Mr. John E. Kieling
Chief
Hazardous Waste Bureau
New Mexico Environment Department
2905 Rodeo Park Drive East, Bldg. 1
Santa Fe, New Mexico 87505

Subject: *Department of Energy, National Nuclear Security Administration Sandia National Laboratories Environmental Restoration Operations Consolidated Quarterly Report, Dated April 2019*

Dear Mr. Kieling:

Enclosed is the Subject report, identification number NM5890110518. This report addresses all quarterly reporting (October through December 2018) set forth in the Compliance Order on Consent for Sandia National Laboratories/New Mexico.

If you have questions contact me at (505) 845-6036 or David Rast of our staff at (505) 845-5349.

Sincerely,

[Signature]

Jeffrey P. Harrell
Manager

Enclosure

cc: See Page 2
CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations.

Paul E. Shoemaker
Defense Waste Management Programs
Sandia National Laboratories/New Mexico
Albuquerque, New Mexico 87185
Operator

and

Jeffrey P. Harrell, Manager
U.S. Department of Energy
National Nuclear Security Administration
Sandia Field Office
Owner
Sandia National Laboratories, New Mexico

Environmental Restoration Operations
A U.S. Department of Energy Environmental Cleanup Program

Consolidated Quarterly Report

October – December 2018

April 2019

United States Department of Energy
Sandia Field Office

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly-owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.
This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Compliance Order on Consent. Table I-1 lists the six sites remaining in the corrective action process. This ER Quarterly Report presents activities and data as follows:

OVERVIEW

NUMBER OF POTENTIAL RELEASE SITES SUBJECT TO CORRECTIVE ACTION: 6
SUSPECT WASTE: Radionuclides, metals, organic compounds, and explosives
REPORTING PERIOD: October – December 2018

SECTION I: Environmental Restoration Operations Consolidated Quarterly Report, October – December 2018

SECTION II: Perchlorate Screening Quarterly Groundwater Monitoring Report, October – December 2018

SECTION III: Technical Area-V In-Situ Bioremediation Treatability Study Full-Scale Operation Results, October – December 2018
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGMR</td>
<td>Annual Groundwater Monitoring Report</td>
</tr>
<tr>
<td>AOC</td>
<td>Area of Concern</td>
</tr>
<tr>
<td>AVN</td>
<td>Area V (North) (acronym used for well identification numbers in tables only)</td>
</tr>
<tr>
<td>BSG</td>
<td>Burn Site Groundwater</td>
</tr>
<tr>
<td>CME</td>
<td>Corrective Measures Evaluation</td>
</tr>
<tr>
<td>COA</td>
<td>certificates of analysis</td>
</tr>
<tr>
<td>COC</td>
<td>constituent of concern</td>
</tr>
<tr>
<td>Consent Order</td>
<td>Compliance Order on Consent</td>
</tr>
<tr>
<td>CY</td>
<td>Calendar Year</td>
</tr>
<tr>
<td>CYN</td>
<td>Canyons (acronym used for well identification numbers in tables only at Burn Site Groundwater Area of Concern)</td>
</tr>
<tr>
<td>Dhc</td>
<td>dehalococcoides</td>
</tr>
<tr>
<td>DO</td>
<td>dissolved oxygen</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DP</td>
<td>Discharge Permit</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ER</td>
<td>Environmental Restoration Operations</td>
</tr>
<tr>
<td>ER Quarterly Report</td>
<td>Environmental Restoration Operations Consolidated Quarterly Report</td>
</tr>
<tr>
<td>FOP</td>
<td>Field Operating Procedure</td>
</tr>
<tr>
<td>GEL</td>
<td>GEL Laboratories LLC</td>
</tr>
<tr>
<td>GWQB</td>
<td>Ground Water Quality Bureau</td>
</tr>
<tr>
<td>HWB</td>
<td>Hazardous Waste Bureau</td>
</tr>
<tr>
<td>INJ</td>
<td>injection (acronym used for well identification only)</td>
</tr>
<tr>
<td>ISB</td>
<td>in-situ bioremediation</td>
</tr>
<tr>
<td>LWDS</td>
<td>liquid waste disposal system (acronym used for well identification only)</td>
</tr>
<tr>
<td>MCL</td>
<td>maximum contaminant level</td>
</tr>
<tr>
<td>MDL</td>
<td>method detection limit</td>
</tr>
<tr>
<td>mg/L</td>
<td>milligrams per liter</td>
</tr>
<tr>
<td>µg/L</td>
<td>microgram(s) per liter</td>
</tr>
<tr>
<td>MW</td>
<td>monitoring well (acronym used for well identification only)</td>
</tr>
<tr>
<td>ND</td>
<td>nondetect</td>
</tr>
<tr>
<td>NMED</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>NNSA</td>
<td>National Nuclear Security Administration</td>
</tr>
<tr>
<td>NPN</td>
<td>nitrate plus nitrite</td>
</tr>
<tr>
<td>ORP</td>
<td>oxidation-reduction potential</td>
</tr>
<tr>
<td>PGS</td>
<td>Parade Ground South (acronym used for well identification only)</td>
</tr>
<tr>
<td>pH</td>
<td>potential of hydrogen (negative logarithm of the hydrogen ion concentration)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SAP</td>
<td>sampling and analysis plan</td>
</tr>
<tr>
<td>SC</td>
<td>specific conductivity</td>
</tr>
<tr>
<td>SNL/NM</td>
<td>Sandia National Laboratories, New Mexico</td>
</tr>
<tr>
<td>SWMU</td>
<td>Solid Waste Management Unit</td>
</tr>
<tr>
<td>TA</td>
<td>Technical Area</td>
</tr>
<tr>
<td>TA1-W</td>
<td>Technical Area-I (Well)</td>
</tr>
<tr>
<td>TA2-NW</td>
<td>Technical Area-II (Northwest)</td>
</tr>
<tr>
<td>TA2-SW</td>
<td>Technical Area II (Southwest)</td>
</tr>
<tr>
<td>TA2-W</td>
<td>Technical Area-II (Well)</td>
</tr>
<tr>
<td>TAG</td>
<td>Tijeras Arroyo Groundwater</td>
</tr>
<tr>
<td>TAV</td>
<td>Technical Area-V (acronym used for well identification numbers in tables only)</td>
</tr>
<tr>
<td>TA-V</td>
<td>Technical Area-V</td>
</tr>
<tr>
<td>TAVG</td>
<td>Technical Area-V Groundwater</td>
</tr>
<tr>
<td>TCE</td>
<td>trichloroethene</td>
</tr>
<tr>
<td>TJA</td>
<td>Tijeras Arroyo (acronym used for well identification numbers in tables only)</td>
</tr>
<tr>
<td>TS/IM</td>
<td>Treatability Study/Interim Measure</td>
</tr>
<tr>
<td>TSWP</td>
<td>Treatability Study Work Plan</td>
</tr>
<tr>
<td>WYO</td>
<td>Wyoming (acronym used for well identification numbers in tables only)</td>
</tr>
</tbody>
</table>
SECTION I
TABLE OF CONTENTS

ENVIRONMENTAL RESTORATION OPERATIONS CONSOLIDATED QUARTERLY REPORT, October–December 2018

1.0 Introduction .. I-1

2.0 Environmental Restoration Operations Work Completed... I-1

2.1 Sites Undergoing Corrective Action ... I-1

2.1.1 Burn Site Groundwater Area of Concern ... I-2

2.1.2 Technical Area-V Groundwater Area of Concern ... I-3

2.1.3 Tijeras Arroyo Groundwater Area of Concern ... I-5

2.2 Sites in Corrective Action Complete Regulatory Process.. I-5

3.0 References ... I-6

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>Solid Waste Management Units and Areas of Concern Where Corrective Action is Not Complete</td>
</tr>
<tr>
<td>I-2</td>
<td>Groundwater Sampling and Analysis</td>
</tr>
</tbody>
</table>
SECTION I
ENVIRONMENTAL RESTORATION OPERATIONS CONSOLIDATED QUARTERLY REPORT, October – December 2018

1.0 Introduction

This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the October, November, and December 2018 quarterly reporting period.

Table I-1 lists the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM. Section I.2.1 summarizes the work completed during this quarter at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area-V Groundwater [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]).

Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active mission sites are located in TA-III.

During the fourth quarter of Calendar Year (CY) 2018, there were no SWMUs or AOCs in the corrective action complete regulatory process.

2.0 Environmental Restoration Operations Work Completed

The following subsections describe the ER work completed during the fourth quarter of CY 2018.

2.1 Sites Undergoing Corrective Action

In a letter dated April 14, 2016, the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) defined the scope and milestones for corrective action at three groundwater AOCs (BSG AOC, TAVG AOC, and TAG AOC) (NMED April 2016). Sections I.2.1.1 through I.2.1.3 discuss the specific milestones from this letter.
2.1.1 **Burn Site Groundwater Area of Concern**

Nitrate has been identified as a constituent of concern (COC) in groundwater at the BSG AOC based on detections above the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) in samples collected from monitoring wells. The EPA MCL and State of New Mexico drinking water standard for nitrate (as nitrogen) is 10 milligrams per liter (mg/L).

The U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) and SNL/NM personnel met with the NMED HWB on July 20, 2015 to discuss the status of sites currently undergoing corrective action. For the BSG AOC, all parties agreed to a weight-of-evidence characterization program: (1) to conduct additional isotopic analyses/nitrate fingerprinting and age-dating of the groundwater; (2) to conduct a transducer study using existing wells to determine whether the groundwater is unconfined, semi-confined, or confined; and (3) to conduct an aquifer pumping test to help determine the origin of the elevated nitrates in the groundwater.

The groundwater sampling and analysis program for the BSG AOC currently includes perchlorate analyses of water from one groundwater monitoring well.

The following activities occurred at BSG AOC during October, November, and December 2018:

- **Groundwater sampling was conducted in October 2018.** Table I-3 presents the identification and the sampling frequency for these monitoring wells. The analytical results for CY 2018 groundwater monitoring will be presented in the SNL/NM CY 2018 Annual Groundwater Monitoring Report (AGMR), which is anticipated to be submitted to the NMED in the summer of 2019.

- **Perchlorate analysis of groundwater samples from the BSG AOC is discussed in Section II of this ER Quarterly Report.**

- **Continued preparing a monitoring well installation work plan per the requirements set forth in the letter received from NMED HWB titled “Disapproval: Recommendations for Additional Characterization Activities at the Burn Site Groundwater AOC, June 2018” (NMED June 2018).** NMED HWB requires installation of a minimum of four new groundwater monitoring wells to further characterize the AOC.
2.1.2 **Technical Area-V Groundwater Area of Concern**

Trichloroethene (TCE) and nitrate have been identified as COCs in groundwater at the TAVG AOC based on detections above the EPA MCLs in samples collected from monitoring wells. The EPA MCLs and the State of New Mexico drinking water standards for TCE and nitrate (as nitrogen) are 5 micrograms per liter (µg/L) and 10 mg/L, respectively.

Personnel from the DOE/NNSA, DOE Headquarters Office of Environmental Management, SNL/NM, and NMED HWB worked together to address the groundwater contamination at the TAVG AOC. A meeting was held with the NMED HWB on July 20, 2015, and all parties agreed on a phased Treatability Study/Interim Measure (TS/IM) of in-situ bioremediation to evaluate the effectiveness of in-situ bioremediation as a potential technology to treat the groundwater contamination at the TAVG AOC.

To implement the TS/IM, SNL/NM personnel plan to install up to three injection wells (TAV-INJ1, TAV-INJ2, and TAV-INJ3) at TA-V near the highest contaminant concentrations in groundwater detected in monitoring wells LWDS-MW1, TAV-MW6, and TAV-MW10. The proposed injection wells will be used to deliver substrate solution and biodegradation bacteria to groundwater. The substrate solution containing essential food and nutrients for biostimulation will be prepared in aboveground tanks. This substrate solution, along with the biodegradation bacteria, will be gravity-injected to groundwater via injection wells.

The NMED HWB approved the Revised Treatability Study Work Plan (TSWP) (SNL/NM March 2016) on May 10, 2016 (NMED May 2016). In accordance with the Revised TSWP, the Treatability Study will be conducted in two phases. Phase I includes a pilot test followed by full-scale injection at the first injection well (TAV-INJ1); Phase II includes full-scale injections at the second and third injection wells (TAV-INJ2 and TAV-INJ3). A decision to install the Phase II wells is dependent upon the findings of the Phase I full-scale operation.

In addition to the Revised TSWP being approved by the NMED HWB, the NMED Ground Water Quality Bureau (GWQB) required a groundwater Discharge Permit (DP) for the operation of the injection wells. NMED GWQB issued DP-1845 to DOE/NNSA for the SNL/NM TA-V Treatability Study injection wells on May 26, 2017 (NMED May 2017a). The DP-1845 term starts on May 30, 2017 and ends on May 30, 2022. As required by DP-
1845, DOE/NNSA and SNL/NM personnel submit separate quarterly reports to the NMED GWQB.

The following activities occurred at TAVG AOC during October, November, and December 2018:

- The analytical results from the September 2018 baseline sampling of wells TAV-INJ1, TAV-MW6, and TAV-MW7 are presented in Section III of this ER Quarterly Report.

- Full-scale operation of Phase I of the TS/IM began in October 2018. By December 31, 2018, 29 injections totaling 137,573 gallons of treatment solution were discharged to injection well TAV-INJ1. This was equivalent to approximately 26 percent of the planned injection volume of 530,000 gallons. The average volume of treatment solution per injection was approximately 4,744 gallons. Full-scale operation was scheduled to resume in January 2019 with injections expected to conclude in mid-2019. No significant problems were encountered during these full-scale injections.

- Groundwater monitoring for the TS/IM was conducted at wells TAV-MW6 and TAV-MW7 during this reporting period. Section III presents the details of the full-scale operation activities and groundwater monitoring results of the TS/IM for the fourth quarter of CY 2018. Analytical results for DP-specific requirements are presented in DP quarterly reports that are submitted separately to the NMED GWQB.

- The TA-V groundwater monitoring network currently comprises 18 active monitoring wells, and of these 18 wells, well TAV-MW6 has been designated as a Treatability Study performance monitoring well since the TS/IM started with the pilot test in November 2017. Well TAV-MW7 was also designated as a Treatability Study monitoring well during the pilot test but it was reverted back to the TA-V groundwater monitoring network starting the fourth quarter of CY 2018 (SNL/NM January 2019). Even though well TAV-MW7 continues to serve as a monitoring well for the TS/IM, programmatically it belongs to the TA-V groundwater monitoring network. Groundwater monitoring results at wells TAV-MW6 and TAV-MW7 will continue to be reported in Section III of the ER quarterly reports.

- Table I-2 presents the sampling frequency for the monitoring wells at TAVG AOC for the 17 wells in the TA-V groundwater monitoring network (18 wells, minus well TAV-MW6). Groundwater sampling was conducted in November 2018. The SNL/NM CY
2018 AGMR will present the analytical results for CY 2018 groundwater monitoring, which is scheduled for submittal to the NMED HWB in the summer of 2019.

2.1.3 **Tijeras Arroyo Groundwater Area of Concern**

Nitrate has been identified as a COC in groundwater for the TAG AOC based on exceedances of the EPA MCL in samples collected from monitoring wells completed in the Perched Groundwater System and in the Regional Aquifer. TCE has been identified as a COC for the Perched Groundwater System. However, the area where TCE exceedances occurred has naturally dewatered and the last reported TCE concentration was 3.82 µg/L, occurring in November 2015, which is less than the EPA MCL of 5 µg/L (SNL/NM June 2016). No TCE concentrations in Regional Aquifer samples have exceeded the EPA MCL. The EPA MCLs and State of New Mexico drinking water standards for TCE and nitrate (as nitrogen) are 5 µg/L and 10 mg/L, respectively.

In May 2017, NMED HWB completed its review of the Current Conceptual Model and Corrective Measures Evaluation Report for the TAG AOC (SNL/NM December 2016), which was submitted to the NMED HWB on November 23, 2016 (DOE November 2016). This November 23, 2016 report was submitted in accordance with NMED’s “Agreements and Proposed Milestones” letter of April 14, 2016 (NMED April 2016). The subsequent disapproval letter issued by the NMED HWB (NMED May 2017b) requested the inclusion of additional information in a revised report. The Revised TAG Current Conceptual Model / Corrective Measures Evaluation Report was then submitted to the NMED HWB on February 13, 2018 (SNL/NM February 2018). During a June 20, 2018 meeting, NMED HWB personnel stated that they will complete their review of the revised report in CY 2019.

During the October, November, and December 2018 time period groundwater samples were collected from all seven monitoring wells (TA2-W-19, TA2-W-26, TA2-W-28, TJA-2, TJA-3, TJA-4, and TJA-7) scheduled for quarterly sampling. Table I-2 presents the CY 2018 sampling frequency for the TAG monitoring wells. The analytical results for the TAG AOC CY 2018 groundwater monitoring will be included in the SNL/NM CY 2018 AGMR, which is scheduled for submittal to the NMED HWB in the summer of 2019.

2.2 **Sites in Corrective Action Complete Regulatory Process**

There are currently no SWMUs or AOCs in the corrective action complete regulatory process.
References

DOE, see U.S. Department of Energy

New Mexico Environment Department (NMED), May 2017a. Ground Water Discharge Permit, Sandia National Laboratories/New Mexico, Discharge Permit-1845, NMED, Ground Water Quality Bureau, Santa Fe, New Mexico, May 26, 2017.

NMED, see New Mexico Environment Department

Sandia National Laboratories, New Mexico (SNL/NM), March 2016. Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, Sandia National Laboratories, Albuquerque, New Mexico.

SNL/NM, see Sandia National Laboratories, New Mexico.

