ENRON **OPERATIONS CORP.**

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

January 16, 1995

Ms. Barbara Hoditschek New Mexico Environment Department Hazardous & Radioactive Materials Bureau 525 Camino de Los Marquez P.O. Box 26110 Santa Fe, NM 87502

RE: Closure Plan for the Former Surface Impoundments at the Roswell Station Transwestern Pipeline Company Compressor Station No. 9, Roswell, New Mexico

Dear Ms. Hoditschek,

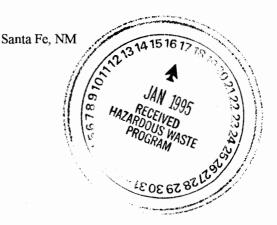
Transwestern Pipeline Company (TPC) submits the enclosed modified closure plan for the former surface impoundments located at the Roswell Compressor Station. As requested, two hard copies of the closure plan and one copy on disk in WordPerfect 5.2 format are enclosed. The closure plan was prepared by our outside consultant, Daniel B. Stephens & Associates (DBS&A) of Albuquerque, New Mexico. DBS&A prepared the plan at my direction and with the assistance of our internal consultants, George C. Robinson, P.E. and Kathleen O'Rielly, Cypress Engineering Services.

Also enclosed are a copy of a site specific health and safety plan prepared by DBS&A and a list of responses to the NMED comments contained in the NOD dated September 28, 1994.

A sincere effort has been made to prepare a closure plan that will satisfy both the administrative and technical requirements of the NMED as well as provide assurance that both human health and the environment will be protected.

If you have any questions regarding this submittal, please contact me at (713) 646-7644 or George Robinson at (713) 646-7327.

Sincerely,


Bill Kendrick Projects Group Manager EOC Environmental Affairs

gcr/BK

cp w/ enclosures:

Roger Anderson

NMOCD

RESPONSES TO NMED COMMENTS ON CLOSURE PLAN FOR ROSWELL COMPRESSOR STATION SURFACE IMPOUNDMENTS

Transwestem Pipeline Company (Transwestem), a wholly owned subsidiary of ENRON Operations Corporation, submitted a closure plan dated May 31, 1994 to the New Mexico Environment Department (NMED) for closure of several former surface impoundments located at Transwestem's Compressor Station No. 9 near Roswell, New Mexico. The closure plan was prepared for Transwestem by Daniel B. Stephens & Associates (DBS&A) for submission to the NMED Hazardous and Radioactive Materials Bureau (HRMB) in order to satisfy the requirements of the New Mexico Hazardous Waste Management Regulations (20 NMAC 4.1).

NMED reviewed the closure plan and responded with a letter from the chief of the HRMB dated September 28, 1994, stating that the closure plan was technically deficient. As an attachment to the Notice of Technical Deficiency (NOD), NMED included 31 specific comments on the closure plan.

On November 1, 1994, Bill Kendrick and George Robinson attended a meeting with HRMB staff to discuss NMED's concerns. As a result of this meeting, as well as the comments received with the NOD, a revised closure plan has been prepared and submitted to NMED for review.

In addition to the revised closure plan, the following are Transwestem's responses to each of NMED's comments included with the NOD. In order to facilitate review, Transwestern's responses are numbered to correspond with NMED's comments, and references to the pertinent section(s) of the revised closure plan are included.

Responses to NMED Comments

3. '

1. Performance Standards: 20 NMAC 4.1, Subpart VI, 40 CFR, §265.112

Transwestern agrees with NMED's comment. Although TCLP metals analyses of soil samples have been performed in the past (see Table 3-3), TCLP analyses are not proposed in the closure plan for future sampling of soil or ground-water (see Section 6.1, Table 6-1).

It is well known that volatile organic compounds (VOCs) pose the greatest threat to ground-water quality at sites where pipeline condensate wastes have been stored and released. Although VOCs are believed to be the primary contaminants of concern at this site, Phase I samples will be analyzed for additional constituents as well. In order to ensure that no contaminants of concern have been missed, the initial round of ground-water and soil sampling will include analysis of RCRA Appendix IX VOCs, SVOCs, PCBs, metals, cyanide, and sulfide. The proposed Appendix IX suite will include the following analytical methods:

Analyte Class	EPA SW-846 Method
VOCs	8240
SVOCs	8270
PCBs	8080
Cyanide	9010
Sulfide	9030
Appendix IX Metals	6000/7000 series

Appendix IX Analytes and Methods

RCRA metals include Ag, As, Ba, Be, Cd, Cr, Co, Cu, Hg, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn.

The analysis of soil and ground-water samples for Appendix IX constituents should serve to corroborate the determination, based on site history and previous investigations, that VOCs are the principal contaminants of concern at this site.

2. Corrective Action Plan: 20 NMAC 4.1, Subpart V, 40 CFR, §264.97 and 264.112

Transwestem agrees that it has been demonstrated that the uppermost aquifer has been impacted by hydrocarbons released from the former impoundments. However, the extent of ground-water contamination appears to be limited to the area immediately beneath and adjacent to the former impoundments, and interim corrective measures have been in progress since May 1993, as described in Section 3.5 of the closure plan. The ground-water assessment plan for investigation of the nature and extent of hydrocarbon impacts is included in Section 5 of the closure plan. As agreed upon in a meeting between NMED and Transwestem in Santa Fe, a ground water remediation plan will be submitted to NMED following completion of the field work

associated with the soil and ground-water assessment plans. Therefore, the remediation plan has not been included in the closure plan, but rather will be submitted as an amendment to the closure plan at a later date.

3. Location of Surface Impoundments

The exact locations of the former surface impoundments is not precisely known. However, the best available estimate of the latitude and longitude of the center of each of the impoundments is provided in Section 2.1 of the closure plan.

4. Hazardous Waste Inventory (Section 2.2)

Everything that is known regarding operation of the former impoundments is included in the revised Section 2.2 of the closure plan. As discussed in that section, there is little information available about past disposal practices, waste volumes, and periods of operation of the impoundments. However, it has been determined that the last impoundment in service was Pit 1 and that this impoundment was apparently not used after mid-1984. Furthermore, it has been determined that the principal chlorinated solvent used was 1,1,1-TCA. The prior investigations at the site are discussed in comprehensive detail in Sections 2 and 3 of the modified closure plan.

5. Releases from Surface Impoundments: 20 NMAC 4.1, Subpart V, 40 CFR, §264 Subpart F

As discussed in the response to comment #1 above, Appendix IX analyses are proposed for the initial round of ground-water sampling to be performed as Phase I of the implementation of the closure plan.

With regard to the statistical evaluation of background ground-water quality, the proposed statistical techniques have been added to Section 6.11 of the closure plan. Statistical methods will follow the EPA guidance document *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities* (1989), which describes several recommended parametric and nonparametric methods to determine background constituent concentrations. These include Analysis of Variance (ANOVA) and development of tolerance intervals based on the normal distribution of values within a population. Such techniques will generally only be applied for inorganic constituents (e.g.,

metals), as the background concentration for organic compounds in ground water is essentially zero.

On December 1, 1994, an upgradient monitor well (MW-6) was installed approximately 500 feet southwest of the former location of Pit 1. The location of the new upgradient monitor well is shown on Figure 2-1 of the closure plan. Static water levels measured in monitor wells MW-3, MW-5, and MW-6 indicate that MW-6 is indeed upgradient of the former impoundments. Ground-water samples collected from this well, as well as soil samples collected during drilling, have shown that the well is outside the zone of hydrocarbon contamination beneath the former impoundments. Therefore, for statistical purposes ground-water samples collected from new upgradient well MW-6 should be representative of "background" ground-water quality.

6. Ground-Water Elevations

Transwestern agrees that ground-water elevation measurements are essential in establishing the direction of ground-water flow beneath the former impoundments. Depths to ground-water were measured in the on-site monitor wells during December 1994, along with the water level in the former deep on-site water supply well located in the southwest corner of the facility. In addition, the coordinates and elevations of each monitor well were established by resurveying each of the wells relative to the compressor station datum. The results of these activities are discussed in Section 3.6 of the closure plan.

Static water levels measured on December 22, 1994 in monitor wells MW-3, MW-5, and MW-6 indicate an east-northeast ground-water flow direction in the shallow alluvium, along a bearing of about N72E, and a dimensionless gradient of approximately 0.009. The flow direction is shown graphically in Figure 2-1 of the closure plan. The calculated ground-water flow direction and gradient are reasonable, based on the site topography and nature of subsurface sediments encountered during drilling.

7. Ground-Water Impacts (Section 3.6.3)

Section 3.6.3 has been revised to include a description of ground-water impacts.

8. Waste Characterization: 20 NMAC 4.1, Subpart V, §264 Appendix IX

Section 4 of the closure plan has been revised to include a surface impoundment characterization study that includes drilling and sampling two soil borings at each of the assumed locations of the former impoundments. The proposed locations for each of these borings is shown on Figure 4-1 of the closure plan. At each boring location, an attempt will be made to penetrate to the base of the former impoundments. Soil samples will be collected at 5-foot intervals during drilling, including at least one sample from the base of the sediment fill. The most highly impacted soil material from each boring, as determined visually and by field headspace analysis, will be submitted for laboratory analysis for Appendix IX VOCs, SVOCs, PCBs, metals, cyanide, and sulfide.

9. Soil Assessment Plan: (Section 4.1)

The results of the Appendix IX analyses performed during the Phase I surface impoundment characterization will be used to compile a list of "target analytes" to direct subsequent soil and ground-water investigations to be performed during Phase II. The proposed target analyte list will be submitted to NMED HRMB for review and approval.

10. Soil Sampling Rationale and Approach (Section 4.1, Fig. 4-1)

As recommended by HRMB and discussed in Section 4 of the revised closure plan, a phased approach will be used to characterize the nature and extent of subsurface impacts from the former impoundments. Phase I will consist of characterization of the sediments within the former impoundments themselves and will include drilling at least eight borings: two at each impoundment location, plus two borings at the location of previous boring SG-86, where Metric Corporation detected elevated TPH concentrations at approximately 13 feet deep. Those borings located at the former impoundments will be drilled through the entire thickness of the fill material, and samples will be collected at 5-foot intervals. Based on field examination and headspace analysis, the most highly contaminated sample from each boring will be submitted for laboratory analysis of Appendix IX constituents. This approach will identify any potential contaminants of concern that may be present beneath the former impoundments.

Although the locations of former Pits 1 and 2 are known fairly precisely (see Figure 2-1 of closure plan), the location, indeed even the existence, of Pit 3 is by no means certain. Therefore, an iterative approach will be used to explore the subsurface beneath the area where Pit 3 is believed to have been located. The details of this approach are described in Section 4.1 of the revised closure plan. In general, a grid-sampling approach will be used to either locate former Pit 3 or verify that it did not exist. A similar iterative sampling approach will be used in the vicinity of previous Metric Corporation boring SG-86 to determine whether this area represents a separate area of concern.

Following evaluation of the field and laboratory data generated during Phase I, a Phase II investigation will be developed and conducted to define the lateral and vertical extents of soil and ground-water impacts. Although the scope of the Phase II investigation is not known at this time, Phase II will likely include drilling of additional off-site borings, installation of downgradient monitor wells, and soil and ground-water sampling and analysis. In addition, the interim corrective measures to recover subsurface hydrocarbons will continue.

11. Potential for Cross-Contamination During Drilling (Section 4.1)

The Phase I soil borings to be drilled in the vicinity of the former impoundments will reach a maximum depth of only about 20 feet below surface. Therefore, there is no risk of cross-contamination of the saturated zone that lies at a depth of approximately 65 feet (uppermost aquifer). The purpose of these borings is to sample the most highly impacted soils just beneath the base of the clean backfill material. However, deeper Phase I off-site borings (Figure 5-1), as well as on-site borings to be drilled during subsequent phases, will make use of drilling techniques that minimize the risk of cross-contamination. For any particular boring, if field screening indicates that the perched water zone at approximately the 35-foot depth is contaminated, a PVC surface casing will be installed from the surface to the depth of the perching low-permeability layer to prevent downward movement of perched water. Drilling will then resume within the surface casing using smaller-diameter augers. Additional details regarding drilling and monitor well installation procedures are included in the drilling SOP in Appendix F of the closure plan.

12. Laboratory Analysis: 20 NMAC 4.1, Subpart V, 40 CFR, §264 Appendix IX

The closure plan has been revised to include Appendix IX analysis for soil and ground-water samples. Table 6-1 of the closure plan includes the complete list of proposed analytes. The suite of proposed analytes includes Appendix IX VOCs, SVOCs, PCBs, metals, cyanide, and sulfide. All pertinent sections of the closure plan have been revised accordingly.

13. Ground-Water Assessment Plan: (Section 5.1)

All ground-water monitor wells will be constructed in accordance with the EPA RCRA *Technical Enforcement Guidance Document* (TEGD, 1986), with updates in the EPA document entitled *RCRA Ground-Water Monitoring: Draft Technical Guidance* (1992). As described in Section 5.1 of the closure plan, the screened interval within the saturated zone will not exceed 15 feet. However, following a telephone discussion between Terri Davis (NMED-HRMB) and George Robinson (ENRON), provision has been made to install up to an additional 10 feet of screen within the unsaturated (vadose) zone, for a maximum total screen length of 25 feet. Total screen lengths longer than 15 feet will only be used if the well intercepts soils highly impacted with petroleum hydrocarbons, such that subsequent conversion of the monitor well to a soil-vapor extraction well may be required.

14. (Section 5.1)

The latitude and longitude of all existing monitor wells are provided in Table 3-6 of the revised closure plan. The horizontal coordinate system used to locate the wells and borings is consistent with the on-site grid and station datum, as shown in Figure 2-1 of the closure plan.

15. (Section 5.1.1)

The closure plan has been revised to include a phased approach, whereby the analytical results for soil borings drilled during Phase I will be used to locate borings to be drilled during subsequent phases. The locations of the Phase I borings and monitor wells are shown in Figure 4-1 and 5-1.

16. (Section 5.1.1)

Sections 4.1 and 4.2 of the revised closure plan provide the rationale for the Phase I soil sampling program, along with the number, location, and depth of soil samples to be collected. The rationale for the on-site boring locations is based on historical records and examination of aerial photographs. The rationale for the Phase I off-site monitor well locations is based on the direction and gradient of ground-water flow as calculated from water levels measured in existing monitor wells.

Transwestern recognizes that a phased approach is required, and Section 4.7 outlines the expected Phase II activities.

17. (Section 5.1.2)

Ground-water samples from existing deep wells TW-1 and Well #5, completed in the bedrock aquifer, have been collected and analyzed, as described in Section 3.6. The need for a downgradient deep monitor well will be determined based on the results of the Phase I ground-water assessment. If required, the deep monitor well will be installed during the Phase II investigation.

18. (Section 5.3)

The ground-water assessment plan has been revised accordingly.

19. (Section 5.4)

As discussed above in the response to comment #1, Appendix IX analyses will be performed on the soil and ground-water samples collected during Phase I. In addition, Transwestern proposes to analyze ground-water samples for major inorganic constituents and for TDS in order to characterize overall water chemistry. Following submittal of the Phase I report, Transwestern proposes to meet with NMED to discuss the selection of target analytes for the Phase II investigation.

20. (Section 5.3)

An interface meter will be used to detect PSH that may be floating on the water table. The use of the interface meter is discussed in Sections 5.3 and 6.6 of the revised closure plan, and is consistent with EPA guidance documents.

21. (Section 6.1)

The list of analytical parameters and methods has been revised as requested.

22. (Section 6.2)

Detection limits will be determined by the analytical laboratory as described in the individual analytical methods references (EPA, 1986).

23. Interim Measures (Section 7.1)

Regarding the status of monitor well MW-1, Transwestern has received a letter from NMED dated January 3, 1995 authorizing the continued use of MW-1 as a hydrocarbon recovery well. Therefore, MW-1 will not be plugged and abandoned at this time.

24. Remedial Options (Section 7.3)

No response needed.

25. (Section 7.5)

Given the phased approach proposed for closure of the former impoundments, it is premature to discuss ground-water or soil cleanup criteria at this time. Therefore, references to cleanup criteria have been deleted from the closure plan. A risk assessment may indeed be performed following the collection of additional quantitative data regarding the distribution of hazardous constituents; however, this will not be proposed until a subsequent phase.

26. (Table 3.1)

The elevations of all existing monitor wells were determined in December 1994 by a licensed professional surveyor. These data are provided in Table 3-6 of the revised closure plan.

27. (All Tables)

For comparison with the analytical chemistry results, the New Mexico Water Quality Control Commission (NMWQCC) ground-water standards have been added to the relevant tables.

28. (Figure 3-5)

Pit 2 was incorrectly labeled as Pit 3. This error has been corrected in the revised closure plan.

29. (All Figures)

The correct locations of all monitor wells are shown on Figure 2-1 and subsequent figures. The locations of the wells were determined by a licensed professional surveyor in December 1994. These locations supersede all previous maps or well coordinates.

30. Appendix E

The laboratory results for ground-water samples collected from monitor well MW-2 have been added to Appendix E as requested.

31. Health & Safety Documentation

A site-specific health and safety plan prepared by DBS&A is being submitted with this list of responses to NMED comments. All DBS&A field personnel have received the requisite 40-hour health and safety training and annual updates, as required by OSHA regulations contained in 29 CFR 1910.120. In addition, DBS&A maintains a thorough medical monitoring program for all field personnel. Documentation of training for individual field staff is available upon request.

HEALTH AND SAFETY PLAN for Field Activities at Transwestern Pipeline Company Roswell Compressor Station

ROSWELL, NEW MEXICO

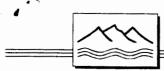
Prepared for Enron Environmental Affairs

Prepared by Daniel B. Stephens & Associates, Inc.

January 12, 1995

Prepared by: <u>Jeff up Forbes</u> Jeffrey Forbes

Hydrogeochemist


Reviewed by: <u>Krim Startum for k</u>. Hugan Health & Safety Coordinator

Approved by: Alfful Forlus

Date: 01/12/95

Date: <u>/-/z-55</u>

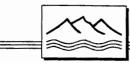
Date: 1-16-95

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

SITE SAFETY PLAN

1. INTRODUCTION

This health and safety plan contains guidelines for Daniel B. Stephens & Associates, Inc. (DBS&A) worker safety during drilling and soil sampling during the field activities associated with closure of former surface impoundments at Transwestern Pipeline Company's Roswell Compressor Station. The purpose of this plan is to familiarize the field personnel with safe operating procedures.


1.1 General Information

Project number:	4115		
Project name:	ENRON-Roswell		
Site name:	Transwestern Roswell (Compressor St	ation No. 9
Site address:	6381 North Main Stree P.O. Box 2018 Roswell, NM 88201	t	
Work description:	split spoon samplers, fi	ield headspace	g methods; soil sampling using analysis for volatile organic ound-water samples, aquifer
Project Manager:	Jeffrey Forbes		
DBS&A Site Safety Officer:	Bill Casadevall		
Plan prepared by:	Jeffrey Forbes	Date:	01/12/95
Work start date:	Spring 1995	Work Hours:	no restrictions
<i>Client contact: Alternate contact:</i>	George Robinson Larry Campbell	•	(713) 646-7327 (505) 625-8022

Describe special site entry procedures, if any:

Work will be performed on secured property belonging to Transwestern Pipeline Company. Field personnel will sign in at the office upon arrival.

Warning/method signal for site evacuation: Verbal

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Presence of hazardous materials: (X) Potential () Confirmed

The exact location of hazardous materials is:

() Known (X) Assumed () Unknown

Distance, location and number of nearest phone: On-site cellular phone (DBS&A) or Transwestern office

Nearest public road:	U.S. Highway 285 immediately west of office
----------------------	---

Nearest water: Transwestern office

Nearest fire extinguisher: DBS&A Vehicle

Nearest first aid kit: DBS&A Vehicle

1.2 Potential Contamination

The subsurface soil and/or ground water may contain pipeline condensate, a petroleum hydrocarbon liquid similar to gasoline, but consisting primarily of saturated hydrocarbons in the C7-C11 range. The hydrocarbon contamination may be in liquid and/or gaseous (vapor) phase. Compounds such as n-octane, n-nonane, and n-decane are the most abundant components of pipeline condensate. Benzene, a major gasoline component, is generally only a minor constituent of pipeline condensate. However, benzene is a recognized carcinogen, and thus is given special consideration.

A previous soil vapor survey revealed the presence of small quantities of chlorinated VOCs, most notably 1,1,1-trichloroethane (TCA) and its degradation products.

Polychlorinated biphenyls (PCBs) are not expected at this site. As occupational carcinogens, however, precautions will be taken in case they are encountered.

<u>Material</u>	Route to Body Entry	Characterization
Hydrocarbons	Inhalation, ingestion, and physical contact	Irritant, asphyxiant, possible carcinogen
1,1,1-TCA	Inhalation, ingestion, and physical contact	Irritant, asphyxiant
n-octane	Inhalation, ingestion, and physical contact	Irritant, asphyxiant
PCBs	Physical contact (skin, eyes)	Irritant, carcinogen

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Potential materials hazards to worker: Contact with pipeline condensate hydrocarbons and/or PCBs may result in dermal irritation due to desiccation. Inhalation of hydrocarbon and other organic vapors may result in oxygen deficiency and/or mucus membrane irritation. Mixtures of air and hydrocarbon vapors may reach explosive concentrations, thus creating an explosive hazard. Equally important are all of the physical hazards commonly associated with drilling activities, including pinch and trap hazards, back injuries, burns, excessive noise, and high-pressure hazards.

First Aid:	VOCs and PCBs	Eyes:	Rinse immediately and thoroughly
		Skin:	Soap wash immediately and thoroughly
		Inhalation:	Fresh air
		Ingestion:	Medical attention

Flammability limits: The flammable range for pipeline condensate vapors is variable and generally unknown. The following ranges are provided for comparison:

Diesel FuelLEL = 0.7%, UEL = 5.0%, 7,000 - 50,000 ppmvGasolineLEL = 1.3%, UEL = 6.0%, 13,000 - 60,000 ppmv1,1,1-TCALEL = 7.5%, UEL = 12.5%, 75,000 - 125,000 ppmvn-octaneLEL = 1.0%, UEL = 6.5%, 10,000 - 65,000 ppmvAroclorsLEL/UEL = nonflammable

Flashpoint: Gasoline: 100° F @ 100% LEL

Hazard type: Liquid (X) Solid (X) Sludge () Vapor/Gas (X)
Hazard Level: High () Moderate (X) Low () Unknown ()
Characteristics: Corrosive () Ignitible (X) Toxic (X) Reactive ()
Volatile (X) Radioactive () Biological Agent ()

Field Monitoring: A portable photoionization detector (PID) or flame ionization detector (FID) will be used to monitor the breathing zone, as well as the area around and within the borehole. Concentrations within the breathing zone are not expected to be above background during the field investigation. If a PID meter is used, the high energy (11.7 eV) lamp will be used to ensure that VOCs with high ionization potentials, such as 1,1,1-TCA, are detected.

Compound	<u>STEL</u>	IDLH	OSHA PEL
Benzene	1 ppm	3,000 ppm	1 ppm
1,1,1 -TCA	450 ppm	1,000 ppm	350 ppm
n-Octane	75 ppm	5000 ppm	300 ppm
Aroclor 1242	0.09 ppm	data not available	1 mg/m ³ (skin)

(1) STEL = Short-Term Exposure Limit (15 minutes)

(2) IDLH = Immediately Dangerous to Life and Health

(3) PEL = Permissible Exposure Limit

Source: NIOSH Pocket Guide to Chemical Hazards (1990).

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

In addition to potential chemical contamination, the following hazards may be present during drilling and sampling:

- Vehicular Traffic
- Electrical Shock
- Rotating machinery
- Uneven surfaces that could cause slips and falls
- Overhead equipment
- Airborne Dust
- Explosion and fire
- Excessive Noise
- Overhead and buried utilities
- Hypothermia and/or frostbite

2. SAFETY GUIDELINES FOR DRILLING AND SAMPLING ACTIVITIES

The following guidelines are meant to cover operations by the DBS&A field staff during drilling and collection of soil and ground-water samples. Safety guidelines for the drill crew and support personnel under the employ of the drilling contractor are not included in this plan. Health and safety issues for the contractor personnel working on site are the responsibility of the drilling contractor, not DBS&A.

2.1 Personal Health and Safety

The following DBS&A personnel will be involved in the project:

Jeffrey Forbes	Project Manager
Bill Casadevall*	Staff Geologist/On-site H&S Officer
Terry Deeds	Technician

2.1.1 Protective Equipment

The following personal protective equipment (PPE) shall be used whenever the field personnel are within the 25-foot work zone:

- Steel-toed work boots
- Hard hat
- Protective eyewear
- Hearing protection (if needed)

In addition, a half-face respirator with organic vapor cartridges and dust/mist prefilters, Tyvek coveralls, and work gloves shall be available for use whenever conditions require. The half-face respirator will be worn whenever organic vapors concentrations exceed levels outlined

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

in Section 2.2 of this plan. Tyvek coveralls and work gloves will be worn whenever conditions require the DBS&A field personnel to come in direct contact with potentially contaminated materials. Work areas will be established upwind of drilling activities to avoid unnecessary exposure to dust and/or organic vapors.

2.1.2 Hypothermia and/or Frostbite

Hypothermia and frostbite can result from exposure to low temperatures, high winds, long duration of exposure, and high humidity. When working out of doors during cold weather, the best prevention is to dress appropriately, minimize skin exposure, observe and be observed by coworkers, and take warmup breaks periodically. If conditions are extremely cold, body temperature and heart rate should be monitored hourly.

2.1.3 Eating and Drinking

No eating, drinking, smoking, or gum or tobacco chewing is allowed within the 25 foot work zone.

2.1.4 Eye Protection

Approved protective eyewear will be worn at all times when within the 25 foot radius work zone. The minimum eyewear protection required will be shatter-proof glasses, goggles, or face shields.

2.1.5 Dust Protection

When blowing dust makes it necessary to protect personnel, disposable-type dust masks will be worn, or the dust/mist prefilter will be used, if the half-face respirator is being worn.

2.1.6 Disposal of Contaminated Clothing or Equipment

All potentially contaminated clothing, Tyvek coveralls, gloves, paper towels, and other expendable items should be placed in garbage bags for disposal. As necessary, fresh Tyvek coveralls and work gloves should be donned to prevent accidental contact with potentially contaminated soil material.

2.2 Vapor Monitoring

The DBS&A health & safety officer will be present near the drilling rig at all times to monitor the work area for the presence of organic vapors using a PID or FID. Readings will be taken at a minimum of once every 5 feet of drilling advancement, or every 15 minutes of drilling, whichever occurs first. The headspace within the borehole and the breathing zone within the work area will be monitored. If the readings exceed or are anticipated to exceed 5 ppm above background in the breathing zone for 5 minutes, continuous monitoring will begin, and the half-face respirator will be worn by all DBS&A personnel within the work zone until vapor levels dissipate. If sustained organic vapor levels ever exceed 200 ppm within the hollow stem, borehole, or within the breathing space, all DBS&A personnel will evacuate the work

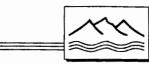
ENVIRONMENTAL SCIENTISTS AND ENGINEERS

zone until vapor levels dissipate. If the reading remains greater than 20 ppm above background within the breathing zone for one hour, drilling operations will be temporarily halted, and the on-site DBS&A health and safety officer should contact the DBS&A project manager for further instructions. The drilling supervisor will be notified of all readings, and is responsible for decisions regarding drilling contractor personnel safety.

