       70 - 130       11/16/14 04:59	4-Bromofluorobenzene (Surr)       90       70 - 130       11/16/14 04:59       7.44         1,2-Dichloroethane-d4 (Surr)       80       70 - 130       11/16/14 04:59       7.44

Client Sample ID: 096720-001/MWL-SV03-400 (port 5)

Date Collected: 10/22/14 09:45 Matrix: Air

Date Received: 10/30/14 10:00

Methylene Chloride

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	93	3.3	ppb v/v			11/16/14 05:51	18.6
Benzene	ND	7.4	1.5	ppb v/v			11/16/14 05:51	18.6
Benzyl chloride	ND	15	3.0	ppb v/v			11/16/14 05:51	18.6
Bromodichloromethane	ND	5.6	1.2	ppb v/v			11/16/14 05:51	18.6
Bromoform	ND	7.4	1.3	ppb v/v			11/16/14 05:51	18.6
Bromomethane	ND	15	6.2	ppb v/v			11/16/14 05:51	18.6
2-Butanone (MEK)	ND	15	3.7	ppb v/v			11/16/14 05:51	18.6
Carbon disulfide	ND	15	1.5	ppb v/v			11/16/14 05:51	18.6
Carbon tetrachloride	ND	15	1.2	ppb v/v			11/16/14 05:51	18.6
Chlorobenzene	ND	5.6	1.2	ppb v/v			11/16/14 05:51	18.6
Chloroethane	ND	15	5.7	ppb v/v			11/16/14 05:51	18.6
Chloroform	ND	5.6	1.8	ppb v/v			11/16/14 05:51	18.6
Chloromethane	ND	15	3.7	ppb v/v			11/16/14 05:51	18.6
Dibromochloromethane	ND	7.4	1.5	ppb v/v			11/16/14 05:51	18.6
1,2-Dibromoethane (EDB)	ND	15	1.4	ppb v/v			11/16/14 05:51	18.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	7.4	2.9	ppb v/v			11/16/14 05:51	18.6
1,2-Dichlorobenzene	ND	7.4	2.4	ppb v/v			11/16/14 05:51	18.6
1,3-Dichlorobenzene	ND	7.4	2.0	ppb v/v			11/16/14 05:51	18.6
1,4-Dichlorobenzene	ND	7.4	2.8	ppb v/v			11/16/14 05:51	18.6
Dichlorodifluoromethane	23	7.4	2.7	ppb v/v			11/16/14 05:51	18.6
1,1-Dichloroethane	2.8 J	5.6	1.3	ppb v/v			11/16/14 05:51	18.6
1,2-Dichloroethane	ND	15	1.6	ppb v/v			11/16/14 05:51	18.6
1,1-Dichloroethene	17	15	2.4	ppb v/v			11/16/14 05:51	18.6
cis-1,2-Dichloroethene	2.4 J	7.4	1.7	ppb v/v			11/16/14 05:51	18.6
trans-1,2-Dichloroethene	ND	7.4	1.9	ppb v/v			11/16/14 05:51	18.6
1,2-Dichloropropane	ND	7.4	4.5	ppb v/v			11/16/14 05:51	18.6
cis-1,3-Dichloropropene	ND	7.4	1.9	ppb v/v			11/16/14 05:51	18.6
trans-1,3-Dichloropropene	ND	7.4	1.6	ppb v/v			11/16/14 05:51	18.6
Ethylbenzene	ND	7.4	1.2	ppb v/v			11/16/14 05:51	18.6
4-Ethyltoluene	ND	7.4	3.5	ppb v/v			11/16/14 05:51	18.6
Hexachlorobutadiene	ND	37	8.0	ppb v/v			11/16/14 05:51	18.6
2-Hexanone	ND	7.4	1.6	ppb v/v			11/16/14 05:51	18.6
4-Methyl-2-pentanone (MIBK)	ND	7.4	2.5	ppb v/v			11/16/14 05:51	18.6

TestAmerica Sacramento

11/16/14 05:51

1.3 ppb v/v

18.6

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

## Client Sample ID: 096720-001/MWL-SV03-400 (port 5)

Date Collected: 10/22/14 09:45

Lab Sample ID: 320-10172-9

Matrix: Air

Lab Sample ID: 320-10172-10

Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		7.4	1.1	ppb v/v			11/16/14 05:51	18.6
1,1,2,2-Tetrachloroethane	ND		7.4	1.3	ppb v/v			11/16/14 05:51	18.6
Tetrachloroethene	400		7.4	0.95	ppb v/v			11/16/14 05:51	18.6
Toluene	6.2	J	7.4	0.95	ppb v/v			11/16/14 05:51	18.6
1,1,2-Trichloro-1,2,2-trifluoroetha	72		7.4	3.0	ppb v/v			11/16/14 05:51	18.6
ne									
1,2,4-Trichlorobenzene	ND	*	37	8.1	ppb v/v			11/16/14 05:51	18.6
1,1,1-Trichloroethane	1.5	J	5.6	1.2	ppb v/v			11/16/14 05:51	18.6
1,1,2-Trichloroethane	ND		7.4	1.2	ppb v/v			11/16/14 05:51	18.6
Trichloroethene	280		7.4	2.0	ppb v/v			11/16/14 05:51	18.6
Trichlorofluoromethane	9.2		7.4	3.6	ppb v/v			11/16/14 05:51	18.6
1,2,4-Trimethylbenzene	ND		15	3.0	ppb v/v			11/16/14 05:51	18.6
1,3,5-Trimethylbenzene	ND		7.4	2.3	ppb v/v			11/16/14 05:51	18.6
Vinyl acetate	ND		15	2.7	ppb v/v			11/16/14 05:51	18.6
Vinyl chloride	ND		7.4	2.2	ppb v/v			11/16/14 05:51	18.6
m,p-Xylene	ND		15	1.9	ppb v/v			11/16/14 05:51	18.6
o-Xylene	ND		7.4	1.0	ppb v/v			11/16/14 05:51	18.6
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88	-	70 - 130			-		11/16/14 05:51	18.6
1,2-Dichloroethane-d4 (Surr)	79		70 - 130					11/16/14 05:51	18.6
Toluene-d8 (Surr)	97		70 - 130					11/16/14 05:51	18.6

Client Sample ID: 096721-001/MWL-SV-FB3

Date Collected: 10/22/14 08:57

Date Received: 10/30/14 10:00

1,4-Dichlorobenzene

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	5.0	0.18	ppb v/v			11/16/14 06:50	1
Benzene	ND	0.40	0.079	ppb v/v			11/16/14 06:50	1
Benzyl chloride	ND	0.80	0.16	ppb v/v			11/16/14 06:50	1
Bromodichloromethane	ND	0.30	0.066	ppb v/v			11/16/14 06:50	1
Bromoform	ND	0.40	0.070	ppb v/v			11/16/14 06:50	1
Bromomethane	ND	0.80	0.34	ppb v/v			11/16/14 06:50	1
2-Butanone (MEK)	ND	0.80	0.20	ppb v/v			11/16/14 06:50	1
Carbon disulfide	ND	0.80	0.078	ppb v/v			11/16/14 06:50	1
Carbon tetrachloride	ND	0.80	0.064	ppb v/v			11/16/14 06:50	1
Chlorobenzene	ND	0.30	0.064	ppb v/v			11/16/14 06:50	1
Chloroethane	ND	0.80	0.31	ppb v/v			11/16/14 06:50	1
Chloroform	ND	0.30	0.095	ppb v/v			11/16/14 06:50	1
Chloromethane	ND	0.80	0.20	ppb v/v			11/16/14 06:50	1
Dibromochloromethane	ND	0.40	0.079	ppb v/v			11/16/14 06:50	1
1,2-Dibromoethane (EDB)	ND	0.80	0.075	ppb v/v			11/16/14 06:50	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.40	0.16	ppb v/v			11/16/14 06:50	1
1,2-Dichlorobenzene	ND	0.40	0.13	ppb v/v			11/16/14 06:50	1
1,3-Dichlorobenzene	ND	0.40	0.11	ppb v/v			11/16/14 06:50	1

TestAmerica Sacramento

11/16/14 06:50

0.40

0.15 ppb v/v

ND

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Client Sample ID: 096721-001/MWL-SV-FB3

Lab Sample ID: 320-10172-10 Date Collected: 10/22/14 08:57 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.40	0.15	ppb v/v			11/16/14 06:50	1
1,1-Dichloroethane	ND		0.30	0.072	ppb v/v			11/16/14 06:50	1
1,2-Dichloroethane	ND		0.80	0.088	ppb v/v			11/16/14 06:50	1
1,1-Dichloroethene	ND		0.80	0.13	ppb v/v			11/16/14 06:50	1
cis-1,2-Dichloroethene	ND		0.40	0.089	ppb v/v			11/16/14 06:50	1
trans-1,2-Dichloroethene	ND		0.40	0.10	ppb v/v			11/16/14 06:50	1
1,2-Dichloropropane	ND		0.40	0.24	ppb v/v			11/16/14 06:50	1
cis-1,3-Dichloropropene	ND		0.40	0.10	ppb v/v			11/16/14 06:50	1
trans-1,3-Dichloropropene	ND		0.40	0.088	ppb v/v			11/16/14 06:50	1
Ethylbenzene	ND		0.40	0.063	ppb v/v			11/16/14 06:50	1
4-Ethyltoluene	ND		0.40	0.19	ppb v/v			11/16/14 06:50	1
Hexachlorobutadiene	ND		2.0	0.43	ppb v/v			11/16/14 06:50	1
2-Hexanone	ND		0.40	0.087	ppb v/v			11/16/14 06:50	1
4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14	ppb v/v			11/16/14 06:50	1
Methylene Chloride	ND		0.40	0.072	ppb v/v			11/16/14 06:50	1
Styrene	ND		0.40	0.059	ppb v/v			11/16/14 06:50	1
1,1,2,2-Tetrachloroethane	ND		0.40	0.069	ppb v/v			11/16/14 06:50	1
Tetrachloroethene	ND		0.40	0.051	ppb v/v			11/16/14 06:50	1
Toluene	ND		0.40	0.051	ppb v/v			11/16/14 06:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40	0.16	ppb v/v			11/16/14 06:50	1
1,2,4-Trichlorobenzene	ND	*	2.0	0.43	ppb v/v			11/16/14 06:50	1
1,1,1-Trichloroethane	ND		0.30	0.065	ppb v/v			11/16/14 06:50	1
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			11/16/14 06:50	1
Trichloroethene	ND		0.40	0.11	ppb v/v			11/16/14 06:50	1
Trichlorofluoromethane	ND		0.40	0.20	ppb v/v			11/16/14 06:50	1
1,2,4-Trimethylbenzene	ND		0.80	0.16	ppb v/v			11/16/14 06:50	1
1,3,5-Trimethylbenzene	ND		0.40	0.13	ppb v/v			11/16/14 06:50	1
Vinyl acetate	ND		0.80	0.15	ppb v/v			11/16/14 06:50	1
Vinyl chloride	ND		0.40	0.12	ppb v/v			11/16/14 06:50	1
m,p-Xylene	ND		0.80	0.10	ppb v/v			11/16/14 06:50	1
o-Xylene	ND		0.40	0.054	ppb v/v			11/16/14 06:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			_		11/16/14 06:50	1
1,2-Dichloroethane-d4 (Surr)	84		70 - 130					11/16/14 06:50	1
Toluene-d8 (Surr)	92		70 - 130					11/16/14 06:50	1
·									

Client Sample ID: 096722-001/MWL-SV04-50 (port 1)

Date Collected: 10/22/14 09:56

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 320-10172-11

Matrix: Air

Method: TO-15 - Volatile Organic Com	pounds i	n Ambient Air							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.8	J	15	0.52	ppb v/v			11/16/14 07:43	2.9
Benzene	1.3		1.2	0.23	ppb v/v			11/16/14 07:43	2.9
Benzyl chloride	ND		2.3	0.47	ppb v/v			11/16/14 07:43	2.9
Bromodichloromethane	ND		0.87	0.19	ppb v/v			11/16/14 07:43	2.9
Bromoform	ND		1.2	0.20	ppb v/v			11/16/14 07:43	2.9

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-11

Client Sample ID: 096722-001/MWL-SV04-50 (port 1)

Date Collected: 10/22/14 09:56 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL		_ D _	Prepared	Analyzed	Dil Fa
Bromomethane	ND		2.3	0.97	ppb v/v			11/16/14 07:43	2.
2-Butanone (MEK)	0.69	J	2.3	0.58	ppb v/v			11/16/14 07:43	2.
Carbon disulfide	1.6	J	2.3	0.23	ppb v/v			11/16/14 07:43	2.
Carbon tetrachloride	ND		2.3	0.19	ppb v/v			11/16/14 07:43	2.
Chlorobenzene	ND		0.87	0.19	ppb v/v			11/16/14 07:43	2.
Chloroethane	ND		2.3	0.89	ppb v/v			11/16/14 07:43	2.9
Chloroform	1.8		0.87	0.28	ppb v/v			11/16/14 07:43	2.
Chloromethane	ND		2.3	0.57	ppb v/v			11/16/14 07:43	2.
Dibromochloromethane	ND		1.2	0.23	ppb v/v			11/16/14 07:43	2.9
1,2-Dibromoethane (EDB)	ND		2.3	0.22	ppb v/v			11/16/14 07:43	2.9
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.2	0.45	ppb v/v			11/16/14 07:43	2.
1,2-Dichlorobenzene	ND		1.2	0.38	ppb v/v			11/16/14 07:43	2.
1,3-Dichlorobenzene	ND		1.2		ppb v/v			11/16/14 07:43	2.
1,4-Dichlorobenzene	ND		1.2		ppb v/v			11/16/14 07:43	2.
Dichlorodifluoromethane	19		1.2		ppb v/v			11/16/14 07:43	2.
1,1-Dichloroethane	1.2		0.87		ppb v/v			11/16/14 07:43	2.9
1,2-Dichloroethane	ND		2.3		ppb v/v			11/16/14 07:43	2.
1,1-Dichloroethene	5.9		2.3		ppb v/v			11/16/14 07:43	2.9
cis-1,2-Dichloroethene	ND		1.2		ppb v/v			11/16/14 07:43	2.9
trans-1,2-Dichloroethene	ND		1.2		ppb v/v			11/16/14 07:43	2.
1,2-Dichloropropane	ND		1.2		ppb v/v			11/16/14 07:43	2.
cis-1,3-Dichloropropene	ND		1.2		ppb v/v			11/16/14 07:43	2.9
trans-1,3-Dichloropropene	ND		1.2		ppb v/v			11/16/14 07:43	2.
Ethylbenzene	ND		1.2		ppb v/v			11/16/14 07:43	2.9
4-Ethyltoluene	ND		1.2		ppb v/v			11/16/14 07:43	2.
Hexachlorobutadiene	ND		5.8		ppb v/v			11/16/14 07:43	2.
	ND ND		1.2					11/16/14 07:43	
2-Hexanone					ppb v/v				2.9
4-Methyl-2-pentanone (MIBK)	ND		1.2		ppb v/v			11/16/14 07:43	2.
Methylene Chloride	ND		1.2		ppb v/v			11/16/14 07:43	2.
Styrene	ND		1.2		ppb v/v			11/16/14 07:43	2.9
1,1,2,2-Tetrachloroethane	ND		1.2		ppb v/v			11/16/14 07:43	2.
Tetrachloroethene	76		1.2		ppb v/v			11/16/14 07:43	2.9
Toluene	0.62	J	1.2		ppb v/v			11/16/14 07:43	2.
1,1,2-Trichloro-1,2,2-trifluoroetha	64		1.2	0.47	ppb v/v			11/16/14 07:43	2.9
ne 1,2,4-Trichlorobenzene	ND	*	5.8	1 3	ppb v/v			11/16/14 07:43	2.
1,1,1-Trichloroethane	6.3		0.87		ppb v/v			11/16/14 07:43	2.
1,1,2-Trichloroethane	ND		1.2		ppb v/v			11/16/14 07:43	2.
			1.2		ppb v/v			11/16/14 07:43	2.
Trichloroethene	59				ppb v/v				
Trichlorofluoromethane	21 ND		1.2		• •			11/16/14 07:43	2.9
1,2,4-Trimethylbenzene	ND		2.3		ppb v/v			11/16/14 07:43	2.
1,3,5-Trimethylbenzene	ND		1.2		ppb v/v			11/16/14 07:43	2.9
Vinyl acetate	ND		2.3		ppb v/v			11/16/14 07:43	2.9
Vinyl chloride	ND		1.2		ppb v/v			11/16/14 07:43	2.
m,p-Xylene	ND		2.3		ppb v/v			11/16/14 07:43	2.
o-Xylene	ND		1.2	0.16	ppb v/v			11/16/14 07:43	2.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	91		70 ₋ 130			_	riepaieu	11/16/14 07:43	2.

Client: Sandia National Laboratories TestAmerica Job ID: 320-10172-1

Project/Site: MWL SVM

Client Sample ID: 096722-001/MWL-SV04-50 (port 1)

Lab Sample ID: 320-10172-11 Date Collected: 10/22/14 09:56 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	79		70 - 130	_		11/16/14 07:43	2.9
Toluene-d8 (Surr)	91		70 - 130			11/16/14 07:43	2.9

Client Sample ID: 096723-001/MWL-SV04-100 (port 2)

Date Collected: 10/22/14 09:59 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.0	J	25	0.89	ppb v/v			11/16/14 08:36	4.98
Benzene	0.84	J	2.0	0.39	ppb v/v			11/16/14 08:36	4.98
Benzyl chloride	ND		4.0	0.81	ppb v/v			11/16/14 08:36	4.98
Bromodichloromethane	ND		1.5	0.33	ppb v/v			11/16/14 08:36	4.98
Bromoform	ND		2.0	0.35	ppb v/v			11/16/14 08:36	4.98
Bromomethane	ND		4.0	1.7	ppb v/v			11/16/14 08:36	4.98
2-Butanone (MEK)	ND		4.0	0.99	ppb v/v			11/16/14 08:36	4.98
Carbon disulfide	ND		4.0	0.39	ppb v/v			11/16/14 08:36	4.98
Carbon tetrachloride	ND		4.0	0.32	ppb v/v			11/16/14 08:36	4.98
Chlorobenzene	ND		1.5	0.32	ppb v/v			11/16/14 08:36	4.98
Chloroethane	ND		4.0	1.5	ppb v/v			11/16/14 08:36	4.98
Chloroform	1.8		1.5	0.47	ppb v/v			11/16/14 08:36	4.98
Chloromethane	ND		4.0	0.98	ppb v/v			11/16/14 08:36	4.98
Dibromochloromethane	ND		2.0	0.39	ppb v/v			11/16/14 08:36	4.98
1,2-Dibromoethane (EDB)	ND		4.0	0.37	ppb v/v			11/16/14 08:36	4.98
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.0	0.77	ppb v/v			11/16/14 08:36	4.98
1,2-Dichlorobenzene	ND		2.0	0.65	ppb v/v			11/16/14 08:36	4.98
1,3-Dichlorobenzene	ND		2.0	0.55	ppb v/v			11/16/14 08:36	4.98
1,4-Dichlorobenzene	ND		2.0	0.74	ppb v/v			11/16/14 08:36	4.98
Dichlorodifluoromethane	32		2.0	0.72	ppb v/v			11/16/14 08:36	4.98
1,1-Dichloroethane	2.8		1.5	0.36	ppb v/v			11/16/14 08:36	4.98
1,2-Dichloroethane	ND		4.0	0.44	ppb v/v			11/16/14 08:36	4.98
1,1-Dichloroethene	15		4.0	0.64	ppb v/v			11/16/14 08:36	4.98
cis-1,2-Dichloroethene	1.7	J	2.0	0.44	ppb v/v			11/16/14 08:36	4.98
trans-1,2-Dichloroethene	ND		2.0	0.50	ppb v/v			11/16/14 08:36	4.98
1,2-Dichloropropane	ND		2.0	1.2	ppb v/v			11/16/14 08:36	4.98
cis-1,3-Dichloropropene	ND		2.0	0.52	ppb v/v			11/16/14 08:36	4.98
trans-1,3-Dichloropropene	ND		2.0	0.44	ppb v/v			11/16/14 08:36	4.98
Ethylbenzene	ND		2.0	0.31	ppb v/v			11/16/14 08:36	4.98
4-Ethyltoluene	ND		2.0	0.93	ppb v/v			11/16/14 08:36	4.98
Hexachlorobutadiene	ND		10	2.2	ppb v/v			11/16/14 08:36	4.98
2-Hexanone	ND		2.0	0.43	ppb v/v			11/16/14 08:36	4.98
4-Methyl-2-pentanone (MIBK)	ND		2.0		ppb v/v			11/16/14 08:36	4.98
Methylene Chloride	0.49		2.0		ppb v/v			11/16/14 08:36	4.98
Styrene	ND		2.0		ppb v/v			11/16/14 08:36	4.98
1,1,2,2-Tetrachloroethane	ND		2.0		ppb v/v			11/16/14 08:36	4.98
Tetrachloroethene	120		2.0		ppb v/v			11/16/14 08:36	4.98
Toluene	0.99	1	2.0		ppb v/v			11/16/14 08:36	4.98

TestAmerica Sacramento

Lab Sample ID: 320-10172-12

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-12

# Client Sample ID: 096723-001/MWL-SV04-100 (port 2)

Date Collected: 10/22/14 09:59 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroetha	96		2.0	0.81	ppb v/v			11/16/14 08:36	4.98
ne									
1,2,4-Trichlorobenzene	ND	*	10	2.2	ppb v/v			11/16/14 08:36	4.98
1,1,1-Trichloroethane	5.0		1.5	0.32	ppb v/v			11/16/14 08:36	4.98
1,1,2-Trichloroethane	ND		2.0	0.33	ppb v/v			11/16/14 08:36	4.98
Trichloroethene	120		2.0	0.52	ppb v/v			11/16/14 08:36	4.98
Trichlorofluoromethane	29		2.0	0.98	ppb v/v			11/16/14 08:36	4.98
1,2,4-Trimethylbenzene	ND		4.0	0.81	ppb v/v			11/16/14 08:36	4.98
1,3,5-Trimethylbenzene	ND		2.0	0.62	ppb v/v			11/16/14 08:36	4.98
Vinyl acetate	ND		4.0	0.72	ppb v/v			11/16/14 08:36	4.98
Vinyl chloride	ND		2.0	0.60	ppb v/v			11/16/14 08:36	4.98
m,p-Xylene	ND		4.0	0.50	ppb v/v			11/16/14 08:36	4.98
o-Xylene	ND		2.0	0.27	ppb v/v			11/16/14 08:36	4.98
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			=		11/16/14 08:36	4.98
1,2-Dichloroethane-d4 (Surr)	83		70 - 130					11/16/14 08:36	4.98
Toluene-d8 (Surr)	97		70 - 130					11/16/14 08:36	4.98

Client Sample ID: 096724-001/MWL-SV04-200 (port 3)

Date Collected: 10/22/14 10:03 Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Lab Sample	ID: 320-10172-13
	Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		37	1.3	ppb v/v			11/16/14 09:28	7.45
Benzene	ND		3.0	0.59	ppb v/v			11/16/14 09:28	7.45
Benzyl chloride	ND		6.0	1.2	ppb v/v			11/16/14 09:28	7.45
Bromodichloromethane	ND		2.2	0.49	ppb v/v			11/16/14 09:28	7.45
Bromoform	ND		3.0	0.52	ppb v/v			11/16/14 09:28	7.45
Bromomethane	ND		6.0	2.5	ppb v/v			11/16/14 09:28	7.45
2-Butanone (MEK)	ND		6.0	1.5	ppb v/v			11/16/14 09:28	7.45
Carbon disulfide	ND		6.0	0.58	ppb v/v			11/16/14 09:28	7.45
Carbon tetrachloride	0.55	J	6.0	0.48	ppb v/v			11/16/14 09:28	7.45
Chlorobenzene	ND		2.2	0.48	ppb v/v			11/16/14 09:28	7.45
Chloroethane	ND		6.0	2.3	ppb v/v			11/16/14 09:28	7.45
Chloroform	1.2	J	2.2	0.71	ppb v/v			11/16/14 09:28	7.45
Chloromethane	ND		6.0	1.5	ppb v/v			11/16/14 09:28	7.45
Dibromochloromethane	ND		3.0	0.59	ppb v/v			11/16/14 09:28	7.45
1,2-Dibromoethane (EDB)	ND		6.0	0.56	ppb v/v			11/16/14 09:28	7.45
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		3.0	1.2	ppb v/v			11/16/14 09:28	7.45
1,2-Dichlorobenzene	ND		3.0	0.97	ppb v/v			11/16/14 09:28	7.45
1,3-Dichlorobenzene	ND		3.0	0.82	ppb v/v			11/16/14 09:28	7.45
1,4-Dichlorobenzene	ND		3.0	1.1	ppb v/v			11/16/14 09:28	7.45
Dichlorodifluoromethane	48		3.0	1.1	ppb v/v			11/16/14 09:28	7.45
1,1-Dichloroethane	4.4		2.2	0.54	ppb v/v			11/16/14 09:28	7.45
1,2-Dichloroethane	ND		6.0	0.66	ppb v/v			11/16/14 09:28	7.45
1,1-Dichloroethene	30		6.0	0.96	ppb v/v			11/16/14 09:28	7.45

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

# Client Sample ID: 096724-001/MWL-SV04-200 (port 3)

Lab Sample ID: 320-10172-13 Date Collected: 10/22/14 10:03 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	3.0		3.0	0.66	ppb v/v			11/16/14 09:28	7.45
trans-1,2-Dichloroethene	ND		3.0	0.75	ppb v/v			11/16/14 09:28	7.45
1,2-Dichloropropane	ND		3.0	1.8	ppb v/v			11/16/14 09:28	7.45
cis-1,3-Dichloropropene	ND		3.0	0.77	ppb v/v			11/16/14 09:28	7.45
trans-1,3-Dichloropropene	ND		3.0	0.66	ppb v/v			11/16/14 09:28	7.45
Ethylbenzene	ND		3.0	0.47	ppb v/v			11/16/14 09:28	7.45
4-Ethyltoluene	ND		3.0	1.4	ppb v/v			11/16/14 09:28	7.45
Hexachlorobutadiene	ND		15	3.2	ppb v/v			11/16/14 09:28	7.45
2-Hexanone	ND		3.0	0.65	ppb v/v			11/16/14 09:28	7.45
4-Methyl-2-pentanone (MIBK)	ND		3.0	1.0	ppb v/v			11/16/14 09:28	7.45
Methylene Chloride	1.1	J	3.0	0.54	ppb v/v			11/16/14 09:28	7.45
Styrene	ND		3.0	0.44	ppb v/v			11/16/14 09:28	7.45
1,1,2,2-Tetrachloroethane	ND		3.0	0.51	ppb v/v			11/16/14 09:28	7.45
Tetrachloroethene	180		3.0	0.38	ppb v/v			11/16/14 09:28	7.45
Toluene	1.9	J	3.0	0.38	ppb v/v			11/16/14 09:28	7.45
1,1,2-Trichloro-1,2,2-trifluoroetha	160		3.0	1.2	ppb v/v			11/16/14 09:28	7.45
ne									
1,2,4-Trichlorobenzene	ND		15		ppb v/v			11/16/14 09:28	7.45
1,1,1-Trichloroethane	2.1	J	2.2		ppb v/v			11/16/14 09:28	7.45
1,1,2-Trichloroethane	ND		3.0	0.50	ppb v/v			11/16/14 09:28	7.45
Trichloroethene	210		3.0		ppb v/v			11/16/14 09:28	7.45
Trichlorofluoromethane	29		3.0	1.5	ppb v/v			11/16/14 09:28	7.45
1,2,4-Trimethylbenzene	ND		6.0		ppb v/v			11/16/14 09:28	7.45
1,3,5-Trimethylbenzene	ND		3.0	0.93	ppb v/v			11/16/14 09:28	7.45
Vinyl acetate	ND		6.0	1.1	ppb v/v			11/16/14 09:28	7.45
Vinyl chloride	ND		3.0	0.89	ppb v/v			11/16/14 09:28	7.45
m,p-Xylene	ND		6.0	0.75	ppb v/v			11/16/14 09:28	7.45
o-Xylene	ND		3.0	0.40	ppb v/v			11/16/14 09:28	7.45
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130			-		11/16/14 09:28	7.45
1,2-Dichloroethane-d4 (Surr)	79		70 - 130					11/16/14 09:28	7.45
Toluene-d8 (Surr)	95		70 - 130					11/16/14 09:28	7.45

Client Sample ID: 096725-001/MWL-SV04-300 (port 4)

Lab Sample ID: 320-10172-14 Date Collected: 10/22/14 10:07 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	10	J	25	0.88	ppb v/v			11/16/14 10:21	4.97
Benzene	0.58	J	2.0	0.39	ppb v/v			11/16/14 10:21	4.97
Benzyl chloride	ND		4.0	0.81	ppb v/v			11/16/14 10:21	4.97
Bromodichloromethane	ND		1.5	0.33	ppb v/v			11/16/14 10:21	4.97
Bromoform	ND		2.0	0.35	ppb v/v			11/16/14 10:21	4.97
Bromomethane	ND		4.0	1.7	ppb v/v			11/16/14 10:21	4.97
2-Butanone (MEK)	1.8	J	4.0	0.99	ppb v/v			11/16/14 10:21	4.97
Carbon disulfide	0.52	J	4.0	0.39	ppb v/v			11/16/14 10:21	4.97

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

# Client Sample ID: 096725-001/MWL-SV04-300 (port 4)

Lab Sample ID: 320-10172-14 Date Collected: 10/22/14 10:07 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon tetrachloride	ND		4.0	0.32	ppb v/v			11/16/14 10:21	4.9
Chlorobenzene	ND		1.5	0.32	ppb v/v			11/16/14 10:21	4.9
Chloroethane	ND		4.0	1.5	ppb v/v			11/16/14 10:21	4.9
Chloroform	0.51	J	1.5	0.47	ppb v/v			11/16/14 10:21	4.9
Chloromethane	ND		4.0	0.98	ppb v/v			11/16/14 10:21	4.9
Dibromochloromethane	ND		2.0		ppb v/v			11/16/14 10:21	4.9
1,2-Dibromoethane (EDB)	ND		4.0		ppb v/v			11/16/14 10:21	4.9
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.0		ppb v/v			11/16/14 10:21	4.9
1.2-Dichlorobenzene	ND		2.0		ppb v/v			11/16/14 10:21	4.9
1,3-Dichlorobenzene	ND		2.0		ppb v/v			11/16/14 10:21	4.9
1,4-Dichlorobenzene	ND		2.0		ppb v/v			11/16/14 10:21	4.9
Dichlorodifluoromethane	18		2.0		ppb v/v			11/16/14 10:21	4.9
1,1-Dichloroethane	0.96	1	1.5		ppb v/v			11/16/14 10:21	4.9
1,2-Dichloroethane	ND		4.0		ppb v/v			11/16/14 10:21	4.9
1,1-Dichloroethene	9.9		4.0		ppb v/v			11/16/14 10:21	4.9
cis-1,2-Dichloroethene	0.67		2.0		ppb v/v			11/16/14 10:21	4.9
trans-1,2-Dichloroethene	ND		2.0		ppb v/v			11/16/14 10:21	4.9
1,2-Dichloropropane	ND		2.0		ppb v/v			11/16/14 10:21	4.9
, I I	ND ND		2.0					11/16/14 10:21	4.9
cis-1,3-Dichloropropene					ppb v/v			11/16/14 10:21	
trans-1,3-Dichloropropene	ND		2.0		ppb v/v				4.9
Ethylbenzene	ND		2.0		ppb v/v			11/16/14 10:21	4.9
4-Ethyltoluene	ND		2.0		ppb v/v			11/16/14 10:21	4.9
Hexachlorobutadiene	ND		9.9		ppb v/v			11/16/14 10:21	4.9
2-Hexanone	ND		2.0		ppb v/v			11/16/14 10:21	4.9
4-Methyl-2-pentanone (MIBK)	ND		2.0		ppb v/v			11/16/14 10:21	4.9
Methylene Chloride	ND		2.0		ppb v/v			11/16/14 10:21	4.9
Styrene	ND		2.0	0.29	ppb v/v			11/16/14 10:21	4.9
1,1,2,2-Tetrachloroethane	ND		2.0		ppb v/v			11/16/14 10:21	4.9
Tetrachloroethene	130		2.0		ppb v/v			11/16/14 10:21	4.9
Toluene	1.8	J	2.0		ppb v/v			11/16/14 10:21	4.9
1,1,2-Trichloro-1,2,2-trifluoroetha ne	50		2.0	0.81	ppb v/v			11/16/14 10:21	4.9
1,2,4-Trichlorobenzene	ND	*	9.9	2.2	ppb v/v			11/16/14 10:21	4.9
1,1,1-Trichloroethane	0.79	J	1.5	0.32	ppb v/v			11/16/14 10:21	4.9
1,1,2-Trichloroethane	ND		2.0	0.33	ppb v/v			11/16/14 10:21	4.9
Trichloroethene	91		2.0	0.52	ppb v/v			11/16/14 10:21	4.9
Trichlorofluoromethane	9.4		2.0	0.97	ppb v/v			11/16/14 10:21	4.9
1,2,4-Trimethylbenzene	ND		4.0	0.81	ppb v/v			11/16/14 10:21	4.9
1,3,5-Trimethylbenzene	ND		2.0	0.62	ppb v/v			11/16/14 10:21	4.9
Vinyl acetate	ND		4.0	0.72	ppb v/v			11/16/14 10:21	4.9
Vinyl chloride	ND		2.0	0.60	ppb v/v			11/16/14 10:21	4.9
m,p-Xylene	ND		4.0		ppb v/v			11/16/14 10:21	4.9
o-Xylene	ND		2.0		ppb v/v			11/16/14 10:21	4.9
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	94		70 - 130			_		11/16/14 10:21	4.9
1,2-Dichloroethane-d4 (Surr)	83		70 - 130					11/16/14 10:21	4.9
Toluene-d8 (Surr)	93		70 - 130					11/16/14 10:21	4.9

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Client Sample ID: 096726-001/MWL-SV04-400 (port 5)

Lab Sample ID: 320-10172-15 Date Collected: 10/22/14 10:12 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	5.2	J	25	0.90	ppb v/v			11/17/14 20:05	5.0
Benzene	1.5	J	2.0	0.40	ppb v/v			11/17/14 20:05	5.0
Benzyl chloride	ND		4.1	0.83	ppb v/v			11/17/14 20:05	5.0
Bromodichloromethane	ND		1.5	0.33	ppb v/v			11/17/14 20:05	5.0
Bromoform	ND		2.0	0.35	ppb v/v			11/17/14 20:05	5.0
Bromomethane	ND		4.1	1.7	ppb v/v			11/17/14 20:05	5.0
2-Butanone (MEK)	ND		4.1	1.0	ppb v/v			11/17/14 20:05	5.0
Carbon disulfide	1.0	J	4.1	0.40	ppb v/v			11/17/14 20:05	5.0
Carbon tetrachloride	ND		4.1	0.32	ppb v/v			11/17/14 20:05	5.0
Chlorobenzene	ND		1.5	0.32	ppb v/v			11/17/14 20:05	5.0
Chloroethane	ND		4.1	1.6	ppb v/v			11/17/14 20:05	5.0
Chloroform	0.61	J	1.5		ppb v/v			11/17/14 20:05	5.0
Chloromethane	1.2		4.1		ppb v/v			11/17/14 20:05	5.0
Dibromochloromethane	0.45		2.0		ppb v/v			11/17/14 20:05	5.0
1,2-Dibromoethane (EDB)	ND		4.1		ppb v/v			11/17/14 20:05	5.0
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.0		ppb v/v			11/17/14 20:05	5.0
1,2-Dichlorobenzene	ND		2.0		ppb v/v			11/17/14 20:05	5.0
1,3-Dichlorobenzene	ND		2.0		ppb v/v			11/17/14 20:05	5.0
1,4-Dichlorobenzene	ND		2.0		ppb v/v			11/17/14 20:05	5.0
Dichlorodifluoromethane	15		2.0		ppb v/v			11/17/14 20:05	5.0
1,1-Dichloroethane	1.1	1	1.5		ppb v/v			11/17/14 20:05	5.0
1,2-Dichloroethane	ND		4.1		ppb v/v			11/17/14 20:05	5.0
1,1-Dichloroethene	8.9		4.1		ppb v/v			11/17/14 20:05	5.0
	0.95		2.0		ppb v/v			11/17/14 20:05	5.0
cis-1,2-Dichloroethene	0.95 ND		2.0		ppb v/v				5.0
trans-1,2-Dichloroethene	ND ND		2.0					11/17/14 20:05	5.0
1,2-Dichloropropane	ND ND				ppb v/v			11/17/14 20:05	
cis-1,3-Dichloropropene			2.0		ppb v/v			11/17/14 20:05	5.0
trans-1,3-Dichloropropene	ND		2.0		ppb v/v			11/17/14 20:05	5.0
Ethylbenzene	0.37	JB	2.0		ppb v/v			11/17/14 20:05	5.0
4-Ethyltoluene	ND		2.0		ppb v/v			11/17/14 20:05	5.0
Hexachlorobutadiene	ND		10		ppb v/v			11/17/14 20:05	5.0
2-Hexanone	ND		2.0		ppb v/v			11/17/14 20:05	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.0		ppb v/v			11/17/14 20:05	5.0
Methylene Chloride	ND		2.0		ppb v/v			11/17/14 20:05	5.0
Styrene	0.52	JB	2.0		ppb v/v			11/17/14 20:05	5.0
1,1,2,2-Tetrachloroethane	ND		2.0		ppb v/v			11/17/14 20:05	5.0
Tetrachloroethene	140		2.0		ppb v/v			11/17/14 20:05	5.0
Toluene		JB	2.0		ppb v/v			11/17/14 20:05	5.0
1,1,2-Trichloro-1,2,2-trifluoroetha ne	44		2.0		ppb v/v			11/17/14 20:05	5.0
1,2,4-Trichlorobenzene	ND		10	2.2	ppb v/v			11/17/14 20:05	5.0
1,1,1-Trichloroethane	0.99	J	1.5	0.33	ppb v/v			11/17/14 20:05	5.0
1,1,2-Trichloroethane	ND		2.0	0.34	ppb v/v			11/17/14 20:05	5.0
Trichloroethene	96		2.0	0.53	ppb v/v			11/17/14 20:05	5.0
Trichlorofluoromethane	9.2		2.0	0.99	ppb v/v			11/17/14 20:05	5.0
1,2,4-Trimethylbenzene	ND		4.1	0.82	ppb v/v			11/17/14 20:05	5.0
1,3,5-Trimethylbenzene	ND		2.0	0.63	ppb v/v			11/17/14 20:05	5.0
Vinyl acetate	ND		4.1	0.74	ppb v/v			11/17/14 20:05	5.0
Vinyl chloride	ND		2.0	0.61	ppb v/v			11/17/14 20:05	5.0

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-15

Client Sample ID: 096726-001/MWL-SV04-400 (port 5)

Date Collected: 10/22/14 10:12 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic C	ompounds i	n Ambient Ai	r (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	0.98	JB	4.1	0.51	ppb v/v			11/17/14 20:05	5.07
o-Xylene	0.51	JB	2.0	0.27	ppb v/v			11/17/14 20:05	5.07

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130		11/17/14 20:05	5.07
1,2-Dichloroethane-d4 (Surr)	79		70 - 130		11/17/14 20:05	5.07
Toluene-d8 (Surr)	95		70 - 130		11/17/14 20:05	5.07

Client Sample ID: 096727-001/MWL-SV-FB4 Lab Sample ID: 320-10172-16

Date Collected: 10/22/14 09:53 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		5.0	0.18	ppb v/v			11/16/14 20:39	1
Benzene	0.083	J	0.40	0.079	ppb v/v			11/16/14 20:39	1
Benzyl chloride	ND		0.80	0.16	ppb v/v			11/16/14 20:39	1
Bromodichloromethane	ND		0.30	0.066	ppb v/v			11/16/14 20:39	1
Bromoform	ND		0.40	0.070	ppb v/v			11/16/14 20:39	1
Bromomethane	ND		0.80	0.34	ppb v/v			11/16/14 20:39	1
2-Butanone (MEK)	ND		0.80	0.20	ppb v/v			11/16/14 20:39	1
Carbon disulfide	ND		0.80	0.078	ppb v/v			11/16/14 20:39	1
Carbon tetrachloride	ND		0.80	0.064	ppb v/v			11/16/14 20:39	1
Chlorobenzene	ND		0.30	0.064	ppb v/v			11/16/14 20:39	1
Chloroethane	ND		0.80	0.31	ppb v/v			11/16/14 20:39	1
Chloroform	ND		0.30	0.095	ppb v/v			11/16/14 20:39	1
Chloromethane	ND		0.80	0.20	ppb v/v			11/16/14 20:39	1
Dibromochloromethane	ND		0.40	0.079	ppb v/v			11/16/14 20:39	1
1,2-Dibromoethane (EDB)	ND		0.80	0.075	ppb v/v			11/16/14 20:39	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40	0.16	ppb v/v			11/16/14 20:39	1
1,2-Dichlorobenzene	ND		0.40	0.13	ppb v/v			11/16/14 20:39	1
1,3-Dichlorobenzene	ND		0.40	0.11	ppb v/v			11/16/14 20:39	1
1,4-Dichlorobenzene	ND		0.40	0.15	ppb v/v			11/16/14 20:39	1
Dichlorodifluoromethane	ND		0.40	0.15	ppb v/v			11/16/14 20:39	1
1,1-Dichloroethane	ND		0.30	0.072	ppb v/v			11/16/14 20:39	1
1,2-Dichloroethane	ND		0.80	0.088	ppb v/v			11/16/14 20:39	1
1,1-Dichloroethene	ND		0.80	0.13	ppb v/v			11/16/14 20:39	1
cis-1,2-Dichloroethene	ND		0.40	0.089	ppb v/v			11/16/14 20:39	1
trans-1,2-Dichloroethene	ND		0.40	0.10	ppb v/v			11/16/14 20:39	1
1,2-Dichloropropane	ND		0.40	0.24	ppb v/v			11/16/14 20:39	1
cis-1,3-Dichloropropene	ND		0.40	0.10	ppb v/v			11/16/14 20:39	1
trans-1,3-Dichloropropene	ND		0.40	0.088	ppb v/v			11/16/14 20:39	1
Ethylbenzene	ND		0.40	0.063	ppb v/v			11/16/14 20:39	1
4-Ethyltoluene	ND		0.40	0.19	ppb v/v			11/16/14 20:39	1
Hexachlorobutadiene	ND		2.0	0.43	ppb v/v			11/16/14 20:39	1
2-Hexanone	ND		0.40	0.087	ppb v/v			11/16/14 20:39	1
4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14	ppb v/v			11/16/14 20:39	1
Methylene Chloride	ND		0.40	0.072	ppb v/v			11/16/14 20:39	1

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

#### Client Sample ID: 096727-001/MWL-SV-FB4

Lab Sample ID: 320-10172-16 Date Collected: 10/22/14 09:53 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	0.064	J B	0.40	0.059	ppb v/v			11/16/14 20:39	1
1,1,2,2-Tetrachloroethane	ND		0.40	0.069	ppb v/v			11/16/14 20:39	1
Tetrachloroethene	ND		0.40	0.051	ppb v/v			11/16/14 20:39	1
Toluene	0.051	J	0.40	0.051	ppb v/v			11/16/14 20:39	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40	0.16	ppb v/v			11/16/14 20:39	1
1,2,4-Trichlorobenzene	ND	*	2.0	0.43	ppb v/v			11/16/14 20:39	1
1,1,1-Trichloroethane	ND		0.30	0.065	ppb v/v			11/16/14 20:39	1
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			11/16/14 20:39	1
Trichloroethene	ND		0.40	0.11	ppb v/v			11/16/14 20:39	1
Trichlorofluoromethane	ND		0.40	0.20	ppb v/v			11/16/14 20:39	1
1,2,4-Trimethylbenzene	ND		0.80	0.16	ppb v/v			11/16/14 20:39	1
1,3,5-Trimethylbenzene	ND		0.40	0.13	ppb v/v			11/16/14 20:39	1
Vinyl acetate	ND		0.80	0.15	ppb v/v			11/16/14 20:39	1
Vinyl chloride	ND		0.40	0.12	ppb v/v			11/16/14 20:39	1
m,p-Xylene	0.15	JB	0.80	0.10	ppb v/v			11/16/14 20:39	1
o-Xylene	0.067	JB	0.40	0.054	ppb v/v			11/16/14 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

4-Bromofluorobenzene (Surr) 88 70 - 130 11/16/14 20:39 1,2-Dichloroethane-d4 (Surr) 83 70 - 130 11/16/14 20:39 Toluene-d8 (Surr) 94 70 - 130 11/16/14 20:39

Client Sample ID: 096728-001/MWL-SV05-50 (port 1)

Date Collected: 10/22/14 10:28 Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 320-10172-17

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	8.3	J	15	0.52	ppb v/v			11/17/14 09:50	2.93
Benzene	0.79	J	1.2	0.23	ppb v/v			11/17/14 09:50	2.93
Benzyl chloride	ND		2.3	0.48	ppb v/v			11/17/14 09:50	2.93
Bromodichloromethane	ND		0.88	0.19	ppb v/v			11/17/14 09:50	2.93
Bromoform	ND		1.2	0.21	ppb v/v			11/17/14 09:50	2.93
Bromomethane	ND		2.3	0.98	ppb v/v			11/17/14 09:50	2.93
2-Butanone (MEK)	1.2	J	2.3	0.58	ppb v/v			11/17/14 09:50	2.93
Carbon disulfide	1.4	J	2.3	0.23	ppb v/v			11/17/14 09:50	2.93
Carbon tetrachloride	0.38	J	2.3	0.19	ppb v/v			11/17/14 09:50	2.93
Chlorobenzene	0.22	JB	0.88	0.19	ppb v/v			11/17/14 09:50	2.93
Chloroethane	ND		2.3	0.90	ppb v/v			11/17/14 09:50	2.93
Chloroform	1.3		0.88	0.28	ppb v/v			11/17/14 09:50	2.93
Chloromethane	ND		2.3	0.58	ppb v/v			11/17/14 09:50	2.93
Dibromochloromethane	ND		1.2	0.23	ppb v/v			11/17/14 09:50	2.93
1,2-Dibromoethane (EDB)	ND		2.3	0.22	ppb v/v			11/17/14 09:50	2.93
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.2	0.45	ppb v/v			11/17/14 09:50	2.93
1,2-Dichlorobenzene	ND		1.2	0.38	ppb v/v			11/17/14 09:50	2.93
1,3-Dichlorobenzene	ND		1.2	0.32	ppb v/v			11/17/14 09:50	2.93
1,4-Dichlorobenzene	ND		1.2	0.44	ppb v/v			11/17/14 09:50	2.93
Dichlorodifluoromethane	39		1.2	0.42	ppb v/v			11/17/14 09:50	2.93

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-17

Client Sample ID: 096728-001/MWL-SV05-50 (port 1)

Date Collected: 10/22/14 10:28 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	1.5		0.88	0.21	ppb v/v			11/17/14 09:50	2.93
1,2-Dichloroethane	ND		2.3	0.26	ppb v/v			11/17/14 09:50	2.93
1,1-Dichloroethene	9.4		2.3	0.38	ppb v/v			11/17/14 09:50	2.93
cis-1,2-Dichloroethene	0.68	J	1.2	0.26	ppb v/v			11/17/14 09:50	2.93
trans-1,2-Dichloroethene	ND		1.2	0.29	ppb v/v			11/17/14 09:50	2.93
1,2-Dichloropropane	ND		1.2	0.70	ppb v/v			11/17/14 09:50	2.93
cis-1,3-Dichloropropene	ND		1.2	0.30	ppb v/v			11/17/14 09:50	2.93
trans-1,3-Dichloropropene	ND		1.2	0.26	ppb v/v			11/17/14 09:50	2.93
Ethylbenzene	0.25	J B	1.2	0.18	ppb v/v			11/17/14 09:50	2.93
4-Ethyltoluene	ND		1.2	0.55	ppb v/v			11/17/14 09:50	2.93
Hexachlorobutadiene	ND		5.9	1.3	ppb v/v			11/17/14 09:50	2.93
2-Hexanone	ND		1.2	0.25	ppb v/v			11/17/14 09:50	2.93
4-Methyl-2-pentanone (MIBK)	ND		1.2	0.40	ppb v/v			11/17/14 09:50	2.93
Methylene Chloride	0.28	J	1.2	0.21	ppb v/v			11/17/14 09:50	2.93
Styrene	0.27	J B	1.2	0.17	ppb v/v			11/17/14 09:50	2.93
1,1,2,2-Tetrachloroethane	ND		1.2	0.20	ppb v/v			11/17/14 09:50	2.93
Tetrachloroethene	48		1.2	0.15	ppb v/v			11/17/14 09:50	2.93
Toluene	1.1	J	1.2	0.15	ppb v/v			11/17/14 09:50	2.93
1,1,2-Trichloro-1,2,2-trifluoroetha	43		1.2	0.48	ppb v/v			11/17/14 09:50	2.93
ne									
1,2,4-Trichlorobenzene	ND	*	5.9		ppb v/v			11/17/14 09:50	2.93
1,1,1-Trichloroethane	12		0.88		ppb v/v			11/17/14 09:50	2.93
1,1,2-Trichloroethane	ND		1.2		ppb v/v			11/17/14 09:50	2.93
Trichloroethene	61		1.2		ppb v/v			11/17/14 09:50	2.93
Trichlorofluoromethane	89		1.2		ppb v/v			11/17/14 09:50	2.93
1,2,4-Trimethylbenzene	ND		2.3		ppb v/v			11/17/14 09:50	2.93
1,3,5-Trimethylbenzene	ND		1.2		ppb v/v			11/17/14 09:50	2.93
Vinyl acetate	ND		2.3		ppb v/v			11/17/14 09:50	2.93
Vinyl chloride	ND		1.2		ppb v/v			11/17/14 09:50	2.93
m,p-Xylene	0.60	JB	2.3		ppb v/v			11/17/14 09:50	2.93
o-Xylene	0.27	JB	1.2	0.16	ppb v/v			11/17/14 09:50	2.93
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			-		11/17/14 09:50	2.93
1,2-Dichloroethane-d4 (Surr)	79		70 - 130					11/17/14 09:50	2.93
Toluene-d8 (Surr)	95		70 - 130					11/17/14 09:50	2.93