Tables
Table I-1
Solid Waste Management Units and Areas of Concern
Where Corrective Action is Not Complete

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>Long Sled Track</td>
</tr>
<tr>
<td>84</td>
<td>Gun Facilities</td>
</tr>
<tr>
<td>240</td>
<td>Short Sled Track</td>
</tr>
<tr>
<td>NA</td>
<td>Tijeras Arroyo Groundwater Investigation (TAG AOC)</td>
</tr>
<tr>
<td>NA</td>
<td>TA-V Groundwater Investigation (TAVG AOC)</td>
</tr>
<tr>
<td>NA</td>
<td>Burn Site Groundwater Investigation (BSG AOC)</td>
</tr>
</tbody>
</table>

Notes:
AOC = Area of Concern.
BSG = Burn Site Groundwater.
NA = Not applicable. A site number was not assigned.
TAG = Tijeras Arroyo Groundwater.
TA-V = Technical Area-V.
TAVG = Technical Area-V Groundwater.
Table I-2
Groundwater Sampling and Analysis

<table>
<thead>
<tr>
<th>Investigation Site</th>
<th>Sampling Frequency in CY 2018</th>
<th>Quarter of Sampling in CY 2018</th>
<th>Location of Analytical Results</th>
<th>Location of Perchlorate Analytical Results</th>
<th>Monitoring Wells in Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAVG AOC</td>
<td>Quarterly</td>
<td>1,2,3,4</td>
<td>AGMR</td>
<td>NA</td>
<td>LWDS-MW1, TAV-MW2, TAV-MW4,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TAV-MW7 TAV-MW8, TAV-MW10,</td>
</tr>
<tr>
<td></td>
<td>Annually</td>
<td>2</td>
<td>AGMR</td>
<td>NA</td>
<td>AVN-1, LWDS-MW2, TAV-MW3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TAV-MW5, TAV-MW9, TAV-MW13</td>
</tr>
<tr>
<td>BSG AOC</td>
<td>Semiannually</td>
<td>2,4</td>
<td>AGMR</td>
<td>Section II of ER Consolidated Quarterly Report</td>
<td>CYN-MW4, CYN-MW7, CYN-MW8,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CYN-MW9, CYN-MW10, CYN-MW11,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CYN-MW12, CYN-MW13, CYN-MW14A,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CYN-MW15</td>
</tr>
<tr>
<td>TAG AOC</td>
<td>Quarterly</td>
<td>1,2,3,4</td>
<td>AGMR</td>
<td>NA</td>
<td>TA2-W-19, TA2-W-26, TA2-W-28,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TJA-2, TJA-3, TJA-4, TJA-7</td>
</tr>
<tr>
<td></td>
<td>Semiannually</td>
<td>1,3</td>
<td>AGMR</td>
<td>NA</td>
<td>TA1-W-06, TA2-W-01, TA2-W-27,</td>
</tr>
<tr>
<td></td>
<td>Annually</td>
<td>3</td>
<td>AGMR</td>
<td>NA</td>
<td>TJA-6</td>
</tr>
</tbody>
</table>

Notes:

*TAVG AOC monitoring network comprises 18 active wells; 17 wells are listed here; well TAV-MW6 currently is part of the Treatability Study and follows a separate monitoring plan (see Section 2.1.2).

*Monitoring well WYO-4 was deleted from the sampling schedule in response to the August 2017 meeting with NMED HWB personnel.

AOC = Area of Concern.
AVN = Area-V (North) (acronym used for well identification only).
BSG = Burn Site Groundwater (Area of Concern).
CY = Calendar Year.
CYN = Canyons (Burn Site Groundwater Area of Concern; acronym used for well identification only).
ER = Environmental Restoration Operations.
HWB = Hazardous Waste Bureau.
LWDS = Liquid waste disposal system (acronym used for well identification only).
MW = Monitoring well.
NA = Not applicable. No wells in the site network are currently being sampled and analyzed for perchlorate.
NMED = New Mexico Environment Department.
PWS = Parade Ground South (acronym used for well identification only).
TA1-W = Technical Area-I (Well) (acronym used for well identification only).
TA2-NW = Technical Area-II (Northwest) (acronym used for well identification only).
TA2-W = Technical Area-II (Well) (acronym used for well identification only).
TAG = Tijeras Arroyo Groundwater (Area of Concern).
TAV = Technical Area-V (acronym used for well identification only).
TAVG = Technical Area-V Groundwater (Area of Concern).
TJA = Tijeras Arroyo (acronym used for well identification only).
WYO = Wyoming (acronym used for well identification only).
SECTION II
TABLE OF CONTENTS

PERCHLORATE SCREENING QUARTERLY GROUNDWATER MONITORING
REPORT, October – December 2018 ..II-1

1.0 Introduction ..II-1

2.0 Scope of Activities ..II-2

3.0 Regulatory Criteria ..II-3

 3.1 Burn Site Groundwater Area of Concern ..II-4

 3.2 Tijeras Arroyo Groundwater and Technical Area-V Groundwater Areas of
 Concern ..II-5

4.0 Monitoring Results ..II-6

5.0 Summary and Conclusions ..II-7

6.0 References ..II-7

LIST OF FIGURES

Figure Title

II-1 Sandia National Laboratories, New Mexico, Current Perchlorate Screening
 Monitoring Well Network, October – December 2018

II-2 Groundwater Elevations and Perchlorate Concentrations Over Time in CYN-MW15

LIST OF TABLES

Table Title

II-1 Current Perchlorate Screening Monitoring Well Network, Fourth Quarter, CY 2018

II-2 Monitoring Wells Discussed in Previous Perchlorate Screening Reports

II-3 Sample Details for Fourth Quarter, CY 2018 Perchlorate Sampling
LIST OF TABLES (concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-4</td>
<td>Summary of Perchlorate Screening Analytical Results for the Current Monitoring Well Network as of Fourth Quarter, CY 2018</td>
</tr>
<tr>
<td>II-5</td>
<td>Perchlorate Screening Groundwater Monitoring Field Water Quality Measurements, Fourth Quarter, CY 2018</td>
</tr>
</tbody>
</table>

APPENDICES

| Appendix A | Analytical Laboratory Certificates of Analysis for the Perchlorate Data |
| Appendix B | Data Validation Sample Findings Summary Sheets for the Perchlorate Data |
1.0 Introduction

Section IV.B of the Compliance Order on Consent (the Consent Order), between the New Mexico Environment Department (NMED), the U.S. Department of Energy (DOE), and Sandia National Laboratories, New Mexico (SNL/NM), effective on April 29, 2004, stipulates that a select group of groundwater monitoring wells at SNL/NM be sampled for perchlorate (NMED April 2004). This section of the Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) summarizes the perchlorate screening groundwater monitoring completed during the fourth quarter of calendar year (CY) 2018 (October, November, and December 2018) in response to the requirements of the Consent Order. The outline of this report is based on the required elements of a “Periodic Monitoring Report” described in Section X.D. of the Consent Order (NMED April 2004).

In November 2005, DOE/National Nuclear Security Administration (NNSA) and SNL/NM personnel submitted a letter report on the status of perchlorate screening in groundwater at SNL/NM monitoring wells (SNL/NM November 2005). The letter report summarized previous correspondence and sampling results and outlined proposed future work to comply with NMED Hazardous Waste Bureau (HWB) requirements for perchlorate screening of groundwater. As specified in the letter report, quarterly reports are submitted for wells active in the perchlorate screening monitoring well network.

Based on the NMED HWB response (NMED January 2006), DOE/NNSA and SNL/NM personnel submit each quarterly report within 90 days following the quarter that the data represent. In November 2008, DOE/NNSA and SNL/NM personnel received approval from the NMED HWB to proceed to semiannual reporting (NMED November 2008); however, upon further consideration, the NMED HWB once more required quarterly reporting (NMED April 2009). This did not alter the previously negotiated frequency for monitoring well CYN-MW6, an existing Burn Site Groundwater (BSG) Area of Concern (AOC) monitoring well that has been under the sampling and reporting requirements of the Consent Order since the well was installed, which remains at a semiannual frequency for sampling and reporting. Due to declining water levels, CYN-MW6 has insufficient water to routinely sample and the replacement monitoring well (CYN-MW15) was installed in December 2014; the negotiated semiannual sampling frequency transferred to the replacement well.
In September 2011, DOE/NNSA and SNL/NM personnel requested an extension of the submittal dates by one month for ER Quarterly Reports (SNL/NM September 2011). The NMED HWB approved the request (NMED September 2011), which allows DOE/NNSA and SNL/NM personnel to submit perchlorate quarterly reports within 120 days following the quarter that the data represent.

This report is the forty-seventh perchlorate screening quarterly report submitted since the November 2005 letter report; the previous reports were submitted for fourth quarter of CY 2005 through the second quarter of CY 2018 (SNL/NM February 2006 and October 2018a).

Groundwater at BSG AOC monitoring well CYN-MW15 was sampled semiannually for the ninth time during the reporting period (Table II-1). The corresponding reporting will continue for as long as a well remains active in the perchlorate screening network, or unless otherwise negotiated with the NMED.

2.0 **Scope of Activities**

This report provides fourth quarter of CY 2018 (October, November, and December 2018) perchlorate screening groundwater monitoring analytical results for the well CYN-MW15, the only well currently active in the perchlorate screening program (Figure II-1, Table II-1). In accordance with the requirements of Table XI-1 of the Consent Order, a well with four consecutive quarters of nondetects (NDs) for perchlorate at the screening level/method detection limit (MDL) of 4 micrograms per liter (µg/L) is removed from the requirement of continued monitoring for perchlorate. Data for numerous wells identified in the Consent Order have satisfied this requirement; therefore, these wells have been removed from the perchlorate screening program. Previous reports provided perchlorate results for these wells and are not discussed in this current report. Table II-2 lists the wells discussed in previous perchlorate screening reports.

SNL/NM personnel performed groundwater sampling for perchlorate at monitoring well CYN-MW15 in October 2018 (Table II-1). Groundwater sampling activities were conducted in accordance with procedures outlined in the *Burn Site Groundwater Monitoring, Mini-SAP for First Quarter, Fiscal Year 2019* (SNL/NM October 2018a).

As described in the Mini-Sampling and Analysis Plan (SAP), groundwater sampling was performed in accordance with current SNL/NM Environmental Management, Long-Term Stewardship Project Field Operating Procedures (FOPs). A portable Bennett™ groundwater sampling system was used to collect the groundwater samples. The sampling pump and
tubing bundle were decontaminated prior to placement into the monitoring well in accordance with procedures described in FOP 05-03, “Groundwater Monitoring Equipment Decontamination” (SNL/NM January 2018a). The wells were purged a minimum of one saturated screen volume before sampling in accordance with FOP 05-01, “Groundwater Monitoring Well Sampling and Field Analytical Measurements” (SNL/NM January 2018b). Field water quality measurements for turbidity, potential of hydrogen (pH), temperature, specific conductivity (SC), oxidation-reduction potential (ORP), and dissolved oxygen (DO) were obtained from the well prior to collecting the groundwater sample. Groundwater temperature, SC, ORP, DO, and pH were measured with an In-Situ Incorporated Aqua TROLL® 600 Multiparameter water quality meter. Turbidity was measured with a HACH™ Model 2100Q turbidity meter. Purging continued until four stable measurements for turbidity, pH, temperature, and SC were obtained. Groundwater stability is considered acceptable when the following parameters are achieved:

- Turbidity measurements are less than 5 nephelometric turbidity units, or within 10 percent for turbidity values greater than 5 nephelometric turbidity units.
- pH is within 0.1 units.
- Temperature is within 1.0 degree Celsius.
- SC is within 5 percent.

Field measurement logs documenting details of well purging and water quality measurements have been submitted to the SNL/NM Customer Funded Record Center.

Groundwater samples were submitted to GEL Laboratories, LLC (GEL) for chemical analysis of perchlorate using U.S. Environmental Protection Agency (EPA) Method 314.0 (EPA November 1999). Table II-3 provides the sample identification, Analysis Request/Chain-of-Custody form number, and the associated groundwater investigation. The analytical report from GEL, including certificates of analysis (COA) (Appendix A), analytical methods, MDLs, practical quantitation limits, dates of analyses, results of quality control analyses, and data validation findings (Appendix B), have been submitted to the SNL/NM Customer Funded Record Center.

3.0 **Regulatory Criteria**

For a given monitoring well, four consecutive ND results using the screening level/MDL of 4 µg/L are considered by the NMED HWB as evidence of the absence of perchlorate, such
that additional monitoring for perchlorate in that well is not required. If perchlorate is detected using the screening level/MDL of 4 µg/L in a specific well, then monitoring will continue at that well at a frequency negotiated with the NMED. The Consent Order (NMED April 2004) also requires that detections equal to or greater than 4 µg/L be evaluated by DOE/NNSA and SNL/NM personnel to determine the nature and extent of perchlorate contamination and incorporate the results of this evaluation into a Corrective Measures Evaluation (CME), based on a screening level/MDL of 4 µg/L. The Consent Order, Section VII.C clarifies that the CME process will be initiated where there is a documented release to the environment, and where corrective measures are necessary to protect human health and the environment.

3.1 Burn Site Groundwater Area of Concern

In March 2007, NMED HWB sent a letter of approval, which required DOE/NNSA and SNL/NM personnel to “determine the nature and extent of the contamination and complete a CME for the perchlorate-impacted groundwater in the vicinity of CYN-MW6” (NMED March 2007). As this was based solely on four quarters of monitoring results, DOE and SNL/NM personnel submitted a letter to the NMED HWB in April 2007 (SNL/NM April 2007) recommending further characterization through continued quarterly monitoring of monitoring well CYN-MW6 for an additional four quarters, ending in December 2007, to ensure appropriate characterization of this well. In January 2008, DOE/NNSA and SNL/NM personnel requested a meeting with the NMED HWB to discuss the need for continued monitoring or additional characterization work and, potentially, a CME.

In preparation for discussing the perchlorate-impacted groundwater in the vicinity of monitoring well CYN-MW6, and to show that the requirement “to determine the nature and extent of contamination” (NMED March 2007) had been met, DOE/NNSA and SNL/NM personnel provided supporting information to the NMED HWB (SNL/NM March 2008). Perchlorate in surface soil has been characterized at several Solid Waste Management Units (SWMUs) in the study area (SNL/NM June 2006 and March 2008–Appendix C). Based on these data, DOE/NNSA and SNL/NM personnel consider the nature and extent of perchlorate in groundwater at the BSG AOC to be sufficiently characterized. Since 2004, groundwater samples from four other monitoring wells in the vicinity of the BSG AOC have been analyzed for perchlorate, including monitoring wells CYN-MW1D, CYN-MW5, CYN-MW7, and CYN-MW8. All wells were sampled for four quarters and all results were ND for perchlorate (SNL/NM March 2008–Appendix D).

In accordance with the requirements of Section VI.K.1.b of the Consent Order (NMED April 2004), a human health risk assessment has been performed to evaluate the potential for adverse health effects from the concentrations of perchlorate detected
in monitoring well CYN-MW6 groundwater samples. The maximum perchlorate concentration to date of 8.93 μg/L was used in the risk assessment. The calculated hazard quotient of 0.35 is less than the NMED HWB target level of a hazard index (the sum of all hazard quotients) of 1.0 (NMED June 2006, SNL/NM March 2008–Appendix E). For another point of comparison, NMED HWB risk assessment guidance lists a tap water standard of 13.8 μg/L for perchlorate (NMED February 2019); therefore, the historical maximum concentration detected is 35 percent less than the NMED HWB tap water standard.

Because perchlorate concentrations in samples from monitoring well CYN-MW6 have exceeded the screening level, DOE/NNSA and SNL/NM personnel initiated a negotiation process with the NMED HWB (SNL/NM March 2007) to determine the frequency of continued monitoring. In November 2008, DOE/NNSA and SNL/NM personnel received approval from the NMED HWB to proceed with semiannual monitoring of perchlorate in monitoring well CYN-MW6 and proceed with semiannual reporting of all perchlorate results (NMED November 2008). Upon further consideration, the NMED HWB once more required that DOE/NNSA and SNL/NM personnel resume quarterly reporting of perchlorate results with the exception of monitoring well CYN-MW6 (NMED April 2009). Due to declining water levels, CYN-MW6 has insufficient water to routinely sample and was replaced; the last sample collected at CYN-MW6 was on October 15, 2012. The replacement monitoring well (CYN-MW15) was installed in December 2014 and assumed the negotiated semiannual monitoring frequency. Monitoring well CYN-MW14A was also installed in December 2014; this well was considered a new monitoring well that requires quarterly sampling due to its deep screen interval.

In April 2009, NMED HWB sent a letter that required DOE/NNSA and SNL/NM personnel to characterize the nature and extent of the perchlorate contamination in soil and groundwater in the BSG AOC (NMED April 2009). A characterization work plan was prepared and submitted to the NMED HWB (SNL/NM November 2009), approved by the NMED HWB (NMED February 2010), and implemented in July 2010.

3.2 **Tijeras Arroyo Groundwater and Technical Area-V Groundwater Areas of Concern**

The April 2009 letter from the NMED HWB to DOE/NNSA and SNL/NM personnel was not limited to the BSG AOC (NMED April 2009). The NMED HWB had also requested that DOE/NNSA and SNL/NM personnel monitor perchlorate concentrations for a minimum of four quarters at five monitoring wells in the Tijeras Arroyo Groundwater (TAG) AOC and at four monitoring wells in the Technical Area-V Groundwater AOC (NMED April 2009). All nine wells from these two AOCs have been sampled for four consecutive monitoring events with no perchlorate detections being reported; therefore, these nine wells have been removed
from the perchlorate monitoring network. A TAG monitoring well (TA2-SW1-320) was
damaged and was replaced by well, TA2-W-28 in December 2014. The replacement well
was installed for monitoring the same depth interval as damaged well TA2-SW1-320.
Because well TA2-SW1-320 was not one of the four TAG wells selected for perchlorate
sampling, replacement well TA2-W-28 does not require perchlorate sampling.

4.0 Monitoring Results

Table II-3 summarizes the details of samples collected from monitoring well CYN-MW15
in the fourth quarter of CY 2018. Table II-4 summarizes the current and historical
perchlorate results for this well. Appendix A provides the analytical laboratory COAs for the
fourth quarter of CY 2018 perchlorate data. For the fifth time in nine sampling events (since
December 2014), perchlorate was detected above the screening level/MDL of 4.0 µg/L in
the CYN-MW15 environmental duplicate groundwater sample at a concentration of 4.04
µg/L; the CYN-MW15 environmental groundwater sample was ND (<4.0 µg/L).

Figure II-2 shows that the October 2018 perchlorate concentrations reported for monitoring
well CYN-MW15 were ND (environmental sample) and just above the perchlorate
screening level/MDL of 4.0 µg/L (environmental duplicate sample). The hydrograph for
monitoring well CYN-MW15 (Figure II-2) shows that the water table elevation has been
slightly decreasing over the past year.

Table II-5 summarizes the stabilized water quality values measured immediately before
the groundwater samples were collected. The field water quality measurements include
turbidity, pH, temperature, SC, ORP, and DO.

The analytical data were reviewed and validated in accordance with Administrative
Operating Procedure 00-03, “Data Validation Procedure for Chemical and Radiochemical
Data,” (SNL/NM June 2017). No problems were identified with the analytical data that
resulted in qualification of the data as unusable. The data are acceptable, and reported
quality control measures are adequate. Appendix B provides the data validation sample
findings summary sheets for the perchlorate data.