If monitoring with the PID/FID meters indicate a potential explosive hazard, a combustible gas meter will also be used to monitor the atmosphere within the boreholes and/or monitor wells. If the values exceed 10% LEL, continuous monitoring will begin. If the meter exceeds 25% of the LEL, work will cease immediately and the area will be evacuated until the vapors dissipate, or provisions are made to "inert" the borehole using carbon dioxide.

2.3 Drilling Activities

All DBS&A field personnel are to maintain a safe distance from the immediate area of the drill rig. A 25-foot radius work area around the drill rig shall be designated. DBS&A personnel shall enter this work zone only when necessary for the performance of the task at hand. DBS&A personnel will avoid overhead equipment and will work cautiously to avoid slips and falls. Caution will be maintained and loose clothing will not be worn near rotating machinery. Under no circumstance shall DBS&A personnel become directly involved in drilling operations, other than that immediately required for sample collection and for performance of vapor monitoring and geologic logging. All kill switches and safety devices on the drill rig shall be located and tested prior to drilling.


If the equipment is owned by a contractor, DBS&A's supervisor in charge of the job should properly and thoroughly instruct the contractor on exactly what results are to be accomplished and point out all known safety hazards. Personnel should be sure they have eye contact with mechanical equipment operator before approaching the equipment. Never approach heavy equipment from an operator's blind spots.

3. INITIAL H&S BRIEFING

A H&S briefing will be conducted before arriving on the site. The initial H&S briefing will be conducted by the DBS&A on-site H&S officer, and will be attended by all DBS&A personnel involved. The H&S plan and all pertinent H&S issues will be discussed during the briefing. All attendees will initial the H&S briefing form.

4. DAILY SAFETY MEETINGS

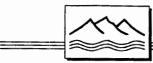
Prior to commencing each day's work activities, a "tailgate" safety meeting will be conducted by the DBS&A on-site safety officer. All personnel directly involved in the work operations will be required to attend. The meeting will address specific issues regarding on-site health and safety, including: recent problems, near-misses, work planned for the day and associated hazards, etc.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

5. ACKNOWLEDGEMENTS

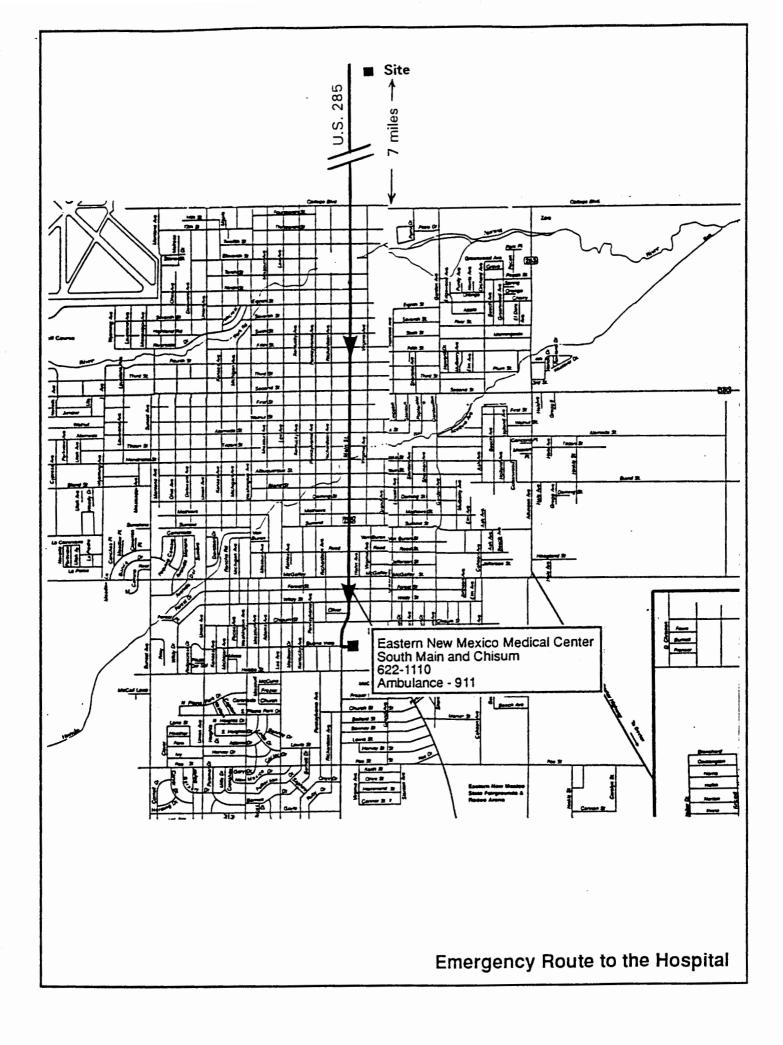
NAME	TITLE	SIGNATURE	DATE
	<u></u>		<u>.</u>
			4.44

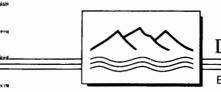
ENVIRONMENTAL SCIENTISTS AND ENGINEERS


DANIEL B. STEPHENS & ASSOCIATES, INC

HEALTH	& SA	FETY	BRIEFING	FORM
--------	------	------	----------	------

Project Number:4115	Date:	
Field Location:		
Purpose of Work:		
Task to be Accomplished:		
SOPs Required:		
Health & Safety Issues Discussed:		
DBS&A Health and Safety Officer:		
We the undersigned have read this Site	Safety Plan and will institute the	provisions and abide


We the undersigned have read this Site Safety Plan and will institute the provisions and abide by the regulations contained herein:


NAME	TITLE	SIGNATURE	DATE
			<u></u>
			~

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

- EMERGENCY PLANNING
 - AMBULANCE: 911 FIRE DEPARTMENT: 911
 - POLICE: 911 AIR EVACUATION: Call Hospital
- LOCAL HOSPITAL (ATTACHED MAP ILLUSTRATES ROUTE TO THIS HOSPITAL)
 - NAME: Eastern New Mexico Medical Center
 - ADDRESS: South Main & Chisum, Roswell NM
 - TELEPHONE: (505) 622-1110
 - EMERGENCY ROOM #: (505) 622-1110
 - NEAREST PHONE: On-site cellular phone (DBS&A) Transwestern main office

iidi aa

lie.

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

CLOSURE PLAN FOR ROSWELL COMPRESSOR STATION SURFACE IMPOUNDMENTS Volume I: Text, Figures, Tables

Prepared for ENRON Environmental Affairs Houston, Texas

January 16, 1995

Ξ

Setter Ngj DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

TABLE OF CONTENTS

Section

1.	INTRODUCTION1.1 Scope of Work1.2 Closure Plan Objectives, Organization, and Amendments1.3 Regulatory Requirements of 40 CFR Parts 264/265	1 1 2 3
2.		
3.	 3.1 Harding Lawson Associates Shallow Subsurface Investigation (1990) 3.2 Metric Corporation Shallow Subsurface Investigation (1991) 3.3 Halliburton NUS Corporation Monitor Well Installation (1992) 3.4 Brown & Root Environmental Ground-Water Assessment (1993) 3.5 Interim PSH Removal Program 3.6 Daniel B. Stephens & Associates, Inc. Subsurface Investigation (1994) 	28
4.		29 31 32 32
5.	 5.1 Phase I Monitor Well Installation 5.2 Monitor Well Development Procedures 	39

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

TABLE OF CONTENTS (CONTINUED)

Section

	5.7 Management of Investigation-Derived Wastes 5.8 Phase II Ground-Water Assessment	41 41
6.	QUALITY ASSURANCE PROJECT PLAN6.1Analytical Parameters and Methods6.2Data Quality Objectives6.3Quality Assurance/Quality Control Samples6.4Sampling Procedures6.5Chain of Custody Procedures6.6Equipment Calibration Procedures and Frequency6.7Data Reduction and Reporting6.8Internal Quality Control Checks6.9Performance and System Audits6.10Corrective Actions6.11Routine Data Assessment Procedures6.12Quality Assurance Reports to Management	43 45 46 46 47 49 49 50 50
7.	PROJECT SCHEDULE AND CONDITIONS FOR CLOSURE CERTIFICATION	51
8.	REFERENCES	52

LIST OF FIGURES

Figure

- 1-1 Location Map
- 2-1 Site Plan
- 2-2 Generalized Stratigraphic Section Near Roswell Compressor Station
- 2-3 Approximate Thickness of Shallow Alluvial Aquifer
- 2-4 Water Levels in Shallow Alluvial Aquifer, January 1984
- 2-5 Water Supply Well Location Map
- 3-1 Harding Lawson Associates Soil Vapor Sample Locations
- 3-2 Concentrations of 1,1,1-TCA in Soil Vapor at 10-Foot Depth
- 3-3 Locations of Harding Lawson Associates Soil Borings
- 3-4 Locations of Metric Corporation Soil Borings
- 3-5 Locations of Halliburton and Brown & Root Soil Borings
- 3-6 Locations of Previous Soil Borings and Existing Monitor Wells and Recovery Wells
- 3-7 Hydrogeologic Cross Section
- 3-8 Estimated Areal Extent of Elevated TPH in Soils
- 3-9 Estimated Vertical Extent of Elevated TPH in Soils
- 4-1 Proposed Phase I Soil Boring Locations
- 5-1 Proposed Phase I Monitor Well Locations
- 5-2 Monitor Well Schematic
- 7-1 Proposed Schedule for Phase I Closure Activities

LIST OF TABLES

Table

- 2-1 Water Supply Wells Located Within 2 Miles of Roswell Compressor Station No. 9
- 3-1 Summary of Previous Soil Borings and Monitor Wells
- 3-2 Summary of Organic Compounds Detected in Soil Samples
- 3-3 Summary of TCLP Inorganic Constituents Detected in Soil Samples
- 3-4 Summary of Organic Compounds Detected in Ground-Water Samples
- 3-5 Summary of Inorganic Constituents Detected in Ground-Water Samples
- 3-6 Well Coordinates and Depth to Water for Existing Monitor Wells
- 6-1 Analytical Parameters, Methods, and Data Quality Objectives
- 6-2 Sample Collection Protocol

LIST OF APPENDICES

Appendix

- A NMED Notices of Deficiency
- B Closure Plan Checklist
- C ENRON Financial Assurance Documents
- D Events and Correspondence Chronology
- E Laboratory Reports from Previous Subsurface Investigations
- F DBS&A Standard Operating Procedures
- G Boring Logs and Drilling Logs

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

LIST OF ACRONYMS AND ABBREVIATIONS

ACL B&C B&R bgs BLM BTEX CES DBS&A DO DQOS EDAC EPA FID Halliburton HLA HRMB HWMR mL MS/MSD NMED NMSHTD OCD	Alternative concentration limit Brown and Caldwell Brown & Root Environmental Below ground surface Bureau of Land Management Benzene, toluene, ethylbenzene, and xylenes Cypress Engineering Services Daniel B. Stephens & Associates, Inc. Dissolved oxygen Data quality objectives Earth Data Analysis Center Environmental Protection Agency Flame ionization detector Halliburton NUS Environmental Corporation Harding Lawson Associates Hazardous and Radioactive Materials Bureau (NMED) Hazardous Waste Management Regulations Milliliter Matrix spike/matrix spike duplicate New Mexico Environment Department New Mexico State Highway and Transportation Department Oil Conservation Division
O.D.	Outside diameter
OVA PARCC	Organic vapor analyzer Precision, accuracy, representativeness, completeness, and comparability
PID QA	Photoionization detector Quality assurance
QAPP	Quality assurance project plan
QC PPE	Quality control Personal protective equipment
PSH	Phase-separated hydrocarbons
PVC	Polyvinyl chloride
RCRA RPD	Resource Conservation and Recovery Act Relative percent difference
SCT	Salinity-conductivity-temperature meter
SEO	State Engineer Office
SVE TCA	Soil vapor extraction 1,1,1-trichloroethane
TCLP	Toxicity characteristic leaching procedure
TDS	Total dissolved solids
TNRCC TPH	Texas Natural Resources Conservation Commission Total petroleum hydrocarbons
Transwestern	Transwestern Pipeline Company
USGS	United States Geological Survey
VOCs	Volatile organic compounds

1. INTRODUCTION

At the request of Transwestem Pipeline Company (Transwestem), a wholly owned subsidiary of ENRON Operations Corporation, Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this Closure Plan for closure of former surface impoundments located at Transwestern's Compressor Station No. 9 (Roswell compressor station) near Roswell, New Mexico (Figure 1-1). The closure plan has been prepared for submission to the Hazardous and Radioactive Materials Bureau of the New Mexico Environment Department (NMED) in order to satisfy the requirements of the New Mexico Hazardous Waste Management Regulations (HWMR-7). Sections 1.1 through 1.3 provide information on the scope of work, objectives, and organization of the closure plan, along with a cross-reference to the relevant regulations.

1.1 Scope of Work

This closure plan addresses proposed activities for closure of several former surface impoundments located at the Roswell compressor station. The former surface impoundments were located in the northeastern corner of the compressor station. Initial operation began in approximately 1960 and may have continued until 1984, although the last impoundment was not backfilled until June 1986. Two impoundments are known to have existed at this location, and a third is suspected to have been present. No surface expression of the former impoundments is now visible at the site.

The impoundments served primarily to contain pipeline condensate, a hydrocarbon liquid that accumulates within natural gas pipelines. Pipeline condensate and other similar petroleum wastes are generally exempt from regulation under the Resource Conservation and Recovery Act (RCRA) by the petroleum exclusion. However, small quantities of RCRA-regulated spent halogenated solvents (F001 wastes) were also inadvertently released into the impoundments, along with miscellaneous non-hazardous solid wastes such as filters, engine parts, and office trash (Campbell, 1993). Therefore, NMED has requested that a RCRA closure plan be prepared to address the possible presence of RCRA hazardous wastes beneath the former impoundments.

The closure plan was prepared in accordance with the requirements of Part VI of HWMR-7, which incorporate by reference the federal requirements contained in 40 CFR Part 265. In addition, the closure plan is intended to address the list of required information requested by NMED in the Notice of Deficiency dated March 7, 1994, as well as that dated September 28, 1994 (Appendix A).

1.2 Closure Plan Objectives, Organization, and Amendments

The overall objective of this closure plan is to provide the basis for performing final closure of the former surface impoundments. Closure will be considered complete upon receipt of a signed Closure Certificate from NMED. As described in 40 CFR Part 265, the two available options for closure of surface impoundments include (1) clean closure and (2) landfill closure. Transwestern intends to attempt clean closure of the impoundments, whereby any hazardous wastes that may be present are removed to the extent that future threats to human health and the environment attributable to the facility no longer exist.

A phased approach will be used to achieve the clean closure objectives. This closure plan only addresses Phase I closure activities in detail. Scopes of work for subsequent phases will be prepared and submitted to NMED as amendments to this closure plan. In general, the objective of Phase I will be to characterize the nature of the subsurface wastes that remain immediately beneath and adjacent to the former impoundments. Thus the Phase I soil and ground-water assessments described here are confined to a relatively small area near the suspected contaminant sources. Following completion of Phase I, a second phase of investigation will be conducted to determine the lateral and vertical extent of impacted soil and ground water. Subsequent phases will address corrective actions that may be required to meet soil and ground-water cleanup criteria.

This closure plan is organized in the following manner. The site background and regulatory status of the former impoundments will be described first in Section 2 to provide a basis for the proposed closure activities. The results of all previous subsurface environmental investigations will then be summarized in Section 3. The proposed Phase I soil assessment and Phase I ground-water assessment plans are outlined in Sections 4 and 5, respectively. A quality

2

assurance project plan is included in Section 6 to ensure that the data generated are of sufficient quality to support subsequent decisions. Finally, the proposed project schedule is included in Section 7.

1.3 Regulatory Requirements of 40 CFR Parts 264/265

The closure regulations in Subpart G of 40 CFR Parts 264/265 include a specific list of requirements that must be fulfilled. An attempt has been made to address each of these requirements in this closure plan.

In order to facilitate the review and approval of this closure plan by NMED, a closure plan checklist has been included in Appendix B. The format for the checklist was developed by the U.S. Environmental Protection Agency (U.S. EPA, 1987) for evaluation of surface impoundment closure plans and includes citations of the regulatory requirements outlined in Subpart G of 40 CFR Parts 264/265, along with reference to the sections or subsections of this closure plan containing the information that pertains to those requirements. The checklist can be used as a guideline to ensure that all relevant regulatory requirements have been adequately addressed.

In addition to the closure requirements (Subpart G), the ground-water monitoring requirements stipulated in 40 CFR Parts 264/265 Subpart F have been addressed in Section 5 of this document.

In accordance with the financial requirements of 40 CFR Parts 264/265 Subpart H, documentation of financial assurance for closure must be provided with this closure plan. As owner of the Roswell compressor station, Transwestem can demonstrate that it passes the financial test specified in Part 265.143(e). A letter from the chief financial officer of Transwestem documenting the results of the financial test is provided in Appendix C of this closure plan, along with several supporting documents. This information is the same as that previously submitted to NMED on July 1, 1993.

2. SITE BACKGROUND

The Roswell compressor station is located approximately 9 miles north of the city center of Roswell, New Mexico along the east side of U.S. Highway 285 (Figure 1-1). Sections 2.1 through 2.5 provide background information regarding the facility layout and operation, history of the former surface impoundments that are the subject of closure under this plan, as well as the regional geographic, geologic, and hydrologic setting.

2.1 Facility Description

The Roswell compressor station is situated on approximately 80 acres of land in Sections 21 and 28, Chaves County, New Mexico (Figure 1-1). The property is privately owned by Transwestern Pipeline Company, while the remainder of Sections 21 and Section 28 are State Trust Land (Glenn, 1993). Site access is via U.S. Highway 285, and the entire property is secured by a chain link fence. The following is a list of pertinent information regarding the facility:

Facility name	Transwestern Pipeline Company Compressor Station No. 9
Facility address	Transwestern Pipeline Company 6381 North Main Street P.O. Box 1717 Roswell, New Mexico 88202-1717
Telephone number	(505) 625-8022
EPA I.D. number	NMD 986676955
County and state	Chaves County, New Mexico
Property legal description	SW¼ of the SW¼ of Section 21, T. 9S. R. 24E. NW¼ of the NW¼ of Section 28, T. 9S. R. 24E.
Latitude/longitude of former impoundments	Pit 1: N33°30'54" / W104°30'55" Pit 2: N33°30'55" / W104°30'55" Pit 3: N33°30'55" / W104°30'56"
Site elevation	Approximately 3610 feet above sea level

The Roswell compressor station is one of numerous similar facilities located along the Transwestern natural gas pipeline that extends from Texas to California. Natural gas is received

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

from the east through two 24-inch pipelines, the West Texas Lateral and the Panhandle Lateral, and leaves to the northwest through two 30-inch pipelines. The primary function of the compressor station is to boost the pressure of the natural gas stream by means of piston compressors powered by natural gas internal combustion engines. The facility also includes the district offices for Transwestern's New Mexico operations, along with other ancillary buildings including a warehouse and a repair shop (Figure 2-1). The compressor station has been in operation at this location since August 9, 1960.

The only environmental permit currently in force is Discharge Plan GW-52 with the New Mexico Oil Conservation Division (OCD). An RCRA Part A permit application was filed with NMED in January 1993 for closure of the former impoundments under interim status.

2.2 History and Operation of Former Surface Impoundments

Little information exists about the operational history of the surface impoundments. Much of what is known is based on the recollection of present or former Transwestern employees. The following discussion summarizes the available information regarding the locations, sizes, and periods of operation of the former surface impoundments.

As mentioned in Section 1, the primary function of the former impoundments was to contain pipeline condensate, a hydrocarbon liquid that accumulates during the periodic cleaning of the natural gas pipelines. Natural gas is composed mostly of alkane compounds, with methane being the most abundant (Eiceman, 1986). In addition, natural gas contains variable concentrations of heavier molecular weight hydrocarbons (C4+), which may condense due to changes in temperature and pressure within the pipelines. Besides the higher molecular weight hydrocarbons derived from the natural gas itself, pipeline condensate may also contain lube oil blow-by derived from upstream reciprocating engine gas compressors located at other compressor stations. The lube oil blow-by consists of crankcase lubricating oil that bypasses the compressor piston rings and enters the natural gas pipeline.

Pipeline condensate is periodically removed from the pipeline through "pigging" operations, which make use of a cylindrical piston-like device known as a "pig." The pig cleans the condensate

5.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

from the interior pipeline wall by scraping and brushing as it is carried through the pipeline by the pressurized gas stream. The pig and the accumulated liquid condensate are removed from the pipeline at the "pig receiver" (Figure 2-1). Currently, all condensate is collected and stored in aboveground tanks. The condensate is then sold for use as fuel. Formerly, the condensate was stored in one or more unlined surface impoundments that are the subject of this closure plan. The impoundments have been variously referred to as the "disposal pit" or the "burn pits." The latter term refers to the reported practice of periodically burning the hydrocarbon liquids in the impoundment to reduce their volume (Campbell, 1993).

The first reported use of a surface impoundment at this location was in August of 1960, shortly following construction of the compressor station in 1960 (Campbell, 1993). However, no records are currently available showing the exact location or size of this surface impoundment or others that may have been used subsequently until the last remaining surface impoundment was backfilled in 1986. Correspondence among Transwestem, NMED, and OCD has generally referred to a single impoundment as "the disposal pit" (Campbell, 1992) or "the burn pit." However, the General Plan map for the Roswell compressor station (Transwestern, 1959) showed two surface impoundments located in the northeast comer of the facility, in the NE¼ of the SW¼ of the SW¼ of Section 21, T. 9S. R. 24E. The locations of the two former burn pits as previously shown on the General Plan were found to be incorrect, as discussed below.

Figure 3 of a report prepared by Metric Corporation (1991) indicated the possibility that three pits had existed in the northeast corner of the facility. This was reportedly based on discussions with a former compressor station supervisor who was able to recall the approximate locations of three former surface impoundments (Campbell, 1994). The three pits are designated in the Metric report (1991) as Pit 1 (southernmost), Pit 2 (northeast), and Pit 3 (northwest). The employee was said to have pointed out the approximate former locations of the pits to the Metric field staff. For the sake of consistency, these designations will be retained through this closure plan. However, it should be noted that the existence of Pit 3 is less certain than Pits 1 and 2, as described below.

Prior to the preparation of this closure plan, the location and number of former surface impoundments was not known precisely. In order to clarify the number and exact locations of the former impoundments, DBS&A obtained historical aerial photographs showing the compressor

6

station. The following sources were contacted during this effort: the Earth Data Analysis Center (EDAC, Albuquerque), the Bureau of Land Management (BLM, Albuquerque), the New Mexico State Highway and Transportation Department (NMSHTD, Santa Fe), IntraSearch (Denver), and the United States Geological Survey (USGS) Earth Science Information Center (Denver). Several aerial photographs showing the compressor station were located, and contact prints were obtained for five different photographs taken on the following dates:

Date Flown	Approximate Scale	Source
07/28/61	1:23,000	EDAC-Albuquerque
10/10/72	1:25,000	NMSHTD-Santa Fe
06/21/73	1:32,000	BLM-Albuquerque
04/19/81	1:26,000	BLM-Albuquerque
08/05/82	1:19,000	NMSHTD-Santa Fe

The 1961 aerial photograph shows a single feature that appears to be a surface impoundment in the extreme northeast corner of the property. This impoundment corresponds to Pit 2 on Figure 2-1. This appears to be the first surface impoundment constructed at the compressor station.

The 1972 and 1973 photographs reveal two features that appear to be surface impoundments. In order to more clearly see these features, enlargements were made of the 1973 and 1981 BLM photographs to scales of 1:5340 and 1:4330, respectively. Examination of the 1973 photograph shows two surface impoundments (Pit 1 and Pit 2 on Figure 2-1), with a third feature that may represent a backfilled impoundment (Pit 3 on Figure 2-1). However, the existence of Pit 3 is by no means certain, and it is quite possible that no impoundment ever existed at this location.

In the 1981 and 1982 photographs, only Pit 1 remains visible (Figure 2-1). Pit 2 appears to have been backfilled prior to the April 19, 1981 flight, and the feature labeled as Pit 3 is no longer visible.

Pit 1 was reportedly taken out of service no later than 1984 and backfilled in June of 1986 (Campbell, 1993). No wastes of any type were received after that date. Based on the aerial

photographs, the dimensions and approximate periods of operation of the three former surface impoundments were as follows:

Impoundment	Approximate Dimensions	Date Constructed	Date Backfilled
Pit 1	40' x 70' (rectangular)	After 7/61, before 10/72	6/86
Pit 2	70' diameter (circular)	Before 7/61	Before 4/81
Pit 3	50' diameter (circular)	After 7/61, before 10/72	Before 4/81

It is estimated that the impoundments were at most 10 feet deep. Therefore, the maximum volumes of Pits 1, 2, and 3 during their operational lifetimes were approximately 1000, 1400, and 700 cubic yards, respectively.

In addition to the pipeline condensate, trace quantities of chlorinated solvent wastes were inadvertently released into the impoundments. The solvents were primarily used as degreasers to remove oily deposits on engine parts during maintenance of the compressor engines. The quantity of solvents and the exact type of solvents used is unknown as no records that might indicate the quantity or type of solvent materials purchased are known to exist at the site or at any other Transwestem facility. In addition, most of the Transwestem employees who were employed during the period of operation of the surface impoundments have retired.

Discussions with the few remaining personnel who were employed during the period in question indicate that the most common solvent used was known by the trade name "TK-1." This solvent product contained 100% 1,1,1-TCA. The primary degradation product of 1,1,1-TCA is 1,1-DCA. Therefore, the presence of these two compounds in soil and ground water are most likely the result of the use of the "TK-1" solvent product. The source of PCE and PCA compounds that were also detected in soil samples collected from the surface impoundment area is unknown.

Discussions with the same Transwestern personnel further indicate that the last surface impoundment in use (Pit 1) did not receive any waste materials after mid-1984. This information is supported by examination of facility drawings which indicate that considerable facility piping and AST upgrades and installations were made during the latter half of 1983.

2.3 Regulatory Background

This section provides a brief history of prior communications and regulatory actions related to the former surface impoundments being closed under this closure plan. This information is included to facilitate an understanding of events pertinent to regulation and closure of the impoundments.

As discussed in Section 1, operations involving wastes generated during the production and transmission of natural gas are generally exempt from regulation under RCRA as a result of the petroleum exclusion. Thus Transwestem's Compressor Station No. 9, along with other compressor stations in New Mexico, have historically been regulated by the New Mexico OCD.