Client Sample ID: 096729-001/MWL-SV05-100 (port 2)

Lab Sample ID: 320-10172-18 Date Collected: 10/22/14 10:30 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organ	ic Compounds i	n Ambient Ai	r						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	7.2	J	16	0.56	ppb v/v			11/17/14 20:58	3.16
Benzene	0.53	J	1.3	0.25	ppb v/v			11/17/14 20:58	3.16
Benzyl chloride	ND		2.5	0.52	ppb v/v			11/17/14 20:58	3.16
Bromodichloromethane	ND		0.95	0.21	ppb v/v			11/17/14 20:58	3.16
Bromoform	ND		1.3	0.22	ppb v/v			11/17/14 20:58	3.16

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Client Sample ID: 096729-001/MWL-SV05-100 (port 2)

Lab Sample ID: 320-10172-18 Date Collected: 10/22/14 10:30 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromomethane	ND		2.5	1.1	ppb v/v			11/17/14 20:58	3.1
2-Butanone (MEK)	1.2		2.5		ppb v/v			11/17/14 20:58	3.16
Carbon disulfide	ND		2.5		ppb v/v			11/17/14 20:58	3.16
Carbon tetrachloride	0.67	1	2.5		ppb v/v			11/17/14 20:58	3.16
Chlorobenzene	ND		0.95		ppb v/v			11/17/14 20:58	3.16
Chloroethane	ND		2.5		ppb v/v			11/17/14 20:58	3.16
Chloroform	2.1		0.95		ppb v/v			11/17/14 20:58	3.16
Chloromethane	ND		2.5		ppb v/v			11/17/14 20:58	3.16
Dibromochloromethane	ND		1.3		ppb v/v			11/17/14 20:58	3.16
1,2-Dibromoethane (EDB)	ND		2.5		ppb v/v			11/17/14 20:58	3.16
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND				ppb v/v				3.16
	ND ND		1.3					11/17/14 20:58	
1,2-Dichlorobenzene			1.3		ppb v/v			11/17/14 20:58	3.16
1,3-Dichlorobenzene	ND		1.3		ppb v/v			11/17/14 20:58	3.16
1,4-Dichlorobenzene	ND		1.3		ppb v/v			11/17/14 20:58	3.16
Dichlorodifluoromethane	60		1.3		ppb v/v			11/17/14 20:58	3.16
1,1-Dichloroethane	3.3		0.95		ppb v/v			11/17/14 20:58	3.16
1,2-Dichloroethane	ND		2.5		ppb v/v			11/17/14 20:58	3.16
1,1-Dichloroethene	22		2.5		ppb v/v			11/17/14 20:58	3.16
cis-1,2-Dichloroethene	1.7		1.3		ppb v/v			11/17/14 20:58	3.16
trans-1,2-Dichloroethene	ND		1.3	0.32	ppb v/v			11/17/14 20:58	3.16
1,2-Dichloropropane	ND		1.3	0.76	ppb v/v			11/17/14 20:58	3.16
cis-1,3-Dichloropropene	ND		1.3	0.33	ppb v/v			11/17/14 20:58	3.16
trans-1,3-Dichloropropene	ND		1.3	0.28	ppb v/v			11/17/14 20:58	3.16
Ethylbenzene	ND		1.3	0.20	ppb v/v			11/17/14 20:58	3.16
4-Ethyltoluene	ND		1.3	0.59	ppb v/v			11/17/14 20:58	3.16
Hexachlorobutadiene	ND		6.3	1.4	ppb v/v			11/17/14 20:58	3.16
2-Hexanone	ND		1.3	0.27	ppb v/v			11/17/14 20:58	3.16
4-Methyl-2-pentanone (MIBK)	ND		1.3	0.43	ppb v/v			11/17/14 20:58	3.16
Methylene Chloride	0.86	J	1.3	0.23	ppb v/v			11/17/14 20:58	3.16
Styrene	0.25	JB	1.3		ppb v/v			11/17/14 20:58	3.16
1,1,2,2-Tetrachloroethane	ND		1.3		ppb v/v			11/17/14 20:58	3.16
Tetrachloroethene	96		1.3		ppb v/v			11/17/14 20:58	3.16
Toluene	0.97	JB	1.3		ppb v/v			11/17/14 20:58	3.16
1,1,2-Trichloro-1,2,2-trifluoroetha	88	0.5	1.3		ppb v/v			11/17/14 20:58	3.16
ne	00			0.02	pp=				0
1,2,4-Trichlorobenzene	ND		6.3	1.4	ppb v/v			11/17/14 20:58	3.16
1,1,1-Trichloroethane	12		0.95	0.21	ppb v/v			11/17/14 20:58	3.16
1,1,2-Trichloroethane	ND		1.3	0.21	ppb v/v			11/17/14 20:58	3.16
Trichloroethene	130		1.3	0.33	ppb v/v			11/17/14 20:58	3.16
Trichlorofluoromethane	120		1.3		ppb v/v			11/17/14 20:58	3.16
1,2,4-Trimethylbenzene	ND		2.5		ppb v/v			11/17/14 20:58	3.16
1,3,5-Trimethylbenzene	ND		1.3		ppb v/v			11/17/14 20:58	3.16
Vinyl acetate	ND		2.5		ppb v/v			11/17/14 20:58	3.16
Vinyl acetate Vinyl chloride	ND		1.3		ppb v/v			11/17/14 20:58	3.16
	0.48	I R	2.5		ppb v/v			11/17/14 20:58	3.16
m,p-Xylene o-Xylene	0.48		1.3		ppb v/v			11/17/14 20:58	3.16
o-Aylette	0.25	JD	1.5	0.17	bbn ava			11/1//14 20.50	5.10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			-		11/17/14 20:58	3.16

Client: Sandia National Laboratories TestAmerica Job ID: 320-10172-1

Project/Site: MWL SVM

Client Sample ID: 096729-001/MWL-SV05-100 (port 2)

Lab Sample ID: 320-10172-18 Date Collected: 10/22/14 10:30 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	80		70 - 130	_		11/17/14 20:58	3.16
Toluene-d8 (Surr)	91		70 - 130			11/17/14 20:58	3.16

Client Sample ID: 096730-001/MWL-SV05-200 (port 3)

Date Collected: 10/22/14 10:34 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	6.4	J	31	1.1	ppb v/v			11/17/14 21:49	6.29
Benzene	ND		2.5	0.50	ppb v/v			11/17/14 21:49	6.29
Benzyl chloride	ND		5.0	1.0	ppb v/v			11/17/14 21:49	6.29
Bromodichloromethane	ND		1.9	0.42	ppb v/v			11/17/14 21:49	6.29
Bromoform	ND		2.5	0.44	ppb v/v			11/17/14 21:49	6.29
Bromomethane	ND		5.0	2.1	ppb v/v			11/17/14 21:49	6.29
2-Butanone (MEK)	1.6	J	5.0	1.3	ppb v/v			11/17/14 21:49	6.29
Carbon disulfide	ND		5.0	0.49	ppb v/v			11/17/14 21:49	6.29
Carbon tetrachloride	1.2	J	5.0	0.40	ppb v/v			11/17/14 21:49	6.29
Chlorobenzene	ND		1.9	0.40	ppb v/v			11/17/14 21:49	6.29
Chloroethane	ND		5.0	1.9	ppb v/v			11/17/14 21:49	6.29
Chloroform	2.1		1.9	0.60	ppb v/v			11/17/14 21:49	6.29
Chloromethane	ND		5.0	1.2	ppb v/v			11/17/14 21:49	6.29
Dibromochloromethane	ND		2.5	0.50	ppb v/v			11/17/14 21:49	6.29
1,2-Dibromoethane (EDB)	ND		5.0	0.47	ppb v/v			11/17/14 21:49	6.29
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.5	0.97	ppb v/v			11/17/14 21:49	6.29
1,2-Dichlorobenzene	ND		2.5	0.82	ppb v/v			11/17/14 21:49	6.29
1,3-Dichlorobenzene	ND		2.5	0.69	ppb v/v			11/17/14 21:49	6.29
1,4-Dichlorobenzene	ND		2.5	0.94	ppb v/v			11/17/14 21:49	6.29
Dichlorodifluoromethane	62		2.5	0.91	ppb v/v			11/17/14 21:49	6.29
1,1-Dichloroethane	5.1		1.9	0.45	ppb v/v			11/17/14 21:49	6.29
1,2-Dichloroethane	ND		5.0	0.55	ppb v/v			11/17/14 21:49	6.29
1,1-Dichloroethene	42		5.0	0.81	ppb v/v			11/17/14 21:49	6.29
cis-1,2-Dichloroethene	2.5		2.5	0.56	ppb v/v			11/17/14 21:49	6.29
trans-1,2-Dichloroethene	ND		2.5	0.63	ppb v/v			11/17/14 21:49	6.29
1,2-Dichloropropane	ND		2.5	1.5	ppb v/v			11/17/14 21:49	6.29
cis-1,3-Dichloropropene	ND		2.5	0.65	ppb v/v			11/17/14 21:49	6.29
trans-1,3-Dichloropropene	ND		2.5	0.55	ppb v/v			11/17/14 21:49	6.29
Ethylbenzene	ND		2.5		ppb v/v			11/17/14 21:49	6.29
4-Ethyltoluene	ND		2.5		ppb v/v			11/17/14 21:49	6.29
Hexachlorobutadiene	ND		13	2.7	ppb v/v			11/17/14 21:49	6.29
2-Hexanone	ND		2.5	0.55	ppb v/v			11/17/14 21:49	6.29
4-Methyl-2-pentanone (MIBK)	ND		2.5	0.85	ppb v/v			11/17/14 21:49	6.29
Methylene Chloride	2.4		2.5		ppb v/v			11/17/14 21:49	6.29
Styrene	ND		2.5		ppb v/v			11/17/14 21:49	6.29
1,1,2,2-Tetrachloroethane	ND		2.5		ppb v/v			11/17/14 21:49	6.29
Tetrachloroethene	140		2.5		ppb v/v			11/17/14 21:49	6.29
Toluene		JB	2.5		ppb v/v			11/17/14 21:49	6.29

TestAmerica Sacramento

Lab Sample ID: 320-10172-19

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-19

# Client Sample ID: 096730-001/MWL-SV05-200 (port 3)

Date Collected: 10/22/14 10:34 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroetha	160		2.5	1.0	ppb v/v			11/17/14 21:49	6.29
ne									
1,2,4-Trichlorobenzene	ND		13	2.7	ppb v/v			11/17/14 21:49	6.29
1,1,1-Trichloroethane	3.6		1.9	0.41	ppb v/v			11/17/14 21:49	6.29
1,1,2-Trichloroethane	ND		2.5	0.42	ppb v/v			11/17/14 21:49	6.29
Trichloroethene	210		2.5	0.66	ppb v/v			11/17/14 21:49	6.29
Trichlorofluoromethane	70		2.5	1.2	ppb v/v			11/17/14 21:49	6.29
1,2,4-Trimethylbenzene	ND		5.0	1.0	ppb v/v			11/17/14 21:49	6.29
1,3,5-Trimethylbenzene	ND		2.5	0.79	ppb v/v			11/17/14 21:49	6.29
Vinyl acetate	ND		5.0	0.91	ppb v/v			11/17/14 21:49	6.29
Vinyl chloride	ND		2.5	0.75	ppb v/v			11/17/14 21:49	6.29
m,p-Xylene	0.77	JB	5.0	0.63	ppb v/v			11/17/14 21:49	6.29
o-Xylene	0.43	JB	2.5	0.34	ppb v/v			11/17/14 21:49	6.29
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			=		11/17/14 21:49	6.29
1,2-Dichloroethane-d4 (Surr)	79		70 - 130					11/17/14 21:49	6.29
Toluene-d8 (Surr)	92		70 - 130					11/17/14 21:49	6.29

Client Sample ID: 096731-001/MWL-SV05-200 (port 3)

Date Collected: 10/22/14 10:36 Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 320-10172-20

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	4.3	J	5.0	0.18	ppb v/v			11/18/14 11:45	1
Benzene	0.33	J	0.40	0.079	ppb v/v			11/18/14 11:45	1
Benzyl chloride	ND		0.80	0.16	ppb v/v			11/18/14 11:45	1
Bromodichloromethane	ND		0.30	0.066	ppb v/v			11/18/14 11:45	1
Bromoform	ND		0.40	0.070	ppb v/v			11/18/14 11:45	1
Bromomethane	ND		0.80	0.34	ppb v/v			11/18/14 11:45	1
2-Butanone (MEK)	0.81		0.80	0.20	ppb v/v			11/18/14 11:45	1
Carbon disulfide	0.53	J	0.80	0.078	ppb v/v			11/18/14 11:45	1
Carbon tetrachloride	1.2		0.80	0.064	ppb v/v			11/18/14 11:45	1
Chlorobenzene	0.076	JB	0.30	0.064	ppb v/v			11/18/14 11:45	1
Chloroethane	ND		0.80	0.31	ppb v/v			11/18/14 11:45	1
Chloroform	1.9		0.30	0.095	ppb v/v			11/18/14 11:45	1
Chloromethane	0.23	J	0.80	0.20	ppb v/v			11/18/14 11:45	1
Dibromochloromethane	ND		0.40	0.079	ppb v/v			11/18/14 11:45	1
1,2-Dibromoethane (EDB)	ND		0.80	0.075	ppb v/v			11/18/14 11:45	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40	0.16	ppb v/v			11/18/14 11:45	1
1,2-Dichlorobenzene	ND		0.40	0.13	ppb v/v			11/18/14 11:45	1
1,3-Dichlorobenzene	ND		0.40	0.11	ppb v/v			11/18/14 11:45	1
1,4-Dichlorobenzene	ND		0.40	0.15	ppb v/v			11/18/14 11:45	1
1,1-Dichloroethane	5.3		0.30	0.072	ppb v/v			11/18/14 11:45	1
1,2-Dichloroethane	ND		0.80	0.088	ppb v/v			11/18/14 11:45	1
1,1-Dichloroethene	45		0.80	0.13	ppb v/v			11/18/14 11:45	1
cis-1,2-Dichloroethene	2.7		0.40	0.089	ppb v/v			11/18/14 11:45	1

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-20

# Client Sample ID: 096731-001/MWL-SV05-200 (port 3)

Date Collected: 10/22/14 10:36 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		0.40	0.10	ppb v/v			11/18/14 11:45	1
1,2-Dichloropropane	0.30	J	0.40	0.24	ppb v/v			11/18/14 11:45	1
cis-1,3-Dichloropropene	ND		0.40	0.10	ppb v/v			11/18/14 11:45	1
trans-1,3-Dichloropropene	ND		0.40	0.088	ppb v/v			11/18/14 11:45	1
Ethylbenzene	0.071	JB	0.40	0.063	ppb v/v			11/18/14 11:45	1
4-Ethyltoluene	ND		0.40	0.19	ppb v/v			11/18/14 11:45	1
Hexachlorobutadiene	ND		2.0	0.43	ppb v/v			11/18/14 11:45	1
2-Hexanone	0.12	J	0.40	0.087	ppb v/v			11/18/14 11:45	1
4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14	ppb v/v			11/18/14 11:45	1
Methylene Chloride	2.6		0.40	0.072	ppb v/v			11/18/14 11:45	1
Styrene	0.063	JB	0.40	0.059	ppb v/v			11/18/14 11:45	1
1,1,2,2-Tetrachloroethane	ND		0.40	0.069	ppb v/v			11/18/14 11:45	1
Toluene	2.4	В	0.40	0.051	ppb v/v			11/18/14 11:45	1
1,2,4-Trichlorobenzene	ND		2.0	0.43	ppb v/v			11/18/14 11:45	1
1,1,1-Trichloroethane	3.3		0.30	0.065	ppb v/v			11/18/14 11:45	1
1,1,2-Trichloroethane	ND		0.40	0.067	ppb v/v			11/18/14 11:45	1
1,2,4-Trimethylbenzene	0.18	J	0.80	0.16	ppb v/v			11/18/14 11:45	1
1,3,5-Trimethylbenzene	ND		0.40	0.13	ppb v/v			11/18/14 11:45	1
Vinyl acetate	0.95		0.80	0.15	ppb v/v			11/18/14 11:45	1
Vinyl chloride	ND		0.40	0.12	ppb v/v			11/18/14 11:45	1
m,p-Xylene	0.17	J B	0.80	0.10	ppb v/v			11/18/14 11:45	1
o-Xylene	0.093	JB	0.40	0.054	ppb v/v			11/18/14 11:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			_		11/18/14 11:45	1
1,2-Dichloroethane-d4 (Surr)	81		70 - 130					11/18/14 11:45	1
Toluene-d8 (Surr)	96		70 - 130					11/18/14 11:45	1
Method: TO-15 - Volatile Organic	•						_		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	71		2.6	0.93				11/18/14 12:52	6.42
Tetrachloroethene	170		2.6		ppb v/v			11/18/14 12:52	6.42
1,1,2-Trichloro-1,2,2-trifluoroetha	190		2.6	1.0	ppb v/v			11/18/14 12:52	6.42
ne Tricklereethere			2.6	0.67	nnh ww			11/18/14 12:52	6.42
Trichlandfuggerathan	240		2.6		ppb v/v				6.42
Trichlorofluoromethane	78		2.0	1.3	ppb v/v			11/18/14 12:52	0.42
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130					11/18/14 12:52	6.42
1,2-Dichloroethane-d4 (Surr)	80		70 - 130					11/18/14 12:52	6.42
Toluene-d8 (Surr)	94		70 - 130					11/18/14 12:52	6.42

Client Sample ID: 096732-001/MWL-SV05-300 (port 4)

Lab Sample ID: 320-10172-21 Date Collected: 10/22/14 10:39 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic C	ompounds ir	n Ambient A	\ir						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	10	J	18	0.63	ppb v/v			11/17/14 23:37	3.55

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-21

Client Sample ID: 096732-001/MWL-SV05-300 (port 4)

Date Collected: 10/22/14 10:39 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.33	J	1.4	0.28	ppb v/v			11/17/14 23:37	3.5
Benzyl chloride	ND		2.8	0.58	ppb v/v			11/17/14 23:37	3.5
Bromodichloromethane	ND		1.1	0.23	ppb v/v			11/17/14 23:37	3.5
Bromoform	ND		1.4	0.25	ppb v/v			11/17/14 23:37	3.5
Bromomethane	ND		2.8	1.2	ppb v/v			11/17/14 23:37	3.5
2-Butanone (MEK)	1.9	J	2.8	0.71	ppb v/v			11/17/14 23:37	3.5
Carbon disulfide	ND		2.8	0.28	ppb v/v			11/17/14 23:37	3.5
Carbon tetrachloride	0.96	J	2.8	0.23	ppb v/v			11/17/14 23:37	3.5
Chlorobenzene	ND		1.1	0.23	ppb v/v			11/17/14 23:37	3.5
Chloroethane	ND		2.8	1.1	ppb v/v			11/17/14 23:37	3.5
Chloroform	0.79	J	1.1	0.34	ppb v/v			11/17/14 23:37	3.5
Chloromethane	ND		2.8	0.70	ppb v/v			11/17/14 23:37	3.5
Dibromochloromethane	ND		1.4	0.28	ppb v/v			11/17/14 23:37	3.5
1,2-Dibromoethane (EDB)	ND		2.8		ppb v/v			11/17/14 23:37	3.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.4		ppb v/v			11/17/14 23:37	3.5
1,2-Dichlorobenzene	ND		1.4		ppb v/v			11/17/14 23:37	3.5
1,3-Dichlorobenzene	ND		1.4	0.39	ppb v/v			11/17/14 23:37	3.5
1,4-Dichlorobenzene	ND		1.4		ppb v/v			11/17/14 23:37	3.5
Dichlorodifluoromethane	26		1.4		ppb v/v			11/17/14 23:37	3.5
1,1-Dichloroethane	1.7		1.1		ppb v/v			11/17/14 23:37	3.5
1,2-Dichloroethane	ND		2.8	0.31				11/17/14 23:37	3.5
1,1-Dichloroethene	23		2.8		ppb v/v			11/17/14 23:37	3.5
cis-1,2-Dichloroethene	0.98	.1	1.4		ppb v/v			11/17/14 23:37	3.5
trans-1,2-Dichloroethene	ND		1.4		ppb v/v			11/17/14 23:37	3.5
1,2-Dichloropropane	ND		1.4		ppb v/v			11/17/14 23:37	3.5
cis-1,3-Dichloropropene	ND		1.4		ppb v/v			11/17/14 23:37	3.5
trans-1,3-Dichloropropene	ND		1.4		ppb v/v			11/17/14 23:37	3.5
Ethylbenzene	ND		1.4		ppb v/v			11/17/14 23:37	3.5
4-Ethyltoluene	ND		1.4		ppb v/v			11/17/14 23:37	3.5
Hexachlorobutadiene	ND		7.1		ppb v/v			11/17/14 23:37	3.5
2-Hexanone	ND		1.4		ppb v/v			11/17/14 23:37	3.5
4-Methyl-2-pentanone (MIBK)	ND		1.4		ppb v/v			11/17/14 23:37	3.5
Methylene Chloride	0.85		1.4		ppb v/v			11/17/14 23:37	3.5
Styrene	ND	J	1.4		ppb v/v			11/17/14 23:37	3.5
1,1,2,2-Tetrachloroethane	ND		1.4		ppb v/v			11/17/14 23:37	3.5
			1.4		ppb v/v			11/17/14 23:37	3.5
Tetrachloroethene	120	В	1.4		ppb v/v ppb v/v				3.5
Toluene	2.7	В			ppb v/v			11/17/14 23:37	
1,1,2-Trichloro-1,2,2-trifluoroetha	81		1.4	0.56	ppb v/v			11/17/14 23:37	3.5
ne 1,2,4-Trichlorobenzene	ND		7.1	1.5	ppb v/v			11/17/14 23:37	3.5
1,1,1-Trichloroethane	1.5		1.1		ppb v/v			11/17/14 23:37	3.5
1,1,2-Trichloroethane	ND		1.4		ppb v/v			11/17/14 23:37	3.5
Trichloroethene	130		1.4		ppb v/v			11/17/14 23:37	3.5
Trichlorofluoromethane	22		1.4		ppb v/v			11/17/14 23:37	3.5
1,2,4-Trimethylbenzene	ND.		2.8		ppb v/v			11/17/14 23:37	3.5
1,3,5-Trimethylbenzene	ND.		1.4		ppb v/v			11/17/14 23:37	3.5
Vinyl acetate	ND		2.8		ppb v/v			11/17/14 23:37	3.5
Vinyl acetate Vinyl chloride	ND		1.4		ppb v/v ppb v/v			11/17/14 23:37	3.5
m,p-Xylene	0.42	<u></u>	2.8		ppb v/v			11/17/14 23:37	3.5

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-22

Client Sample ID: 096732-001/MWL-SV05-300 (port 4)

Lab Sample ID: 320-10172-21 Date Collected: 10/22/14 10:39 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Orga	nic Compounds i	n Ambient	Air (Continued)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	0.23	J B	1.4	0.19 ppb v/v			11/17/14 23:37	3.55
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130		,		11/17/14 23:37	3.55
1,2-Dichloroethane-d4 (Surr)	81		70 - 130				11/17/14 23:37	3.55
Toluene-d8 (Surr)	92		70 - 130				11/17/14 23:37	3.55

Client Sample ID: 096733-001/MWL-SV05-400 (port 5)

Date Collected: 10/22/14 10:43 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	5.1	J	18	0.62	ppb v/v			11/18/14 00:29	3.51
Benzene	0.83	J	1.4	0.28	ppb v/v			11/18/14 00:29	3.51
Benzyl chloride	ND		2.8	0.57	ppb v/v			11/18/14 00:29	3.51
Bromodichloromethane	ND		1.1	0.23	ppb v/v			11/18/14 00:29	3.51
Bromoform	ND		1.4	0.25	ppb v/v			11/18/14 00:29	3.51
Bromomethane	ND		2.8	1.2	ppb v/v			11/18/14 00:29	3.51
2-Butanone (MEK)	ND		2.8	0.70	ppb v/v			11/18/14 00:29	3.51
Carbon disulfide	0.63	J	2.8	0.27	ppb v/v			11/18/14 00:29	3.51
Carbon tetrachloride	0.51	J	2.8	0.22	ppb v/v			11/18/14 00:29	3.51
Chlorobenzene	ND		1.1	0.22	ppb v/v			11/18/14 00:29	3.51
Chloroethane	ND		2.8	1.1	ppb v/v			11/18/14 00:29	3.51
Chloroform	0.67	J	1.1	0.33	ppb v/v			11/18/14 00:29	3.51
Chloromethane	2.2	J	2.8	0.69	ppb v/v			11/18/14 00:29	3.51
Dibromochloromethane	ND		1.4	0.28	ppb v/v			11/18/14 00:29	3.51
1,2-Dibromoethane (EDB)	ND		2.8	0.26	ppb v/v			11/18/14 00:29	3.51
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.4	0.54	ppb v/v			11/18/14 00:29	3.51
1,2-Dichlorobenzene	ND		1.4	0.46	ppb v/v			11/18/14 00:29	3.51
1,3-Dichlorobenzene	ND		1.4	0.39	ppb v/v			11/18/14 00:29	3.51
1,4-Dichlorobenzene	ND		1.4	0.52	ppb v/v			11/18/14 00:29	3.51
Dichlorodifluoromethane	14		1.4	0.51	ppb v/v			11/18/14 00:29	3.51
1,1-Dichloroethane	1.4		1.1	0.25	ppb v/v			11/18/14 00:29	3.51
1,2-Dichloroethane	ND		2.8	0.31	ppb v/v			11/18/14 00:29	3.51
1,1-Dichloroethene	14		2.8	0.45	ppb v/v			11/18/14 00:29	3.51
cis-1,2-Dichloroethene	0.77	J	1.4	0.31	ppb v/v			11/18/14 00:29	3.51
trans-1,2-Dichloroethene	ND		1.4	0.35	ppb v/v			11/18/14 00:29	3.51
1,2-Dichloropropane	ND		1.4	0.84	ppb v/v			11/18/14 00:29	3.51
cis-1,3-Dichloropropene	ND		1.4	0.37	ppb v/v			11/18/14 00:29	3.51
trans-1,3-Dichloropropene	ND		1.4	0.31	ppb v/v			11/18/14 00:29	3.51
Ethylbenzene	ND		1.4	0.22	ppb v/v			11/18/14 00:29	3.51
4-Ethyltoluene	ND		1.4	0.66	ppb v/v			11/18/14 00:29	3.51
Hexachlorobutadiene	ND		7.0	1.5	ppb v/v			11/18/14 00:29	3.51
2-Hexanone	ND		1.4	0.31	ppb v/v			11/18/14 00:29	3.51
4-Methyl-2-pentanone (MIBK)	ND		1.4	0.47	ppb v/v			11/18/14 00:29	3.51
Methylene Chloride	0.58	J	1.4	0.25	ppb v/v			11/18/14 00:29	3.51
Styrene	ND		1.4	0.21	ppb v/v			11/18/14 00:29	3.51

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-23

# Client Sample ID: 096733-001/MWL-SV05-400 (port 5)

Lab Sample ID: 320-10172-22 Date Collected: 10/22/14 10:43 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		1.4	0.24	ppb v/v			11/18/14 00:29	3.51
Tetrachloroethene	110		1.4	0.18	ppb v/v			11/18/14 00:29	3.51
Toluene	74	В	1.4	0.18	ppb v/v			11/18/14 00:29	3.51
1,1,2-Trichloro-1,2,2-trifluoroetha	40		1.4	0.57	ppb v/v			11/18/14 00:29	3.51
ne									
1,2,4-Trichlorobenzene	ND		7.0	1.5	ppb v/v			11/18/14 00:29	3.51
1,1,1-Trichloroethane	1.5		1.1	0.23	ppb v/v			11/18/14 00:29	3.51
1,1,2-Trichloroethane	ND		1.4	0.24	ppb v/v			11/18/14 00:29	3.51
Trichloroethene	100		1.4	0.37	ppb v/v			11/18/14 00:29	3.51
Trichlorofluoromethane	18		1.4	0.69	ppb v/v			11/18/14 00:29	3.51
1,2,4-Trimethylbenzene	ND		2.8	0.57	ppb v/v			11/18/14 00:29	3.51
1,3,5-Trimethylbenzene	ND		1.4	0.44	ppb v/v			11/18/14 00:29	3.51
Vinyl acetate	ND		2.8	0.51	ppb v/v			11/18/14 00:29	3.51
Vinyl chloride	ND		1.4	0.42	ppb v/v			11/18/14 00:29	3.51
m,p-Xylene	ND		2.8	0.35	ppb v/v			11/18/14 00:29	3.51
o-Xylene	ND		1.4	0.19	ppb v/v			11/18/14 00:29	3.51
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			-		11/18/14 00:29	3.51
1,2-Dichloroethane-d4 (Surr)	80		70 - 130					11/18/14 00:29	3.51
Toluene-d8 (Surr)	93		70 - 130					11/18/14 00:29	3.51

Client Sample ID: 096734-001/MWL-SV05-400 (port 5)

Date Collected: 10/22/14 10:45 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	6.3	J	20	0.70	ppb v/v			11/18/14 01:21	3.93
Benzene	1.2	J	1.6	0.31	ppb v/v			11/18/14 01:21	3.93
Benzyl chloride	ND		3.1	0.64	ppb v/v			11/18/14 01:21	3.93
Bromodichloromethane	ND		1.2	0.26	ppb v/v			11/18/14 01:21	3.93
Bromoform	ND		1.6	0.28	ppb v/v			11/18/14 01:21	3.93
Bromomethane	ND		3.1	1.3	ppb v/v			11/18/14 01:21	3.93
2-Butanone (MEK)	0.88	J	3.1	0.78	ppb v/v			11/18/14 01:21	3.93
Carbon disulfide	0.39	J	3.1	0.31	ppb v/v			11/18/14 01:21	3.93
Carbon tetrachloride	ND		3.1	0.25	ppb v/v			11/18/14 01:21	3.93
Chlorobenzene	ND		1.2	0.25	ppb v/v			11/18/14 01:21	3.93
Chloroethane	ND		3.1	1.2	ppb v/v			11/18/14 01:21	3.93
Chloroform	ND		1.2	0.37	ppb v/v			11/18/14 01:21	3.93
Chloromethane	3.3		3.1	0.77	ppb v/v			11/18/14 01:21	3.93
Dibromochloromethane	ND		1.6	0.31	ppb v/v			11/18/14 01:21	3.93
1,2-Dibromoethane (EDB)	ND		3.1	0.29	ppb v/v			11/18/14 01:21	3.93
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.6	0.61	ppb v/v			11/18/14 01:21	3.93
1,2-Dichlorobenzene	ND		1.6	0.51	ppb v/v			11/18/14 01:21	3.93
1,3-Dichlorobenzene	ND		1.6	0.43	ppb v/v			11/18/14 01:21	3.93
1,4-Dichlorobenzene	ND		1.6	0.59	ppb v/v			11/18/14 01:21	3.93
Dichlorodifluoromethane	11		1.6	0.57	ppb v/v			11/18/14 01:21	3.93

Client: Sandia National Laboratories

Project/Site: MWL SVM

Client Sample ID: 096734-001/MWL-SV05-400 (port 5) Lab Sample ID: 320-10172-23

Date Collected: 10/22/14 10:45 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	0.56	J	1.2	0.28	ppb v/v			11/18/14 01:21	3.93
1,2-Dichloroethane	ND		3.1	0.35	ppb v/v			11/18/14 01:21	3.93
1,1-Dichloroethene	7.6		3.1	0.51	ppb v/v			11/18/14 01:21	3.93
cis-1,2-Dichloroethene	ND		1.6	0.35	ppb v/v			11/18/14 01:21	3.93
trans-1,2-Dichloroethene	ND		1.6	0.39	ppb v/v			11/18/14 01:21	3.93
1,2-Dichloropropane	ND		1.6	0.94	ppb v/v			11/18/14 01:21	3.93
cis-1,3-Dichloropropene	ND		1.6	0.41	ppb v/v			11/18/14 01:21	3.93
trans-1,3-Dichloropropene	ND		1.6	0.35	ppb v/v			11/18/14 01:21	3.93
Ethylbenzene	ND		1.6	0.25	ppb v/v			11/18/14 01:21	3.93
4-Ethyltoluene	ND		1.6	0.73	ppb v/v			11/18/14 01:21	3.93
Hexachlorobutadiene	ND		7.9	1.7	ppb v/v			11/18/14 01:21	3.93
2-Hexanone	ND		1.6	0.34	ppb v/v			11/18/14 01:21	3.93
4-Methyl-2-pentanone (MIBK)	ND		1.6	0.53	ppb v/v			11/18/14 01:21	3.93
Methylene Chloride	0.35	J	1.6	0.28	ppb v/v			11/18/14 01:21	3.93
Styrene	ND		1.6	0.23	ppb v/v			11/18/14 01:21	3.93
1,1,2,2-Tetrachloroethane	ND		1.6	0.27	ppb v/v			11/18/14 01:21	3.93
Tetrachloroethene	89		1.6	0.20	ppb v/v			11/18/14 01:21	3.93
Toluene	170	В	1.6	0.20	ppb v/v			11/18/14 01:21	3.93
1,1,2-Trichloro-1,2,2-trifluoroetha	32		1.6	0.64	ppb v/v			11/18/14 01:21	3.93
ne				<u></u> -					
1,2,4-Trichlorobenzene	ND		7.9		ppb v/v			11/18/14 01:21	3.93
1,1,1-Trichloroethane	0.63	J	1.2		ppb v/v			11/18/14 01:21	3.93
1,1,2-Trichloroethane	ND		1.6		ppb v/v			11/18/14 01:21	3.93
Trichloroethene	60		1.6		ppb v/v			11/18/14 01:21	3.93
Trichlorofluoromethane	12		1.6		ppb v/v			11/18/14 01:21	3.93
1,2,4-Trimethylbenzene	ND		3.1		ppb v/v			11/18/14 01:21	3.93
1,3,5-Trimethylbenzene	ND		1.6		ppb v/v			11/18/14 01:21	3.93
Vinyl acetate	ND		3.1		ppb v/v			11/18/14 01:21	3.93
Vinyl chloride	ND		1.6		ppb v/v			11/18/14 01:21	3.93
m,p-Xylene	ND		3.1	0.39	ppb v/v			11/18/14 01:21	3.93
o-Xylene	0.21	JB	1.6	0.21	ppb v/v			11/18/14 01:21	3.93
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			-		11/18/14 01:21	3.93
1,2-Dichloroethane-d4 (Surr)	80		70 - 130					11/18/14 01:21	3.93
Toluene-d8 (Surr)	95		70 - 130					11/18/14 01:21	3.93

Client Sample ID: 096735-001/MWL-SV-FB5

Lab Sample ID: 320-10172-24 Date Collected: 10/22/14 10:24 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND ND	5.0	0.18	ppb v/v			11/18/14 02:19	1
Benzene	ND	0.40	0.079	ppb v/v			11/18/14 02:19	1
Benzyl chloride	ND	0.80	0.16	ppb v/v			11/18/14 02:19	1
Bromodichloromethane	ND	0.30	0.066	ppb v/v			11/18/14 02:19	1
Bromoform	ND	0.40	0.070	ppb v/v			11/18/14 02:19	1

TestAmerica Sacramento

TestAmerica Job ID: 320-10172-1

Client: Sandia National Laboratories

Project/Site: MWL SVM

TestAmerica Job ID: 320-10172-1

Lab Sample ID: 320-10172-24

# Client Sample ID: 096735-001/MWL-SV-FB5

Date Collected: 10/22/14 10:24 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		0.80	0.34	ppb v/v			11/18/14 02:19	
2-Butanone (MEK)	ND		0.80	0.20	ppb v/v			11/18/14 02:19	
Carbon disulfide	ND		0.80	0.078	ppb v/v			11/18/14 02:19	
Carbon tetrachloride	ND		0.80	0.064	ppb v/v			11/18/14 02:19	
Chlorobenzene	ND		0.30	0.064	ppb v/v			11/18/14 02:19	
Chloroethane	ND		0.80	0.31	ppb v/v			11/18/14 02:19	•
Chloroform	ND		0.30	0.095	ppb v/v			11/18/14 02:19	
Chloromethane	ND		0.80	0.20	ppb v/v			11/18/14 02:19	
Dibromochloromethane	ND		0.40	0.079	ppb v/v			11/18/14 02:19	•
1,2-Dibromoethane (EDB)	ND		0.80	0.075	ppb v/v			11/18/14 02:19	•
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40	0.16	ppb v/v			11/18/14 02:19	
1,2-Dichlorobenzene	ND		0.40	0.13	ppb v/v			11/18/14 02:19	
1,3-Dichlorobenzene	ND		0.40	0.11	ppb v/v			11/18/14 02:19	
1,4-Dichlorobenzene	ND		0.40	0.15	ppb v/v			11/18/14 02:19	
Dichlorodifluoromethane	ND		0.40		ppb v/v			11/18/14 02:19	
1,1-Dichloroethane	ND		0.30		ppb v/v			11/18/14 02:19	
1,2-Dichloroethane	ND		0.80	0.088	ppb v/v			11/18/14 02:19	
1,1-Dichloroethene	ND		0.80		ppb v/v			11/18/14 02:19	
cis-1,2-Dichloroethene	ND		0.40		ppb v/v			11/18/14 02:19	
trans-1,2-Dichloroethene	ND		0.40	0.10	ppb v/v			11/18/14 02:19	,
1,2-Dichloropropane	ND		0.40		ppb v/v			11/18/14 02:19	
cis-1,3-Dichloropropene	ND		0.40		ppb v/v			11/18/14 02:19	
trans-1,3-Dichloropropene	ND		0.40		ppb v/v			11/18/14 02:19	,
Ethylbenzene	ND		0.40		ppb v/v			11/18/14 02:19	
4-Ethyltoluene	ND		0.40		ppb v/v			11/18/14 02:19	
Hexachlorobutadiene	ND		2.0		ppb v/v			11/18/14 02:19	
2-Hexanone	ND		0.40		ppb v/v			11/18/14 02:19	
4-Methyl-2-pentanone (MIBK)	ND		0.40		ppb v/v			11/18/14 02:19	
Methylene Chloride	ND		0.40		ppb v/v			11/18/14 02:19	
Styrene	ND		0.40		ppb v/v			11/18/14 02:19	
1,1,2,2-Tetrachloroethane	ND		0.40		ppb v/v			11/18/14 02:19	
Tetrachloroethene	ND		0.40		ppb v/v			11/18/14 02:19	
Toluene	ND		0.40		ppb v/v			11/18/14 02:19	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40		ppb v/v			11/18/14 02:19	
1,2,4-Trichlorobenzene	ND		2.0		ppb v/v			11/18/14 02:19	
1,1,1-Trichloroethane	ND		0.30		ppb v/v			11/18/14 02:19	
1,1,2-Trichloroethane	ND		0.40		ppb v/v			11/18/14 02:19	
Trichloroethene	0.17	1	0.40		ppb v/v			11/18/14 02:19	
Trichlorofluoromethane	ND.	•	0.40		ppb v/v			11/18/14 02:19	
1,2,4-Trimethylbenzene	ND		0.80		ppb v/v			11/18/14 02:19	
1,3,5-Trimethylbenzene	ND		0.40		ppb v/v			11/18/14 02:19	· · · · · · .
Vinyl acetate	ND		0.40		ppb v/v			11/18/14 02:19	
Vinyl acetate Vinyl chloride	ND		0.40		ppb v/v			11/18/14 02:19	
m,p-Xylene	ND		0.40		ppb v/v			11/18/14 02:19	· · · · · · .
o-Xylene	ND		0.40		ppb v/v			11/18/14 02:19	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	82		70 - 130			-	<u>-</u>	11/18/14 02:19	-
1,2-Dichloroethane-d4 (Surr)	82		70 - 130					11/18/14 02:19	

Client: Sandia National Laboratories TestAmerica Job ID: 320-10172-1

Project/Site: MWL SVM

Client Sample ID: 096735-001/MWL-SV-FB5 Lab Sample ID: 320-10172-24

Date Collected: 10/22/14 10:24 Matrix: Air

Date Received: 10/30/14 10:00

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 Toluene-d8 (Surr)
 94
 70 - 130
 11/18/14 02:19
 1

## **ANNEX D**

Mixed Waste Landfill Soil-Moisture Monitoring Forms

April 2014-March 2015

**Field Forms and Tables** 

# MIXED WASTE LANDFILL SOIL MOISTURE MONITORING FIELD FORMS

**April 2014** 

October 2014

# **Tailgate Safety Meeting Form**

n	lielu m neno
	15/14 Time: 0900
Activities: Mo18/2018 (Applone has the right to cease field activities for safe	lone toring
(Apyone has the right to cease field activities for saf	fety concerns. The buddy system will be used when needed.)
Weather Conditions:	
Temp: °F Wind Speed: MPH	Humidity: % Wind Chill °F
Chemicals Used:	
Cnemicals Used:	<u>-</u>
Safety To	opics Presented
Be aware of slips, trips, and falls. Keep	Be aware of environmental conditions
work area clean and use a stepping stool	(heat / cold stress). Dress accordingly.
when necessary.	Wear sunscreen if necessary. Stay
	hydrated.
Wear safety boots.	☐ Be aware of electrical hazards
Wear leather gloves.	☐ Be aware of pressure hazards.
S 17 out sources gas 7 out	Z 20 a waz o z problemo zwazaka
☐ Wear safety glasses.	11 No eating or drinking on site.
Ween within an later of any	
☐ Wear nitrile or latex gloves.	Be aware of biohazards (snakes, spiders, etc.)
Use safe lifting practices.	Wear communication device (cell phone,
to ose sale inting practices.	site radio, EOC pager).
Be aware of pinch points	☐ Other (list).
☐ Other (list).	☐ Other (list).
Emergency: 844-0911 (cell phone) or 911 (Sand	lia land line)
	Attendees
Robert Frank	W. Tust But
Printed Name	Signature
1) an index Nin by	(1)
Printed Name	Signature
Timed Manie	Signature
Dow Waterparal	Herry 1

IMPORTANT NOTICE:

Printed Name

A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), 4100 Controlled Documents home page.

Signature

Mixed Waste Landfill Neutron Logging Data Field Form (page 1 of 2)

Date: 4/15	ixed Waste Lan		ogging Data i N	Standard Coun	
Start Time: 0926				Chi: 1,0	0 87 4/15/
Personnel: Ao	but took			Previous Count	
Deni	elk Nieto	Donvaterpayl		Count Time: 3	0 seconds
Vertical Depth Below Top of Casing (ft)	Linear Depth Along Casing (ft)	Winch Counter Reading (ft)	VZ-3 Counts (E Side)	VZ-2 Counts (SW Corner)	VZ-1 Counts (NW Corner)
0.0	0	0	1377	1485	2257
0.9	1	9999	2538	2048	2421
1.7	2	9998	2546	2284	2324
2.6	3	9997	2451	<b>233</b> 5	2133
3.5	4	9996	1935	2329	2032
4.3	5	9995	2006	<u> </u>	1882
5.2	6	9994	17-87	1952	1713
6.1	7	9993	1709	1640	1623
6.9	8	9992	1799	1705	1485
7.8	9	9991	1836	1769	1659
8.7	10	9990	1879	1597	2046
9.5	11	9989	1862	2029	1971
10.4	12	9988	1698	1869	1808
11.3	13	9987	1913	1787	1902
12.1	14	9986	1808	1681	2120
13.0	15	9985	1855	1799	2122
13.9	16	9984	1599	1746	2179
14.7	17	9983	1688	1826	1778
15.6	18	9982	1882	1896	1576
16.5	19	9981	1431	2190	1571
17.3	20	9980	1459	1985	1548
18.2	21	9979	1837	17(0/0	1778
19.1	22	9978	1593	ଜଟେ	2502
19.9	23	9977	1430	2083	2275
20.8	24	9976	1470	1659	1921
21.7	25	<del>99</del> 75	1725	1663	1813

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page.

Mixed Waste Landfill Neutron Logging Data Field Form (page 2 of 2)

The same processing a support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the	ixed waste Land	uiiii Neutron La	ogging Data Fie	id Form (page 2 o	12) 1
Vertical Depth Below Top of Casing (ft)	Linear Depth Along Casing (ft)	Winch Counter Reading (ft)	VZ-3 Counts (E Side)	VZ-2 Counts (SW Corner)	VZ-1 Counts (NW Corner)
26.0	30	9970	1910	F0F1	1750
30.3	35	9965	1755	1766	2164
34.6	40	9960	1803	1625	1184
39.0	45	9955	1689	1591	2188
43.3	50	9950	2102	1746	1745
47.6	55	9945	1839	927	1806
52.0	60	9940	1760	202/	1940
56.3	65	9935	2144	2303	2010
60.6	70	9930	1253	2539	1826
65.0	75	9925	2/8/	J227	2076
69.3	80	9920	2338	018	1907
73.6	<b>8</b> 5 [∞]	9915	2000	1835	1951
77.9	90	9910	1458	2213	1909
82.3	95	9905	2072	2322	2340
86.6	100	9900	2218	2121	2250
90.9	105	9895	1935	2127	2163
95.3	110	9890	2054	2233	2140
99.6	115	9885	1845	1771	1626
103.9	120	9880	1577	1774	2038
108.3	125	9875	1992	2248	1495
112.6	130	9870	2/0/	2219	1926
116.9	135	9865	1840	2429	1729
121.2	140	9860	1600	2065	1540
125.6	145	9855	2672	2793	3002
129.9	150	9850	3323	210	2180
134.2	155	9845	2285	2370	1746
138.6	160	9840	2724	1961	2262
142.9	165	9835	2501	2347	2074
147.2	170	9830	2593	1670	1686
151.6	175	9825	1346	2918	2642
155.9	180	9820	2879	2841	3097
160.2	185	9815	2902	2786	2315
164.5	190	9810	1802	1710	1990
168.9	195	9805	1878	2919	3628
173.2	200	9800	1980	3161	2644

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page.

# Tailgate Safety Meeting Form

Dept: 443 Facility: MWL D	rate: 10/16/14 Time: 10:00			
Activities: Soil moisture monitoring using CPN503E	DR Hydroprobe.			
(Anyone has the right to cease field activities for safety concerns	. The buddy system will be used when performing field work.)			
Temp: 63 °F Wind Speed: 45 MPF	onditions:  H. Humidity: 33 % Wind Chill: °F			
Wear safety boots	Wear leather gloves			
Wear safety glasses	☐ Wear sun screen			
Snakes, spiders. etc.)	Wear communication device (cell phone.  EOC pager)			
Be aware of slips, trips, and falls	Using safe lifting practices were discussed.			
Be aware of pinch points on winch	Be aware of environmental conditions (heat/cold stress)			
Does anyone have any weight restrictions on lifting?	Circle YES or NO If answered YES explain.			
Practice ALARA	Notify RCT when using neutron probe			
Daviele Nielo Robert Ziock Printed Name	MUDES  Action  Signature  Signature			
Printed Name	Signature			
Printed Name	Signature			
Printed Name	Signature			
Printed Name	Signative			

IMPORTANT NOTICE: A primed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page.

Mixed Waste Landfill Neutron Logging Data Field Form (page 1 of 2)

Date: 10/16/14 Standard Count: 6675								
Date: 10/16/14				Chi: 0,9				
Personnel: R	22/			Previous Count	6566			
Tersonner.	Nieto			Count Time: 3				
Vertical				Count Time. 3	Seconds			
Depth Below	Linear Depth	Winch	VZ-3 Counts	VZ-2 Counts	VZ-1 Counts			
Top of	Along	Counter	(E Side)	(SW Corner)	(NW Corner)			
Casing (ft)	Casing (ft)	Reading (ft)						
0.0	0	0	767	1132	1511			
0.9	1	9999	2012	1799	2997			
1.7	2	9998	2377	2177	2038			
2.6	3	9997	2454	2336	1911			
3.5	4	9996	2/60	2314	1922			
4.3	5	9995	1935	2320	1893			
5.2	6	9994	2041	1974	1652			
6.1	7	9993	17-09	17.54	1649			
6.9	8	9992	1764	1703	1540			
7.8	9	9991	1816	1695	1639			
8.7	10	9990	17-90	1608	2025			
9.5	11	9989	1906	1997	2094			
10.4	12	9988	1645	1924	1916			
11.3	13	9987	1868	1797	1826			
12.1	14	9986	1881	1712	1936			
13.0	15	9985	1928	1673	1983			
13.9	16	9984	1835	1739	2202			
14.7	17	9983	1583	1786	1860			
15.6	18	9982	1779	1845	1568			
16.5	19	9981	1720	2295	1503			
17.3	20	9980	1356	2167	1854			
18.2	21	9979	1784	1762	1692			
19.I	22	9978	1731	1865	2477			
19.9	23	9977	1517	2023	2266			
20.8	24	9976	1450	1738	2634			
21.7	25	9975	1480	1603	1256			

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page.

Mixed Waste Landfill Neutron Logging Data Field Form (page 2 of 2)

Vertical Depth Below Top of Casing (ft)	Linear Depth Along Casing (ft)	Winch Counter Reading (ft)	VZ-3 Counts (E Side)	VZ-2 Counts (SW Corner)	VZ-1 Counts (NW Corner)
26.0	30	9970	1918	1796	1748
30.3	35	9965	1703	1928	2/72
34.6	40	9960	1906	1739	1722
39.0	45	9955	1625	1658	2120
43.3	50	9950	2015	1556	1788
47.6	55	9945	1849	2185	1810
52.0	60	9940	1365	1860	1924
56.3	65	9935	2185	2129	1986
60.6	70	9930	14-00	257	1738
65.0	75	9925	2490	2262	7174
69.3	80	9920	2217	1597	1951
73.6	85	9915	1997	1817	2698
77.9	90	9910	1457	2384	2026
82.3	95	9905	217-1	2293	2330
86.6	100	9900	2300	2273	2610
90.9	105	9895	1949	2298	2350
95.3	110	9890	2402	1897	2040
99.6	115	9885	2148	1825	1887-
103.9	120	9880	1635	1934	1925
108.3	125	9875	1890	2224	1492
112.6	130	9870	2296	2282	7.02.8
116.9	135	9865	2303	2747	1729
121.2	140	9860	1670	1973	1474
125.6	145	9855	1538	2648	2276
129.9	150	9850	27/8	2392	202639
134.2	155	9845	2113	2263	1723
138.6	160	9840	2563	2573	1590
142.9	165	9835	2637	2091	2324
147.2	170	9830	2392	1617	1667
151.6	175	9825	2460	7788	3072
155.9	180	9820	3300	2590	3039
160.2	185	9815	3/84	2905	3515
164.5	190	9810	1740	1696	1877
168.9	195	9805	1656	2045	3461
173.2	200	9800	2146	3146	2659

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page.