No variances or nonconformances in perchlorate sampling field activities, or field conditions
from requirements in the groundwater monitoring Mini-SAP (SNL/NM October 2018), were
identified during the fourth quarter of CY 2018 sampling activities.
5.0 **Summary and Conclusions**

Based on analytical data presented in Table II-4 and in previous reports, the following statements can be made:

- The perchlorate concentrations for the two groundwater samples from monitoring well CYN-MW15 for the fourth quarter of CY 2018 sampling event were ND and 4.04 μg/L. This is the fifth sampling event that perchlorate was detected at this well (Figure II-2) since December 2014. However, this result was not unexpected as CYN-MW15 was installed to replace CYN-MW6, a well with historical perchlorate detections that ranged up to 8.93 μg/L.

- Since June 2004 (the start of sampling as required by the Consent Order), perchlorate was detected above the screening level/MDL (4 μg/L) in groundwater samples from only one well (CYN-MW6) and its replacement well (CYN-MW15) in the perchlorate monitoring network.

- DOE/NNSA and SNL/NM personnel will continue semiannual monitoring of perchlorate at monitoring well CYN-MW15.

6.0 **References**

EPA, see U.S. Environmental Protection Agency.

New Mexico Environment Department (NMED), November 2008. “RE: Perchlorate Issues.” E-mail correspondence to J. Cochran (SNL/NM) from S. Brandwein (NMED), November 7, 2008.

NMED, see New Mexico Environment Department.

Sandia National Laboratories, New Mexico (SNL/NM), April 2007. Letter to J. Bearzi (New Mexico Environment Department [NMED] Hazardous Waste Bureau) from

Sandia National Laboratories, New Mexico (SNL/NM), June 2017. “Data Validation Procedure for Chemical and Radiochemical Data,” Administrative Operating Procedure 00-03, Revision 5, Sample Management Office, Sandia National Laboratories, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), January 2018a. “Groundwater Monitoring Equipment Decontamination,” Field Operating Procedure 05-03, Revision 05, Long-Term Environmental Stewardship, Environmental Management Department, Sandia National Laboratories, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), January 2018b. “Groundwater Monitoring Well Sampling and Field Analytical Measurements,” Field Operating Procedure 05-01, Revision 05, Long-Term Environmental Stewardship, Environmental Management Department, Sandia National Laboratories, New Mexico.

SNL/NM, see Sandia National Laboratories, New Mexico.

Figures
Figure II-1
Sandia National Laboratories, New Mexico
Current Perchlorate Screening Monitoring Well Network, October – December 2018
Figure II-2
Groundwater Elevations and Perchlorate Concentrations Over Time in CYN-MW15
Tables
Table II-1
Current Perchlorate Screening Monitoring Well Network
Fourth Quarter, CY 2018

<table>
<thead>
<tr>
<th>Well</th>
<th>Date Sampled</th>
<th>Number of Consecutive Sampling Events(^a)</th>
<th>Remaining Number of Sampling Events</th>
<th>Sampling Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYN-MW15</td>
<td>16-Oct-18</td>
<td>9</td>
<td>TBD(^b)</td>
<td>Bennett™ Pump</td>
</tr>
</tbody>
</table>

Notes

\(^a\)Includes this sampling event.

\(^b\)This well was installed as a replacement well for CYN-MW6. Because perchlorate concentrations in CYN-MW6 have exceeded the screening level/MDL, DOE/NNSA, SNL/NM, and the NMED HWB have agreed to further characterization through continued monitoring in the BSG AOC (NMED February 2010).

AOC = Area of Concern.
BSG = Burn Site Groundwater.
CY = Calendar Year.
CYN = Canyons (Burn Site Groundwater Area of Concern).
DOE = U.S. Department of Energy.
HWB = Hazardous Waste Bureau.
MDL = Method detection limit.
MW = Monitoring well.
NMED = New Mexico Environment Department.
NNSA = National Nuclear Security Administration.
SNL/NM = Sandia National Laboratories, New Mexico.
TBD = To be determined.
<table>
<thead>
<tr>
<th>Well</th>
<th>Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCBA-MW1</td>
<td>MWL-MW1</td>
</tr>
<tr>
<td>CCBA-MW2</td>
<td>MWL-MW7</td>
</tr>
<tr>
<td>CTF-MW1</td>
<td>MWL-MW8</td>
</tr>
<tr>
<td>CTF-MW2</td>
<td>MWL-MW9</td>
</tr>
<tr>
<td>CTF-MW3</td>
<td>NWTA3-MW2</td>
</tr>
<tr>
<td>CYN-MW1D</td>
<td>OBS-MW1</td>
</tr>
<tr>
<td>CYN-MW5</td>
<td>OBS-MW2</td>
</tr>
<tr>
<td>CYN-MW6</td>
<td>OBS-MW3</td>
</tr>
<tr>
<td>CYN-MW7</td>
<td>SWTA3-MW4</td>
</tr>
<tr>
<td>CYN-MW8</td>
<td>TA1-W-03</td>
</tr>
<tr>
<td>CYN-MW9</td>
<td>TA1-W-06</td>
</tr>
<tr>
<td>CYN-MW10</td>
<td>TA1-W-08</td>
</tr>
<tr>
<td>CYN-MW11</td>
<td>TA2-W-01</td>
</tr>
<tr>
<td>CYN-MW12</td>
<td>TA2-W-27</td>
</tr>
<tr>
<td>CYN-MW14A</td>
<td>TAV-MW11</td>
</tr>
<tr>
<td>LWDS-MW1</td>
<td>TAV-MW12</td>
</tr>
<tr>
<td>MRN-2</td>
<td>TAV-MW13</td>
</tr>
<tr>
<td>MRN-3D</td>
<td>TAV-MW14</td>
</tr>
<tr>
<td>MWL-BW1</td>
<td>TAV-MW15</td>
</tr>
<tr>
<td>MWL-BW2</td>
<td>TAV-MW16</td>
</tr>
</tbody>
</table>

Notes

BW = Background well.
CCBA = Coyote Canyon Blast Area.
CTF = Coyote Test Field.
CYN = Canyons (Burn Site Groundwater Area of Concern).
LWDS = Liquid waste disposal system.
MRN = Magazine Road North.
MW = Monitoring well.
MWL = Mixed Waste Landfill.
NWTA = Northwest Technical Area (-III).
OBS = Old Burn Site.
SWTA = Southwest Technical Area (-III).
TA1-W = Technical Area-I (Well).
TA2-W = Technical Area-II (Well).
TAV = Technical Area-V.
Table II-3
Sample Details for Fourth Quarter, CY 2018 Perchlorate Sampling

<table>
<thead>
<tr>
<th>Well</th>
<th>Sample Identification</th>
<th>AR/COC Number</th>
<th>Associated Groundwater Investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYN-MW15</td>
<td>106473-004</td>
<td>619203</td>
<td>BSG AOC</td>
</tr>
<tr>
<td>CYN-MW15 (Duplicate)</td>
<td>106474-004</td>
<td>619203</td>
<td>BSG AOC</td>
</tr>
</tbody>
</table>

Notes

AOC = Area of Concern.
AR/COC = Analysis Request/Chain-of-Custody.
BSG = Burn Site Groundwater.
CY = Calendar Year.
CYN = Canyons (Burn Site Groundwater Area of Concern).
MW = Monitoring well.
<table>
<thead>
<tr>
<th>Well</th>
<th>Sample Date</th>
<th>AR/COC Number</th>
<th>Sample Number</th>
<th>Result (µg/L)</th>
<th>MDL (µg/L)</th>
<th>PQL (µg/L)</th>
<th>MCL (µg/L)</th>
<th>Laboratory Qualifier</th>
<th>Validation Qualifier</th>
<th>Analytical Method</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYN-MW15 Burn Site Groundwater Area of Concern</td>
<td>17-Dec-14</td>
<td>615941</td>
<td>096979-020</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-Jun-15</td>
<td>616178</td>
<td>097842-020</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-Nov-15</td>
<td>616396</td>
<td>098486-020</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td>Duplicate sample</td>
</tr>
<tr>
<td></td>
<td>05-Apr-16</td>
<td>616862</td>
<td>099139-008</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-Oct-16</td>
<td>617385</td>
<td>100705-004</td>
<td>4.09</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100705-R04</td>
<td>3.98</td>
<td>0.25</td>
<td>1</td>
<td>NE</td>
<td></td>
<td>SW846 6850</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100706-004</td>
<td>4.18</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td>Duplicate sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100706-R04</td>
<td>4.01</td>
<td>0.25</td>
<td>1</td>
<td>NE</td>
<td></td>
<td>SW846 6850</td>
<td></td>
<td>Duplicate sample</td>
</tr>
<tr>
<td></td>
<td>19-Apr-17</td>
<td>617823</td>
<td>102400-013</td>
<td>4.07</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>102400-R13</td>
<td>3.19</td>
<td>0.1</td>
<td>0.4</td>
<td>NE</td>
<td>Hh</td>
<td>J-</td>
<td>SW846 6850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-Oct-17</td>
<td>618205</td>
<td>103748-004</td>
<td>4.05</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>103749-004</td>
<td>4.66</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19-Apr-18</td>
<td>618667</td>
<td>105068-008</td>
<td>4.60</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-Oct-18</td>
<td>619203</td>
<td>106473-004</td>
<td>ND</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>U</td>
<td></td>
<td>EPA 314.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>106474-004</td>
<td>4.04</td>
<td>4.0</td>
<td>12</td>
<td>NE</td>
<td>J</td>
<td></td>
<td>EPA 314.0</td>
<td>Duplicate sample</td>
</tr>
</tbody>
</table>

Notes

*aLaboratory Qualifier
If cell is blank, then all QC samples meet acceptance criteria with respect to submitted samples.
H = Analytical holding time was exceeded.
h = Prep holding time exceeded.
J = Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL.
U = Analyte is absent or below the MDL.

*bValidation Qualifier
If cell is blank, then all QC samples meet acceptance criteria with respect to submitted samples.
J- = The associated numerical value is an estimated quantity with a suspected negative bias.
Table II-4 (concluded)
Summary of Perchlorate Screening Analytical Results for the
Current Monitoring Well Network as of Fourth Quarter, CY 2018

Notes (continued)

% = Percent.
μg/L = Micrograms per liter.
AR/COC = Analysis Request/Chain-of-Custody.
CY = Calendar Year.
CYN = Canyons (Burn Site Groundwater Area of Concern).
EPA = U.S. Environmental Protection Agency.
MCL = Maximum contaminant level. Established by the EPA Primary Water Regulations (40 CFR 141.11, Subpart B) and subsequent amendments or Title 20, Chapter 7, Part 1 of the New Mexico Administrative Code, incorporating 40 CFR 141.
MDL = Method detection limit. The minimum concentration that can be measured and reported with 99% confidence that the analyte is greater than zero; analyte is matrix-specific.
MW = Monitoring well.
ND = Nondetect (at MDL).
NE = Not established.
PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the indicated method under routine laboratory operating conditions.
QC = Quality control.
Table II-5
Perchlorate Screening Groundwater Monitoring
Field Water Quality Measurements\(^a\), Fourth Quarter, CY 2018

<table>
<thead>
<tr>
<th>Well</th>
<th>Sample Date</th>
<th>Temperature (°C)</th>
<th>Specific Conductivity (µmhos/cm)</th>
<th>Oxidation-Reduction Potential (mV)</th>
<th>pH</th>
<th>Turbidity (NTU)</th>
<th>Dissolved Oxygen (% Sat)</th>
<th>Dissolved Oxygen (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn Site Groundwater Area of Concern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYN-MW15</td>
<td>16-Oct-18</td>
<td>13.76</td>
<td>1238.1</td>
<td>184.8</td>
<td>7.07</td>
<td>0.46</td>
<td>14.53</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Notes

\(^a\)Field measurements obtained immediately before the groundwater sample was collected.

°C = Degrees Celsius.

% Sat = Percent saturation.

µmhos/cm = Micromhos per centimeter.

CY = Calendar Year.

CYN = Canyons (Burn Site Groundwater Area of Concern).

mg/L = Milligrams per liter.

mV = Millivolt(s).

MW = Monitoring well.

NTU = Nephelometric turbidity unit.

pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).
Appendix A
Analytical Laboratory Certificates of Analysis for the Perchlorate Data
ANALYSIS REQUEST AND CHAIN OF CUSTODY

Internal Lab

Batch No. 54

SMO Use

SMO Authorization

SMO Contact Phone

Project Name: BSG AOC

Project/Task Manager: Michael Skelly

Carrier/Waybill No. 289222

Lab Contact: Edie Kent

Lab Destination: GEL

Contract No.: 1303873

Send Report to SMO: Stephanie Montañé

AR/COC 619203

4° Celsius

Bill to: Sandia National Laboratories (Accounts Payable), P.O. Box 5800, MS-0154, Albuquerque, NM 87185-0154

Tech Area:

Building:

Room:

Operational Site:

Sample Table

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Fraction</th>
<th>Sample Location Detail</th>
<th>Depth (ft)</th>
<th>Date/Time Collected</th>
<th>Sample Matrix</th>
<th>Container Type</th>
<th>Volume</th>
<th>Preservative</th>
<th>Collection Method</th>
<th>Sample Type</th>
<th>Parameter & Method Requested</th>
<th>Lab Sample ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>106472</td>
<td>001</td>
<td>FB-3</td>
<td>NA</td>
<td>10/16/18 09:50</td>
<td>DIW AG</td>
<td>3x40 ml</td>
<td>NONE</td>
<td>G</td>
<td>FB</td>
<td></td>
<td>TPH-GRO (SW846-8015)</td>
<td>022</td>
</tr>
<tr>
<td>106473</td>
<td>002</td>
<td>CYN-MW15</td>
<td>182</td>
<td>10/16/18 09:52</td>
<td>GW AG</td>
<td>4x1 L</td>
<td>NONE</td>
<td>G</td>
<td>SA</td>
<td></td>
<td>TPH-DRO (SW846-8015)</td>
<td>023</td>
</tr>
<tr>
<td>106473</td>
<td>001</td>
<td>CYN-MW15</td>
<td>182</td>
<td>10/16/18 09:50</td>
<td>GW AG</td>
<td>3x40 ml</td>
<td>NONE</td>
<td>G</td>
<td>SA</td>
<td></td>
<td>TPH-GRO (SW846-8015)</td>
<td>024</td>
</tr>
<tr>
<td>106474</td>
<td>003</td>
<td>CYN-MW15</td>
<td>182</td>
<td>10/16/18 09:56</td>
<td>GW P</td>
<td>125 ml</td>
<td>H2SO4</td>
<td>SA</td>
<td>SA</td>
<td></td>
<td>NPN (EPA 353.2)</td>
<td>025</td>
</tr>
<tr>
<td>106474</td>
<td>004</td>
<td>CYN-MW15</td>
<td>182</td>
<td>10/16/18 09:58</td>
<td>GW P</td>
<td>250 ml</td>
<td>None</td>
<td>SA</td>
<td>SA</td>
<td></td>
<td>PERCHLORATE (EPA 314.0)</td>
<td>026</td>
</tr>
<tr>
<td>106474</td>
<td>002</td>
<td>CYN-MW15</td>
<td>182</td>
<td>10/16/18 09:52</td>
<td>GW AG</td>
<td>4x1 L</td>
<td>NONE</td>
<td>G</td>
<td>DU</td>
<td></td>
<td>TPH-GRO (SW846-8015)</td>
<td>027</td>
</tr>
<tr>
<td>106474</td>
<td>001</td>
<td>CYN-MW15</td>
<td>182</td>
<td>10/16/18 09:50</td>
<td>GW AG</td>
<td>3x40 ml</td>
<td>NONE</td>
<td>G</td>
<td>DU</td>
<td></td>
<td>TPH-GRO (SW846-8015)</td>
<td>028</td>
</tr>
<tr>
<td>106474</td>
<td>003</td>
<td>CYN-MW15</td>
<td>182</td>
<td>10/16/18 09:56</td>
<td>GW P</td>
<td>125 ml</td>
<td>H2SO4</td>
<td>DU</td>
<td>DU</td>
<td></td>
<td>NPN (EPA 353.2)</td>
<td>029</td>
</tr>
<tr>
<td>106474</td>
<td>004</td>
<td>CYN-MW15</td>
<td>182</td>
<td>10/16/18 09:58</td>
<td>GW P</td>
<td>250 ml</td>
<td>None</td>
<td>DU</td>
<td>DU</td>
<td></td>
<td>PERCHLORATE (EPA 314.0)</td>
<td>030</td>
</tr>
<tr>
<td>106475</td>
<td>001</td>
<td>TB-11</td>
<td>NA</td>
<td>10/16/18 09:50</td>
<td>DIW AG</td>
<td>3x40 ml</td>
<td>NONE</td>
<td>G</td>
<td>TB</td>
<td></td>
<td>TPH-GRO (SW846-8015)</td>
<td>031</td>
</tr>
</tbody>
</table>

Last Chain:

Sample Tracking: Yes

SMO Use:

Special Instructions/QC Requirements:

Conditions on Receipt:

Validation Req'd:

Date Entered:

Background:

Entered by:

Confirmatory:

QC init.:

Negotiated TAT:

Volatility:

<table>
<thead>
<tr>
<th>Sample Team Members</th>
<th>Name</th>
<th>Signature</th>
<th>Init.</th>
<th>Company/Organization/Phone/Cell</th>
<th>Sample Disposal</th>
<th>Return to Client</th>
<th>Disposal by Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>William Gibson</td>
<td></td>
<td>SNL0888/B505-239-7367/B505-239-7367</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christopher Hulliger</td>
<td></td>
<td>AIS/0888/B505-362-03/07/B505-264-3309</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Received by:

Org: 9888

Date: 10/14/18

Time: 11:49

<table>
<thead>
<tr>
<th>Requisitioned by</th>
<th>Org. 9888 Date 10/14/18 Time 11:49</th>
<th>Requisitioned by</th>
<th>Org. 9888 Date 10/14/18 Time 11:49</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prior confirmation with SMO required for 7 and 15 day TAT
Certificate of Analysis

Date: November 8, 2018

Company: Sandia National Laboratories
Address: 1515 Eubank SE.ORG 4142
Contact: Ms. Wendy Palencia
Project: Groundwater, Level C Package