As discussed in greater detail in Section 3, chlorinated solvents were first detected in soil gas near the former surface impoundments during a soil vapor survey by Harding Lawson Associates (HLA) in 1991. The survey was conducted at the request of legal counsel in order to provide legal advice to Transwestern concerning environmental matters. The compound detected most frequently was 1,1,1-trichloroethane (1,1,1-TCA). Because chlorinated volatile organic compounds (VOCs) are not natural components of natural gas or pipeline condensate, and because spent halogenated solvents are classified as F001 "Listed Wastes" under RCRA, the NMED Hazardous and Radioactive Materials Bureau became involved.

Following a subsequent soil investigation by Metric Corporation completed in December 1991, Transwestern attended a series of meetings with NMED and OCD to discuss the potential corrective action at the former surface impoundments. Because it appeared possible that RCRAregulated wastes had been inadvertently released into the impoundments, NMED requested that Transwestern submit a RCRA Part A permit application.

On November 30, 1992, Transwestern submitted the RCRA Part A application to NMED and OCD. During a joint meeting of NMED and OCD with Transwestern on December 10, 1992, NMED requested that the Part A application be resubmitted using the proper EPA forms. This was done on January 5, 1993.

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

On February 17, 1993, NMED requested that Transwestern submit a RCRA closure plan for the former impoundments in accordance with the New Mexico Hazardous Waste Regulations, Part VI, Section 40 CFR 265.112(a). Although the impoundments had in fact been physically closed since June of 1986, Transwestem prepared a closure plan, which was delivered to NMED on July 1, 1993. NMED rejected this closure plan on March 7, 1994, however, on the grounds that it was incomplete and requested that another closure plan be submitted at a later date. On April 8, 1994, Transwestem met with NMED to discuss the Notice of Deficiency. The NMED requested that an administratively-complete closure plan be delivered by June 1, 1994.

Meanwhile, Transwestern had begun interim corrective measures to recover free hydrocarbon product from monitor well MW-1. Three additional wells, MW-1B, MW-2, and RW-1, were subsequently connected to the product recovery system. Transwestern has continued to keep NMED and OCD informed of the results of all subsurface investigations, as well as the performance of the product recovery system.

In addition to the above summary, Appendix D of this closure plan is a detailed chronology of events and relevant communications between Transwestern and the regulatory agencies regarding the former surface impoundments. The chronology is included to document the events preceding the submission of this closure plan and is intended to aid the reviewer in understanding the context in which it was developed.

Transwestem continues to maintain that the hydrocarbon contaminants that originated from past disposal practices at the surface impoundments represent petroleum industry wastes, and nothing in this report is to be construed as an admission otherwise. Furthermore, Transwestem believes that the soil and ground water underlying the former impoundments are best addressed in a manner similar to other petroleum hydrocarbon spill sites, particularly since the concentration of halogenated hydrocarbon constituents is minute. However, in accordance with NMED's request, Transwestem has prepared this closure plan.

2.4 Geographic Setting

The Roswell compressor station is located approximately 6 miles west of the Pecos River within the Pecos Valley drainage basin. The entire area west of the Pecos River is generally referred to as the west Pecos slope (Kelley, 1971), which rises westward from elevations of about 3,300 feet at the Pecos River to over 10,000 feet in the Capitan Mountains some 50 miles to the west. Tributary surface streams drain west to east toward the Pecos River. Local topography is generally of low relief. The mean annual precipitation as measured at the Roswell Municipal Airport for a 23-year period was 9.82 inches. The majority of the precipitation occurs in July and August during frequent summer thunderstorms.

2.5 Regional Hydrogeology

The Roswell compressor station lies within the northernmost portion of the Roswell hydrologic basin. The basin is structurally controlled by eastward-dipping carbonate and evaporite sequences of Permian age which were uplifted during the Tertiary period during the development of the Sacramento and Guadalupe Mountains along the western margin of the basin (Kelley, 1971). Eastward flowing tributaries originating in the western highlands have deposited Quatemary alluvium over the Permian age rocks west of the Pecos River.

Because the average dip of the Permian rocks is greater than the slope of the land surface, progressively younger units are encountered eastward toward the Pecos River. Several prominent northeast trending ridges and hills interrupt the gently sloping plains near the site. These structures are narrow fault zones referred to as the Border Hills, Six-Mile Hill, and the Y-O faulted anticlines.

The stratigraphic units of importance with regard to water resources are, in ascending order, the San Andres Formation (Permian), the Artesia Group (Permian), and the undifferentiated Quatemary valley fill alluvium. Figure 2-2 shows the generalized stratigraphy in the vicinity of the site. Ground water is produced from both a shallow water-table aquifer (alluvium) and a deeper artesian aquifer that includes the two bedrock units (Welder, 1983). The deep bedrock aquifer is commonly known as the Roswell artesian aquifer. According to the State Engineer Office

(SEO), approximately 400,000 acre-feet of water are pumped annually from the two aquifers of the Roswell hydrologic basin (DBS&A, 1992). The two aquifers are separated by a semi-confining layer, but are connected where the carbonate aquifer rises structurally to meet the shallow aquifer. Both aquifers are recharged along surface exposures on the slopes to the west and are believed to discharge to the Pecos River at the eastern margin of the basin.

The following subsections describe each of the hydrostratigraphic units in the Roswell basin in detail.

2.5.1 San Andres Formation

The San Andres Formation consists primarily of a thick sequence of limestones, dolomitic limestones, and dolomites, with increasing quantities of interbedded anhydrite and gypsum to the north (Kelley, 1971). The formation is divided into three members, in ascending order: the Rio Bonito, the Bonney Canyon, and the Fourmile Draw members (Figure 2-2; Kelley, 1971). The average thickness of the formation is about 1,000 feet in the Roswell basin (Bean, 1949).

The Fourmile Draw member is the principal water-bearing unit within the San Andres Formation. High permeability has resulted from an irregular network of collapsed breccias, cavities, caves, and other interconnected open structures which were formed by dissolution of evaporite and carbonate beds. Gypsum beds become much more abundant in the Fourmile Draw member from Roswell northward (Kelley, 1971), and a well-developed karst surface is exposed where the unit is not covered by alluvium. In the northern portion of the basin the water-bearing zones of the San Andres Formation are approximately 400 to 600 feet thick and ground-water flow is primarily to the east-southeast toward the Pecos River.

In general, the lower boundary of the Roswell artesian aquifer, in general, is defined by low permeability zones that commonly occur within the Bonney Canyon member, which lies approximately 450 feet below the surface in the vicinity of the Roswell compressor station (Figure 2-2). SEO well records for wells near the site indicate that the upper boundary of the San Andres is approximately 92 feet below ground surface (bgs) in this area.

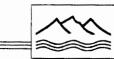
2.5.2 Artesia Group

The Artesia Group includes the following formations, in ascending order: the Grayburg, Queen, Seven Rivers, Yates, and Tansill Formations. In the vicinity of the Roswell compressor station, only the first three formations are present. The Artesia Group consists primarily of dolomite, sandstone, and gypsum units of Permian age. The sedimentary sequence represents a rapid lateral change in depositional environments from the souther massive reef complexes near Carlsbad to the northern clastic and evaporitic sequences representative of back reef and shelf environments (Kelley, 1971).

The Grayburg Formation unconformably overlies the San Andres Formation and ranges in thickness from 140 to 360 feet. The bottom of the Grayburg Formation provides a leaky confining bed that allows artesian ground water to move upward through the Artesia Group into the shallow alluvial aquifer. The thickness of this confining bed varies from 0 to 1,000 feet across the basin.

Drillers logs in the Roswell area indicate that discontinuous permeable units in the upper Artesia Group act as water-bearing zones (Welder, 1983). Fractures and cracks between fragments of collapsed breccia and solution-enlarged bedding planes and joints constitute the principal sources of permeability. These water-bearing zones generally occur in the upper quarter of the confining unit and may yield water to wells that tap both the upper Artesia Group and the shallow alluvium.

In most areas the Artesia Group is covered by a veneer of Quaternary alluvium west of the Pecos River. In the northwest portion of the basin, the bedrock confining unit is thin or absent, and the clay beds within the valley fill act as the confining bed for the lower confined carbonate aquifer. Historically, the lower carbonate aquifer discharged upward into the alluvium, but within the past 50 years, the vertical gradient across the confining bed has reversed because of ground-water pumping from the deep aquifer. This reversal has resulted in a downward gradient, causing ground water in the shallow aquifer to discharge to the deeper carbonate aquifer in some areas (DBS&A, 1992).


2.5.3 Quaternary Valley Fill

The Quaternary valley fill in the Roswell area was deposited by shifting streams flowing from the west toward the Pecos River. The valley fill consists of poorly to moderately consolidated deposits of gravel, sand, and clay which mantle the underlying Permian rocks. The thickness of alluvial sediments varies considerably from one locality to another because of the irregular bedrock erosional surface upon which the alluvium was deposited. In some areas the alluvial fill is moderately well cemented.

The thickness of the shallow alluvial aquifer is shown on Figure 2-3 for the northern portion of the Roswell Basin. Lyford (1973) developed the thickness (isopach) map after examination of drill cuttings from 225 wells penetrating the valley fill. Lyford's map indicates that the alluvium near the site is generally less than 50 feet thick. In other areas, however, the thickness can exceed 250 feet thick where the alluvium fills depressions in the underlying bedrock surface. Recent SEO well records indicate that the alluvium near the site is approximately 70 feet thick (DBS&A, 1992).

Lyford (1973) described three distinct units in the valley fill of the Roswell Basin. These units were termed the quartzose, clay, and carbonate gravels. The quartzose unit consists of sandstone, quartzite, quartz, chert, and igneous and carbonate fragments with varying degrees of calcium carbonate cemention. The quartzose unit in the vicinity of the Pecos River consists primarily of medium to coarse, uncemented quartz grains (Welder, 1983). Silt and clay deposits occur as lenses overlying the quartzose unit. These lenses were deposited in small ponds and lakes that resulted from the dissolution and collapse of the underlying carbonate rocks. The carbonate-gravel unit overlies the other valley fill deposits and generally consists of coarse carbonate gravel with intermixed silts and caliche.

The alluvial sediments underlying the compressor station, as observed in borings drilled during several investigations (Section 3), consist predominantly of interbedded cobbles, gravel, sand, silt, and clay. The finer-grained zones form lenticular beds which appear to be discontinuous across the site. Some of the alluvial deposits are firmly cemented in some places. These lithologic descriptions are consistent with Lyford's descriptions of the valley fill.

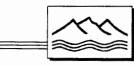
The principal water-bearing zones of sands and gravels are separated by less permeable lenses of silt and clay. According to Welder (1983), one to five water-bearing zones exist within the valley fill, and in many areas the alluvium is hydraulically connected to the upper bedrock units of the Artesia Group. The perimeter of the shallow alluvial aquifer is generally bounded by a margin of less permeable alluvium.

Figure 2-4 shows the approximate elevation of the water table in the shallow alluvium, as determined from measurements of water levels in wells completed in the alluvium (DBS&A, 1992). The map indicates that the station lies slightly outside the mapped extent of the shallow alluvial aquifer and that ground-water flow is toward the Pecos River. Although a thin layer of saturated alluvium exists as far north as Arroyo del Macho, Welder (1983) did not include this area within the extent of the shallow alluvial aquifer as defined by him, primarily because the ground-water quality in this area is too poor to be used for water supply purposes (DBS&A, 1992). The poor water quality in the shallow alluvial aquifer from slightly south of the Roswell compressor station northward is due to the presence of gypsum beds of the Fourmile Draw member at the base of the alluvium.

Because of the poor water quality and the low yields, most wells completed in the shallow alluvium are used primarily as livestock water supplies. In general, the chloride content of water in the shallow aquifer increases from west to east and ranges from 20 mg/L to 3700 mg/L (Welder, 1983). The presence of gypsum beds results in objectionably high calcium and sulfate concentrations in the shallow alluvial aquifer in the vicinity of the Roswell compressor station and northward. Sulfate concentrations are typically in the range of 2,000 to 3,000 mg/L, which is approximately equal to the equilibrium saturation concentration for ground water in direct contact with gypsum (CaSO₄ \cdot 2H₂O). Thus, background sulfate concentrations in this area are four to five times above the New Mexico Water Quality Control Commission ground-water standard for sulfate of 600 mg/L. The poor water quality in the alluvium is consistent with the high total dissolved solids concentrations reported for ground water from the on-site monitor wells, as discussed further in Section 3.

15

2.6 Water Well Inventory


A survey was conducted to locate water supply wells within 2 miles of the Roswell compressor station. This survey was accomplished by searching a water well database created by DBS&A that is based on the USGS Ground-Water Sites Inventory database. The database contains the locations of all known water wells plus additional information regarding well construction, well use, and aquifer penetrated. The water well database was compiled by DBS&A for a ground-water modeling project conducted for the SEO.

A review of the database revealed that there are 18 wells within about 2 miles of the compressor station. Table 2-1 details the location, total depth, depth to water, use, and completion aquifer for each of these 18 wells, along with their distance from the compressor station, and Figure 2-5 shows the locations of the wells relative to the site.

On December 2 and 3, 1994 a field reconnaissance of the off-site wells was conducted, and the wells were accurately located using a Magellan GPS satellite navigator. In addition, the condition and current use of each well was noted. The results of the well inventory and field reconnaissance are described below.

The closest off-site well to the former surface impoundments is a shallow livestock well completed in alluvium to a depth of 58 feet (well 3 on Figure 2-5). This well, which is no longer in use, is located about a half mile due east of the impoundments in the direction that would presumably be downgradient. The well is completed with 8⁵/₈-inch casing, and the depth to water measured in 1937 reportedly was 15 feet. The well is presently plugged and abandoned, and may have gone dry because of declining water levels in the Roswell area.

The next nearest well is a 352-foot-deep well (TW-1) located in the southwestem portion of the compressor station property (well 2 on Figure 2-5). This well was reportedly drilled in 1969 for use as a water supply well for the compressor station (Campbell, 1994). Following connection of the facility to the City of Roswell water distribution system, however, use of the well was turned over to the Pecos Valley Artesian Conservancy District for monitoring water levels in the Roswell bedrock aquifer. Based on comparison of the drillers' log with the local stratigraphy, the well is

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

completed in limestone of the San Andres Formation. The well is cased with 9⁵/₈-inch steel casing from the surface to a depth of 240 feet, and is open from 240 feet to the total depth of 352 feet. The depth to water as measured in December 1994 was 65 feet.

Several active and inactive irrigation and livestock wells are located between 1 and 2 miles east of the site (Figure 2-5). All of these wells are completed in the San Andres limestone aquifer. Given the distance to the downgradient wells and the presence of the aquitard between the alluvium and the bedrock aquifer, it is very unlikely that ground water from the compressor station could impact any of the active water supply wells.

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

3. PREVIOUS ENVIRONMENTAL INVESTIGATIONS

Several hydrogeologic investigations have been completed at the Roswell compressor station to characterize the extent of subsurface impacts near the former surface impoundments. The investigations have included (1) a comprehensive soil vapor survey and soil coring program by HLA, (2) a drilling and soil sampling program by Metric Corporation, (3) installation of a monitor well by Halliburton NUS Environmental Corporation (Halliburton), (4) installation of a product recovery pump in monitor well MW-1 by Cypress Engineering Services (CES), (5) a drilling and soil sampling program by Brown & Root Environmental (B&R), and (6) system operation and optimization by Brown & Caldwell.

The above investigations and the interim corrective action program have been undertaken in phases beginning in the spring of 1990 and continuing to the present. During this period extensive data have been collected regarding subsurface soils and ground-water conditions at the site.

Sections 3.1 through 3.5 provide an accounting of each of the field investigations conducted to date, and Section 3.6 summarizes the extent of subsurface impacts resulting from past surface impoundment operations. Table 3-1 provides a summary of the soil borings and monitor wells installed during each investigation. Analytical summaries of hydrocarbon compounds detected in soil and ground water are provided in Tables 3-2 through 3-6.

3.1 Harding Lawson Associates Shallow Subsurface Investigation (1990)

During the spring of 1990, a soil investigation was performed by HLA to investigate the presence of VOCs in the shallow subsurface in the vicinity of the former surface impoundments (HLA, 1991a). The HLA investigation included an extensive soil gas survey and a soil coring and sampling program.

During the soil gas survey, HLA collected a total of 812 soil vapor samples from the locations shown on Figure 3-1. Soil gas samples were collected from depths ranging from 2 feet to 36 feet by driving a soil vapor probe several feet ahead of the hollow-stem auger bit. Soil vapor samples

18

were analyzed in a mobile laboratory by subcontractor Fahrenthold & Associates using a gas chromatograph equipped with an electron capture detector. Five target purgeable halocarbons were quantified, including 1,1,1-TCA, trichloroethene, perchloroethene, chloroform, and carbon tetrachloride. The laboratory results for the soil gas samples are provided in Appendix E of this document.

The highest VOC concentrations were measured near the surface impoundments located in the northeast portion of the facility. The most frequently detected compound was 1,1,1-TCA, which was also detected at the highest concentrations (up to 372 ppmv). The areal distribution of 1,1,1-TCA at the 10-foot depth, as determined by HLA, is illustrated in Figure 3-2. The mass of vapor phase 1,1,1-TCA within the plume is estimated to be approximately 18 kg, assuming that the concentrations at the 10 foot depth apply to all soils from the surface to the water table at a depth of about 60 feet. This is equivalent to a volume of liquid 1,1,1-TCA of only about 3.5 gallons.

Following completion of the soil gas survey, HLA undertook a program of continuous coring and soil sampling in order to validate the soil vapor survey results. A total of 11 borings were drilled to depths of up to 65 feet. Continuous 5-foot-long soil cores were collected using a hollow-stem auger drill rig. Figure 3-3 shows the location of each boring drilled by HLA. The soil samples were analyzed in the laboratory for a suite of selected VOCs, semivolatile organic compounds, total petroleum hydrocarbons (TPH), and toxicity characteristic leaching procedure (TCLP) metals. The results of these analyses are summarized in Tables 3-2 and 3-3, and the complete laboratory reports are provided in Appendix E.

Only a few of the HLA soil samples contained detectable concentrations of the target purgeable halocarbons. A soil sample collected from 35 to 37 feet deep in boring SB-9-07 near the surface impoundments contained the highest concentration of 1,1,1-TCA (2 mg/kg). This boring also contained somewhat higher concentrations of Freon-113, ethylbenzene, xylenes, and TPH.

In 4 of the 11 borings, HLA encountered perched water on top of a clay lens at approximately 30 feet bgs. The boreholes that contained water were near the utility garage and engine room (Figure 2-1). HLA postulated that the clay formed an aquitard with an undulating surface, thus

allowing the water to pond within depressions in the upper surface of the clay. Water samples collected from these borings contained concentrations of 1,1,1-TCA below EPA drinking water MCLs.

3.2 Metric Corporation Shallow Subsurface Investigation (1991)

During July and November 1991, Metric Corporation drilled 20 additional soil borings to delineate the areal and vertical extent of the VOCs identified by HLA near the surface impoundments (Metric, 1991). The locations of borings drilled by Metric are shown on Figure 3-4. Soil borings were generally advanced to approximately 30 to 40 feet bgs in order to characterize soil type and to determine if VOCs were present above the uppermost clay unit. Only four soil borings were drilled to depths greater than 50 feet bgs (Table 3-1).

Metric collected soil samples using a continuous tube sampler, and each core was screened for the presence of VOCs using an organic vapor analyzer (OVA). Within a given soil core, the material with the highest concentration of organic vapors was submitted to the laboratory for analysis of the following constituents: TPH, benzene, toluene, ethylbenzene, and xylenes (BTEX); and purgeable halocarbons by EPA Methods 418.1, 8010, and 8020, respectively. The results of these laboratory analyses are summarized in Tables 3-2 and 3-4. Several of the borings contained VOC concentrations above the soil cleanup standards enforced by NMED and OCD.

Based on the analytical results, Metric estimated that the areal and vertical extent of VOC impacts extended approximately 240 feet east and approximately 100 feet north of the northeast property corner. The investigation further established that purgeable halocarbons are present to depths of at least 30 feet bgs near surface impoundments 1 and 2 (soil borings "Pit 1" and "Pit 2") and along the eastern fence line (soil boring SG 86). In addition, some soil samples contained TPH concentrations of 100 mg/kg, or greater, to depths exceeding 27 feet in soil borings "Pit 1," "Pit 2," SG 86, and OS BH-9.

Most borings drilled previously by HLA and Metric had penetrated a clay layer at approximately 30 feet bgs. However, clay was not encountered in soil boring "Pit 2" above about 68 feet bgs. This prompted Metric to conclude that a natural clay basin existed beneath the surface

impoundments, with the sides sloping from the 30 to 40 foot depth around the perimeter, to approximately 70 feet bgs near the basin bottom.

However, subsequent drilling programs verified that the upper clay is, in fact, present at the 35 to 40 foot depth near the "Pit 2" soil boring, but is thinner and contains coarser sediments. The upper clay unit appears to grade laterally into a coarser zone of sandy clays near soil boring "Pit 2." Further, the clay unit identified at 67.9 feet bgs by Metric is actually part of the lower clay unit that underlies the entire site. This lower clay may lie near the contact between the valley-fill alluvium and the underlying Artesia Group Permian bedrock units (see Figure 2-2, Section 2.5).

Ground water was encountered at depths ranging from 37 to 57 feet bgs in 6 of the 20 borings drilled by Metric. Soil borings "Pit 2" and SG 361 (Figure 3-4) contained thin perched water zones (1 to 6 feet thick) above fine-grained sandy clays which correspond to the upper clay unit. Approximately 1-foot of water was measured at the bottom of soil borings OS BH-8 and OS BH-9 (Figure 3-4) at approximately 49 feet bgs. The water measured at the 49-foot depth may have migrated down the boreholes from the top of the upper clay unit. Finally, the ground water encountered at depths of about 55 feet bgs likely represents the water table of the uppermost aquifer, as these depths to water were generally reported in borings drilled to depths of approximately 70 feet bgs.

3.3 Halliburton NUS Corporation Monitor Well Installation (1992)

During July 1992, Halliburton installed one monitor well within the natural clay basin determined by Metric (Section 3.2) (Halliburton, 1992). The boring was drilled to a depth of 60 feet prior to sampling, at which point continuous samples were collected with a split-spoon sampler until a red clay layer containing very hard sulfate lenses was encountered at 68 feet bgs. Monitor well MW-1 was installed at the location depicted on Figure 3-5.

Following installation of MW-1, the well was developed by bailing and subsequently sampled for 8240 volatile and 8270 semivolatile organics, TPH, and total metals. The analytical results indicated that the ground water within monitor well MW-1 contained aromatic and halogenated

hydrocarbons, as well as several semivolatile organic compounds. These results are summarized in Table 3-4.

3.4 Brown & Root Environmental Ground-Water Assessment (1993)

In April 1993, B&R, a division of Halliburton, completed a limited assessment of ground-water impacts resulting from disposal activities at the former surface impoundments (B&R, 1993). The investigation was undertaken to determine if two separate saturated zones existed within the alluvium and to establish ground-water quality beneath the former impoundments.

As part of their investigation, seven soil borings were drilled, and four of these were completed as monitor wells. Figure 3-5 shows the locations of soil borings and monitor wells installed by B&R. Soil samples were collected from each boring using a split-spoon sampler or continuous core barrel. The samples were screened for the presence of VOCs using an OVA. Unfortunately, the OVA was not functioning during the drilling of soil borings SB-4, SB-5, and SB-1C. Soil samples were collected above the two saturated zones and analyzed for TPH using EPA Method 418.1; the results are summarized in Table 3-4.

Perched water was not encountered above the upper clay unit during drilling of soil borings SB-1B, SB-2, SB-3, and SB-5 (Figure 3-5). However, phase-separated hydrocarbons (PSH) and water were encountered in soil boring SB-1A immediately above the upper clay layer at approximately 40 feet bgs. This boring was subsequently plugged and abandoned by B&R. Soil boring SB-4 encountered a small saturated zone in fractured limestone at approximately 47 feet bgs. This boring is located approximately 250 feet east of the property boundary, and the limestone probably corresponds to the top of the Artesia Group (Section 2.5).

B&R installed four monitor wells in the uppermost aquifer within soil borings SB-1B, SB-2, SB-3, and SB-5. The monitor wells, identified as MW-1B, MW-2, MW-3, and MW-5, were set at total depths ranging from 65 to 70 feet bgs (Table 3-1). The newly installed wells were then checked for the presence of PSH, developed, and sampled.

Approximately 4 feet of PSH was present on top of the water table in monitor wells MW-1B and MW-2. Ground-water samples were collected from the two monitor wells without PSH (MW-3 and MW-5) and analyzed for TPH (EPA Method 418.1), volatile organics (EPA Method 624 and 8240), and total dissolved solids (EPA Method 160.1). The results of these analyses are summarized in Tables 3-4 and 3-5.

B&R concluded that two water bearing zones were present in the alluvium and that both were impacted by VOCs. The two zones included (1) the upper thin zone of perched water on the upper clay unit (approximately 40 feet bgs) and (2) a deeper zone of saturated silty sand and sand at depths ranging from 55 to 65 feet bgs. During the drilling of soil borings SB-1B and SB-2, B&R identified zones of residual saturation and PSH above the upper clay unit. Following construction of monitor wells MW-1B and MW-2 in the uppermost aguifer, approximately 4 feet of PSH was measured in each well.

In June 1993 B&R returned to the site to install PSH recovery wells in the upper water-bearing zone above the upper clay unit. An additional seven borings were drilled near the surface impoundments, designated RB-1 through RB-7 (Figure 3-5). Only one of the seven additional borings contained perched liquids. The one boring which contained liquid (RB-7) was completed as recovery well RW-1 near monitor well MW-1 (Figure 3-5). Approximately 1.4 feet of PSH was measured in recovery well RW-1 following its construction.

On March 23, 1994, CES removed an inoperative recovery pump from MW-1 and collected ground-water samples from monitor wells MW-3 and MW-5. On April 15, 1994, B&R installed a pneumatic product recovery pump and skimmer in monitor well MW-1. At that time B&R measured the following depths to PSH and to ground water in the four wells containing free hydrocarbon product:

Well	Date	Total Depth of Well (feet)	Depth to PSH ¹ (feet)	Depth to Water ¹ (feet)	PSH Thickness (feet)
MW-1	04-15-94	68.0	53.30	61.54	8.24
MW-1B	04-15-94	65.5	58.42	61.30	2.88
MW-2	04-15-94	65.0	58.68	61.50	2.82
RW-1 ²	04-15-94	42.5	38.70	39.00	0.30

¹ Depth in feet below top of casing. ² Recovery well RW-1 is completed in the perched water zone.

3.5 Interim PSH Removal Program

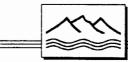
On May 21, 1993, a recovery pump was installed in MW-1 by CES. During July 1993, B&R installed PSH recovery pumps in monitor wells MW-1B, MW-2, and RW-1. Since that time, PSH and water have been pumped from these wells and routed to an aboveground storage tank. Rollins Environmental Services then periodically transports the waste hydrocarbon liquid to Deer Park, Texas for incineration.