# MIXED WASTE LANDFILL SOIL MOISTURE MONITORING

**Soil Moisture Monitoring Results Tables** 

Table D-1 VZ-1 Soil-Moisture Monitoring Results April and October 2014

		Collectio	n Period				Difference	
		20	14				between	
						Baseline Average	Baseline Average &	
Vertical				2014		(2004-	2014	
Depth	Linear	Apr	Oct	Average		2006)	Average	Soil-Moisture
Below	Depth		Soil-Moistur				<u> </u>	Trigger Level
Top of	Along	_	ontent by vo	_	2014 Std		Moisture nt by volume)	(% content by
Casing (ft)			•		Dev	,	, , , , , , , , , , , , , , , , , , ,	volume)
3.5	4	3.4	3.0	3.2	0.3	2.9	0.4	NA
4.3	5	3.0	3.0	3.0	0.0	2.9	0.1	NA
5.2	6	2.6	2.3	2.4	0.2	2.9	-0.5	NA
6.1	7	2.3	2.3	2.3	0.0	2.6	-0.3	NA
6.9	8	1.9	2.0	2.0	0.1	2.2	-0.2	NA
7.8	9	2.4	2.3	2.3	0.1	1.9	0.4	NA
8.7	10	3.5	3.3	3.4	0.1	1.7	1.7	23
9.5	11	3.3	3.5	3.4	0.2	2.0	1.4	23
10.4	12	2.8	3.0	2.9	0.1	2.7	0.2	23
11.3	13	3.1	2.8	2.9	0.2	3.1	-0.2	23
12.1	14	3.7	3.1	3.4	0.4	2.6	0.7	23
13.0	15	3.7	3.2	3.4	0.3	2.4	1.1	23
13.9	16	3.8	3.8	3.8	0.0	2.6	1.2	23
14.7	17	2.7	2.7	2.7	0.0	2.8	0.0	23
15.6	18	2.2	1.9	2.1	0.2	2.9	-0.8	23
16.5	19	2.2	1.9	2.0	0.2	2.4	-0.4	23
17.3	20	2.1	1.8	2.0	0.2	2.0	0.0	23
18.2	21	2.7	2.4	2.6	0.2	2.0	0.6	23
19.1	22	4.7	4.6	4.6	0.1	2.1	2.5	23
19.9	23	4.1	4.0	4.0	0.1	3.0	1.1	23
20.8	24	3.1	3.3	3.2	0.2	4.3	-1.1	23
21.7	25	2.8	2.9	2.8	0.0	4.0	-1.1	23
26.0	30	2.7	2.6	2.6	0.1	2.9	-0.2	23
30.3	35	3.8	3.7	3.7	0.1	2.7	1.1	23
34.6	40	2.8	2.5	2.6	0.2	2.3	0.4	23
39.0	45	3.8	3.6	3.7	0.2	3.0	0.7	23
43.3	50	2.6	2.7	2.7	0.0	2.9	-0.2	23
47.6	55	2.8	2.7	2.8	0.0	2.8	0.0	23
52.0	60	3.2	3.0	3.1	0.1	3.4	-0.3	23
56.3	65	3.4	3.2	3.3	0.1	2.9	0.3	23
60.6	70	2.9	2.7	2.8	0.1	2.1	0.7	23
65.0	75	3.5	3.6	3.6	0.0	5.6	-2.0	23
69.3	80	3.1	3.1	3.1	0.0	2.8	0.3	23
73.6	85	3.2	3.5	3.4	0.2	3.1	0.2	23

Table D-1 VZ-1 Soil-Moisture Monitoring Results April and October 2014

			n Period			Baseline Average	Difference between Baseline Average &	
Vertical Depth	Linear	Apr	Oct	2014 Average		(2004- 2006)	2014 Average	Soil-Moisture
Below Top of Casing (ft)	Depth Along Casing (ft)		Soil-Moisture	-	2014 Std Dev		Moisture	Trigger Level (% content by volume)
77.9	90	3.1	3.3	3.2	0.2	3.7	-0.5	23
82.3	95	4.3	4.1	4.2	0.1	3.7	0.4	23
86.6	100	4.0	4.9	4.4	0.6	5.4	-0.9	23
90.9	105	3.8	4.2	4.0	0.3	5.0	-1.0	NA
95.3	110	3.7	3.4	3.5	0.3	3.0	0.6	NA NA
99.6	115	2.3	2.9	2.6	0.4	3.6	-1.0	NA NA
103.9	120	3.4	3.0	3.2	0.3	2.2	1.0	NA NA
108.3	125	2.0	1.9	1.9	0.1	2.7	-0.8	NA NA
112.6	130	3.1	3.3	3.2	0.1	3.3	-0.1	NA NA
116.9	135	2.6	2.5	2.6	0.1	3.1	-0.6	NA NA
121.2	140	2.1	1.8	2.0	0.2	2.1	-0.2	NA
125.6	145	6.1	4.0	5.0	1.5	3.8	1.2	NA
129.9	150	3.8	3.5	3.7	0.2	3.2	0.5	NA
134.2	155	2.6	2.5	2.6	0.1	2.7	-0.1	NA
138.6	160	4.0	2.2	3.1	1.3	2.1	1.0	NA
142.9	165	3.5	4.1	3.8	0.4	3.8	0.0	NA
147.2	170	2.5	2.3	2.4	0.1	2.0	0.4	NA
151.6	175	5.1	6.1	5.6	0.7	6.0	-0.4	NA
155.9	180	6.3	6.0	6.2	0.2	5.5	0.6	NA
160.2	185	4.2	4.6	4.4	0.3	4.4	0.0	NA
164.5	190	3.3	2.9	3.1	0.3	3.0	0.1	NA
168.9	195	7.7	7.1	7.4	0.4	7.0	0.5	NA
173.2	200	5.1	5.0	5.0	0.1	5.4	-0.3	NA
	Average	3.4	3.3	3.3	Average	3.2		

Note: Shaded area represents depths where 23-percent soil moisture trigger applies.

Std Dev = Standard deviation.

NA = Not applicable

Table D-2 VZ-2 Soil-Moisture Monitoring Results April and October 2014

		Collectio	n Poriod	· 				1
			14				Difference	
		20	14				between	
Vertical						Dogalina	Baseline	
Depth	Linear			2014		Baseline Average	Average & 2013	
Below	Depth	Apr	Oct	Average		(2004-2006)	Average	Soil-Moisture
Top of	Along	-			1	,	<u> </u>	Trigger Level
Casing	Casing		Soil-Moistu		2014 Std		oisture	(% content by
(ft)	(ft)	· ` '	ontent by vo	· · · · · · · · · · · · · · · · · · ·	Dev	`	by volume)	volume)
3.5	4	4.2	4.1	4.2	0.1	2.7	1.5	NA
4.3	5	4.1	4.1	4.1	0.0	3.3	0.8	NA
5.2	6	3.2	3.2	3.2	0.0	3.6	-0.4	NA
6.1	7	2.4	2.6	2.5	0.2	3.6	-1.1	NA
6.9	8	2.6	2.5	2.5	0.1	3.5	-1.0	NA
7.8	9	2.7	2.4	2.6	0.2	3.1	-0.5	NA
8.7	10	2.2	2.2	2.2	0.0	2.4	-0.2	23
9.5	11	3.4	3.2	3.3	0.1	2.2	1.1	23
10.4	12	3.0	3.0	3.0	0.0	2.2	0.8	23
11.3	13	2.7	2.7	2.7	0.0	2.1	0.6	23
12.1	14	2.5	2.5	2.5	0.0	2.5	0.0	23
13.0	15	2.8	2.4	2.6	0.3	3.0	-0.4	23
13.9	16	2.6	2.6	2.6	0.1	2.8	-0.2	23
14.7	17	2.9	2.7	2.8	0.1	2.4	0.4	23
15.6	18	3.1	2.8	2.9	0.2	2.6	0.3	23
16.5	19	3.9	4.0	3.9	0.1	2.7	1.2	23
17.3	20	3.3	3.7	3.5	0.3	2.9	0.6	23
18.2	21	2.7	2.6	2.7	0.1	3.1	-0.4	23
19.1	22	3.0	1.3	2.1	1.2	3.6	-1.5	23
19.9	23	3.6	3.5	3.5	0.1	3.7	-0.2	23
20.8	24	2.4	2.6	2.5	0.1	3.1	-0.6	23
21.7	25	2.4	2.2	2.3	0.2	2.7	-0.4	23
26.0	30	2.5	2.7	2.6	0.1	2.4	0.2	23
30.3	35	2.7	3.1	2.9	0.2	2.9	0.0	23
34.6	40	2.3	2.6	2.4	0.2	2.7	-0.3	23
39.0	45	2.2	2.3	2.3	0.1	2.3	0.0	23
43.3	50	2.6	2.1	2.4	0.4	2.1	0.3	23
47.6	55	3.1	3.7	3.4	0.4	3.1	0.3	23
52.0	60	3.4	2.9	3.1	0.4	3.0	0.1	23
56.3	65	4.2	3.6	3.9	0.4	5.5	-1.6	23
60.6	70	4.8	4.8	4.8	0.0	4.8	0.0	23
65.0	75	4.0	3.9	3.9	0.0	5.1	-1.2	23
69.3	80	2.8	2.2	2.5	0.5	2.6	-0.1	23
73.6	85	2.9	2.8	2.8	0.1	2.6	0.2	23
77.9	90	3.9	4.3	4.1	0.3	3.1	1.0	23

Table D-2 VZ-2 Soil-Moisture Monitoring Results April and October 2014

		Collectio	n Period				Difference	
		20	14				between	
							Baseline	
Vertical						Baseline	Average &	
Depth	Linear			2014		Average	2013	O di Malata
Below Top of	Depth Along	Apr	Oct	Average		(2004-2006)	Average	Soil-Moisture Trigger Level
Casing	Casing		Soil-Moistu	re	2014 Std	Soil-M	oisture	(% content by
(ft)	(ft)		ontent by v		Dev		by volume)	volume)
82.3	95	4.2	4.0	4.1	0.1	3.6	0.5	23
86.6	100	3.7	4.0	3.8	0.2	4.7	-0.9	23
90.9	105	3.8	4.0	3.9	0.2	3.4	0.5	NA
95.3	110	4.0	3.0	3.5	0.7	3.1	0.4	NA
99.6	115	2.7	2.8	2.7	0.0	3.6	-0.9	NA
103.9	120	2.7	3.1	2.9	0.2	2.0	0.9	NA
108.3	125	4.0	3.8	3.9	0.1	3.8	0.1	NA
112.6	130	3.9	4.0	4.0	0.0	3.6	0.4	NA
116.9	135	4.5	5.2	4.9	0.5	3.4	1.5	NA
121.2	140	3.5	3.2	3.3	0.2	2.4	0.9	NA
125.6	145	5.5	5.0	5.2	0.4	5.9	-0.7	NA
129.9	150	3.6	4.3	4.0	0.5	7.0	-3.0	NA
134.2	155	4.3	3.9	4.1	0.3	3.6	0.5	NA
138.6	160	3.2	4.8	4.0	1.1	3.8	0.2	NA
142.9	165	4.3	3.5	3.9	0.6	3.0	0.9	NA
147.2	170	2.4	2.2	2.3	0.2	2.9	-0.6	NA
151.6	175	5.8	5.3	5.6	0.3	2.4	3.2	NA
155.9	180	5.6	4.8	5.2	0.6	5.4	-0.2	NA
160.2	185	5.5	5.7	5.6	0.1	5.4	0.2	NA
164.5	190	2.6	2.4	2.5	0.1	4.1	-1.6	NA
168.9	195	5.8	3.4	4.6	1.7	3.5	1.1	NA
173.2	200	6.5	6.6	6.5	0.0	6.3	0.2	NA
	Average	3.5	3.4	3.4	Average	3.4		

Note: Shaded area represents depths where 23-percent soil moisture trigger applies.

Std Dev = Standard deviation.

NA = Not applicable

Table D-3 VZ-3 Soil-Moisture Monitoring Results April and October 2014

		Collection	n Period				D:"	
		20	14				Difference between	
				*			Baseline	
Vertical						Baseline	Average &	Soil-
Depth	Linear			2014		Average	2014	Moisture
Below Top of	Depth Along	Apr	Oct	Average		(2004-2006)	Average	Trigger Level
Casing	Casing	S	Soil-Moisture	е	2014	Soil-M	oisture	(% content
(ft)	(ft)	(% co	ntent by vo	lume)	Std Dev	(% content	by volume)	by volume)
3.5	4	3.2	3.7	3.4	0.4	4.6	-1.2	NA
4.3	5	3.4	3.1	3.2	0.2	4.5	-1.3	NA
5.2	6	2.8	3.4	3.1	0.4	3.7	-0.6	NA
6.1	7	2.5	2.5	2.5	0.1	2.9	-0.4	NA
6.9	8	2.8	2.6	2.7	0.1	3.1	-0.4	NA
7.8	9	2.9	2.8	2.8	0.1	2.3	0.5	NA
8.7	10	3.0	2.7	2.8	0.2	2.4	0.4	23
9.5	11	3.0	3.0	3.0	0.0	2.6	0.4	23
10.4	12	2.5	2.3	2.4	0.2	2.7	-0.3	23
11.3	13	3.1	2.9	3.0	0.1	3.0	0.0	23
12.1	14	2.8	2.9	2.9	0.1	2.6	0.3	23
13.0	15	2.9	3.1	3.0	0.1	2.8	0.2	23
13.9	16	2.3	2.8	2.5	0.4	2.9	-0.4	23
14.7	17	2.5	2.1	2.3	0.3	3.1	-0.8	23
15.6	18	3.0	2.7	2.9	0.2	3.1	-0.2	23
16.5	19	1.8	2.5	2.1	0.5	2.3	-0.2	23
17.3	20	1.9	1.5	1.7	0.2	2.7	-1.0	23
18.2	21	2.9	2.7	2.8	0.2	2.7	0.1	23
19.1	22	2.2	2.5	2.4	0.2	1.8	0.6	23
19.9	23	1.8	2.0	1.9	0.1	2.7	-0.8	23
20.8	24	1.9	1.8	1.8	0.1	2.8	-1.0	23
21.7	25	2.6	1.9	2.2	0.5	2.1	0.1	23
26.0	30	3.1	3.0	3.1	0.0	2.5	0.6	23
30.3	35	2.7	2.5	2.6	0.2	2.8	-0.2	23
34.6	40	2.8	3.0	2.9	0.1	2.1	0.8	23
39.0	45	2.5	2.2	2.4	0.2	2.7	-0.3	23
43.3	50	3.6	3.3	3.5	0.2	2.9	0.6	23
47.6	55	2.9	2.8	2.9	0.0	3.4	-0.5	23
52.0	60	2.7	2.6	2.7	0.0	2.9	-0.2	23
56.3	65	3.7	3.7	3.7	0.0	3.5	0.2	23
60.6	70	1.3	1.6	1.5	0.2	1.9	-0.4	23
65.0	75	3.8	4.6	4.2	0.5	4.3	-0.1	23
69.3	80	4.3	3.8	4.0	0.3	4.5	-0.4	23

Table D-3 VZ-3 Soil-Moisture Monitoring Results April and October 2014

		Collectio	n Period				Difference	
		20	14				between	
							Baseline	0 "
Vertical Depth	Linear					Baseline	Average &	Soil- Moisture
Below	Depth	Apr	Oct	2014 Average		Average (2004-2006)	2014 Average	Trigger
Top of	Along					,		Level
Casing	Casing		Soil-Moisture		2014		oisture	(% content
(ft)	(ft)	`	ntent by vo	<u> </u>	Std Dev	`	by volume)	by volume)
73.6	85	3.3	3.2	3.3	0.1	3.5	-0.2	23
77.9	90	1.9	1.8	1.8	0.0	1.9	-0.1	23
82.3	95	3.5	3.7	3.6	0.1	3.3	0.3	23
86.6	100	3.9	4.0	4.0	0.1	3.4	0.6	23
90.9	105	3.2	3.1	3.1	0.0	3.3	-0.2	NA
95.3	110	3.5	4.3	3.9	0.6	4.7	-0.8	NA
99.6	115	2.9	3.6	3.3	0.5	3.6	-0.3	NA
103.9	120	2.2	2.3	2.2	0.1	2.1	0.1	NA
108.3	125	3.3	3.0	3.1	0.3	1.8	1.3	NA
112.6	130	3.6	4.0	3.8	0.3	4.3	-0.5	NA
116.9	135	2.9	4.1	3.5	8.0	4.0	-0.5	NA
121.2	140	2.3	2.4	2.3	0.1	2.3	0.0	NA
125.6	145	5.2	2.0	3.6	2.2	2.0	1.6	NA
129.9	150	6.9	5.2	6.0	1.2	4.4	1.6	NA
134.2	155	4.1	3.5	3.8	0.4	3.6	0.2	NA
138.6	160	5.3	4.7	5.0	0.4	4.4	0.6	NA
142.9	165	4.7	4.9	4.8	0.2	5.2	-0.4	NA
147.2	170	4.9	4.3	4.6	0.5	4.1	0.5	NA
151.6	175	2.9	4.5	3.7	1.1	4.3	-0.6	NA
155.9	180	5.7	6.7	6.2	0.7	6.6	-0.4	NA
160.2	185	5.8	6.4	6.1	0.4	5.6	0.5	NA
164.5	190	2.8	2.6	2.7	0.2	2.7	0.0	NA
168.9	195	3.0	2.9	2.9	0.1	3.1	-0.2	NA
173.2	200	3.3	3.6	3.5	0.3	4.1	-0.6	NA
	Average	2.9	3.2	3.2	Average	3.2		

Note: Shaded area represents depths where 23-percent soil moisture trigger applies.

Std Dev = Standard deviation.

NA = Not applicable

# **ANNEX E**

# Mixed Waste Landfill Groundwater Monitoring Forms and Reports

**April 2014-March 2015** 

**Field Forms** 

**Data Validation Reports** 

**Contract Verification Reports** 

# FIELD SAMPLING FORMS

# MWL LONG-TERM MONITORING AND MAINTENANCE GROUNDWATER MONITORING

Form Title	Corresponding Procedure
Tailgate Safety Briefing	PLA 05-09
Groundwater Sample Collection Field Equipment Check Log	FOP 05-02
Portable Pump and Tubing/Water Level Indicator Decontamination Log Form	FOP 05-03
Field Measurement Log For Groundwater Sample Collection	FOP 05-01
Analysis Request and Chain of Custody*	LOP 94-03

^{*}Completed AR/COC forms are provided in the Data Validation Section of this Annex.

# FIELD SAMPLING FORMS APRIL 2014 GROUNDWATER MONITORING

Dept: 4142 Well Location: MWL-BW	2 Date: 4/21/14 Time: 0750
Activities: GROUNDWATER MONITORING AND SAM (Anyone has the right to cease field activities for sa	MPLING fety concerns. The buddy system will be used when needed.)
• •	Humidity: 34.3 % Wind Chill MA °F 4/24/14
Chemicals Used: <u>Acids in sample containers, standa</u> Other:	ard solutions, Ha <del>ch ACCU-VAC ampules T/</del>
 Safetv T	Opics Presented
☑ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	<ul> <li>☑ Be aware of environmental conditions         (heat / cold stress). Dress accordingly.         Wear sunscreen if necessary. Stay         hydrated.     </li> </ul>
Wear safety boots.	☑ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	⊠ Be aware of pressure hazards.
☑ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
M Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
■ Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
■ Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911
RoberTLynch	Attendees Signature
HLFRED SANTILLANES Printed Name	Albert Scholler
William bibson Printed Name	William J. Fills Signature
Printed Name	Signature
Printed Name	Signature

Dept: 4142 Well Location: MWL-MW	Date: 4/22/14 Time: 0800
Activities: GROUNDWATER MONITORING AND SAM (Anyone has the right to cease field activities for sa	MPLING  Ifety concerns. The buddy system will be used when needed.)
Weather Conditions: Tempt 1 9°F Wind Speed: MPH	Humidity: 30-2 % Wind Chill 77.9°F
Chemicals Used: Acids in sample containers, stand Other:	ard solutions, Hach ACCU VAC ampules 7/ 4/24/7
Serfets: 7	Topics Presented
⊠ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	Be aware of environmental conditions (heat / cold stress). Dress accordingly.  Wear sunscreen if necessary. Stay hydrated.
☑ Wear safety boots.	☑ Be aware of electrical hazards
© Use safe lifting practices. Wear leather gloves if necessary.	☐ Be aware of pressure hazards.
	☑ No eating or drinking at sampling counter.
Be aware of chemical hazards.	⊠ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	<ul><li>☑ Wear communication device (cell phone, EOC pager).</li></ul>
■ Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	
Robert Lynch	Attendees Hynn Signature
ALFRED SANTILLANES Printed Name	Signature Sulilo
William Gibson Printed Name	Signature & Dily
Printed Name	Signature
Drintad Mana	Circus haves

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

	ETT MEETING FORM
Dept: 4142 Well Location: MWL-MW9	Date: 4/23/14 Time 750
Activities: GROUNDWATER MONITORING AND SAM (Anyone has the right to cease field activities for safe	PLING fety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: 77.7°F Wind Speed: 45 MPH	Humidity: 22.7% Wind Chill <u>M4</u> °F
Chemicals Used: <u>Acids in sample containers, standa</u> Other:	ard solutions, Hach ACCU VAC ampules 7 4/24/19
Safety Te	opics Presented
☑ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	<ul> <li>☑ Be aware of environmental conditions (heat / cold stress). Dress accordingly.</li> <li>Wear sunscreen if necessary. Stay hydrated.</li> </ul>
☐ Wear safety boots.	
☑ Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.
☑ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
☑ Be aware of chemical hazards.	⊠ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	
Robert Lynch Printed Name William Gibson	Attendees Sold Jack Signadure William Wall
Printed Name  Printed Name  Printed Name	Signature Signature Signature
Printed Name	Signature
Printed Name	Signature

Dept: 4142 Well Location: MWL- MW 8	Date: 4/28/14 Time/150
Activities: GROUNDWATER MONITORING AND SAI (Anyone has the right to cease field activities for sa	
Weather Conditions: Temp: <u>57.5</u> °F Wind Speed: <u>10-15</u> MPH	Humidity: 32,9 % Wind Chill 54 °F
Chemicals Used: Acids in sample containers, stand Other:	ard solutions, Hach ACCU-VAC amputes 7/4/7777
Safetv I	Topics Presented
⊠ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	⊠ Be aware of environmental conditions     (heat / cold stress). Dress accordingly.     Wear sunscreen if necessary. Stay     hydrated.
☑ Wear safety boots.	⊠ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.
⊠ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
☑ Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
☑ Wear chemical safety goggles.	■ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone:	844-0911/911  Attendees
Printed Name  Lynch	Signature
William Glason Printed Name	Signature, Signature
Printed Name	Signature Signature
Printed Name	Signature
Printed Name	Signature

rinted Name
Signature
IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

Project Name: MWL - 1   1	Project No.: 146422.10.11.01
Well I.D.: MKW BW 2 4 12411	Date: 04/21/14
Well Condition: See Talkate 1	Weather Condition: See Thilsate
Method: Portable pump XDedi	cated pump Pump depth: 496'

# PURGE MEASUREMENTS

Depth to	Time 24	Vol.	Temp	SC	ORP	рН	Turbidity	DO	Comments
Water	hr	(L(gal))	(°C)	(μS/cm)	(mV)	•	(NTU)	(%)	TM/
(ft)	A @ ( )			10 /2 3-					what
471.75			_	74代于 -					
48221		5		***************************************	99.7	7,43	6,3°8	17.1	1.56
483.04		10		6341	113.3		0.66 0.36		2.10
48358	0924	15	20.63	646.0	119.0	7.47	0.36	39.8	2.04
483.94	0946	20	2(50	667.2	118.7	7,45	029	19.4	1.71
48428		25	21.89	681.1	115.8	7.43	0.22	15.8	1.38
48454	1027	30	21.99	688.7	111.3	7.42	0.25	13.7	1.15
484.71	1039	33	2231			7.42	0,29	12.4	1-07
484.80			22.41		112.6		0.19	11.8	1.09
48488			12,41	696.1		7.41	0.17		8.99
484.96		39	22.44	695.7	Un.D		6.20	11.0	0.95
	1106		SA	mpline					
**************************************			***************************************		Ò				1 444 44 44 44 44 44 44 44 44 44 44 44 4
						· ·			
					5	A Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Committee of the Comm			***************************************
		Marie Andrews							
				,					
								44	
									***************************************
	***************************************			144					1.6 4-21-14
									- \$ 80 gals purged
		######################################						·····	from Hubing
			*****************	**************************************	·	<i></i>			0821

Project Name: MWL			Project No.: 146422.10.	.11.01	
Well I.D.: MWL-MW 7	41211		Date: 04/22/14		
Well Condition: See	Twitouter	Inspection	Weather Condition:	Sec	Tailach
Method: Portable pump	1 47	· · · · · · · · · · · · · · · · · · ·	cated pump		Pump depth: <u>497'</u>

# **PURGE MEASUREMENTS**

,				g-an-angular-ag-anagular-ag-an-an-an-an-an-an-an-an-an-an-an-an-an-		·		<del>,</del>	***
Depth to	Time 24	Vol	Temp	SC	ORP	pН	Turbidity	DO	Comments
Water		(Legal)	(°C)	(µS/cm)	(mV)	htr	(NTU)	(%)	
	hr			(1-10)			` ′	` '	Dong/L
(ft)								<b></b>	10 3/6
489.92	D820		57	カパナ	<u> </u>	<u></u>		<b> </b>	
491.10	10110	a		5130	220 0	en / (1	1	7 C	· - 1
- 12 N X -			22.23		232.9	7.64		75.8	1
49132	+	. 4	21:18	560.8	2380	7.65	.15	74.1	6.57
491,44	0918			55611	236.4	7.64	162	72.1	6.44
491,49	0933	8	21,80	568.3	136.9	7.65	.45	72.7	6.37
491.46	0950	10	33.33	588.8	237.2	7.65	.34	73.5	6.28
491.43	0958		J3. <b>6</b> 3	***************************************	239.9			740	
49138	1008	12		5940	243,0	7.66	.27	74.4	
491.33		12	23.8B	594.4	246.0	7.66	, 26e	74.6	
	1018				,			_ , , ,	
	1010	erese and the second		mple	***************************************				
				•					
		•							
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				***************************************				
				***************************************	+ h4 h4d-4-h4h				
									, , , , , , , , , , , , , , , , , , ,
		***************************************	·						
				Avelen Av Av Av Av Av Av Av Av Av Av Av Av Av					
		The state of the s		The state of the s					·
Andrews and the second		The state of the s		The restrict of the restrict o			_	,	-1.6 gals DIwater
		Victor and Victor and							-1.6 gals DI water purged from tubing 0834
									1834
Ll	·	l	L			1			10001

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

Project Name: MWL	Project No.: 146422.10.11.01
11 O11 1:10 1:11 1:11 1:11 1:11 1:11 1:1	Date: 04/28/14
Well Condition: See Tarilatte Tappetion	Weather Condition: Jee Tailgate
· · · · · · · · · · · · · · · · · · ·	cated pump Pump depth: 497'

PURGE MEASUREMENTS

Time 24 hr	CY /Control			ORP	pН	Turbidity	DO	Comments
	(L/gal)	(°C)	(µS/cm)	(mV)	10.1 x	(NTU)	(%)	100 /
		L				~~~		Wmg/L
<u> </u>		57	TART					
0840	<u> </u>	16.08	489.6	1983	7.62	0.30	70.2	6.90
0850	\overline{a}	16.85	500.0	209.4	7.70	0.36	64.2	6.25
0859		17.36	507,2	214.9	1.72	0.50	4.6	5.90
0908	4	17,45	5084				59.5	5.69
0918	5	17.79	512.2	218.3	7.70	0.48	57.0	5,41
0927	6	17.78	574.5	2777	7.69	0.40	54.0	5112
0937	7	17.56	5/2.3	215.3	7.68	0.36	51.0	4.87
0948	8	18.13	5206	212.2	7.67	0.34	485	4.57
0958	9	18.30	525.			0.32	45,4	4.27
1007	10	18.36	527·0		•	0.31	42.7	4.00
1016	1/ -	18.35	528.1	7 <i>0</i> 0.7	7.66	0.23	40.0	3. <i>70</i>
017		51	amplin	<u>م</u>)
AN AN AN AN AN AN			1	0				
and a second								
					######################################	****		
			Windows Windows			***************************************	***************************************	· · · · · · · · · · · · · · · · · · ·
						\$444-0-0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		ALL CONTRACTOR OF THE CONTRACT
<u> </u>						nevree va n enggang annannnnnnnnnnnnnn		
			A TANAN	······································		***************************************	hása M masan ástifáta A b has	5,1,0,0
		**************************************				i		-1.60 alcourand
							•••••	from tubing
								0830
	0840 0850 0859 0908 0918 0927 0937 0948	0840 1 0850 2 0859 3 0408 4 0918 5 0927 6 0937 7 0948 8 0958 9 1007 10 1016 11	0840 16.08 0850 2 16.85 0859 3 17.36 0908 4 17.45 0918 5 17.79 0937 6 17.78 0937 7 17.56 0958 9 18.30 1007 10 18.36 1016 17 18.35	0840 16.08 489.6 0850 2 16.85 500.0 0859 3 17.36 507.2 0908 4 17.45 508.4 0918 5 17.79 512.2 0937 6 17.78 514.5 0937 7 17.56 512.3 0948 8 18.13 520.6 0958 9 18.30 525.1 1007 10 18.36 527.0 1016 17 18.35 528.1	0840 16.08 489.6 1983 0850 2 16.85 500.0 209.4 0859 3 17.36 507.2 214.9 0908 4 17.45 508.4 217.6 0918 5 17.79 512.2 218.3 0927 6 17.78 514.5 217.7 0937 7 17.56 512.3 215.3 0948 8 18.13 520.6 212.2 0958 9 18.30 525.1 209.2 1007 10 18.36 527.0 203.4 1016 11 18.35 528.1 202.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0840 16.08 489.6 198.3 7.62 0.30 0850 2 16.85 500.0 209.4 7.70 6.36 0859 3 17.36 507.2 214.9 1.72 0.50 0908 17.45 508.4 217.6 7.71 0.49 0918 5 17.79 512.2 218.3 7.70 0.48 0937 6 17.78 514.5 217.7 7.69 0.40 0937 7 17.56 512.3 215.3 7.68 0.36 0948 8 18.13 520.6 212.2 7.67 0.34 0958 9 18.30 525.1 209.2 7.66 0.32 0958 9 18.35 528.1 209.7 7.66 0.31	0840 16.08 489.6 1983 7.60 0.30 70.2 0850

Project Name: MWL	Project No.: 146422.10.11.01				
Well I.D.: MWL-MW 9	Date: 04/23/14				
Well Condition: See Faither Taggedian	Weather Condition: See Tailgatt				
Method: Portable pump X Dedi	cated pump Pump depth: 497'				

PURGE MEASUREMENTS

Depth to	Time 24	Vol.	Temp	SC	ORP	рН	Turbidity	DO	Comments
Water	hr	(Legal)	(°C)	(μS/cm)	(mV)	P	(NTU)	(%)	DA 1
(ft)			712	20.03					DOmg/L
491.78		-	STI						
493.44	-7	[23.64	582.8	391.8	7.51	0.24	53.0	4.53
493,80		<u>a</u>	23.50		210,4	7.58	0.29	41,9	
	0900		23.92	•	203.1	7.5%	0.32	<i>38</i> .3	3,23
494,35		4	24.32		198.8	7.57	6.34	<i>3</i> 5,4	3.00
494.67		5_	24.09	595,2	187.6	7.56	0.39	3 h O	2.40
494.95	0932	له ا	23,92	594.7	172.4	7.56	6.29	27.1	2.28
495,24	0941	<u> </u>	24.01	596.0	160.9	7.56	0.27	23,9	2.01
495.46			84.17	599.2	151.5	7.55	0,42	21,4	1.80
495,70	0959	9	24.75	599.7	1420	7.55	6.38	19.1	1.60
495,98	99018	10	239b	589.9	129.3	7.55	0.29	21.0	1.79
496.20	1016	(23.97	589.9	[30.0	7,55	0.41	20.0	57.1
	1017								
-									
-									
					٠				
					,			~	libable surged
									from tubing
									0827

GROUNDWATERS	SAMPLE COL	LECTION F.	IELD EQUIP	MENT CHEC	K LOG I	Page 1 of 2		
SNL/NM Project Name; MWL			SNL/NM Project No.: 146422.10.11.01					
Calibrations done by: R Lynch			Date: 4/21/14					
Make & Model: YS! EXO 1			" "/		1000000			
YSI 6820 Sonde (S/N) with DO	, Ec, pH, ORP, and	i temperature prob	es: 13C101167			_		
YSI 650 MDS (S/N): NA						_		
		рН С	alibration					
pH Calibrated to (std): 7.00			pH sloped to (s	std): 10.00				
Reference value:	4	1.00	7	7.00	1	0.00		
	Value	Temp	Value	Temp	Value	Тетр		
1. Time: 0646	4.01	19.7	7.00	19.7	10.00	19.7		
2. Time: 1329	4,02	20.2	7,00	20,3	9.99	20.2		
3. Time:								
4. Time.								
	Standard lot no 3AD782				3AD357			
Expiration date:	5/15		4/15					
		SC Ca	llibration					
Reference Value: 1225 uS	Standard Lot N	Jo.: 3AE221						
	Value	Temp	Expiration Date	e:	5/15			
1. Time: 0 6 4 8	1227	19.7	1 * 1 F		į į	14.		
2. Time: 3 3	1230	20.3						
3. Time:					li a			
4. Time.								
		ORP C	alibration					
Reference Value.	220 mV		Standard Lot No. 4AA010					
	Value	Temp	Expiration Date	ð:	7/14			
1. Time: 0647	220.1	19.7						
2. Time: 1330	220.4	20.l	11 11 11			ty jail		
3. Time:				th, hi	THE S			
4. Time.					1.11			
		DO Ca	libration `					
Calibration Value:	81% air satura	ition @ 5200 fl.		Atmospheric	Pressure in Hg			
1. Time: 06 45	0645 85.1			24.78				
2 Time: 13 28	86.	1	7	7.80				
3. Time:								
4. Time:								

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MW	Project No.:	Project No.: 146422,10.11.01				
Calibration done by: R Lynch		Date: 4	121/14			
	7	TURBIDIMETER				
Make & Model: HACH 210	00P HACH 2100Q	Serial No. 5	S/N 10080C003010			
Reference Value	25-10	20	100	800		
Standard Lot No.	0161	0167	0168	0161		
1. Time 0755	10.3	19.8	104	80[
2. Time 1149	10-1	20.2	105	796		
3. Time						
4. Time		***************************************				
Comments:						

GROUNDWATER	SAMPLE COI	LECTION	IELD EQUIP	VIENT CHEC	K LOG P	age 1 01 2			
SNL/NM Project Name: MWL			SNL/NM Project No.: 146422.10.11.01						
Calibrations done by: R Lynch			Date: 4/22/14						
Make & Model: YSI EXO 1									
YSI 6820 Sonde (S/N) with DC). Ec. pH. ORP. and	l temperature prob	es: 13C101167						
YSI 650 MDS (SAN): NA	, ,					-			
		рН С	alibration						
pH Calibrated το (std): 7.00		<u> </u>	pH sloped to (s	std): 10.00					
Reference value		.00		7.00	11	0.00			
100000000000000000000000000000000000000	Value	Temp	Value	Temp	Value	Temp			
1. Time: (0.237)	4.00	18.5	7.00_	18.9	10.01	19.0			
2. Time: 123	4.01	19.6	7.01	19.6	10.02	19.6			
3. Time:	1 1 1	1150		<u> </u>		- 114			
4. Time									
Standard lot no.:	Standard lot no.: 3AD782				3AE725 3AD357				
Expiration date:	4/15		5/15 4/15						
		SC Ca	libration						
Reference Value: 1225 uS	Standard Lot N	Jo.: 3AE221							
	Value	Temp	Expiration Date	e: —	5/15				
1. Time: 0/239	1224	19.0				0.00			
2. Time: 177 (1230	19.7				. II.			
3. Time:									
4. Time;									
		ORP C	alibration						
Reference Value	220 mV		Standard Lot No. 4AA010						
	Value	Temp	Expiration Date	÷.	7/14				
1. Time. 0638	219.9	19.(No.		lare en 1				
2. Time. 1122	220.4	19.6							
3. Time:									
4. Time:									
		DO Ca	libration						
Calibration Value: 81% air saturation @ 5200 ft.			Atmospheric Pressure in Hg						
1. Time: 1636	36 86.0			24.73					
2. Time 1/20	86.3	>	24	.74					
3. Time									
4. Time:									

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

LTS GW-2012-002 (11-2012) FOP 05-02

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWI	L	Project No.	Project No.: 145422.10.11.01				
Calibration done by: R Lynch		Date: 4	Date: 4/22/14				
		TURBIDIMETER					
Make & Model: HACH 210	0P HACH 2100Q	Serial No.	S/N 10060C003010				
Reference Value	27/0	20	100	800			
Standard Lot No.	0161-	0167	0168	0161			
1. Time 0805	9.97	201	19,5	803			
2. Time 1037	9.95	20.4	99.1	8%			
3. Time							
4. Time	***************************************	7000000					
Comments:							
		,					
			-				

GROUNDWATERS	AMPLE COL	LECTION FI	ELD EQUIP	MENT CHECK	CLOG F	age 1 of 2		
SNL/NM Project Name: MWL			SNL/NM Project No.: 146422.10.11.01					
Calibrations done by: R Lynch		,	Date: 4/23/14					
Make & Model: YSI EXO 1				· · · · · · · · · · · · · · · · · · ·				
YSI 6820 Sande (S/N) with DO,	Ec, pH, ORP, and	temperature probe	s: 13C101167					
YSI 650 MDS (S/N): NA						_		
		pH Ca	libration	***************************************				
pH Calibrated to (std): 7,00			pH sloped to (s	std) 10.00				
Reference value:	4.	00		7,00		0.00		
	Value	Temp	Value	Temp	Value	Temp		
1, Time: 0642	3,991	19.4	7,00	19.4	10.01	19,4		
2. Time: 3/2	4.01	19.9	7.00	19,0	9.99	19.9		
3. Time:				****				
4. Time								
Standard lot no.:	3AD782	***************************************	3AE725		3AD357			
Expiration date:	4/15		5/15		4/15	-		
SC Calibration								
Reference Value. 1225 uS			Standard Lot N	a - 3AE221				
**************************************	Value	Temp	Expiration Dat		5/15			
I, Time: 06 41	าววล	14.3						
2, Time: 1311		19.9				1.0		
3. Time:	1336	1 14						
4. Time:								
× × × × × × × × × × × × × × × × × × ×		ORP Ca	libration					
Reference Value:	220 mV		Standard Lot No. 4AA010					
				-				
	Valne	Temp	Expiration Date	er e a de la companya	7/14	E-118 Harris Indiana		
1 Time: 0643	219.9	19.5						
2. Time: 1313	220.2	19.9			Localia Policia			
3. Time:		***************************************						
4. Time:								
		DO Cal	ibration					
Calibration Value:	Atmospheric Pressure in Hg							
1. Time 0640	861	2	24.50					
2. Time. 13[0	86,1		24.54					
3. Time:								
4. Time:		,						

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandta Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWL	Project No.:	Project No.: 148422.10.11.01				
Calibration done by: R Lynch	Date: ‡	, , , , , , , , , , , , , , , , , , , ,				
	Т	URBIDIMETER		Manufacture of the second seco		
Make & Model: HACH 2100	ор насн 2100Q	Serial No. S	Serial No. S/N 10060C003010			
Reference Value	SF 10	20	100	800		
Standard Lot-No.	0161	0167	0168	0161		
1. Time 0753	10.1	19.7	163	795		
2. Time 1036	10.3	19.8	99.8	793		
3. Time						
4. Time		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	•			
Comments:						
•						

GROUNDWATERS	SAMPLE COL	LECTIONFI	ELD EQUIP	VIENT CHEC	K LUG I	Page 1 of 2	
SNL/NM Project Name: MWL SNL/NM Project No.: 146422.10.11.01							
Calibrations done by: R Lynch	ibrations done by: R Lynch Date: 4/28//4						
Make & Model: YSI EXO 1	· ·		- 1				
YSI 6820 Sonde (S/N) with DO	, Ec, pH, ORP, and	temperature probe	es: 13C101167			_	
YSI 650 MDS (S/N): NA							
pH Calibration							
pH Calibrated to (std): 7.00			pH sloped to (s	std): 10.00	_		
Reference value:	4	00	7	7.00	1	0.00	
	Value	Temp	Value	Temp	Value	Temp	
1. Time: 0 652	3,99	18.8	6,99	18.8	10.00	18.8	
2. Time: 1302	4,02	19.2	7.00	19.3	0.00	19.3	
3. Time:							
4. Time:							
Standard lot no.:	3AD782		3AE725		3AD357		
Expiration date:	4/15		5/15		4/15		
		SC Ca	libration				
Reference Value 1225 uS			Standard Lot N	_{0.:} 3AE221			
	Value	Temp	Expiration Date		5/15		
1. Time: 0(05	1220	18.8		1171			
2. Time: 130/	1222	19.2					
3. Time:		· · · · · · · · · · · · · · · · · · ·					
4. Time:				, n			
		ORP Ca	== libration	·			
Reference Value:	220 mV		Standard Lot N	o. 4AA010			
	Value	Тетр	Expiration Date	2 .	7/14		
1. Time: 0653	219,7	18.8			Tanan		
2, Time: 1303	220.1	19.3					
3. Time:							
4. Time:					44		
·		DO Cal	libration				
Calibration Value:	81% air saturai	tion @ 5200 ft.	Atmospheric Pressure in Hg				
1. Time: 0650	81.	7	24.55				
2. Time. 1300	42,	42.0 24.57					
3. Time							
4 Time:							

IMPORTANT NOTICE: A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), department home page

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWI	Project No.:	Project No.: 146422.10.11.01					
Calibration done by: R Lynch	Date: 4	Date: 4/28/14					
	7	URBIDIMETER					
Make & Model: HACH 210	0P HACH 2100Q	Serial No. S	/N 10060C003010				
Reference Value	24/0	20	100	800			
Standard Lot No.	0161	0167	0168	0161			
1. Time 0759	10.2	19.0	103	797			
2. Time 1037	10.4	1916	101	799			
3. Time							
4. Time			-				
Comments;							
	,						
				·			
			•				
·							

Project Name: MWL	Monitoring Well ID # : NA		Date: 4/17/2014				
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03							
Pump and Tubing Bundle ID #: 1806-14	Water Level Indic	Water Level Indicator ID #: NA					
Personnel Performing Decontamination: Robert Lynch Print Name: Initial: Alfred Santillanes Print Name: Initial: Pump: New Tub	Robert Lynch Print Name:	Alfred Santillanes Print Name: Initial:					
,	List of Decontemination Materials						
Distilled or Deonized (circle Source: Culligan Lot Number: 31714	Grade: UN #: Manufacturer:	HNO ₃ Reagent 2031 Fisher Scientific A035803029					

Project Name: MWL-GWM	Monitoring Well ID # : MWL-BW2	-	Date: 04-21-14		
The following equipment was	s decontaminated at completion of sampling a	ctivities in accordance with FC	DP-05-03		
Pump and Tubing Bundle ID #: 1806-814	Water Level Indi	Water Level Indicator ID #: 210269			
Personnel Performing Decontamination: William Gibson Print Name; Alfred Santillanes Print Name: Initial:	William Gibson Print Name:	Print Name: Initial: Alfred Santillanes			
	Condition of Equipment				
Pump: Excellent Tub	ing Bundle: Excellent	_ Water Level Indicator: Go	ood		
	List of Decontamination Materials	;			
Distilled of Deonized (circle	e one)	HNO ₃			
		Reagent			
Source: Cullingn	UN #:	<u>2031</u>			
Lot Number: 4-3-14	Manufacturer:	AROC			
	Lot Number:	A0305629	,		

Project Name: MWL-GWM	Monitoring Well ID # : MWL-MW7	Date: 4-22-14					
The following equipment was	The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03						
Pump and Tubing Bundle ID #: 1806-814	Water Level Ind	Water Level Indicator ID #: 210269					
Personnel Performing Decontamination:	Personnel Perform	ming Decontamination:					
Robert Lynch Print Name: Initial:	Robert Lynch Print Name:		irial:				
William Gibson	William Gibson	$\mathcal{A}_{\alpha}Q$					
Print Name: Initial:	Print Name:						
	Condition of Equipment						
Pump: Excellent Tub	ing Bundle: Excellent	Water Level Indicator: Good					
	List of Decontamination Material	s					
Distilled or Deonized (circle	e one)	HNO ₃					
Distinct Of Doublet (Onco.	Grade	Reagent					
Source: Culligan	UN #	2031					
Lot Number: 4-3-14	Manufacturer	: AROC					
	Lot Number	A0305629	·				

Project Name: MWL-GWM Monitoring Well ID #:	MWI-MW9 Date: 04/24/14					
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03						
Pump and Tubing Bundle ID #: 1806-814	Water Level Indicator ID #: 210269					
Personnel Performing Decontamination: William Gibson Print Name: Alfred Santillanes Print Name: Initial:	Personnel Performing Decontamination: William Gibson Print Name: Alfred Santillanes Print Name: Initial:					
Condition	of Equipment					
Pump: Excellent Tubing Bundle: Excellent	Water Level Indicator: Good					
List of Decont	amination Materials					
Distilled or Deonized (circle one)	HNO ₃					
Distinct of Decimed (choic one)	Grade: Reagent					
Source: Culligan	UN #: 2031					
Lot Number: 4-3-14	Manufacturer: AROC					
	Lot Number: A0305629					


Project Name: MWL-GWM	Monitoring Well ID # : MWL-MW8	Date: 04-28-14				
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03						
Pump and Tubing Bundle ID #: 1806-814	Water Level Indi	Water Level Indicator ID #: 210269				
Personnel Performing Decontamination: Robert Lynch Print Name: Alfred Santillanes Print Name: Initial:	Robert Lynch Print Name: Alfred Santillane	Print Name: Alfred Santillanes Print Name: Initial:				
Pump: Excellent Tub	oing Bundle: Excellent	Water Level Indicator: Good				
	List of Decontamination Materials	s .				
Distilled or Deonized (circl	le one)	HNO ₃				
·		Reagent				
Source: Culligan	UN #:	2031				
Lot Number: 04/574	Manufacturer:	: AROC				
	Lot Number:	: A03035629				

SUMMARY SHEET FOR APRIL 2014 SAMPLES

Sample Summary for April 2014 MWL Groundwater Monitoring

Well ID	Sample Date	ARCOC	Sample Number	Sample Type	Associated Equipment Blank (ARCOC #/Sample #)	Associated Trip Blank (ARCOC #/ Sample #)	Associated Field Blank (ARCOC # / Sample #)	Comments
GEL Analytic	GEL Analytical Data: Project Task # 146422.10.11.01, Service Order # CF01-14							
MWL-BW2	21-Apr-14	615443	095811	Environmental	615442 / 095808	615443 / 095813	615443 / 095810	
MWL-BW2	21-Apr-14	615443	095812	Duplicate	615442 / 095808	615443 / 095813	615443 / 095810	
MWL-MW7	22-Apr-14	615444	095815	Environmental	NA	615444 / 095816	615444 / 095814	
MWL-MW8	28-Apr-14	615446	095821	Environmental	NA	615446 / 095822	615446 / 095820	
MWL-MW9	23-Apr-14	615445	095818	Environmental	NA	615445 / 095819	615445 / 095817	
MWL-EB1	17-Apr-14	615442	095808	Equipment Blank	NA	615442 / 095809	NA	Equipment blank sample prior to MWL-BW2.
MWL-FB1	17-Apr-14	615442	095807	Field QC	NA	615442 / 095809	NA	DI Water Source
MWL-FB2	21-Apr-14	615443	095810	Field Blank	NA	615443 / 095813	NA	at MWL-BW2
MWL-FB3	22-Apr-14	615444	095814	Field Blank	NA	615444 / 095816	NA	at MWL-MW7
MWL-FB4	23-Apr-14	615445	095817	Field Blank	NA	615445 / 095819	NA	at MWL-MW9
MWL-FB5	28-Apr-14	615446	095820	Field Blank	NA	615446 / 095822	NA	at MWL-MW8

DATA VALIDATION REPORTS FOR ENVIRONMENTAL SAMPLES GROUNDWATER MONITORING APRIL 2014

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: June 5, 2014

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL GWM AR/COC: 615442 SDG: 346998 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as follows. The ICAL %RSDs were >15% but <40% for bromoform and acetone. The associated sample results were NDs and since no other calibration infractions occurred, will not be qualified.

The ICV or CCV %Ds were >20% with positive bias for 2-butanone and carbon tetrachloride. All associated sample results were NDs and will not be qualified.

Blanks

No target analytes were detected in the blanks except as follows. Bromodichloromethane and dibromochloromethane were detected at <the PQL and chloroform at > the PQL in the FB, sample 346998001. No samples were associated with this FB and, therefore, no data were qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS/MSD was not associated with the samples in this SDG.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD)

All LCS/LCSD acceptance criteria were met for accuracy and precision.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

A TB was submitted with AR/COC 615442. A FB was submitted with AR/COC 615442 but was not associated with any samples. An EB was submitted with AR/COC 615442 and was associated with samples on AR/COC 615443.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/10/14

www.againc.net

Memorandum

Date: June 5, 2014

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL GWM AR/COC: 615442 SDG: 346998 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as follows. The ICAL %RSDs were >15% but ≤40% for bromoform and acetone. The associated sample results were NDs and since no other calibration infractions occurred, will not be qualified.

The ICV or CCV %Ds were >20% with positive bias for 2-butanone and carbon tetrachloride. All associated sample results were NDs and will not be qualified.