Client Sample ID: 106473-004
Sample ID: 461743026
Matrix: AQUEOUS
Collect Date: 16-OCT-18 09:58
Receive Date: 17-OCT-18
Collector: Client
Project: SNLSGWATER
Client ID: SNLS004
Client Desc.: CYN-MW15
Vol. Recv.:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>DL</th>
<th>RL</th>
<th>Units</th>
<th>PF</th>
<th>DF</th>
<th>Analyst Date</th>
<th>Time Batch</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Chromatography</td>
<td>EPA 314.0 Perchlorate by IC "As Received"</td>
<td>ND</td>
<td>0.004</td>
<td>0.012</td>
<td>mg/L</td>
<td>1</td>
<td>MAR1</td>
<td>10/24/18</td>
<td>1934 1813048</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:

Column headers are defined as follows:
DF: Dilution Factor
DL: Detection Limit
MDA: Minimum Detectable Activity
MDC: Minimum Detectable Concentration
Lc: Critical Level
P: Prep Factor
RL: Reporting Limit
SQL: Sample Quantitation Limit
CERTIFICATE OF ANALYSIS

GEL LABORATORIES LLC
2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: November 8, 2018

Company: Sandia National Laboratories
Address: 1515 Eubank SE, ORG 4142
 BLDG. 1090/120, MS 1103
 Albuquerque, New Mexico 87123
Contact: Ms. Wendy Palencia
Project: Groundwater, Level C Package

Client Sample ID: 106474-004
Sample ID: 461743030
Matrix: AQUEOUS
Collect Date: 16-OCT-18 09:58
Receive Date: 17-OCT-18
Collector: Client
Project: SNLSGWater
Client ID: SNLS004
Client Desc.: CYN-MW15
Vol. Recev.:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Qualifier</th>
<th>Result</th>
<th>DL</th>
<th>RL</th>
<th>Units</th>
<th>PF</th>
<th>DF</th>
<th>Analyst Date</th>
<th>Time Batch</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perchlorate</td>
<td>J 0.00404</td>
<td>0.004</td>
<td>0.012</td>
<td>mg/L</td>
<td>1</td>
<td>MAR1 10/24/18</td>
<td>2036 1813048</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following Analytical Methods were performed:

Method	Description	Analyst Comments
1 | EPA 3140 DOE-AL |

Notes:

Column headers are defined as follows:
- DF: Dilution Factor
- DL: Detection Limit
- MDA: Minimum Detectable Activity
- MDC: Minimum Detectable Concentration
- Lc/LC: Critical Level
- PF: Prep Factor
- RL: Reporting Limit
- SQL: Sample Quantitation Limit

Appendix B
Data Validation Sample Findings
Summary Sheets for the Perchlorate Data
Memorandum

Date: November 26, 2018

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL
Site: BSG AOC
ARCOC: 619199, 619200, 619201, 619202, 619203, 619204, 619205 and 619206
SDG: 461743
Laboratory: GEL
Project/Task: 195122.12.11.01
Analysis: General Chemistry

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 5.

Summary

Eleven samples were prepared and analyzed with accepted procedures using method EPA 353.2 (nitrate/nitrite) and three samples were prepared and analyzed with accepted procedures using method EPA 314.0 (perchlorate). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

Nitrate/Nitrite:

1. Samples 461743019 and -038 were analyzed undiluted; however, the MS and replicate analyses were performed on a sample diluted 25X and considered a dissimilar matrix. The associated result for sample -038, an EB, was a detect and will be qualified J, RP1. The associated result for sample -019, also an EB, was non-detect and will be qualified UJ,RP1.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

Calibration

All initial and continuing calibration met QC acceptance criteria.

Blanks
No target analytes were detected in the blanks with the following exception. Nitrate/nitrite was detected at ≤ the PQL in EB-3, sample -038 associated with samples -042 and -045. The associated sample results were detects >5X the EB value and will not be qualified.

Laboratory Control Sample (LCS)

All LCS acceptance criteria were met.

Matrix Spike and Matrix Spike Duplicate (MS/MSD)

All MS/PS recoveries met QC acceptance criteria.

Laboratory Replicate

The replicate analyses met all QC acceptance criteria except as noted above in the Summary section.

Detection Limits/Dilutions

All detection limits were properly reported and were correctly adjusted for dilutions. The following dilutions were performed due to high amounts of target analyte present in the sample.

Nitrate/Nitrite

Samples -003, -006, -011 and -015 were diluted 25X and samples -025, -029, -034, -042 and -045 were diluted 50X.

Other QC

EB-1 submitted with ARCO 619198 and analyzed in another SDG was associated with the samples on ARCO 619199 submitted in this SDG. EB-2 and EB-3 were submitted with ARCOs 619202 and 619205 and were associated with the samples submitted with ARCOs 619203 and 619206 respectively. Field duplicate pairs were submitted with ARCOs 619199, 619203 and 619206. There are no “required” review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan
Level: 1
Date: 11/28/18
Sample Findings Summary

AR/COC: 619199, 619200, 619201, 619202, 619203, 619204, 619205, 619206

<table>
<thead>
<tr>
<th>Analytical Method</th>
<th>Sample ID</th>
<th>Analyte Name (CAS#)</th>
<th>Qualifier, RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA 353.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106470-003/EB-2</td>
<td>Nitrogen, Nitrate/Nitrite (NO3ASN)</td>
<td>UJ, RP1</td>
<td></td>
</tr>
<tr>
<td>106478-003/EB-3</td>
<td>Nitrogen, Nitrate/Nitrite (NO3ASN)</td>
<td>J, RP1</td>
<td></td>
</tr>
<tr>
<td>SW846 3535A/8015D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106470-002/EB-2</td>
<td>Diesel Range Organics (68334-30-5)</td>
<td>UJ, H1</td>
<td></td>
</tr>
<tr>
<td>106480-002/CYN-MW13</td>
<td>Diesel Range Organics (68334-30-5)</td>
<td>UJ, MS5</td>
<td></td>
</tr>
<tr>
<td>106534-002/CYN-MW13</td>
<td>Diesel Range Organics (68334-30-5)</td>
<td>UJ, MS5</td>
<td></td>
</tr>
<tr>
<td>SW846 8015A/B VOC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106472-001/FB-3</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106473-001/CYN-MW15</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106474-001/CYN-MW15</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106475-001/TB-11</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106476-001/CYN-MW9</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106477-001/TB-12</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106478-001/EB-3</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106479-001/TB-13</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106480-001/CYN-MW13</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106482-001/TB-14</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
<tr>
<td>106534-001/CYN-MW13</td>
<td>Gasoline Range Organics (8006-61-9)</td>
<td>R, H1</td>
<td></td>
</tr>
</tbody>
</table>
All other analyses met QC acceptance criteria; no further data should be qualified.
SECTION III
TABLE OF CONTENTS

TECHNICAL AREA-V IN-SITU BIOREMEDIATION TREATABILITY STUDY FULL-SCALE OPERATION RESULTS, October - December 2018

1.0 Background .. III-1
2.0 Baseline Sampling for Full-Scale Operation .. III-3
3.0 Full-Scale Operation Activities .. III-3
4.0 Groundwater Monitoring for Full-Scale Operation .. III-4
5.0 Deviations ... III-5
6.0 References ... III-6

LIST OF FIGURES

Figure Title

III-1 Well Locations and Potentiometric Surface Contours for October 2018

LIST OF TABLES

Table Title

III-1 Analytical Results of September 2018 Baseline Groundwater Sampling at Wells TAV-INJ1, TAV-MW6, and TAV-MW7

III-2 Field Water Quality Measurements Before September 2018 Baseline Groundwater Sampling

III-3 Substrate Solution Components for Full-Scale Operation

III-4 Analytical Results of November and December 2018 Groundwater Sampling at Wells TAV-MW6 and TAV-MW7

III-5 Field Water Quality Measurements Before November and December 2018 Groundwater Sampling at Wells TAV-MW6 and TAV-MW7
LIST OF TABLES (concluded)

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-6</td>
<td>Analytical Results of November 2018 Groundwater Sampling at Wells LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, and TAV-MW14</td>
</tr>
<tr>
<td>III-7</td>
<td>Field Water Quality Measurements before November 2018 Groundwater Sampling at Wells LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, and TAV-MW14</td>
</tr>
</tbody>
</table>

APPENDICES

Appendix A NMED’s Approval Letter and DOE’s Submittal with the Enclosure Describing Full-Scale Operation Modifications
SECTION III
TECHNICAL AREA-V IN-SITU BIOREMEDIATION TREATABILITY STUDY
FULL-SCALE OPERATION RESULTS

1.0 Background

As previously reported in Section III of the Environmental Restoration (ER) Quarterly Report, October 2018 (Sandia National Laboratory, New Mexico [SNL/NM], October 2018), the pilot test for the Technical Area-V (TA-V) in-situ bioremediation (ISB) Treatability Study was conducted during November 2017 at injection well TAV-INJ1 with performance monitoring conducted at two nearby wells, TAV-MW6 and TAV-MW7, and concluded in June 2018. Full-scale operation of the ISB Treatability Study began in October 2018.

This ISB Treatability Study full-scale operation quarterly report summarizes the ongoing full-scale activities and associated analytical results. A comprehensive report for the ISB Treatability Study, including both the pilot test and the full-scale operation, will be produced at the end of the ISB Treatability Study, in accordance with the Revised Treatability Study Work Plan (TSWP) (SNL/NM March 2016).

1.1 Modifications of Full-Scale Operation for the Treatability Study

Based on the results of the pilot test, and discussions with the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB), the DOE/National Nuclear Security Administration (1) proposed eight modifications for full-scale operations, and (2) proposed to proceed with the full-scale operation of the Treatability Study at injection well TAV-INJ1 on July 20, 2018 (DOE July 2018). The NMED HWB approved the proposed modifications and concurred with the decision to proceed with the full-scale operations on August 13, 2018 (NMED August 2018). NMED’s approval letter and DOE’s submittal with the proposed modifications are provided in Appendix A. The following summarizes the eight modifications. Detailed rationale for the modifications are provided in Appendix A.

Modification #1: For full-scale operation, use substrate components (i.e., chemicals) to deoxygenate potable water in aboveground tanks.

Modification #2: Use the two existing 5,000-gallon aboveground tanks from pilot test for full-scale injection.
Modification #3: Use potassium bicarbonate and sodium sulfite to deoxygenate and reduce the oxidation-reduction potential of the treatment solution to produce favorable conditions for the dechlorinating bacteria in the ISB process.

Modification #4: Use Accelerite® Bioremediation Nutrient to substitute for yeast extract in treatment solution for full-scale operation.

Modification #5: It is not necessary to sample the content of the aboveground tanks because known amounts of ingredients are dissolved in potable water, and there is sufficient information on what is being injected.

Modification #6: Sampling the water in injection well TAV-INJ1 is not necessary during the injection period because the injection is almost a continuous process and the water in the well casing is predominately the injected solution.

Modification #7: Well TAV-MW7 is reverted back to the TA-V groundwater monitoring network (see Section I, 2.1.2) and is administered by the SNL Long-Term Stewardship group along with the other 16 TA-V groundwater monitoring wells. The sampling frequency for TAV-MW7 is quarterly. The analytical parameters for groundwater samples from well TAV-MW7 include the following:

- Bromide
- Dissolved metals (arsenic, iron, and manganese)
- Ethene
- Nitrate plus nitrite (NPN)
- Volatile organic compounds

Modification #8: Eliminate unnecessary analytical parameters for Treatability Study wells. The revised analytical parameters for groundwater samples of the Treatability Study include:

- Alkalinity (total, bicarbonate, and carbonate)
- Ammonia (as nitrogen)
- Anions (bromide and sulfate)
- Dehalococcoides (Dhc) and, if Dhc is present, vinyl chloride reductase
- Dissolved metals (arsenic, iron, and manganese)
- Methane/ethane/ethene
- NPN
- Total organic carbon
- Volatile organic compounds
2.0 **Baseline Sampling for Full-Scale Operation**

Baseline sampling was conducted in September 2018 prior to the full-scale operation. Groundwater samples were collected from wells TAV-INJ, TAV-MW6, and TAV-MW7 prior to commencing discharge in well TAV-INJ1 on November 1, 2018. Analytical parameters for baseline sampling are listed above (see *Modification #8*).

Table III-1 provides the analytical results for the September 2018 baseline groundwater sampling events. Table III-2 summarizes the stabilized water quality parameters measured at each well before groundwater samples were collected. Trichloroethene (TCE) and NPN concentrations for the September 2018 samples are discussed below. The remaining analytes in Table III-1 will be discussed in future quarterly reports after sufficient data are acquired for trend analysis to be conducted.

The baseline sample for injection well TAV-INJ1 was collected on September 26, 2018 (Table III-1). This baseline sample had a TCE concentration of 5.6 micrograms per liter (µg/L). NPN was not reported above the detection limit of 0.017 milligrams per liter (mg/L).

The baseline sample for monitoring well TAV-MW6 was collected on September 25, 2018 (Table III-1). This baseline sample had TCE and NPN concentrations of 9.81 µg/L and 8.78 mg/L, respectively. These values are consistent with previous sampling events. An environmental duplicate sample was also collected on September 25, 2018 for well TAV-MW6; the TCE and NPN concentrations, 9.77 µg/L and 8.6 mg/L, respectively, showed good agreement with the environmental sample.

The baseline sample for monitoring well TAV-MW7 was collected on September 24, 2018 (Table III-1). TCE was not reported above the detection limit of 0.3 µg/L. The NPN concentration was 4.29 mg/L. This well is screened approximately 90 feet below the water table.

3.0 **Full-Scale Operation Activities**

Full-scale operation of the ISB Treatability Study began in October 2018. The treatment solution is designed to enhance the degradation of TCE and nitrate in the Regional Aquifer. The mixing ratio for the treatment solution consists of approximately 99.9 percent potable
water and 0.1 percent amendments. Table III-3 presents the components of the treatment solution that is proposed in Appendix A. Adjustments to the quantities of these components were necessary to provide optimal conditions in the groundwater for the dechlorinating bacteria. Minor adjustments may continue in the future, depending on the groundwater conditions.

The treatment solution was mixed in two aboveground 5,000-gallon polyethylene tanks prior to each injection. After the water quality was evaluated using electronic sondes and meters, the treatment solution in the tanks was gravity-injected to the groundwater via injection well TAV-INJ1. By December 31, 2018, 29 injections totaling 137,573 gallons of treatment solution were discharged to injection well TAV-INJ1. This was equivalent to approximately 26 percent on the planned injection volume of 530,000 gallons. The average volume of treatment solution per injection was approximately 4,744 gallons.

The mixing ratio of the KB-1 dechlorinating bacteria, a product purchased from SiREM, is approximately 1.1 liter per 5,000 gallons treatment solution. By the end of 2018, a total of 32.9 liters of KB-1 dechlorinating bacteria were injected to the groundwater via well TAV-INJ1.

4.0 Groundwater Monitoring for Full-Scale Operation

Figure III-1 shows the well locations along with the potentiometric surface contours for October 2018. The potentiometric surface indicates that the groundwater flow at TA-V is generally to the west, with localized flow to the south and southwest.

In accordance with NMED HWB August 13, 2018 approval letter for full-scale operation (NMED August 2018) and the Revised TWSP (SNL/NM March 2016), monitoring well TAV-MW6 is to be sampled monthly after the injection starts, well TAV-MW7 is to be sampled quarterly, and no sampling is to be performed at well TAV-INJ1 during injection.

Table III-4 provides the analytical results for the October-December 2018 sampling efforts. Table III-5 summarizes the stabilized water quality parameters measured at each well before groundwater samples were collected. TCE and NPN concentrations in the samples collected during this reporting period (October-December 2018) samples are discussed below. The remaining analytes shown in Table III-4 will be discussed in future quarterly reports after sufficient data are acquired for trend analysis to be conducted.
During the reporting period, monitoring well TAV-MW6 was sampled twice (Table III-4) after injection started on November 1, 2018. The November 20, 2018 sample contained TCE and NPN concentrations of 8.23 µg/L and 7.89 mg/L, respectively. The December 18, 2018 sample for monitoring well TAV-MW6 had TCE and NPN concentrations of 6.49 µg/L and 7.97 mg/L, respectively. These values are consistent with the baseline sampling event.

During the reporting period, monitoring well TAV-MW7 was sampled once (Table III-4). The November 5, 2018 sample for monitoring well TAV-MW7 did not exceed the TCE detection limit (0.3 µg/L). The NPN concentration was 4.07 mg/L. This well is screened approximately 90 feet below the water table. These values are consistent with the baseline sampling event.

Groundwater results from wells TAV-MW6 and TAV-MW7 indicate that the treatment solution injected at TAV-INJ1 has not reached these two wells. Well TAV-MW6 is located within the Treatability Study treatment zone, and change to the groundwater in this well is anticipated. However, no change to the groundwater in well TAV-MW7 is anticipated because the well is screened 90 feet below the groundwater table (NMED August 2018).

In accordance with Section 5.5 of the Revised TSWP, eight wells will be monitored for dissolved iron, manganese, and arsenic on a quarterly basis in order to monitor the impact of treatment solution on groundwater located outside of the Treatability Study treatment zone (SNL/NM March 2016). For the Phase I Treatability Study, the eight wells that are located outside the treatment zone are LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, and TAV-MW14. Table III-6 provides the November sampling results for these eight wells and Table III-7 summarizes the stabilized water quality parameters measured at each well before groundwater samples were collected. All results are consistent with the historical values at these eight wells (SNL/NM June 2018) and there is no change in the groundwater at these wells from the substrate solution injected at TAV-INJ1.

5.0 Deviations

No deviations were encountered with regards to the NMED HWB August 13, 2018 approval letter for full-scale operation (NMED August 2018) or the Revised TWSP (SNL/NM March 2016).
6.0 References

Sandia National Laboratories, New Mexico (SNL/NM), March 2016. Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, Sandia National Laboratories, Albuquerque, New Mexico.