During the fall of 1993, Brown and Caldwell (B&C) installed skimmers on each recovery pump to reduce the volume of water recovered. Prior to the installation of the skimmers, B&C measured PSH levels and ground-water levels of approximately 58. 5 and 62 feet bgs in monitor wells MW-1B and MW-2, respectively. The depth to water was approximately 38.6 feet bgs in recovery well RW-1, which contained approximately 0.06 feet of PSH at the time of measurement. The interim PSH recovery system has successfully removed approximately 7300 gallons of PSH and 5800 gallons of ground water to date and is maintained by a local contractor.

3.6 Daniel B. Stephens & Associates, Inc. Subsurface Investigation (1994)

Following correspondence and discussions between NMED and Transwestern, DBS&A performed a limited field investigation during November and December 1994. Upgradient monitor well MW-6 was installed approximately 500 feet southwest of the location of the former surface impoundments (Figure 2-1). The MW-6 boring was drilled using a hollow-stem auger to a depth of 80 feet, and the well is screened from 60 to 75 feet bgs. Soil samples were collected at 5-foot intervals during drilling, and field headspace measurements using a PID did not detect the presence of VOCs in any of the soil samples.

The alluvial sediments penetrated during drilling of MW-6 were generally consistent with those observed in previous borings; that is, they consisted predominantly of sandy gravel and sand from the surface to a depth of 60 feet and silty clay and clayey sand from 60 to 75 feet. A gravelly sand of unknown thickness was penetrated at the 79-foot depth in this boring; however, the red plastic clay reported in previous borings was not encountered.


A ground-water sample from MW-6 and a soil sample from the same boring collected from a depth corresponding to the water table were submitted for laboratory analysis of VOCs and TPH. Both the soil and the ground-water sample exhibited no detectable concentrations of 8010/8020 VOCs or TPH determined by method 418.1. The results of these analyses are included in Appendix E.

In order to allow a better estimate of the ground-water flow direction and gradient within the shallow alluvium, the elevations and coordinates of all on-site monitor wells were resurveyed on December 1, 1994. The well locations and elevations based on this survey are provided in Table 3-6.

Depths to water were measured in on-site monitor wells MW-3, MW-5, and MW-6 on December 4, 1994 and again on December 22. These data are also shown in Table 3-6. Ground-water flow directions calculated for the two dates of measurement are N74E and N72E, respectively, indicating that ground water in the shallow alluvium flows to the east-northeast in the vicinity of the former impoundments. The flow direction is shown graphically on Figure 2-1. The dimensionless ground-water gradient calculated using the December 22 data is 0.009, which is typical of relatively permeable alluvial sediments of the type encountered during drilling.

In addition to the sampling and analysis of MW-6, ground-water samples were also collected from on-site deep well TW-1 (Figure 2-1) and off-site deep well #5 (Figure 2-5). Well #5 was selected as representative of background upgradient water quality within the San Andres bedrock aquifer. The ground-water samples from these two wells were analyzed for a modified Appendix IX suite of constituents, and the laboratory results for these analyses are included in Appendix E of this document.

These results indicate that both deep wells yield very hard ground water of relatively high salinity. Well #5 contains high concentrations of sulfate (768 mg/L), chloride (750 mg/L), and TDS (2420 mg/L). These values significantly exceed the New Mexico ground-water standards for sulfate (600 mg/L), chloride (250 mg/L), and TDS (1000 mg/L). The ground-water sample collected from Transwestem well TW-1, although of somewhat lower salinity, still exceeds the New Mexico standards for chloride and TDS, with reported concentrations of 631 mg/L and 1290 mg/L, respectively. In addition, deep well TW-1 also contained elevated concentrations of iron

(4.22 mg/L) and manganese (0.39 mg/L), which exceed the New Mexico ground-water standards for these elements of 1.0 mg/L and 0.2 mg/L, respectively.

The high salinity of the ground water from TW-1 and Well #5 is almost certainly natural and probably results from dissolution of soluble evaporite minerals within the upper Fourmile Draw Member of the San Andres Formation, as discussed in Section 2.5. The high salinity of the ground water in the bedrock aquifer in this vicinity may also account for the fact that many of the production wells are no longer in use.

Appendix IX VOC analyses of the ground-water samples collected from the two deep wells revealed no detectable concentrations of any of these compounds. In addition, the sample from TW-1 was analyzed for Appendix IX SVOCs, and the only compound detected was bis(2-ethylhexyl)phthalate ($18 \mu g/L$). The phthalate esters are well-known laboratory contaminants used as plasticizers in most flexible plastic products, such as the plastic beakers and tubing used in many laboratory applications. EPA has acknowledged this compound as a common laboratory contaminant (EPA 1988, 1991). Therefore, we conclude that the reported detection of this compound is probably the result of laboratory handling of the sample; it is almost certainly not present in the ground water, as no other organic compounds were detected in the sample.

3.7 Extent of Soil and Ground-Water Contamination

The investigations completed to date and described in Sections 3.1 through 3.5 have been conducted to characterize the subsurface hydrogeology and the distribution of VOCs in the soils and ground water beneath the former surface impoundments. Figure 3-6 shows the locations of all borings and monitor wells installed to date. The contaminants detected consist primarily of petroleum hydrocarbons that are typical components of pipeline condensate, which was formerly held in the surface impoundments. Tables 3-2 through 3-5 provide summaries of the organic and inorganic constituents detected in soils and ground water during each of the previous investigations.

Sections 3.7.1 through 3.7.3 summarize the findings of the investigations discussed above and provide an accounting of the subsurface distribution of constituents exceeding regulatory guidelines set by NMED and EPA.

3.7.1 Site Hydrogeology

The Quaternary sediments beneath the impoundments consist of interbedded cobbles, gravel, sand, silt, and clay to depths of approximately 70 feet bgs. The lithology of the alluvium is consistent with the descriptions provided by Lyford (1973). A generalized hydrogeologic cross section of the sediments underlying the impoundments constructed along a north-south line (Figure 3-6) is provided in Figure 3-7. Soil types in Figure 3-7 are defined using the Unified Soil Classification System. The hydrogeology underlying the site is as follows:

- From the ground surface to depths of approximately 30 to 35 feet bgs, brown gravely sands and clays are present. Perched water is often encountered within the bottom few feet of this interval.
- At depths of approximately 35 to 60 feet, light brown to reddish-colored interbedded silts, sands, and clays are encountered. The fine-grained clay lenses serve as perching layers for the downward moving fluids and likely represent interfingering deposits of limited lateral extent.
- At depths of approximately 60 to 70 feet, saturated silty sands and sands are present. This zone is referred to as the uppermost aquifer.
- At approximately 70 feet, a red plastic clay of unknown thickness is present. This unit probably represents the transition from the Quatemary alluvium to the Permian-age bedrock of the Artesia Group.
- As discussed in Section 2.5, the background water quality in the shallow alluvial aquifer is very poor in the vicinity of the site due to the presence of gypsum beds beneath the alluvium. TDS concentrations exceed 3000 mg/L in on-site monitor wells MW-3 and MW-5 (Table 3-5). These two wells do not appear to be impacted by site activities; rather, the elevated TDS concentrations in these wells simply reflect the poor background quality of ground water in the region.
- The ground-water flow direction in the alluvium underlying the former impoundments is east-northeast, and the dimensionless head gradient is approximately 0.009.

3.7.2 Soil Impacts

Based on field OVA measurements and analytical chemistry results, elevated VOC concentrations in soil appear to encompass an area of approximately 600 feet by 400 feet centered between the three former surface impoundments. Figure 3-8 shows the estimated areal extent of impacted soil, in excess of 100 mg/kg TPH.

Near the former surface impoundments, the vertical extent of impacted soils extends from approximately land surface to the uppermost aquifer at approximately 60 feet. The vertical extent of impacted soil decreases as one moves laterally away from the surface impoundments. Due to local soil heterogeneities, it appears that VOCs have spread out along preferential pathways on top of the clay lenses at the 30- to 40-foot depth, prior to continued downward migration to the uppermost aquifer.

A generalized cross-sectional profile of impacted soils is shown in Figure 3-9; Figure 3-6 shows the location of the cross section. The estimated distribution of impacted soils is based both on field organic vapor analyzer readings and soil TPH concentrations as determined in the laboratory.

The extent of 1,1,1,-TCA detected in soil samples is limited to the area immediately below the former surface impoundments. However, elevated 1,1,1-TCA soil vapor concentrations are present throughout the estimated area of actionable soils (Figure 3-8).

3.7.3 Ground-Water Impacts

The estimated extent of actionable VOCs in ground water is difficult to ascertain due to the limited number of existing monitor wells. However, the lateral extent of VOCs is bounded on-site by monitor wells MW-3, MW-5, and MW-6. The ground-water plume most likely extends downgradient beyond the estimated extent of actionable soil contamination. The direction of ground-water flow is to the east-northeast in this area.

PSH is present in on-site monitor wells MW-1, MW-2, and MW-1B completed in the uppermost aquifer at 55 to 70 feet bgs, and in recovery well RW-1, completed in the limited perched zone from 35 to 42 feet bgs. The extent of PSH off-site, if any, remains to be defined.

4. SOIL ASSESSMENT PLAN

A phased approach will be used to assess the nature and extent of soil impacts resulting from past usage of the former surface impoundments. Phase I will consist of precisely locating the former impoundments and characterizing residual wastes through laboratory analyses. Phase II will attempt to define the lateral and vertical extents of impacts to soils underlying and adjacent to the former surface impoundments. Sections 4.1 through 4.6 describe Phase I soil sampling strategy and procedures, while Section 4.7 provides a brief description of Phase II objectives.

4.1 Phase I Soil Sampling Strategy

The sampling strategy described herein is based on information collected from previous investigations at the facility (Section 3) and examination of historical aerial photographs (Section 2.2). The goal of the Phase I soil assessment is to characterize any wastes that may remain within the former impoundments with respect to RCRA Appendix IX constituents. In accordance with NMED's request, waste characterization will include collection of soil samples from two locations directly beneath each of the known and suspected surface impoundments. Six to eight soil samples from the four potential source areas (Pit 1, Pit 2, Pit 3, SG 86) will be analyzed in the laboratory for Appendix IX VOCs, SVOCs, PCBs, metals, cyanide, and sulfide.

As described in Section 2.2, hydrocarbon liquids, primarily pipeline condensate, were placed in the impoundments during their operational lifetimes. Later, the impoundments were backfilled with clean soil, and the surface was restored to approximately original grade. At each impoundment location, this history has resulted in clean backfill overlying subsoils that are potentially impacted by seepage of liquids from the former impoundments. The Phase I soil assessment is intended to permit collection of subsoil samples from the most highly impacted horizon immediately beneath the clean backfill. Based on prior experience, the clean soil backfill is generally visually quite distinct from the underlying impacted subsoil, due to staining of the latter by hydrocarbon liquids. The soil sampling rationale for each suspected source area is described in the following paragraphs, and detailed soil sampling procedures are provided in Section 4.2.

29

The soil sampling rationale for Pits 1 and 2 differs from that for Pit 3 and SG 86. Because the former locations of Pit 1 and Pit 2 (Figure 2-1) are known with relative certainty from examination of aerial photographs, two soil borings will be drilled at each of these two areas at the approximate locations shown on Figure 4-1. In order to chemically characterize the wastes, a single sample of the most highly impacted soil will be selected from each boring at Pits 1 and 2 for laboratory analysis of Appendix IX constituents. The most highly impacted sample from each boring with the PID.

The location of Pit 3, if indeed it ever existed, is not known with any degree of certainty (Figure 2-1). Likewise, the location of a possible hydrocarbon source area in the vicinity of Metric Corporation boring SG 86 is poorly known (Figure 3-4). Therefore, in order to determine whether subsurface wastes exist at these two suspect areas, an exploratory soil sampling program will be undertaken at these locations. The approach will be to begin by collecting a continuous soil core at the center of each suspected location (Figure 4-1). If hydrocarbon-impacted soils are not found, up to four additional soil borings will then be drilled at 50-foot centers on a grid centered about the initial soil sampling location, as shown in Figure 4-1. One of the Pit 3 borings will be drilled to the top of the bedrock, at approximately 75 feet, in order to allow stratigraphic correlation between the monitor wells. Each boring will then be plugged as described in Section 4.3, to prevent downward migration of fluids.

The presence of any hydrocarbon wastes at these sites is expected to be obvious, based upon visual examination of soil cores and field headspace screening of soil samples using a PID. If wastes are found at the locations of Pit 3 and SG 86, a single soil sample from the two most highly impacted borings at each of the two locations (Pit 3 and SG 86) will be selected for laboratory analysis of Appendix IX constituents. If no evidence of hydrocarbon impacts are noted in any of the five borings at Pit 3 or SG-86, as determined by field screening with the PID, then a single soil sample from the center boring will be submitted for laboratory analysis, as discussed in Section 6.

The overall purpose of the Phase I soil assessment is to characterize residual subsurface wastes with respect to RCRA constituents such that a list of "target analytes" may be developed and the extent of subsurface impacts can be further defined during Phase II. Laboratory analysis of the soil samples collected during Phase I for selected Appendix IX analytes will permit identification

of those constituents that represent contaminants of concern at this site. As agreed upon in a meeting on November 1, 1994, NMED Hazardous and Radioactive Materials Bureau will approve the list of target analytes for the Phase II investigation based on the laboratory results of the Phase I soil and ground-water analyses.

4.2 Soil Sampling Procedures

Phase I soil sampling will be performed by continuous drive sampling through the clean soil backfill and into the underlying impacted subsoil below. By retrieving successive continuous soil samples, the maximum stratigraphic information will be obtained from each boring, with a minimum of soil cuttings that require disposal being generated. Based on reasonable assumptions regarding the depths of the former impoundments, it is estimated that the contact between the clean soil backfill and the underlying impacted subsoils will be encountered between 10 and 20 feet below grade.

Drive samples will be obtained using a 24-inch-long split-barrel sampler in accordance with DBS&A SOP 13.3.2 (Appendix F). The split-barrel sampler will be driven into the soil using the rig-mounted drive hammer with uniform drive-pressure/drop-height. Blow counts will be recorded for all split-barrel drives. Following retrieval from the borehole, the split-barrel sampler will be placed on a table covered with a clean plastic sheet. The split-barrel sampler will then be opened and the soil material described according to DBS&A SOP 13.3.2. A subsample of the material will be placed in a ziplock plastic bag for field headspace screening for VOCs using a PID.

When the base of the clean backfill is encountered, a clean split-barrel sampler equipped with 6-inch-long brass liner rings will be used to collect a sample of the hydrocarbon-impacted subsoil below. The split-barrel sampler will be driven in the same manner as described above. Upon opening the split-barrel, however, the center two liner rings to be submitted for laboratory analysis will immediately be sealed with Teflon[®] membranes, plastic end caps, and solvent-free tape to minimize loss of VOCs from the soil samples due to volatilization.

All sample containers will be labeled using waterproof ink. Label information will include the sampling location, depth interval, sampling date and time, type of analysis requested, project number, and the initials of the sampler. The containers will be sealed and placed in clear plastic

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

bags. The sealed containers will be put into coolers on bags of ice or frozen ice packs. Plastic bubble pack or other suitable packing material will be used to protect the samples during shipping. Chain-of-custody forms will be completed in triplicate for each sample shipment as described in Section 6.5.

Field personnel will ship the sample coolers to the laboratory using an overnight courier service. The fastest possible shipping method will be used, and all sample shipments will be carefully tracked to ensure that samples arrive intact and that all holding times are met.

4.3 Borehole Abandonment Procedures

The approximately 15 foot-deep, 3-inch-diameter boreholes created by continuous drive sampling of the soil will be abandoned by plugging them with a bentonite slurry poured slowly down the borehole using a funnel. The approximate volume of each borehole will be determined to estimate the volume of bentonite slurry required, and the quantity of slurry actually emplaced will be recorded. Borings drilled using a hollow-stem auger will be plugged in a similar manner, except that a cement-bentonite grout will be emplaced using a tremie pipe.

4.4 Laboratory Analysis of Soil Samples

Six to eight soil samples will be submitted to the laboratory for analysis of Appendix IX VOCs, SVOCs, PCBs, metals, cyanide, and sulfide. These samples will include one collected from the uppermost portion of the impacted soil horizon in each of two borings drilled at Pit 1 and Pit 2, plus one or two soil samples from Pit 3 and SG 86, as discussed in Section 4.1. Chemical analysis of the soil samples will be performed using standard RCRA protocols in Test *Methods for Evaluating Solid Waste* (U.S. EPA, 1986). The analytical methods and data quality objectives are discussed in greater detail in Section 6 of this closure plan.

4.5 Decontamination Procedures

All non-disposable field equipment that may potentially come in contact with any soil sample will be decontaminated in accordance with DBS&A SOP 13.5.2, Decontamination of Field Equipment (Appendix F), in order to minimize the potential for cross-contamination between sampling

locations. Clean latex or plastic gloves will be worn during all decontamination operations. The following sequence of decontamination procedures will be followed prior to each sampling event:

- Wash all down-hole equipment in a solution of non-phosphate detergent (Liquinox[®]) and distilled/deionized water. All surfaces that may come into direct contact with the soil sample will be washed. Use a clean Nalgene[®] tub to contain the wash solution and a scrub brush to mechanically remove loose particles.
- 2. Rinse the equipment twice with distilled/deionized water.
- 3. Allow the equipment to air dry prior to the next use.


The drill rig and all down-hole equipment will be steam-cleaned and allowed to air dry between borings. A decontamination area lined with plastic sheeting will be set up to contain all wash water associated with the steam-cleaning operation. Liquid wastes produced during equipment decontamination will be contained in 55-gallon drums at a designated on-site drum storage area. Pending the results of laboratory analyses, all liquids will be handled as potentially hazardous wastes, as described in Section 4.6.

4.6 Management of Investigation-Derived Wastes

All soil cuttings, decontamination fluids, and used personal protective equipment (PPE) will be stored in 55-gallon drums and labeled to identify contents, date of generation, and amount of material generated. All wastes, with the exception of PPE, will be handled as potentially hazardous wastes, pending results of laboratory analyses for associated samples.

Liquid wastes generated during decontamination of drilling and sampling equipment will be stored pending results of associated soil sample laboratory results. For example, the disposition of wash water associated with a particular boring will be determined from the analytical results of soil samples collected from that particular boring. If the water is determined to be hazardous, it will be filtered through an activated carbon filtration system as described in Section 5.7.

Soil cuttings generated during the soil assessment will be stored in 55-gallon drums pending analytical results for soil samples collected from associated soil borings. Hydrocarbon-

contaminated soils, as determined by field headspace screening, will be segregated from clean soils. Clean soils will be disposed of on-site by spreading soil cuttings on the ground surface, and contaminated soils will be shipped for off-site disposal at a permitted RCRA disposal facility. PPE and dry waste associated with these materials will be disposed of in a sanitary landfill.

4.7 Phase II Soil Assessment

The detailed scope of work for the Phase II soil assessment cannot be determined until the Phase I investigation is completed. The Phase II soil assessment scope of work, along with that for the Phase II ground-water assessment, will therefore be submitted later as an amendment to this closure plan. Nevertheless, the overall objectives for the Phase II assessment may be defined at this time.

Following its completion, the results of the Phase I soil assessment will be summarized in a report submitted to NMED, along with copies of the laboratory results for the soil samples analyzed during Phase I. The report will include a proposed list of target analytes to direct subsequent Phase II investigations. For RCRA metals, the selection of target analytes will be based on comparison of the observed concentrations of each element with its expected background concentration in soils, as reported in existing literature. Statistical techniques for determining whether a particular constituent is present above background levels will follow EPA guidance (EPA, 1989a, 1989b). Following review of the Phase I report and proposed list of target analytes by NMED, a meeting will be scheduled between Transwestem and NMED to discuss any issues remaining to be resolved prior to approval of the target analyte list and preparation of a closure plan amendment detailing Phase II activities.

Briefly, the Phase II soil assessment will consist of delineating the lateral and vertical extent of impacted soils beneath and adjacent to the former impoundments. This delineation will necessitate an iterative approach to soil sampling. Following NMED's review and approval of the Phase II scope of work, additional soil borings will be drilled outward along a grid centered on the location of each source area identified during Phase I.

5. GROUND-WATER ASSESSMENT PLAN

In parallel with the soil assessment plan, a phased approach will be used to assess ground-water impacts resulting from the former impoundments. Phase I will consist of characterization of the target analytes present in ground water both on- and off-site, and Phase II will define the downgradient extent of a potential off-site ground-water contaminant plume. In addition, a deep monitor well will be installed to define the vertical extent of impacts. As described in the soil assessment plan, the detailed scope of work for Phase II activities will be submitted at a later date as an amendment to this closure plan.

The Phase I ground-water assessment will include the following tasks: (1) installation and development of three additional monitor wells downgradient of the former impoundments, (2) redevelopment of existing monitor wells MW-3, MW-5, and MW-6, (3) sampling of all new and existing monitor wells, and (4) additional water level measurements in the new and existing monitor wells to allow refinement of the ground-water flow direction and gradient. The procedures for the Phase I ground-water assessment are described in Sections 5.1 through 5.7.

5.1 Phase I Monitor Well Installation

Three monitor wells will be installed within the uppermost aquifer downgradient of the former impoundments using hollow-stem auger drilling techniques. The proposed locations for the downgradient monitor wells are shown in Figure 5-1. Prior to well installation, pilot soil borings will be drilled to the total depth at each location with minimum 6-inch-O.D. augers. Soil samples will be collected at 10-foot intervals during the drilling of the pilot hole using the procedures described in Section 4, and field headspace screening will be performed using a PID meter, as described in Section 4. Soil grab samples will also be collected periodically during drilling to better define the geologic conditions at the site. All soil samples will be collected in accordance with DBS&A SOP 13.3.2, Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses (Appendix F).

The shallow monitor wells will be installed within the hollow-stem augers following the completion of the pilot soil boring. Immediately prior to well construction, the total depth of the borehole will be determined using a clean, weighted steel tape or tag line. The monitor wells will be

constructed of 2-inch-diameter schedule 40 PVC pipe and will include, in ascending order, a 6-inch flush-threaded silt trap (sump) at the bottom, 10 to 25 feet of flush-threaded 0.01-inch machine-slotted PVC screen, and blank casing from the top of the screen to approximately 2 feet above ground surface. No more than 15 feet of screen will be installed below the water table. If high VOC concentrations are detected, however, up to 10 feet of screen may extend above the water table in the vadose zone, to allow subsequent use of the well for soil vapor extraction.

Once the well casing has been lowered to the bottom of the borehole, a sandpack consisting of #20-40 mesh silica sand will be poured down the annulus of the auger in 3-foot lifts. After each 3-foot interval is filled, the augers will be pulled up approximately the same distance. This procedure will be repeated until the sand pack level is approximately 2 feet above the top of the screened section. The annular space above the sand pack will then be filled with a minimum 2-foot-thick pelletized bentonite seal, which will be hydrated with distilled water. The remaining annular space will be filled with a cement/bentonite slurry grout consisting of approximately 3 percent bentonite by weight. The top of the well casing will be protected by a PVC cap, and the exposed casing will be protected by a locking steel shroud. A 6-inch-thick concrete pad will then be constructed around the shroud. Generalized monitor well construction details are shown in Figure 5-2.

Immediately following their installation, the three new downgradient monitor wells will be checked for the presence of PSH. If any of the three wells are found to contain PSH, one additional monitor well will be installed approximately 100 feet downgradient from that well. This procedure will permit the subsequent conversion of the well with free product to a soil vapor extraction well, while still satisfying the RCRA recommendation for three downgradient monitor wells.

5.2 Monitor Well Development Procedures

The newly installed downgradient monitor wells and existing wells MW-3, MW-5, and MW-6 will be developed by a sequence of surging and pumping and/or bailing in accordance with DBS&A SOP 13.4.3, Well Development (Appendix F). Initially, the wells will be surged with a surge block to dislodge any smeared material on the borehole wall that would otherwise inhibit ground-water flow and to remove fine particles from the formation. The suspended sediments will be removed by bailing, pumping, or air lifting. During well development, pH, temperature, specific

conductance, and turbidity will be monitored periodically to determine when the wells have been sufficiently developed. Development will be considered complete when the water becomes relatively clear and water quality parameters have stabilized to within \pm 5 percent over three consecutive measurements.

5.3 Ground-Water Sampling Procedures

Ground-water samples will be collected on a quarterly basis for the first year and on an annual basis thereafter. This monitoring schedule will be maintained until closure certification has been achieved. Ground-water samples will be collected from existing monitor wells MW-3, MW-5, and MW-6 and from all of the new downgradient monitor wells (Figure 5-1), except those found to contain PSH. All ground-water samples will be collected in accordance with DBS&A SOP 13.5, Water Sampling (Appendix F). Dedicated bladder pumps will be installed in all new and existing monitor wells that do not contain PSH, to allow purging and collection of representative ground-water samples using low flow rates.

Prior to ground-water sample collection, the following preparations will be made:

- 1. The area around the wellhead will be inspected for integrity, cleanliness, and signs of possible contamination.
- 2. A clean plastic sheet will be spread over the ground around the wellhead.
- The cap on the wellhead will be removed and a flame ionization detector (FID) or photoionization detector (PID) will be used to determine if VOC vapors are present. Any obvious odors will be noted in the field logbook.
- 4. The static water level will be measured to the nearest 0.01 foot using an electrical water level sounder. The presence of any obvious contamination on the water level sounder will be noted in the field logbook. The sounder will be decontaminated between wells, as described in Section 5.6, in order to prevent cross contamination.

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

- 5. Prior to purging the wells, a clear bailer or interface probe will be used to check for the presence of PSH. The presence or absence of PSH will be recorded in the field logbook, as well as the thickness of PSH, if any.
- 6. The well will then be purged to remove standing/stagnant water in order to ensure the collection of representative ground-water samples. Purging will be accomplished using the dedicated bladder pump at a rate equal to or greater than the anticipated sample collection flow rate. The field parameters pH, electric conductivity, dissolved oxygen, and temperature will be measured throughout the purging process at a frequency of at least once per casing volume. These parameters will be measured at the pump outlet within a clean container or a closed flow-through cell. Purging will continue for a minimum of three casing volumes and until the field parameters remain stable to within ±5 percent over at least one casing volume, except if the well is a very poor producer. In this case, the well will be purged dry once prior to sample collection. All fluids produced during purging will be contained for later disposal as described in Section 5.7.

Following purging, unfiltered ground-water samples will be collected as soon as possible using the dedicated bladder pump. Under no circumstances will the well be allowed to stand for more than three hours after well purging before collecting samples. The only exception is for very low-yield wells that are pumped dry under normal purging and sampling rates. In this case, the well will be pumped dry and allowed to recover until sufficient water is present in the well to allow a sample to be collected.

The samples will be collected in order of decreasing volatility, with samples for VOC analysis being collected first. The pumping rate during sample collection of VOC samples will be maintained at 100 milliliters (mL) per minute or less to minimize volatilization. All samples will be collected in precooled, acidified, certified-clean 40-mL glass vials with septum caps supplied by the laboratory. Following collection of the VOC samples, the SVOC, metals, and other samples will be collected in appropriate containers, as described in greater detail in Section 6.

Sample labeling, packaging, and chain-of custody procedures will be performed as described in Section 6.5. The sample coolers with the associated chain-of-custody forms will be shipped to the laboratory using an ovemight commercial carrier. The fastest possible shipping method will

be used, and all sample shipments will be carefully tracked to ensure that samples arrive intact and that all holding times are met.