Blanks

No target analytes were detected in the blanks except as follows. Bromodichloromethane and dibromochloromethane were detected at <the PQL and chloroform at > the PQL in the FB, sample 346998001. No samples were associated with this FB and, therefore, no data were qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS/MSD was not associated with the samples in this SDG.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD)

All LCS/LCSD acceptance criteria were met for accuracy and precision.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

A TB was submitted with AR/COC 615442. A FB was submitted with AR/COC 615442 but was not associated with any samples. An EB was submitted with AR/COC 615442 and was associated with samples on AR/COC 615443.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/10/14

www.againc.net

Memorandum

Date: June 5, 2014

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL GWM AR/COC: 615442 SDG: 346998 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec – short list), SM 7500 Rn B (radon-222), EPA 906.0 (tritium) and EPA 900.0 (gross alpha/beta). Problems were identified with the data package that resulted in the qualification of data.

All analyses:

1. All sample results which were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.**

Radon-222:

1. The sample was analyzed >1X but ≤2X past the method-specified holding time. The associated sample result was < the associated 2-sigma TPU and < the associated MDA and will be **qualified J,H1**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was properly preserved and prepared and analyzed within the prescribed holding time except as noted above in the Summary section.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracers or carriers were not required for these methods.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met all QC acceptance criteria.

Gross alpha/beta and tritium:

The MS and/or MSD were performed on SNL samples of similar matrix from other SDGs.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Gross alpha/beta and tritium:

The replicate analyses were performed on SNL samples of similar matrix from other SDGs.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD)

All LCS and/or LCSD recoveries met QC acceptance criteria.

Detection Limits/Dilutions

The sample was not diluted. All required detection limits were met.

Other QC

The EB submitted with AR/COC 615442 was associated with samples on AR/COC 615443.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/10/14

Sample Findings Summary

AR/COC: 615442 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 900.0/SW846 9310			
	095808-034/MWL-EB1	ALPHA (12587-46-1)	BD, FR3
	095808-034/MWL-EB1	BETA (12587-47-2)	BD, FR3
EPA 901.1			
	095808-033/MWL-EB1	Americium-241 (14596-10-2)	BD, FR3
	095808-033/MWL-EB1	Cesium-137 (10045-97-3)	BD, FR3
	095808-033/MWL-EB1	Cobalt-60 (10198-40-0)	BD, FR3
	095808-033/MWL-EB1	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	095808-036/MWL-EB1	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	095808-040/MWL-EB1	Radon-222 (14859-67-7)	BD, FR3,H1

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615442 Site/Project: MWL GWM Validation Date: 06/05/2014

SDG #: 346998 Laboratory: GEL Validator: Linda Thal

Matrix: Aqueous # of Samples: 8 CVR present: Yes Analysis Type: X□ Organic X□ Metals

 $AR/COC(s) \ present: Yes \\ Sample \ Container \ Integrity: OK \\ X \square \ Rad \ X \square \ Gen \ Chem$

	Requested Analyses Not Reported													
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments								
None														

Hold Time/Preservation Outliers													
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT					
095808-040	346998007	SM 7500 Rn B	√	4/17/14 9.20	4/21/14 18.39	4/21/14 18.39	Yes	No					

Comments: Sampled 04/17/2014. A FB was submitted with AR/COC 615442 but was not associated with any samples. An EB was submitted with AR/COC 615442 and was associated with samples on AR/COC 615443. As per an email included with AR/COC 615443+, the task # for 615442 was changed to 146422.10.11.08.

Validated by: X Mal

Organic Worksheet (GC/MS)

AR/COC #: 615442 SDG #: 346998 Matrix: Aqueous

Laboratory Sample IDs: 346998001, -002, -008

Method/Batch #s: 8260B: 1383023 Tuning (pass/fail): Pass TICs Required? (yes/no): No

		Calibr	ration			5X				LCS/			
Analyte (outliers)	Int.	RF	RSD/ R ²	(ICV) CCV %D	Method Blank	(10X) MB	LCS %R	MS %R	MSD %R	LCSD RPD	FB -001	TB -008	
Bromodichloromethane	NA	✓	✓	✓	✓	NA	✓	NA	NA	✓	.77J	✓	
Chloroform	NA	✓	✓	✓	✓	NA	✓	NA	NA	✓	3.67	✓	
Dibromochloromethane	NA	✓	✓	✓	✓	NA	✓	NA	NA	✓	.42J	✓	
Acetone	NA	✓	16	✓	✓	NA	✓	NA	NA	✓	✓	✓	
Bromoform	NA	✓	21	✓	✓	NA	✓	NA	NA	✓	✓	✓	
2-Butanone	NA	✓	✓	(+21)	✓	NA	✓	NA	NA	✓	✓	✓	
Carbon tetrachloride	NA	✓	✓	+23	✓	NA	✓	NA	NA	✓	✓	✓	
		A/ D			Recovery	Outliers				0/ D			
Sample ID Surrogate		% Reco	very	S	ample ID		Surr	ogate		% Reco	overy		
None													
				IS	Outliers								
Sample ID Area RT	A	rea	RT	Area	R'	Γ	Area	RT		Area	RT	Area	RT
None													

Comments: HTs OK: ICAL VOA4.I 03/29/2014. Samples are an EB, FB and TB – no MS/MSD. LCS/LCSD

Inorganic Metals Worksheet

AR/COC #: 615442 SDG #: 346998 Matrix: Aqueous

Laboratory Sample IDs: 346998003

Method/Batch #s: **3005A/6020**: 1381779/1381781

ICPMS Mass Cal (pass/fail): Pass ICPMS Resolution (pass/fail): Pass

Analyte	Method		5X Blank or	LCS	MS	Lab	Serial	ICS	ICS A ± MDL	CRA							
(outliers)	Int.	\mathbb{R}^2	ICV	CCV	ICB ug/L	CCB ug/L	Blank mg/L	(5X MDL) mg/L	%R %R	%R	Rep. RPD	Dil. %D	AB %R	ug/L x50 (mg/L)	CRI %R		
None																	

	IS Outliers	60-125%		IS Outliers 80-120%							
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID %Recovery %Recovery %Recovery							
None											

Comments: HTs OK. Matrix QC on -003 and an SNL sample from another SDG

Radiochemistry Worksheet

AR/COC #: 615442 SDG #: 346998 Matrix: Aqueous

Laboratory Sample IDs: 346998 – see below

Method/Batch#s: EPA 901.1 (Gammaspec): 1381294; -004

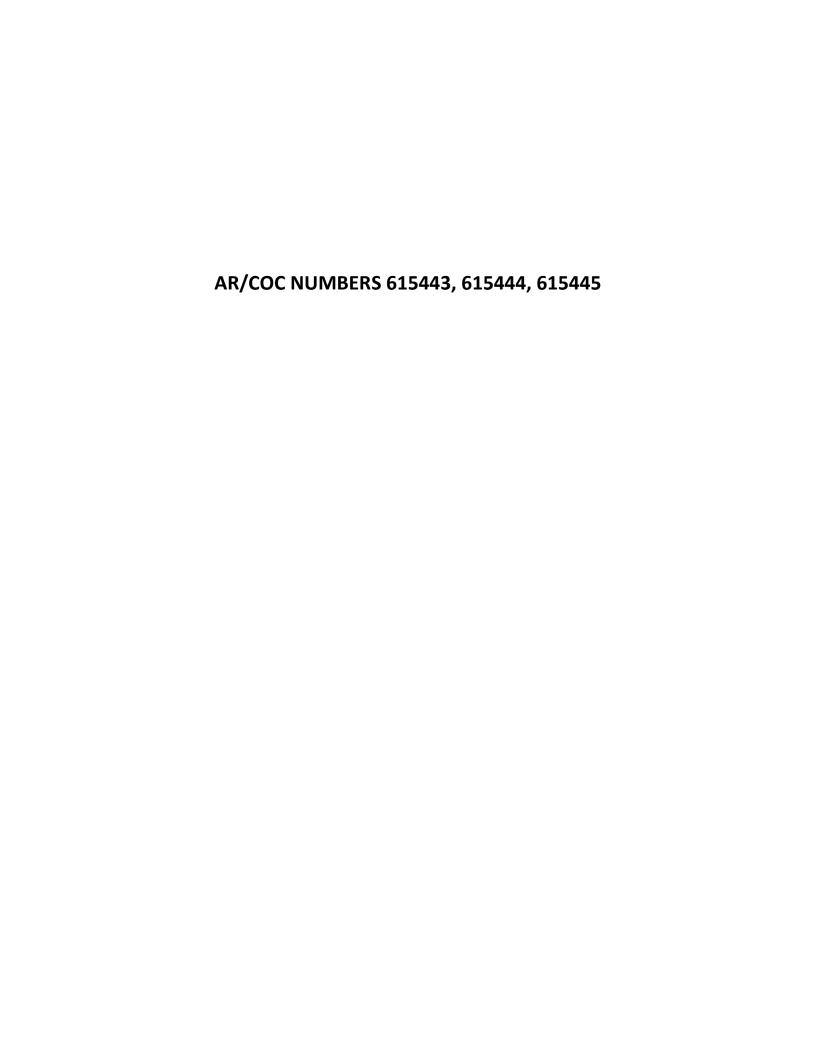
Method/Batch#s: EPA 900.0/SW846 9310 (Gross alpha/beta): 1380009; -005

Method/Batch#s: SM 7500 Rn B (Radon-222): 1381253; -007

Method/Batch#s: EPA 906.0 (Tritium): 1383645; -006

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	I	MS/ MSD RER	Lab Rep. RER	EB			
None														
				Tracer/C	Carrier Re	covery Ou	tliers							
Sample ID	Tracer/Ca	arrier %l	R	Sample ID)	Tracer/	Carrier	%R		Sample	ID	Trac	cer/Carrier	%R
NA														

Comments: HTs OK except for Radon-222.


Sample is a field QC (EB). GS and Rn-222 – LCS/D, Gross A/B MS/MSD and DUP and tritium MS and DUP on SNL samples from another SDG,

Gross A/B parent =200ml, MS/MSD = 25ml (8X dilution with water) – since the sample is an EB (water) no data were qualified based on professional judgment.

Data rejected by the lab due to peak not meeting identification criteria: none

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab												_	Page	_1_ of _1_
Batch No.				SMO Us	e				^			AR/COC	615	5442
Project Name	:	MWL GWM	Date Samples Shippe	ed: 4/	17/15		SMO AL	thorization:	Don	Welson	~	Waste Characterization		
Project/Task I	Manager:	Tim Jackson	Carrier/Waybill No.	2.17	546	Text let	SMO Co	ontact Phone	:			RMMA		
Project/Task	Number:	146422.10.11.01	Lab Contact:		nt/803-556-	8171		Lorraine F	Herrera/505	5-844-3199		Released by COC No.		
Service Order		CF01-14	Lab Destination:	GEL	e alesta in		Send Re	eport to SMC):				4	° Celsius
			Contract No.:	PO 1303	3873	1		Rita Kava	naugh/505	5-284-2553		Bill to:Sandia National Laboratories	(Accoun	ts Pavable).
Tech Area:												P.O. Box 5800, MS-0154	• • • • • • • • • • • • • • • • • • • •	
Building:		Room:	Operational Site:									Albuquerque, NM 87185-0154	3	34699
Dunung.		, com	Dept	h Da	te/Time	Sample	Co	ontainer	Drocon/-	Collection	Sample	Parameter & Method	Ť	Lab
Sample No.	Fraction	Sample Location D			llected	Matrix	Туре	Volume	ative	Method	Type	Requested		Sample ID
		i i i i i i i i i i i i i i i i i i i										·		
095807	-001	MWL-FB1	NA	4/17/14	9:14	DIW	G	3x40 ml	HCL	G	FB	VOC (SW846-8260B) (LTMMF	List)	001
095808	-001	MWL-EB1	NA	4/17/14	9:14	DIW	G	3x40 ml	HCL	G	EB	VOC (SW846-8260B) (LTMMF	² List)	002
095808	-009	MWL-EB1	NA	4/17/14	9:15	DIW	Р	500 ml	HNO3	G	EB	Metals Cd,Cr,Ni,U (SW846-60	20)	003
095808	-033	MWL-EB1	NA	4/17/14	9:16	DIW	Р	1 L	HNO3	G	EB	Gamma Spectroscopy (EPA 9	01.0)	004
095808	-034	MWL-EB1	NA	4/17/14	9:17	DIW	Р	1 L	HNO3	G	EB	Gross Alpha and Beta (EPA 9	00.0)	005
095808	-036	MWL-EB1	NA	4/17/14	9:18	DIW	AG	250 ml	None	G	EB	Tritium (EPA 906.0)		006
095808	-040	MWL-EB1	NA	4/17/14	9:20	DIW	AG	2x40 ml	None	G	EB	Radon (SM 7500 Rn B)		007
095809	-001	MWL-TB1	NA	4/17/14	9:14	DIW	G	3x40 ml	HCL	G	ТВ	VOC (SW846-8260B) (LTMMF	² List)	800
Last Chain		Yes	Samp	le Tracking		SMC	Use	Special Ins	structions	/QC Requir	ements:		Condi	itions on
Validation	Rea'd:	✓ Yes	Date I	Entered:				EDD		✓ Yes		No	Re	ceipt
Backgroun		Yes	Enter	ed by:	Bury Dr.	1000	194	Turnaroun	d Time	7 Da	v*	15 Day* ✓ 30 Day		
Confirmato		Yes	QC in	its.:		10.7.03		Negotiated	TAT					
Sample		Name Signa	ture Init.	Comr	any/Organiza	ation/Phor	ne/Cell	Sample Di		Retur	n to Client	Disposal by Lab		
Team	William	V1 11 11	6.10 700		2/505-284-33	-		Return Sa	GIA BOOK TO STATE OF THE STATE			,		
Members	to the second discountry.	antillanes Heal S	V-VVI VAIA	V .	2/505-844-51			Comments			Tim Jackson	n/4142/MS 0729/284-2547		
Mellipers	Robert L				2/505-844-40			_				provided by SNL/NM SMO).		
	Robert	yildi Faul Give	ch PC	ONLATIA	2/303-044-40	713/303-20	00-7030			pes for Gan				
							_	-		5	•		10	b Use
4 Delineudele	d b	DA 10 +0-	Org. 4/4 2 Da	10 2/ /10	Less Times 4	1 /20=	2 Dalin	nuished by			0	. Date	Time	U USE
1.Relinquished		Had Still		ate 4///	//4/ Time 1	1305	_	quished by			Org.			
1. Received I	100	and aropen		., .	//-	,		eived by			Org.		Time	
2.Relinquishe	/	marin drawn	0-1-1	te 4/17		1100		quished by			Org.		Time	
2. Received I	ру	Mutilm	Org. Cel Da	te 7 78-	14 Time 6	0720	4. Rece	eived by			Org.	. Date	Time	

www.againc.net

Memorandum

Date: June 6, 2014

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL GWM

AR/COC: 615443, 615444 and 615445

SDG: 347170 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Ten samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The ICAL intercept was negative and > the MDL but ≤3X the MDL for dichlorodifluoromethane. The associated sample results were NDs and will be **qualified UJ,15**.
- 2. The ICAL, ICV and CCV RFs were <0.05 but ≥0.01 for 2-butanone. The associated sample results were NDs and will be **qualified UJ,14**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows. The ICAL %RSD was >15% but $\le 40\%$ for bromoform. The associated sample results were NDs and since no other calibration infraction occurred, will not be qualified.

The ICV/CCV %Ds were >20% with positive bias for dichlorodifluoromethane. The associated sample results were NDs and will not be qualified.

Blanks

No target analytes were detected in the blanks except as follows. Bromodichloromethane was detected at < the PQL and chloroform at > the PQL in the EB, sample 346998002 and the FBs, samples 347170001, - 015 and -023. Dibromochloromethane was detected at < the PQL in the EB, sample 346998002 and the FB, sample 347170023. All associated sample results were NDs and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Three TBs and three FBs were submitted, one for each AR/COC. An EB was submitted with AR/COC 615442 and was associated with the samples on AR/COC 615443. A field duplicate pair was submitted with AR/COC 615443. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/10/14

www.againc.net

Memorandum

Date: June 6, 2014

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL GWM

AR/COC: 615443, 615444 and 615445

SDG: 347170 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

Four samples were prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

1. Ni was detected at < the PQL in the EB, sample 346998003. The associated results for samples 347170003 and -009 were detects < 5X the EB value and will be **qualified 0.0028U,B2** at 5X the EB value.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding time and properly preserved.

ICP-MS Instrument Tune

The ICP-MS tunes met QC acceptance criteria.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Reporting Limit Verification

All CRI recoveries met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations of Ca, Mg, Fe and Al were < those in the ICS solution.

ICP Serial Dilution


The serial dilution met all QC acceptance criteria.

Other QC

The EB submitted with AR/COC 615442 was associated with samples on AR/COC 615443. A field duplicate pair was submitted with AR/COC 615443. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/10/14

www.againc.net

Memorandum

Date: June 6, 2014

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL GWM

AR/COC: 615443, 615444 and 615445

SDG: 347170 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

Four samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec – short list), SM 7500 Rn B (Radon-222), EPA 906.0 (tritium) and EPA 900.0 (gross alpha/beta). Problems were identified with the data package that resulted in the qualification of data.

Gammaspec and tritium:

1. All sample results which were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.**

Gamma Spec:

1. The K-40 result for sample 347170010 was rejected by the laboratory due to the peak not meeting identification criteria and will be **qualified R,Z2**.

Radon-222:

- 1. Sample -021 was analyzed >1X but \leq 2X past the method specified holding time and will be **qualified J,H1**.
- 2. Sample -021 was > the MDA but \leq 3X the MDA and will be **qualified J,FR7.**

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were properly preserved and prepared and analyzed within the prescribed holding time except as noted above in the Summary section and as follows. Samples -004, -005, -010 and -011 were received at the laboratory with a pH of 3.0 and were further acidified by the laboratory.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU except as follows.

Gammaspec:

K-40 was detected in the MB at a concentration > the MDA and 2-sigma TPU. K-40 was not detected in the associated sample results or was rejected by the laboratory and, therefore, no data will be qualified.

Tracer/Carrier Recovery

Tracers or carriers were not required for these methods.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met all QC acceptance criteria.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Laboratory Control Sample (LCS)

All LCS recoveries met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met except as follows.

Gammaspec:

The Am-241 RDL was < the MDA for sample -010.

Other QC

The EB submitted with AR/COC 615442 was associated with samples on AR/COC 615443. A field duplicate pair was submitted with AR/COC 615443. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/10/14

Sample Findings Summary

AR/COC: 615443, 615444, 615445

Page 1 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 901.1			
	095811-033/MWL-BW2	Americium-241 (14596-10-2)	BD, FR3
	095811-033/MWL-BW2	Cesium-137 (10045-97-3)	BD, FR3
	095811-033/MWL-BW2	Cobalt-60 (10198-40-0)	BD, FR3
	095811-033/MWL-BW2	Potassium-40 (13966-00-2)	BD, FR3
	095812-033/MWL-BW2	Americium-241 (14596-10-2)	BD, FR3
	095812-033/MWL-BW2	Cesium-137 (10045-97-3)	BD, FR3
	095812-033/MWL-BW2	Cobalt-60 (10198-40-0)	BD, FR3
	095812-033/MWL-BW2	Potassium-40 (13966-00-2)	R, Z2
	095815-033/MWL-MW7	Americium-241 (14596-10-2)	BD, FR3
	095815-033/MWL-MW7	Cesium-137 (10045-97-3)	BD, FR3
	095815-033/MWL-MW7	Cobalt-60 (10198-40-0)	BD, FR3
	095815-033/MWL-MW7	Potassium-40 (13966-00-2)	BD, FR3
	095818-033/MWL-MW9	Americium-241 (14596-10-2)	BD, FR3
	095818-033/MWL-MW9	Cesium-137 (10045-97-3)	BD, FR3
	095818-033/MWL-MW9	Cobalt-60 (10198-40-0)	BD, FR3
	095818-033/MWL-MW9	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	095811-036/MWL-BW2	Tritium (10028-17-8)	BD, FR3
	095812-036/MWL-BW2	Tritium (10028-17-8)	BD, FR3
	095815-036/MWL-MW7	Tritium (10028-17-8)	BD, FR3
	095818-036/MWL-MW9	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	095815-040/MWL-MW7	Radon-222 (14859-67-7)	J, FR7,H1
SW846 3005/6020 DOE-AL	095811-009/MWL-BW2	Nickel (7440-02-0)	0.0028U, B2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	095812-009/MWL-BW2	Nickel (7440-02-0)	0.0028U, B2
SW846 8260B DOE-AL			
	095810-001/MWL-FB2	2-Butanone (78-93-3)	UJ, 14
	095810-001/MWL-FB2	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095811-001/MWL-BW2	2-Butanone (78-93-3)	UJ, 14
	095811-001/MWL-BW2	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095812-001/MWL-BW2	2-Butanone (78-93-3)	UJ, 14
	095812-001/MWL-BW2	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095813-001/MWL-TB2	2-Butanone (78-93-3)	UJ, 14
	095813-001/MWL-TB2	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095814-001/MWL-FB3	2-Butanone (78-93-3)	UJ, 14
	095814-001/MWL-FB3	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095815-001/MWL-MW7	2-Butanone (78-93-3)	UJ, 14
	095815-001/MWL-MW7	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095816-001/MWL-TB3	2-Butanone (78-93-3)	UJ, 14
	095816-001/MWL-TB3	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095817-001/MWL-FB4	2-Butanone (78-93-3)	UJ, 14
	095817-001/MWL-FB4	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095818-001/MWL-MW9	2-Butanone (78-93-3)	UJ, 14
	095818-001/MWL-MW9	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095819-001/MWL-TB4	2-Butanone (78-93-3)	UJ, 14
	095819-001/MWL-TB4	Dichlorodifluoromethane (75-71-8)	UJ, 15

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615443, 615444 and 615445 Site/Project: MWL GWM Validation Date: 06/06/2014

SDG #: 347170 Laboratory: GEL Validator: Linda Thal

Matrix: Aqueous # of Samples: 30 CVR present: Yes Analysis Type: X□ Organic X□ Metals

 $AR/COC(s) \ present: Yes \\ Sample \ Container \ Integrity: OK \\ X \square \ Rad \ \square \ Gen \ Chem$

	Requested Analyses Not Reported													
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments								
None														

Hold Time/Preservation Outliers													
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT					
095815-040	347170021	SM 7500 Rn B	√	4/22/14 10.20	4/25/14 20.13	4/25/14 20.13	Yes	No					

Comments: Sampled 04/21 through 4/23/2014. An EB was submitted with AR/COC 615442 and was associated with samples on AR/COC 615443.

The case narrative states that samples -004, -005, -011 and -12 were acidified by the lab. According to the email conversation and SR&R form this should be samples -004, -005 -010 and -011.

Validated by: Revised 7/2007

Organic Worksheet (GC/MS)

AR/COC #: 615443, 615444 and 615445 SDG #: 347170 Matrix: Aqueous

Laboratory Sample IDs: 347170001, -002, -008, -014, -015, -016, -022, -023, -024, -030

Method/Batch #s: 8260B: 1384112 Tuning (pass/fail): Pass TICs Required? (yes/no): No

		Calib	ration			5X				MS/	EB			
Analyte (outliers)	Int.	RF	RSD/R	(ICV) CCV %D	МВ	(10X) MB	LCS %R	MS %R	MSD %R	MSD RPD	346998 002	FB 001	FB -015	FB -023
Bromodichloromethane	NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	.68J	.73J	.57J	.68J
Chloroform	NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	3.48	9.3	3.74	3.67
Dibromochloromethane	NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	.34J	✓	✓	.33J
Bromoform	NA	✓	22	✓	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
Dichlorodifluoromethane	54	NA	✓	(+36) +36 +48*	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
2-Butanone	NA	.036 .035 .037 .036*	√	√	✓	NA	✓	✓	~	✓	✓	√	✓	✓
trans-1,2-Dichloroethylene	NA	✓	✓	✓	✓	NA	78*	✓	✓	✓	✓	✓	✓	√
		<u> </u>	Su	rrogate R	ecovery O	utliers		L		<u>I</u>		l		<u> </u>
Sample ID														
None														
				IS (Outliers									
Sample ID Area	RT A	rea	RT	Area	RT		Area	RT		Area	RT	Ar	ea	RT
None														

Comments: HTs OK. ICAL VOA2.I 03/17/2014; Acetone, dichlorodifluoromethane, methylene chloride linear; TBs all ND

MS/MSD performed on -002 spiked with trichlorotrifluoroethane; *associated with MS/MSD only EB from AR/COC 615442

Inorganic Metals Worksheet

AR/COC #: 615443, 615444 and 615445 SDG #: 347170 Matrix: Aqueous

Laboratory Sample IDs: 347170003, -009, -017, -025 Method/Batch #s: **3005A/6020**: 1383587/1383588

ICPMS Mass Cal (pass/fail): Pass ICPMS Resolution (pass/fail): Pass

Analyte			Calil	bration			Method	5X Blank or	LCS	MS	Lab	Serial	ICS	ICS A ± MDL	CRA	EB	ЕВ	
(outliers)	Int.	\mathbb{R}^2	ICV	CCV	ICB ug/L	CCB ug/L	Blank mg/L	(5X MDL) mg/L	%R	%R	Rep. RPD	Dil. %D	AB %R	ug/L x50 (mg/L)	CRI %R	346998 003	X5	
Ni	✓	✓	✓	✓	✓	✓	✓	NA	✓	✓	✓	✓	NA	NA	✓	.00055J	.0028	
						/												

	IS Outliers	60-125%			IS Outliers	80-120%	
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery
None							

Comments: HTs OK. Matrix QC on -003, EB from AR/COC 615442

Radiochemistry Worksheet

AR/COC #: 615443, 615444 and 615445 SDG #: 347170 Matrix: Aqueous

Laboratory Sample IDs: 347170 – see below

Method/Batch#s: EPA 901.1 (Gammaspec): 1383276; -004, -010, -018, -026

Method/Batch#s: EPA 900.0/SW846 9310 (Gross alpha/beta): 1387206; -005, -011, -019, -027

Method/Batch#s: SM 7500 Rn B (Radon-222): 1382135; -007, -013 1382436; -021, -029

Method/Batch#s: EPA 906.0 (Tritium): 1383645; -006, -012, -020, -028

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	MS/ MSD RER	_	ЕВ			
K-40	NA	NA	37.1	186	✓	NA	NA	NA	✓	✓			
				Tracer/C	arrier Re	covery Ou	tliers				1		
Sample ID	Tracer/Ca	rrier %l	R	Sample ID		Tracer/0		%R	Sample	ID	Trac	cer/Carrier	%R
NA													

Comments: HTs OK except for Radon-222 sample -021 HT >5% past method specified. Sample-010 RDL < MDA for Am-241

GS DUP -004; Rn-222 MS and DUP -007 and -021; Gross A/B MS/MSD and DUP -019; tritium MS and DUP -006

Gross A/B parent =125ml, MS/MSD = 25ml (5X dilution) – no qual

Data rejected by the lab due to peak not meeting identification criteria: K-40 for sample -010

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Inte	rnal Lab											3				Page	1_of_2
Bat	ch No.	A					SMO Ușe	1					0 1	1	AR/CC	C 61	5443
Pro	ject Name:	:	MWL GWN	M	Date Samples	Shipped:	4/2	1/14		SMO Au	thorization:	DI	9 /	_	Waste Characteriza	tion	
			Tim Jackso	on	Carrier/Waybi	II No.		62			ntact Phone	:	. /	ana	RMMA		
1	iect/Task N		146422.10		Lab Contact:		Edie Kent/8		171		Lorraine H	lerrera/50	5-844-3199	1.40	Released by COC N	lo.	
	vice Order		CF01-14		Lab Destination		GEL			Send Re	port to SMC						4º Celsius
					Contract No.:		PO 130387	3			•		5-284-2553		Bill to:Sandia National Labor		
Tec	h Area:											3			P.O. Box 5800, MS-0154		
	lding:		Room:		Operationa	I Site:									Albuquerque, NM 87185-01	54	347170
						Depth	Date/1	ime	Sample	Co	ntainer	Preserv	Collection	Sample	Parameter & Me		Lab
Sai	nple No.	Fraction	Sam	ple Location D	etail	(ft)	Collec	cted	Matrix	Туре	Volume	ative	Method	Туре	Requested		Sample ID
	95810	-001	MWL-FB2			NA	- 4/21/14	11:06 -	DIW	G	3x40 ml	HCL	G	FB	VOC (SW846-8260B) (L	TMMP List)	001
	95811	-001	MWL-BW2			496	٠4/21/14	11:06	GW	G	3x40 ml	HCL	G	SA	VOC (SW846-8260B) (L		002
	95811	-009	MWL-BW2			496	-4/21/14	11:09	GW	Р	500 ml	HNO3	G	SA	Metals Cd,Cr,Ni,U (SW8		003
										<u> </u>							,
	95811	-033	MWL-BW2			496	-4/21/14	11:10 -	GW	Р	1 L	HNO3	G	SA	Gamma Spectroscopy (EPA 901.0)	004
-	095811	-034	MWL-BW2	2		496	`4/21/14	11:12	GW	Р	1 L	HNO3	G	SA	Gross Alpha and Beta (I	EPA 900.0)	605
	095811	-036	MWL-BW2	2		496	`4/21/14	11:14	GW	AG	250 ml	None	G	SA	Tritium (EPA 906.0)		006
	095811	-040	MWL-BW	2		496	- 4/21/14	11:08	GW	AG	2x40 ml	None	G	SA	Radon (SM 7500 Rn B)		007
1	095812	-001	MWL-BW	2		496	`4/21/14	11:06	GW	G	3x40 ml	HCL	G	DU	VOC (SW846-8260B) (L	TMMP List)	008
	095812	-009	MWL-BW	2		496	4/21/14	11:09 -	GW	Р	500 ml	HNO3	G	DU	Metals Cd,Cr,Ni,U (SW	846-6020)	009
	095812	-033	MWL-BW:	2		496	4/21/14	11:10	GW	Р	1 L	HNO3	G	DU	Gamma Spectroscopy (EPA 901.0)	010
La	st Chain	:	Yes			Sample	Tracking		SMC	Use	Special In	struction	s/QC Regui	rements:			ditions on
Va	lidation	Rea'd:	✓ Yes			Date En	tered:				EDD		✓ Yes	1	No		Receipt
	ckgroun		Yes			Entered	by:				Turnarour	nd Time	7 Da	ıv*	15 Day* 30 E		
_	onfirmato		Yes			QC inits					Negotiated	d TAT					
5	Sample	N	lame	Signat	ure	Init.	Compan	y/Organiza	tion/Phor	ne/Cell	Sample Di	isposal	Retur	n to Client	t Disposal by	Lab	
	Team	William	Gibson	Willent	, lest	11/1/2	SNL/4142/5	05-284-330	07/505-23	39-7367	Return Sa	mples By	<i>r</i> :				
M	embers	Alfred S	antillanes	Helloube	LOD	126	SNL/4142/5	05-844-513	30/505-22	28-0710	Comment	s:	Send report to	o Tim Jackson	n/4142/MS 0729/284-2547		
	0112010	Robert I		Tolt him		PC	SNL/4142/5				Report spe	ecific list o			provided by SNL/NM SMC	0).	-
		11020111	- , 11011	W 4 7100		,	0112111270	00 011 10	10/000 20	70 1000					ctroscopy. Provide level D	,	-
		-	4								package.					E	ab Use
1.1	Relinquishe	ed by	MAS.	rtile	Org. 414	2 Date	4/21/14	/ Time	1134	3.Relino	quished by			Org	. Date	Tim	
1.	Received I	by	5 4 9.	For and	Org. 4142	2 Date	4/21/14	Time	1134	3. Rece	ived by			Org		Tim	e
2.1	Relinquishe	ed by	Zighta)	clan	Org. 4/4		4/2/11	4 Time /	1200	4.Relino	quished by			Org		Tim	e
2.	Received I	by 7	M. K	Hen	Org. (8/	1_Date	11-11	F Time		4. Rece				Org		Tim	
_			with SMO re	quired for 7 and			/				-			- 3			

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

														AR/COC 61	5443
rc	ject Name	e:	MWL GWM	Project/Ta	sk Mana	ger:	Tim Jackso	n		Project/Tas	sk No.:	146422	.10.11.01		
ec	h Area:													*	
3ui	ilding:		Room:												Lab use
Sa	mple No.	Fraction	Sample Location	Detail	Depth (ft)	Date/ Colle		Sample Matrix	Cor Type	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample ID
(95812	-034	MWL-BW2		496	4/21/14	11:12 /	GW	Р	1 L	HNO3	G	DU	Gross Alpha and Beta (EPA 900.0)	011
(95812	-036	MWL-BW2		496	. 4/21/14	11:14	GW	AG	250 ml	None	G	DU	Tritium (EPA 906.0)	012
(95812	-040	MWL-BW2		496	- 4/21/14	11:08	GW	AG	2x40 ml	None	G	DU	Radon (SM 7500 Rn B)	013
	95813	-001	MWL-TB2		NA	4/21/14	11:06 -	DIW	G	3x40 ml	HCL	G	ТВ	VOC (SW846-8260B) (LTMMP List)	014
_	-	-			-										
_	-	-	-		-										
_															
										,					
	-	-			-			-			-		-		
_	-	-			-						-				-
	-														
															111
_		-			-			-			-	-			
	-	-			+			-			-	-	-		
_		-	-		+			+			+	-		 	
	-		and V					4					130		
₹6	ecipient Ir	nitials	VIII-			1000						2 2 3 4 7	100000		

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab																Page	<u>1</u> of <u>1</u>
Batch No.	VA					SMO Ușe	1					00			AR/COC	61	5444
Project Nan Project/Tasi Project/Tasi Service Ord	K Manager: K Number:	MWL GW Tim Jacks 146422.1 CF01-14	son	Date Sample Carrier/Wayb Lab Contact: Lab Destinati	ill No.	Edie Kent/S	662 303-556-8	171	SMO Co	eport to SMC	Herrera/505 D:		SMO	RMMA Releas	sed by COC No.		4º Celsius
Tech Area:				Contract No.:		PO 130387	3			Rita Kava	naugh/505	-284-2553		Bill to:Sandia P.O. Box 580	National Laboratories 0, MS-0154	(Accour	nts Payable),
Building:	,	Room:		Operationa	al Site:									Albuquerque,	NM 87185-0154	ė	347170
Sample No	. Fraction	Sar	nple Location D	etail	Depth (ft)	Date/ Colle		Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type	Para	ameter & Method Requested		Lab Sample ID
095814	-001	MWL-FB3	3		NA	-4/22/14	10:18 /	DIW	G	3x40 ml	HCL	G	FB	VOC (SW84	16-8260B) (LTMMI	P List)	015
095815	-001	MWL-MW	<i>1</i> 7		496	4/22/14	10:18	GW	G	3x40 ml	HCL	G	SA	VOC (SW84	16-8260B) (LTMMI	P List)	016
095815	-009	MWL-MW	17		496	4/22/14	10:21	GW	Р	500 ml	HNO3	G	SA	Metals Cd,C	Cr,Ni,U (SW846-60)20)	017
095815	-033	MWL-MW	17		496	4/22/14	10:22 -	GW	Р	1 L	HNO3	G	SA	Gamma Sp	ectroscopy (EPA 9	01.0)	018
095815	-034	MWL-MW	<i>J</i> 7		496	4/22/14	10:24	GW	Р	1 L	HNO3	G	SA	Gross Alpha	a and Beta (EPA 9	00.0)	019
095815	-036	MWL-MW	<i>J</i> 7		496	- 4/22/14	10:26	GW	AG	250 ml	None	G	SA	Tritium (EP	A 906.0)		020
095815	-040	MWL-MW	J7	-	496	•4/22/14	10:20 /	gw gw	AG	2x40 ml	None	G	SA	Radon (SM	7500 Rn B)		021
095816	-001	MWL-TB3	3		NA	4/22/14	10:18 -	DIW	G	3x40 ml	HCL	G	ТВ	VOC (SW84	46-8260B) (LTMM	P List)	022
Last Chai					0	T1:		214		0		(00 D ·					
Validation		✓ Yes			Date En	Tracking tered:		SMC) Use	Special Ins	structions/	Yes	ements:	No			ditions on eceipt
Backgrou		Yes	-		Entered	ALL SELECTION OF THE SE				Turnaroun	d Time	7 Da	v*	15 Day*	✓ 30 Day		Societ
Confirmat	ory:	Yes			QC inits					Negotiated	TAT						
Sample		ame	Signati	ure	Init	Compan	y/Organizat	tion/Phon	e/Cell	Sample Di	sposal	Return	to Client	√	Disposal by Lab		
Team	William		Willia !	Hely ?	WA	SNL/4142/5	ALIAN DISTRICT	2011/12/2014/19/2014 20:00/09	.tu 2022 447	Return Sai							
Members			HAMSIN	tole_	deta	SNL/4142/5				Comments				n/4142/MS 0729/2			
	Robert L	ynch	for 174n	ch	ZL	SNL/4142/5	05-844-401	13/505-25	0-7090	Report sho				ctroscopy. Pro	NL/NM SMO). ovide level D		
		1.								package.						La	ab Use
1.Relinquisl	ned by	Halfol	Satill	Org_ 414	2 Date	4/22/14	Time ,	105)	3.Relino	uished by			Org.		Date	Time	
1. Received		189 4	Somo		2 Date	4/22/14	Time	1051	3. Rece				Org.		Date	Time	
2.Relinquisl		mbala	my	Org. 4/4)	Date	11-01	Time	1130	4.Relino	uished by		J. Dec.	Org.		Date	Time	6
2. Received		mh/S	lons	Org. Cel	Date	4-13-1	√ Time	0730	4. Rece	ived by			Org.		Date	Time	
*Prior conf	irmation w	ith SMO re	quired for 7 and	115 day TA	Γ												

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Interna	l Lab															Pa	ge <u>1</u> of <u>1</u>
Batch I	No.	NA	-				SMO Use	1					101	1	AR/	coc 6	15445
Project	Name	: (1	MWL GW	/M	Date Sample	s Shipped:	4/20	3/14		SMO Au	thorization	24	9-11		Waste Characte	erization	
Project	/Task l	Manager:	Tim Jacks	son	Carrier/Wayb	oill No.	21	770	55	SMO C	ontact Phone	: 16	6 0	Sung	RMMA		1
Project	/Task	Number:	146422.1	0.11.01	Lab Contact:		Edie Kent/			1	Lorraine F	lerrera/505	844-3199		Released by C(OC No.	
Service	e Order	r:	CF01-14		Lab Destinat	ion:	GEL		100	Send Re	eport to SMC):			1		4º Celsius
1 1					Contract No.		PO 13038	73	463.5	1	Rita Kava	naugh/505	284-2553		Bill to:Sandia National L		
Tech A	Area:														P.O. Box 5800, MS-015	,	, , , , , ,
Buildi	ng:		Room:		Operation	al Site:									Albuquerque, NM 8718	5-0154	347170
						Depth	Date/	Time	Sample	Co	ontainer	Preserv-	Collection	Sample			Lab
Sampl	e No.	Fraction	Sar	mple Location I	Detail	(ft)	Colle	ected	Matrix	Туре	Volume	ative	Method	Type	Reques	sted	Sample ID
095	Ω17	-001	MWL-FB4	1		NA	• 4/23/14	10:17	DIW	G	3x40 ml	HCL	G	FB	VOC (SW846-8260E	D) /I TMMD Lie	
						2,33,03					Section 200						
095	818	-001	MWL-MW	V9		497	* 4/23/14	10:17	GW	G	3x40 ml	HCL	G	SA	VOC (SW846-8260E	B) (LTMMP List	1) 024
095	818	-009	MWL-MW	V9		497	° 4/23/14	10:19 -	GW	Р	500 ml	HNO3	G	SA	Metals Cd,Cr,Ni,U (S	SW846-6020)	025
095	818	-033	MWL-MW	V9		497	4/23/14	10:21	GW	Р	1 L	HNO3	G	SA	Gamma Spectrosco	ру (ЕРА 901.0	026
095	818	-034	MWL-MW	V9		497	• 4/23/14	10:23	GW	Р	1 L	HNO3	G	SA	Gross Alpha and Be	ta (EPA 900.0)	027
095	818	-036	MWL-MW	V9		497	° 4/23/14	10:26 -	GW	AG	250 ml	None	G	SA	Tritium (EPA 906.0)		028
095	818	-040	MWL-MW	V9		497	* 4/23/14	10:18	GW	AG	2x40 ml	None	G	SA	Radon (SM 7500 Rn	n B)	029
	919	-001	MWL-TB4	4		NA	*4/23/14	10:17	DIW	G	3x40 ml	HCL	G	ТВ	VOC (SW846-8260E	B) (LTMMP Lis	t) 030
095	819																
100													2.				
l ast	Chain		Yes			Sample	Tracking		SMC) Use	Special Ins	tructions	OC Requi	rements:		Co	onditions on
		Reg'd:	✓ Yes			Date En			Oille	030	EDD	oti dotiono.	✓ Yes		No		Receipt
Back		-	Yes			Entered					Turnaroun	d Time	7 Da	V*		30 Day	recorpt
Confi			Yes			QC inits	•			115-35-5	Negotiated	Sec. 16.001-2005	1 1 100	J	<u>10 Day</u>		
-	nple	_	ame	Signa	ture	Init		y/Organiza	tion/Phon	e/Cell	Sample Di		Retur	n to Client	t 🖳 Disposa	l by Lab	
1		William (STOLENS TO STOLENS TO		Silin	11/18	SNL/4142/5				Return Sai		110101	i to onom		, 5, 200	
Mem			antillanes	A-2 12 00000 1/1	WA	1000	SNL/4142/5				Comments	· ·	Sand report to	Tim Jackson	n/4142/MS 0729/284-2547		
Werr	bers	Robert L		770111	7	81	SNL/4142/5								provided by SNL/NM S	SMO)	
		Robert L	yrich	Jul 1911		u	SINL/4142/3	005-044-40	13/303-23	10-7030					ctroscopy. Provide lev		
						-					package.			•			Lab Use
1 Delir	iquishe	d by	Alul	Sela	Org. 4/4	17 Date	4/23/	₩ Time	1050	3 Relin	uished by			Org.	. Date	Tiv	ne Lab USE
-	eived b		4/12		Org. 414		4/73 1/14		055					Org			me
	_ <	-	47.00				4/23/		1110				-				me
2.Relin	_		119	a gu	Org. 414			Y Time	110		quished by			Org			
2. Rec		,	//lle	wen	Org. Ce	2512012	4-24-1	4 Time (725	4. Rece	eivea by			Org	. Date	111	me
rior	COULL	mation w	in sind re	equired for 7 an	u 15 day 1A	. 1							1				

www.againc.net

Memorandum

Date: June 9, 2014

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL GWM AR/COC: 615446 SDG: 347594 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 3.

Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The ICAL intercept was negative and > the MDL but ≤3X the MDL for dichlorodifluoromethane. The associated sample results were NDs and will be **qualified UJ,15**.
- 2. The ICAL, ICV and CCV RFs were <0.05 but ≥0.01 for 2-butanone. The associated sample results were NDs and will be **qualified UJ,14**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows. The ICAL %RSD was >15% but $\le 40\%$ for bromoform. The associated sample results were NDs and since no other calibration infraction occurred, will not be qualified.

The ICV/CCV %Ds were >20% with positive bias for dichlorodifluoromethane. The associated sample results were NDs and will not be qualified.

Blanks

No target analytes were detected in the blanks except as follows. Bromodichloromethane was detected at < the PQL and chloroform at > the PQL in the FB, sample 347594001. All associated sample results were NDs and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met. It should be noted that the MS/MSD was performed on an SNL sample of similar matrix from another SDG.

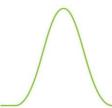
Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)


TIC reports were not required.

Other QC

A FB and a TB were submitted with AR/COC 615446.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/09/14

www.againc.net

Memorandum

Date: June 9, 2014

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL GWM AR/COC: 615446 SDG: 347594 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

One sample was prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding time and properly preserved.

ICP-MS Instrument Tune

The ICP-MS tunes met QC acceptance criteria.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Reporting Limit Verification

All CRI recoveries met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations of Ca, Mg, Fe and Al were < those in the ICS solution.

ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/09/14

www.againc.net

Memorandum

Date: June 9, 2014

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL GWM AR/COC: 615446 SDG: 347594 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 3.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec – short list), SM 7500 Rn B (Radon-222), EPA 906.0 (tritium) and EPA 900.0 (gross alpha/beta). Problems were identified with the data package that resulted in the qualification of data.

Gammaspec and tritium:

1. All sample results which were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.**

Radon-222:

- 1. Sample 347594007 was analyzed >1X but ≤2X past the method specified holding time and will be **qualified J,H1**.
- 2. Sample -007 was > the MDA but \leq 3X the MDA and will be **qualified J.FR7.**

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was properly preserved and prepared and analyzed within the prescribed holding time except as noted above in the Summary section.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracers or carriers were not required for these methods.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met all QC acceptance criteria.

Gross alpha/beta:

It should be noted that the sample used for the MS/MSD was of similar matrix from another SNL SDG.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Gross alpha/beta:

It should be noted that the sample used for the replicate was of similar matrix from another SNL SDG.

Laboratory Control Sample (LCS)

All LCS recoveries met QC acceptance criteria.

Detection Limits/Dilutions

The sample was not diluted. All required detection limits were met.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/09/14

Sample Findings Summary

AR/COC: 615446 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 901.1			
	095821-033/MWL-MW8	Americium-241 (14596-10-2)	BD, FR3
	095821-033/MWL-MW8	Cesium-137 (10045-97-3)	BD, FR3
	095821-033/MWL-MW8	Cobalt-60 (10198-40-0)	BD, FR3
	095821-033/MWL-MW8	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	095821-036/MWL-MW8	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	095821-040/MWL-MW8	Radon-222 (14859-67-7)	J, FR7,H1
SW846 8260B DOE-AL			
	095820-001/MWL-FB5	2-Butanone (78-93-3)	UJ, 14
	095820-001/MWL-FB5	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095821-001/MWL-MW8	2-Butanone (78-93-3)	UJ, 14
	095821-001/MWL-MW8	Dichlorodifluoromethane (75-71-8)	UJ, 15
	095822-001/MWL-TB5	2-Butanone (78-93-3)	UJ, 14
	095822-001/MWL-TB5	Dichlorodifluoromethane (75-71-8)	UJ, 15

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615446 Site/Project: MWL GWM Validation Date: 06/09/2014

SDG #: 347594 Laboratory: GEL Validator: Linda Thal

Matrix: Aqueous # of Samples: 8 CVR present: Yes Analysis Type: $X \square$ Organic $X \square$ Metals AR/COC(s) present: Yes Sample Container Integrity: OK $X \square$ Rad \square Gen Chem

	Requested Analyses Not Reported										
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments					
None											

	Hold Time/Preservation Outliers									
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT		
095821-040	347594007	SM 7500 Rn B	√	4/28/14 10.18	5/02/14 20.53	5/02/14 20.53	Yes	No		

Comments: Sampled 04/28/2014.

Validated by: Kevised 7/2007

Organic Worksheet (GC/MS)

AR/COC #: 615446 SDG #: 347594 Matrix: Aqueous

Laboratory Sample IDs: 347594001, -002, -008

Method/Batch #s: 8260B: 1384112 Tuning (pass/fail): Pass TICs Required? (yes/no): No

				Calib	ration			5X				MS/				
Analyte (outliers)		1	int.	RF	RSD/R	(ICV) CCV %D	MB	(10X) MB	LCS %R	MS %R	MSD %R	MSD RPD	FB -001	FB X5	TB -008	TB X5
Bromodichloromethane		1	NΑ	✓	✓	✓	✓	NA	✓	✓	✓	✓	.54J	2.7	✓	NA
Chloroform		1	NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	3.5	17.5	✓	NA
Bromoform		1	NΑ	✓	22	✓	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
Dichlorodifluoromethane		-	.54	NA	✓	(+36) +36 +48*	✓	NA	✓	✓	✓	✓	✓	✓	✓	✓
2-Butanone		1	NA	.036 .035 .037 .036*	√	√	√	NA	✓	✓	✓	√	✓	√	√	~
trans-1,2-Dichloroethylene		1	NΑ	✓	✓	✓	✓	NA	78*	✓	✓	✓	✓	✓	√	✓
					Su	rrogate Ro	ecovery O	utliers								
Sample ID																
None																
						IS C	Outliers							l		
Sample ID	Area	RT	Area	1	RT	Area	RT		Area	RT	1	Area	RT	Ar	ea	RT
None																

Comments: HTs OK. ICAL VOA2.I 03/17/2014; Acetone, dichlorodifluoromethane, methylene chloride linear; *associated with MS/MSD only

MS/MSD performed on SNL sample from another SDG spiked with trichlorotrifluoroethane;

Inorganic Metals Worksheet

AR/COC #: 615446 SDG #: 347594 Matrix: Aqueous

Laboratory Sample IDs: 347594003

Method/Batch #s: **3005A/6020**: 1384687/1384688

ICPMS Mass Cal (pass/fail): Pass ICPMS Resolution (pass/fail): Pass

Analyte			Calil	bration			Method	or LCS		MS	Lab	Serial	ICS	ICS A ± MDL	CRA		
(outliers)	Int.	\mathbb{R}^2	ICV	ccv	ICB ug/L	CCB ug/L	Blank mg/L	(5X MDL) mg/L	DL)	%R	Rep. RPD	Dil. %D	AB %R	ug/L x50 (mg/L)	CRI %R		
None																	

	IS Outliers	60-125%		IS Outliers 80-120%							
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery				
None											

Comments: HTs OK. Matrix QC on -003

Radiochemistry Worksheet

AR/COC #: 615446 SDG #: 347594 Matrix: Aqueous

Laboratory Sample IDs: 347594 – see below

Method/Batch#s: EPA 901.1 (Gammaspec): 1383767; -004

Method/Batch#s: EPA 900.0/SW846 9310 (Gross alpha/beta): 1387206; -005

Method/Batch#s: SM 7500 Rn B (Radon-222): 1384924; -007

Method/Batch#s: EPA 906.0 (Tritium): 1386334; -006

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	N	MS/ MSD RER	Lab Rep. RER	ЕВ			
None														
				Tracer/C	Carrier Re	covery Ou	tliers							
Sample ID	Tracer/Ca	arrier %	R	Sample ID)	Tracer/	Carrier	%R		Sample	ID	Trac	er/Carrier	%R
NA														
-														

Comments: HTs OK except for Radon-222 sample -007 HT >5% past method specified.