Figures
Figure III-1
Well Locations and Potentiometric Surface Contours for October 2018
This page intentionally left blank.
Tables
Table III-1
Analytical Results for September 2018 Baseline Groundwater Sampling at Wells TAV-INJ1, TAV-MW6, and TAV-MW7

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>PQL</th>
<th>MCL</th>
<th>Units</th>
<th>Lab Qual</th>
<th>Val Qual</th>
<th>Sample No.</th>
<th>Analytical Method</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-INJ1, sampled on 26-Sep-2018</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity as CaCO$_3$</td>
<td>228</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td>106331-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, bicarb as CaCO$_3$</td>
<td>228</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td>106331-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, carb as CaCO$_3$</td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106331-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>Ammonia</td>
<td>3.07</td>
<td>0.00625</td>
<td>0.25</td>
<td>NE</td>
<td>mg/L</td>
<td>B</td>
<td>106331-002</td>
<td>EPA 350.1</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td>Bromide</td>
<td>7.79</td>
<td>0.335</td>
<td>1</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td>106331-004</td>
<td>SW846 9056</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td>Sulfate</td>
<td>50.1</td>
<td>0.665</td>
<td>2</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td>106331-004</td>
<td>SW846 9056</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Microbial</td>
<td>Dehalococcoides</td>
<td>30000</td>
<td>3000</td>
<td>3000</td>
<td>NE</td>
<td>Enumeration/L</td>
<td></td>
<td>106345-001</td>
<td>Gene-Trac Dhc</td>
<td>SiREM</td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.0446</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td>106331-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.0468</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td></td>
<td>106331-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>1.77</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td>106331-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>1.89</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td>106331-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>6.86</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>106331-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>6.71</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>106331-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>MEE</td>
<td>Methane</td>
<td>260</td>
<td>0.014</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td></td>
<td>106340-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>MEE</td>
<td>Ethane</td>
<td>ND</td>
<td>0.0070</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>106340-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>MEE</td>
<td>Ethene</td>
<td>0.16</td>
<td>0.0050</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td></td>
<td>106340-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
</tr>
<tr>
<td>NPN</td>
<td>Nitrate plus nitrite, as nitrogen</td>
<td>ND</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>106331-005</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon, average</td>
<td>1.76</td>
<td>0.33</td>
<td>1</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td>106331-003</td>
<td>SW846 9060A</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Trichloroethylene</td>
<td>5.6</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td></td>
<td>106331-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Dichloroethylene, cis-1,2-</td>
<td>1.81</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td></td>
<td>106331-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-7 in the "Footnotes for Technical Area-V Analytical Results Tables" summary.
Table III-1 (continued)

Analytical Results of September 2018 Baseline Sampling at Wells TAV-INJ1, TAV-MW6, and TAV-MW7

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>PQL</th>
<th>MCL</th>
<th>Units</th>
<th>Lab Qual</th>
<th>Val Qual</th>
<th>Sample No.</th>
<th>Analytical Method</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-MW6, sampled on 25-Sep-2018</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity as CaCO₃</td>
<td>194</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106327-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, bicarb as CaCO₃</td>
<td>194</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106327-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, carb as CaCO₃</td>
<td>ND</td>
<td>0.017</td>
<td>0.05</td>
<td>NE</td>
<td>mg/L</td>
<td>106327-002</td>
<td>0.5U</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>Ammonia</td>
<td>ND</td>
<td>0.017</td>
<td>0.05</td>
<td>NE</td>
<td>mg/L</td>
<td>106327-002</td>
<td>0.5U</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td>Bromide</td>
<td>0.815</td>
<td>0.067</td>
<td>0.2</td>
<td>NE</td>
<td>mg/L</td>
<td>106327-004</td>
<td>SW846 9056</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td>Sulfate</td>
<td>42.4</td>
<td>1.33</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-004</td>
<td>SW846 9056</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrbial</td>
<td>Dehalococcoides</td>
<td>ND</td>
<td>3000</td>
<td>3000</td>
<td>NE</td>
<td>Enumeration/L</td>
<td>U</td>
<td>GEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00204</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>106327-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>106327-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Methylmercury</td>
<td>ND</td>
<td>0.00106</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>106327-008</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>MEE</td>
<td>Methane</td>
<td>ND</td>
<td>0.014</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td>106336-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEE</td>
<td>Ethane</td>
<td>ND</td>
<td>0.0070</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>106336-001</td>
<td>AM20GAX</td>
<td>PACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>8.78</td>
<td>0.17</td>
<td>5</td>
<td>10</td>
<td>mg/L</td>
<td>106327-005</td>
<td>SW846 9060A</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon, average</td>
<td>ND</td>
<td>0.33</td>
<td>1</td>
<td>NE</td>
<td>µg/L</td>
<td>106327-003</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Trichloroethene</td>
<td>9.81</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>106327-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>1.41</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>106327-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*split sample. Note: Header nomenclature is explained following Table III-7 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.

Table III-1 (continued)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>PQL</th>
<th>MCL</th>
<th>Units</th>
<th>Lab Qual</th>
<th>Val Qual</th>
<th>Sample No.</th>
<th>Analytical Method</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-MW6 (Duplicate), collected on 25-Sep-2018</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity as CaCO₃</td>
<td>191</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, bicarb as CaCO₃</td>
<td>191</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, carb as CaCO₃</td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-006</td>
<td>SM 2320B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>Ammonia</td>
<td>ND</td>
<td>0.017</td>
<td>0.05</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-002</td>
<td>0.5U</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td>Bromide</td>
<td>0.813</td>
<td>0.067</td>
<td>0.2</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-004</td>
<td>SW846 9056</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td>Sulfate</td>
<td>43.4</td>
<td>1.33</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-004</td>
<td>SW846 9056</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>ND</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>106328-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>106328-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>8.6</td>
<td>0.17</td>
<td>5</td>
<td>10</td>
<td>mg/L</td>
<td>106328-005</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon, average</td>
<td>ND</td>
<td>0.33</td>
<td>1</td>
<td>NE</td>
<td>µg/L</td>
<td>106328-003</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Trichloroethene</td>
<td>9.77</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>106328-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>1.4</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>106328-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-7 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Table III-1 (continued)
Analytical Results of September 2018 Baseline Sampling at Wells TAV-INJ1, TAV-MW6, and TAV-MW7

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>PQL</th>
<th>MCL</th>
<th>Units</th>
<th>Lab Qual</th>
<th>Val Qual</th>
<th>Sample No.</th>
<th>Analytical Method</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-MW7, sampled on 24-Sep-2018</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity as CaCO₃</td>
<td>232</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106322-004</td>
<td>SM 2320B</td>
<td>GEL</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, bicarb as CaCO₃</td>
<td>232</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106322-004</td>
<td>SM 2320B</td>
<td>GEL</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, carb as CaCO₃</td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>106322-004</td>
<td>SM 2320B</td>
<td>GEL</td>
</tr>
<tr>
<td>Anions</td>
<td>Bromide</td>
<td>0.259</td>
<td>0.067</td>
<td>0.2</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106322-006</td>
<td>SW846 9056</td>
<td>GEL</td>
</tr>
<tr>
<td>Anions</td>
<td>Sulfate</td>
<td>64.4</td>
<td>0.665</td>
<td>2</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106322-002</td>
<td>SW846 9056</td>
<td>GEL</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00211</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td></td>
<td>106322-005</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>106322-005</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Methane</td>
<td>1.2</td>
<td>0.014</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td></td>
<td>106334-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Ethene</td>
<td>ND</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>0.1UJ</td>
<td>106334-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>4.29</td>
<td>0.085</td>
<td>0.25</td>
<td>10</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106322-003</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td>VOC</td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td></td>
<td>106322-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td></td>
<td>106322-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
</tbody>
</table>

*split sample.

Note: Header nomenclature is explained following Table III-7 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Table III-2
Field Water Quality Measurements' before September 2018 Baseline Groundwater Sampling

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Sample Date</th>
<th>Temperature (°C)</th>
<th>Specific Conductivity (µmhos/cm)</th>
<th>Oxidation-Reduction Potential (mV)</th>
<th>pH</th>
<th>Turbidity (NTU)</th>
<th>Dissolved Oxygen (% Sat)</th>
<th>Dissolved Oxygen (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-INJ1</td>
<td>26-Sep-2018</td>
<td>20.81</td>
<td>868.1</td>
<td>-167.1</td>
<td>7.20</td>
<td>1.71</td>
<td>7.58</td>
<td>0.62</td>
</tr>
<tr>
<td>TAV-MW6</td>
<td>25-Sep-2018</td>
<td>22.35</td>
<td>734.1</td>
<td>178.0</td>
<td>7.03</td>
<td>1.45</td>
<td>90.3</td>
<td>6.62</td>
</tr>
<tr>
<td>TAV-MW7</td>
<td>24-Sep-2018</td>
<td>21.30</td>
<td>656.4</td>
<td>62.6</td>
<td>7.95</td>
<td>1.77</td>
<td>2.86</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-7 in the "Footnotes for Technical Area-V Analytical Results Tables" summary.
Table III-3
Substrate Solution Components for Full-Scale Operation

<table>
<thead>
<tr>
<th>Substrate Solution Component</th>
<th>Function</th>
<th>Mixing Ratio (by weight)</th>
<th>Weight per 1,000 gal of Water</th>
<th>Actual Usage during Full-Scale Operation Mixing Ratio / Weight per 1,000 gal Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl lactate</td>
<td>Electron donor (substrate)</td>
<td>80.4%</td>
<td>5.64 lbs</td>
<td>73.3% / 6.23 lbs</td>
</tr>
<tr>
<td>Diammonium phosphate</td>
<td>Nutrient and pH buffer</td>
<td>9.0%</td>
<td>0.63 lbs</td>
<td>7.5% / 0.63 lbs</td>
</tr>
<tr>
<td>Accelerite® a</td>
<td>Nutrient</td>
<td>6.4%</td>
<td>0.45 lbs</td>
<td>4.6% / 0.39 lbs</td>
</tr>
<tr>
<td>Potassium Bicarbonate</td>
<td>Buffer and acid reducer</td>
<td>1.7%</td>
<td>0.11 lbs</td>
<td>8.8% / 0.75 lbs</td>
</tr>
<tr>
<td>Sodium Sulfite</td>
<td>Deoxygenation and reduction agent</td>
<td>2.5%</td>
<td>0.17 lbs</td>
<td>5.9% / 0.5 lbs</td>
</tr>
<tr>
<td>Primary Components per 1,000 gal of Potable Water</td>
<td></td>
<td>100%</td>
<td>7 lbs</td>
<td>100% / 8.5 lbs</td>
</tr>
</tbody>
</table>

| Sodium bromide | Inert tracer (as bromide) | Not applicable; adjusted per field condition | 0.2 lbs | 0.2 lbs |

Note:

* Accelerite® Bioremediation Nutrient is a product of JRW Bioremediation, LLC.

% = Percent.
gal = Gallon(s).
lbs = Pounds.
pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).
Table III-4
Analytical Results of November-December 2018 Groundwater Sampling at Wells TAV-MW6 and TAV-MW7

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Analyte</th>
<th>Result</th>
<th>MDL</th>
<th>PQL</th>
<th>MCL</th>
<th>Units</th>
<th>Lab Qual</th>
<th>Val Qual</th>
<th>Sample No.</th>
<th>Analytical Method</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-MW6, sampled on 20-Nov-2018</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity as CaCO$_3$</td>
<td>192</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106716-006</td>
<td>SM 2320B</td>
<td>GEL</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, bicarb as CaCO$_3$</td>
<td>192</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106716-006</td>
<td>SM 2320B</td>
<td>GEL</td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, carb as CaCO$_3$</td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>106716-006</td>
<td>SM 2320B</td>
<td>GEL</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Ammonia</td>
<td>ND</td>
<td>0.017</td>
<td>0.05</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>106716-002</td>
<td>EPA 350.1</td>
<td>GEL</td>
</tr>
<tr>
<td>Anions</td>
<td>Bromide</td>
<td>0.85</td>
<td>0.067</td>
<td>2</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106716-004</td>
<td>SW846 9056</td>
<td>GEL</td>
</tr>
<tr>
<td>Anions</td>
<td>Sulfate</td>
<td>45</td>
<td>0.665</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106716-004</td>
<td>SW846 9056</td>
<td>GEL</td>
</tr>
<tr>
<td>Microbial</td>
<td>Dehalococcoides</td>
<td>ND</td>
<td>3000</td>
<td>3000</td>
<td>NE</td>
<td>Enumeration/L</td>
<td>U</td>
<td></td>
<td>106720-001</td>
<td>Gene-Trac Dhc</td>
<td>SiREM</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00256</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td></td>
<td>106716-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>106716-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td>106716-007</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td>MEE</td>
<td>Methane</td>
<td>ND</td>
<td>0.099</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>0.5UJ</td>
<td>106719-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>MEE</td>
<td>Ethane</td>
<td>ND</td>
<td>0.009</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>0.1UJ</td>
<td>106719-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>MEE</td>
<td>Ethene</td>
<td>ND</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>0.1UJ</td>
<td>106719-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen-</td>
<td>7.89</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td></td>
<td></td>
<td>106716-005</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon, average</td>
<td>0.459</td>
<td>0.33</td>
<td>1</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td></td>
<td>106716-003</td>
<td>SW846 9060A</td>
<td>GEL</td>
</tr>
<tr>
<td>VOC</td>
<td>Trichloroethene</td>
<td>8.23</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td></td>
<td></td>
<td>106716-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>1.12</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td></td>
<td></td>
<td>106716-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-7 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Table III-4 (continued)

Analytical Results of November-December 2018 Groundwater Sampling at Wells TAV-MW6 and TAV-MW7

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Analyte</th>
<th>Result a</th>
<th>MDL b</th>
<th>PQL c</th>
<th>MCL d</th>
<th>Units</th>
<th>Lab Qual e</th>
<th>Val Qual f</th>
<th>Sample No.</th>
<th>Analytical Method g</th>
<th>Lab h</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-MW6, sampled on 18-Dec-2018</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity as CaCO$_3$</td>
<td>198</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106893-006</td>
<td>SM</td>
<td>2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, bicarb as CaCO$_3$</td>
<td>198</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106893-006</td>
<td>SM</td>
<td>2320B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Alkalinity</td>
<td>Alkalinity, carb as CaCO$_3$</td>
<td>ND</td>
<td>1.45</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106893-006</td>
<td>SM</td>
<td>2320B</td>
<td>GEL</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Ammonia</td>
<td>ND</td>
<td>0.017</td>
<td>0.05</td>
<td>NE</td>
<td>mg/L</td>
<td>JB</td>
<td>0.5U</td>
<td>106893-002</td>
<td>EPA 350.1</td>
<td>GEL</td>
</tr>
<tr>
<td>Anions</td>
<td>Bromide</td>
<td>0.925</td>
<td>0.067</td>
<td>0.2</td>
<td>NE</td>
<td>mg/L</td>
<td>106893-004</td>
<td>SW846</td>
<td>9056</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Anions</td>
<td>Sulfate</td>
<td>46.7</td>
<td>1.33</td>
<td>4</td>
<td>NE</td>
<td>mg/L</td>
<td>106893-004</td>
<td>SW846</td>
<td>9056</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>Microbial</td>
<td>Dehalococcoides</td>
<td>ND</td>
<td>3000</td>
<td>3000</td>
<td>NE</td>
<td>Enumeration/L</td>
<td>U</td>
<td></td>
<td>106897-00</td>
<td>Gene-Trac Dhc</td>
<td>SiREM</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00265</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106893-007</td>
<td>SW846</td>
<td>3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106893-007</td>
<td>SW846</td>
<td>3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106893-007</td>
<td>SW846</td>
<td>3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td>MEE</td>
<td>Methane</td>
<td>ND</td>
<td>0.099</td>
<td>0.5</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>0.5U</td>
<td>106896-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>MEE</td>
<td>Ethane</td>
<td>ND</td>
<td>0.009</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>0.1U</td>
<td>106896-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>MEE</td>
<td>Ethene</td>
<td>ND</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>U</td>
<td>0.1U</td>
<td>106896-001</td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>7.97</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>106893-005</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon, average</td>
<td>ND</td>
<td>0.33</td>
<td>1</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>1.0U</td>
<td>106893-003</td>
<td>SW846</td>
<td>9060A</td>
</tr>
<tr>
<td>VOC</td>
<td>Trichloroethene</td>
<td>6.49</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>106893-001</td>
<td>SW846</td>
<td>8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>0.84</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>J</td>
<td>106893-001</td>
<td>SW846</td>
<td>8260B</td>
<td>GEL</td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-7 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Table III-4 (continued)

Analytical Results of November-December 2018 Groundwater Sampling at Wells TAV-MW6 and TAV-MW7

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Analyte</th>
<th>Result</th>
<th>MDLb</th>
<th>PQLc</th>
<th>MCLd</th>
<th>Units</th>
<th>Lab Quale</th>
<th>Val Qualf</th>
<th>Sample No.</th>
<th>Analytical Methodg</th>
<th>Labh</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-MW7, sampled on 5-Nov-2018</td>
<td>Anions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bromide</td>
<td>0.249</td>
<td>0.067</td>
<td>0.2</td>
<td>NE</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td>SW846 9056</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>0.00319</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td></td>
<td></td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td></td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td></td>
<td></td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Ethene</td>
<td>0.14</td>
<td>0.005</td>
<td>0.1</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td></td>
<td></td>
<td>AM20GAX</td>
<td>PACE</td>
</tr>
<tr>
<td></td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>4.07</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Trichloroethene</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td></td>
<td></td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dichloroethene, cis-1,2-</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td></td>
<td></td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-7 in the "Footnotes for Technical Area-V Analytical Results Tables" summary.
Table III-5
Field Water Quality Measurements before November-December 2018 Groundwater Sampling at Wells TAV-MW-6 and TAV-MW-7

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Sample Date</th>
<th>Temperature (°C)</th>
<th>Specific Conductivity (μmhos/cm)</th>
<th>Oxidation-Reduction Potential (mV)</th>
<th>pH</th>
<th>Turbidity (NTU)</th>
<th>Dissolved Oxygen (% Sat)</th>
<th>Dissolved Oxygen (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-MW6</td>
<td>20-Nov-2018</td>
<td>19.44</td>
<td>591.0</td>
<td>29.9*</td>
<td>11.01*</td>
<td>1.49</td>
<td>90.6</td>
<td>7.71</td>
</tr>
<tr>
<td>TAV-MW6</td>
<td>18-Dec-2018</td>
<td>19.75</td>
<td>729.3</td>
<td>150.6</td>
<td>7.47</td>
<td>0.90</td>
<td>81.8</td>
<td>5.95</td>
</tr>
<tr>
<td>TAV-MW7</td>
<td>5-Nov-2018</td>
<td>20.26</td>
<td>631.3</td>
<td>149.6</td>
<td>7.39</td>
<td>3.25</td>
<td>3.01</td>
<td>0.22</td>
</tr>
</tbody>
</table>

*Suspect value due to Microsoft Surface laptop interference with the instrumentation sonde. The oxidation-reduction potential was 101.8 mV and pH was 7.47, consistent with historical values, after switching to a Dell laptop.