5.4 Laboratory Analysis of Ground-Water Samples

During the first sampling event, ground-water samples from each well will be analyzed for RCRA Appendix IX VOCs, SVOCs, PCBs, metals, cyanide, and sulfide. In addition, the major cations and anions (Ca, Mg, Mn, Na, K, Cl, Fe, bicarbonate, nitrate, and sulfate) will be determined, along with total dissolved solids (TDS) and TPH by EPA Method 418.1. Chemical analyses will be performed in accordance with procedures set forth in *Test Methods for Evaluating Solid Waste* (U.S. EPA, 1986). Section 6 describes data quality objectives and quality assurance procedures applicable to the ground-water assessment.

5.5 Aquifer Testing

Aquifer slug tests will be performed on existing monitor wells MW-3, MW-5, and MW-6, and on each of the newly installed shallow wells (Figure 5-1). Data collected from the individual slug tests will be used to estimate the hydraulic conductivity of both the uppermost aquifer and deep bedrock aquifer. All slug tests will be performed in accordance with the procedures described in DBS&A SOP 13.6.2, Slug Testing (Appendix F).

Slug tests are performed by causing a sudden change in the water level in the well and then measuring the water level recovery rate. Slug tests will be accomplished by either rapidly removing water from the water column or immersing a solid cylinder (slug) into the water column and measuring the resulting water level recovery. If the slug removal method is used (rising head), water will be removed from the well using a bailer. If the slug immersion method is used (falling head), water will be displaced in the well using a clean, solid PVC cylinder. Whichever method is used, the slug will be of sufficient size to achieve an instantaneous water level change of at least 2 feet.

Water levels will be measured immediately prior to the aquifer test and throughout the recovery period until water levels have recovered to within approximately 95 percent of the static water level. Water levels will be recorded using a downhole pressure transducer and electronic data

logger. The transducer will be calibrated prior to the test using standard procedures required by the manufacturer. In addition, periodic manual water level measurements will be made using an electric water level indicator for comparison with the data recorded by the data logger.

Standard aquifer testing equations will be used to estimate the hydraulic conductivity of both the uppermost aquifer and deep bedrock aquifer. Appropriate analytical procedures are presented in *Groundwater and Wells* (Driscoll, 1986) and *Analysis and Evaluation of Pumping Test Data* (Kruseman and de Ridder, 1992).

5.6 Decontamination Procedures

All non-disposable field equipment that may potentially come in contact with contaminated ground water or soils will be decontaminated in accordance with DBS&A SOP 13.5.2, Decontamination of Field Equipment (Appendix F), in order to minimize the potential for cross-contamination between sampling locations. Clean latex or plastic gloves will be wom during all decontamination operations. The following sequence of decontamination procedures will be followed prior to each sampling and/or testing event:

- Wash the equipment in a solution of non-phosphate detergent (Liquinox[®]) and distilled/deionized water. Use a clean Nalgene[®] tub to contain the wash solution and a scrub brush to mechanically remove loose particles.
- 2. Rinse the equipment twice with distilled/deionized water.
- 3. Allow the equipment to air dry before the next use.

All wash water generated during equipment decontamination will be contained in 55-gallon drums for proper disposal. All liquids will be assumed to be contaminated and properly labeled as described in Section 5.7. Decontamination water will remain on-site pending the results of laboratory analysis of the associated ground-water samples. The laboratory results for the ground-water samples will be used to determine the method of disposal for the drummed wash water, as described in Section 5.7. All drilling equipment will be decontaminated as described in Section 4.5.

5.7 Management of Investigation-Derived Wastes

A variety of wastes will be generated during the implementation of the ground-water assessment plan. These wastes include soil cuttings, decontamination fluids, used PPE, and ground water produced during well development and purging. All wastes, with the exception of PPE, will be handled as potentially hazardous wastes.

All waste materials will be drummed and labeled to identify the contents, date of generation, and amount of material generated. Waste material will be stored in 55-gallon drums. All waste containers generated during the ground-water assessment will be stored in a designated drum storage area within the facility.

For those wastes that are associated with a particular sample collected during the ground-water assessment (e.g., soil cuttings collected during the drilling of a well with soil samples collected for chemical analyses at 10-foot intervals, or purged ground water from a well that was subsequently sampled and analyzed), the analytical results will be used to determine if the drummed materials constitute hazardous waste. All contaminated water and water that is potentially contaminated but cannot be associated with a particular sample or set of samples will be passed through an activated carbon filtration system to remove all organic constituents. A sample of the clean filtered water will then be collected for laboratory analysis of VOCs. Upon verification that the water is clean, it will be released to the ground surface on-site. The carbon filter will be disposed of at a licensed hazardous waste disposal facility such as the Rollins facility in Deer Park, Texas that is currently receiving PSH product from the recovery well system. PPE and dry refuse associated with these materials will be disposed of in a sanitary landfill.

5.8 Phase II Ground-Water Assessment

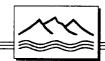
As with the soil assessment plan, the Phase II ground-water assessment cannot be fully scoped until the Phase I results are available. However, the objective of the Phase II ground-water investigation is to define the downgradient extent of impacted ground water. Thus an iterative approach will be required. In general, additional downgradient monitor wells will be installed in the alluvium to track the dissolved-phase plume that may exist to the northeast of the former impoundments. Drilling, well installation, and well development procedures will be similar to those

described in Section 5.1. The number of monitor wells that will be required to define the downgradient plume remains unknown at this time.

In addition to the installation of additional monitor wells in the shallow alluvium, one downgradient deep monitor well will be installed into the San Andres bedrock aquifer. The purpose of the deep well is to determine whether the bedrock aquifer has been impacted by the former impoundments. The location of the deep bedrock monitor well will be determined based on the results of the Phase I ground-water assessment. Drilling and well installation procedures will be provided in the closure plan amendment that details the scope of work for Phase II activities.

6. QUALITY ASSURANCE PROJECT PLAN

This section describes the procedures that will be followed to ensure that the data obtained during this investigation will be adequate for the project objectives. The Quality Assurance Project Plan (QAPP) presented herein describes the laboratory analyses to be performed, data quality objectives, and quality assurance/quality control (QA/QC) procedures to be used to ensure that project objectives are met. Sections 6.1 through 6.12 have been prepared in accordance with the *Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans* (U.S. EPA, 1983), and are those elements required for consideration in any QAPP, according to EPA.


6.1 Analytical Parameters and Methods

Based on previous investigations, petroleum hydrocarbons and the chlorinated solvent 1,1,1-TCA are recognized as the principal threats to ground water in the study area. However, in order to ensure that other constituents are not present, Appendix IX analyses will be specified for soil and ground-water samples collected during Phase I. Accordingly, soil and ground-water samples collected in Sections 4.1 and 5.1 of this closure plan will be analyzed for the suite of target analytes listed in Table 6-1.

The suite of analytes specified in Table 6-1 includes all of the RCRA Appendix IX constituents except pesticides/herbicides and dioxins/furans, as there is no evidence that these compounds were ever present at this facility. In addition, ground-water samples will be analyzed for major cations and anions and total dissolved solids in order to characterize the overall water quality. Total petroleum hydrocarbons (TPH) will also be determined on both soil and ground-water samples. Analytical methods for all parameters will follow standard RCRA procedures specified in *Test Methods for Evaluating Solid Waste* (SW-846) (EPA, 1986).

6.2 Data Quality Objectives

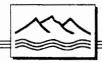
Data quality objectives (DQOs) are the qualitative and quantitative objectives established to ensure that the data generated meet the needs of the project. Therefore DQOs are project-specific and depend largely on the ultimate use for which the data are intended. DQOs have been established for this project in accordance with EPA guidance documents, particularly *Data*

Quality Objectives for Remedial Response Activities (U.S. EPA, 1987a), and *RCRA Ground-Water Monitoring: Draft Technical Guidance* (U.S. EPA, 1992). The parameters used to quantify data quality include precision, accuracy, representativeness, completeness, and comparability (PARCC).

Objectives or goals for the so-called PARCC parameters (U.S. EPA, 1987a) constitute the projectspecific DQOs for a particular investigation. Each PARCC parameter is described below, along with the proposed DQO for this closure plan, where applicable. The proposed DQOs for this investigation are summarized in Table 6-1.

- Precision is a quantitative measure of the reproducibility (or variability) of the analytical results. Precision will be calculated by determining the relative percent difference (RPD) between the concentrations reported for field duplicate samples collected from the same location. Methods for collecting duplicate field samples are discussed in Section 5.3. The proposed RPD precision objective is 20 or less.
- Accuracy is defined as the degree to which the reported analytical result approaches the "true" value. Accuracy will be estimated through the analysis of matrix spikes (MS). The percent recovery (%R) of the "true" spike concentration will be calculated for each MS. The accuracy objective is within the range of 80 to 120 percent recovery of the matrix spike.
- Representativeness refers to how well the analytical data reflect subsurface contaminant concentrations. Due to numerous site-specific factors, such as the degree of heterogeneity in the subsurface, representativeness is difficult to define and even more difficult to quantify. For this project, representative data will be attained through the use of consistent and approved sampling and analytical procedures and through a well defined sampling plan that specifies adequate investigation of all areas of concem.
- Completeness is the percentage of samples collected that meet or exceed the DQOs for precision, accuracy, and representativeness, as estimated from the analysis of QA/QC samples described above. The completeness objective for this project is 90%.

Comparability is an assessment of the relative consistency of the data. No quantitative
method exists for evaluating comparability; hence, professional judgment must be relied
upon. Internal comparability of the soil and ground-water data set will be achieved by the
use of consistent sampling and analysis procedures throughout the project. Likewise, by
using identical analytical methods to those employed during previous investigations, the
data generated during this investigation will be comparable with existing data.


6.3 Quality Assurance/Quality Control Samples

QA/QC samples include matrix spikes/matrix spike duplicates (MS/MSD), field duplicates, trip blanks, and equipment blanks. EPA guidance recommends that QA/QC samples be collected at a minimum 5-percent frequency (U.S. EPA, 1987). For this project, both soil and ground-water QA/QC samples will be analyzed at this frequency.

Equipment blank samples are collected in order to determine if any of the analytes detected in environmental samples may be attributable to improper and/or incomplete decontamination of field sampling equipment. Equipment blanks will be collected in the following manner. After the sampling device has been decontaminated in accordance with DBS&A SOP 13.5.2, Decontamination of Field Equipment (Appendix F), it will be rinsed with deionized water. The rinsate will be collected and sent to the laboratory as an equipment blank.

Field duplicate samples will be collected to provide a measure of precision for the analytical results. VOC soil duplicates will be collected by submitting two adjacent brass liner rings from the same split-barrel sample. The ground-water duplicate samples will be collected by filling sample containers in an alternating manner following the sampling protocol described in Section 5.3 of this closure plan.

One VOC trip blank will accompany each shipment to the laboratory. VOC trip blanks are prepared as a check on possible contamination originating from container preparation methods, shipment, handling, storage, or other site-specific conditions. VOC trip blanks will consist of deionized, organic-free water added to a clean 40-mL glass septum vial.

In addition to the above QA/QC samples, MS/MSD analyses will be performed in the laboratory by spiking the soil or water samples with a known quantity of the analyte of interest. MS/MSD analyses are performed to determine laboratory accuracy and precision and to determine if any matrix interferences exist. MS/MSD analysis will be specified on the chain-of custody form for at least 5 percent of the samples collected.

6.4 Sampling Procedures

The soil and ground-water sampling procedures described in Sections 4 and 5 will be performed in accordance with DBS&A SOPs 13.3.2 and 13.5, respectively (Appendix F). A summary of the analytical methods, required sample volumes, containers, and sample preservation is provided in Table 6-2. All sample containers will be acquired from the laboratory and will be certified clean.

Adhesive labels will be applied to the sample containers, and a waterproof marking pen will be used to complete the labels. Information will include the date and time of sample collection, type of analysis to be performed, preservative used (if any), depth of sample (for soils), and the initials of sampling personnel. The containers will be sealed and placed in clear plastic bags. The sealed containers will be put in coolers on bags of ice or frozen ice packs. Plastic bubble pack or other suitable packing material will be used to prevent breakage.

The field personnel will ship the sample coolers to the laboratory using an ovemight courier service. The fastest possible shipping method will be used, and all sample shipments will be carefully tracked to ensure that samples arrive intact and that all holding times are met.

6.5 Chain of Custody Procedures

For analytical data to be valid, samples must be traceable from the time of collection through chemical analysis and final disposition. Chain-of-custody forms have been developed for this purpose. The necessary blank documents will be obtained from the laboratory, including chain-of-custody forms and seals.

Chain-of-custody forms will be completed in triplicate. The original form and one copy will be placed inside each cooler, and one copy will be retained by field personnel. The chain-of-custody forms accompanying each cooler will be sealed in a plastic bag and taped to the inside of the

cooler lid. Each cooler will have a clearly visible return address. The cooler lids will be secured with shipping tape that encircles the cooler ends. A chain-of-custody seal will be placed at the front left and rear right sides of the cooler so that opening the lid will break the chain-of-custody seals.

Field activities and sample collection will be documented in a bound logbook dedicated to the project. For each sample, the location, time, monitor well/boring number, sample depth, sample volumes and preservation, and other pertinent field observations will be recorded. Each page of the logbook will be dated, numbered, and signed by those individuals making entries.

6.6 Equipment Calibration Procedures and Frequency

Numerous instruments will be used in the field and the laboratory during this investigation. In order for reliable data to be generated, it is important that these instruments be routinely calibrated. Calibration of analytical instruments within the laboratory will be the responsibility of the contracted laboratory. Although the details of the laboratory calibration procedures are beyond the scope of this QAPP, the frequency of initial and continuing calibrations will adhere to established EPA protocols, as described in the analytical method (U.S. EPA, 1986). In addition, the laboratory's QA manual will be available for review upon request.

During this investigation, DBS&A anticipates using the following field equipment:

- PID (Thermo Environmental 580B or equivalent)
- FID type OVA (Foxboro 108 or equivalent)
- Salinity-conductivity-temperature (SCT) meter (YSI Model 33 or equivalent)
- pH meter (Orion Model 250A or equivalent)
- Dissolved oxygen (DO) meter (YSI Model 57 or equivalent)
- Water level indicator (Solinst or equivalent)
- PSH interface meter (Solinst or equivalent)

Calibration and maintenance procedures for each of these instruments are described in the following paragraphs. Documentation of daily calibration for each of these instruments will be recorded in the field logbook, along with any required maintenance procedures performed.

A PID and/or FID will be used to screen soil samples for volatile organic compounds using the headspace method. The PID or FID will also serve for health and safety monitoring of the work area for organic vapors. Background VOC concentrations will be recorded daily in the logbook. The PID and/or FID will be calibrated daily with standard isobutylene (PID) or standard methane (FID). Recalibration of the PID and/or FID can occur during the work day at the discretion of the site health and safety officer in the event of suspect readings. Care will be taken to ensure that the PID and/or FID remains free of sand and dirt. The battery will be charged on a daily basis.

The SCT meter calibration will be checked initially with a standard potassium chloride solution and mercury thermometer, and a battery check will be performed daily prior to beginning field work. In the event of erratic measurements, the instrument calibration will be checked in the field. When not in use, the electrode will be kept immersed in deionized water to keep the platinum black surfaces fully hydrated, in accordance with manufacturers' instructions.

Prior to use each day, the pH meter will be calibrated using two pH buffers. The buffer solutions will be chosen to bracket the expected ground-water pH range. Calibration of the instrument will be periodically checked throughout the day using the pH buffers to ensure accurate readings. In the event of instrument drift, the pH meter will be recalibrated. The electrode will be rinsed with deionized water following each measurement and placed in the appropriate potassium chloride storage solution.

The DO meter will be calibrated in air by adjusting the calibration control until the oxygen concentration reads the correct value for the elevation and temperature at the site. The DO meter calibration will be checked periodically during the day and recalibrated if necessary.

The water level indicator will be initially calibrated against a steel tape, prior to commencement of field activities. The battery and electrical connections will be periodically checked to ensure proper functioning of the instrument. The indicator probe and tape will be rinsed clean following each measurement. The PSH interface meter will be calibrated in a similar manner following manufacturer's instructions.

6.7 Data Reduction and Reporting

Data reduction will be performed by the laboratory in accordance with EPA protocols for the respective analytical method. Data from the analytical laboratory will be reviewed following the laboratory's internal QA/QC plan. All EPA required elements will be provided with the data package. If the analytical data do not meet the minimum data quality objectives, the laboratory will implement the corrective actions described in Section 6.10. All data falling outside the quality control limits defined in this QAPP will be flagged by the laboratory, as required by EPA protocol. Any discrepancies noted in the laboratory QA review will be noted in the case summaries included with the data packages.

Following the field investigation phase of the project, the degree to which the data quality objectives have been met will be examined by comparing the actual results for the QA/QC samples with the objectives listed in Table 6-1. The results of this comparison will be tabulated in the final report, along with detailed descriptions of any deviations from the protocols proposed in this closure plan.

6.8 Internal Quality Control Checks

The specific quality control checks to be used are included with the individual analytical methods specified for each parameter. The quality control criteria for VOCs and TPH (gasoline) are described in *Test Methods for Evaluating Solid Wastes - SW-846*, (U.S. EPA, 1986).

6.9 Performance and System Audits

Performance and system audits are the practices followed by analytical laboratories to evaluate quality control procedures and laboratory performance (U.S. EPA, 1983). System audits are performed in order to assess whether a new analytical system is functioning properly. Performance audits rate the ongoing performance of the laboratory in terms of the accuracy and precision of the analytical data generated. Examples of performance audits include the analysis of performance evaluation samples, such as standard reference materials obtained from the National Institute of Standards and Technology or EPA, or participation in interlaboratory performance evaluation studies using "round-robin" samples. Each participating laboratory is

graded and ranked based on the results. The performance and system audits of the laboratory contracted for this closure plan will be provided and available for review.

6.10 Corrective Actions

If QA activities reveal apparent problems or deficiencies with the analytical data, corrective actions must be applied. The type of corrective action depends on the specific problem that occurs, but a general sequence of corrective actions will be followed. If the data do not fall within the prescribed data quality objectives, the affected samples will be re-analyzed by the laboratory until the objectives are met. Any data falling outside QC limits will be flagged and qualified to explain the nature of the data quality problem.

6.11 Routine Data Assessment Procedures

Routine procedures to assess the precision, accuracy, and completeness of the analyses include RPD for field duplicates and MS/MSD samples, as well as percent recovery (%R) for MS samples. The specific statistical techniques to be used are described with the appropriate analytical method (U.S. EPA, 1986). Any problems or deficiencies will be reported to the NMED in the quarterly progress reports, or by telephone, if warranted by the nature and urgency of the problem.

6.12 Quality Assurance Reports to Management

Periodic assessment of data accuracy, precision, and completeness will be performed by the QA manager of the contracted laboratory. The results of these assessments, as well as the results of laboratory performance and system audits, will be available upon request. The laboratory QA manager will also review the case narratives and accompanying analytical data package to ensure that all data quality objectives are met. In the event that objectives are not met, the QA manager will consult with the laboratory manager to correct the problem.

7. PROJECT SCHEDULE AND CONDITIONS FOR CLOSURE CERTIFICATION

The proposed Phase I project schedule will require about 4 months to complete (Figure 7-1). Quarterly progress reports will be prepared for submittal to NMED from the time field work begins until closure certification is achieved. The progress reports will provide a means of tracking the schedule for investigative and corrective action activities and explain the need for any modifications to the proposed project schedule.

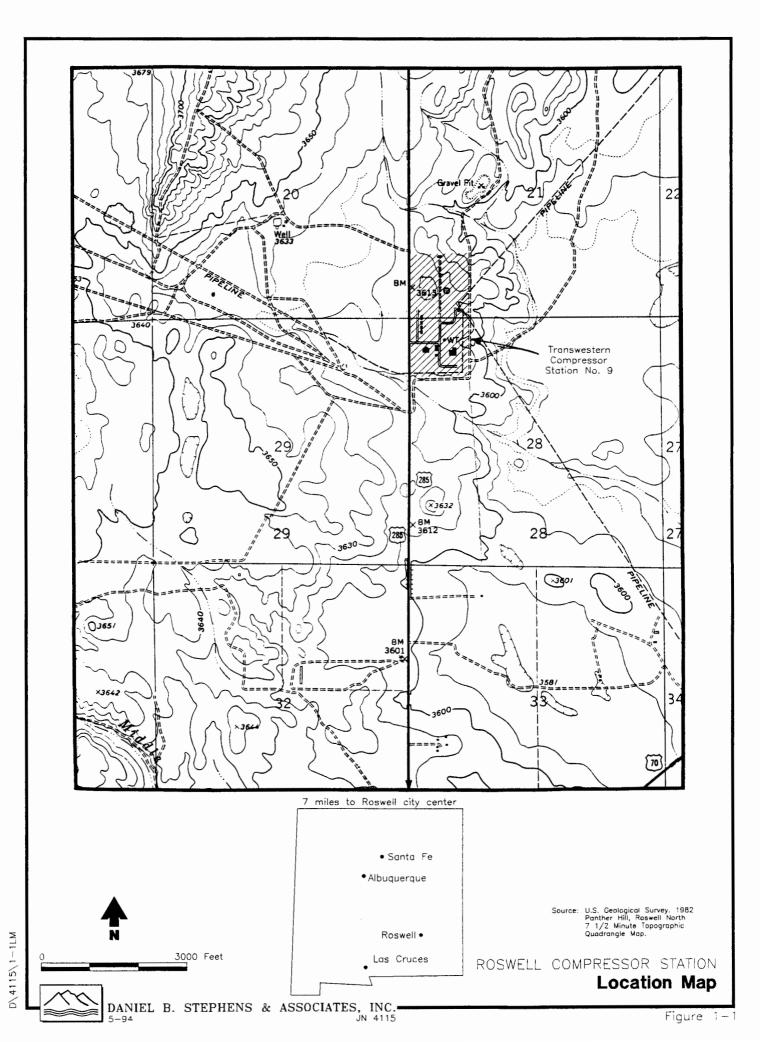
The soil assessment plan (Section 4) and ground-water assessment plan (Section 5) will be initiated approximately six weeks following approval of this closure plan. The drilling and monitor well installation program is expected to require approximately two weeks to complete. Monitor well development, ground-water sampling, and aquifer testing will require an additional week.

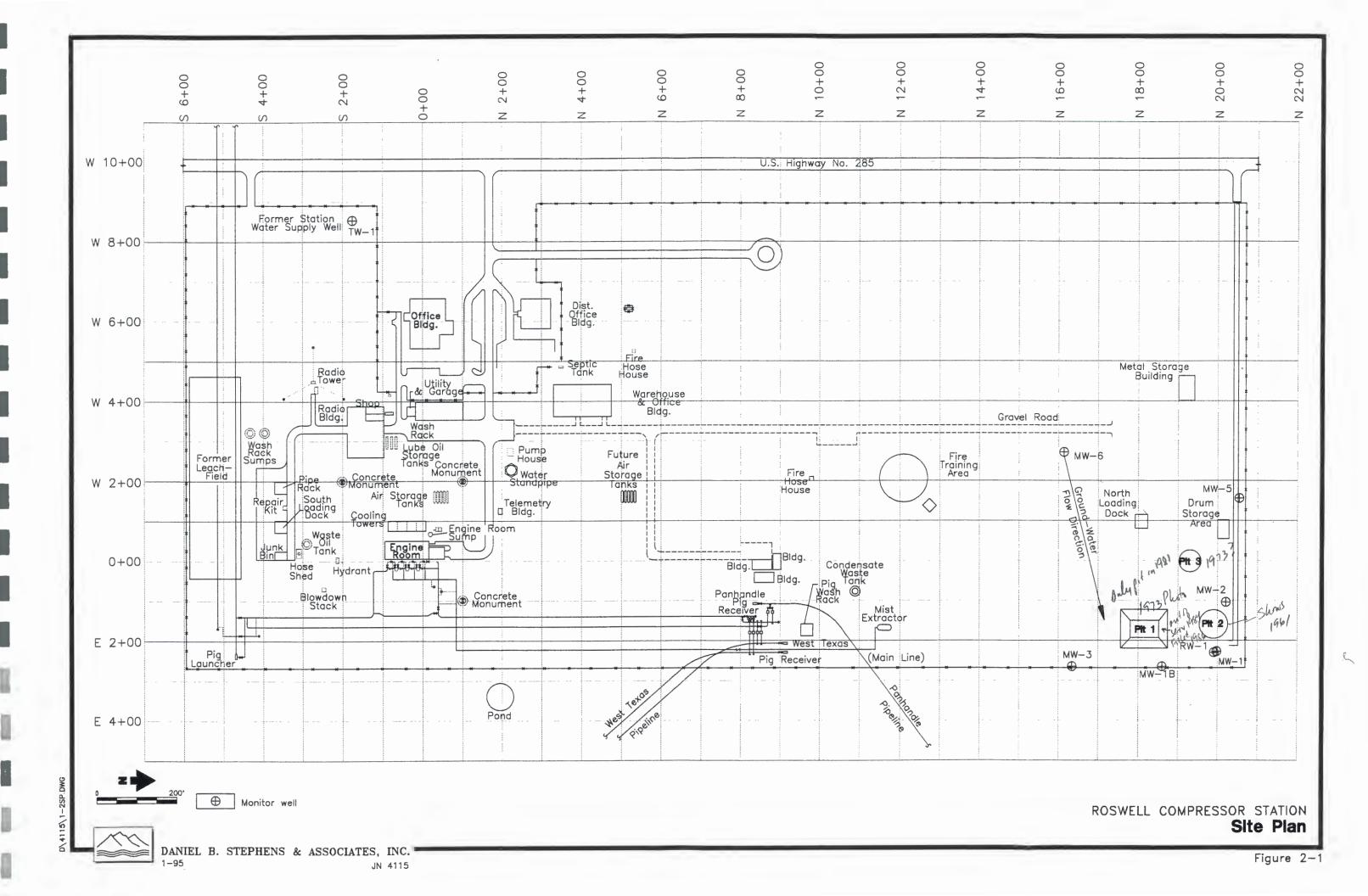
Preparation of a report summarizing Phase I activities will require 6 weeks following receipt of the laboratory data. A meeting between Transwestern and NMED is proposed to discuss the results of Phase I and to determine the scope of work for the upcoming Phase II activities to be submitted as a closure plan amendment. All remaining closure activities will be addressed in subsequent phases following completion of the Phase I report. These include establishing cleanup criteria, developing soil and ground-water corrective action plans, and establishing the schedule for corrective action activities and closure certification. Each of these tasks will be included in subsequent closure plan amendments submitted for NMED approval.