GS DUP -004; Rn-222 MS and DUP -007; Gross A/B MS/MSD and DUP on SNL sample from another SDG; tritium MS and DUP -006

Gross A/B parent =125ml, MS/MSD = 25ml (5X dilution) – no qual

Data rejected by the lab due to peak not meeting identification criteria: None

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab														Page	e <u>1</u> of <u>1</u>
Batch No.					SMO Use					^	1	5 1	AR/COC	61	5446
Project Name	:	MWL GWM	Date Samples S	Shipped:	4/28/	14		SMO Au	thorization:	Done	John	Tues	Waste Characterization		
		Tim Jackson	Carrier/Waybill I			183	E 14.67		ntact Phone	:			RMMA		1
Project/Task I	_	146422.10.11.01	Lab Contact:								Released by COC No.				
Service Order		CF01-14	Lab Destination							, , , , , , , , , , , , , , , , , , , ,	4	4º Celsius			
			Contract No.:						Bill to:Sandia National Laborato						
Tech Area:									,				P.O. Box 5800, MS-0154	•	
Building:		Room:	Operational :	Site:									Albuquerque, NM 87185-0154		347594
			1	Depth	Date/1	ime	Sample	Co	ntainer	Preserv-	Collection	Sample	Parameter & Metho		Lab
Sample No.	Fraction	Sample Location	1	(ft)	J, Collec	cted	Matrix	Туре	Volume	ative	Method	Type	Requested		Sample ID
095820	-001	MWL-FB5 ~		NA	4/28/14	10:17	DIW	G	3x40 ml	HCL	G	FB	VOĆ (ŚW846-8260B) (LTM	MP List)	001
095821	-001 ′	MWL-MW8		497	4/28/14	10:17	GW	G	3x40 ml	HCL	G	SA	VÓC (SW846-8260B) (LTM	MP List)	002
095821	-009 ′	MWL-MW8		497	4/28/14	10:19	GW	Р	500 ml	HNO3	G	SA	Métals Cd,Cr,Ni,U (SW846	6020)	003
095821	-033 /	MWL-MW8		497	4/28/14	10:21	GW	Р	1 L C	HNO3	G	SA	Gamma Spectroscopy (EP/	4 901.0)	604
095821	-034	MWL-MW8		497	4/28/14	10:24	GW	Р	1 L	HNO3	G	SA	Gross Alpha and Beta (EPA	900.0)	005
095821	-036 /	MWL-MW8		497	4/28/14	10:27	GW	AG	250 ml	None	G	SA	Tritium (EPA 906.0)		006
095821	-040 ′	MWL-MW8		497	4/28/14	10:18	GW	AG	2x40 ml	None	G	SA	Radon (SM 7500 Rn B)		007
095822	-001	MWL-TB5 🗸		NA	4/28/14	10:17	DIW	G	3x40 ml	HCL	G	ТВ	VOC (SW846-8260B) (LTM	MP List)	008
		>													
Last Chain:		✓ Yes	s	ample	Tracking		SMC) Use	Special Ins	tructions	/QC Reguir	ements:		Con	ditions on
Validation I		√ Yes	LID.	ate Ent					EDD		✓ Yes		No	1	Receipt
Backgroun	•	Yes		ntered			- C.O.		Turnaroun	d Time	7 Dav	v*	15 Day* 30 Day	1	
Confirmato		Yes		C inits.	•				Negotiated	TAT				1 3	
Sample	N	lame , Sign	ature,	Init.	Company	//Organizat	tion/Phon	e/Cell	Sample Di	sposal	Return	to Client	t Disposal by Lal	5	
Team	William		alwy 1	ULX	SNL/4142/50	05-284-330	7/505-23	9-7367	Return Sai	nples By:					
	Alfred S	antillanes Alhas	tilla	be	SNL/4142/5	05-844-513	30/505-22	8-0710	Comments	s:	Send report to	Tim Jackson	n/4142/MS 0729/284-2547		
	Robert L	The state of the s	- V	RI	SNL/4142/5				Report spe	cific list of	VOCs (LTN	IMP list p	provided by SNL/NM SMO).		
		proj par							Report sho	rt list isoto	pes for Gan	nma Spec	ctroscopy. Provide level D		
	1	1			,				package.					L	ab Use
1.Relinquishe	ed by	lof fartill	_ Org.4/42	Date	4/28/1	4/Time /	11:00	3.Relino	uished by			Org.	. Date	Time	
1. Received b	177	on Walent	Org. 4442	Date	12/28/19		1100	3. Rece				Org.		Time	e
2.Relinguishe	1	on Waterough	Org. 4/42				100	4.Relino	uished by			Org.		Time	e
2. Received b	- 1/1	ml Flin	Org. Cel		4-2014	/ Time ()		4. Rece				Org.		Time	
the part of the control of the contr	,	vith SMO required for 7 a		11	1 001/	<i></i>						- 3			

Page 5 of 444

CONTRACT VERIFICATION REVIEW FORMS GROUNDWATER MONITORING APRIL 2014

AR/COC Number	Sample Type
615442	Environmental*
615443	Environmental*
615444	Environmental*
615445	Environmental*
615446	Environmental*

^{*} AR/COC forms are provided in the Data Validation Section of this Annex.

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	MWL GWM	Project/Task No	. 146422_10.11.08
ARCOC No.	615442	Analytical Lab	GEL	SDG No.	346998

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Com	olete?	
No.	Item	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line		Comp	olete?	
No.	Item	Yes	No	If no, explain
2.1	Data reviewed, signature	X		
2.2	Method reference number(s) complete and correct	X		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	X		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	X		
2.8	Data reported in appropriate units and using correct significant figures	X		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if	Х		
	applicable) reported			
2.10	Narrative provided	X		
2.11	TAT met	X		_
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

SMO-2012-CVR (11-2013)

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
c) Matrix spike recovery data reported and met	Х		
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		
b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
3.5 Blank data a) Method or reagent blank data reported and met for all samples	Х		
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	Detected in FB1: Bromodichloromethane, Chloroform, Dibromochloromethane (095807-001). Detected in EB1: Bromodichloromethane, Chloroform, Dibromochloromethane (095808-001); Nickel (095808-009)
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8 Narrative included, correct, and complete	Х		
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

2 COC: 615442

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)			
a) 12-hour tune check provided	X		
b) Initial calibration provided	X		_
c) Continuing calibration provided	X		
d) Internal standard performance data provided	X		
e) Instrument run logs provided	X		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)	N/A		
a) 12-hour tune check provided			
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		

f) RRTs for samples and standards provided	N/A	
g) Ion abundance ratios for samples and standards provided	N/A	
g/ and standards promote	eta dani 05	
	N175	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
a) Illital calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
C) ON provided	1,,,,	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
by officially isotope ratios provided (perchibitate only)	1077	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
	X	
a) Initial calibration provided	^	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	X	
c) Tor interierence check sample data provided	X	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
The trainest run logs provided	^	
4.6 Radiochemistry and General Chemistry	X	
a) Instrument run logs provided		

Contract Verification Review (Concluded)

5.0	Data	Anoma	lv Re	port

ltem	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		Х	
5.3 Verification or reanalysis requested from lab		X	

Problems/Comments/Resolutions

6.0 Problem Resolution

Sample/Fraction No.

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Analysis

Were deficiencies unresolved? θ Yes x No				
Based on the review, this data package is complete.	x Yes	θ Νο		
If no, provide nonconformance report or correction request r	number a	nd date correction req	uest was submitted:	
Reviewed by:	Date: _05/27/2014			
Were resolutions adequate and data package complete?	θ Yes θ No			
Closed by: Date:		_		
		5	COC: 615442	

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	MWL GWM	Project/Task No	. 146422_10.11.08
ARCOC No.	615443, 615444, 615445	Analytical Lab	GEL	SDG No.	347170

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Com	olete?	
No.	<u> Ite</u> m	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Х		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	X		

2.0 Analytical Laboratory Report

Line		Com	olete?	
No.	ltem	Yes	No	If no, explain
2.1	Data reviewed, signature	Χ		
2.2	Method reference number(s) complete and correct	Χ		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Χ		* *
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Χ		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Χ		
2.8	Data reported in appropriate units and using correct significant figures	Χ		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	X		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	X		
2.13	Contractual qualifiers provided	Χ		
2.14	All requested result and TIC (if requested) data provided	Χ		

SMO-2012-CVR (11-2013)

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
spe Trit	reporting units appropriate for the matrix and meet contract specified or project- ecific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? tium reported in picocuries per liter with percent moisture for soil samples? Units assistent between QC samples and sample data	Х		
3.2 Qua	antitation limit met for all samples	Х		
3.3 Acc a)	curacy Laboratory control sample accuracy reported and met for all samples		Х	VOC LCS recovery failed for trans-1,2-Dichloroethylene (1203078885)
	Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
c)	Matrix spike recovery data reported and met	Х		
	cision leplicate sample precision reported and met for all inorganic and radiochemistry samples	Х		
b) M	latrix spike duplicate RPD data reported and met for all organic samples	Х		
3.5 Blan a) M	nk data lethod or reagent blank data reported and met for all samples	Х		
b) S	ampling blank (e.g., field, trip, and equipment) data reported and met		Х	Detected in FB2 (095810-001) & FB3 (095814-001): Bromodichloromethane, Chloroform. Detected in FB4 ((095817-001): Bromodichloromethane, Chloroform, Dibromochloromethane
	Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7 Narr	rative addresses planchet flaming for gross alpha/beta	Х		
3.8 Narr	rative included, correct, and complete	Х		
	ond column confirmation data provided for methods 8330 (high explosives), sticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)			_
a) 12-hour tune check provided	X		
b) Initial calibration provided	Х		
c) Continuing calibration provided	X		
d) Internal standard performance data provided	Х		
e) Instrument run logs provided	X		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)	N/A		
a) 12-hour tune check provided			
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		

Contract Verification Review (Continued)

f) RRTs for samples and standards provided	N/A	<u> </u>
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	-
4.4 LC/MS/MS (6850)	N/A	
a) Initial calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	Х	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry	X	
a) Instrument run logs provided		

SMO-05-03

COC: 615443, 615444, 615445

Contract Verification Review (Concluded)

5.0 Data Anomaly R	eport
--------------------	-------

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		Х	
5.3 Verification or reanalysis requested from lab		Х	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
		
Were deficiencies unresolved		y Voc. O Nie
Based on the review, this data	а раскаде із сотріете.	x Yes θ No
If no, provide nonconformanc	e report or correction request	st number and date correction request was submitted:
Reviewed by:		Date: _04/28/2014
Were resolutions adequate ar	nd data package complete?	θ Yes θ No
Closed by:	Date:	

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	MWL GWM	Project/Task No	. 146422_10.11.08
ARCOC No.	615446	Analytical Lab	GEL	SDG No.	347594

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Comp	olete?	
No.	Item	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	X		

2.0 Analytical Laboratory Report

Line		Com	olete?	
No.	Item	Yes	No	If no, explain
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	X		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	X		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

SMO-2012-CVR (11-2013)

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2 Quantitation limit met for all samples	Х		
Accuracy a) Laboratory control sample accuracy reported and met for all samples		Х	VOC LCS recovery failed for trans-1,2-Dichloroethylene (1203078885)
Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
c) Matrix spike recovery data reported and met	Х		
3.4 Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
3.5 Blank data a) Method or reagent blank data reported and met for all samples	Х		
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	Detected in FB5: Bromodichloromethane, Chloroform (095820-001)
Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7 Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8 Narrative included, correct, and complete	Х	-	
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)	X		
a) 12-hour tune check provided			
b) Initial calibration provided	X		
c) Continuing calibration provided		X	<u>-</u>
d) Internal standard performance data provided	X		
e) Instrument run logs provided	Х		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)			
a) Initial calibration provided	N/A		
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)	N/A		
a) 12-hour tune check provided			
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		
e) Labeled compound recovery data provided	N/A		

f) RRTs for samples and standards provided	N/A	
g) Ion abundance ratios for samples and standards provided	N/A	
h) Instrument run logs provided	N/A	
4.4 LC/MS/MS (6850) a) Initial calibration provided	N/A	
a) Iriitiai calibration provided		
b) Continuing calibration provided	N/A	
c) CRI provided	N/A	
d) Internal standard performance data provided	N/A	
e) Chlorine isotope ratios provided (perchlorate only)	N/A	
f) ICS provided (perchlorate only)	N/A	
4.5 Inorganics (metals)		
a) Initial calibration provided	X	
b) Continuing calibration provided	X	
c) ICP interference check sample data provided	X	
d) ICP serial dilution provided	X	
e) Instrument run logs provided	X	
4.6 Radiochemistry and General Chemistry	X	
a) Instrument run logs provided		

Contract Verification Review (Concluded)

5.0 Data Anomaly Repor	5.	0	Data	Anoma	ly Re	port
------------------------	----	---	------	-------	-------	------

ltem	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A		
5.2 Problems or outliers noted		Х	
5.3 Verification or reanalysis requested from lab		X	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Analysis	Problems/Comments/Resolutions	
VOC	Missing Continuing Calibration	

Were deficiencies unresolved?	x Yes θ	No				
Based on the review, this data package	e is complete.	6) Yes	x No		
If no, provide nonconformance report of	r correction red	quest number <u>176</u>	890 and d	late correction reque	st was submitted:	05/29/2014
Reviewed by:		Date: <u>_0</u>	5/29/2014			
Were resolutions adequate and data pa		te? x Yes	θ Νο			
Closed by:		Date:	06/03/2014			
				5	COC: 615446	

FIELD SAMPLING FORMS JUNE 2014 GROUNDWATER MONITORING

TAILGATE SAFETY MEETING FORM

Dept: 4142 Well Location: MWL-MW	B Date: 6/30/14 Time: 0755
Activities: Groundwater Monttoring and Sampling (Anyone has the right to cease field activities for safet	ty concerns. The buddy system will be used when needed.)
•	Humidity: 198 % Wind Chill NA °F
Chemicals Used: Acids in sample containers, standard Other:	d solutions. Hack-ACCU-VAC ampules 17/3/14
. B. f. A. T.	· 7
☐ Be aware of slips, trips, and falls. Keep	oics Presented ☑ Be aware of environmental conditions
work area clean and use a stepping stool	(heat / cold stress). Dress accordingly.
when necessary.	Wear sunscreen if necessary. Stay
	hydrated.
Wear safety boots.	☑ Be aware of electrical hazards
El Use safe lifting practices. Wear leather gloves if necessary.	図 Be aware of pressure hazards.
☐ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
Be aware of chemical hazards.	Be aware of biohazards (snakes, spiders, etc.)
■ Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
Mear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phone: 8	
Robert Lynch Printed Name	Signature Signature
Printed Name	Signature Signature
Printed Name	Signature Sature
Tim Jackson	T=4-45-
Printed Name	Signature

Signature

FIELD MEASUREMENT LOG FOR GROUNDWATER SAMPLE COLLECTION

Project Name: MWL	Project No.: 146422.01.11.08	
Well I.D.; MWL-MW 8	Date: 06/30/14	130 4
Well Condition: good - Executent	Weather Condition: See tailgree From	4
Method: Portable pump X	Dedicated pump Pump depth: 497'	

PURGE MEASUREMENTS

Depth to Water (ft)	Time 24 hr	Vol. (Lgal)	Temp (°C)	SC (µS/cm)	ORP (mV)	pH	Turbidity (NTU)	DO (%)	D9/2	Comments
491.49			51	ART.						
493.26	0854			673.4		7.57	0.39	63.0	4.81	
493.74	0919	4	3050	688.6	300.8		0.36	59.5		ı
494.00	0948	8	29.48	6810	300.B	7.59	0.28	<i>5</i> 4, 3	4.13	
494.37	1008	8	26.44	642.5	1.596		0.27	45.4	3.65	
494,48	1018	9	2650	643.0	287.2	7.54	0.24	44.1	3.54	
494.61		10_	26.62	646.7			0-27	42.6	3.4)	
494.81		(2635	6441	276.4	7.54	٥,25	40-4	3.25	
	1042						······································			
		5.1.1.1.2.5.1.1.1.1.2.5.1						·		
	The state of the s			···					···········	
				The second secon		· war-a чалаппалаппалаланы				
					vy our and vy or		*****			
40.	An inches	200	A COLOR		***************************************	· vvv avrauvv				
										-
				and the second						
								4	1.69	ials purged n tubing 1832
							-		from	n tubing
									E	832

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project No.: 146422.10.11.08 SNL/NM Project Name: MWL Date: 06/30/14 Calibrations done by: R Lynch Make & Model: YSI EXO1 YSI 6820 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: _13C101167 Y\$1650 MD\$ (\$/N): NA pH Calibration pH Calibrated to (std): 7.00 pH sloped to (std): 10,00 Reference value: 4.00 7.00 10.00 Valne Temp Value Temp Value Temp 1. Time: 4.01 19.6 7.00 19.6 10.01 19.6 2. Time: 4,00 20.2 7.00 20,2 20.2 10,00 3. Time: 4. Time: Standard lot no.: 3AE725 3AD782 3AD357 Expiration date: 5/15 4/15 4/15 SC Calibration Reference Value: 1225 uS 3AE221 Standard Lot No.: Expiration Date: Value Temp 5/15 1. Time: 1222 19.6 2. Time; 1224 20,2 3. Time. 4. Time ORP Calibration Reference Value: 220 mV Standard Lot No. 4AA010 7/14 Value Temp Expiration Date: 219.9 19.6 1. Time: 20, 6 2. Time: 220,1 3, Time: 4. Time: DO Calibration 81% air saturation @ 5200 ft. Atmospherie Pressure in Hg Calibration Value: 81,4 24.59 I. Tune 81,6 2, Time 24.61 3. Time. 4. Time:

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWI	-	Project No.:	Project No.: 146422.10.11.08								
Calibration done by: R Lynch		Date: 06/30/14	ļ								
,	T	URBIDIMETER									
Make & Model: HACH 210	OP HACH 21000	Serial No. S.	Serial No. S/N 10060C003010								
Reference Value	PL-10	20	100	800							
Calibration done by: R Lynch TURBIDIMETER Make & Model: HACH 2100P HACH 2100Q MIT Serial No. S/N 10060C003010											
1. Time 0758	10.2	19.8	102	801							
2. Time // 00	9.96	19.7	101	796							
3. Time											
4. Time											
Comments:											
,											
		•									
•											
	Date: 06/30/14 TURBIDIMETER Serial No. S/N 10060C003010 Se										

Portable Pump and Tubing / Water Level Indicator Decontamination Log Form

Project Name: MWL-GWM	Monitoring Well ID # : MWL-N	: <u>MWL-MW8</u> Date: <u>06/30/14</u>							
The following equipment was	s decontaminated at completion of	sampling a	ctivities in accordance with F	OP-05-03					
Pump and Tubing Bundle ID #: 1806-814	Water	Level Indi	cator ID #: 210269						
Personnel Performing Decontamination: Alfred Santillanes Print Name: William Gibson Print Name: Initial:	Alfred Print N	Personnel Performing Decontamination: Alfred Santillanes Print Name: William Gibson Print Name: Initial:							
	Condition of Equ	•							
Pump: Excellent Tub	ing Bundle: Good		Water Level Indicator: G	000					
	List of Decontamination	n Materials							
Distilled on Deonized (circle	a ana)		HNO ₃	× × × × × × × × × × × × × × × × × × ×					
Distinct on Deconized (Cher	e one)	Grade:	Reagent						
Source: Culligan		UN #:	2031						
Lot Number: 0625/4	Manu	facturer:	AROC	X-10-26					
	Lot	Number:	A0316863						

Sample Summary for June 2014 MWL Groundwater Monitoring MWL-MW8 Re-Sample

Well ID	Sample Date	ARCOC	Sample Number	Sample Type	1 21 1 1 7 1		Associated Field Blank (ARCOC # / Sample #)	Comments
GEL Analytic	L Analytical Data: Project Task # 146422.10.11.08, Service Order # CF01-14			¢ CF01-14				
MWL-MW8	30-Jun-14	615592	096150	Environmental	615591 / 096147	615592 / 096152	615592 / 096149	
MWL-MW8	30-Jun-14	615592	096151	Duplicate	615591 / 096147	615592 / 096152	615592 / 096149	
MWL-EB1	27-Jun-14	615591	096147	Equipment Blank	NA	615591 / 096148	NA	Equipment blank sample prior to MWL-MW8.
MWL-FB1	30-Jun-14	615592	096149	Field Blank	NA	615592 / 096152	NA	at MWL-MW8

DATA VALIDATION REPORTS FOR ENVIRONMENTAL SAMPLES GROUNDWATER MONITORING JUNE 2014

. PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date:

August 12, 2014

To:

File

From:

Monica Dymerski

Subject:

GC/MS Organic Data Review and Validation - SNL

Site: MWL GWM

AR/COC: 615591 and 615592

SDG: 351610 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 4.

Summary

Six samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- The ICAL %RSD was >15% but ≤40% and CCV %D was >20% but ≤40% with a negative bias
 for methylene chloride. The associated sample results were non-detects and will be qualified
 U.J.13,C3.
- 2. The MS and MSD %Rs were < the laboratory acceptance limits but ≥10% for 2-butanone and acetone. The associated sample results were non-detects and will be qualified UJ, MS3.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding times and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The CCV %Ds were >20% but ≤40% with a negative bias for 2-butanone, acetone, and 2-hexanone. The associated sample results were non-detects and, since no other calibration infractions occurred for those analytes, will not be qualified.

The ICV %D was >20% with a positive bias for dibromochloromethane. The associated sample results were non-detects and will not be qualified.

Blanks

No target analytes were detected in the blanks except as follows. Toluene was detected in EB sample -006. The toluene results for associated samples -002 and -003 were non-detects and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met except as noted above in the Summary section.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met except as follows. The LCS %R was < the laboratory acceptance limit but ≥10% for methylene chloride. One LCS outlier is allowed since 36 analytes were reported. Therefore, the associated sample results will not be qualified.

Target Compound Identification

Mass spectra met acceptance criteria for all detected analytes.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Two trip blanks were submitted, one on each ARCOC. An EB was submitted on ARCOC 615591 and was applied to the samples on ARCOC 615592. An FB was submitted on ARCOC 615592 and was applied to the field samples from 615592. A field duplicate pair was submitted on ARCOC 615592.

There are no "required"	review criteria for field duplicate analyses comparability; no data will be
qualified as a result.	

No other specific issues that affect data quality were identified.

Reviewed by Mary Donivan Level: I Date: 08/12/14

Sample Findings Summary

AR/COC: 615591, 615592 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
SW846 8260B DOE-AL			
	096147-001/MWL-EB1	2-Butanone (78-93-3)	UJ, MS3
	096147-001/MWL-EB1	Acetone (67-64-1)	UJ, MS3
	096147-001/MWL-EB1	Methylene chloride (75-09-2)	UJ, 13,C3
	096148-001/MWL-TB1	2-Butanone (78-93-3)	UJ, MS3
	096148-001/MWL-TB1	Acetone (67-64-1)	UJ, MS3
	096148-001/MWL-TB1	Methylene chloride (75-09-2)	UJ, 13,C3
	096149-001/MWL-FB1	2-Butanone (78-93-3)	UJ, MS3
	096149-001/MWL-FB1	Acetone (67-64-1)	UJ, MS3
	096149-001/MWL-FB1	Methylene chloride (75-09-2)	UJ, 13,C3
	096150-001/MWL-MW8	2-Butanone (78-93-3)	UJ, MS3
	096150-001/MWL-MW8	Acetone (67-64-1)	UJ, MS3
	096150-001/MWL-MW8	Methylene chloride (75-09-2)	UJ, 13,C3
	096151-001/MWL-MW8	2-Butanone (78-93-3)	UJ, MS3
	096151-001/MWL-MW8	Acetone (67-64-1)	UJ, MS3
	096151-001/MWL-MW8	Methylene chloride (75-09-2)	UJ, 13,C3
	096152-001/MWL-TB2	2-Butanone (78-93-3)	UJ, MS3
	096152-001/MWL-TB2	Acetone (67-64-1)	UJ, MS3
	096152-001/MWL-TB2	Methylene chloride (75-09-2)	UJ, 13,C3

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615591 and 615592 Site/Project: MWL GWM Validation Date: 08/12/14

SDG #: 351610 Laboratory: GEL Laboratories LLC Validator: Monica Dymerski

Matrix: Aqueous # of Samples: 6 CVR present yes Analysis Type: X Organic Metals

AR/COC(s) present: yes Sample Container Integrity: intact Rad Gen Chem

	Requested Analyses Not Reported													
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments								
None														

	Hold Time/Preservation Outliers														
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT							
None															
		_		_											

Comments: Sampled 06/27/14 and 06/30/14 Revised 7/2007

Validated By: Manuca Dymuski

Organic Worksheet (GC/MS)

AR/COC #: 615591 and 615592 SDG #:351610 Matrix: Aqueous

Laboratory Sample IDs: 351610001 through -006

Method/Batch #s: 1400680 Tuning (pass/fail): pass TICs Required? (yes/no) no

				Calib	oration			5X				MS/					
Analyte (outliers)		Int.	RF	RSD/ R ²	CCV (ICV) %D	Method Blank	(10X) Blank	LCS %R	MS %R	MSD %R	MSD RPD	FB -001	TB -004	EB -005	5X EB	TB -006	
toluene			NA	✓	✓	√	✓	NA	✓	✓	✓	✓	✓	✓	0.400J	2.0	✓
methylene chloride			NA	✓	41.9	-24.6	✓	NA	71.3	✓	✓	✓	✓	✓	✓	NA	✓
2-butanone			NA	✓	✓	-35.6	✓	NA	✓	37.4	37.5	✓	✓	✓	✓	NA	✓
acetone			NA	✓	✓	-37.4	✓	NA	✓	27.3	27.2	✓	✓	✓	✓	NA	✓
dibromochloromethan	e		NA	✓	✓	(20.5)	✓	NA	✓	✓	✓	✓	✓	✓	✓	NA	✓
2-hexanone			NA	✓	✓ ————————————————————————————————————	-30.3	√	NA	✓ ————————————————————————————————————	√	✓ ————————————————————————————————————	✓ ————————————————————————————————————	V	✓ 	✓ ————————————————————————————————————	NA	√
						Surrogat	e Recovery	Outlier	s								
Sample ID																	
None																	
							IS Outliers	5									
Sample ID	Area	RT	Area	a	RT	Ar	ea	RT	Area		RT	A	rea		RT	Area	RT
None																	

Comments: HTs OK. I-cal VOA6, 06/17/14. Samples analyzed 07/04/14. MS/MSD performed on sample -002.

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

															_	
Internal Lab	VIA	2.06	7 4												0.007	_1_ of _1
Batch No.	14	7	2 14		SMO Use	1					01		100	AR/COC	67	5591
Project Nam		MWL GWM	Date	Samples Shipped:	-	50/14			uthorization	3/	Elm		Wa	ste Characterization		
		: Tim Jackson		ner/Waybill No,		0524		SMO C	ontact Phon			Smo	RMI	MA		
		146422.10.11.81	S Lab	Contact:	Edie Kent/	803-556-8	8171				5-844-3199		Reli	eased by CQC No.		
Service Orde	e <i>r</i> :	CF01-14	Lab	Destination:	GEL			Send R	eport to SMO	D:				_		4º Celsiu
			Con	tract No.:	PO 13038	73			Rita Kava	anaugh/50	5-284-2553		Bill to:Sand	ia National Laboratori	es (Accou	nts Payable)
Tech Area:	_	4											P.O. Box 5/	800, MS-0154		10.200 - 1000 e120
Building:		Room:	Оре	erational Site:									Albuquerqu	e, NM 87185-0154		35161
				Depth	Date/	lime .	Sample	С	ontainer	Preserv-	Collection	Sample	Pi	arameter & Metho	d	Lab
Sample No.	Fraction	Sample Loca	tion Detail	(ft)	Colle	cted	Matrix	Type	Volume	ative	Method	Type		Requested		Sample II
096147	-001	MWL-EB1		NA	6/27/14	12:45	DIW	G	3x40ml	HCL	G	EB	VOC (LT	MMP list) (SW846-	8260B)	005
096148	-001	MWL-TB1		NA	6/27/14	12:45	DIW	G	3x40ml	HCL	G	ТВ	VOC (LT	MMP list) (SW846-	8260B)	006
Last Chain		Yes		Sample	Tracking		SMO) Use	Special Ins	structions	/QC Requii	rements:			Cond	litions on
Validation	Req'd:	∠i Yes		Date Ent	tered:				EDD		Yes		No		Re	eceipt
Backgrour	nd:	Yes		Entered	by;				Turnaroun	d Time	7 Da	λ.	15 Day*	30 □ ay		
Confirmate	ory:	Yes		QC inits.					Negotiated	I TAT						
Sample	l N	lame	Signature	Inii.	Company	/Organizat	tion/Phone	e/Cell	Sample Di	sposal	Return	to Client	L	Disposal by Lab		
Team	Robert L		Znal	PL	SNL/4142/50	05-844-401	13/505-250	0-7090	Return Sar	noles By:	the state of the s					
Members			Sal						Comments		Send report to	Tim Jackson	v4142/MS 072	9/284-2547		
Members	William (Jal		SNL/4142/50					/	. 1					
4 Dalla 21	- 2 ho - 2	1	^-	11(11) D-1-	1/20/11	/ Tiere 1	A'	2 D-1	unah adah sa	0/6	1	0	4147	Date (/ 70)	170.8	b Use
1.Relinquishe	7.34	Ti Type	V3.430	4(4) Date	6/30/14	12000007100000	0.52		uished by	14/10	1-150			Date 6/30/	Y Time	
1. Received		1=1/4119 -		4/42 Date				3. Rece		MA	110	Org	cer	Date /-/-/4	Time	
2.Relinquishe	-	- Harris-		TITE Date	6 130/14			62 VI.61 1	uished by '		-	Org.	<u>É</u>	Date	Time	7)
2. Received Prior confir		oth SMO required for		day TAT	6/30/1	/ Time /	10	4. Rece	ived by			Org.	<u> </u>	Date	Time	

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab	,		,													Page	e _1_ of _1_
Batch No /	leA.		611/2	14		SMO Use	1					00			AR/COC	61	5592
Project Nam	e:	MWL GW	/M	Date Sample	s Shipped	6/30	1/14		SMO A	uthorization	DA.	7. 7m	ano	Wast	e Characterization		_
Project/Task	Manager:	Tim Jack	kson	Carrier/Wayb	ıll No.	2:	105	24	SMO C	ontact Phone	e:		- 10	RMM	А		
Project/Task	Number:	146122.	10.11.9108	Lab Contact:		Edie Kent	/803-556-	8171	1	Lorraine I	Herrera/50	5-844-3199		Refe	sed by COC No.		
Service Orde	er:	CF01-14		Lab Destinati	on:	GEL			Send R	eport to SMO	O:					1	4° Celsius
l.				Contract No.:		PO 13038	73		1	Rita Kava	anaugh/50	5-284-2553		Bill to:Sandia	National Laboratorie	s (Accour	nts Payable).
Tech Area:		_												P.O. Box 580	0, MS-0154		
Building:		Room:		Operationa	Site:									Albuquerque.	NM 87185-0154		351610
				Transference and transference	Depth	Date	/Time	Sample	C	ontainer	Preserv-	Collection	Sample		ameter & Method		Lab
Sample No.	Fraction	Sa	ample Location [Detail	(ft)	0.10 0.00	ected	Matrix	Туре	Volume	ative	Method	Туре		Requested		Sample ID
096149	-001	MWL-FB	31		NA	6/30/14	10:42	- DIW	G	3x40ml	HCL	G	FB	VOC (LTM	MP list) (SW846-8	3260B)	001
096150	-001	MWL-MV	N8		497	- 6/30/14	10:42	GW	G	3x40ml	HCL	G	SA	VOC (LTM	MP list) (SW846-8	3260B)	002
096151	-001	MWL-MV	№8		497	- 6/30/14	10:42	GW	G	3x40ml	HCL	G	DU	VOC (LTM	MP list) (SW846-8	3260B)	003
096152	-001	MWL-TB	32		NA	6/30/14	10:42	DIW	G	3x40ml	HCL	G	тв	VOC (LTM	MP list) (SW846-8	3260B)	004
								-				_					
																-	
						N 25/15/1-12	0 1000 000 10 0			200 317 Cilia		A) IAMA		3			
			_														
Last Chain	:	Yes			Sample	Tracking		SMC) Use	Special Ins	structions	/QC Requir	ements:			Cond	litions on
Validation	Req'd:	Yes		\$ 6.0	Date En	tered;				EDD		Yes		No		Re	eceipt
Backgroun	d:	Yes			Entered	by:	3333350	5 2 - 25	5.00	Turnaroun	d Time	7 Da	۸.	15 Day	[→] 30 Day		25 000.000
Confirmato	ory:	Yes			QC inits.					Negotiated	TAT						
Sample	N:	ame	Signat	ure .	Init	Compan	y/Organiza	tion/Phon	e/Cell	Sample Dis	2514	Return	to Client		Disposal by Lab		
Team	Robert Ly	vnch	6/1/10	112	FL	SNL/4142/5	There is the second	Charles of the Control of the Contro	CATHEOLOGICA	Return Sar	noles By:	100 100 100 100 100 100 100 100 100 100					
Members			114-14	110	ate	SNL/4142/5		_		Comments			Tim Jackson	/4142/MS 0729/	284.2547		
Wiellibels	William G		William V	17/	7/18	SNL/4142/5				-		Gona report to			20 - 25 (.		
	William C	JUSUN	nound sa	ary !	AFAL	OND THEIR	03-204-00	011503-25	J-7 3G7								
	-	788 No.			V			-				- 1					5 114 -
1.Relinguishe	nd by	14		Org. 4 14 2) Date	6/30/10	J Time 1	1.50	2 Police	luished by	-DK	55	Cur Org	4142	Data (/ 20/	0.74.000	b Use
AC 90-00 07 07 07		-171	uch	Org. 4 14 2			C) Time (TVA	(The state of the		* ;		Time	470
1 Received to		= 1200	7	Org. 7/72							me	tav	Org			(e)	
2.Relinquishe	-	- 1-40								uished by		247	Org.		Date	Time	
2. Received b		76.7	equired for 7 and	Org. 4/Y	Date	0/30/14	nime /	1,20	4. Rece	ivea by			Org.		Date	Time	
Frior Confir	mation Wi	IOI SINIO LE	danka tot i gua	I IS Gay I A I													

CONTRACT VERIFICATION REVIEW FORMS GROUNDWATER MONITORING JUNE 2014

AR/COC Number	Sample Type
615591	Environmental*
615592	Environmental*

 $[\]mbox{*}$ AR/COC forms are provided in the Data Validation Section of this Annex.

Contract Verification Review (CVR)

Project Leader	Jackson	Project Name	MWL GWM	Project/Task N	o. 146422 <u>10.11.08</u>
ARCOC No.	615591, 615592	Analytical Lab	GEL	SDG No.	351610

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line		Com	olete?	
No.	<u>ltem</u>	Yes	No	If no, explain
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	X	-	
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	X		

2.0 Analytical Laboratory Report

Line		Com	plete?	
No.	ltem	Yes	No	lf no, explain
2.1	Data reviewed, signature	X		
2.2	Method reference number(s) complete and correct	X	-	
2.3	QC analysis and acceptance limits provided (MS, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	Х		A A A A A A A A A A A A A A A A A A A
2.5	Detection limits provided; PQL and MDL(or (DL), MDA and Lc	X		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	X		
2.11	TAT met	X		
2.12	Holding times met	X		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TtC (if requested) data provided	Х		

Contract Verification Review (Continued)

3.0 Data Quality Evaluation

ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1 Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	N/A		
3.2 Quantitation limit met for all samples	X		
Accuracy a) Laboratory control sample accuracy reported and met for all samples	<u>.</u>	Χ	VOC LCS recovery failed for Methylene Chloride (1203121132)
b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
c) Matrix spike recovery data reported and met		Х	VOC PS recovery failed for 2-Butanone, Acetone (1203121130)
Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		
b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
Blank data a) Method or reagent blank data reported and met for all samples	Х		
b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	Trichloroethylene detected in EB1 (096147-001)
3.6 Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X	and the second second	
3.7 Narrative addresses planchet flaming for gross alpha/beta	X		`
3.8 Narrative included, correct, and complete	X		
3.9 Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151	N/A		

Contract Verification Review (Continued)

4.0 Calibration and Validation Documentation

Item	Yes	No	Comments
4.1 GC/MS (8260 and 8270)			
a) 12-hour tune check provided	×		
b) Initial calibration provided	X	THE SECOND SECON	
c) Continuing calibration provided	X		
d) Internal standard performance data provided	×		
e) Instrument run logs provided	×		
4.2 GC/HPLC (8330, 8082, 9070A, and 8010)	anethetestrocomicsephined phototoperanopology N/A	alkuttibus us amerockiren yr slannishterdiblaanis ocumpany y	дей романия и пользору, у пред 1888 года пред 1888 года под 1888 года под 1888 года под 1888 года года года год
a) Initial calibration provided			
b) Continuing calibration provided	N/A		
c) Instrument run logs provided	N/A		
4.3 HRGC/HRMS (1668)	N/A	TO THE STANDARD AND AND AND AND AND AND AND AND AND AN	A), MENTALON CONTROL CONTROL OF A CONTROL CONT
a) 12-hour tune check provided	**************************************		
b) Initial calibration provided	N/A		
c) Continuing calibration provided	N/A		
d) Internal standard performance data provided	N/A		7,72
e) Labeled compound recovery data provided	N/A	<u> </u>	

f) RRTs for samples and standards provided	N/A
g) Ion abundance ratios for samples and standards provided	N/A
h) Instrument run logs provided	N/A
4.4 LC/MS/MS (6850)	N/A
a) Initial calibration provided	
a) Initial Calibration provided	
b) Continuing calibration provided	N/A
c) CRI provided	N/A
d) Internal standard performance data provided	N/A
a, monar standard ponomianos data profitada	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
a) Oblasia i isata a satis a sani dad (- sablasata a da)	N/A
e) Chlorine isotope ratios provided (perchlorate only)	N/A
f) ICS provided (perchlorate only)	N/A
4.5 Inorganics (metals)	
a) Initial calibration provided	N/A]
,	
b) Continuing calibration provided	N/A
b) Continuing candidation provided	
	N/A
c) ICP interference check sample data provided	N/A
d) ICP serial dilution provided	N/A
e) Instrument run logs provided	N/A
4.6 Radiochemistry and General Chemistry	NA
a) Instrument run logs provided	, , , ,
a) manunjent iun ioga provideu	

Contract Verification Review (Concluded)

5.0 Data Anomaly Rep	port
----------------------	------

Item	Yes	No	Comments
5.1 DAR completed for monitoring and surveillance sample data	N/A	- Company	
5.2 Problems or outliers noted		Х	
5.3 Verification or reanalysis requested from lab		X	

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies have been noted.

Sample/Fraction No.	Analysis			Problems/Co	mments/Resolutions	
,						
Were deficiencies unresolved	l? θ Yes x No					
Based on the review, this date	a package is complete.	×Υ	′es	θ Νο		
If no, provide nonconformanc	e report or correction request	number	and	d date correction	n request was submitted:	_
Reviewed by:		Date:	08/04/2014			
Were resolutions adequate a	nd data package complete?	θYes	θ Νο			
Closed by:	Date:		_			
				5	COC: 615591, 615592	

FIELD SAMPLING FORMS OCTOBER 2014 MIXED WASTE LANDFILL GROUNDWATER MONITORING

Dept: 4142 Well Location: MWL - BW	Date: 10/16/14 Time:0755
Activities: Groundwater Monitoring and Sampling (Anyone has the right to cease field activities for	or safety concerns. The buddy system will be used when needed.)
Weather Conditions: Temp: <u>44.9</u> °F Wind Speed: <u>MPH</u>	Humidity: 40.6 % Wind Chill NA °F
Chemicals Used: <u>Acids in sample containers, stan</u> Other:	andard solutions, Hach ACCU-VAC ampules M 11-4-14
Section	ty Topics Presented
Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary. Wear safety boots.	
Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.
⊠ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
☑ Be aware of chemical hazards.	
Wear nitrile or latex gloves when sampling.	☑ Wear communication device (cell phone, EOC pager).
☑ Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: Sandia Medical Clinic Phon	<u> </u>
RobertLynch	Attendees Signature
Printed Name William Gibson	Albert Sutille
William Gibson Printed Name	Signature Signature Signature
Printed Name	Signature
Printed Name	Signature

Dept: 4142 Well Location: MWL-mw	Date: 10/17/14 Time: 0800
Activities: Groundwater Monitoring and Sampling (Anyone has the right to cease field activities for	safety concerns. The buddy system will be used when needed.)
-	Humidity: 46,8 % Wind Chill NA°F
Chemicals Used: Acids in sample containers, stan Other:	dard solutions, I lach ACCU-VAC ampules 74
Safety	Topics Presented
Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	⊠ Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.
☑ Wear safety boots.	☑ Be aware of electrical hazards
☑ Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.
☐ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.
Be aware of chemical hazards.	☑ Be aware of biohazards (snakes, spiders, etc.)
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).
☑ Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.
Hospital/Clinic: <u>Sandia Medical Clinic</u> Phone	
RobertLynch	Attendees Wolffingh
Printed Name	Signature 13-11
William Gibson Printed Name William Gibson Printed Name	Signature Signature Signature
Printed Name	Signature
Printed Name	Signature

Dept: 4142 Well Location: MWL-MW	Date: 10/20/14 Time: 0755					
Activities: Groundwater Monitoring and Sampling (Anyone has the right to cease field activities for sa	afety concerns. The buddy system will be used when needed.)					
Weather Conditions: Temp: <u>62.7</u> °F Wind Speed: <u> </u>	Humidity: <u>56.5</u> % Wind Chill <u>N4</u> °F					
Chemicals Used: Acids in sample containers, stand Other:	ard solutions. Hach ACCU-VAC ampules 17 11-4-14					
Safety	Topics Presented					
☑ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	⊠ Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated.					
☑ Wear safety boots.	☑ Be aware of electrical hazards					
Use safe lifting practices. Wear leather gloves if necessary.	⊠ Be aware of pressure hazards.					
☐ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.					
Be aware of chemical hazards.	⊠ Be aware of biohazards (snakes, spiders, etc.)					
☑ Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).					
Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.					
Hospital/Clinic: Sandia Medical Clinic Phone: Robert Lynch Printed Name William Gibson Printed Name ALFRED SANTILLANCES	Attendees Signature William Aily Signature					
Printed Name	Signature					
Printed Name	Signature					

Dept: 4142 Well Location: MWL-MW	8 Date: 10/21/14 Time: 0753				
Activities: Groundwater Monitoring and Sampling	•				
(Anyone has the right to cease field activities for sa	fety concerns. The buddy system will be used when needed.)				
Weather Conditions: Temp: 62.9 °F Wind Speed: MPH	Humidity: 63.8% Wind Chill WA°F				
Chemicals Used: Acids in sample containers, stands Other:	ard solutions. Hach ACCU VAC ampules				
Safety T	Opics Presented				
☑ Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	 ☑ Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated. 				
☑ Wear safety boots.	☑ Be aware of electrical hazards				
Use safe lifting practices. Wear leather gloves if necessary.	☑ Be aware of pressure hazards.				
☑ Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.				
☑ Be aware of chemical hazards.					
☑ Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).				
Wear chemical safety goggles.	☑ Avoid spilling purge / decon water.				
Hospital/Clinic: Sandia Medical Clinic Phone: RobertLynch Printed Name	Attendees Signature Signature				
William Gibson Printed Jame	William JAily Signature				
HAFRED SANTILL ANE	Signature Signature				
Printed Name	Signature				
Printed Name	Signature				

Dept: 4142 Well Location: MWL-MW	7 Date: 10/29/14 Time: 0810					
Activities: Groundwater Monitoring and Sampling	afety concerns. The buddy system will be used when needed.)					
Weather Conditions: Temp: 6.1 °F Wind Speed: 6 MPH Chemicals Used: Acids in sample containers, stand	Humidity: 36.3 % Wind Chill NA °F					
	Topics Presented					
Be aware of slips, trips, and falls. Keep work area clean and use a stepping stool when necessary.	 Be aware of environmental conditions (heat / cold stress). Dress accordingly. Wear sunscreen if necessary. Stay hydrated. 					
☐ Wear safety boots.	☑ Be aware of electrical hazards					
Use safe lifting practices. Wear leather gloves if necessary.	■ Be aware of pressure hazards.					
Be aware of pinch points on pump cable reel and hydraulic tailgate lift.	☑ No eating or drinking at sampling counter.					
Be aware of chemical hazards.						
Wear nitrile or latex gloves when sampling.	Wear communication device (cell phone, EOC pager).					
图 Wear chemical safety goggles.	■ Avoid spilling purge / decon water.					
Robert Lynch Printed Name Printed Name Printed Name	Attendees Signature Signature Signature					
Printed Name	Signature					
Printed Name	Signature					
Printed Name IMPORTANT NOTICE: A printed copy of this documen	Signature					

Project Name: MWL	Project No.: 146422,10.11.01				
Well I.D.: MWL-BW2	Date: 10/16/14				
Well Condition:	Weather Condition:	**************************************			
Method: Portable pump X	Dedicated pump	Pump depth: <u>496'</u>			

PURGE MEASUREMENTS

Depth to Water	Time 24	Vol. (L/gal)	Temp	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	Pol	Comments
(ft)	oor naar maa ooo oo oo o									
480.06	08/1		.51	ART-		***************************************			***************************************	
48273		5	18.74	664.0	234.1	7.13	0.25	15.6	1.45	
483.45	0859	10	19.30		217.6		0.84	21.3	1.96	
483.96	0918	15	19.66		217.0	7.16	0.35	21.6	1.97	onnant statum
484.39	0935	20	1 1	677.7	209.7		0.43	171.8	1.61	
484.70	O	25	20.32		2020	7.13	0.19	14.8	1.33	A - 1
484.94		30		698.9	200.8		0.19	12.9	1.15	Antalana
485.04		30		703.6	195.8	7.12	0.23	12.3	1.09	
485.12		34		706.8	193.7	7.12	0.21	11.8	1.05	***************************************
485,22		36	20.96	707.1	1921	7.12	0.18	น.3	1.00	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
485-31		38		707.3	192.1	7.12	0.22	11.1	0.98	200000000000000000000000000000000000000
	1039			mpling	2					- 3
)					
		-				***************************************				
							***************************************			***************************************
										00A0AA4A
	**************************************		1			4,000		***************************************		00000000000000000000000000000000000000
	100 A								***************************************	**************************************
					- III-quarter					
The state of the s				And the second of the second				J	-1.6 g	ials purged
	Approximate Apply Approximate Apply				ar property and the second				from	tubing
	A William Ad A Waller					,			08	318

Project Name: MWL	Project No.: 146422.10.11.01				
Well I.D.: MWL-MW 7	Date: 10/17/14				
Well Condition:	Weather Condition:	***************************************			
Method: Portable pump X	Dedicated pump	Pump depth: 496'			

PURGE MEASUREMENTS

Depth to	1 1	Vol. (L(gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	pН	Turbidity (NTU)	DO (%)	DO mg/L	Comments
Water (ft)	hr	(Jenje	(0)	(рыст)	(1134)	and the state of t	(110)	(70)	7/-	
489.98	0822		517	net-			<u> </u>			
490.91		ົລ	18.14	547.1	349.3	7.37	0.50	71.0	6.69	The state of the s
491.02		4	19.44		335.3		0.52	70.7	6.49	^ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
491.09	0942	6	20.51		332.1	7.39	0.44	70.1	6.30	
491.19	1000	8	2051	579.5	330.7		0.42	69.2	6.31	
49123		9	20.89	583.5	329.2	7.37	0.32	69.7	6.99	VV-W-V
491.25		10	20.87			7.37	0.33		6.22	
491.26				584.2	397.8		0.23	70.0	<u>المر،ما</u>	
491.27	*	12	20.94	585.B	327.0	7.37	0.26	69.7	6.19	
	1041	A COLUMN TO THE PARTY OF THE PA	SM	mplin	9			*****************	·	
								,	*	

										CONTRACTOR CONTRACTOR
							,,,			
									<u></u>	
		· · · · · · · · · · · · · · · · · · ·		an Anna						
***									. 1 /	
	numan numan					an and a second			Co	tubing
				The state of the s		Annual An			<u>mom</u>	4001ng
		J								

Project Name: MWL	Project No.: 146422.10.	11.01
Well I.D.: MWL-MW 7	Date: 10/29/14	
Well Condition: Good	Weather Condition: See	tailgate form
Method: Portable pump X	Dedicated pump	Pump depth: 496'

PURGE MEASUREMENTS

Depth to Water (ft)	Time 24	Vol. (L/ga)	Temp (°C)	SC (μS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO	Comments
490.14	0828		STX	Rt						
491.30	0854	Э	16.45	532.7	112.6	7.44	0.67	73.3	7.17	1.86
491.52		4		562.2	70.5	7.56	0.59	73.5	\$86€	6.86
491.60	0925	6	19.31	572.1	52.1	7.58	0.62	74.0	6.81	
491.62	0941	B	19.06	57,8,8	41.8	7.58	0.58	73.0	6.75	
491.62	0957	10	19.11	571.2	39.9	7.58	0.47	72.4		
491.64	1005	/(19.16	572.2	37.5	7.58	0.30	13.3	6.68	
491.64	1013	12	19.17	571.4	37.2	7.58	0.32	73.5	6.65	
	1014		SAV	npline				_		>
					_					
			_							
					***********			۲	-1.60	als purged
					-				from	als purged tubing
									084	iò "

Project Name: MWL	Project No.: 146422.10.11.	01
Well I.D.: MWL-MW 8	Date: 10/21/14	
Well Condition:	Weather Condition:	
Method: Portable pump X	Dedicated pump	Pump depth: 497'

PURGE MEASUREMENTS

Depth to Water	Time 24 hr	Vol. (Legal)	Temp (°C)	SC (μS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO Comments mg/L
(ft) 49[.58	0810		STY						>
493.25	0848	ر ا	16.01	521.8	313.6	7.45	0.35	50.4	4.96
493.35	0925	Ч	19.40	566.8	305.1		0.32	<i>5</i> 0.7	4.65
493.81		6	20.33	584.9	249.5		0.25	45.7	ピート
493.55	1025	В	21.70	605.9	279.5	7.43	0.45	46.0	3.95
493.86	1034	9	21.78	6001	280-7	7.44	0.27	42.7	3.73
494.11	1045	10	21.30	603.7	281.5	7.42	0.28	37.7	3.84
494.18	1057	11	21.42	604.4	275.0	7.43	0.37	35.6	3.14
	1058						•		
		•							
				,					
		-							
	_								
		_							
									