Note: Header nomenclature is explained following Table III-7 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Table III-6

Analytical Results of November 2018 Groundwater Sampling at Wells LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, and TAV-MW14

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Analyte</th>
<th>Resulta</th>
<th>MDLa</th>
<th>PQLc</th>
<th>MCl</th>
<th>Units</th>
<th>Lab Quald</th>
<th>Val Qualf</th>
<th>Sample No.</th>
<th>Analytical Methodg</th>
<th>Labh</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWDS-MW1 sampled on 19 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00412</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106662-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106662-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106662-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>11.9</td>
<td>0.17</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>106662-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Acetone</td>
<td>3.61</td>
<td>1.50</td>
<td>10</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td>106662-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>16.8</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>106662-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>3.47</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td>106662-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td>TAV-MW2 sampled on 6 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00301</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106665-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106665-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106665-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>4.78</td>
<td>0.085</td>
<td>0.250</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>106665-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Acetone</td>
<td>3.18</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>106665-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td>106665-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td>TAV-MW2 (duplicate) sampled on 6 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00327</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106666-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106666-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106666-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>4.71</td>
<td>0.085</td>
<td>0.250</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>106666-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Acetone</td>
<td>3.27</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>106666-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Chloroform</td>
<td>0.870</td>
<td>0.3</td>
<td>1</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td>106666-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>4.54</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>106666-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td>106666-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td>TAV-MW4 sampled on 8 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00316</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106670-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106670-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106670-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>4.67</td>
<td>0.0850</td>
<td>0.250</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>106670-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Acetone</td>
<td>1.60</td>
<td>1.50</td>
<td>10</td>
<td>NE</td>
<td>µg/L</td>
<td>J, N</td>
<td>106670-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Chloroform</td>
<td>0.870</td>
<td>0.3</td>
<td>1</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td>106670-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>4.54</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>106670-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>0.350</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td>106670-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td>TAV-MW8 sampled on 9 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00289</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106672-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106672-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106672-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>6.36</td>
<td>0.170</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>U</td>
<td>106672-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>4.80</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>U</td>
<td>106672-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Dichloroethene, cis-1,2-</td>
<td>0.480</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td>106672-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-7 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Table III-6 (continued)
Analytical Results of November 2018 Groundwater Sampling
at Wells LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, and TAV-MW14

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Analyte</th>
<th>Result</th>
<th>MDLa</th>
<th>PQLc</th>
<th>MCLd</th>
<th>Units</th>
<th>Lab Quali*</th>
<th>Val Qualf</th>
<th>Sample No.</th>
<th>Analytical Methodg</th>
<th>Labh</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAV-MW10 sampled on 26 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00297</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106685-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>0.0442</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>J</td>
<td>106685-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106685-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>11.4</td>
<td>0.170</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>106685-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Acetone</td>
<td>ND</td>
<td>1.50</td>
<td>10</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td>106685-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Trichloroethene</td>
<td>9.72</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>106685-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloroethene, cis-1,2-</td>
<td>1.59</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>106685-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAV-MW11 sampled on 7 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00287</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106688-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106688-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106688-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>6.67</td>
<td>0.170</td>
<td>0.500</td>
<td>10</td>
<td>mg/L</td>
<td>106688-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Acetone</td>
<td>ND</td>
<td>2.97</td>
<td>150</td>
<td>10</td>
<td>µg/L</td>
<td>J</td>
<td>106688-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Trichloroethene</td>
<td>3.33</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>106688-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloroethene, cis-1,2-</td>
<td>0.340</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>J</td>
<td>106688-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>TAV-MW12 sampled on 13 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.0025</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106674-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106674-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106674-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>6.58</td>
<td>0.170</td>
<td>0.500</td>
<td>10</td>
<td>mg/L</td>
<td>106674-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Acetone</td>
<td>2.97</td>
<td>150</td>
<td>10</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td>106674-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Trichloroethene</td>
<td>3.87</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>106674-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloroethene, cis-1,2-</td>
<td>ND</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>U</td>
<td>106674-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>TAV-MW14 sampled on 14 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.0027</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106678-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106678-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106678-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>7.91</td>
<td>0.170</td>
<td>0.500</td>
<td>10</td>
<td>mg/L</td>
<td>106678-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Trichloroethene</td>
<td>4.59</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>106678-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloroethene, cis-1,2-</td>
<td>0.420</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>J</td>
<td>106678-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td>TAV-MW14 (duplicate) sampled on 14 Nov 2018</td>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>0.00279</td>
<td>0.002</td>
<td>0.005</td>
<td>0.010</td>
<td>mg/L</td>
<td>J</td>
<td>106679-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>ND</td>
<td>0.033</td>
<td>0.1</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106679-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manganese</td>
<td>ND</td>
<td>0.001</td>
<td>0.005</td>
<td>NE</td>
<td>mg/L</td>
<td>U</td>
<td>106679-003</td>
<td>SW846 3005/6020</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPN</td>
<td>Nitrate plus Nitrite, as nitrogen</td>
<td>7.76</td>
<td>0.170</td>
<td>0.5</td>
<td>10</td>
<td>mg/L</td>
<td>106679-002</td>
<td>EPA 353.2</td>
<td>GEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>Acetone</td>
<td>3.24</td>
<td>150</td>
<td>10</td>
<td>NE</td>
<td>µg/L</td>
<td>J</td>
<td>106679-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
</tr>
<tr>
<td></td>
<td>Trichloroethene</td>
<td>4.57</td>
<td>0.3</td>
<td>1</td>
<td>5</td>
<td>µg/L</td>
<td>106679-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dichloroethene, cis-1,2-</td>
<td>0.410</td>
<td>0.3</td>
<td>1</td>
<td>70</td>
<td>µg/L</td>
<td>J</td>
<td>106679-001</td>
<td>SW846 8260B</td>
<td>GEL</td>
<td></td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-7 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Table III-7
Field Water Quality Measurements before November 2018 Groundwater Sampling at Wells LWDS-MW1, TAV-MW2, TAV-MW4, TAV-MW8, TAV-MW10, TAV-MW11, TAV-MW12, and TAV-MW14

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Sample Date</th>
<th>Temperature (°C)</th>
<th>Specific Conductivity (µmhos/cm)</th>
<th>Oxidation Reduction Potential (mV)</th>
<th>pH</th>
<th>Turbidity (NTU)</th>
<th>Dissolved Oxygen (% Sat)</th>
<th>Dissolved Oxygen (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWDS-MW1</td>
<td>19-Nov-18</td>
<td>15.79</td>
<td>666.7</td>
<td>142.5</td>
<td>7.20</td>
<td>1.07</td>
<td>97.1</td>
<td>8.72</td>
</tr>
<tr>
<td>TAV-MW2</td>
<td>06-Nov-18</td>
<td>19.06</td>
<td>718.6</td>
<td>175.1</td>
<td>7.32</td>
<td>2.29</td>
<td>77.9</td>
<td>6.20</td>
</tr>
<tr>
<td>TAV-MW4</td>
<td>08-Nov-18</td>
<td>20.11</td>
<td>553.0</td>
<td>155.6</td>
<td>7.53</td>
<td>0.30</td>
<td>88.9</td>
<td>7.02</td>
</tr>
<tr>
<td>TAV-MW8</td>
<td>09-Nov-18</td>
<td>18.68</td>
<td>634.5</td>
<td>122.7</td>
<td>7.47</td>
<td>1.74</td>
<td>83.9</td>
<td>6.86</td>
</tr>
<tr>
<td>TAV-MW10</td>
<td>26-Nov-18</td>
<td>19.06</td>
<td>651.2</td>
<td>84.1</td>
<td>7.59</td>
<td>0.47</td>
<td>88.9</td>
<td>7.48</td>
</tr>
<tr>
<td>TAV-MW11</td>
<td>07-Nov-18</td>
<td>20.78</td>
<td>630.0</td>
<td>105.8</td>
<td>7.51</td>
<td>0.54</td>
<td>89.3</td>
<td>6.97</td>
</tr>
<tr>
<td>TAV-MW12</td>
<td>13-Nov-18</td>
<td>14.77</td>
<td>575.3</td>
<td>210.1</td>
<td>7.61</td>
<td>1.02</td>
<td>82.4</td>
<td>7.34</td>
</tr>
<tr>
<td>TAV-MW14</td>
<td>14-Nov-18</td>
<td>19.71</td>
<td>698.7</td>
<td>88.4</td>
<td>7.52</td>
<td>2.17</td>
<td>88.1</td>
<td>7.15</td>
</tr>
</tbody>
</table>

Note: Header nomenclature is explained following Table III-7 in the “Footnotes for Technical Area-V Analytical Results Tables” summary.
Footnotes for Technical Area-V Analytical Results Tables

% = Percent.
CaCO3 = Calcium carbonate.
EPA = U.S. Environmental Protection Agency.
ID = Identifier.
INJ = Injection (acronym used for well identification only).
LWDS = Liquid waste disposal system (acronym used for well identification only).
μg/L = Micrograms per liter.
mg/L = Milligrams per liter.
MEE = Methane, ethane, ethene.
MW = Monitoring well (acronym used for well identification only).
No. = Number.
NPN = Nitrate plus nitrite, as nitrogen.
TAV = Technical Area-V (acronym used for well identification only).
TOC = Total organic carbon.
VOC = Volatile organic compound.

Result
Detected VOCs are presented in the tables.

Bold = Value exceed the established MCL.
ND = Not detected (at method detection limit).

MDL
MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99% confidence that the analyte is greater than zero, analyte is matrix specific.

PQL
PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by that indicated method under routine laboratory operating conditions.

MCL

NE = Not established.

Lab Qualifier
If cell is blank, then all quality control samples met acceptance criteria with respect to submitted samples.

* = Recovery of relative percent difference (RPD) not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD’s are not applicable where the concentration falls below the effective PQL.
B = The analyte was found in the blank above the effective MDL.
J = Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL.
N = Results associated with a spike analysis that was outside control limits.
U = Analyte is absent or below the method detection limit.
Footnotes for Technical Area-V Analytical Results Tables (Continued)

1Validation Qualifier
If cell is blank, then all quality control samples met acceptance criteria with respect to submitted samples.
B = The analyte was found in the blank above the effective MDL.
J = The associated value is an estimated quantity.
J- = Estimated value with a suspected negative bias.
U = The analyte was analyzed for but was not detected. The associated numerical value is the sample quantitation limit.
UJ = The analyte was analyzed for but was not detected. The associated value is an estimate and may be inaccurate or imprecise.

2Analytical Method
AM20GAX = Proprietary method of Pace Analytical Services, LLC.
Gene-Trac Dhc = Proprietary method of SiREM.

3Lab
GEL = GEL Laboratories LLC, 2040 Savage Rd, Charleston, SC 29407.
SiREM = SiREM, 130 Stone Rd. W, Guelph, Ontario, N1G 3Z2, Canada.

4Field Water Quality Measurements
Field measurements collected prior to sampling.
°C = Degrees Celsius.
% Sat = Percent saturation.
Gal = Gallon.
μmhos/cm = Micromhos per centimeter.
mg/L = Milligrams per liter.
mV = Millivolts.
NTU = Nephelometric turbidity units.
pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).
August 13, 2018

Jeffrey P. Harrell
Manager
U.S. Department of Energy
NNSA/Sandia Field Office
P.O. Box 5400, MS 0184
Albuquerque, NM 87185-5400

Richard O. Griffith
Senior Manager
Sandia National Laboratories
P.O. Box 5800, MS 0726
Albuquerque, NM 87185-5400

RE: APPROVAL
TECHNICAL AREA-V (TA-V) TREATABILITY STUDY NOTIFICATION OF
FULL-SCALE OPERATION AT WELL TAV-INJ1
SANDIA NATIONAL LABORATORY
EPA ID#NM5890110518
HWB-SNL-15-020

Dear Mr. Harrell and Mr. Griffith:

The New Mexico Environment Department (NMED) received the letter titled Technical Area-V (TA-V) Treatability Study Notification of Full-Scale Operation at Well TAV-INJ1, dated July 20, 2018, submitted by the U.S. Department of Energy on behalf of itself and NTSSS (collectively, the Permittees), on July 26, 2018. NMED has reviewed the letter and hereby issues this Approval of the proposed modifications to the Work Plan and concurs with the decision to proceed with full-scale operation at well TAV-INJ1 of the Treatability Study/Interim Measure at TA-V.
If you have any questions regarding this matter, please contact Naomi Davidson of my staff at (505) 222-9504.

Sincerely,

John E. Kieling
Chief
Hazardous Waste Bureau

cc: D. Cobrain, NMED HWB
 B. Wear, NMED HWB
 N. Davidson, NMED HWB
 L. King, EPA Region 6 (6PD-N)
 J. Todd, DOE/NNSA/SFO, MS-0184
 D. Rast, DOE/NNSA/SFO, MS-0184
 J. Cochran, SNL/NM, MS-0719
 E. Boatman, SNL/NM, MS-0718

File: SNL 2018 and Reading, SNL-15-020
Mr. John E. Kieling
Chief
Hazardous Waste Bureau
New Mexico Environment Department
2905 Rodeo Park Drive East, Bldg. 1
Santa Fe, New Mexico 87505

Subject: Technical Area-V (TA-V) Treatability Study Notification of Full-Scale Operation at Well TAV-INJ1

Dear Mr. Kieling:

The Department of Energy/National Nuclear Security Administration/Sandia Field Office (DOE/NNSA/SFO) and its management and operating contractor, National Technology and Engineering Solutions of Sandia, LLC (NTESS) intend to proceed with full-scale operation at well TAV-INJ1 as part of the Treatability Study of in-situ bioremediation at TA-V Groundwater Area of Concern, Sandia National Laboratories/New Mexico (SNL/NM). Full-scale operation will not commence until at least 60 days after this notification is received at New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB), in accordance with the 2016 Revised Treatability Study Work Plan.

Associated modifications to the full-scale operation based on the experience and monitoring results of the pilot test at well TAV-INJ1 were discussed among personnel from DOE/NNSA/SFO, SNL/NM, and NMED HWB in a meeting held on June 20, 2018. The modifications and the rationale for the modifications to conduct full-scale operation at well TAV-INJ1 are provided in the enclosure.

If you have questions contact David Rast of our staff at (505) 845-5349.

Sincerely,

[Signature]
Jeffrey P. Harrell
Manager

Enclosure

cc: See Page 2
cc w/enclosure:
Naomi Davidson
NMED-HWB
121 Tijeras Avenue, NE,
Albuquerque, New Mexico 87102-3400

Dave Cobrain
NMED-HWB
2905 Rodeo Park Drive East, Bldg. 1
Santa Fe, New Mexico 87505

Laurie King
EPA, Region 6
1445 Ross Ave., Ste. 1200
Dallas, Texas 75202

Susan Lucas-Kamat
NMED-OB, MS-1396

Zimmerman Library, UNM
MSC05 3020
1 University of New Mexico
Albuquerque, New Mexico 87101-0001

cc w/o enclosure:
Amy Blumberg, SNL/NM
Paul Shoemaker, SNL/NM
Christi Leigh, SNL/NM
John Cochran, SNL/NM
Jun Li, SNL/NM
Anna Gallegos, SNL/NM
Howard Huie, DOE/EM-31
Douglas Tonkay, DOE/EM-31
Thomas Longo, NNSA/NA-533
Jessica Arcidiacono, NNSA/NA-533
Cynthia Wimberly, SFO/OOM
James Todd, SFO/ENG
Susan Lacy, SFO/ENG
Steven Black, SFO/ENG
David Rast, SFO/ENG
NNSA-2018-001960
 CERTIFICATION STATEMENT

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations.

Signature

Paul E. Shoemaker
Defense Waste Management Programs
Sandia National Laboratories/New Mexico
Albuquerque, New Mexico 87185
Operator

July 10, 2018

Signature

Jeffrey P. Harrell, Manager
U.S. Department of Energy
National Nuclear Security Administration
Sandia Field Office
Owner

7/23/2018
ENCLOSURE

The Department of Energy/National Nuclear Security Administration, Sandia Field Office and Sandia National Laboratories, New Mexico (SNL/NM) personnel (i.e., the project team) plan to implement the following modifications for the full-scale operation of the in-situ bioremediation (ISB) Treatability Study at the Technical Area-V (TA-V) Groundwater Area of Concern. The modifications were based on the experience and monitoring results of the pilot test conducted at well TAV-INJ1. The original proposal in the Revised Treatability Study Work Plan (TSWP) (SNL/NM March 2016; NMED May 2016) is repeated verbatim, followed by the rationale for modification and a summary statement of the modification to be implemented in full-scale operation at well TAV-INJ1.

#1: Method for Deoxygenation in Aboveground Tanks

In Section 4.2.2, Page 4-9, the Revised TSWP states, “One tank will be inoculated with a small amount of soil core/cuttings from the injection well screened interval and have KB-1® Primer added. The purposes of adding soil core/cuttings to the substrate solution are to (1) inoculate the solution with native microorganisms, (2) create a diverse microbial community that will more likely work synergistically with the bioaugmentation culture, and (3) reduce the lag time for initiating biostimulation associated with utilization of the substrate in the subsurface.”

Rationale for Modification: Two injections of the substrate solution were conducted during the pilot test. The soil core/cuttings were not added to the substrate solution during the first injection, but were added during the second injection. The pilot test results showed that KB-1® Primer itself could produce favorable conditions – low dissolved oxygen (DO) and negative oxidation-reduction potential (ORP) – for safely injecting KB-1® Dechlorinator. KB-1® Dechlorinator are the dechlorinating bacteria that require anaerobic environment to survive.

Based on the experience gained during the pilot test, it is not necessary to rely on growing the microbial community in the aboveground tanks to produce low DO and negative ORP inside the tanks. In fact, the KB-1® Primer alone can sufficiently produce these conditions. Not relying on microbial growth in the aboveground tanks eliminates the biofouling concern for the water stored in the tanks.

During full-scale injection, we will bioaugment the aquifer with KB-1® Dechlorinator throughout the six-month injection; therefore, the three purposes stated above become unnecessary because of the long-term bioaugmentation in the aquifer.

Full-Scale Operation Modification #1: Use substrate components (i.e., chemicals) only to deoxygenate potable water in aboveground tanks.