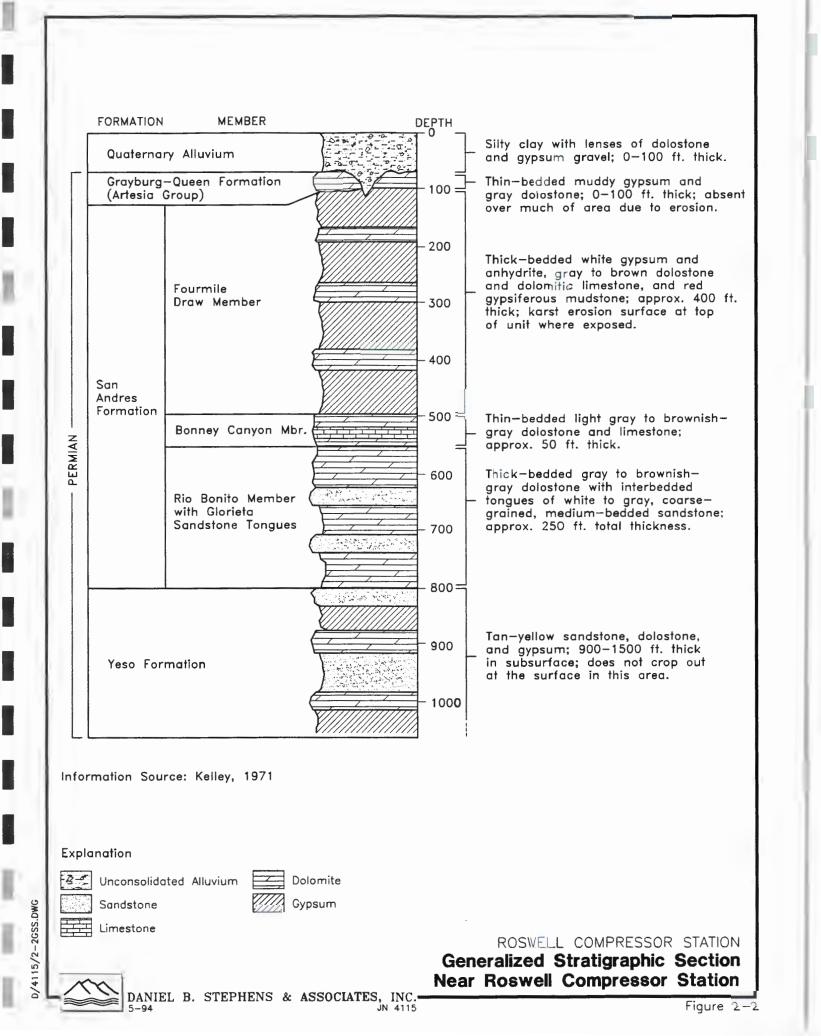
8. REFERENCES

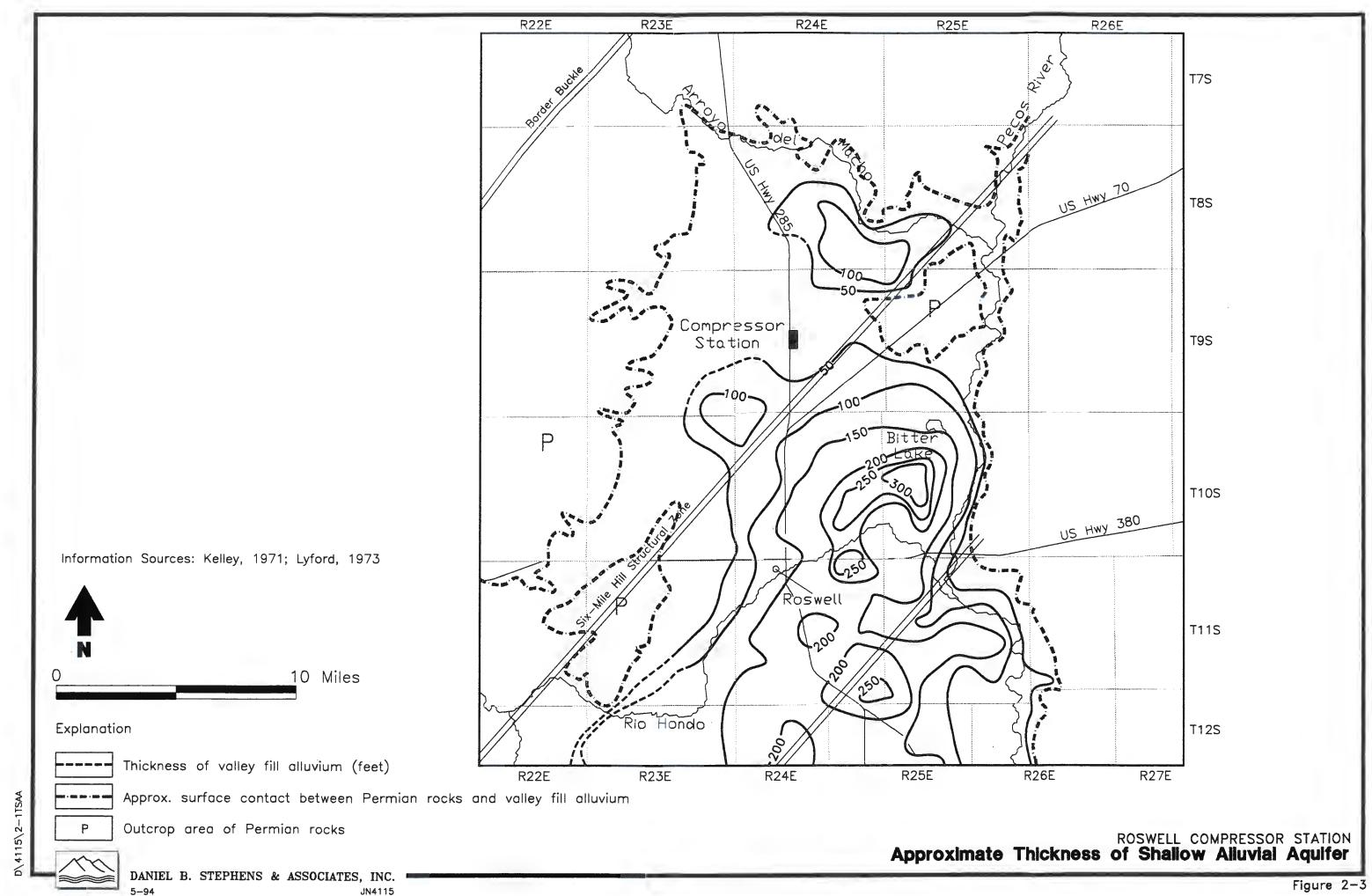
- Bean, Robert T. 1949. Geology of the Roswell artesian basin, New Mexico, and its relation to the Hondo Reservoir. New Mexico State Engineer Technical Report No. 9, 31 p.
- Brown & Root Environmental. 1993. Draft report: Groundwater assessment at Roswell Compressor Station No. 9, Transwestern Pipeline Company, Roswell, New Mexico, Project No. 5T72. Prepared for Enron Corporation, Houston, Texas, June 1993.
- Campbell, Larry. 1992. Letter from Mr. Campbell (Transwestem) to Mr. Ed Horst (NMED) regarding remediation investigation and closure of the disposal pit, dated November 30, 1992.
- Campbell, Larry, 1993. Letter from Mr. Campbell (Transwestem) to Ms. Barbara Hoditschek (NMED) regarding history of operation of 20 x 20 foot surface impoundment, dated February 7, 1993.
- Campbell, Larry, 1994. Personal communication between Larry Campbell (Transwestem) and Jeffrey Forbes (DBS&A) regarding locations of former surface impoundments, May 13, 1994.
- Cypress Engineering Services (CES). 1994. Letter report from George Robinson (CES) to Bill Kendrick (ENRON).
- Daniel B. Stephens & Associates, Inc. 1992. Task 1 summary report, data acquisition and review, Roswell Basin. Prepared for New Mexico State Engineer Office, December 1, 1992.
- Driscoll, F.G. 1986. Groundwater and Wells, Second Edition. Johnson Filtration Systems, Inc., St. Paul, MN. 1089 p.
- Eiceman, G.A. 1986. Hazardous organic wastes from natural gas production, processing, and distribution: Environmental fates. New Mexico Water Resources Research Institute Report No. 227.
- Glenn, Pleas. 1993. Letter from Pleas Glenn (New Mexico Office of the Commissioner of Public Lands) to Larry Campbell (Transwestern) regarding land ownership status, dated July 7, 1993.

4115(3)\CLOS-PLN.195\PH-I-PLN.195

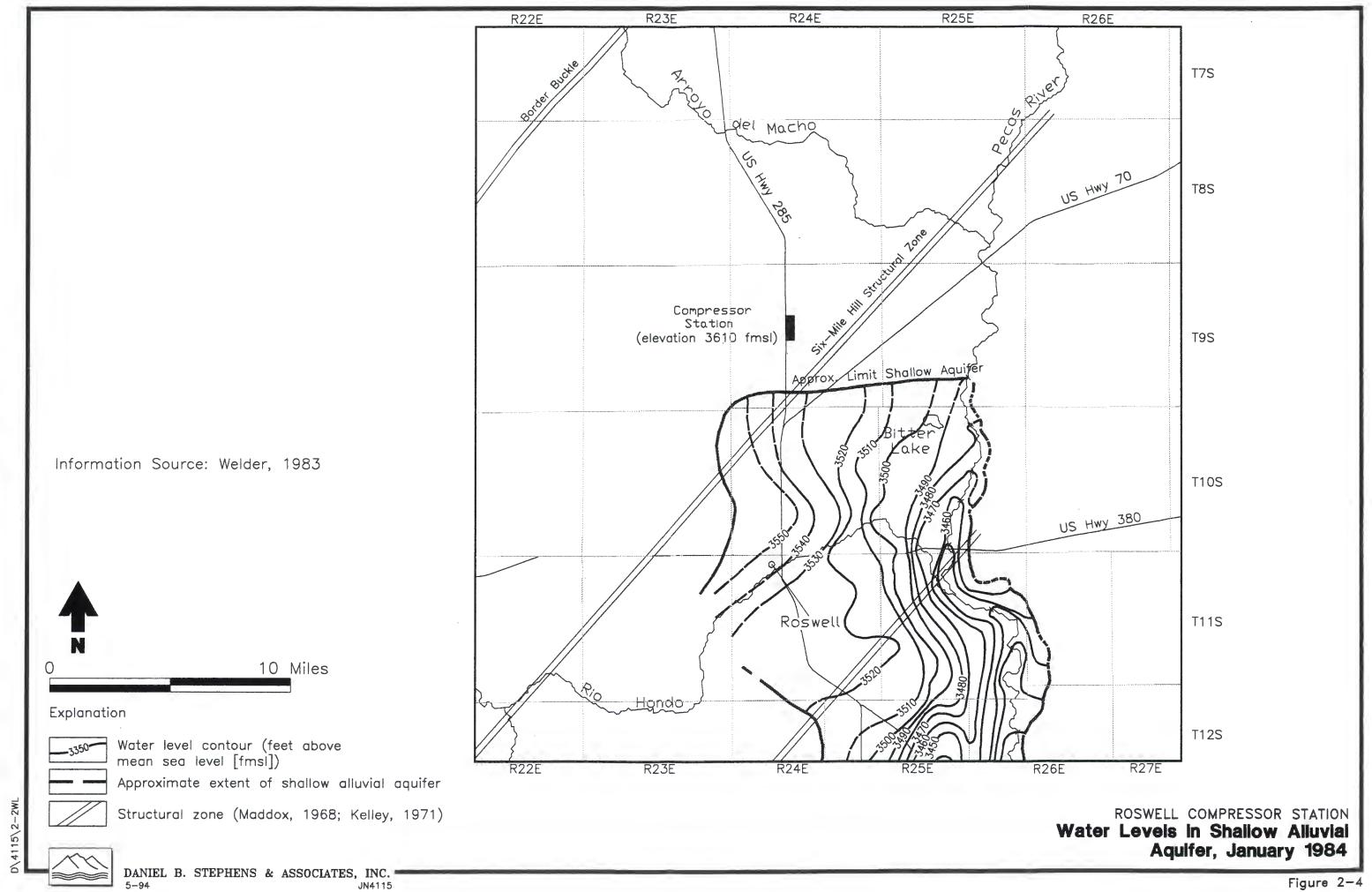


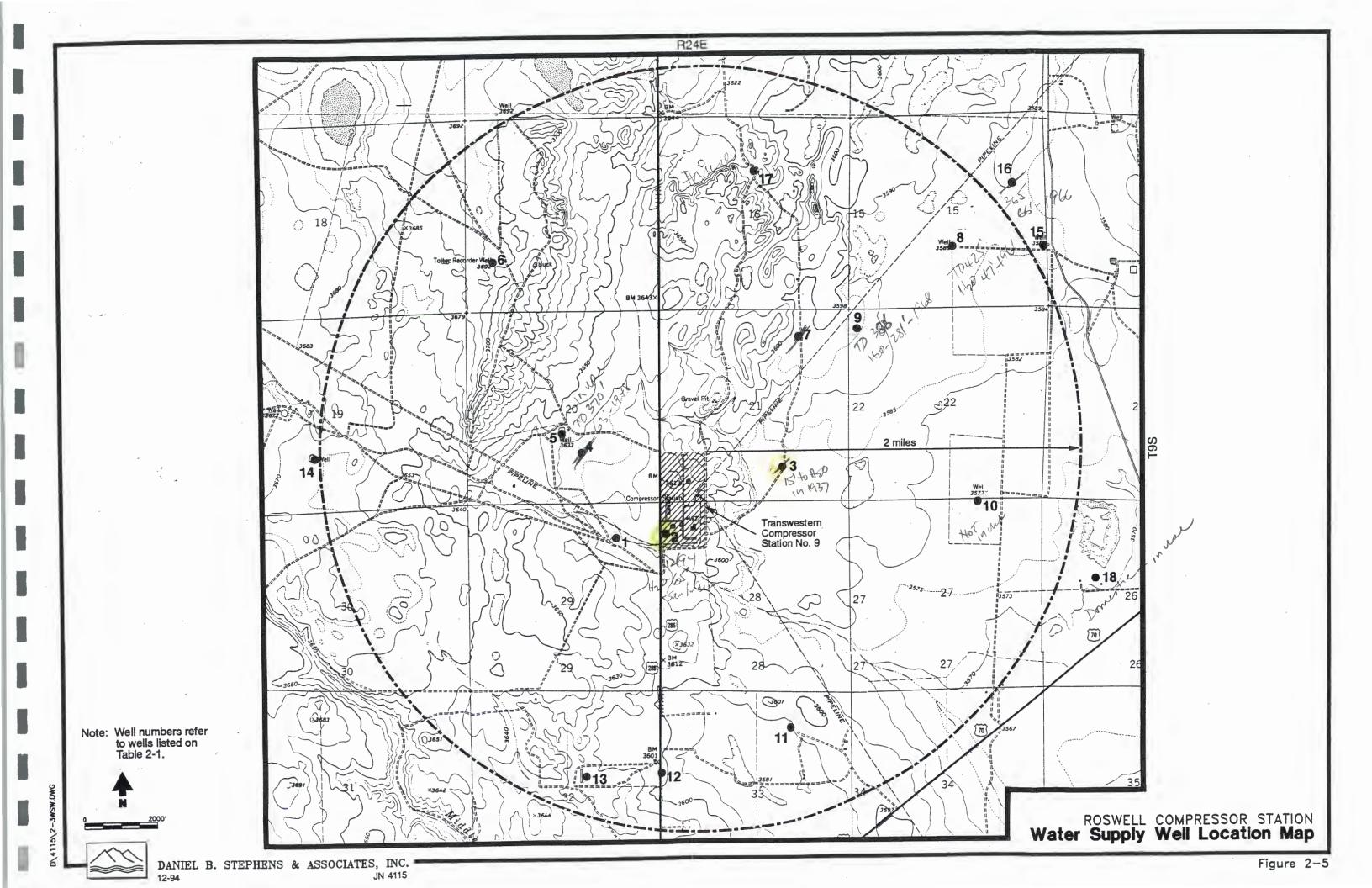

- Halliburton NUS Environmental Corporation. 1992. Final report: Monitor well installation, Transwestem Pipeline Company, Compressor Station No. 9, Roswell, New Mexico. Southwest Region, October 1992.
- Harding Lawson Associates. 1991a. Shallow subsurface investigation: Transwestern Pipeline Company, Compressor Station No. 9, Roswell, New Mexico. Prepared for Transwestern Pipeline Company, Houston, Texas. Houston, Texas, June 20, 1991.
- Harding Lawson Associates. 1991b. Supplemental data report for volatile organic constituents: Transwestem Pipeline Company, Compressor Station No. 9, Roswell, New Mexico. Prepared for Transwestem Pipeline Company, Houston, Texas, June 21, 1991.
- Kelley, Vincent. 1971. Geology of the Pecos country, southeastern New Mexico. New Mexico Bureau of Mines & Mineral Resources, Memoir 24, 78 p.
- Kruseman, G.P. and N.A. de Ridder. 1992. Analysis and Evaluation of Pumping Test Data, Second Edition. International Institute of Land Reclamation and Improvement.
- Lyford, Forest P. 1973. Valley fill in the Roswell-Artesia area, New Mexico. U.S. Geological Survey Open-File Report 73-163, September 1973.
- Metric Corporation. 1991. Shallow subsurface investigation at Roswell compressor station, Chaves County, New Mexico. Prepared for Transwestern Pipeline Company, Roswell, New Mexico, December 1991.
- State of New Mexico Environmental Improvement Board. 1989. Underground Storage Tank Regulations, Part XII - Corrective Actions For Petroleum UST Systems, Appendix C - Soil Testing for Petroleum Releases, EIB/USTR-12.
- State of New Mexico Environmental Improvement Board. 1989. Underground Storage Tank Regulations, Part XII - Corrective Actions For Petroleum UST Systems, Appendix D -Monitoring Well Construction and Abandonment Policy, EIB/USTR-12.

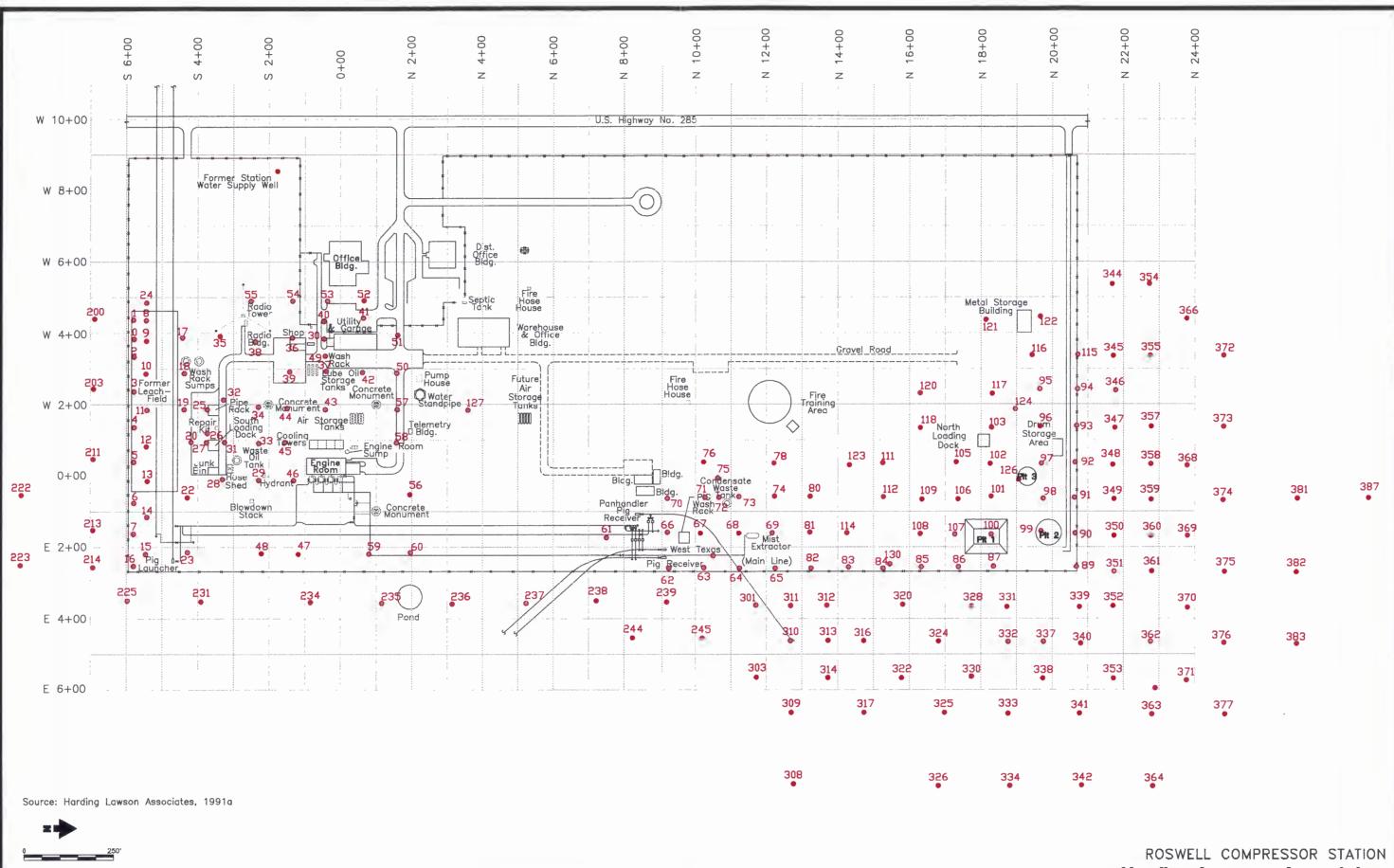



- Transwestern Pipeline Company. 1959. General plan, Station No. 9, Roswell, Scale 1"=100' 1:1200. Drawing No. 9-85-000, May 19, 1959.
- U.S. Environmental Protection Agency (U.S. EPA). 1983. Interim guidelines and specifications for preparing quality assurance project plans. QAMS-005/80, December 1983.
- U.S. EPA. 1986. Test methods for evaluating solid waste, physical and chemical properties, 3rd ed. EPA-SW-846, November 1986.
- U.S. EPA. 1987a. Data quality objectives for remedial response activities. EPA/540/G-87/003 (OSWER Directive 9355.0-7B), March 1987.
- U.S. EPA. 1987b. Alternate concentrations limit guidance, Part 1, ACL Policy and Info Requirements. Interim Final, July 1987. EPA/530-SW-87-017, OSWER Directive 9481.
- U.S. EPA. 1988. Contract laboratory program statement of work for organics analysis. February 1988 SOW.
- U.S. EPA. 1992. RCRA ground-water monitoring: Draft technical guidance. EPA/530-R-93-001, November 1992.
- U.S. EPA. 1991. National functional guidelines for organic data review (draft), Contract Laboratory Program, December 1990, revised June 1991.
- Welder, G.E. 1983. Geohydrologic framework of the Roswell ground-water basin, Chaves and Eddy Counties, New Mexico. New Mexico State Engineer Technical Report 42.