		_							
		-							
									1.6 mals oursed
								_	from tubing 0827
									0827

Project Name: MWL	Project No.: 146422.10.	11.01	
Well I.D.: MWL-MW 9	Date: 10/20/14		
Well Condition:	Weather Condition:		
Method: Portable pump X	Dedicated pump	Pump depth: <u>497'</u>	

PURGE MEASUREMENTS

Depth to		Vol. (L(gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO	Comment	5
Water (ft)	hr			(p).	()		(* 2 2 ,	()	04		
492.16	0813		STA	Rt-							>
494.06	0848	つ	1688	5228	271.8	6.99	8.40	3.85	39.7	2022 2022	10-20-14
494.81	1 - 1	4	16.62	521.0	247.1	7.22	0.55	3.10	31.9	waa ,	10-20-14
495,38	0923	b	16.95	5293	218.4	7.37	0.63	२५.भ	9 .45	***************************************	
495.75		8	14.99	544.1	190.7	7.31	0.58	22.6	2.14		
495,86	0954	8	19.97	566.4	178.6	7.34	0.46	20.8	1.91		
495,87	1006	10	20.94	585.8	171.8	7.35	0.47	23.6	2.10		00.000.000.000.000
495.84	1018	11	2097	584.4	(7).3	7.35	6.44	23.0	2.01		0.0000000000000000000000000000000000000
***************************************	10/9		SA	npling							>
***************************************				7 .	}		***************************************				
***************************************							***************************************			10000000000000000000000000000000000000	***
***************************************										***************************************	
										gragas	
										.,,,,,,	
		_						^	-1.40	als pu tubi	raped
									Kron	· tubi	ng
		-							68	29	6

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project No.: 146422.10.11.01 SNL/NM Project Name: MWL Calibrations done by: R Lynch Make & Model: YSI EXO1 YSI 6820 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: 13C101167 YSI 650 MDS (S/N); NA pH Calibration pH Calibrated to (std): 7.00 pH sloped to (std): 10.00 Reference value: 4.00 7.00 10.00 Value Value Value Temp Temp Temp L. Time; 3-99 缀. 7.00 18.1 0.00 18.1 2. Time: 18.2 4.01 18.3 7.00 0.01 C,81 3. Time: 4. Time: Standard lot no.: 4AE330 4AE635 4AD984 Expiration date: 5/16 5/16 4/16 SC Calibration Reference Value: 1225 uS Standard Lot No.: 4AE659 Temp Value Expiration Date: 5/15 1727 8.2 1. Time: 2. Time. 1234 3. Time: 4. Time. ORP Calibration 220 mV Standard Lot No. 4AE189 Reference Value: Value Temp Expiration Date 2/15 220.2 18.2 1 Time 220.4 2. Time: 3. Time: 4. Time: DO Calibration 81% air saturation @ 5200 ft. Atmospheric Pressure in Hg Calibration Value: 82.1 I Time. 2. Time: 3. Time: 4. Time:

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

TURBIDIMETER Make & Model: HACH 2100P HACH 2100Q Reference Value I 20 100 800 Standard Lot No. A4164 A4211 A4195 A4193 1. Time 0757 09 20.1 101 799 2. Time 1045 .13 20.4 99.8 794 3. Time	SNL/NM Project Name: MV	√ ∟	Project No.:	Project No.: 146422.10.11.01			
Make & Model: HACH 2100P HACH 2100Q Serial No. S/N 10060C003010 Reference Value .1 20 100 800 Standard Lot No. A4164 A4211 A4195 A4193 1. Time 0757 09 20.1 101 799 2. Time 1045 .13 20.4 99.8 794 3. Time 4. Time 4. Time 4. Time	Calibration done by: R Lynch		Date:	Date: 10/16/14			
Reference Value .1 20 100 800 Standard Lot No. A4164 A4211 A4195 A4193 1. Time 0757 D9 20.1 101 799 2. Time 1045 .13 20.4 99.8 794 4. Time			TURBIDIMETER	<u> </u>			
Standard Lot No. A4164 A4211 A4195 A4193 1. Time 0757 D9 20.1 101 799 2. Time 1045 1.13 20.4 99.8 794 4. Time	Make & Model: HACH 210	00P HACH 2100Q	Serial No. 8	/N 10060C003010			
1. Time 0757 29 20.1 101 799 2. Time 1045 .13 20.4 99.8 794 3. Time 4. Time	Reference Value	, i	20	100	800		
2. Time 1045 ·13 20·4 99.8 794 3. Time 4. Time	Standard Lot No.	A4164	A4211	A4195	A4193		
2. Time 1045 .13 20.4 99.8 794 3. Time 4. Time	1. Time 0757	209	20.1	101	799		
3. Time 4. Time	2. Time 1045		20.4	99.8	794		
	3. Time				100 mm maximus (100 mm)		
Comments:	4. Time						

GROUNDWATER	SAMPLE CO	LLECTION F	TELD EQUIP	MENT CHE	JK LOG	Page 1 of Z
SNL/NM Project Name: MWL	Manager 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SNL/NM Project No., 146422.10,11,01			
Calibrations done by: R Lynch	4400644400644400644		Date: 10/	17/14		
Make & Model: YSI EXO1		······································		······	477377777777777777777777777777777777777	
YSI 6820 Sonde (S/N) with DC) Fe nH ORP an	d temperature prof	nee: 13C101167			
	z, 150, pri, Orei , an	a temperature pro-	/w	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*	
YSI 650 MDS (S/N). NA	, manager 1	***************************************	22 WHAT TOO SEE			
	,	pH C	alibration		····	
pH Calibrated to (std): 7.00			pH sloped to (std): 10.00		
Reference value:		4.00		7.00		10.00
1. Tinie: 0642	Value	Temp	Value	Temp	Value	Temp
1. Time: 0647 2. Time: 1310	4.00	18.1	7.00	18,9	10.00	18.1
3. Time:	1 -(.00)	(0,0	1.00	I LOV.	10,00	
4 Time;						
Standard lot no.,	4AE330	······································	4AE635		4AD984	
Expiration date:	5/16		5/16 4/16			
× × × × × × × × × × × × × × × × × × ×		SC C	alibration			
Reference Value: 1225 uS			Standard Lot I	No.: 4AE659		
· ·	Value	Temp	Expiration Da	te:	5/15	
1. Time: 064(1390	18.0				
2. Time: 1309	[393	18.2				
3. Time						
7. 13HG		O.D.D.	THE RESERVE		D.E & - (3) 1855, 25.0	2 4 (\$14)85551 2550
	220 001	ORPU	Calibration	- u. 46E190	*	
Reference Value:	220 mV		Standard Lot I			
***************************************	Value	Temp	Expiration Da	te:	2/15	
1. Time: 0644	219.8	1.8.0				
2 Time. 131(1.066	18.2				
3. Time	*					
4. Time:						
	-	DO C	alibration	Anna Anna Anna Anna Anna Anna Anna Anna		
Calibration Value:	81% air satur	ation @ 5200 ft.		Atmospher	ic Pressure in Hg	****
1. Time: 0640	82.	0		24.73		***************************************
2. Time: 1308	82.		<u> </u>	24.74	103002 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
3. Time	***************************************	***************************************	WWW.	^^~	###***	***************************************
4. Time:	***		44		*** ***********************************	

LTS GW-2012-002 (11-2012)

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

FOP 05-02

SNL/NM Project Name: MW	L	Project No.;	Project No.: 146422.10.11.01			
Calibration done by: R Lynch	Date: [0	17/14				
		TURBIDIMETER	V			
Make & Model: HACH 210	00P HACH 2100Q	Serial No. S/	N 10060C003010			
Reference Value	.1	20	100	800		
Standard Lot No.	A4164	A4211	A4195	A4193		
1. Time 0808	.16	20.1	99.7	802		
2. Time 1162	.19	20.3	/0/	804		
3. Time						
4. Time						
				•		

GROUNDWATE	N SAMIFLE COL	LECTION F	ELD EQUI	MIENT CHEC	JK LOG	ragerorz
SNL/NM Project Name: MV	NL	-	SNL/NM Project No.: 146422.10.11.01			A SAME AND ASSESSMENT PORTION OF THE PROPERTY
Catibrations done by: R Lyt	nch		Date:	10/20/14	,	
Make & Model: YS EXC	D1					
YSI 6820 Sonde (S/N) with	DO, Ec. pH, ORP, and	temperature prob	oes: 13C101167	Mineral Mineral Manager		
YSI 650 MDS (S/N): NA						
**************************************	**************************************	рН С	alibration		-	***************************************
pH Calibrated to (std): 7.00	j		pH sloped to	(std): 10.00	~^^^^	
Reference value;	4	.00		7.00		10,00
MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Value	Temp	Value	Temp	Value	Temp
1 Time: 0644	3.99	19.2	7.00	19.0	10.01	19.0
2. Time: (4	4.00	14.4	7.01	19.3	10.00	19.3
3. Time:						
4. Time.	7					,,,,,,,,,,
Standard fot no.:	4AE330	-	4AE635 4AD984			
Expiration date:	5/16	·····	5/16 4/16			
		SC C	alibration			
Reference Value: 1225 uS			Standard Lot	No.: 4AE659		
News(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(1999)(199	Value	Temp	Expiration Da		5/15	
1. Time: 0643	1924	19.3			. (4 & 4 4 6	
2. Time: 1//3	1925	19.4	Tabi			
3 Tune:		, <u>, , , , , , , , , , , , , , , , , , </u>	Company (Eg. 1981) III			
4. Time						
		ORP (Calibration			• • • • • • • • • • • • • • • • • • •
Reference Value:	220 mV		Standard Let 1	No. 4AE189		
	Value	Temp	Expiration Da	ite;	2/15	
1. Time. 0646	590.9	19.2				
2. Time: 11/5	330.1	19.4				
3. Time:						
4 Time:						
	***************************************	DO C	alibration	•	•••	•
Calibration Value.	81% air satura	tion @ 5200 M.		Atmospheri	c Pressure in Hg	
1, Time. 0647	82.	3		24.77		****
2. Time: 11 12	82.	~	į a	74.74		
3 Time:			-AN LAN JOURNAL ON LANS	2000		
4. Time:	***		,		-	

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MW		Project No.:	Project No.: 146422.10.11.01			
Calibration done by: R Lynch	Date:	10/20/14				
	Т	URBIDIMETER				
Make & Model: HACH 210	00P HACH 2100Q	Serial No. S	/N 10060C003010			
Reference Value	.1	20	100	800		
Standard Lot No.	A4164	A4211	A4195	A4193		
1. Time 0800	.09	19.9	103	802		
2. Time (0 35	١,١	20.2	101	796		
3. Time						
4. Time						
Comments:	<u></u>			·		
	•			·		
,						
	·					

U.V.	OUNDMAILERS	SAMELIE COLI	DECTION	ELD EQUIFM	IMAL CIRM	K LOO	rage tota
SNL/NM	Project Name; MWL	Annobled of the second		SNL/NM Projec	no.: 146422.	10,11.01	***************************************
Calibratio	ons done by R Lynch	***************************************		Date: 10/21/14			
Make & 1	Model: YSLEXO1		***************************************	<u> </u>			
YSt 6820	Sonde (S/N) with DO	, Ec, pH, ORP, and	temperature prob	es: 13C101167		***************************************	·······#F
YSI 650 I	MDS (S/N); NA	:				•	
Add 5 (1997 1997 1997 1997 1997 1997 1997 199	***************************************	***************************************	pH Ca	dibration			****
pH Calib	rated to (std): 7.00	***************************************		pH sloped to (st	d): 10:00	***************************************	
Reference	value:	4.0	00	7	00		0.00
		Value	Temp	Value _	Temp	. Value	Temp
1. Time:	0639	4.00	18.9	6.99	18,9	0.00	18.9
2. Time:	1311	4.01	(9.1	7.00	19.2	10.00	19.2
3. Time:	200000000000000000000000000000000000000						
4. Time.					******		
Standard		4AE330 4AE635 4AD984					
Expiration	a date:	5/16	· · · · · · · · · · · · · · · · · · ·	5/16 4/16			
			SC Ca	libration	-		
Reference	. _{Value:} 1225 uS			Standard Lot No	.: 4AE659		
	- XXIII)	Value	Temp	Expiration Date:	-	5/15	
I. Time	0638	1222	18.9	10 Mar. 10 Mar			
2. Time:	1310	1225	19.2				
3. Time:					6		
4. Time:							1-3-50-3
			ORP C	alibration			
Reference	Value:	220 mV		Standard Lot No	4AE189		
		Value	Temp	Expiration Date		2/15	
1. Time:	0641	220.2	18.9				is salah dirik
2. Time:	1312	220.3	19.2				
3. Time:							
4 Time.							
		•	DO Ca	libration			
Calibratio	n Value.	81% our saturat	ion @ 5200 A	order Av. Avedan.	Aimösphèri	c Pressure in 11g	***************************************
1 Time	0637	81.8	3	24	1.74		
2. Time:	1309	81.9		24	.76		
3. Time;							
4. Time:							

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWL		Project No.:	Project No.: 146422.10.11.01			
Calibration done by: R Lynch	Date:	10/21/14				
		TURBIDIMETER				
Make & Model: HACH 2100) > HACH 2100Q	Serial No. S/	N 10060C003010			
Reference Value	.1	20	100	800		
Standard Lot No.	A4164	A4211	A4195	A4193		
1. Time 0755	.15	20.1	99.6	798		
2. Time	·13	20.2	99-9	796		
3. Time				. `		
4. Time						
Comments:						
		,		,		
, .						

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project No.: 146422.10.11.08 SNL/NM Project Name: MWL Date: 10/29/14 Calibrations done by R Lynch Make & Model: YS! EXO1 YSI 6820 Sonde (S/N) with DO, Ee, pH, ORP, and temperature probes: 13C101166 Y\$I 650 MD\$ (\$/N): NA pH Calibration pH Calibrated to (std): 7,00 pH sloped to (std): 10,00 Reference value 4.00 7.00 10.00 Value Value Temp Temp Value Тепф I Time 4.01 7.00 18.1 0.00 2. Time. 4.60 7.00 10,00 3 Time: 4. Time: Standard lot no.: 4AE330 4AE635 4AD984 Expiration date: 5/16 5/16 4/16 SC Calibration Reference Value: 1225 uS 4AE659 Standard Lot No.: Temp Value Expiration Date: 5/15 12251 2. Time: 1224 3. Time: 4. Time: **ORP Calibration** Standard Lot No. 4AE189 220 mV Reference Value: Value Temp Expiration Date 2/15 L. Time: 220. 2. Time: 3. Time 4. Time: **DO** Calibration Calibration Value: 81% air saturation @ 5200 ft. Atmospherie Pressure in Hg 82.1 1. Time: 0658 82.2 2. Time: 3. Time: 4. Time:

LTS GW-2012-002 (11-2012) FOP 05-02

GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: M	WL	Project No.: 1	Project No.: 146422.10.11.08		
Calibration done by: R Lynd	h	Date: 10/29/14			
		TURBIDIMETER			
Make & Model: HACH 2	100P HACH 2100Q	Serial No. S/	N 14060C033238		
Reference Value	.1	20	100	800	
Standard Lot No.	A4164	A4211	A4195	A4193	
1. Time 08/5	.13	20.1	99.7	799	
2. Time 1091	.)(30.3	102	796	
3. Time					
4. Time			-		

Project Name: MWL-GWM	PL(ロール・プライ) Ionitoring Well ID#: MWL -BWS 多い こ	l i			
The following equipment was d	econtaminated at completion of sampling activi	ties in accordance with FOP-05-03			
Pump and Tubing Bundle ID #: 1806-814	Water Level Indicator	r ID #: 210269			
Personnel Performing Decontamination: Alfred Santillanes Print Name: Robert Lynch Print Name: Initial: Initial:	Personnel Performing Alfred Santillanes Print Name: Robert Lynch Print Name: Condition of Equipment	Print Name: Robert Lynch Print Name: Initial: Initial: Initial:			
Pump: Excellent Tubing	Bundle: Excellent Wa	ater Level Indicator: Good			
	List of Decontamination Materials				
Distilled or Deonized (circle of Source: Culligan Lot Number: 09-17-14	Manufacturer: AR Lot Number: A0	31 ROC			

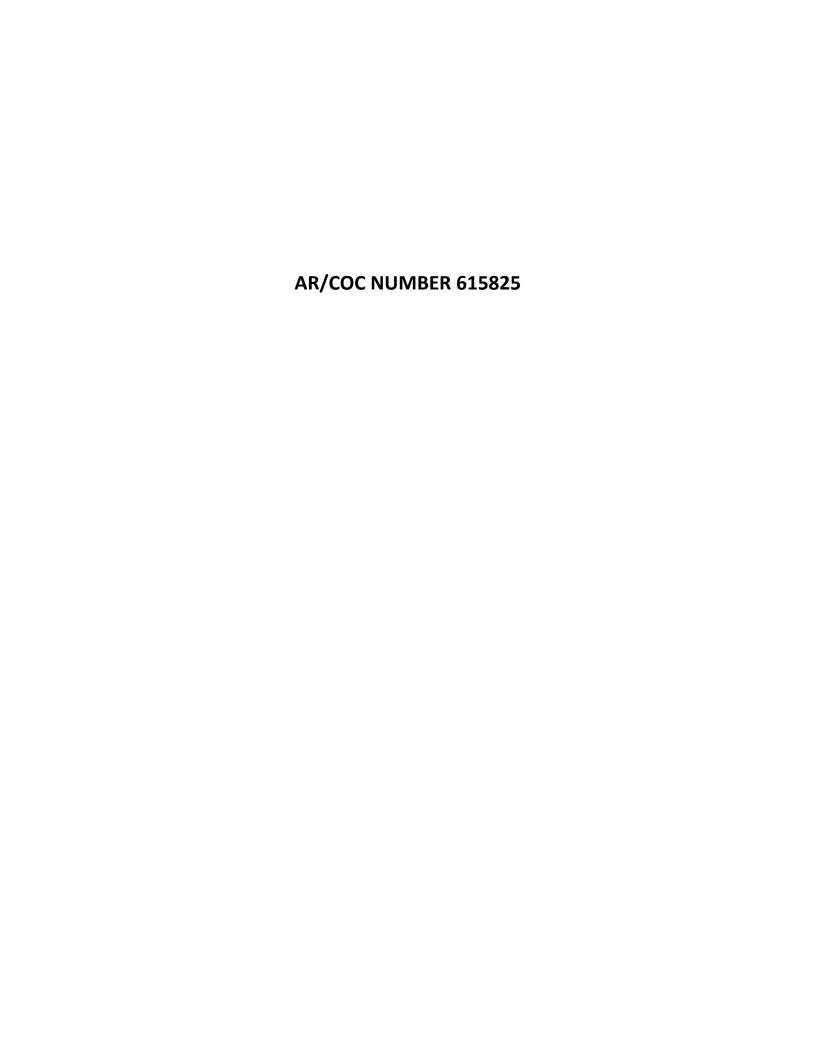
Project Name: MWL-GWM	Monitoring Well ID #: MWL-MW7		Washit -	Date: 10-17-14
The following equipment we	s decontaminated at completio	on of sampling a	ctivities in accordance with F	OP-05-03
Pump and Tubing Bundle ID #: 1806-814	W:	ater Level Indic	entor ID #; 210269	·
Personnel Performing Decontamination: William Glbson Print Name: Robert Lynch Print Name: Initial	A W Pri	ersonnel Perforn /illiam Gibson int Name: lobert Lynch int Name:	ming Decontamination:	JAS Justial: ZL Justial:
	Condition of l	Equipment	,	
Pump: Excellent Tub	oing Bundle: Excellent		Water Level Indicator: G	ood
List of Decontamination Materials				
Distilled or Deonized (circle	e one)	Grade:	HNO ₃	
Source: Culligan		UN#	2031	
Lot Number: 10-15-14	M	fanufacturer:	AROC	
		Lot Number:	A0316863	

Project Name: MWL-GWM	Monitoring Well ID # : MWL-MW9	Date: 10-20-14	
The following equipment wa	s decontaminated at completion of sampling a	activities in accordance with FOP-05-03	
Pump and Tubing Bundle ID #: 1806-814	Water Level Indi	cetor ID #: 210269	
Personnel Performing Decontamination: William Gibson Print Name: Alfred Santillanes Print Name: Initial:	Personnel Perfor William Gibson Print Name: Alfred Santillane Print Name: Condition of Equipment	eming Decontamination: Initial: Initial:	
Pump: Excellent Tub	ing Bundle: Excellent	Water Level Indicator: Good	
List of Decontamination Materials			
Distilled or Deonized (circles Source: Culligan	Grade:	HNO ₃ Reagent 2031	
Lot Number: 10-15-14	Manufacturer: Lot Number:		

Project Name: MWL-GWM	Monitoring Well ID # : MWL-MW8		Date: 10-21-14	
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03				
Pump and Tubing Bundle ID #: 1806-814	Water Level Indi	Water Level Indicator ID #: 210269		
Personnel Performing Decontamination: Robert Lynch Print Name: Alfred Santillanes Print Name: Initial:	Personnel Perform Robert Lynch Print Name: Alfred Santillane: Print Name:		itial:	
Condition of Equipment Pump: Excellent				
List of Decontamination Materials				
Distilled or Deonized (circle one)	e one)	HNO ₃		
Distinct of Designation (Office)		Reagent		
Source: Culligan	UN#:	2031		
Lot Number: 10-15-14	Manufacturer:	AROC	·	
	Lot Number:	A0316863		

Project Name: MWL GWM	Monitoring Well ID # : MWL-MW7		Date: 10-28-14	
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03				
Pump and Tubing Bundle ID #: 1806-814	Water Level In	Water Level Indicator ID #: 62187		
Personnel Performing Decontamination:	Personnel Perf	orming Decontamination:		
Robert Lynch Print Name: Initial:	Print Name:	Ini	itial:	
Print Name: Initial:	Print Name:	Ini	tial:	
	Condition of Equipment			
Pump: New Tub	ing Bundle: New	Water Level Indicator: Go	ood	
List of Decontamination Materials				
Distilled or Deonized (circle on	a ana)	HNO ₃		
	Grad	e: Reagent		
Source: Cuiligan	UN	±: 2031		
Lot Number: 101514	Manufacture	r: AROC		
	Lot Numbe	r: AC305629		

FOP 05-03


Project Name: MWL GWM	Monitoring Well ID # : MWL-MW7	Date: 10-29-14		
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03				
Pump and Tubing Bundle ID #: 1806-814	Water Level Indi	icator ID #: 62187		
Personnel Performing Decontamination:	Personnel Perfor	ming Decontamination:		
Robert Lynch Print Name: Initial:	Robert Lynch Print Name:	Initial:		
Tim Jackson Print Name: Initial:	Tim Jackson Print Name:	Initial:		
Condition of Equipment				
Pump: New Tub	ing Bundle: New	Water Level Indicator: Good		
List of Decontamination Materials				
Distilled or Deonized (circle one)	e one)	HNO ₃		
		Reagent		
Source: Culligan	UN #:	2031		
Lot Number: 101514	Manufacturer:	AROC		
	Lot Number:	A0305629		

SUMMARY SHEET FOR OCTOBER 2014 GROUNDWATER SAMPLES

Sample Summary for October 2014 MWL Groundwater Monitoring

Well ID	Sample Date	ARCOC	Sample Number	Sample Type	Associated Equipment Blank (ARCOC #/Sample #)	Associated Trip Blank (ARCOC #/ Sample #)	Associated Field Blank (ARCOC # / Sample #)	Comments
GEL Analytic	cal Data: Proje	ct Task # 14	6422.10.11.0	08, Service Order	# CF01-15			
MWL-BW2	16-Oct-14	615825	096697	Environmental	NA	615825 / 096698	615825 / 096696	
MWL-MW7	17-Oct-14	615827	096703	Environmental	615826 / 096700	615827 / 096705	615827 / 096702	
MWL-MW7	17-Oct-14	615827	096704	Duplicate	615826 / 096700	615827 / 096705	615827 / 096702	
MWL-MW7	29-Oct-14	615890	096857	Environmental	615889 / 096856	NA	NA	resample for radon only
MWL-MW7	29-Oct-14	615890	096858	Duplicate	615889 / 096856	NA	NA	resample for radon only
MWL-MW8	21-Oct-14	615829	096710	Environmental	NA	615829 / 096711	615829 / 096709	
MWL-MW9	20-Oct-14	615828	096707	Environmental	NA	615828 / 096708	615828 / 096706	
MWL-EB1	16-Oct-14	615826	096700	Equipment Blank	NA	615826 / 096701	NA	Equipment blank sample prior to MWL-MW7.
MWL-EB2	28-Oct-14	615889	096856	Equipment Blank	NA	NA	NA	Equipment blank sample prior to MWL-MW7 resample.
MWL-FB1	16-Oct-14	615825	096696	Field Blank	NA	615825 / 096698	NA	at MWL-BW2
MWL-FB2	16-Oct-14	615826	096699	Field QC	NA	615826 / 096701	NA	DI Water Source
MWL-FB3	17-Oct-14	615827	096702	Field Blank	NA	615827 / 096705	NA	at MWL-MW7
MWL-FB4	20-Oct-14	615828	096706	Field Blank	NA	615828 / 096708	NA	at MWL-MW9
MWL-FB5	21-Oct-14	615829	096709	Field Blank	NA	615829 / 096711	NA	at MWL-MW8

DATA VALIDATION REPORTS FOR ENVIRONMENTAL SAMPLES GROUNDWATER MONITORING OCTOBER 2014

www.againc.net

Memorandum - Revised

Date:

December 2, 2014

To:

File

From:

Monica Dymerski

Subject:

GC/MS Organic Data Review and Validation - SNL

Site: MWL GWM/SVM

AR/COC: 615825 SDG: 359291 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 4.

Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The ICAL %RSD was >40% but ≤60%, the ICV %D was >20% but ≤40% with negative bias, and the CCV %D was >40% but ≤60% with negative bias for methylene chloride. The associated sample results were non-detects and will be qualified UJ,I3,C3.
- 2. The ICAL %RSD was >15% but ≤40%, and the ICV %D was >20% but ≤40% with negative bias for bromomethane. The associated sample results were non-detects and will be qualified UJ,I3,C3.
- 3. The ICAL intercept was negative with absolute value > the MDL but $\le 3X$ the MDL for dibromochloromethane. The associated result for samples -002 and -008 were non-detects and will be **qualified UJ,15**.
- 4. The MS and MSD %Rs were < the lower acceptance limit but ≥10% for methylene chloride. The associated sample results were non-detects and will be qualified UJ,MS3.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The ICAL intercept was negative with absolute value > the MDL but $\leq 3X$ the MDL for dibromochloromethane. The associated result for sample -001 was a detect > 3X the absolute value of the intercept and will not be qualified.

The ICAL %RSD was >15% and ≤40% for bromoform. The associated sample results were non-detects and, since no second calibration infraction occurred for that analyte, will not be qualified.

Blanks

No target analytes were detected in the blanks except as follows. Acetone, bromodichloromethane, and dibromochloromethane were detected at concentrations < the PQL and chloroform at a concentration > the PQL in FB sample -001, associated with sample -002. The associated sample results were non-detects and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met except as noted above in the Summary section.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met except as follows. The %R was < the lower acceptance limit but ≥10% for methylene chloride. One LCS recovery is allowed to fall outside acceptance criteria since 36 analytes were reported. No sample data will be qualified as a result.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

One TB was submitted with the ARCOC. An FB was submitted with the ARCOC, associated with the field sample.

Level: I

Date: 11/24/14

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan

www.aqainc.net

Memorandum

Date:

November 24, 2014

To:

File

From:

Monica Dymerski

Subject:

Inorganic Data Review and Validation – SNL

Site: MWL GWM/SVM

AR/COC: 615825 SDG: 359291 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

One unfiltered sample was prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

ICP-MS Instrument Tune

The ICP-MS tunes met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries associated with the samples met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks except as follows. U was detected in the ICB and CCB at < the PQL. The associated sample result was a detect >5X the greatest ICB/CCB concentration and will not be qualified.

ICP -MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria. The MS analysis was performed on an SNL sample from another SDG. No sample data will be qualified as a result.

Laboratory Replicate

The replicate met all QC acceptance criteria. The replicate analysis was performed on an SNL sample from another SDG. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentration of Ca, Mg, Al and Fe were < that in the ICS solution.

ICP Serial Dilution

The serial dilutions met all QC acceptance criteria. The serial dilution analysis was performed on an SNL sample from another SDG. No sample data will be qualified as a result.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 11/24/14

www.againc.net

Memorandum

Date:

November 24, 2014

To:

File

From:

Monica Dymerski

Subject:

Radiochemical Data Review and Validation – SNL

Site: MWL GWM/SVM AR/COC: 615825 SDG: 359291

Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec – short list), EPA 900.0 (gross alpha/beta), EPA 906.0 (tritium), and SM 7500 Rn B (Radon-222 by Liquid Scintillation). Problems were identified with the data package that resulted in the qualification of data.

Gamma Spec:

- 1. All sample results which were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.**
- 2. The K-40 result was > the MDA but \leq 3X the MDA and will be qualified J,FR7.

Tritium:

1. The sample result was either < the associated 2-sigma TPU or < the associated MDA and will be **qualified BD,FR3.**

Gross Alpha/Beta:

1. The relative dilution factor between the parent sample and the gross alpha/beta MS/MSD QC samples was >5 and, as a result, the MS/MSD analyses were not used to evaluate gross alpha and gross beta sample data. The associated sample results will be **qualified J,MS1**.

Holding Times and Preservation

The sample fractions were prepared and analyzed within the prescribed holding times and were properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracers and /or carriers are not required for the methods used.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS/MSD met all QC acceptance criteria except as noted above in the Summary section.

Gross alpha/beta and radon-222:

It should be noted that the MS/MSD was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Gamma spec, gross alpha/beta and radon-222:

It should be noted that the replicate was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS recoveries met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 11/24/14

Sample Findings Summary

AR/COC: 615825 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 900.0/SW846 9310			
	096697-034/MWL-BW2	ALPHA (12587-46-1)	J, MS1
	096697-034/MWL-BW2	BETA (12587-47-2)	J, MS1
EPA 901.1			
	096697-033/MWL-BW2	Americium-241 (14596-10-2)	BD, FR3
	096697-033/MWL-BW2	Cesium-137 (10045-97-3)	BD, FR3
	096697-033/MWL-BW2	Cobalt-60 (10198-40-0)	BD, FR3
	096697-033/MWL-BW2	Potassium-40 (13966-00-2)	J, FR7
EPA 906.0 Modified			
	096697-036/MWL-BW2	Tritium (10028-17-8)	BD, FR3
SW846 8260B DOE-AL			
	096696-001/MWL-FB1	Bromomethane (74-83-9)	UJ, 13,C3
	096696-001/MWL-FB1	Methylene chloride (75-09-2)	UJ, 13,C3,MS3
	096697-001/MWL-BW2	Bromomethane (74-83-9)	UJ, 13,C3
	096697-001/MWL-BW2	Dibromochloromethane (124-48-1)	UJ, 15
	096697-001/MWL-BW2	Methylene chloride (75-09-2)	UJ, 13,C3,MS3
	096698-001/MWL-TB1	Bromomethane (74-83-9)	UJ, 13,C3
,	096698-001/MWL-TB1	Dibromochloromethane (124-48-1)	UJ, 15
	096698-001/MWL-TB1	Methylene chloride (75-09-2)	UJ, 13,C3,MS3

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615825

Site/Project: MWL GWM/SVM

Validation Date: 11/24/2014

SDG #: 359291

Laboratory: GEL Laboratories LLC

Validator: Monica Dymerski

Matrix: Aqueous

of Samples: 8

CVR present: Yes

Analysis Type: X Organic X Metals

AR/COC(s) present: Yes

Sample Container Integrity: OK

X Rad Gen Chem

Requested Analyses Not Reported													
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments							
None													
		_											
	8												
					345 1								

	Hold Time/Preservation Outliers													
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT						
None														
,														

Comments: Samples collected 10/16/2014.

Revised 7/2007

	of the think	,
Validated By:	Monica & Dymuski	

Organic Worksheet (GC/MS) - Revised

AR/COC #: 615825

SDG #:359291

Matrix: Aqueous

Laboratory Sample IDs: 359291001, -002, and -008

Method/Batch #s: 8260B: 1431851 Tuning (pass/fail): pass

TICs Required? (yes/no) no

			Calibratio	n		5X			355	MS/		5X	Lida Inli			
Analyte (outliers)	Int.	R	F RSD	CCV (ICV) %D	Method Blank	(10X) Blank	LCS %R	MS %R	MSD %R	MSD RPD	FB1 -001	(10X) FB1				
acetone	NA		√	√	✓	NA	1	1	✓	✓	3.63J	(36.3)				
bromodichloromethan	e NA		✓	✓	✓	NA	✓	✓	✓	✓	0.460J	2.30				
chloroform	NA		· /	✓	✓	NA	✓	1	✓	✓	4.65	23.25				
dibromochlorometha	e -0.32	.5	· /	✓	✓	NA	1	1	1	✓	0.990J	4.95				
methylene chloride	NA	1	50.2	(-32.4)/ -40.6	✓	NA	66.2	66.1	65.6	✓	1	NA				
bromomethane	NA		27.9		✓	NA	1	1	✓	✓	1	NA				
bromoform	NA		23.0	✓	✓	NA	✓	1	1	√	✓	NA				
						Surroga	ite Reco	very (Jutliers							
Sample ID																
None									1				\perp	_		
							IS Ou	tliers								
Sample ID Area	RT	Area	R	Area	RT		Area	F	T	Area		RT			Area	RT
None																

Comments: HTs OK, ICAL VOAA 10/28/14. Samples analyzed on 10/30/14. MS/MSD performed on -002

Inorganic Metals Worksheet

AR/COC #: 615825 SDG #: 359291 Matrix: Aqueous

Laboratory Sample IDs: 359291003

Method/Batch #s: 3005A/6020 (ICP-MS): 1429071(prep)/1429072

ICPMS Mass Cal (pass/fail) pass ICPMS Resolution (pass/fail) pass

Analyte			Ca	libratio	on		Method Blank	5X Blank or	LCS %R	MS %R	Lab Rep. RPD	Serial Dil. %D	ICS AB %R	ICS A ± MDL	CRA/ CRI			
(outliers)	Int.	R ²	ICV	CCV	ICB	ССВ		5X MDL							%R			
U	✓	✓	✓	✓	0.077J	0.07J	2. ✓	0.385	✓	✓	✓	✓	NA	NA	✓		$oxed{L}$	
																\coprod	\perp	
-																\vdash	+	+
							<u> </u>									\vdash	+	+
													10)			\forall	+	+
																T	T	T
								×										
											_	*				Ц	\perp	\coprod
																Ц	\perp	\coprod
																\coprod	\perp	\perp

	IS Outliers	60-125%		IS Outliers 80-120%							
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery				
None	-			None							

Comments: HTs OK. Matrix QC: performed on an SNL sample from another SDG.

Radiochemistry Worksheet

AR/COC #: 615825 SDG #: 359291 Matrix: Aqueous

Laboratory Sample IDs: 359291- See below

Method/Batch #s: EPA 901.1 (gamma spec): Batch 1428944 Sample -004 Method/Batch #s: EPA 900.0 (Gross alpha/beta): Batch 1433145 Sample -005

Method/Batch #s: EPA 906.0 (Tritium): Batch 1432902 Sample -006 Method/Batch #s: SM 7500 Rn B (Radon): Batch 1428735 Sample -007

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	M M: RI		Lab Rep. RER	ЕВ			
None														
									_					
								+	+					
				-										
								-	+				+ +	
				Tracer/C	arrier Re	covery Ou	tliers							
Sample ID	Tracer/Ca	rrier %F	R	Sample ID)	Tracer/	Carrier	%R		Sample	ID	Tı	acer/Carrier	%R
None														
0														

Comments: Matrix QC: 901.1, 900.0, and SM 7500 Rn B: Performed on SNL samples from other SDGs. 906.0: Performed on sample -006.

Gross alpha/beta parent and DUP = 150 ml, MS/MSD=25 ml (6X dilution)-results qualified.

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab													_	Page	_1_ of _1_
Batch No.	A				SMO Uşe	,				1	0 1		AR/COC	615	5825
Project Name):	MWL GWM/SVM	Date Samples Sh	nipped:	10/1	6/14	+ 2001,42	SMO Au	thorization:	any.	9. tr		Waste Characterization		
Project/Task	Manager:	Tim Jackson	Carrier/Waybill No	lo.		250	32	ѕмо с	ontact Phone	e:		SUMO	RMMA		İ
Project/Task	Number:	146422.10.11.D108	Lab Contact:			V803-556-8		1	Lorraine H	Herrera/505	5-844-3199		Released by COC No.		
Service Orde		CF01-15	Lab Destination:		GEL			Send Re	eport to SMC	D:			1	✓ 2	4º Celsius
		10/2/	Contract No.:		PO 1303	373		1	Rita Kava	naugh/505	-284-2553		Bill to:Sandia National Laboratories		
Tech Area:													P.O. Box 5800, MS-0154	,	,
Building:		Room:	Operational Si	ite:									Albuquerque, NM 87185-0154		35929
			De	epth	Date	e/Time	Sample	Co	ontainer	Preserv-	Collection	Sample	Parameter & Method		Lab
Sample No.	Fraction	Sample Location	Detail	(ft)	Col	lected	Matrix	Туре	Volume	ative	Method	Туре	Requested		Sample ID
096696	-001	MWL-FB1		NA	10/16/14	10:39	DIW	G	3x40 ml	HCL	G	FB	VOC (LTMMP List) (SW846-	8260B)	001
096697	-001	MWL-BW2	4	496	-10/16/14	10:39	GW	G	3x40 ml	HCL	G	SA	VOC (LTMMP List) (SW846-	8260B)	002
096697	-010	MWL-BW2	4	496	, 10/16/14	10:40	GW	Р	500 ml	HNO3	G	SA	Metals (Cd,Cr,Ni,U)(SW846-6	020)	003
096697	-033	MWL-BW2	4	496	·10/16/14	10:41	GW	Р	1 L	HNO3	G	SA	Gamma Spectroscopy (EPA 9	901.0)	004
096697	-034	MWL-BW2	4	496	·10/16/14	10:42	GW	Р	1 L	HNO3	G	SA	Gross Alpha and Beta (EPA 9	900.0)	005
096697	-036	MWL-BW2	4	496	•10/16/14	10:43	GW	AG	250 ml	None	G	SA	Tritium (EPA 906.0)		006
096697	-037	MWL-BW2		496	·10/16/14	10:44	GW	AG	2x40 ml	None	G	SA	Radon (SM 7500 Rn B)		007
096698	-001	MWL-TB1		NA	·10/16/14	10:39	DIW	G	3x40 ml	HCL	G	ТВ	VOC (LTMMP List) (SW846-	8260B)	008
Last Chain		Yes	So		Tanakin a		CMC) Use	Sansial las	A	/QC Requir			Cond	litions on
Validation		Yes			Tracking		SIVIC	Use	EDD	structions	Yes	ements:	No		
	<u> </u>			te Ent					 	d Time		.+	15 Day* 30 Day	Re	eceipt
Backgroun		Yes		tered	•				Turnaroun		7 Day		13 Day 0 30 Day		
Confirmato	ı	Yes	i	C inits.					Negotiated				1/15:		
Sample		ame Signa		Init.		ny/Organiza			Sample Dis	•	☐ Return	to Client	Disposal by Lab		
	Robert L		ce p			/505-844 - 40′			Return Sar						
Members	Alfred Sa	1/1/1	Tille 1			505-844-513			Comments				n/4142/MS 0729/284-2547		
	William (Gibson Wille S	Auch W	TA	SNL/4142	505-284-330	07/505-23	9-7367			•	•	rovided by SNL/NM SMO).		
			, ,	'					Report sho	rt list isoto	oes for Gam	ma Spec	ctroscopy.		
		10,00			1	,								La	b Use
1.Relinquishe	d by	41 Solile	Org. 4142	Date	10/16/	14 Time /	105	3.Relino	uished by			Org.	Date	Time	
1. Received b		Park gu	Org. 4142	Date	10/16	(Y Time	1105	3. Rece	ived by			Org.	Date	Time	
2.Relinguishe	ed by		Drg. 9142				140 -		uished by			Org.		Time	
2. Received b		The the			10-17-1			4. Rece	-			Org.		Time	
		ith SMO required for 7 ar			· / /	,									

www.againc.net

Memorandum

Date:

December 1, 2014

To:

File

From:

Monica Dymerski

Subject:

GC/MS Organic Data Review and Validation – SNL

Site: MWL GWM/SVM AR/COC: 615826

SDG: 359857 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 4.

Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The ICAL %RSD was >40% but ≤60%, the ICV %D was >20% but ≤40% with negative bias, and the CCV %D was >40% but ≤60% with negative bias for methylene chloride. The associated sample results were non-detects and will be **qualified UJ,I3,C3**.
- 2. The ICAL %RSD was >15% but ≤40%, and the ICV %D was >20% but ≤40% with negative bias for bromomethane. The associated sample results were non-detects and will be **qualified** UJ,13,C3.
- 3. The ICAL intercept was negative with absolute value > the MDL but ≤3X the MDL for dibromochloromethane. The associated result for sample -008 was a non-detect and will be qualified UJ,15.
- 4. The MS and MSD %Rs were < the lower acceptance limit but ≥10% for methylene chloride. The associated sample results were non-detects and will be **qualified UJ,MS3**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The ICAL intercept was negative with absolute value > the MDL but $\le 3X$ the MDL for dibromochloromethane. The associated results for samples -001 and -002 were detects > 3X the absolute value of the intercept and will not be qualified.

The ICAL %RSD was >15% and ≤40% for bromoform. The associated sample results were non-detects and, since no second calibration infraction occurred for that analyte, will not be qualified.

Blanks

No target analytes were detected in the blanks except as follows. Chloroform and dibromochloromethane were detected at concentrations > the PQL, and acetone and bromodichloromethane were detected at < the PQL in FB sample -001, which was not associated with any samples.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met except as noted above in the Summary section. The MS/MSD analyses were performed on an SNL sample from another SDG. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met except as follows. The %R was < the lower acceptance limit but ≥10% for methylene chloride. One LCS recovery is allowed to fall outside acceptance criteria since 36 analytes were reported. No sample data will be qualified as a result.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

One TB was submitted with the ARCOC. An FB was submitted with the ARCOC which was not associated with any field samples. The sample is an EB associated with ARCOC 615827.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/02/14

www.againc.net

Memorandum

Date:

December 1, 2014

To:

File

From:

Monica Dymerski

Subject:

Inorganic Data Review and Validation – SNL

Site: MWL GWM/SVM AR/COC: 615826

SDG: 359857 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

One unfiltered sample was prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

1. The parent sample concentration was >50X the MDL and the serial dilution %D was >10% for U. The associated sample result was a non-detect and will be **qualified UJ,D1**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

ICP-MS Instrument Tune

The ICP-MS tunes met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries associated with the samples met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks except as follows. Cd was detected in the MB at < the PQL, and U was detected in the ICB at < the PQL. The associated sample results were non-detects and will not be qualified.

ICP - MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria. The MS analyses were performed on an SNL samples from other SDGs. No sample data will be qualified as a result.

Laboratory Replicate

The replicate met all QC acceptance criteria. The replicate analyses were performed on SNL samples from other SDGs. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The sample was not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentration of Ca, Mg, Al and Fe were < that in the ICS solution.

ICP Serial Dilution

The serial dilutions met all QC acceptance criteria except as noted above in the Summary section. The serial dilution analyses were performed on SNL samples from other SDGs. No sample data will be qualified as a result.

Other QC

The sample is an EB associated with ARCOC 615827.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/02/14

www.againc.net

Memorandum

Date:

December 1, 2014

To:

File

From:

Monica Dymerski

Subject:

Radiochemical Data Review and Validation - SNL

Site: MWL GWM/SVM

AR/COC: 615826 SDG: 359857 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec – short list), EPA 900.0 (gross alpha/beta), and EPA 906.0 (tritium). Method SM 7500 Rn B (Radon-222 by Liquid Scintillation) was listed on the COC but was canceled by the client prior to laboratory receipt. Problems were identified with the data package that resulted in the qualification of data.

Gamma Spec and tritium:

1. All sample results which were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.**

Gross Alpha/Beta:

- 1. The relative dilution factor between the parent sample and the gross alpha/beta MS/MSD QC samples was >5 and, as a result, the MS/MSD analyses were not used to evaluate gross alpha and gross beta sample data. The associated sample results will be **qualified J,MS1**.
- 2. All sample results which were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.**

Holding Times and Preservation

The sample fractions were prepared and analyzed within the prescribed holding times and were properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracers and /or carriers are not required for the methods used.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS/MSD met all QC acceptance criteria except as noted above in the Summary section.

Gross alpha/beta and tritium:

It should be noted that the MS/MSD was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Gross alpha/beta and tritium:

It should be noted that the replicate was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS recoveries met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

The sample is an EB associated with ARCOC 615827.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/02/14

Sample Findings Summary

AR/COC: 615826 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 900.0/SW846 9310			
	096700-034/MWL-EB1	ALPHA (12587-46-1)	BD, FR3,MS1
	096700-034/MWL-EB1	BETA (12587-47-2)	BD, FR3,MS1
EPA 901.1			
	096700-033/MWL-EB1	Americium-241 (14596-10-2)	BD, FR3
	096700-033/MWL-EB1	Cesium-137 (10045-97-3)	BD, FR3
	096700-033/MWL-EB1	Cobalt-60 (10198-40-0)	BD, FR3
	096700-033/MWL-EB1	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	096700-036/MWL-EB1	Tritium (10028-17-8)	BD, FR3
SW846 3005/6020 DOE-AL			
	096700-010/MWL-EB1	Uranium (U)	UJ, D1
SW846 8260B DOE-AL			
	096699-001/MWL-FB2	Bromomethane (74-83-9)	UJ, 13,C3
	096699-001/MWL-FB2	Methylene chloride (75-09-2)	UJ, 13,C3,MS3
	096700-001/MWL-EB1	Bromomethane (74-83-9)	UJ, 13,C3
	096700-001/MWL-EB1	Methylene chloride (75-09-2)	UJ, 13,C3,MS3
	096701-001/MWL-TB2	Bromomethane (74-83-9)	UJ, 13,C3
	096701-001/MWL-TB2	Dibromochloromethane (124-48-1)	UJ, 15
	096701-001/MWL-TB2	Methylene chloride (75-09-2)	UJ, 13,C3,MS3

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615826 Site/Project: MWL GWM/SVM Validation Date: 12/01/2014 SDG #: 359857 Laboratory: GEL Laboratories LLC Validator: Monica Dymerski

Matrix: Aqueous # of Samples: 7 CVR present: Yes Analysis Type: X Organic X Metals

AR/COC(s) present: Yes Sample Container Integrity: OK X Rad Gen Chem

	Requested Analyses Not Reported													
Sample Nun	nber	Laboratory ID	organic	genchem	metals	rad	Comments							
None														

		Hold Tim	e/Preservatio	on Outliers				
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT
None		-						

Comments: Sample collected 10/16/2014. Sample is equipment blank associated with MWL-MW7 from ARCOC 615827. Rn-222 analysis was cancelled prior to laboratory receipt.

	1 10 1.	
Validated By:	Monuca L Dymuski	

Revised 7/2007

Organic Worksheet (GC/MS)

AR/COC #: 615826 SDG #:359857 Matrix: Aqueous

Laboratory Sample IDs: 359001, -002, and -008

Method/Batch #s: 8260B: 1431851 Tuning (pass/fail): pass TICs Required? (yes/no) no

		Ca	libration			5X				MS/		5X			
Analyte (outliers)	Int.	RF	RSD/ R ²	CCV (ICV) %D	Method Blank	(10X) Blank	LCS %R	MS %R	MSD %R	MSD RPD	FB1 -001	5X (10X) FB1			
acetone	NA	1	1	✓	1	NA	V	✓	1	✓	3.52J	(35.2)			
bromodichloromethane	NA	✓	✓	✓	✓	NA	/	✓	✓	✓	0.620J	3.1			
chloroform	NA	· ·	1	✓	√	NA	1	✓	✓	✓	4.68	23.4			
dibromochloromethane	-0.325	√	✓	✓	1	NA	✓	✓	✓	✓	1.05	5.25			
methylene chloride	✓	1	50.2	(-32.4)/ -40.6	√	NA	66.2	66.1	65.6	✓	✓	NA			
bromomethane	NA	1	27.9	(-22.5)	✓	NA	1	✓	√	✓	1	NA			
bromoform	NA	1	23.0	✓	✓	NA	1	✓	✓	✓	1	NA			
						Surroga	te Reco	overy (Outliers						
Sample ID											18.				
None															
							IS Ou	tliers			-57				
Sample ID Area	RT .	Area	RT	Area	RT		Area	F	RT	Area		RT		Area	RT
None															

Comments: HTs OK, ICAL VOAA 10/28/14. Samples analyzed on 10/30/14. MS/MSD performed on an SNL sample from another SDG.

Inorganic Metals Worksheet

AR/COC #: 615826

SDG #: 359857

Matrix: Aqueous

Laboratory Sample IDs: 359857003

Method/Batch #s: 3005A/6020 (ICP-MS): 1430900(prep)/1430903

ICPMS Mass Cal (pass/fail) pass

ICPMS Resolution (pass/fail) pass

Analyte	Calibration						Method Blank	5X Blank or	LCS %R	MS %R	Lab Rep. RPD	Serial Dil.	ICS AB %R	ICS A± MDL	CRA/ CRI			
(outliers)	Int.	R ²	ICV	CCV	ICB	ССВ	Diank	5X MDL	7011	/ ***	M D	702	7011	NID 2	%R			
U	1	✓	✓	1	0.072J	✓	✓	0.36	✓	✓	✓	10.6	NA	NA	✓		П	
Cd	1	✓	✓	✓	✓	✓	0.000146	0.00073	✓	✓	✓	✓	NA	NA	✓	İ		
																+	\mathbb{H}	\perp
																+	H	
																	Ш	
																\perp	Ш	\vdash
																\perp	$oxed{oxed}$	\sqcup
						_						_	_					
																		\prod

	IS Outliers	60-125%		IS Outliers 80-120%								
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery					
None				None								

Comments: HT OK. Matrix QC: performed on SNL samples from other SDGs.