#2: Number of Aboveground Deoxygenation Tanks for Full-Scale Operation

In Section 4.2.2, Pages 4-9 and 4-10, the Revised TSWP states “A similar process will be applied to the full-scale injections. Two pairs of tanks will be used for full-scale injection (see section 4.3.2). Both pairs of tanks will be filled halfway with potable water, inoculated, and have KB-1® Primer added. After turning anaerobic, the tanks will be filled with potable water and
mixed with proportional amounts of the substrate solution components. As with the push/pull test, deoxygenation of the entire tank volume is expected within one to two days. Once anaerobic conditions are restored, half of the tank contents (from each pair) will be injected. This pair of tanks will then be refilled with potable water and mixed with proportional amounts of the substrate solution components. Provided that approximately half a tank of the deoxygenated solution remains in each tank, this accelerated deoxygenation schedule is expected to continue without further use of KB-1® Primer during the remainder of the injection period. By alternating two pair of tanks, injection would not be interrupted while waiting for the substrate solution to turn anaerobic."

Rationale for Modification: Using substrate components (i.e., chemicals) to achieve low DO and negative ORP of the substrate solution for safely injecting KB-1® Dechlorinator, the injection operation can be simplified by alternating two deoxygenation tanks. Based on the experience from the pilot test, the chemicals can lower the DO and ORP to desired levels within a couple of hours. It takes about five and a half hours to inject approximately 5,000 gallons of substrate solution. Therefore, theoretically we can prepare a tank of substrate solution and empty it within a single day. In practice, we will prepare one tank and empty its content the next day. We will alternate using the two existing tanks used in the pilot test. With this modification, we do not need to install two more tanks as proposed in the Revised TSWP.

Full-Scale Operation Modification #2: Use two existing 5,000-gallon aboveground tanks for full-scale injection.

#3: Substitute for KB-1® Primer

In Section 4.2.2, Page 4-8, the Revised TSWP states “KB-1® Primer is a proprietary mixture of amino acids, potassium bicarbonate, and sodium sulfite that is used to accelerate deoxygenation of water inorganically (sodium sulfite) while still providing an electron donor (amino acids) and buffer (potassium bicarbonate). It can therefore be used as a substitute for ethyl lactate, diammonium phosphate, and yeast extract, although it is significantly more costly and therefore, not suitable for the large volumes planned under full scale injection."

Rationale for Modification: With the goal of using chemical method for deoxygenation, the project team conducted bench-scale, 5-gallon bucket tests to evaluate the functionality of the key components of KB-1® Primer. The results of the bucket tests showed that by using the two key ingredients, potassium bicarbonate and sodium sulfite, combined with ethyl lactate and diammonium phosphate, we could achieve the same desired conditions as using the KB-1® Primer alone. The functionality of ethyl lactate as the electron donor and diammonium phosphate as the nutrient can effectively substitute for the amino acids in the KB-1® Primer.

Attachment A includes the Safety Data Sheets (SDS) for potassium bicarbonate and sodium sulfite.

Full-Scale Operation Modification #3: Eliminate KB-1® Primer. Use potassium bicarbonate and sodium sulfite. A Revised Table 4-1 is provided below for the substrate solution components in full-scale operation.
Minor adjustments to the quantities of the substrate components could be necessary during full-scale operation depending on the in-situ water quality measurements of the aboveground tanks content and the groundwater in well TAV-INJ1.

Revised Table 4-1
Substrate Solution Components

<table>
<thead>
<tr>
<th>Substrate Solution Component</th>
<th>Function</th>
<th>Mixing Ratio (by weight)</th>
<th>Weight per 1,000 gal Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl lactate</td>
<td>Electron donor (substrate)</td>
<td>80.4%</td>
<td>5.64 lbs</td>
</tr>
<tr>
<td>Diammonium phosphate</td>
<td>Nutrient and pH buffer</td>
<td>9.0%</td>
<td>0.63 lbs</td>
</tr>
<tr>
<td>Accelerite®® a</td>
<td>Nutrient</td>
<td>6.4%</td>
<td>0.45 lbs</td>
</tr>
<tr>
<td>Potassium Bicarbonate</td>
<td>Buffer and acid reducer</td>
<td>1.7%</td>
<td>0.11 lbs</td>
</tr>
<tr>
<td>Sodium Sulfite</td>
<td>Deoxygenation and reduction agent</td>
<td>2.5%</td>
<td>0.17 lbs</td>
</tr>
<tr>
<td>Primary Components per 1,000 gal Potable Water</td>
<td></td>
<td>100%</td>
<td>7 lbs</td>
</tr>
<tr>
<td>Additional Component Mixed with Substrate Solution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium bromide</td>
<td>Inert tracer (as bromide)</td>
<td>Not applicable; adjusted per field condition</td>
<td>0.2 lbs</td>
</tr>
</tbody>
</table>

Accelerite® Bioremediation Nutrient is a product of JRW Bioremediation, LLC.

% = Percent.
gal = Gallon(s).
lbs = Pounds.

#4: Substitute for Yeast Extract

In Section 4.2.1, Page 4-7, the Revised TSWP states “Diammonium phosphate and yeast extract will be added as nutrients to support microbial growth.”

Rationale for Modification: Accelerite® Bioremediation Nutrient is a product of JRW Bioremediation, LLC (JRW). The composition of Accelerite® is a proprietary nutrient blend of yeast metabolites including B-vitamins and other soluble nutrients. Accelerite® was tested in the bench-scale bucket tests and proved to function the same as the yeast extract obtained from Sigma-Aldrich. There are two advantages of using Accelerite®. First, it is significantly more concentrated, requiring less material to achieve the desired effect. The overall cost for Accelerite® is less than the yeast extract because less material is required. Secondly, Accelerite® is received in liquid form and is much easier to handle in the field than the powder-form yeast extract. Therefore, Accelerite® Bioremediation Nutrient from JRW is chosen to substitute for yeast extract in the full-scale operation.

Attachment A includes the SDS for Accelerite® is Bioremediation Nutrient.

Full-Scale Operation Modification #4: Use Accelerite® Bioremediation Nutrient in place of yeast extract. The Revised Table 4-1 provides the quantity needed for Accelerite® in full-scale operation.
#5: Sampling for Laboratory Analysis of Tank Content

In Section 5.4.2, Pages 5-17 and 5-18 of the Revised TSWP do not state that samples of the injected substrate solution during full-scale injections will be collected for laboratory analysis. However, sampling is implied as we did during the pilot test injections, in accordance with Section 5.4.1, Page 5-15, which states, “A sample of the injected substrate solution will be collected as it is being injected and analyzed for parameters listed in Table 5-4 and measured for field parameters specified in section 5.3.”

Rationale for Modification: Samples of the substrate solution in aboveground tanks were collected for laboratory analysis during the pilot test injections. The objective of sampling the tank content was to confirm the ingredients of the substrate solution. However, significant matrix interferences were reported by the analytical laboratory, which resulted in high dilutions for most samples. While preparing the substrate solution, the daily dose, masses or volumes of the substrate components as well as the KB-1® Dechlorinator could be accurately measured before mixing. The volume of the potable water could be accurately measured by the flow meter connected to the fire hydrant. These records provided sufficient information on what was being injected. The laboratory analysis of the tank content did not add any value because the process knowledge of the injectate was sufficient. Therefore, laboratory analysis of the substrate solution is not necessary. In addition, an in-situ water quality sonde is used to monitor the turbidity, specific conductance, pH, ORP, DO, temperature, and pressure in each tank.

Full-Scale Operation Modification #5: No sampling of the aboveground tank content.

#6: Groundwater Sampling at Well TAV-INJ1 during Injection

In Section 5.2.2, Page 5-18, the Revised TSWP states, “During injection, DO, ORP, and pH will be monitored in well TAV-INJ1 using downhole electronic probes and a data logger. Water levels will also be frequently monitored immediately prior and throughout each workday during injections. Additionally, wells TAV-INJ1, TAV-MW6, and TAV-MW7 will be monitored monthly during injection for the analyses (Table 5-4) and the field parameters listed in section 5.3.”

Rationale for Modification: During the performance monitoring of the pilot test, it was apparent that we were dominantly sampling the substrate solution that was injected at well TAV-INJ1 instead of the native groundwater. Strong matrix interferences were reported by the analytical laboratory due to the various substrate ingredients. Because we know exactly how we prepare the substrate solution in aboveground tanks, it is not necessary to collect groundwater samples from the injection well during the six-month injection period.

However, we will collect groundwater samples from well TAV-MW6 during injection as planned in the Revised TSWP. In addition, in-situ water quality sondes will be installed in wells TAV-INJ1 and TAV-MW6 during injection. Turbidity, specific conductance, pH, ORP, DO, temperature, and pressure (correlates to water level) will be logged continuously at a frequency set by the project team.
Full-Scale Operation Modification #6: No groundwater sampling at injection well TAV-INJ1 during the six-month injection. Groundwater sampling at well TAV-INJ1 will start one month after the completion of full-scale injections, as proposed for the post-injection monitoring in the Revised TSWP.

#7: ISB Performance Monitoring at Well TAV-MW7

In Section 5.2.2, Page 5-17 (top of page), the Revised TSWP states “Did results from deeper well TAV-MW7 support the conclusion that further injections will not adversely affect deeper groundwater?”

Increases in nitrate or bromide concentrations and detections of TCE or associated daughter products in well TAV-MW7 would indicate further injection could drive contamination deeper.

Rationale for Modification: During the pilot test injections, an in-situ water quality sonde was installed in each of the three wells (TAV-INJ1, TAV-MW6, and TAV-MW7). The sonde has sensors for turbidity, specific conductance, pH, ORP, DO, temperature, and pressure. The pressure reading correlates to the height of the water column above the sonde. These seven parameters were logged continuously at a pre-specified interval (e.g., every minute). When injections occurred in well TAV-INJ1 (Figure 1a), we observed instantaneous response in well TAV-MW6 (Figure 1b). However, no response was observed in well TAV-MW7 (Figure 1c). These results indicate that wells TAV-INJ1 and TAV-MW6, both screened across the groundwater table, are not hydrogeologically connected with well TAV-MW7, which is screened 90 feet deeper.

The results from the four-month performance monitoring after the pilot test injections also show no indication of any injected ingredient in well TAV-MW7, even though well TAV-MW7 is laterally closer to well TAV-INJ1 than well TAV-MW6. The monitoring results of well TAV-MW7 have been similar to its baseline sampling results in the October – December 2017 Discharge Permit DP-1845 Quarterly Report submitted to the NMED GWQB. A copy of this report was also provided to the NMED HWB.

Well TAV-MW7 would not be useful for monitoring the ISB treatment zone surrounding wells TAV-INJ1 and TAV-MW6. Therefore, we propose to revert it back to the TA-V groundwater monitoring network, which is administered by the SNL Long-Term Stewardship (LTS) group. Under the LTS monitoring plan, well TAV-MW7 is sampled semiannually for nitrate plus nitrite (NPN), volatile organic compounds, and dissolved metals (arsenic, iron, and manganese).

Full-Scale Operation Modification #7: Revert well TAV-MW7 back to the LTS sampling plan with the following additions:

- Increase the sampling frequency from semiannually to quarterly.
- Include bromide in the current analysis suite.
- Include ethene in the current analysis suite, per requirement of the Discharge Permit DP-1845.
- Install an in-situ water quality sonde in well TAV-MW7 in full-scale operation.
Figure 1a
Pressure and Water Column Height in well TAV-INJ1 during Injections

Figure 1b
Pressure and Water Column Height in well TAV-MW6 in Response to Injections at well TAV-INJ1
In the unlikely event that the sonde readings or the analytical results from well TAV-MW7 show any variation from the baseline, it will be reinstated into the ISB performance monitoring campaign as soon as possible.

#8: Analytical Parameters for Groundwater Samples

In Section 5.3, Page 5-11, Table 5-4, the Revised TSWP provides the analytical parameters for groundwater samples to be collected during the Treatability Study.

Rationale for Modification: Table 5-4 is a comprehensive list that includes all potentially useful parameters identified in the planning stage. Based on the results from the pilot test performance monitoring, nine analytes will be eliminated for full-scale operation as explained below.

- Chloride and fluoride – These analytes are not indicative of the performance of the ISB; therefore, are not useful to monitor.

- Nitrite – Baseline samples were collected from injection well TAV-INJ1 and the two nearby monitoring wells TAV-MW6 and TAV-MW7 before the pilot test. Nitrite was either detected near the Practical Quantification Limit or was not detected in the baseline samples (see Table B-2 of the October – December 2017 DP-1845 Quarterly Report). During pilot test performance monitoring, nitrite was not...
detected in any of the groundwater samples from wells TAV-INJ1, TAV-MW6, and TAV-MW7 (see Tables B-1 and B-4 of the October – December 2017 DP-1845 Quarterly Report).

Nitrite is highly reactive and is an intermediate compound formed during nitrification and denitrification. It can be oxidized to nitrate or reduced to ammonium in an aquifer. Results of the baseline sampling and the performance monitoring after pilot test injections (which generated reducing conditions in the aquifer) indicate that nitrite apparently does not exist at detectable concentrations during ISB at TA-V. Based on this understanding, nitrite will be eliminated from the analyte list in full-scale operation. Analyses for ammonia and NPN will remain.

- Calcium, magnesium, potassium, and sodium – These analytes are not indicative of the performance of the ISB; therefore, are not useful to monitor.

- Orthophosphate as P – Diammonium phosphate (DAP) is an ingredient of the substrate solution. It acts as a pH buffer and provides phosphorus to support microbial cell generation. Figure 2 presents the orthophosphate concentrations in well TAV-INJ1 during the pilot test performance monitoring. It shows that phosphorous was rapidly utilized by microbes. Figure 2 also presents the concentrations of Total Organic Carbon (TOC), which is the main source for microbial growth. Figure 2 shows the more gradual consumption of TOC compared to the exponential utilization of orthophosphate. It is expected that phosphorous will be completely consumed prior to the depletion of TOC. Therefore, TOC is a more robust and reliable indicator for microbial respiration and growth in the treatment zone. Based on this understanding, orthophosphate will be eliminated from the analyte list in full-scale operation. Analysis for TOC will remain.

Figure 2
Orthophosphate and TOC Concentrations at TAV-INJ1 following Pilot Test Injections
- Sulfide – Similar to nitrite, sulfides generated during ISB are intermediate compounds and are not expected to persist in a dissolved state. Reactive sulfide was not detected in any of the groundwater samples from wells TAV-INJ1, TAV-MW6, and TAV-MW7 during the pilot test performance monitoring. Therefore, sampling for sulfides in the groundwater from the treatment zone is not warranted for the full-scale operation.

However, due to the potential for hydrogen sulfide gas to accumulate in the well casing of the injection well, a handheld hydrogen sulfide gas meter will be used to monitor the hydrogen sulfide gas levels during the full-scale injections. The data may be useful to evaluate ISB performance and to address any worker safety concerns for conducting groundwater sampling.

Full-Scale Operation Modification #8: Eliminate unnecessary analytical parameters when wells TAV-INJ1 and TAV-MW6 are sampled. The Revised Table 5-4 is provided below for the analytical parameters for full-scale operation.

Revised Table 5-4
Analytical Parameters for Groundwater Samples

<table>
<thead>
<tr>
<th>Analytical Group/Analyte in Table 5-4 of the Revised TSWP</th>
<th>Analyte in Table 5-4 of the Revised TSWP</th>
<th>Revised Analyte List for Full-Scale Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity (total, bicarbonate, and carbonate)</td>
<td>Alkalinity</td>
<td>Yes</td>
</tr>
<tr>
<td>Ammonia (as Nitrogen)</td>
<td>Ammonia</td>
<td>Yes</td>
</tr>
<tr>
<td>Anions</td>
<td>Bromide</td>
<td>Yes</td>
</tr>
<tr>
<td>Anions</td>
<td>Chloride</td>
<td>No</td>
</tr>
<tr>
<td>Anions</td>
<td>Fluoride</td>
<td>No</td>
</tr>
<tr>
<td>Anions</td>
<td>Nitrite</td>
<td>No</td>
</tr>
<tr>
<td>Anions</td>
<td>Sulfate</td>
<td>Yes</td>
</tr>
<tr>
<td>Dehalococcoides (Dhc) and, if Dhc is present, vinyl chloride reductase (vcrA).</td>
<td>Dhc and vcrA</td>
<td>Yes</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Arsenic</td>
<td>Yes</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Calcium</td>
<td>No</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Iron</td>
<td>Yes</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Magnesium</td>
<td>No</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Manganese</td>
<td>Yes</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Potassium</td>
<td>No</td>
</tr>
<tr>
<td>Dissolved Metals</td>
<td>Sodium</td>
<td>No</td>
</tr>
<tr>
<td>Methane/Ethane/Ethene (MEE)</td>
<td>MEE</td>
<td>Yes</td>
</tr>
<tr>
<td>Nitrate plus Nitrile (NPN)</td>
<td>NPN</td>
<td>Yes</td>
</tr>
<tr>
<td>Orthophosphate (as P)</td>
<td>Orthophosphate (as P)</td>
<td>No</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>TOC</td>
<td>Yes</td>
</tr>
<tr>
<td>Sulfide</td>
<td>Sulfide</td>
<td>No</td>
</tr>
<tr>
<td>Volatile Organic Compounds (VOCs)</td>
<td>VOCs</td>
<td>Yes</td>
</tr>
</tbody>
</table>
References

Sandia National Laboratories, New Mexico (SNL/NM), March 2016. Revised Treatability Study Work Plan for In-Situ Bioremediation at the Technical Area-V Groundwater Area of Concern, Sandia National Laboratories, Albuquerque, New Mexico.
ATTACHMENT A
Safety Data Sheets

Potassium Bicarbonate (KHCO₃)
Sodium Sulfite (NaSO₃)
Accelerite® Bioremediation Nutrient
1. PRODUCT AND COMPANY IDENTIFICATION

1.1 Product identifiers

Product name: Potassium bicarbonate

Product Number: 237205
Brand: Sigma-Aldrich

CAS-No.: 298-14-6

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses: Laboratory chemicals, Synthesis of substances

1.3 Details of the supplier of the safety data sheet

Company: Sigma-Aldrich
3050 Spruce Street
SAINT LOUIS MO 63103
USA

Telephone: +1 800-325-5832
Fax: +1 800-325-5052

1.4 Emergency telephone number

Emergency Phone #: +1-703-527-3887 (CHEMTREC)

2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

Not a hazardous substance or mixture.

2.2 GHS Label elements, including precautionary statements

Not a hazardous substance or mixture.

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

Synonyms: Potassium hydrogen carbonate

Formula: CHKO₃
Molecular weight: 100.12 g/mol
CAS-No.: 298-14-6
EC-No.: 206-059-0

No components need to be disclosed according to the applicable regulations.
4. FIRST AID MEASURES

4.1 Description of first aid measures

If inhaled
If breathed in, move person into fresh air. If not breathing, give artificial respiration.