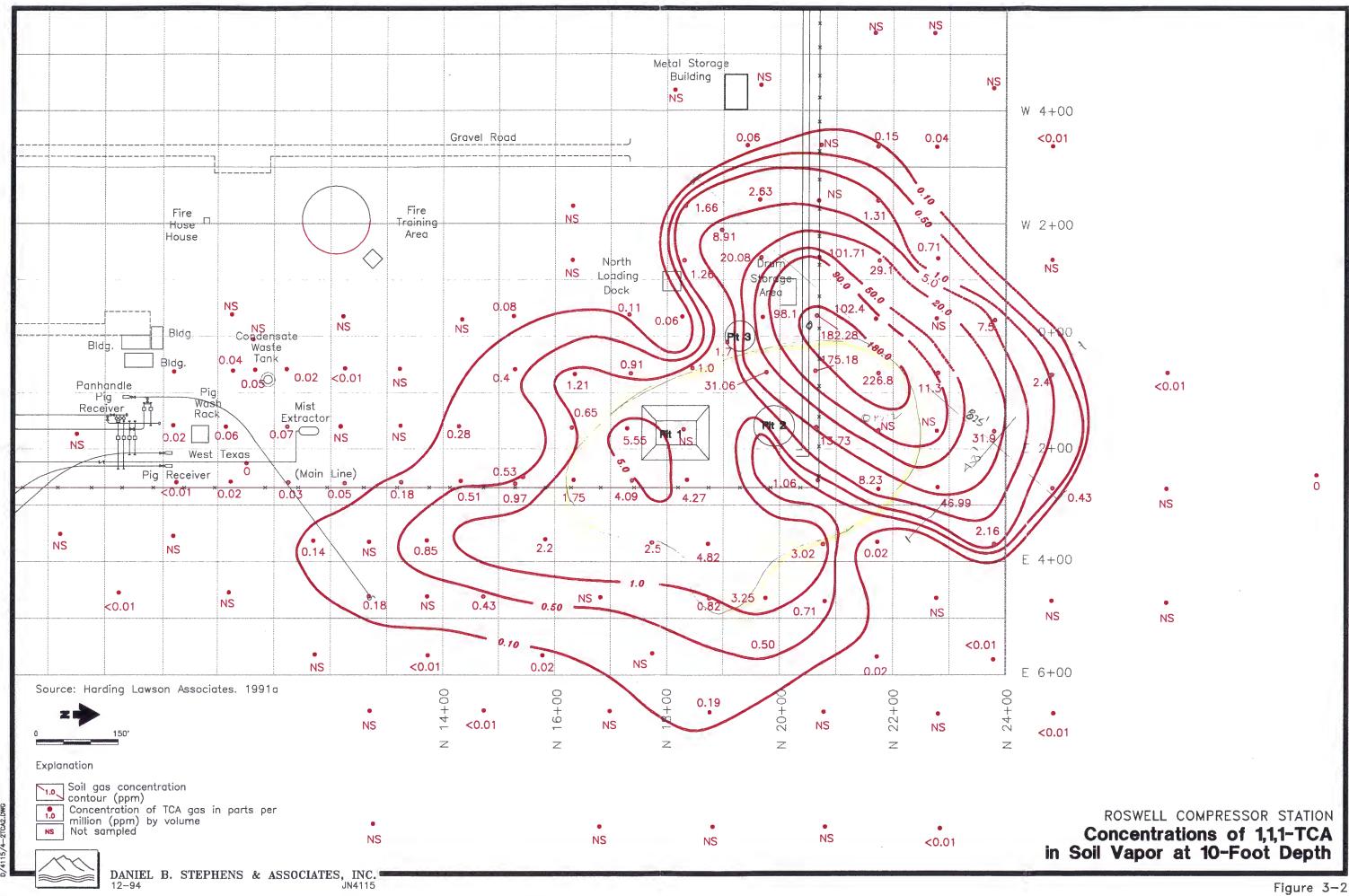
FIGURES

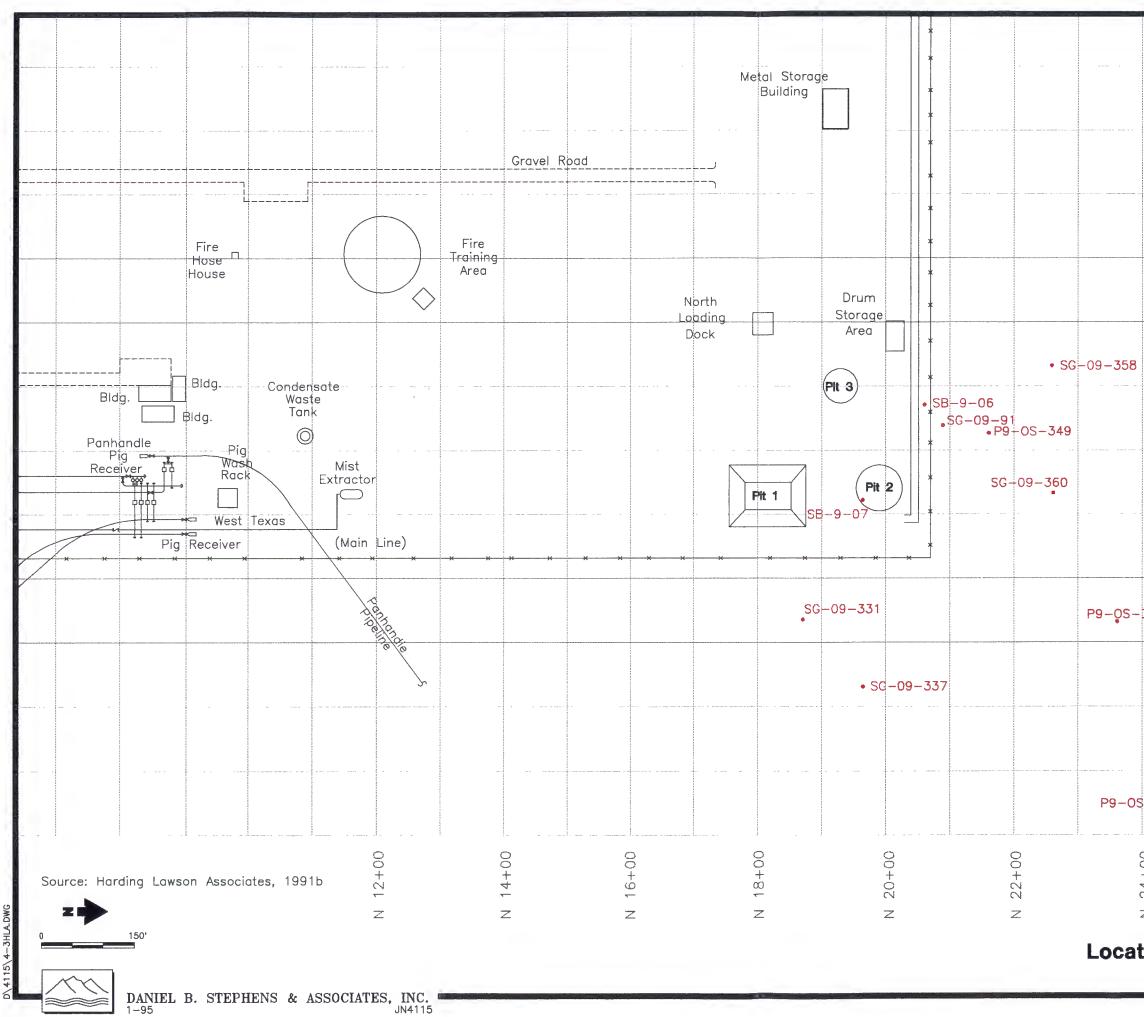




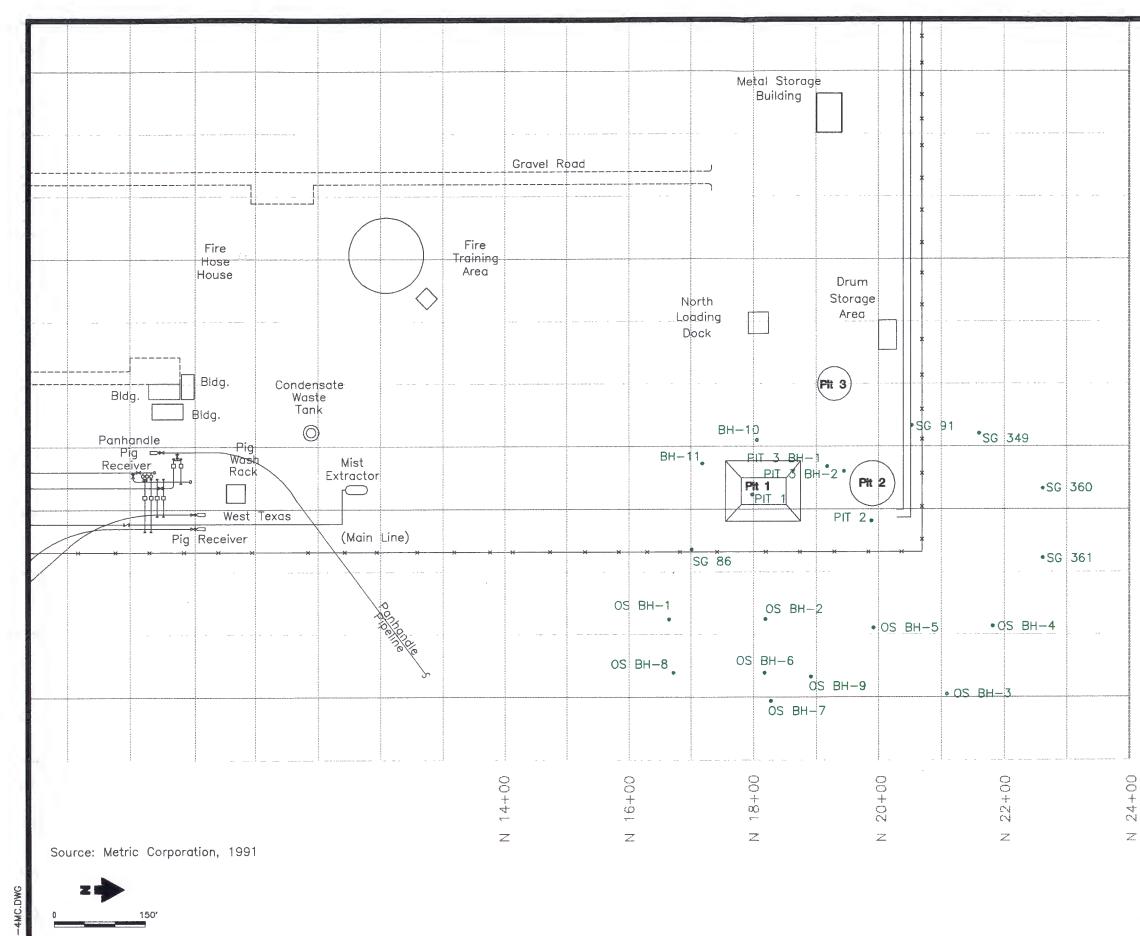

51

Ш


17 Ц



DANIEL B. STEPHENS & ASSOCIATES, INC. 1-95 JN4115


I

.

10

	W 4+00
	W 2+00
	0+00
	E 2+00
-370	E 4+00
s-377 _.	E 6+00
00++00 tions 0	ROSWELL COMPRESSOR STATION f Harding Lawson Associates Soil Borings

1-95

Ł

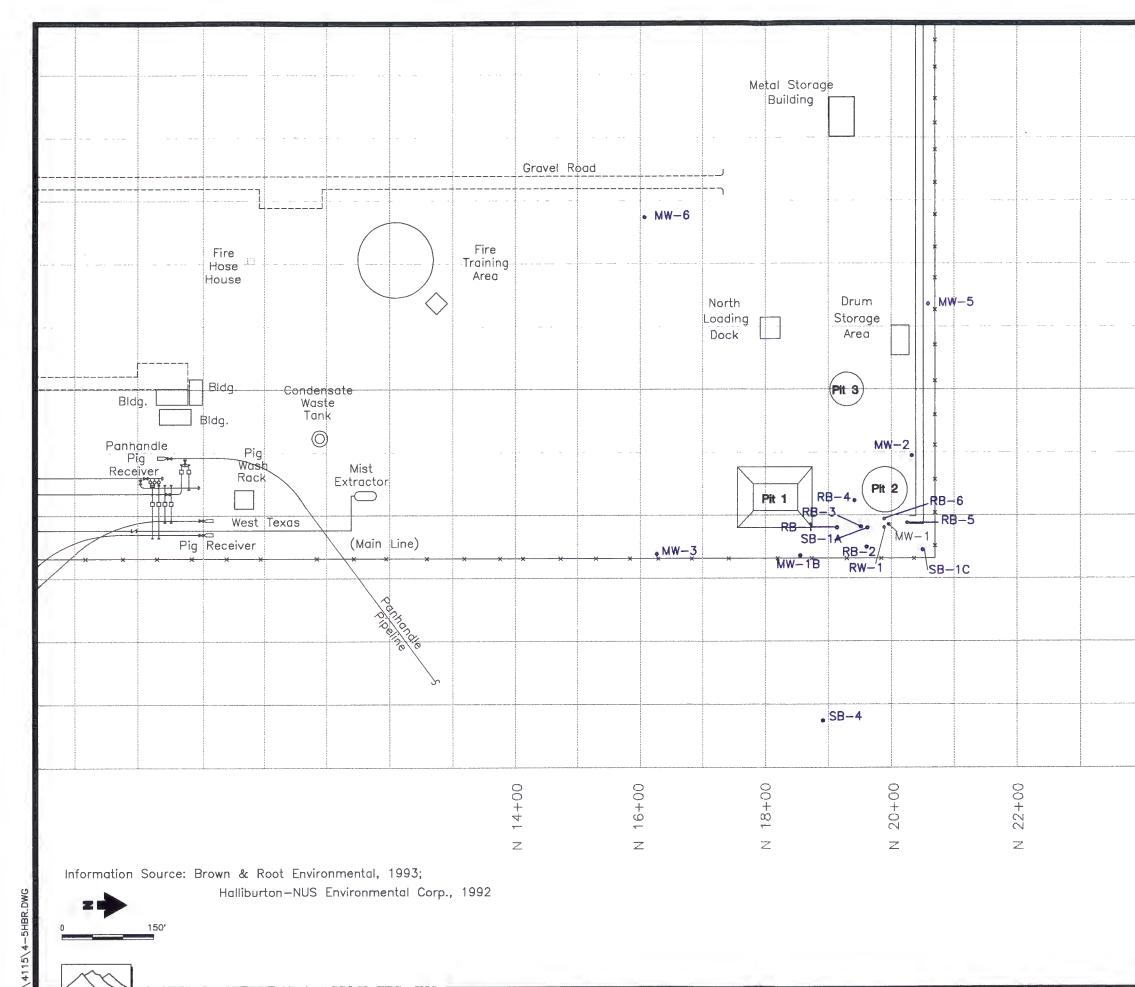
-

2

ROSWELL COMPRESSOR STATION Locations of Metric Corporation Soil Borings

Figure 3-4

E 6+00 24 + 00


E 4+00

E 2+00

0+00

W 2+00

W 4+00

DANIEL B. STEPHENS & ASSOCIATES, INC. 1-95 JN4115

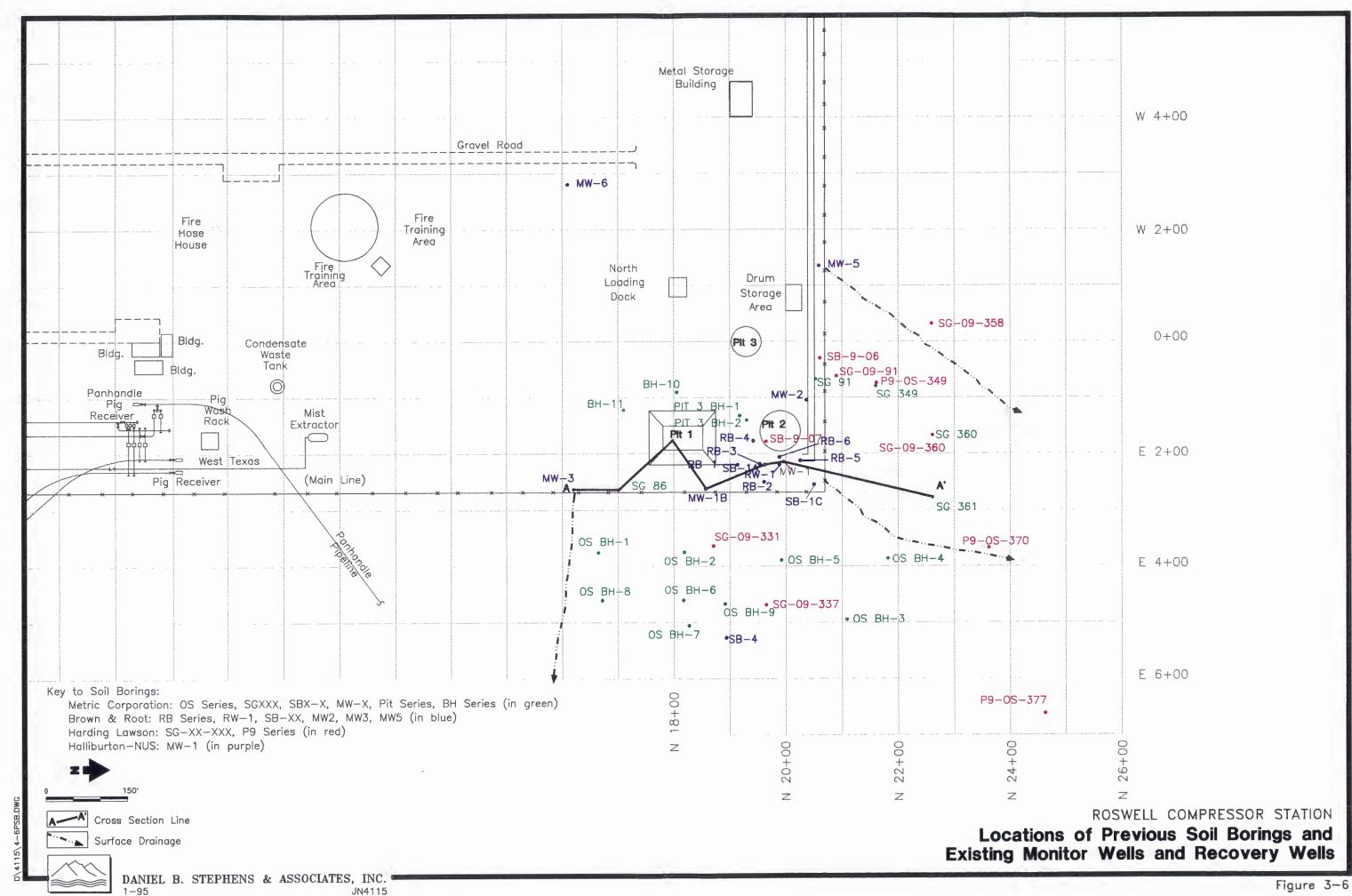
į,

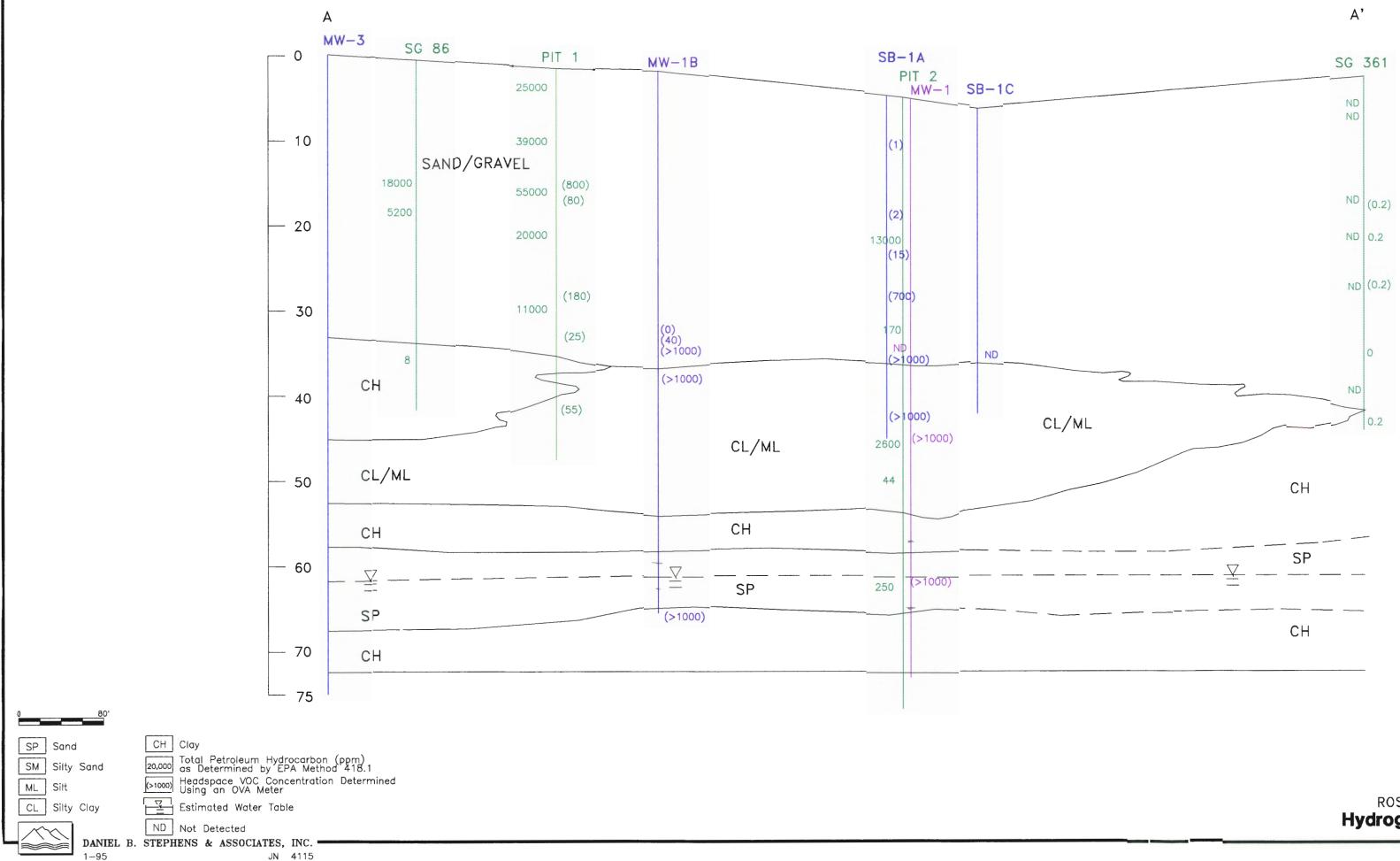
ROSWELL COMPRESSOR STATION Locations of Halliburton and **Brown & Root Soil Borings**