Radiochemistry Worksheet

AR/COC #: 615826 SDG #: 359857 Matrix: Aqueous

Laboratory Sample IDs: 359857- See below

Method/Batch #s: EPA 901.1 (gamma spec): Batch 1431643 Sample -004 Method/Batch #s: EPA 900.0 (Gross alpha/beta): Batch 1433145 Sample -005

Method/Batch #s: EPA 906.0 (Tritium): Batch 1432902 Sample -006

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	М	SD ER	Lab Rep. RER	ЕВ			
None														
				Tracer/C	Carrier Re	covery Ou	tliers							
Sample ID	Tracer/Ca	arrier %	R	Sample ID			Carrier	%R		Sample	ID	Tra	cer/Carrier	%
None													_	
			+-			+		\rightarrow			_	_		_
														_

Comments: Matrix QC: 900.0 and -906.0: Performed on SNL samples from other SDGs. 901.1: Performed on sample -004.

Gross alpha/beta parent and DUP = 150 ml, MS/MSD=25 ml (6X dilution)-results qualified.

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

MWL GWM/SVM	Internal Lab														Page	1_ of _1_
Reviewed by Reviewed by	Batch No.					SMO Use								AR/COC	61	5826 -
Reviewed by Reviewed by	Project Name	:	MWL GWM/SVM	Date Samp	es Shipped	10/2	3114		ISMO AL	uthorization:	Dorw	ter	~	Waste Characterization		
According Contract									•					RMMA		
A								1			5-844-3199	Released by COC No.				
Contract No. PO 1303873	, ,								Send R					1	V 1	4º Celsius
						PO 130387	'3			•		5-284-2553		Bill to Sandia National Laboratorie	es (Accour	nts Pavable).
Sample No. Fraction Sample Location Detail Collected Sample Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Sample Requested Container Preserv. Collection Container Preserv. Collection Container Preserv. Collection Container Preserv. Contain	Tech Area:				***									i	(,,,
Depth Date/Time Sample No. Fraction Sample Location Detail (ft) Depth Date/Time Collected Marix Type Volume Type Method Type Requested Sample Og			Room:	Operation	nal Site									, , , , , , , , , , , , , , , , , , , ,	,3.	5985
Sample No. Fraction Sample Location Detail (ft)				орогии.		Date/1	imo.	Sample		ntainer	Preserv-	Collection	Sample	1		
096699	Sample No.	Fraction	Sample Location	n Detail							-1				•	
096700	/									İ		İ	<u> </u>	i		1 .
096700	096699	-001 /	MVVL-FB2		NA	10/16/14	13:03	DIW	G	3x40 ml	HCL	l G	l FB	VOC (LTMMP List) (SW846-	8260B)	1001
096700	096700	-001 🖊	MWL-EB1		NA	10/16/14	13:03	DIW	G	3x40 ml	HCL	G	EB	VOC (LTMMP List) (SW846-	-8260B)	002
096700		010 /	MANA/I ED4		A14	10/10/14	12.04	D.14/		F00 :1	LINIOS			Madala (Od Or NE LI)/OM/040	6030)	003
096700	090700		INIAAC-ER I					- DIVV	P	I 500 MI	HNU3	G	l FR	Inversis (Cd,Cr,Ni,U)(SVV846-	3020)	1 /
NA 10/16/14 13:07 DIW AG 250 ml None G EB Tritium (EPA 906.0) O O O O O O O O O	096700	-033 🔨	MWL-EB1		NA	10/16/14	13:05	DIW	Р	1 L	HNO3	G	EB	Gamma Spectroscopy (EPA	901.0)	004
NA 10/16/14 13:07 DIW AG 250 ml None G EB Tritium (EPA 906.0) O O O O O O O O O	096700	-034	MWI -FB1		NA	10/16/14	13:06	DIW	P	11	HNO3	G	FB	Gross Alpha and Beta (FPA	900 0)	005
NA 10/16/14 13:08 DIW AG 2x40 ml None G EB Radon (SM 7500 Rn B) 00 7	/									İ		İ	İ		200.0)	
NA 10/16/14 13:03 DIW G 3x40 ml HCL G TB VOC (LTMMP List) (SW846-8260B) O S	096700	-036	MWL-EB1		NA NA	10/16/14	13:07	DIW	AG	250 ml	None	G	EB	Tritium (EPA 906.0)		1006
Last Chain: Yes Sample Tracking SMO Use EDD Yes No Receipt Ves Date Entered: Sample Tracking SMO Use Special Instructions/QC Requirements: Conditions on Receipt Ves Date Entered: Sample Trunaround Time Toay 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day	096700	-037	MWL-EB1		NA	10/16/14	13:08	DIW	AG	2x40 ml	None	G	EB	Radon (SM 7500 Rn B)		007
Last Chain: Yes Sample Tracking SMO Use EDD Yes No Receipt Ves Date Entered: Sample Tracking SMO Use Special Instructions/QC Requirements: Conditions on Receipt Ves Date Entered: Sample Trunaround Time Toay 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day 15 Day 30 Day	000704	001	AANA/I TDO		NIA.	10/16/14	10/16/14 13:03 DIM C 3×40 ml HCI C TR VOC (LTMMP List) (VOC (LTAMAD LIEA) (SVA)946	00C0B)	2008			
Alfred Santillanes Alfred	096701	-001	IVIVVL-1 DZ		I NA	10/16/14	13.03	DIVV	G	3x40 mi	HCL.	l G	ТВ	VOC (ETIVIIVIP LIST) (SVV846-	-020UD)	000
Alfred Santillanes Alfred																
Alfred Santillanes Alfred																
Alfred Santillanes Alfred	Last Chain:		☐ Yes		Sample	Tracking		SMC) Use	Special Ins	tructions	/QC Requi	rements:	'	Cond	ditions on
Background: Yes										1				No	R	eceipt
Confirmatory: Yes QC inits.: Negotiated TAT Sample Name Signature Init. Company/Organization/Phone/Cell Sample Disposal Return to Client Disposal by Lab Robert Lynch SNL/4142/505-844-4013/505-250-7090 Return Samples By: Members William Gibson Wulling SNL/4142/505-844-5130/505-228-0710 Comments: Send report to Tim Jackson/4142/MS 0729/284-2547 William Gibson Wulling SNL/4142/505-284-3307/505-239-7367 Report specific list of VOCs (LTMMP list provided by SNL/NM SMO). Report short list isotopes for Gamma Spectroscopy. Lab Use 1. Received by Org. Use Org. 4/42 Date 16/23/19 Time 1/33 3. Received by Org. Date Time 2. Relinquished by Argument Spectroscopy Org. Date Time 2. Relinquished by Argument Spectroscopy Org. Date Time 3. Received by Org. Date Time 4. Relinquished by Org. Date Time 5. Relinquished by Org. Date Time 6. Relinquished by Org. Date Time 7. Time 1/200 4. Relinquished by Org. Date Time 8. Relinquished by Org. Date Time 8. Time 8. Relinquished by Org. Date Time 8. Time 8. Relinquished by Org. Date Time 8. Time 8. Relinquished by Org. Date Time 8. Time 8. Relinquished by Org. Date Time 8. Time 8. Relinquished by Org. Date Time Org. 4. Relinquished by Org. Date Time Org. 4. Relinquished by Org. Date Time Org. 4. Relinquished by Org. Date Time Org. 4. Relinquished Date										1	d Time					
Name Signature Init. Company/Organization/Phone/Cell Sample Disposal Return to Client Disposal by Lab														1000		
Robert Lynch Alfred Santillanes William Gibson William Gibson Alfred Santillanes William Gibson Alfred Santillanes William Gibson Alfred Santillanes William Gibson Alfred Santillanes William Gibson Alfred Santillanes William Gibson Alfred Santillanes William Gibson Alfred Santillanes William Gibson Alfred Santillanes William Gibson Alfred Santillanes William Gibson Alfred Santillanes William Gibson Alfred Santillanes Alfred Santil				inature			/Organiza	tion/Phon	e/Cell	i -		Retur	n to Client	t V Disposal by Lab		
Alfred Santillanes William Gibson William Gibson SNL/4142/505-844-5130/505-228-0710 Report specific list of VOCs (LTMMP list provided by SNL/NM SMO). Report short list isotopes for Gamma Spectroscopy. Lab Use I. Received by Org. 4/42 Date 10/23/14 Time 1/33 3. Received by Org. Date Time 2. Relinquished by Org. 4/42 Date 10/23/14 Time 1/200 4. Relinquished by Org. Date Time Time A. Received by Org. Date Time Time A. Received by Org. Date Time Time A. Received by Org. Date Time												- riciun	ii to Olicili	L Disposal by Lab		
William Gibson Willia				100						+	<u> </u>	Send report to	Tim Jackson	n/41/2/MS 0729/28/-25/7		
Report short list isotopes for Gamma Spectroscopy. Lab Use 1. Relinquished by	Members			1911	40						-					
Lab Use 1. Received by South Org. 4/42 Date 10/23/14 Time 1/33 3. Received by Org. Date Time 1. Received by Org. 4/42 Date 15/23/14 Time 1/33 3. Received by Org. Date Time 2. Relinquished by Org. 4/42 Date 10/23/14 Time 1/200 4. Relinquished by Org. Date Time		vviii(aiii)	GIUSUII YUUU	yours)	- 4/1	JOINL/4 142/3	JJ-204-33(011303-23	1301	1 ' '		•				
I.Relinquished by Hong South Org. 4/42 Date 10/33/14 Time 1/:33 3.Relinquished by Org. Date Time II. Received by Org. 4/42 Date 15/23/14 Time 1/:33 3. Received by Org. Date Time 2. Relinquished by Org. 4/42 Date 15/23/14 Time 1/200 4. Relinquished by Org. Date Time				0	+	1				1			p • •			ah Hee
1. Received by Portugues Org. 442 Date 16/23/19 Time 1/33 3. Received by Org. Date Time 2. Relinquished by Portugues Org. 442 Date 10/23/4 Time 1200 4. Relinquished by Org. Date Time	4 Dalla sudate	<u> </u>	Wast 5 - F. WII)	0 1/11	/2 Date	10/02/11	// Time /	1192	la Dalini	l labadbo			0	Data		
2. Relinquished by Andread Org. 4142 Date 101214 Time 1200 4. Relinquished by Org. Date Time		1 454) i						1							
			onglym						_							
2. Received by 166 Org. Org. Org. Date 10-14-17-1 Ime USSI 14. Received by Org. Date Time		100	off of age													_
Prior confirmation with SMO required for 7 and 15 day TAT		7 4 1	for follow			10-24-1	Ime	UDOL)	4. Rece	ived by			Org	. Date	ilme	;

www.againc.net

Memorandum

Date:

December 2, 2014

To:

File

From:

Monica Dymerski

Subject:

GC/MS Organic Data Review and Validation – SNL

Site: MWL GWM/SVM AR/COC: 615828 and 615829

SDG: 359428 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. Data are evaluated using SNL/NM SMO AOP 00-03 Rev 4.

Summary

Six samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The ICAL %RSD was >40% but ≤60%, the ICV and CCV associated with all samples <u>except</u> -010 %Ds were >20% but ≤40% with negative bias, and the CCV associated with sample -010 %D was >40% but ≤60% with negative bias for methylene chloride. All associated sample results were non-detects and will be **qualified UJ.I3.C3.**
- 2. The ICAL %RSD was >15% but ≤40%, and the ICV %D was >20% but ≤40% with negative bias for bromomethane. The associated sample results were non-detects and will be qualified UJ,I3,C3.
- 3. The ICAL intercept was negative with absolute value > the MDL but ≤3X the MDL for dibromochloromethane. The associated results for samples -002, -008, -010, and -016 were non-detects and will be qualified UJ,15.
- 4. The MS and MSD %Rs were < the lower acceptance limit but ≥10% for methylene chloride. The associated sample results were non-detects and will be qualified UJ,MS3.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time and were properly preserved.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The ICAL intercept was negative with absolute value and > the MDL but $\le 3X$ the MDL for dibromochloromethane. The associated results for samples -001 and -009 were detects > 3X the absolute value of the intercept and will not be qualified.

The ICAL %RSD was >15% and ≤40% for bromoform. The associated sample results were non-detects and, since no second calibration infraction occurred for that analyte, will not be qualified.

The %Ds were >20% with positive bias for dichlorodifluoromethane in CCVs associated with all samples, and for acetone in the CCV associated with all samples <u>except</u> -010. The associated sample results were non-detects and will not be qualified.

Blanks

No target analytes were detected in the blanks except as follows. Bromodichloromethane, chloroform, and dibromochloromethane were detected at concentrations > the PQL in FB sample -001, associated with sample -002, and in FB sample -009, associated with sample -010. The associated sample results were non-detects and will not be qualified.

Surrogates

All surrogate recoveries met QC acceptance criteria.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD acceptance criteria were met except as noted above in the Summary section..

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met except as follows. The %Rs were < the lower acceptance limit but ≥10% for methylene chloride for LCSs associated with all samples. One recovery per LCS is allowed to fall outside acceptance criteria since 36 analytes were reported. No sample data will be qualified as a result.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Two trip blanks were submitted, one for each ARCOC. Two FBs were submitted with the ARCOC, one for each ARCOC.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/03/14

www.againc.net

Memorandum

Date:

December 2, 2014

To:

File

From:

Monica Dymerski

Subject:

Inorganic Data Review and Validation – SNL

Site: MWL GWM/SVM AR/COC: 615828 and 615829

SDG: 359428 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

Two unfiltered samples were prepared and analyzed with approved procedures using method EPA 6020 (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

ICP-MS Instrument Tune

The ICP-MS tunes met QC acceptance criteria.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All CRA/CRI recoveries associated with the samples met QC acceptance criteria.

It should be noted that the CRI was analyzed at the PQL and not at 2X the PQL for all target analytes.

Blanks

No target analytes were detected in the blanks except as follows. U was detected in a bracketing CCB at < the PQL. The associated sample results were detects >5X the ICB concentration and will not be qualified.

ICP-MS Internal Standards

The ICP-MS internal standards met QC acceptance criteria.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentration of Ca, Mg, Al and Fe were < that in the ICS solution.

ICP Serial Dilution

The serial dilutions met all QC acceptance criteria.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/03/14

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date:

December 2, 2014

To:

File

From:

Monica Dymerski

Subject:

Radiochemical Data Review and Validation - SNL

Site: MWL GWM/SVM

AR/COC: 615828 and 615829

SDG: 359428 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

Two samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec – short list), EPA 900.0 (gross alpha/beta), EPA 906.0 (tritium), and SM 7500 Rn B (Radon-222 by Liquid Scintillation). Problems were identified with the data package that resulted in the qualification of data.

Gamma Spec:

- 1. All sample results which were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.**
- 2. No peaks were identified for Am-241 for sample 359428012. The sample result should be considered a non-detect at the MDA and will be qualified BD,Z2.

Gross Alpha/Beta:

1. The relative dilution factor between the parent sample and the gross alpha/beta MS/MSD QC samples was >5 and, as a result, the MS/MSD analyses were not used to evaluate gross alpha and gross beta sample data. The associated sample results will be **qualified J,MS1**.

Tritium:

1. All sample results which were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.**

Radon-222:

1. The Rn-222 result for sample -015 was > the MDA but $\leq 3X$ the MDA and will be **qualified J,FR7.**

Holding Times and Preservation

The sample fractions were prepared and analyzed within the prescribed holding times and were properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracers and /or carriers are not required for the methods used.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS/MSD met all OC acceptance criteria except as noted above in the Summary section.

Tritium:

It should be noted that the MS/MSD was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Tritium:

It should be noted that the replicate was performed on a sample of similar matrix from another SNL SDG. No sample data will be qualified as a result.

Laboratory Control Sample (LCS)

All LCS recoveries met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: 1 Date: 12/03/14

Sample Findings Summary

AR/COC: 615828, 615829

Page 1 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 900.0/SW846 9310			
	096707-034/MWL-MW9	ALPHA (12587-46-1)	J, MS1
	096707-034/MWL-MW9	BETA (12587-47-2)	J, MS1
	096710-034/MWL-MW8	ALPHA (12587-46-1)	J, MS1
	096710-034/MWL-MW8	BETA (12587-47-2)	J, MS1
EPA 901.1			
	096707-033/MWL-MW9	Americium-241 (14596-10-2)	BD, FR3
	096707-033/MWL-MW9	Cesium-137 (10045-97-3)	BD, FR3
	096707-033/MWL-MW9	Cobalt-60 (10198-40-0)	BD, FR3
	096707-033/MWL-MW9	Potassium-40 (13966-00-2)	BD, FR3
	096710-033/MWL-MW8	Americium-241 (14596-10-2)	BD, Z 2
	096710-033/MWL-MW8	Cesium-137 (10045-97-3)	BD, FR3
	096710-033/MWL-MW8	Cobalt-60 (10198-40-0)	BD, FR3
	096710-033/MWL-MW8	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	096707-036/MWL-MW9	Tritium (10028-17-8)	BD, FR3
	096710-036/MWL-MW8	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	096710-037/MWL-MW8	Radon-222 (14859-67-7)	J, FR7
SW846 8260B DOE-AL		44 1000	
	096706-001/MWL-FB4	Bromomethane (74-83-9)	UJ, 13,C3
	096706-001/MWL-FB4	Methylene chloride (75-09-2)	UJ, 13,C3,MS3
	096707-001/MWL-MW9	Bromomethane (74-83-9)	UJ, 13,C3
	096707-001/MWL-MW9	Dibromochloromethane (124-48-1)	UJ, 15
	096707-001/MWL-MW9	Methylene chloride (75-09-2)	UJ, 13,C3,MS3
	096708-001/MWL-TB4	Bromomethane (74-83-9)	UJ, 13,C3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	096708-001/MWL-TB4	Dibromochloromethane (124-48-1)	UJ, 15
	096708-001/MWL-TB4	Methylene chloride (75-09-2)	UJ, 13,C3,MS3
	096709-001/MWL-FB5	Bromomethane (74-83-9)	UJ, 13,C3
	096709-001/MWL-FB5	Methylene chloride (75-09-2)	UJ, 13,C3,MS3
	096710-001/MWL-MW8	Bromomethane (74-83-9)	UJ, 13,C3
	096710-001/MWL-MW8	Dibromochloromethane (124-48-1)	UJ, 15
	096710-001/MWL-MW8	Methylene chloride (75-09-2)	UJ, 13,C3,MS3
	096711-001/MWL-TB5	Bromomethane (74-83-9)	UJ, 13,C3
	096711-001/MWL-TB5	Dibromochloromethane (124-48-1)	UJ, 15
	096711-001/MWL-TB5	Methylene chloride (75-09-2)	UJ, 13,C3,MS3

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

Site/Project: MWL GWM/SVM AR/COC #: 615828 and 615829 Validation Date: 12/02/2014

SDG #: 359428 Laboratory: GEL Laboratories LLC Validator: Monica Dymerski CVR present: Yes

of Samples: 16

AR/COC(s) present: Yes Sample Container Integrity: OK X Rad Gen Chem

Requested Analyses Not Reported													
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments							
None													
					ä								
	×												
				,	9								

Hold Time/Preservation Outliers												
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT				
None												
	<		X -									
						·						

Comments: Samples collected 10/20 and 21/2014.

Matrix: Aqueous

Revised 7/2007

X Organic X Metals

Analysis Type:

	1 10 1	
Validated By:	Mourca & Dynnisk	

Organic Worksheet (GC/MS)

AR/COC #: 615828 and 615829 SDG #:359428 Matrix: Aqueous

Laboratory Sample IDs: 359428 001, -002, -008, -009, -010, and -016

Method/Batch #s: 8260B: 1432564 Tuning (pass/fail): pass TICs Required? (yes/no) no

Int.	RF	RSD/	CCV	Mathod	5X										
		R ²	(ICV) %D	Method Blank	(10X) Blank	ank %R	%R %R	MSD %R	MS/ MSD RPD	FB4 -001	5X (10X) FB4	FB5 -009	5X FB5		
NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	1.23	6.15	1.30	6.5		
NA	1	✓	✓	✓	NA	1	✓	✓	✓	2.90	14.5	2.99	14.95		
-0.325	✓	✓	✓	✓	NA	✓	1	✓	✓	1.54	7.7	1.59	7.95		
NA	1	✓ .	30.3*/ 25.7**	✓	NA	✓	✓	√	✓	1	NA	✓	NA		
NA	✓	✓	23.1*	✓	NA	✓	✓	✓	✓	✓	NA	✓	NA		
✓	✓	50.2	-39.1*	✓	NA	68/ 54.8	61.1	61.9	✓	✓	NA	✓	NA		
NA	✓	27.9	(-22.5)	✓	NA	1	1	✓	✓_	1	NA	✓	NA		
NA	✓	23.0	✓	✓	NA	1	✓	✓	✓	✓	NA	✓	NA		
					Surroga	te Reco	very (Outliers							
+			-			IS Out	tliers		-	_	_	7			
RT A	rea	RT	Area	RT		Area	F	Т	Area		RT			Area	RT
	NA NA NA	-0.325	-0.325	-0.325	-0.325	-0.325	-0.325	-0.325	-0.325	-0.325	-0.325	-0.325	-0.325	-0.325	-0.325

Comments: HTs OK, ICAL VOAA 10/28/14. *Samples -001, -002, -008, -009, and -016 analyzed on 10/31/14. **Sample -010 analyzed on 11/3/14. MS/MSD performed on sample -002.

Inorganic Metals Worksheet

AR/COC #: 615828 and 615829 SDG #: 359428 Matrix: Aqueous

Laboratory Sample IDs: 359428003 and -011

Method/Batch #s: 3005A/6020 (ICP-MS): 1429712(prep)/1429714

ICPMS Mass Cal (pass/fail) pass ICPMS Resolution (pass/fail) pass

Analyte			Ca	libratio	n		Method Blank			Blank LCS MS Ro			Lab Rep.	Serial Dil.	%R MDI CRI						
(outliers)	Int.	R ²	ICV	CCV	ICB	ССВ		5X MDL			RPD			MIDE	%R						
U	✓	✓	✓	✓	✓	0.14 8J	✓	0.740	✓	✓	✓	√	NA	NA	✓						
																			\perp		
7																		\vdash	+		
						_													+		
									,												

e Maria di Sarania di Sarania di Sarania di Sarania di Sarania di Sarania di Sarania di Sarania di Sarania di S	IS Outliers	60-125%		IS Outliers 80-120%							
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery				
None				None							

Comments: HTs OK. Matrix QC: performed on sample -003.

Radiochemistry Worksheet

AR/COC #: 615828 and 615829 SDG #: 359428 Matrix: Aqueous

5X Blank

Laboratory Sample IDs: 359428- See below

Method/Batch #s: EPA 901.1 (gamma spec): Batch 1429632 Samples -004 and -012 Method/Batch #s: EPA 900.0 (Gross alpha/beta): Batch 1433145 Samples -005 and -013

Method/Batch #s: EPA 906.0 (Tritium): Batch 1432902 Samples -006 and -014

Method/Batch #s: SM 7500 Rn B (Radon): Batch 1430187 Samples -007 and -015

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	or 5X MDC	LCS %R	MS %R	MSD %R	MSI REI		EB (359857)	5X EB		
None													
		,											
				Tracer/C	arrier Re	covery Ou	tliers						
Sample ID	Tracer/Ca	rrier %l	R	Sample ID		Tracer/0	Carrier	%R	Sample	e ID	Trac	er/Carrier	%
None											+		
X													
Marin OC, 001													

MS/

Comments: Matrix QC: 901.1: Performed on sample -004. 900.0: Performed on sample -005. 906.0: Performed on an SNL sample from another SDG. SM 7500 Rn B: Performed on sample -007.

Gross alpha/beta parent and DUP = 150 ml, MS/MSD=25 ml (6X dilution)-results qualified.

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab															Page	_1_ of _1_
Batch No.						SMO Use								AR/COC	61	5828
Project Name):	MWL GW	VM	Date Sample	s Shipped:	10/20	114		SMO A	uthorization:	Jam	Jeli		Waste Characterization		
Project/Task		Tim Jacks	son	Carrier/Wayb		2239			-	ontact Phone				RMMA		
Project/Task	_			Lab Contact:		Edie Kent/8		171	1	Lorraine H	Herrera/50	5-844-3199		Released by COC No.		
Service Orde		CF01-15		Lab Destinati	on:	GEL			Send R	eport to SMC				<u> </u>	1	4º Celsius
				Contract No.:		PO 130387	73		1	Rita Kava	naugh/50	5-284-2553		Bill to:Sandia National Laboratories		
Tech Area:														P.O. Box 5800, MS-0154	,	, , .
Building:		Room:		l Operationa	al Site:									Albuquerque, NM 87185-0154	- 3	35942
Dunanig.				Porture	Depth	Date/	Time	Sample	Co	ontainer	Preserv-	Collection	Sample			Lab
Sample No.	Fraction	Saı	mple Location D	etail	(ft)	↓ Colle		Matrix	Туре	Volume	ative	Method	Type	Requested		Sample ID
			•	-	İ			,								
096706	-001	MWL-FB	4		NA NA	10/20/14	10:19	DIW	G	3x40 ml	HCL	G	FB	VOC (LTMMP List) (SW846-8	3260B)	001
096707	-001	MWL-MW	V 9		497	10/20/14	10:19 1	GW	G	3x40 ml	HCL	G	SA	VOC (LTMMP List) (SW846-8	3260B)	202
000707.0	0.10				407	40/00/44	10.01									
096707	-010 <	MWL-MW	V 9		497	10/20/14	10:21	GW	P	500 ml	HNO3	G	SA	Metals (Cd,Cr,Ni,U)(SW846-6	020)	003
096707	-033 ~	MWL-MW	V 9		497	10/20/14	10:22	GW	Р	1 L	HNO3	G	SA	Gamma Spectroscopy (EPA 9	01.0)	004
000707	024	BANA/I BANA	1/0		407	10/00/14	10:24	0144	Р	4.	LINIOS	G	0.4	Constant and Date (FDA O	00.0	000
096707	-034 ′	MWL-MV	V9		497	10/20/14	10:24	GW	P	1 L	HNO3	G	SA	Gross Alpha and Beta (EPA 9	00.0)	005
096707	-036	MWL-MW	V9		497 10/20/14 10:26 GW AG 250 ml None G SA Tritium (EPA 906.0)						Tritium (EPA 906.0)		006			
096707	-037	MWL-MW	V9		497 10/20/14 10:27 GW AG 2x40 ml None G					SA	Radon (SM 7500 Rn B)		007			
096708	-001	MWL-TB4	4		NA	10/20/14	10:19	DIW	G	3x40 ml	HCL	G	ТВ	VOC (LTMMP List) (SW846-8	3260B)	800
					İ											
Last Chain:		Yes			Sample	Tracking		SMC) Use	Special Ins	structions	/QC Requir	ements:		Cond	litions on
Validation I		✓ Yes			Date En	_		0		EDD		✓ Yes		No		eceipt
Backgroun		Yes			Entered					Turnaroun	d Time	7 Da	v*	15 Day* / 30 Day		Joo.pt
Confirmato		Yes			QC inits					Negotiated			_			
Sample	_	ame	Signati	ıre	Init.		//Organiza	tion/Phon	e/Cell	Sample Di		Return	to Client	☑ Disposal by Lab		
	Robert L		Rayyni		RL	SNL/4142/50				Return Sai	•		i to Gilent	Disposal by Lab		
		antillanes	HUMES-	4- 11-4		SNL/4142/5				Comments			Tim lackeon	n/4142/MS 0729/284-2547		
Members	William (7.5.11.	5 1 1		SNL/4142/5				4				rovided by SNL/NM SMO).		
	vviillaiti	3103011	munas y	Jacob -	WH	1	33-204-330	777303-23	1301			pes for Gan	•			- New Y
			V		,					1			•	.,		b Use
1.Relinquishe	d by	y Q Ca	till	000 //01	/2 Date	10/70/1	/ Time /	A 5-2	la Dalie	uichod by			0	Dota		
	ALX /	7	1	Org. 4/14		10/20/1			1				Org.	Date	Time	
1. Received b	- 1	in	end	Org. 4/4		10/20/14			3. Rece				Org.		Time	
2.Relinquishe		one	the second	Org. 4142		10/20/14			i 	uished by		- 0	Org.		Time	
2. Received b		Mle	tw	Org. Cel		10-21-14	Time (140	4. Rece	ived by			Org.	Date	Time	
*Prior confir	mation w	ith SMO re	quired for 7 and	I 15 day TAT	Γ											

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab															Page	<u> 1</u> of <u>1</u>
Batch No.						SMO Use					^	1	2	AR/COC	61	5829 -
Project Name		MWL GW	M/SVM	Date Samples	Shipped:	10/2	1/14		SMO A	thorization:	Down	12	2	Waste Characterization		
Project/Task I	Manager:	Tim Jacks	son	Carrier/Waybill	l No.	7253			Іѕмо с	ontact Phone	e:			RMMA		
Project/Task I	Number:	146422.1	0.11.08	Lab Contact:		Edie Kent/8		3171	1	Lorraine F	Herrera/50	5-844-3199		Released by COC No.		
Service Order		CF01-15		Lab Destination	n:	GEL			Send R	eport to SMC	D:			1	1	4º Celsius
				Contract No.:		PO 130387	'3		1	Rita Kava	naugh/50	5-284-2553		Bill to:Sandia National Laboratori	es (Accou	nts Payable)
Tech Area:														P.O. Box 5800, MS-0154		
Building:		Room:		Operational	Site:									Albuquerque, NM 87185-0154	- 3	3594
Sample No.	Fraction	Sai	mple Location D)etail	Depth (ft)	Date/1 Collec		Sample Matrix	Type	ontainer Volume	Preserv-	Collection Method	Sample Type	Parameter & Metho Requested	d	Lab Sample I
096709	-001	MWL-FB	•	, ctaii	NA	10/21/14	10:58	DIW	G	3x40 ml	HCL	G	FB	VOC (LTMMP List) (SW846		009
096710	-001	MWL-MW			497	10/21/14	10:58	GW	G	3x40 ml		G	SA		,	
								,			HCL			VOC (LTMMP List) (SW846	,	
096710	-010	MWL-MW			497	10/21/14	11:00	GW	P	500 ml	HNO3	G	SA	Metals (Cd,Cr,Ni,U)(SW846-		011
096710	-033	MWL-MW			497	10/21/14	11:02	GW	P -	1 L	HNO3	G	SA	Gamma Spectroscopy (EPA		012
096710	-034	MWL-MW			497	10/21/14	11:05	GW	Р	1 L	HNO3	G	SA	Gross Alpha and Beta (EPA	900.0)	013
096710	-036	MWL-MW		-	497	10/21/14	11:07	GW	AG	250 ml	None	G	SA	Tritium (EPA 906.0)		014
096710	-037	MWL-MW			497	10/21/14	11:09	GW	AG	2x40 ml	None	G	SA	Radon (SM 7500 Rn B)		015
096711	-001	MWL-TB	5 ′		NA	10/21/14	10:58	DIW	G	3x40 ml	HCL	G	ТВ	VOC (LTMMP List) (SW846	-8260B)	016
Last Chain:		✓ Yes			Sample	Tracking		SMC	Use	Special Ins	structions	/QC Requi	ements:	•	Conc	ditions on
Validation F	Req'd:	✓ Yes		- [Date Ent	tered:				EDD		✓ Yes		No	R	eceipt
Background	d:	Yes		E	Entered	by:	<u> </u>			Turnaroun	d Time	<u>7 Da</u>	<u>y*</u>	15 Day*		
Confirmato	ry:	Yes		(QC inits.					Negotiated	TAT				15	
Sample	N	ame	Şignat	ure ,	Init.	Company	/Organizat	tion/Phon	e/Cell	Sample Di	sposal	Retur	n to Client	Disposal by Lab		
	Robert L	ynch	KAVIG	noh	RC	SNL/4142/50)5-844-401	13/505-25	0-7090	Return Sa	mples By:					
Members	Alfred Sa	ntillanes	14465	filled	UA	SNL/4142/50)5-844-513	30/505-22	8-0710	Comments		Send report to	Tim Jacksor	n/4142/MS 0729/284-2547		
1	William (Gibson	Wille-Nr	Sul 2	118	SNL/4142/50	05-284-330	07/505-23	9-7367	Report spe	cific list of	VOCs (LTM	IMP list p	rovided by SNL/NM SMO).		
				1	0					Report sho	rt list isoto	pes for Gan	nma Spec	ctroscopy.		
	1									1					La	ab Use
1.Relinquishe	d by	el Sa	till	Org.4/42	Date	10/21/1	4/Time /	1:30	3.Relino	uished by			Org.	Date	Time	
1. Received b	/ 11//	while	med	Org. 4142		10/21/14	-	-	3. Rece				Org.		Time	
2.Relinquishe		m /a	Cery	Org.4/42		13/21/19			-	uished by			Org.		Time	
2. Received b		Vn L	14.	Org. Cel		10-22-14	Time C		4. Rece				Org.		Time	
		ith SMO ro	guired for 7 and			10 pa		110	1					2010		

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.aqainc.net

Memorandum

Date:

December 9, 2014

To:

File

From:

Monica Dymerski

Subject:

Radiochemical Data Review and Validation – SNL

Site: MWL GWM/SVM

AR/COC: 615889 and 615890

SDG: 360118 Laboratory: GEL

Project/Task: 146422.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM ER Project AOP 00-03 Rev 4.

Summary

Three samples were prepared and analyzed with approved procedures using method SM 7500 Rn B (Radon-222 by Liquid Scintillation). Problems were identified with the data package that resulted in the qualification of data.

- 1. The result for sample 360118003 was < the associated MDA and will be qualified BD,FR3.
- 2. The results for samples -001 and -002 were > the MDA but $\leq 3X$ the MDA and will be **qualified J,FR7.**

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracers and /or carriers are not required for the method used.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Laboratory Control Sample (LCS)

All LCS recoveries met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

An EB was submitted with ARCOC 615889 and is associated with the samples from ARCOC 615890. A field duplicate pair was submitted with ARCOC 615890. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by:	Mary Donivan	Level: I	Date:	12/09/14

Sample Findings Summary

AR/COC: 615889, 615890

Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
SM 7500 Rn B			
	096856-037/MWL-EB2	Radon-222 (14859-67-7)	BD, FR3
	096857-037/MWL-MW7	Radon-222 (14859-67-7)	J, FR7
	096858-037/MWL-MW7	Radon-222 (14859-67-7)	J, FR7

All other analyses met QC acceptance criteria; no further data should be qualified.

Data Validation Summary Worksheet

AR/COC #: 615889 and 615890

Site/Project: MWL GWM/SVM

Validation Date: 12/09/2014

SDG #: 360118

Laboratory: GEL Laboratories LLC

Validator: Monica Dymerski

X Rad

Matrix: Aqueous

of Samples: 3

CVR present: Yes

Analysis Type: Organic Metals

Gen Chem

AR/COC(s) present: Yes

Sample Container Integrity: OK

	Requested Analyses Not Reported											
Sample Number	Laboratory ID	organic	genchem	metals	rad	Comments						
None												
						·						
			,									

	Hold Time/Preservation Outliers												
Sample Number	Laboratory ID	Analysis	Pres.	Coll. Date	Prep. Date	Anal. Date	Anal. within 2X HT	Anal. beyond 2X HT					
None													

Comments: Samples collected 10/28-29/2014.

Revised 7/2007

	1	10	1 -
Validated By:	MANACA	1 Dymas	E1

Radiochemistry Worksheet

AR/COC #: 615889 and 615890

SDG #: 360118

Matrix: Aqueous

Laboratory Sample IDs: 360118001 through -003

Method/Batch #s: SM 7500 Rn B (Radon): Batch 1432418

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER	EB -003	5X EB		
None													
								1	1				
			3	Tracer/C	arrier Re	covery Ou	tliers			in topic (vener			
Sample ID	Tracer/Ca	arrier %	R	Sample ID		Tracer/	Carrier	%R	Sample	ID	Trac	er/Carrier	%R
NA													
			_								-		
			_					_					

Comments: HTs OK. Matrix QC performed on sample -001.

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab															_	Page _1_ of _1_
Batch No.	14					SMO Use	1					101			AR/COC	615889
Project Name Project/Task Project/Task Service Orde	Manager: Number:	MWL GW Tim Jacks 146422.10 CF01-15	son	Date Sample: Carrier/Wayb Lab Contact: Lab Destination Contract No.:	ill N o.	10 7 1257 Edie Kent/ GEL PO 13038	803-556-8	8171	SMO Co	eport to SMC	lerrera/505):	5-844-3199 5-284-2553	no	RMA	te Characterization AA pased by COC No. a National Laboratories	✓ 4º Celsius
Tech Area:	_			Contract No		FO 13030	73	i i i i i i i i i i i i i i i i i i i		Rila Nava	naugn/505	7-204-2000		-	a National Laboratories 800, MS-0154	s (Accounts Payable),
Building:		Room:		Operationa	al Site:									Albuquerque	e, NM 87185-0154	360118
Sample No.	Fraction	San	nple Location D	etail	Depth (ft)	Date/ Colle		Sample Matrix	Co Type	ntainer Volume	Preserv- ative	Collection Method	Sample Type	Pa	rameter & Method Requested	Lab Sample ID
096856	-037	MWL-EB2	2		NA /	10/28/14	13:48	DIW	AG	2x40 ml	None	G	EB	Radon (SI	M 7500 Rn B)	003
					_											
Last Chain		Yes				Tracking		SMC	Use	Special Ins	structions	•				Conditions on
Validation Backgroun	<u> </u>	✓ Yes			Date En					EDD	d Time	✓ Yes		No 15 Day*	✓ 30 Day	Receipt
Confirmato		☐ Yes			Entered QC inits					Turnaroun Negotiated			<u>V</u>	13 Day	0 30 Day	
Sample Team Members	N Robert L	ame ynch antillanes Gibson	Signatu Signatur (1995)	ih_	Init. RL CCY USA TA		05-844-51 05-284-33	13/505-25 30/505-22 07/505-23	0-7090 8-0710 9-7367	Sample Dis Return Sar Comments	sposal nples By:		n to Client	n/4142/MS 072	Dioposal sy cas	Lab Use
1.Relinquishe	ed by T	1 1/50	_	Org. 4142	Date	enteglis	✓ Time	1048	3.Reling	uished by			Org.		Date	Time
1. Received b		14 9	the sun	Org. 4147		10/29/14			3. Rece				Org.		Date	Time
2.Relinquishe	ed by	ufly	ing	Org.4/42	Date	10/28/04		120	-	uished by			Org.		Date	Time
2. Received b		The k	dro	Org. Cel	Date	10-30-14		0735	4. Rece	ived by			Org.		Date	Time
*Prior confir	mation w	ith SMO re	quired for 7 and	1 15 day TA1	Г	,										

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab																Page _1_ of _1_
Batch No.	NA					SMO Use	,					101	•		AR/COC	615890
Project Name	9:	MWL GW	/M/SVM	Date Samples	Shipped:	10/2	9/14		SMO A	uthorization:	PLI	19/2		Wa	ste Characterization	
Project/Task	Manager:	Tim Jacks	son	Carrier/Waybi	II No.		515	4		ontact Phone			ano	∏ RM	MA	
Project/Task	-	146422.1		Lab Contact:		Edie Kent/8				Lorraine I	Herrera/50	5-844-3199		Rei	eased by COC No.	
Service Orde		CF01-15		Lab Destination	on:	GEL			Send R	eport to SMO				1		✓ 4º Celsius
				Contract No.:		PO 130387	3			Rita Kava	anaugh/50	5-284-2553		Bill to:Sand	dia National Laboratories	(Accounts Payable),
Tech Area:														P.O. Box 5	800, MS-0154	•
Building:		Room:		Operationa	l Site:										ue, NM 87185-0154	360118
i amamigi	I			10 000000000000000000000000000000000000	Depth	Date/1	ime	Sample	C	ontainer	Preserv-	Collection	Sample		arameter & Method	Lab
Sample No.	Fraction	Sar	mple Location	Detail	(ft)	Collec		Matrix	Туре	Volume	ative	Method	Type		Requested	Sample ID
	i -		•					1.						- · · · ·		
096857	-037	MWL-MV	17		496	-10/29/14	1014	GW	AG	2x40 ml	None	G	SA	Radon (S	M 7500 Rn B)	001
096858	-037	MWL-MV	<i>J</i> 7		496	10/29/14	1015	GW	AG	2x40 ml	None	G	DU	Radon (S	M 7500 Rn B)	002
Last Chain	-	√ Yes			Sample	Tracking		SMC) Use	Special In:	structions	/QC Requir	ements:			Conditions on
Validation	Req'd:	✓ Yes			Date En	ered:				EDD		✓ Yes		No		Receipt
Backgroun	d:	Yes			Entered	by:				Turnarour	d Time	7 Da	v* 🗌	15 Day*	✓ 30 Day	
Confirmato		Yes			QC inits.	WYGEN / SERVICE AND THE SERVICE AND THE	and a second			Negotiated	TAT					
Sample		ame	Signa	ture	Init.	Company	/Organiza	tion/Phon	e/Cell	Sample Di	sposal	Return	to Client	_	Disposal by Lab	
Team	Robert L			cl	EL	SNL/4142/50				Return Sa	· .					
Members	Tim Jack		T=1414		TI	SNL/4142/50				Comments	-	Send report to	Tim Jacksor	n/4142/MS 072	29/284-2547	
										-						
						, ,				1						Lab Use
1.Relinquishe	d by 7-	=4,01/2-	7	Org. 4/4	7 Date	10/29/14	Time /	1050	3.Relino	uished by			Org.		Date	Time
1. Received b		109 4	- and	Org. 4142				050	3. Rece	ived by			Org.		Date	Time
2.Relinguishe	- 67	Jak .	15 1	Org4/42		10/25/19		1200	4.Relino	uished by			Org.		Date	Time
2. Received b	7.7	Mr. Va	Kotas	Org. Gel	Date		Time 7	-	4. Rece	·	-		Org.		Date	Time
	•	ith SMO re	quired for 7 an							•						

CONTRACT VERIFICATION REVIEW FORMS GROUNDWATER MONITORING OCTOBER 2014

AR/COC Number	Sample Type
615825	Environmental*
615826	Environmental*
615827	Environmental*
615828	Environmental*
615829	Environmental*
615889	Environmental*
615890	Environmental*

^{*} AR/COC forms are provided in the Data Validation Section of this Annex.

Contract Verification Form (CVR)

Project Leader Jackson

Project Name MWL GWM/SVM

Project/Task No. 146422_10.11.08

ARCOC No. 615825

Analytical Lab GEL

SDG No. 359291

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	пеш	Yes	No	ii iio, expiani
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	X		

2.0 Analytical Laboratory Report

Line	Item	Comp	olete?	If no, explain
No.	Rem	Yes	No	ii iio, explaili
2.1	Data reviewed, signature	X		
2.2	Method reference number(s) complete and correct	X		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	X		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	X		
2.6	QC batch numbers provided	X		
2.7	Dilution factors provided and all dilution levels reported	X		
2.8	Data reported in appropriate units and using correct significant figures	X		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	X		
2.10	Narrative provided	X		
2.11	TAT met	X		
2.12	Holding times met	X		
2.13	Contractual qualifiers provided	X		
2.14	All requested result and TIC (if requested) data provided	X		

3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	X		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		X	VOC LCS recovery failed for Methylene chloride (1203198900)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	X		
	c) Matrix spike recovery data reported and met		X	VOC PS recovery failed for Methylene chloride (1203198901)
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		
	b) Matrix spike duplicate RPD data reported and met for all organic samples	X		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	Detected in FB1: Acetone, Bromodichloromethane, Chloroform, Dibromochloromethane (096696-001)

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)): "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	X		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270) a) 12-hour tune check provided	X		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		
	d) Internal standard performance data provided	Х		

Line No.	ltem	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
Acceptance of the control of the con	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		

Line No.	ltem	Yes	No	Comments
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	X		
	c) ICP interference check sample data provided	X		
a proposition de la constant de la c	d) ICP serial dilution provided	X		
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	X		-

5.0 Data Anomaly Report

Line No.	ltem	Yes	No	lf no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Eraction No.	Analysis	Broblems/Comments/Recolutions
Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

Were deficiencies unresolved? • Yes • No

Based on the review, this data package is complete. C Yes 6 No

If no, provide nonconformance report or correction request number 18350 and date correction request was submitted: 11-17-2014

Reviewed by: Lorraine R. Herrera Date: 11-19-2014 10:57:00

Were resolutions adequate and data package complete? • Yes • No

Closed by: Lorraine R. Herrera Date: 11-25-2014 10:57:00

Contract Verification Form (CVR)

Project Leader Jackson

Project Name MWL GWM/SVM

Project/Task No. 146422_10.11.08

ARCOC No. 615826

Analytical Lab GEL

SDG No. 359857

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	Rem	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	×		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	×		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	×		

2.0 Analytical Laboratory Report

Line	Born	Complete?		If no, explain
No.	Item	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	X		

Line	ltem .	Complete?		If no, explain
No.	1011	Yes	No	Tito, expain
2.2	Method reference number(s) complete and correct	X		
2.3	QC analysis and acceptance limits provided (MB. LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	x		
2.8	Data reported in appropriate units and using correct significant figures	X		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	×		
2.10	Narrative provided	X		
2.11	TAT met	Х		
2.12	Holding times met	X		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	X		

3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	×		
3.2	Quantitation limit met for all samples	Х		

SMO-2012-CVR (11-2013) SMO-05-03

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		×	VOC LCS recovery failed for Methylene chloride (1203198900)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	×		
	c) Matrix spike recovery data reported and met		×	VOC PS recovery failed for Methylene chloride (1203198901)
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		
	b) Matrix spike duplicate RPD data reported and met for all organic samples	X		
3.5	Blank data a) Method or reagent blank data reported and met for all samples		X	Cadmium detected in Metals Method Blank (1203196434)
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		×	Detected in FB2: Acetone, Bromodichloromethane, Chloroform, Dibromochloromethane (096699-001). Detected in EB2: Bromodichloromethane, Chloroform, Dibromochloromethane (096700-001)
3.6	Contractual qualifiers provided: "J"- estimated quantity: "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	×		
3.8	Narrative included, correct, and complete	х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270) a) 12-hour tune check provided	X		

3

Line No.	Item	Yes	No	Comments
	b) Initial calibration provided	X		
	c) Continuing calibration provided	X		
	d) Internal standard performance data provided	×		
	e) Instrument run logs provided	X		
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		

Line No.	Item	Yes	No	Comments
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	X		
	b) Continuing calibration provided	X		
	c) ICP interference check sample data provided	Х		
-	d) ICP serial dilution provided	X		
***************************************	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	X		

5.0 Data Anomaly Report

Line No.	Item	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis Problems/Comments/Resolutions			
		Analysis	

5

Were deficiencies unresolved? C Yes C No

Based on the review, this data package is complete. • Yes • No

Reviewed by: Lorraine R. Herrera Date: 11-26-2014 11:08:00

SMO-2012-CVR (11-2013) SMO-05-03

Closed by: Lorraine R. Herrera Date: 11-26-2014 11:08:00

Contract Verification Form (CVR)

Project Leader Jackson

Project Name MWL GWM/SVM

Project/Task No. 146422_10.11.08

ARCOC No. 615827

Analytical Lab GEL

SDG No. 359343

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Complete?		If no, explain
No.	пеш	Yes	No	irito, expiani
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	х		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	×		
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	×		

2.0 Analytical Laboratory Report

Line	Item	Complete?		If no, explain
No.	Hen.	Yes	No	ii iio, expiatii
2.1	Data reviewed, signature	X		

SMO-05-03

Line	Item	Complete?		If no, explain
No.	non	Yes	No	ii iio, expiairi
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	X		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	X		
2.8	Data reported in appropriate units and using correct significant figures	X		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	X		
2.10	Narrative provided	Х		
2.11	TAT met	X		
2.12	Holding times met	X		
2.13	Contractual qualifiers provided	×		
2.14	All requested result and TIC (if requested) data provided	×		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project- specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		

SMO-05-03

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		X	VOC LCS recovery failed for Methylene chloride (1203198900)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
delica de la casa de l	c) Matrix spike recovery data reported and met		X	VOC PS recovery failed for Methylene chloride (1203198901)
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		·
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	×		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	Detected in FB3: Bromodichloromethane, Chloroform, Dibromochloromethane (096702-001)
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"- analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	Х		
3.7	Narrative addresses planchet flaming for gross alpha/beta	×		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives). pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270) a) 12-hour tune check provided	×		
	b) Initial calibration provided	Х		

3 ARCOC No. 615827

SMO-2012-CVR (11-2013)

Line No.	Item	Yes	No	Comments
	c) Continuing calibration provided	Х		
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	x		
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		

ARCOC No. 615827

SMO-2012-CVR (11-2013)

Line No.	Item	Yes	No	Comments
4.5	Inorganics (metals) a) Initial calibration provided	X		
and the second	b) Continuing calibration provided	X		
	c) ICP interference check sample data provided	X		
	d) ICP serial dilution provided	X		
	e) Instrument run logs provided	×		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	X		

5.0 Data Anomaly Report

Line No.	Item	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions

5

Were deficiencies unresolved? C Yes C No

Reviewed by: Lorraine R. Herrera Date: 11-19-2014 13:10:00

Closed by: Lorraine R. Herrera Date: 11-19-2014 13:10:00

ARCOC No. 615827

SMO-2012-CVR (11-2013) SMO-05-03

Contract Verification Form (CVR)

Project Leader Jackson Project Name MWL GWM/SVM Project/Task No. 146422_10.11.08

ARCOC No. 615828, 615829 **Analytical Lab** GEL **SDG No.** 359428

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	nem	Yes	No	ii iio, expiani
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	X		

2.0 Analytical Laboratory Report

SMO-2012-CVR (11-2013)

Line	Item	Complete		If no, explain
No.	Hem	Yes	No	ii iio, explaiii
2.1	Data reviewed, signature	X		
2.2	Method reference number(s) complete and correct	X		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	X		
2.6	QC batch numbers provided	X		
2.7	Dilution factors provided and all dilution levels reported	X		
2.8	Data reported in appropriate units and using correct significant figures	X		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	X		
2.10	Narrative provided	X		
2.11	TAT met	X		
2.12	Holding times met	X		
2.13	Contractual qualifiers provided	X		
2.14	All requested result and TIC (if requested) data provided	X		

3.0 Data Quality Evaluation

SMO-2012-CVR (11-2013)

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	X		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		X	VOC LCS recovery failed for Methylene chloride (1203200625, 1203202875)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	X		
	c) Matrix spike recovery data reported and met		X	VOC PS recovery failed for Methylene chloride (1203200626)
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		
	b) Matrix spike duplicate RPD data reported and met for all organic samples	X		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	Detected in FB4, FB5: Bromodichloromethane, Chloroform, Dibromochloromethane (096706-001, 096709-001)

SMO-05-03

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	X		
3.8	Narrative included, correct, and complete	X		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270) a) 12-hour tune check provided	X		
***************************************	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		
	d) Internal standard performance data provided	Х		

Line No.	ltem	Yes	No	Comments
	e) Instrument run logs provided	X		
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		

Line No.	ltem	Yes	No	Comments
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	X		
	b) Continuing calibration provided	X		
	c) ICP interference check sample data provided	Х		
	d) ICP serial dilution provided	Х		
	e) Instrument run logs provided	Х		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Data Anomaly Report

Line No.	ltem	Yes	No	lf no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

SMO-2012-CVR (11-2013) SMO-05-03

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions	
---------------------	----------	-------------------------------	--

Were deficiencies unresolved? C Yes C No

Based on the review, this data package is complete. Yes No

Reviewed by: Lorraine R. Herrera Date: 11-25-2014 15:04:00

Closed by: Lorraine R. Herrera Date: 11-25-2014 15:04:00

Contract Verification Form (CVR)

Project Leader Jackson

Project Name MWL GWM/SVM

Project/Task No. 146422_10.11.08

ARCOC No. 615889, 615890

Analytical Lab GEL

SDG No. 360118

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	пеш	Yes	No	π πο, εκριαπ
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	X		
1.3	Sample volume adequate for # and types of analyses requested	X		
1.4	Preservative correct for analyses requested	X		
1.5	Custody records continuous and complete	X		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	X		
1.8	Condition upon receipt information provided	X		

2.0 Analytical Laboratory Report

SMO-05-03

Line	ltem	Comp	olete?	If no, explain
No.	Rem	Yes	No	ii iio, expiani
2.1	Data reviewed, signature	X		
2.2	Method reference number(s) complete and correct	X		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	X		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	X		
2.6	QC batch numbers provided	X		
2.7	Dilution factors provided and all dilution levels reported	N/A		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2 sigma error) and tracer recovery (if applicable) reported	X		
2.10	Narrative provided	X		
2.11	TAT met	X		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	X		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	×		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	×		

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		

SMO-2012-CVR (11-2013)

Line No.	ltem	Yes	No	Comments
	e) Instrument run logs provided	N/A		
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		

Line No.	Item	Yes	No	Comments
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		
	e) Instrument run logs provided	N/A		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	X		

5.0 Data Anomaly Report

Line No.	Item	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

SMO-2012-CVR (11-2013)

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
---------------------	----------	-------------------------------

Were deficiencies unresolved? C Yes 6 No

Reviewed by: Lorraine R. Herrera Date: 12-08-2014 08:26:00

Closed by: Lorraine R. Herrera Date: 12-08-2014 08:26:00

ANNEX F

Mixed Waste Landfill Inspection Forms April 2014-March 2015

Cover Inspection

Soil-Vapor Monitoring Network

Soil-Moisture Monitoring Network

Groundwater Monitoring Network

Biology Inspection

Note: Radon monitoring system inspection forms are provided in Annex A

Mixed Waste Landfill Cover Inspection Checklist/Form

1. 2. 3.	Time of Inspection //: 00 am			
Pr m	rovide explanatory notes for each parameter not inspected of aintenance or repair required in notes section at the end of this for		required. L	oclude any
155	COVER SYSTEM [Quarterly] spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	NO	
В.	Erosion of the soil cover in excess of 6 inches deep.	Yes	NO	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	yes	NO	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	N0	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	NO	
F.	Potentially deep-rooted plants present. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	NO	
II.	SURFACE-WATER (STORM-WATER) DIVERSION STR	RUCTURES [Quarterly]	
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Channel or sidewall erosion in excess of 6 inches deep.	yes	ON	
B.	Channel sediment accumulation in excess of 6 inches deep.	yes	NO	
C.	Debris that blocks more than 1/3 of the channel width.	vies	NO	

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	yes	1
B. Fence wires and posts in need of repair/maintenance.	yes	NO	
C. Gates in need of oiling/repair/maintenance.	yes	NO	
D. Locks in need of cleaning or replacement.	yes	NO	
E. Warning signs in need of repair or replacement.	yes	NÔ	
F. Survey monuments in vicinity of MWL visible.	yes	NO	
IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	yes	ND	

NOTES

Note Number	Description
1	Wind blown plant debris needs removed

Action (Note Number) assigned to	Dow Schofield	_Date action completed	6/4/2014
Action (Note Number) assigned to		Date action completed_	
Action (Note Number) assigned to		_Date action completed	
Action (Note Number) assigned to		_Date action completed	
Action (Note Number) assigned to		_Date action completed	
Additional Comments:			
Plant debris reme	weel by St	quoia Land	Scupe
Plant debris reme on 6/3-6/4/14	Ome	6/4/14	
		,	,
			
		·	
			
Inspector's Signature Dinulatory Original to: Mixed Waste Landfill Operating R		14	

Copy to: SNL/NM Records Center

Mixed Waste Landfill Cover Inspection Checklist/Form

1.	Date of Inspection	august 4, 2014
	Time of Inspection	
3.	Name of Inspector	Dow Waterpaugh

Provide explanatory notes for each parameter not inspected or each action required. Include any maintenance or repair required in notes section at the end of this form.