In case of skin contact
Wash off with soap and plenty of water.

In case of eye contact
Flush eyes with water as a precaution.

If swallowed
Never give anything by mouth to an unconscious person. Rinse mouth with water.

4.2 Most important symptoms and effects, both acute and delayed
The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed
No data available

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

5.2 Special hazards arising from the substance or mixture
No data available

5.3 Advice for firefighters
Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further information
No data available

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures
Avoid dust formation. Avoid breathing vapours, mist or gas.
For personal protection see section 8.

6.2 Environmental precautions
No special environmental precautions required.

6.3 Methods and materials for containment and cleaning up
Sweep up and shovel. Keep in suitable, closed containers for disposal.

6.4 Reference to other sections
For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling
Further processing of solid materials may result in the formation of combustible dusts. The potential for combustible dust formation should be taken into consideration before additional processing occurs.
Provide appropriate exhaust ventilation at places where dust is formed.
For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities
Keep container tightly closed in a dry and well-ventilated place.

7.3 Specific end use(s)
Apart from the uses mentioned in section 1.2 no other specific uses are stipulated
8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters
Contains no substances with occupational exposure limit values.

8.2 Exposure controls

Appropriate engineering controls
General industrial hygiene practice.

Personal protective equipment

Eye/face protection
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection
Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatri® (KCL 740 / Aldrich Z677272, Size M)

Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested:Dermatri® (KCL 740 / Aldrich Z677272, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374
If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection
Choose body protection in relation to its type, to the concentration and amount of dangerous substances, and to the specific work-place. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection
Respiratory protection is not required. Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN 143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure
No special environmental precautions required.

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

a) Appearance
Form: granular
Colour: white

b) Odour
odourless

c) Odour Threshold
No data available

d) pH
8.2 at 10.01 g/l

e) Melting point/freezing point
Decomposes before melting.
f) Initial boiling point and boiling range No data available

h) Evaporation rate No data available

i) Flammability (solid, gas) No data available

j) Upper/lower flammability or explosive limits No data available

k) Vapour pressure No data available

l) Vapour density No data available

m) Relative density 2.17 g/cm³ at 20 °C (68 °F)
n) Water solubility 362 g/l at 25 °C (77 °F)
o) Partition coefficient: n-octanol/water No data available

p) Auto-ignition temperature No data available

q) Decomposition temperature 100 °C (212 °F) - Decomposes before melting.

r) Viscosity No data available

s) Explosive properties No data available

t) Oxidizing properties No data available

9.2 Other safety information No data available

10. STABILITY AND REACTIVITY

10.1 Reactivity No data available

10.2 Chemical stability
 Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions No data available

10.4 Conditions to avoid No data available

10.5 Incompatible materials
 Strong oxidizing agents, Strong acids

10.6 Hazardous decomposition products
 Hazardous decomposition products formed under fire conditions. - Carbon oxides, Potassium oxides
 Other decomposition products - No data available
 In the event of fire: see section 5

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity
 LD50 Oral - Rat - > 2,000 mg/kg
 (OECD Test Guideline 401)
 LD50 Dermal - Rabbit - > 2,000 mg/kg
 (OECD Test Guideline 402)
 No data available
Skin corrosion/irritation
Skin - Rabbit
Result: No skin irritation
(Patch Test 24 Hrs.)
Remarks: No data available

Serious eye damage/eye irritation
Eyes - Rabbit
Result: Mild eye irritation

Respiratory or skin sensitisation
Buehler Test - Guinea pig
Result: Did not cause sensitisation on laboratory animals.
(OECD Test Guideline 406)

Germ cell mutagenicity
No data available

Carcinogenicity
IARC: No component of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.

ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.

NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.

OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity
No data available

No data available

Specific target organ toxicity - single exposure
No data available

Specific target organ toxicity - repeated exposure
No data available

Aspiration hazard
No data available

Additional Information
RTECS: Not available

To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

12. ECOLOGICAL INFORMATION

12.1 Toxicity
Toxicity to fish
LC50 - Oncorhynchus mykiss (rainbow trout) - 1,300 mg/l - 96 h

Toxicity to daphnia and other aquatic invertebrates
EC50 - Daphnia (water flea) - 630 mg/l

12.2 Persistence and degradability
The methods for determining the biological degradability are not applicable to inorganic substances.

12.3 Bioaccumulative potential
Does not bioaccumulate.

12.4 Mobility in soil
No data available

12.5 Results of PBT and vPvB assessment
PBT/vPvB assessment not available as chemical safety assessment not required/not conducted
12.6 Other adverse effects

No data available

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Product
Offer surplus and non-recyclable solutions to a licensed disposal company.

Contaminated packaging
Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)
Not dangerous goods

IMDG
Not dangerous goods

IATA
Not dangerous goods

15. REGULATORY INFORMATION

SARA 302 Components
No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components
This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards
No SARA Hazards

Massachusetts Right To Know Components
No components are subject to the Massachusetts Right to Know Act.

Pennsylvania Right To Know Components

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS-No.</th>
<th>Revision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium hydrogen carbonate</td>
<td>298-14-6</td>
<td></td>
</tr>
</tbody>
</table>

New Jersey Right To Know Components

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS-No.</th>
<th>Revision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium hydrogen carbonate</td>
<td>298-14-6</td>
<td></td>
</tr>
</tbody>
</table>

California Prop. 65 Components
This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

HMIS Rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health hazard:</td>
<td>0</td>
</tr>
<tr>
<td>Chronic Health Hazard:</td>
<td>0</td>
</tr>
<tr>
<td>Flammability:</td>
<td>0</td>
</tr>
<tr>
<td>Physical Hazard</td>
<td>0</td>
</tr>
</tbody>
</table>

NFPA Rating

<table>
<thead>
<tr>
<th>Rating</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health hazard:</td>
<td>0</td>
</tr>
<tr>
<td>Fire Hazard:</td>
<td>0</td>
</tr>
<tr>
<td>Reactivity Hazard:</td>
<td>0</td>
</tr>
</tbody>
</table>
1. PRODUCT AND COMPANY IDENTIFICATION
 1.1 Product identifiers
 Product name: Sodium sulfite
 Product Number: S0505
 Brand: Sigma-Aldrich
 CAS-No.: 7757-83-7

 1.2 Relevant identified uses of the substance or mixture and uses advised against
 Identified uses: Laboratory chemicals, Manufacture of substances

 1.3 Details of the supplier of the safety data sheet
 Company: Sigma-Aldrich
 Address: 3050 Spruce Street
 SAINT LOUIS MO 63103
 USA
 Telephone: +1 800-325-5832
 Fax: +1 800-325-5052

 1.4 Emergency telephone number
 Emergency Phone #: +1-703-527-3887 (CHEMTREC)

2. HAZARDS IDENTIFICATION
 2.1 Classification of the substance or mixture
 Not a hazardous substance or mixture.

 2.2 GHS Label elements, including precautionary statements

 2.3 Hazards not otherwise classified (HNOC) or not covered by GHS
 Contact with acids liberates toxic gas.

3. COMPOSITION/INFORMATION ON INGREDIENTS
 3.1 Substances
 Formula: \(\text{Na}_2\text{O}_3\text{S} \)
 Molecular weight: 126.04 g/mol
 CAS-No.: 7757-83-7
 EC-No.: 231-821-4
 Hazardous components
Component	Classification	Concentration
Sodium sulphite		<= 100 %

4. FIRST AID MEASURES
 4.1 Description of first aid measures
 General advice
 Consult a physician. Show this safety data sheet to the doctor in attendance.
If inhaled
If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact
Wash off with soap and plenty of water. Consult a physician.

In case of eye contact
Flush eyes with water as a precaution.

If swallowed
Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed
The most important known symptoms and effects are described in the labelling (see section 2) and/or in section 11.

4.3 Indication of any immediate medical attention and special treatment needed
No data available

5. FIREFIGHTING MEASURES

5.1 Extinguishing media
Suitable extinguishing media
Dry powder

5.2 Special hazards arising from the substance or mixture
Sulphur oxides, Sodium oxides

5.3 Advice for firefighters
Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further information
No data available

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures
Wear respiratory protection. Avoid dust formation. Avoid breathing vapours, mist or gas. Avoid breathing dust.
For personal protection see section 8.

6.2 Environmental precautions
Do not let product enter drains.

6.3 Methods and materials for containment and cleaning up
Pick up and arrange disposal without creating dust. Sweep up and shovel. Do not flush with water. Keep in suitable, closed containers for disposal.

6.4 Reference to other sections
For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling
Further processing of solid materials may result in the formation of combustible dusts. The potential for combustible dust formation should be taken into consideration before additional processing occurs.
Provide appropriate exhaust ventilation at places where dust is formed.
For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities
Keep container tightly closed in a dry and well-ventilated place.
Never allow product to get in contact with water during storage. Do not store near acids.
Air and moisture sensitive.
Storage class (TRGS 510): Non Combustible Solids

7.3 Specific end use(s)
Apart from the uses mentioned in section 1.2 no other specific uses are stipulated
8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters
Contains no substances with occupational exposure limit values.

8.2 Exposure controls

Appropriate engineering controls
Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eye/face protection
Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166 (EU).

Skin protection
Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove’s outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact
Material: Nitrile rubber
Minimum layer thickness: 0.1 mm
Break through time: 480 min
Material tested: Dermatril® (KCL 740 / Aldrich Z677272, Size M)

Splash contact
Material: Nitrile rubber
Minimum layer thickness: 0.11 mm
Break through time: 480 min
Material tested: Dermatril® (KCL 740 / Aldrich Z677272, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374
If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection
Choose body protection in relation to its type, to the concentration and amount of dangerous substances, and to the specific work-place. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection
Where risk assessment shows air-purifying respirators are appropriate use a full-face particle respirator type N100 (US) or type P3 (EN 143) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure
Do not let product enter drains.

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

a) Appearance Form: solid
b) Odour No data available
c) Odour Threshold No data available
d) pH 9.0 - 10.5 at 126 g/l at 25 °C (77 °F)
e) Melting point/freezing point Decomposes before melting.

f) Initial boiling point and boiling range Not applicable

g) Flash point No data available

h) Evaporation rate No data available

i) Flammability (solid, gas) The product is not flammable.

j) Upper/lower flammability or explosive limits No data available

k) Vapour pressure No data available

l) Vapour density No data available

m) Relative density 2.630 g/cm³

n) Water solubility 126 g/l at 20 °C (68 °F) - completely soluble

o) Partition coefficient: n-octanol/water No data available

p) Auto-ignition temperature does not ignite

q) Decomposition temperature No data available

r) Viscosity No data available

s) Explosive properties Not explosive

t) Oxidizing properties The substance or mixture is not classified as oxidizing.

9.2 Other safety information No data available

10. STABILITY AND REACTIVITY

10.1 Reactivity No data available

10.2 Chemical stability Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions No data available

10.4 Conditions to avoid Exposure to air may affect product quality. Exposure to moisture may affect product quality.

10.5 Incompatible materials Acids, Strong oxidizing agents

10.6 Hazardous decomposition products Other decomposition products - No data available

In the event of fire: see section 5

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity
LD50 Oral - Rat - 3,560 mg/kg
LC50 Inhalation - Rat - 4 h - > 5,500 mg/m³
LD50 Dermal - Rat - > 2,000 mg/kg
(OECD Test Guideline 402)

No data available

Skin corrosion/irritation
Skin - Rabbit
Result: No skin irritation
(OECD Test Guideline 404)

Serious eye damage/eye irritation
Eyes - Rabbit
Result: Mild eye irritation
(OECD Test Guideline 405)

Respiratory or skin sensitisation
Prolonged or repeated exposure may cause allergic reactions in certain sensitive individuals.
in vivo assay - Mouse
Result: Did not cause sensitisation on laboratory animals.

Germ cell mutagenicity
No data available

Carcinogenicity
This product is or contains a component that is not classifiable as to its carcinogenicity based on its IARC, ACGIH, NTP, or EPA classification.

IARC: 3 - Group 3: Not classifiable as to its carcinogenicity to humans (Sodium sulphite)

ACGIH: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by ACGIH.

NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.

OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a carcinogen or potential carcinogen by OSHA.

Reproductive toxicity
No data available

No data available

Specific target organ toxicity - single exposure
No data available

Specific target organ toxicity - repeated exposure
No data available

Aspiration hazard
No data available

Additional Information
RTECS: WE2150000

May cause irritation of the: Gastrointestinal tract, violent colic, Diarrhoea, Disturbance of: circulatory system, Central nervous system depression, death, Persons with allergies and/or asthma may exhibit hypersensitivity to sulfites., To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Liver - Irregularities - Based on Human Evidence
Liver - Irregularities - Based on Human Evidence

12. **ECOLOGICAL INFORMATION**

12.1 **Toxicity**
Toxicity to fish
LC50 - Gambusia affinis (Mosquito fish) - 660 mg/l - 96 h

12.2 Persistence and degradability
The methods for determining biodegradability are not applicable to inorganic substances.

12.3 Bioaccumulative potential
No data available

12.4 Mobility in soil
No data available

12.5 Results of PBT and vPvB assessment
PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects
No data available

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods
Product
Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

Contaminated packaging
Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)
Not dangerous goods

IMDG
Not dangerous goods

IATA
Not dangerous goods

15. REGULATORY INFORMATION

SARA 302 Components
No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components
This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

Massachusetts Right To Know Components
No components are subject to the Massachusetts Right to Know Act.

Pennsylvania Right To Know Components

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS-No.</th>
<th>Revision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium sulphite</td>
<td>7757-83-7</td>
<td></td>
</tr>
</tbody>
</table>

New Jersey Right To Know Components

<table>
<thead>
<tr>
<th>Component</th>
<th>CAS-No.</th>
<th>Revision Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium sulphite</td>
<td>7757-83-7</td>
<td></td>
</tr>
</tbody>
</table>

California Prop. 65 Components
This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.
16. OTHER INFORMATION

HMIS Rating
- Health hazard: 1
- Chronic Health Hazard: *
- Flammability: 0
- Physical Hazard: 0

NFPA Rating
- Health hazard: 1
- Fire Hazard: 0
- Reactivity Hazard: 0

Further information
Copyright 2015 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Preparation Information
Sigma-Aldrich Corporation
Product Safety – Americas Region
1-800-521-8956

Version: 5.5 Revision Date: 02/09/2015 Print Date: 06/23/2018
MATERIAL SAFETY DATA SHEET

SECTION I PRODUCT IDENTIFICATION
PRODUCT NAME: Accelerite® Bioremediation Nutrient Liquid
PRODUCT USE: Bioremediation
SUPPLIER: JRW Bioremediation, LLC
14321 W. 96th Terrace
Lenexa, KS 66215
913-438-5544
EMERGENCY TELEPHONE: 800-779-5545 x 116 (Mon-Fri 9am-5pm CST)
913-961-6644 (afterhours)
DATE REVISED: 06-23-2011

SECTION II COMPOSITION/INFORMATION ON INGREDIENTS
Name
Yeast Product

SECTION III PHYSICAL/CHEMICAL CHARACTERISTICS
Boiling point: 212°F
Vapor pressure (Mg Hg): Not determined
Vapor density (air = 1): Not determined
Solubility in water: Dispersable
Appearance and odor: Brown viscous liquid, yeast aroma
Specific gravity (H2O = 1): Not determined
Melting point: Not determined
Evaporation rate: Not determined
pH: Not determined
Viscosity: Not determined
Molecular Weight: Not determined
Physical State: Liquid

SECTION IV FIRE AND EXPLOSION HAZARD DATA
Closed cup Flash point: Not determined
Open cup Flash point: Not determined
Auto Ignition: Not determined
Fire Point: Not determined
Flammable limits: Not determined
LEL: Not determined
UEL: Not determined
Extinguishing media: None
Special Fire Fighting procedures: None
Unusual Fire Fighting hazards: None
SECTION V
REACTIVITY DATA

Stability:	Unstable [] Stable [x]
Conditions to avoid:	Not Applicable
Incompatibility (materials to avoid):	Not Applicable
Hazardous decomposition or byproducts:	None
Hazardous polymerization:	May Occur [] Will Not Occur [x]

SECTION VI
HEALTH HAZARD DATA Based on concentration as sold

- **Route/s of Entry:**
 - Inhalation: Respiring yeast generates carbon dioxide. Over exposure to carbon dioxide gas may cause asphyxiation. Move to fresh air.
 - Skin contact: In case of contact with skin, immediately wash with soap and water.
 - Eye contact: In case of contact with eyes, immediately flush eyes with water for at least 15 minutes, lifting eyelids to facilitate irrigation. Get medical attention if necessary.
 - Ingestion: If swallowed, get medical attention.

- **Health hazards (acute and chronic):** Respiring yeast generates carbon dioxide. Over exposure to carbon dioxide gas may cause asphyxiation.

- **Carcinogenicity:** No

- **Signs and symptoms of exposure:** Overexposure to carbon dioxide include: stupor, dizziness, unconsciousness, death.

- **Medical conditions aggravated by exposure:** None known for this product. Over exposure to carbon dioxide may aggravate certain medical conditions.

SECTION VII
PRECAUTIONS FOR SAFE HANDLING AND USE

- **Steps to be taken in case material is released or spilled:** Contain spill and place material in drum for disposal. Dispose of according to all local, state, and federal regulations at an approved waste treatment facility.

- **Precautions to be taken in handling and storage:** Prevent spills and leakage. Keep container tightly closed. Keep in properly labeled containers. Store in a cool, dry area.

- **Other precautions:** No special environmental precautions required.

SECTION VIII
CONTROL MEASURES

- **Respiratory protection (specify type):** No personal respiratory protective equipment normally required in well ventilated areas.

- **Ventilation:** Use adequate mechanical ventilation, especially in confined spaces. Local exhaust is recommended.

- **Protective gloves:** Not required but good practice.

- **Eye protection:** Safety glasses a good practice.

- **Other protective clothing or equipment:** Unnecessary if other control measures are used.

- **Hygiene practices:** Good manufacturing practices.
<table>
<thead>
<tr>
<th>SECTION IX</th>
<th>DOT INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT hazard class:</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Labeling:</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Proper Shipping Name:</td>
<td>Accelerite® Bioremediation Nutrient</td>
</tr>
<tr>
<td>NMFC#:</td>
<td>75480</td>
</tr>
<tr>
<td>Class</td>
<td>85</td>
</tr>
</tbody>
</table>