L	COVER SYSTEM [Quarterly]		A STATE OF THE STA	
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
B.	Erosion of the soil cover in excess of 6 inches deep.	yes	ON	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	Yes	NO	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	ye	KTO	-
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
F.	Potentially deep-rooted plants present. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	N)	
II.	SURFÁCE-WATER (STORM-WATER) DIVERSION STE	RUCTURES K	Quarterly]	
Insţ	oection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α.	Channel or sidewall erosion in excess of 6 inches deep.	Nes	M	
В. (Channel sediment accumulation in excess of 6 inches deep.	200	Ŋ	
C. 1	Debris that blocks more than 1/3 of the channel width.	dyes	64	

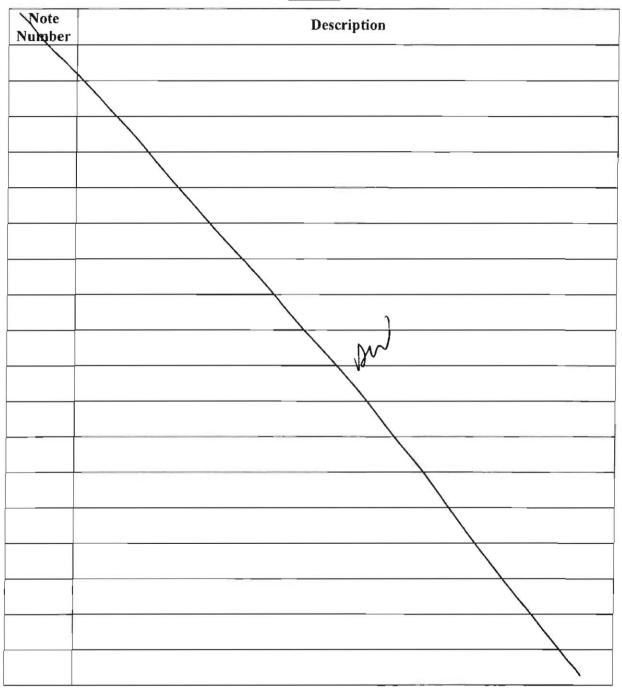
III. SECURITY FENCE [Quarterly]		,	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	уш	#1
B. Fence wires and posts in need of repair/maintenance.	Jes	Yes -	#2
C. Gates in need of oiling/repair/maintenance.	yes	NO	
D. Locks in need of cleaning or replacement.	Yes	No	
E. Warning signs in need of repair or replacement.	420	CM	
F. Survey monuments in vicinity of MWL visible.	yes.	ND.	
IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	No	GN	

NOTES

Note Number	Description		
l	Accumulation of wind blown plants along inside		
	Accumulation of wind blown plants along inside of perimeter fence.		
2	Top barbwire on fence in East dog-Log area had been cut.		
	had been cut.		
	·		
	·		
_			
	·		

Action (Note Number) assigned to Don Scho Field Date action completed August 27, 2014
Action (Note Number) 2 assigned to Don Waterpaugh Date action completed August 4, 2014
Action (Note Number) assigned to Date action completed
Action (Note Number) assigned toDate action completed
Action (Note Number) assigned toDate action completed
Additional Comments:
· · · · · · · · · · · · · · · · · · ·
1. Accumulation of wind blown plants removed by
Sequoia Landscoping. Work was completed on August 27,2019
2 Top barbwire on Fence in east dog-leg area was
Pon Waterpaughi
Inspector's Signature Don Valenpand &4/14

Original to: Mixed Waste Landfill Operating Record


Copy to: SNL/NM Records Center

Mixed Waste Landfill Cover Inspection Checklist/Form

1.	Date of Inspection Dec 3, 2014			
2.	Time of Inspection 1300			
3.				
	rovide explanatory notes for each parameter not inspected of aintenance or repair required in notes section at the end of this for		required. In	nclude any
I.	COVER SYSTEM [Quarterly]			
In.	spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α.	Visible settlement of the soil cover in excess of 6 inches.	200	No	
B.	Erosion of the soil cover in excess of 6 inches deep.	ys.	No	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	Jes	NO	
D.	Animal intrusion burrows in excess of 4 inches in diameter. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	NO	
E.	Contiguous areas of no vegetation greater than 200 ft ² . Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	Mo	
F.	Potentially deep-rooted plants present. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	NP	
II.	SURFACE-WATER (STORM-WATER) DIVERSION STR	UCTURES [Quarterly]	
Insj	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Channel or sidewall erosion in excess of 6 inches deep.	Yeo	S	
В.	Channel sediment accumulation in excess of 6 inches deep.	Yes	No	
C.	Debris that blocks more than 1/3 of the channel width.	9 m	Nb	

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yo	No	
B. Fence wires and posts in need of repair/maintenance.	Yes .	No	
C. Gates in need of oiling/repair/maintenance.	1/20	No	
D. Locks in need of cleaning or replacement.	y _c o	No	
E. Warning signs in necd of repair or replacement.	Vu	da	
F. Survey monuments in vicinity of MWL visible.	dyes	hp	
IV. PREVIOUS DEFICIENCIES	θ		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	1/20	6 d	

NOTES

Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Additional Comments:		
2		
		W .
_		
	_	
Inspector's Signature		
Original to: Mixed Waste Lan	dfill Operating Record	

Copy to: SNL/NM Records Center

Mixed Waste Landfill Cover Inspection Checklist/Form

	1. Date of Inspection Feb, 16, 2015			
	2. Time of Inspection			
	3. Name of Inspector Don Waterpaugh			
1	Provide explanatory notes for each parameter not inspected on national content of the end of this form. COVER SYSTEM [Quarterly]		required. In	nclude any
1	Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A	A. Visible settlement of the soil cover in excess of 6 inches.	yes	NO	NA
E	3. Erosion of the soil cover in excess of 6 inches deep.	yes	NO	}
C	 Evidence of water ponding on the MWL cover surface in excess of 100 square feet. 	yes	NO	
D	D. Animal intrusion burrows in excess of 4 inches in diameter. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	NO	
E	Contiguous areas of no vegetation greater than 200 ft ² . Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	ND	
F	Potentially deep-rooted plants present. Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yso	NO	
II	I. SURFACE-WATER (STORM-WATER) DIVERSION STR	UCTURES (Quarterly	
'n	aspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall erosion in excess of 6 inches deep.				
В	. Channel sediment accumulation in excess of 6 inches deep.	yes	NO	
C	. Debris that blocks more than 1/3 of the channel width.	900	ND	

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	Yes	yes	Ì
B. Fence wires and posts in need of repair/maintenance.	yw	NO	NA
C. Gates in need of oiling/repair/maintenance.	1/20	ND	
D. Locks in need of cleaning or replacement.	Yus	no	
E. Warning signs in need of repair or replacement.	Yes	ND	↓ ·
F. Survey monuments in vicinity of MWL visible.	ye	yes	2
IV. PREVIOUS DEFICIENCIES		•	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	NA

NOTES

Note Number	Description
1	Wind blown plant debris needs to be removed weeds have grown up around monunents, needs to be be Cleared
2	weeds have grown up around monunents, needs toke
	be Cleared

Action (Note Number)	assigned to Do	Schofield	Date action completed_	3/5/295
Action (Note Number) 2	assigned to D	n Schofiel	Date action completed_	3/5/2015
Action (Note Number)	assigned to		_Date action completed_	
Action (Note Number)	assigned to		_Date action completed_	
Action (Note Number)	assigned to		_Date action completed_	
Additional Comments:				
		<u> </u>		
$\overline{}$				
				-
				, -
				\

Inspector's Signature Work Clarpery

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form

1. Date of Inspection <u>9/11/14</u>			
2. Time of Inspection <u>0800</u>			
3. Name of Inspector Robert Lynch			
Provide explanatory notes for each parameter not inspected maintenance or repair required.	f or each action	required. In	clude any
I. SOIL-VAPOR MONITORING LOCATIONS [Semiann	ually or Annually	7]	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Concrete pads, bollards, and protective casings in need of repair/maintenance.	Ye5	No	
B. Well cover caps in need of repair/maintenance.	7.65	N3	
C. Well casing or sampling ports in need of repair/maintenance.	Yes	Νo	
D. Monitoring location and sampling ports properly labeled.	Yes	No	
E. Locks in need of cleaning or replacement.	115	NJ	
II. SAMPLING EQUIPMENT [Semiannually or Annually]	,		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Namber
A. Sampling pump in need of repair/maintenance.	125	NJ	
 B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance. 	Yas No		
III. PREVIOUS DEFICIENCĮES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number

Uncorrected/undocumented previous deficiencies.

NA

NA

Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form (Continued)

NOTES

Note Number		Description
Number		
III. THE COLOR THE SHEET COLOR		
	hald de hald d	
Action (Note Number)	assigned to	Date action completed
	assigned to	
	assigned to	-
Action (Note Number)	assigned to	Date action completed
Additional Commen	te•	
		dua and and
X MWL-500.	5 - 300 av	14 400 FOUT POUTS,
Difficult	reslow into	he of soil uppor into sample
containers		<u> </u>
X AWL-SV	02 - clear	ed rust and nipo rust
off API	DE Tubing	
Inspector's Signature	Mynol	
Original to: Mixed Waste	Landfill Operating Record	

Copy to: SNL/NM Records Center

Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form

1. Date of Inspection			
2. Time of Inspection			
 Time of Inspection			
Provide explanatory notes for each parameter not inspected or maintenance or repair required.	r each action	required. In	clude any
I. SOIL-VAPOR MONITORING LOCATIONS [Semiannual	lly or Annually	y]	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Concrete pads, bollards, and protective casings in need of repair/maintenance.	yes	טא	
B. Well cover caps in need of repair/maintenance.	Yes	No	VA VANDAMINA WA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA VANDAMINA WA WA VANDAMINA WA VANDAMINA WA WA VANDAMINA WA WA WA VANDAMINA WA WA WA WA WA WA WA WA WA WA WA WA WA
C. Well casing or sampling ports in need of repair/maintenance.	<i>X</i> 15	No	And the Asset Asse
D. Monitoring location and sampling ports properly labeled.	Y-e5	No	The state of the s
E. Locks in need of cleaning or replacement.	Yes	· NO	
II. SAMPLING EQUIPMENT [Semiannually or Annually]			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	Y 25	NJ	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	y 19	Na	
III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form (Continued)

NOTES

Action (Note Number) assigned to Date action completed	Note Number		-	Descrip	tion
Action (Note Number) assigned to Date action completed					
Action (Note Number) assigned to Date action completed					
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Additional Comments: mwi-5v03 -> 300 and 400 flys ports slow to fill SUMMA cunishers mwi-5v02 -> Dampfwaher present anside of protective casing.					
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Additional Comments: mwi-5v03 -> 300 and 400 flys ports slow to fill SUMMA cunishers mwi-5v02 -> Dampfwaher present anside of protective casing.					
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Additional Comments: mwi-5v03 -> 300 and 400 flys ports slow to fill SUMMA cunishers mwi-5v02 -> Damp fusher present anside of protective casing.					
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Additional Comments: mwi-5v03 -> 300 and 400 flys ports slow to fill SUMMA cunishers mwi-5v02 -> Dampfwaher present anside of protective casing.					
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Additional Comments: mwi-5v03 -> 300 and 400 flys ports slow to fill SUMMA cunishers mwi-5v02 -> Dampfwaher present anside of protective casing.					
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Additional Comments: mwi-5vv3 -> 300 and 400 fb45 ports slow to fill SUMMA cunisfers mwi-5vv3 -> Damp fwhere present inside of protective casing.					
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Additional Comments: mwi-5vv3 -> 300 and 400 fb45 ports slow to fill SUMMA cunisfers mwi-5vv3 -> Damp fwhere present inside of protective casing.					
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Additional Comments: mwi-5vv3 -> 300 and 400 fb45 ports slow to fill SUMMA cunisfers mwi-5vv3 -> Damp fwhere present inside of protective casing.					
Action (Note Number) assigned to Date action completed			<u> </u>		
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed Additional Comments: mwi-5vv3 -> 300 and 400 fb45 ports slow to fill SUMMA cunisfers mwi-5vv3 -> Damp fwhere present inside of protective casing.	Action (No	ote Number)	assigned to		Date action completed
Action (Note Number) assigned to Date action completed					
Additional Comments: mwl-5003 -> 300 and 400 flys ports slow to fill SVMMA consters mwl-5002 -> Dampluster present inside of protective casing.					
mul-5003 -> 300 and 400 flys ports slow to fill SUMMA consisters mul-5002 -> Dampluster present inside of protective casing.	Action (No	ote Number) _	assigned to _		Date action completed
mwl-svoz -> Dampluster present anside at protective casias.	Additiona	al Comment	es:		
mwl-svoz -> Dampluster present anside of protective casids.	mwl-g	5003 →	300 and 400	fors ports	slow to fill SUMMA consters
				. 1	· · · · · · · · · · · · · · · · · · ·
,	mwL-3	V02 ->	Dampluste	piesent	anside of protective carriary
,					
•					
· · · · · · · · · · · · · · · · · · ·			1 1 day		
Inspector's Signature The July					
Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center	· ·			ecora	

Mixed Waste Landfill Soil-Moisture Monitoring Network Checklist/Form

1.	Date of Inspection	4/15/14
2.	Time of Inspection	0926
3.	Name of Inspector	Robert Bock

Provide explanatory notes for each parameter not inspected or each action required. Include any maintenance or repair required.

I. SOIL-MOSITURE MONITORING LOCATIONS [Semia	annally or And	mally[
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
F. Concrete pads, bollards, and protective casings in need of repair/maintenance.	yes	No	
G. Access tube cover caps in need of repair/maintenance.	yes	No	
H. Access tube casing in need of repair/maintenance.	yes	yes	
I. Monitoring location properly labeled.	yes	No	ANN ORDERS ANN AND AND AND AND
J. Locks in need of cleaning or replacement.	yes	No	
II. SAMPLING EQUIPMENT [Semiannually or Annually]			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Neutron probe in need of repair/maintenance.	yes	No	
B. Cable reel or cable in need of repair/maintenance.	yes	No	
III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

Mixed Waste Landfill Soil-Moisture Monitoring Network Checklist/Form (Continued)

NOTES

Note Number	Description
/	Protective casings and bollards need to be
	Protective casings and bollards need to be repainted.
Action (No Action (No	te Number) / assigned to Robert Zib Date action completed 4/21/14 te Number) / assigned to Date action completed te Number) / assigned to Date action completed te Number) / assigned to Date action completed te Number) / Date action completed / Date action completed
	Comments: Extire casings and bollards were repainted 4/21/14.
Inspector's S	ignature Thing June
Original to: 1	Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Tailgate Safety Meeting Form

Dept: 41 42 Date: 4/	/21/14 Time: 1245
Activities: repair protectives c	easing & bollards of soil moisture wells ety concerns. The buddy system will be used when needed.)
Weather Conditions: Femp: °F Wind Speed: MPH	Humidity: % Wind Chill °F
	<i>,</i>
Chemicals Used: paint	
Safety To	opics Presented
Be aware of slips, trips, and falls. Keep	Be aware of environmental conditions
work area clean and use a stepping stool	(heat / cold stress). Dress accordingly.
when necessary.	Wear sunscreen if necessary. Stay
	hydrated.
☐ Wear safety boots.	☐ Be aware of electrical hazards
Wear leather gloves.	☐ Be aware of pressure hazards.
Wear safety glasses.	☐ No eating or drinking on site.
Wear nitrile or latex gloves.	Be aware of biohazards (snakes, spiders,
	etc.)
☐ Use safe lifting practices.	■ Wear communication device (cell phone,
	site radio, EOC pager).
☐ Be aware of pinch points	☐ Other (list).
☐ Other (list).	☐ Other (list).
Emergency: 844-0911 (cell phone) or 911 (Sand	ia land line)
	Attendees
Robert Fisch	Man make
Printed Name	Signature
Timed Want	Dignaturo /
Printed Name	Signature
Printed Name	Signature

IMPORTANT NOTICE:

A printed copy of this document may not be the document currently in effect. The official version is located on the Sandia Restricted Network (SRN), 4100 Controlled Documents home page.

Mixed Waste Landfill Soil-Moisture Monitoring Network Checklist/Form

1. Date of Inspection 10/16/14 2. Time of Inspection 0955 3. Name of Inspector Robert Ziock			
Provide explanatory notes for each parameter not inspraintenance or repair required.	pected or each action	required. In	clude any
I. SOIL-MOSITURE MONITORING LOCATIONS	[Semiannually or Ann	ually]	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
 F. Concrete pads, bollards, and protective casings in need of repair/maintenance. 	yes	No	
G. Access tube cover caps in need of repair/maintenance.	yes	No	
H. Access tube casing in need of repair/maintenance.	yes	No	
I. Monitoring location properly labeled.	yes	No	
J. Locks in need of cleaning or replacement.	Jes	yes	1
II. SAMPLING EQUIPMENT [Semiannually or Ann	ually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Neutron probe in need of repair/maintenance.	yes	No	
B. Cable reel or cable in need of repair/maintenance.	yes	No	
III. PREVIOUS DEFICIENCIES			·
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	1/4	NA	

Mixed Waste Landfill Soil-Moisture Monitoring Network Checklist/Form (Continued)

NOTES

Note Number	Description
1	Locks at VZ-1, VZ-2, and VZ-3 need to be replaced
_	
·	
Action (Not	te Number) assigned to Robest 7tbk Date action completed 10/16/14 te Number) assigned to Date action completed te Number) assigned to Date action completed te Number) assigned to Date action completed te Number) Date action completed
	1 Comments: 13 were replaced by Robert Zibik at time the inspection.
of 1	the inspection.
	/
	Matri
Inspector's Si	gnature
Original to: IV	nated waste Landin Operating Accord

Copy to: SNL/NM Records Center

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form

1. Date of Inspection			
2. Time of Inspection			
3. Name of Inspector Robert Lynch			
Provide explanatory notes for each parameter not inspected maintenance or repair required.	d or each action	required. In	clude any
I. GROUNDWATER MONITORING LOCATIONS [Semi	iannually]	114	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
 Concrete pads, bollards, and protective casings in need of repair/maintenance. 	Yes	No	Average and a second se
B. Well cover caps in need of repair/maintenance.	Yes	No	announce A refinedire to A refinedire
C. Well casing in need of repair/maintenance.	Yes	140	
D. Monitoring well properly labeled.	Yes	No	
E. Locks in need of cleaning or replacement.	Yes	No	
II. GROUNDWATER SAMPLING EQUIPMENT [Semian	nually]	·	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	Yes	NO	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	Yes	No	
III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form (Continued)

NOTES

Note Number		Description	**************************************
-			
		_	
			ORDERAGE
			0004000000
			0004000000
Action (Note Number)	assigned to	Date action completed	
	assigned to		Annanannana.
Action (Note Number)	assigned to	Date action completed	***************************************
	assigned to		
Additional Commen	its;		
			racerneredannada annomm

Inspector's Signature	altynel		

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form

1. Date of Inspection <u>6/30/14</u>			
2. Time of Inspection 0800			
3. Name of Inspector Robert Lynch			
Provide explanatory notes for each parameter not inspecte maintenance or repair required.	ed or each action	required. In	clude any
I. GROUNDWATER MONITORING LOCATIONS [Sem	niannually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Concrete pads, bollards, and protective casings in need of repair/maintenance.	Yes	NO	
B. Well cover caps in need of repair/maintenance.	Yes	No	
C. Well casing in need of repair/maintenance.	Yes	NO	
D. Monitoring well properly labeled.	Yes	No	
E. Locks in need of cleaning or replacement.	yes	NO	
II. GROUNDWATER SAMPLING EQUIPMENT [Semial	nnually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	YES	140	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	Yes	No	
III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number

Uncorrected/undocumented previous deficiencies.

NA

NA

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form (Continued)

NOTES

Note Number	Description .			
CONTRACTOR AND THE CONTRACTOR AN				***************************************
APPRILADA APPRIL				
				•
		assigned to		nooonaagagamaanaa
Action (No	te Number)	assigned to	Date action completed	
		assigned to		
Action (No	te Number)	assigned to		
Additiona	d Comments:			
	<u> </u>			WHIT NO TYPE MAKENEY COMMENT
* * * * * * * * * * * * * * * * * * * *	- 	*		
***************************************		·····		·
Inspector's S	ignature 🕢	Struck		

Original to: Mixed Waste Landfil Operating Record

Copy to: SNL/NM Records Center

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form

1. Date of Inspection			
2. Time of Inspection 6446 am			
3. Name of Inspector Robert Lynch			
Provide explanatory notes for each parameter not inspected maintenance or repair required.	or each action	required. In	clude any
I. GROUNDWATER MONITORING LOCATIONS [Semia	nnually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Concrete pads, bollards, and protective casings in need of repair/maintenance.	YES	No	
B. Well cover caps in need of repair/maintenance.	YES	NO	
C. Well casing in need of repair/maintenance.	YES	NO	
D. Monitoring well properly labeled.	YES	No	
E. Locks in need of cleaning or replacement.	YES	No	
II. GROUNDWATER SAMPLING EQUIPMENT [Semiann	nually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	465	Nο	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	YES	MO	
III. PREVIOUS DEFICIENCIES		·	
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form (Continued)

NOTES

Note Number	Description				
			·· · ····		
Action (Note Number) _					
Action (Note Number) _	assigned to	Date action completed			
Action (Note Number) _	assigned to	Date action completed			
Action (Note Number) _	assigned to	Date action completed			
Additional Comment	s:				
		-			
Inspector's Signature	Almel				

Original to: Mixed Waste Landvill Operating Record

Copy to: SNL/NM Records Center

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form

1. Date of Inspection 10/29/14			
2. Time of Inspection 0800'			
3. Name of Inspector RoberTLynch			
Provide explanatory notes for each parameter not inspected maintenance or repair required.	I or each action	required. In	clude any
I. GROUNDWATER MONITORING LOCATIONS [Semia	annually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Concrete pads, bollards, and protective casings in need of repair/maintenance.	YES	No	
B. Well cover caps in need of repair/maintenance.	YES	NO	
C. Well casing in need of repair/maintenance.	YES	NO	
D. Monitoring well properly labeled.	YES	NO	
E. Locks in need of cleaning or replacement.	YES	No	
II. GROUNDWATER SAMPLING EQUIPMENT [Semian	nually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	YES	No	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	YES	No	
III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form (Continued)

NOTES

Note Number	Description				
			_		
			_		
			_		
Action (Note Number)	assigned to	Date action completed			
	assigned to				
		Date action completed			
Action (Note Number)	assigned to	Date action completed			
Additional Comme	nts:				
		· · · · · · · · · · · · · · · · · · ·	-		
			_		
	<u></u>		_		
Inspector's Signature	Mul				
	Landfill Operating Record	 i			

Copy to: SNL/NM Records Center

May 15, 2014

Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover

Scientific Name	Common Name (optional)	% of Coveri
Pleuraphis janesii	James galleta	<u>45%</u>
Erigeron divergens	Fleatione dusy	Trace **
Boutelona gracilis	Blue grama	2%
Sporobolus flexuosus	mesa dropsoed	400
Yantusma sphulosum	Spiny golden weed	Trace
Plantago patagonica	woolly plantain	Trace
Dicteria carescens	Hoary tansyaster	Trace
Cryptantha crass sepala	Thicksepal cryptantha	Trace
Sisymbrium iris	Landon rocket	Trace
Gutierrezia Sarothrae	Snake weard	Trace
Spharalcea hostulata	contensolop bold-nollas	Trace
Atoplex canescens	Fow-witg saltbush	Trace
Bouteloua eriopoda	Black grama	Trace
	-	<u></u>

Note: ¹ Percentage of total MWL Cover populated by actively-photosynthesizing plants of this species

* Living plants per Section 4.1 of the MW LTMMP.

** Trace = species present at a rack of less than one-half of one-percent.

Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover (continued)

Are there any contiguous areas of no vegetation greater than 200 square feet? (approximately 14 x 14 ft)? No.
If "Yes," mark such areas on a map and attach to this checklist. Address actions and schedule to improve such area(s) in the notes section below.
Are there any very deeply rooted (roots greater than 8 feet deep at maturity) plant species present on the cover?
If "Yes," describe the plant(s) and their general distribution. Address actions and schedule to remove plant(s) from the cover in the notes section below.
Notes: One four-wity seltbush is growing on the cover.
This imaral is a juvenile with a stallow root system
at this stage of development. Four-witg salt bush are most effectively killed by clipping in the winter when dormant. This plant when dormant. This plant is the winter when dormant.
Inspection for Animal and Insect Intrusion into MWL Cover will be clipped
Are any burrows present on the cover? Les during with 2
Do any of the burrows appear to be active? 105
Any ant hills/nests? 45
Describe below observations regarding animal and insect features. If burrows with an entrance diameter of 4 inches or greater are present or appear to be that of a species that is able to burrow 6 feet deep or greater, indicate the location(s) on a map and attach to this checklist. Address actions and schedule to repair cover damage that exceeds prescribed limits. As appropriate, identify animal and insect features and have them surveyed and marked for biota sampling.
Notes: Burrow ordrances are smaller than 4-thches it diameter.
No burrow appears to be that of a species able to burrow

Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover (Continued)

Notes (continued):
Cover regetation is currently not as green as surrounding
regetation, including ground-level regetation inside the fence the.
This is likely due to the above-grade level of the cover,
decreasing the amount of overload flow it receives from updage
land.
Tumbe weeds are scattered it low quantity on the cover.
Tumbe woods are scattered it low quantity on the cover. West fenceline has the highest density of wither blown tumble woods
on the fencebres.
many small "test" burrow endrances on the north slope, particularly
at the eastern end. Earthen slopes are attractive to small manuals,
especially kanagros rates to create burrows, larger gravel on
side-slopes will deter this activity.
Forbs are primarily observed on side-slopes.
I antiquée a de-oft of some grass clumps. The bunch
grosses are more tightly spaced that what naturally occurs in
the summulay upland areas.
Biological Aspects Map [note: sketch map to locate specific features described above will be attached as appropriate]
I
Inspector's Signature: Date: May 15, 2014 Original to: Mixed Western and SII Operating Record
Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center
CONTROL OF PRINCIPLE CONTROL

Multiples Multiples	And the second s	the popular control of the company o	and the second s			·		
MWL SUOL Trighton Director Fercing Legand Dures		Main Irrigation Line b	**			1)?		
ET Cover Toe Porimeter: Fencing Lagend Durson	0					*	(a)	
ET Cour Toe Perineters Fercing Legard burson				Irrigation				
Encing MW Lagend burrows	1				**************************************			
Legend burrow						Parine Fencin	ter Toe	,
Legend burrow	•				•	/	/ ************************************	
O= And burnow entrance	9	The state of the s	*	Application of the control of the co		/ Las	gend bur the hamman lb	CHG1

Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover

Approximate vegetative coverage (actively photosynthesizing): 52 %
Approximate percent native vegetation of the total vegetative cover: 99 %
Listed below are the main plant species identified as growing on the MWL cover and the
percentage of the cover populated by each species.

Scientific Name	Common Name (optional)	% of Cover ¹
Pleura phis jamesi	James' galleta	42%
Spordolus Flexuosus	Mesa dropseed	6%
Sporobolus contractus	Spike dopseed	20/0
Boutaloua graciliz	Blue grama	10/0
Bouteloua ariopoda	Black grana	Trace **
Erigeron divergens	Fleabane daisy	Trace
Sphaeralcea hastulata	worklad globamallow	Trace
Salsola tragus	Russian throtte	Trace
Dieteria Canescens	Hoary tansyaster	Trace
Xanthizma spinulosum	Spiny oplderwead	Trace
Atriplex canescens	Four-wing saltbush	Trace
Gutierrezia sarothrae	Snake weed	Trace
Aristida purpurea	Purple three-awn	Trace
Sphaeralcea angustifolia	Narrowleaf globemallow	Trace

Note: ¹ Percentage of total MWL Cover populated by actively-photosynthesizing plants of this species

* Living plants per Section 4.1 of the MWL UMMP

** Trace = species present at a rate of less than one-half of one-percent.

Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover (continued)

Are there any contiguous areas of no vegetation greater than 200 square feet? (approximately 14

Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover (Continued)

Notes (continued):
General Observations:
- Very loss used growth on the more cover. Weed growth
is primarily located on flat areas surroundly the coer.
Limited used growth at the NW corner of the ower,
noted in previously surveys as loved perennial grass density.
- many small livered observed across the cover.
- 3 active mourning dove nexts observed, norted, and gos
- At Surrous: two locations selected flagged for byta samoliha
and surveyed usity a GPS unit.
- Anihal burrows: two locations selected, flassed for bota sarphy and surveyed using a GPS unit.
and surveyed using a GPS unit.
* Samplife loudins shown on biological. Lapaden map.
Biological Aspects Map – [note: sketch map to locate specific features described above will be attached as appropriate]
Inspector's Signature:
mispector's dignature.
Original to: Mixed Waste Landfill Operating Record
Copy to: SNL/NM Records Center

ATEA = Juvenile four why saltbush

0

0

ANNEX G Mixed Waste Landfill Biology Report April 2014-March 2015

1.0 Introduction

As required by the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (LTMMP) (SNL/NM March 2012, Section 4.2.1), this summary report for the annual reporting period (April 1, 2014-March 31, 2015) presents the results of vegetation inspection and monitoring activities performed by the staff biologist on the MWL evapotranspirative (ET) Cover. The purpose of this report is to provide relevant background information, describe local climate trends over the 2014 growing season and reporting period, expand on the inspection results, if appropriate, and provide recommendations for future ET Cover vegetation monitoring and maintenance. Biology inspections of the ET Cover were conducted on May 15, 2014 and August 14, 2014. The inspection observations are documented on the "Biology Inspection Checklist/Form for the MWL Cover" and included in Annex F of this MWL Annual Long-Term Monitoring and Maintenance (LTMM) Report.

A self-sustaining plant community is an important component of overall ET Cover performance. Vegetation minimizes erosion by stabilizing the ET Cover surface and moves soil moisture from the ET Cover Topsoil and Native Soil Layers to the atmosphere through transpiration. Vegetation species that are native to the area create the optimal, self-sustaining plant community because the species are specifically adapted to the local climate and soil conditions. The MWL is located at an elevation of 5,380 feet in a challenging, semi-arid climate that experiences high temperatures throughout the summer, cold temperatures in the winter, drying winds in the spring, and infrequent precipitation. Perennial native grass species are ideal due to their extensive near-surface root systems that are poised to uptake moisture throughout the year and prevent precipitation from percolating more deeply into the subsurface soil. The deeper, permanent roots of perennial native grasses enable them to best withstand drought conditions, provide soil stabilization, and remove moisture from deeper within the Native Soil Layer relative to non-native or annual species.

2.0 Background Information

To meet the revegetation criteria as required in the MWL LTMMP, Section 4.1, the MWL was seeded in August 2009 after cover construction was completed. The native seed mix was drill-seeded and hand-broadcast uniformly across the cover. To facilitate seed germination and seedling growth, supplemental watering was performed as approved by NMED (Bearzi December 2008). Specific conditions and limits for supplemental watering are addressed in Section 4.2.3 of the LTMMP (SNL/NM March 2012). The MWL LTMMP documents all cover maintenance and supplemental watering activities from 2009 through 2011. ET Cover maintenance and supplemental watering activities performed in 2012 through March 31, 2014 are documented in the MWL Annual Long-Term Monitoring & Maintenance (LTMM) Report, January – March 2014 (SNL/NM June 2014).

ET Cover Biology Inspections were initiated in May 2013 prior to LTMMP approval (on January 8, 2014). The ET Cover has met the LTMMP criteria for successful revegetation as documented in all quarterly inspections. In accordance with the LTMMP, the frequency of Biology Inspections transitioned to an annual frequency after the August 2014 growing

season inspection, which provided confirmation that all successful revegetation criteria had been met.

3.0 Local Climate Trends for 2014 Growing Season

Climate trends for north-central New Mexico are presented in this section as they have a significant impact on the cover vegetation. Since the seeding occurred in August 2009, the local climate has been dominated by an ongoing drought with temperature extremes across the seasons. During the time since reseeding, 2013 has been the only year to receive above average annual precipitation. The last quarter of 2013 was unseasonably warm, followed by very dry winter and spring seasons in 2014. The 2014 summer monsoon season experienced slightly above average monsoonal rains during July and August, but had lower than average annual precipitation. Tables 1 and 2 provide meteorological data from the time of LTMMP approval in January 2014 through the end of this annual reporting period, March 2015.

Precipitation, Relative Humidity and Winds

Drought has been the dominant meteorological trend in the MWL area since 2008. Precipitation in 2013 and 2014 was greater than recent years, but as of March 17, 2015 the area was still in "Moderate Drought" according to the U.S. Drought Monitor (U.S. Drought Monitor March 2015).

From January through June 2014, the MWL received 0.87 inches of precipitation, less than one-third of the average of 2.86 inches for this timeframe. The 2014 summer monsoon season (July-September) provided excellent precipitation; a total of 4.61 inches of precipitation, which is 6% above the monsoon season average. This warm-season moisture facilitated growth of established native vegetation across the MWL ET Cover. From October through December 2014, an additional 2.0 inches of precipitation occurred; close to the 20-year precipitation average for this quarter. 1.28 inches of precipitation occurred from January through March 2015, also close to the quarterly average.

Overall, relative humidity was close to average for 2014. Relative humidity was 9.1% above normal in July 2014. The only notable low relative humidity month was March 2014 at 10.5% below normal. Winds were average for the reporting period. March 2015 and January 2014 varied most greatly from the monthly average with winds 1.31 mile per hour (mph) or 14.4% below normal and 1.0 mph or 14.5% above normal, respectively.

Temperature

In 2014 the MWL experienced 88 degrees of temperature variability, with a low of $9^{\circ}F$ in December and a high of $98^{\circ}F$ in June. 2014 temperature means were close to normal throughout the year. Heat stress to plants was not as great during the 2014 growing season as it often is, due to lower maximum temperatures.

 $\label{eq:Table 1} \textbf{Summary of 2014 Meteorological Data at the Mixed Waste Landfill}^a$

Month	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec	
Temperature (°F)													Annual
Monthly Mean	39.3	45.55	49	55.48	63.88	77.66	76.09	72.3	69.44	60.84	45.76	38.75	57.84
20-year Temp Means	37.71	41.71	48.78	55.78	66.13	75.45	76.67	74.83	68.94	57.86	46.42	37.02	57.27
Precipitation (Inches)													Annual
Monthly Total	0	0.08	0.3	0.14	0.3	0.05	2.07	2.25	0.29	0.45	0.34	1.21	7.48
20-year Precip Means	0.35	0.48	0.6	0.51	0.4	0.52	1.41	1.79	0.9	0.93	0.41	0.57	8.71
Relative Humidity (%)													Annual
Monthly Mean	47	40.7	27.1	23.8	20.4	19.3	49.4	44.2	49.7	40.17	40.88	62.59	38.88
20-year RH Means	49.94	44.87	36.41	30.25	26.25	24.89	40.86	44.64	42.62	42.39	44.64	53.78	40.13
Wind (Miles/hour)													Annual
Monthly Mean	7.92	7.39	9.07	10.54	9.58	10	9.04	7.5	8.39	7.13	7.35	6.66	8.38
20-year Wind Means	6.94	8.13	9.1	10.47	9.96	9.76	8.42	7.91	7.99	7.81	7.08	6.77	8.37

^aInformation Source: SNL/NM Meteorological Monitoring Program.

 $\label{thm:conditional} Table~2\\ Summary~of~January-March~2015~Meteorological~Data~at~the~Mixed~Waste~Landfill^a$

Month	January	February	March	
Temperature (°F)				
Monthly Mean	37.05	43.66	52.19	
20-year Temp Means	37.71	41.71	48.78	
Precipitation (Inches)				
Monthly Total	0.64	0.35	0.29	
20-year Precip Means	0.34	0.45	0.56	
Relative Humidity (%)				
Monthly Mean	65.59	47.08	38.57	
20-year RH Means	49.94	44.87	36.41	
Wind (Miles/hour)				
Monthly Mean	6.76	7.96	7.79	
20-year Wind Means	6.94	8.13	9.1	

^aInformation Source: SNL/NM Meteorological Monitoring Program.

4.0 August 2014 Inspection Results

The successional development of the native grasses on the MWL ET Cover was significant in 2013 and continued in 2014. Native grasses grew from small to modest-sized clumps in May 2013 into much more robust and mature clumps in August 2014.

In 2013 native vegetation development on the ET Cover was primarily assisted by weeding and supplemental watering. As documented during the September 2013 Biology Inspection, the ET Cover had approximately 56% foliar coverage, of which approximately 96% was native grass species.

The August 2014 MWL ET Cover Biology Inspection occurred during the New Mexico growing season (i.e., August), which typically comes to a close in mid-September as evening temperatures begin to fall. The growing season inspections allow the most accurate assessment of living plant coverage because the greatest amount of photosynthesis occurs during this time of the year. Percent foliar coverage is determined by the overall percentage of green vegetation (i.e., photosynthesizing vegetation) on the ET Cover. Also, the cumulative effects of the previous seasons can best be assessed in the later part of the growing season.

The August 2014 MWL ET Cover Biology Inspection results confirmed the ET Cover meets the successful revegetation criteria defined in the MWL LTMMP (SNL/NM March 2012, Section 4.1) and presented as follows. Inspection results are summarized after each criterion.

- Total percent foliar coverage equals 20 % (i.e., 20 percent of the land surface is covered with living plants versus 80 percent bare surface area)

 *Inspection Results: The approximate vegetative coverage (this is the coverage of living plants, observed as actively photosynthesizing foliar coverage) was determined to be 52%.
- Of the 20 percent total foliar coverage, 50 percent or greater comprises native perennial species, and 50 percent or less comprises annual species; *Inspection Results:* The vegetative coverage was composed of approximately 99% native perennial species and 1% annual species.
- No contiguous bare spots greater than 200 square feet (approximately 14 by 14 feet) are present.

Inspection Results: No contiguous bare vegetation areas greater than 200 square feet were present.

Foliar coverage of each species across the site is determined by dividing the cover into smaller sections of approximately 35 meters by 35 meters. The percent cover of each species is determined based upon visual inspection of each section, then averaged overall for the entire cover. Coverage for species that are present in very low numbers are recorded as "trace" when the percent cover is less than one-half of one-percent. Species that are present between one-half and one percent are recorded as "1%."

James' galleta was the dominant grass species present, and along with other native grasses, comprised the majority of the ET Cover vegetation. Green mature native perennial clump grasses dominated the ET Cover vegetation. Very low levels of weedy species were present on the cover at the time of the inspection.

The native grass coverage at the northwest corner of the ET Cover improved significantly from previous years. In 2013 this area had the lowest density of vegetation on the ET Cover, but by the time of the August 2014 inspection, this area had significantly filled in with native grasses.

The percent foliar coverage of the various native grass species varied slightly from previous inspections. As the cover continues to change into a more fully mature plant community, the foliar coverage and native species composition will continue to change.

Figure 1 includes photographs of the ET Cover vegetation taken during the August 2014 inspection. The large size of the perennial native bunchgrasses is evident in these photographs, which visually document the successful establishment of native grasses on the ET Cover.

Few burrows were observed on the MWL ET Cover during the August 2014 inspection. Seven small mammal and eight ant burrows were located on or adjacent to the ET Cover side-slopes, distributed across all sides of the cover. All animal burrows had entrances smaller than 4-inches in diameter and no burrow appeared to be that of a species able to burrow six feet or greater in depth. Only one small potentially deep-rooted plant (a juvenile fourwing saltbush) was observed.

Biota sampling locations were identified for anthills, animal burrows, and potentially deeprooted plants during the August 2014 Biology Inspection. Two anthills, two animal burrows, and the one small juvenile fourwing saltbush were marked in the field and surveyed during the August inspection. The burrow sampling locations were selected based on signs of current small mammal and ant activity. Some of the burrows appeared inactive and are likely abandoned (i.e., no longer in use). These locations are shown on the biological inspection map (Figure 2) along three active mourning dove nests that were identified during the August Biology Inspection. Biota sampling activities and results are presented in Chapter 8 of this MWL Annual LTMM Report.

5.0 Cover Maintenance

Maintenance activities performed on the MWL ET Cover during the 2014-2015 reporting period are summarized in Section 9.1.3 of this MWL Annual LTMM Report. Most of the maintenance effort involved clearing the perimeter fence of windblown tumbleweeds and the removal of live tumbleweeds from the ET Cover during the growing season.

Weed removal maintenance was performed in March-April, June, August, and October 2014; and in March 2015. All work was done by hand and no vehicle traffic was allowed on the ET Cover. This work continues to reduce the ET Cover tumbleweed seed bank and allows the native grasses to out-compete the annual weedy species, reducing the future

growth of annual weedy species on the cover. As a result of these ongoing ET Cover vegetation maintenance efforts, the number of live, annual weedy species growing on the cover during the 2014 growing season was relatively small, and has declined considerably since ET Cover installation in 2009.

6.0 Supplemental Watering

Supplemental watering activities performed on the MWL ET Cover during the 2014 – 2015 reporting period are summarized in Section 9.1.3 of this MWL Annual LTMM Report. Supplemental watering was conducted during the reporting period at the direction of the staff biologist to augment natural precipitation and facilitate the healthy growth and establishment of the native grasses. Based on experience gained at the Chemical Waste Landfill and Corrective Action Management Unit ET Covers, native grasses are very susceptible to drought conditions until they are established as mature, robust, large clumps. Manual weeding and supplemental watering have proven to be effective actions for accelerating this natural process that can take 50 or more years.

Water was applied using the temporary irrigation system installed on top of the ET Cover surface in 2011 (SNL/NM March 2012, Appendix B). For each watering event, the equivalent of a 0.5-inch rain event was applied to the ET Cover and side slopes. Supplemental watering activities were performed in May (two events), June (one event), and October (2 events) of 2014. No supplemental watering activities were performed from January 1 through March 31, 2015. The 2014 calendar year total precipitation (supplemental water applied plus natural precipitation) was 9.98 inches (2.5 inches of supplemental water + 7.48 inches of natural precipitation).

7.0 Recommendations

The MWL ET Cover Biology Inspections will continue on an annual frequency and be conducted during the height of the New Mexico growing season (i.e., August -September) to allow for the most accurate assessment of living plant coverage. Weed removal events will likely be needed during the 2015 – 2016 reporting period to maintain the MWL ET Cover and keep the perimeter fence clear of tumbleweeds based on LTMMP inspection requirements. If present, other annual weedy species on the MWL ET Cover should also be removed during the growing season weed removal events. Fourwing saltbush, tumbleweeds, and any other potentially deep-rooted plants will be pulled by hand, clipped at the ground surface, or removed for biota sampling.

Supplemental watering may be needed in the autumn of 2015 if the monsoon rains and previous 12-month precipitation are significantly below normal (i.e., severe drought conditions). The mature native plant community documented on the cover in 2014 should be able to survive moderate drought conditions without supplemental water.

North portion of the cover from approximate center of ET cover

South portion of the cover from approximate center of ET cover

West portion of the cover from approximate center of ET cover

East portion of the cover from approximate center of ET cover

Figure 1 August 14, 2014 MWL ET Cover Photographs

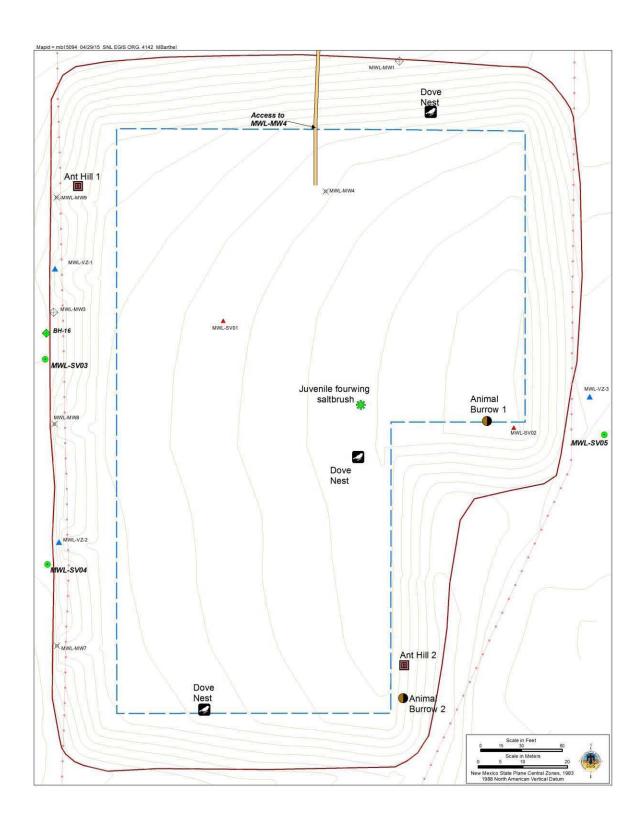


Figure 2. August 14, 2014 MWL ET Cover Biological Inspection Map

References

Sandia National Laboratories/New Mexico (SNL/NM), March 2012. "Long-Term Monitoring and Maintenance Plan for the Mixed Waste Landfill," Environmental Restoration Operations, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2014. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, January – March 2014," Sandia National Laboratories, Albuquerque, New Mexico.

U. S. Drought Monitor (March 2015) Accessed March 2015. http://droughtmonitor.unl.edu/