Figure 3-5

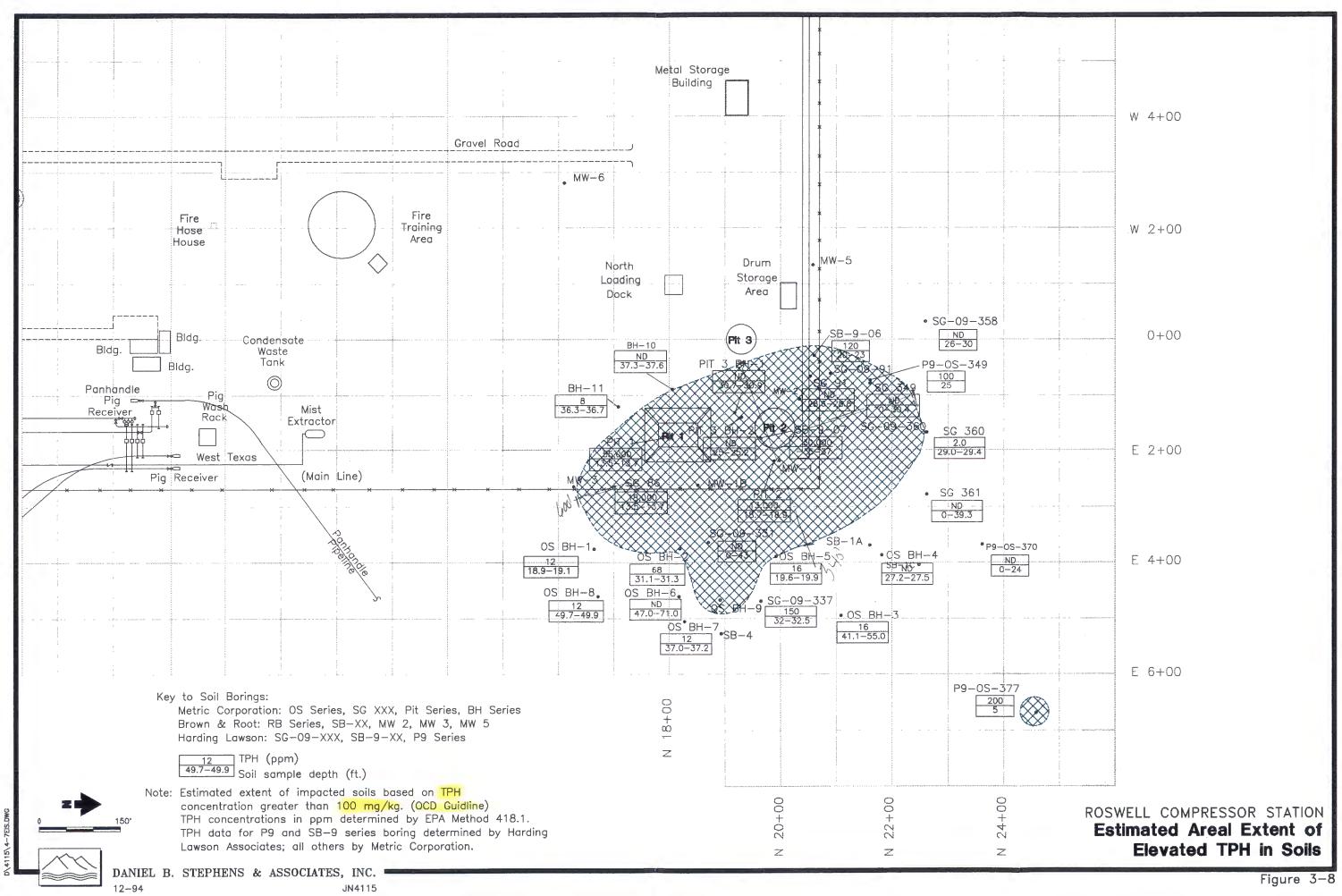
E 6+00 24+00

Z

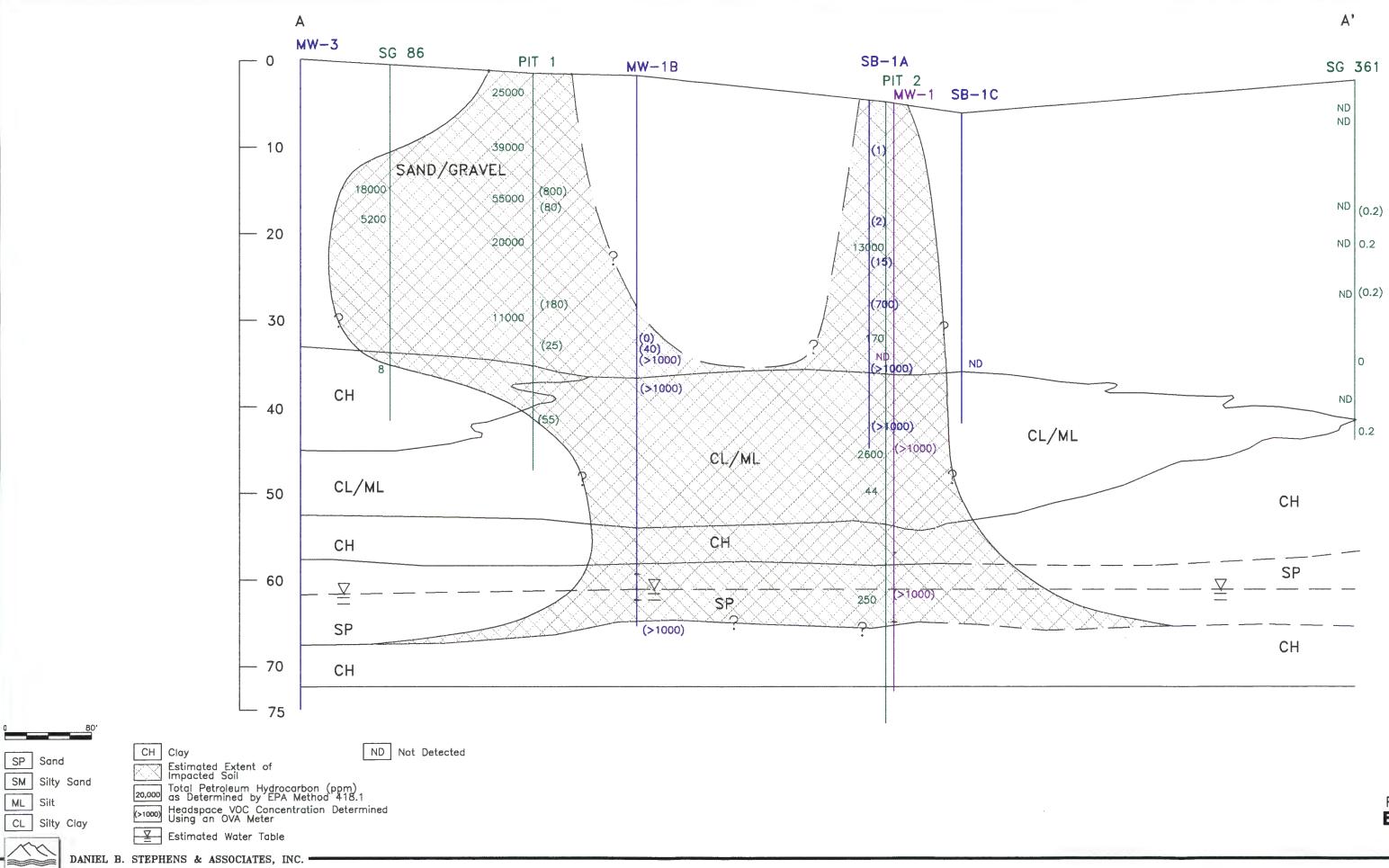

E 4+00


E 2+00

0+00


W 2+00

W 4+00



ROSWELL Hydrogeold

4115\4-9EAS.DWG

×.,

JN 4115 1-95

ROSWELL (Estimate of Elev

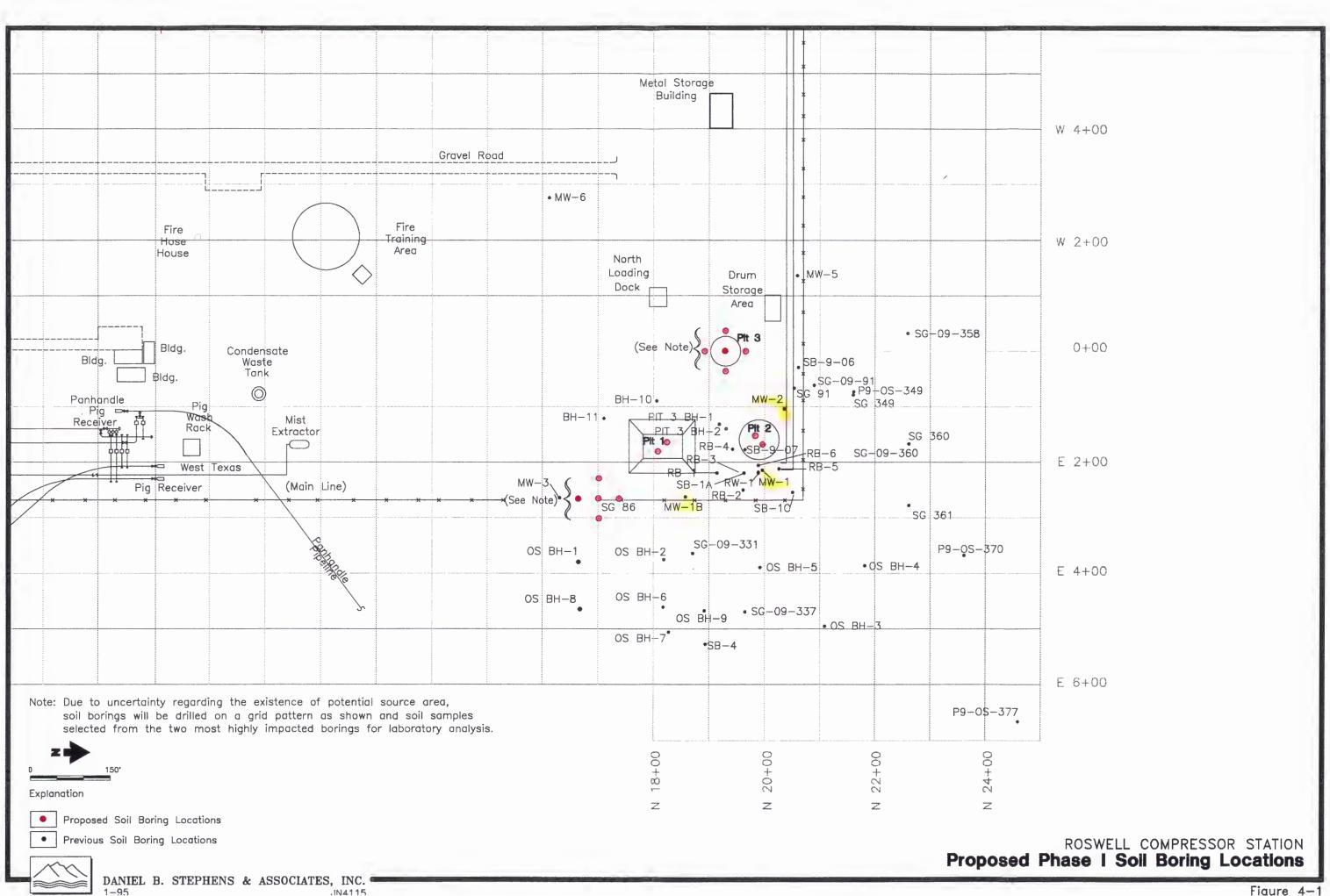
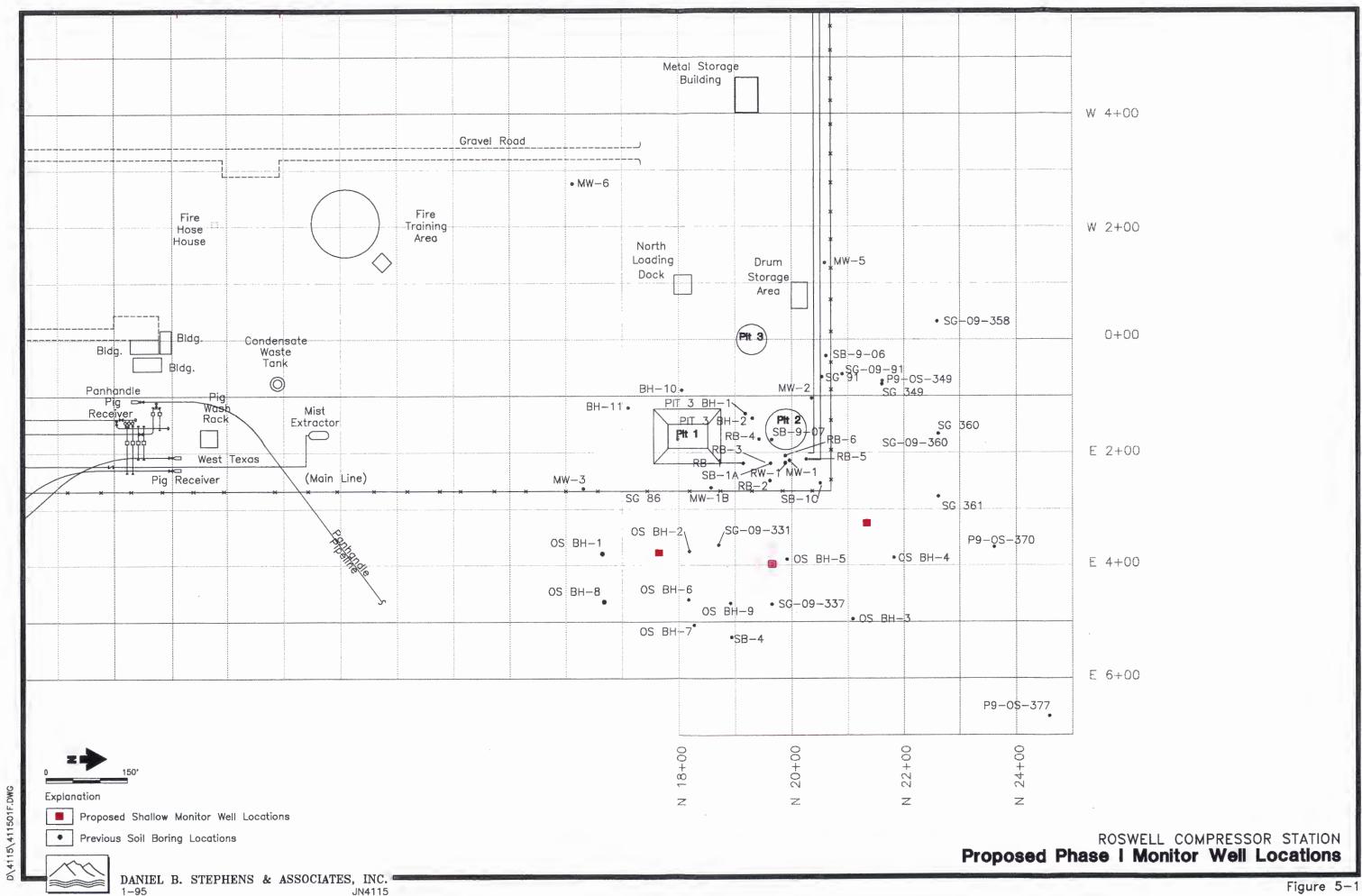



Figure 4-1

1

п

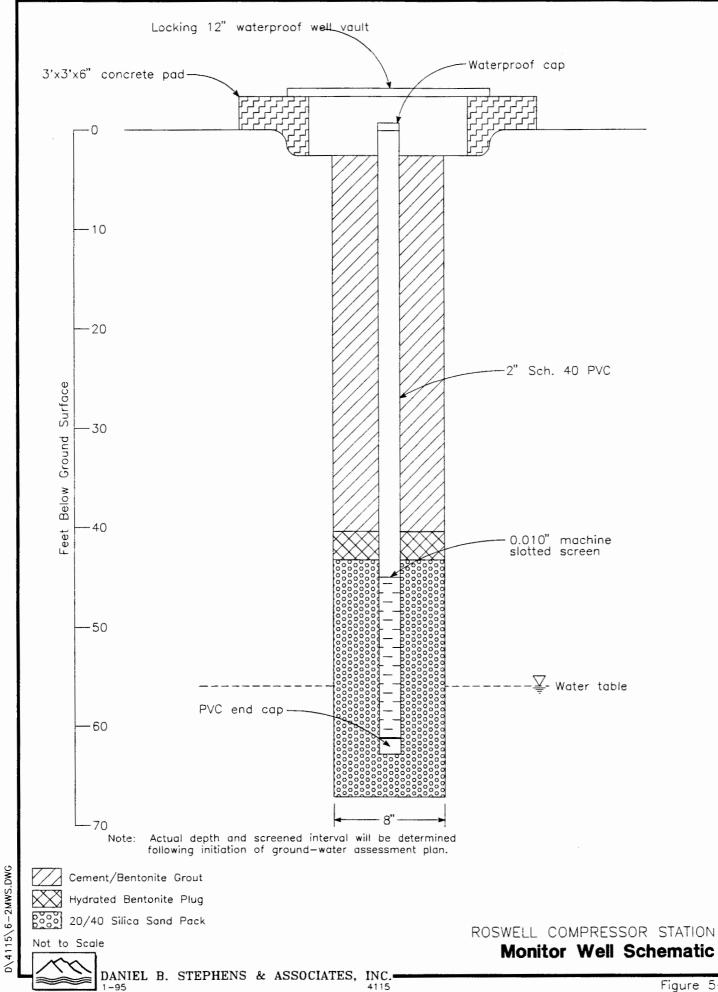


Figure 5-2

ROSWELL COMPRESSOR STATION

Proposed Schedule for Phase I Closure Activities

TASK	Weeks Following approval of closure plan																								
AGA I	1		2 3	4	5		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Phase I soil sampling		Τ			1	Т					1	1		I	1		1		1			1	1		
Phase I monitor well installation		1			Ι							I	1	1	1		1		1	L		1	<u> </u>		
Monitor well development		Т			T	Τ						1	1	1	1		[I		1			1		
Survey monitor wells		1		Γ	Ι							1	1	Τ	1	[1		1	I			<u> </u>		
Ground -water sampling		1		1	T	Т			1				1		1		[1	I			I		
Aquifer testing					1	Т				[1	1		L	1	Γ		I
Laboratory analysis of soil and ground-water samples		1	<u> </u>	I	Ι	Т		1	1								I	Ι.	L			1	I	I	<u> </u>
Phase I report preparation				1	1	Ι			1		1	1	1	T									1	1	<u> </u>
Phase I report submitted to NMED				1				1	<u> </u>	ſ	1	Ι	Γ		1	ſ	1	I	<u> </u>			•	1	1	<u> </u>
PSH product recovery																									
					1	1			I		I	1	1				1.		1	1		1	<u> </u>	I	Γ
······································		1		I	1			[L			.1	1	1			1				I	Ϊ	<u> </u>		1
		Γ	I	1	Ι	1		I	1		1	1	1	1			I	1	1	1		I	1	<u> </u>	Γ
		1_		1		Т							1	1	1	[1	1	Γ			1	<u> </u>	I	
	1	Γ		1	1				1		[1	1	1		1					1	1	1	1
					1	Т			1	[1	1	Τ		1		1	1				<u> </u>	
		Т		1		Т						1	I			1	T			I		Ι	1	I	Γ
				1	T			1	1	I	1	1	[<u> </u>	[1	1	1	1		1	1	I	
		Т				Т		<u> </u>	1	ľ	1	1	I					L	T	T			1	I	
				T	Т			T	1	Г		1	T	1	1	r—			1				1	T	1
· · · · · · · · · · · · · · · · · · ·				1		-			<u> </u>	г	1		<u>т</u>		T	1	1	1	1			- T	T		
				1		1		1		·					1		1					1			L

TABLES

5 a

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Well Number ¹	Latitude	Longitude	Well ID	Well Depth (ft)	Depth to Water (ft) / Year	Aquifer	Distance From Site (miles)	Date Drilled	Use	Status
1	333028	1043119	09S.24E.29.223313	NA	63 / 1961	San Andres Fm	0.66	NA	Livestock	Abandoned; plugged
2	333031	1043103	09S.24E.28.113132	352	65 / 1994	San Andres Fm	0.49	09/17/69	Observation	Abandoned; open
3	333050	1043025	09S.24E.21.43213	58	15 / 1937	Alluvial Fill	0.45	NA	Livestock	Abandoned; plugged
4	333053	1043134	09S.24E.20.413	NA	NA	San Andres Fm	0.63	NA	NA	Abandoned; not found
(5)	333059	1043135	09S.24E.20.32422	370	63 / 1948	San Andres Fm	0.73	NA		In use
6	333145	1043159	09S.24E.17.331222	208	119 / 1948	Artesia Group	1.54	NA	Observation	NA
7	333128	1043022	09S.24E.21.2124	NA	NA	NA	0.83	NA	Livestock	Abandoned; plugged
8	333149	1042931	09S.24E.15.41313	425)_47 / 1961	San Andres Fm	1.72	03/18/59	Irrigation	In use
9	333128	1043004	09S.24E.22.1113	386	281 / 1968	San Andres Fm	1.06	NA	Livestock	Abandoned; open
10	333041	1042924	09S.24E.27.21212	NA	NA	NA	1.50	NA	Irrigation (Not in use
11	332934	1043021	09S.24E.33.21443	510	53 / 1965	San Andres Fm	1.60	NA	Irrigation	NA
12	332927	1043106	09S.24E.32.242443	NA	43 / 1961	Artesia Group	1.66	NA	Livestock	Abandoned
13	332921	1043134	09S.24E.32.233324	116	72 / 1960	San Andres Fm	1.86	NA	Livestock	NA
14	333055	1043236	09S.24E.19.41331	550	126 / 1962	San Andres Fm	2.01	NA	Irrigation	NA
15	333151	1042903	09S.24E.15.42442	375	55 / 1959	San Andres Fm	2.08	12/15/58	Domestic	Abandoned; open
16	333207	1042914	09S.24E.15.24321	365	66/ 1966	San Andres Fm	2.12	11/15/65	Irrigation	Abandoned; has pump
17	333211	1043037	09S.24E.16.1422	NA	NA	NA	1.53	NA	Irrig/Stock	In use
18	333021	1042845	09S.24E.26.1431	NA	NA	NA	2.15	NA	Domestic	In use

Table 2-1. Water Supply Wells Located Within 2 Miles of
Roswell Compressor Station No. 9

Sources: USGS Ground-Water Site Inventory; field verification by Transwestern using GPS.

³ Well numbers correspond to well locations shown on Figure 2-5.

NA = Not available

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-1. Summary of Previous Soil Borings and Monitor Wells Roswell Compressor Station No. 9 Page 1 of 3

		Boring	Date of	Loca	ation	Ground Surface	Total Depth	Casing Diameter	Screened Interval	Top of Sand Pack	Top of Upper Clay ³
Boring No.	Source ¹	Type ²	Completion	North	East	Elevation	(feet bgs)	(inches)	(feet bgs)	(feet bgs)	(feet bgs)
SB-9-06	HLA	ASB	04/03/90	NA	NA	NA	29.0	N/A	N/A	N/A	28.0
SB-9-07	HLA	ASB	04/03/90	NA	NA	NA	38.5	N/A	N/A	N/A	38.0
P9-OS-349	HLA	ASB	05/02/90	NA	NA	NA	40.0	N/A	N/A	N/A	34.0
P9-OS-377	HLA	ASB	05/02/90	NA	NA	NA	30.0	N/A	N/A	N/A	12.0
SG-09-91	HLA	ASB	05/15/90	NA	NA	NA	33.0	N/A	N/A	N/A	31.0
SG-09-331	HLA	ASB	05/16/90	NA	NA	NA	43.0	N/A	N/A	N/A	38.0
SG-09-337	HLA	ASB	05/17/90	NA	NA	NA	33.0	N/A	N/A	N/A	28.0
SG-09-358	HLA	ASB	05/17/90	NA	NA	NA	30.0	N/A	N/A	N/A	21.0
SG-09-360	HLA	ASB	05/16/90	NA	NA	NA	34.5	N/A	N/A	N/A	30.0
SG-09-370	HLA	ASB	05/16/90	NA	NA	NA	24.0	N/A	N/A	N/A	12.0
Pit 1	Metric	ASB	07/16/91	1798	176.6	3615.72	47.8	N/A	N/A	N/A	30.6
Pit 2	Metric	ASB	07/17/91	1995	216.6	3615.72	71.6	N/A	N/A	N/A	10.1
Pit 3 (BH-1)	Metric	ASB	07/18/91	1918	131.5	3615.71	32.8	N/A	N/A	N/A	ND
Pit 3 (BH-2)	Metric	ASB	07/18/91	1948	138.5	3615.68	29.5	N/A	N/A	N/A	ND
SG 86	Metric	ASB	07/22/91	1710	268.2	3613.52	40.7	N/A	N/A	N/A	33.6

¹ HLA = Harding Lawson Associates, 1991

- Metric = Metric Corporation, 1991
- Hall-NUS = Halliburton NUS, 1992

B&R = Brown & Root Environmental, 1993

² ASB = Abandoned soil boring

MW = Monitor well

RW = Product recovery well ³ Depth below ground surface (feet) to uppermost clay reported on boring log bgs = Below ground surface

- NA = Not available
- N/A = Not applicable
- ND = Not detected

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-1. Summary of Previous Soil Borings and Monitor WellsRoswell Compressor Station No. 9Page 2 of 3

		Derine	Dete of	Loca	ation	Ground	Total	Casing	Screened	Top of	Top of
Boring No.	Source ¹	Boring Type ²	Date of Completion	North	East	Surface Elevation	Depth (feet bgs)	Diameter (inches)	Interval (feet bgs)	Sand Pack (feet bgs)	Upper Clay ³ (feet bgs)
SG 91	Metric	ASB	07/22/91	2053.2	66.5	3612.28	33.0	N/A	N/A	N/A	28.2
SG 349	Metric	ASB	07/25/91	2160.2	79.0	3615.56	30.4	N/A	N/A	N/A	29.7
SG 360	Metric	ASB	07/25/91	2261.5	166.8	3610.83	29.4	N/A	N/A	N/A	28.9
SG 361	Metric	ASB	07/25/91	2261.5	277.8	3610.15	41.3	N/A	N/A	N/A	38.9
OS BH-1	Metric	ASB	07/22/91	1664.9	375.9	3622.30	35.7	N/A	N/A	N/A	34.5
OS BH-2	Metric	ASB	07/24/91	1826.0	379.0	3618.39	70.6	N/A	N/A	N/A	22.1
OS BH-3	Metric	ASB	07/26/91	2108.7	495.1	3607.04	55.0	N/A	N/A	N/A	10.2
OS BH-4	Metric	ASB	07/29/91	2181.6	386.6	3604.95	31.0	N/A	N/A	N/A	24.4
OS BH-5	Metric	ASB	07/30/91	1992.0	389.5	3611.12	24.8	N/A	N/A	N/A	19.9
OS BH-6	Metric	ASB	07/30/91	1817.5	460.9	3619.15	72.6	N/A	N/A	N/A	ND
OS BH-7	Metric	ASB	07/31/91	1827.6	505.7	3616.69	40.3	N/A	N/A	N/A	22.0
OS BH-8	Metric	ASB	07/31/91	1671.9	460.8	3620.04	49.9	N/A	N/A	N/A	33.9
OS BH-9	Metric	ASB	08/01/91	1891.6	467.2	3614.77	49.7	N/A	N/A	N/A	31.0
BH-10	Metric	ASB	11/15/91	NA	NA	3617.33	37.8	N/A	N/A	N/A	27.8
BH-11	Metric	ASB	11/15/91	NA	NA	3617.60	37.8	N/A	N/A	N/A	28.9

¹ HLA = Harding Lawson Associates, 1991

Metric = Metric Corporation, 1991

Hall-NUS = Halliburton NUS, 1992

B&R = Brown & Root Environmental, 1993

² ASB = Abandoned soil boring

MW = Monitor well

RW = Product recovery well ³ Depth below ground surface (feet) to uppermost clay reported on boring log bgs = Below ground surface

NA = Not available

N/A = Not applicable

ND = Not detected

· 4

ż

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-1. Summary of Previous Soil Borings and Monitor Wells Roswell Compressor Station No. 9 Page 3 of 3

		Boring	Date of	Loca	ation	Ground Surface	Total Depth	Casing Diameter	Screened Interval	Top of Sand Pack	Top of Upper Clay ³
Boring No.	Source ¹	Type ²	Completion	North	East	Elevation	(feet bgs)	(inches)	(feet bgs)	(feet bgs)	(feet bgs)
MW-1	Hall-NUS	MW/RW	7/21/92	2001.4	217.6	NA	68	4	28-68	25.2	NA
MW-1B	B&R	MW/RW	04/21/93	1854.0	265.5	3609.96 ⁴	65.5	2	55-65	53	34.5
MW-2	B&R	MW/RW	04/21/93	2034.3	102.4	3611.76 ⁴	65.0	2	55-65	53	30
MW-3	B&R	MW	04/26/93	1629.8	265.3	3614.88 ⁴	72.5	2	60-70	58	32
MW-5	B&R	MW	04/28/93	2049.7	-151.0	3612.76 ⁴	70	2	60-70	58	19.5
SB-1A	B&R	ASB	04/20/93	NA	NA	3613.48 ^₄	41.5	N/A	N/A	N/A	ND
SB-1C	B&R	ASB	04/29/93	NA	NA	3606.08 ⁴	36.0	N/A	N/A	N/A	30
SB-4	B&R	ASB	04/25/93	NA	NA	3604.78 ⁴	75	N/A	N/A	N/A	18
RB-1	B&R	ASB	6/13/93	1914	222	3613.22 ^₄	36.3	N/A	N/A	N/A	36.0
RB-2	B&R	ASB	6/12/93	1962	254	3611.11 ⁴	34.5	N/A	N/A	N/A	34.30
RB-3	B&R	ASB	6/12/93	1953	220	3612.76 ⁴	42	N/A	N/A	N/A	41.25
RB-4	B&R	ASB	6/13/93	1943	175	3614.41 ⁴	39	N/A	N/A	N/A	37.75
RB-5	B&R	ASB	6/13/93	2027	213	3608.61 ⁴	32	N/A	N/A	N/A	31.50
RB-6	B&R	ASB	NA	1989	206	3613.364	38.5	N/A	N/A	N/A	38.5
RW-1 (RB-7)	B&R	RW	6/13/93	1987	222	3612.32⁴	42.5	4	36.8-41.7	34.8	41.5
MW-6	DBS&A	MW	12/1/94	1607.4	-266.2	3618.62	79	2	59.9-74.9	57.1	35.5

¹ HLA = Harding Lawson Associates, 1991

Metric = Metric Corporation, 1991

Hall-NUS = Halliburton NUS, 1992

B&R = Brown & Root Environmental, 1993

DBS&A = Daniel B. Stephens & Associates, Inc., 1994

² ASB = Abandoned soil boring

MW = Monitor well

RW = Product recovery well

³ Depth below ground surface (feet) to uppermost clay reported on boring log bgs = Below ground surface

NA = Not available N/A = Not applicable

ND = Not detected

⁴ Original survey to arbitrary datum corrected to elevations above sea level by referencing boring elevations to the surveyed elevation of MW-3 (3614.88 asl).

DANIEL B. STEPHENS & ASSOCIATES, INC.

a k

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

£ 8

Table 3-2. Summary of Organic Compounds Detected in Soil SamplesRoswell Compressor Station No. 9Page 1 of 6

			Concentration ¹												
Sample ID	Source ²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon- 113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH (mg/kg)
SB9-6 @ 8-11'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB9-6 @ 18-20'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB9-6 @ 20-23'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	120
SB9-6 @ 26-28'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB9-6 @ 26-28' Tube #5	HLA	<5	ND	<10	<5	ND	<5	ND	6	16	ND	ND	<5	<5	<20
SB9-6 @ 26-28' Tube #6	HLA	<7	ND	<14	<7	ND	<7	ND	23*	9*	ND	ND	<7	<7	<20
SB9-7 @ 9-12'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1100
SB9-7 @ 21.5-24'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2000
SB9-7 @ 25.5-28'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2500
SB9-7 @ 29-32'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11000
SB9-7 @ 29-32' Tube #7	HLA	<1300	ND	<2600	<1300	ND	<1300	ND	5100	<1300	ND	ND	720	1800	5000
SB9-7 @ 35-37'	HLA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4600
SB9-7 @ 35-37' Tube #8	HLA	<640	ND	<1300	<640	ND	<640	ND	<640	<640	ND	ND	1800	4200	13000
SB9-7 @ 35-37' Tube #9	HLA	2000	ND	<1300	<670	ND	2100	ND	<670	<670	ND	ND	2800	6500	30000
P9-OS-349 @ 5'	HLA	<5	ND	<11	<5	ND	<5	ND	26*	6*	ND	ND	<5	<5	<20
P9-OS-349 @ 10'	HLA	<6	ND	<11	<6	ND	<6	ND	18	9	ND	ND	<6	<6	100
P9-OS-349 @ 20'	HLA	<5	ND	<11	<5	ND	<5	ND	45 *	<5*	ND	ND	<5	<5	<20
P9-OS-349 @ 25'	HLA	<5	ND	<11	<5	ND	<5	ND	21	10	ND	ND	<5	<5	100

¹ Concentrations are in µg/kg unless otherwise noted

² HLA = Harding Lawson Associates (1991a)

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

Note: All HLA analyses performed in on-site mobile laboratory

- 1,1,1-TCA = 1,1,1-Trichloroethane
- 1,1-DCA = 1,1-Dichloroethane
- PCA = Tetrachloroethane
- PCE = Tetrachloroethene
- Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons

- NA = Not analyzed
- ND = Not detected
- * = Compound was also detected in the QC blanks

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil SamplesRoswell Compressor Station No. 9Page 2 of 6

						-	<u> </u>	Concer	ntration ¹						
Sample ID	Source ²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon- 113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH (mg/kg)
P9-OS-349 @ 30'	HLA	<7	ND	<14	<7	ND	<7	ND	45*	<7	ND	ND	<7	<7	<20
P9-OS-349 @ 35'	HLA	<7	ND	<14	<7	ND	<7	ND	39	15	ND	ND	<7	<7	<20
P9-OS-349 @ 40'	HLA	<5	ND	<10	<5	ND	<5	ND	40	8	ND	ND	<5	<5	<20
P9-OS-377 @ 5'	HLA	<6	ND	34*	<6	ND	<6	ND	<6	<6	ND	ND	<6	<6	200
P9-OS-377 @ 10'	HLA	<6	ND	27*	<6	ND	<6	ND	<6	<6	ND	ND	<6	<6	<20
P9-OS-377 @ 15'	HLA	<6	ND	27*	<6	ND	<6	ND	<6	11	ND	ND	<6	<6	<20
P9-OS-377 @ 20'	HLA	<7	ND	37*	<7	ND	<7	ND	<7	7	ND	ND	<7	<7	<20
P9-OS-377 @ 25'	HLA	<6	ND	<12	<6	ND	<6	ND	46	36	ND	ND	<6	<6	<20
P9-OS-377 @ 30'	HLA	<7	ND	<13	<7	ND	<7	ND	69	23	ND	ND	<7	<7	<20
Pit 1 @ 2.8-3.0'	Metric	3200	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	25000
Pit 1 @ 9.2-9.4'	Metric	19000	ND	NA	ND	ND	ND	260	NA	ND	NA	NA	NA	NA	39000
Pit 1 @ 13.5-13.7'	Metric	18000	590	NA	ND	200	ND	330	NA	ND	NA	NA	NA	NA	55000
Pit 1 @ 18.8-19.0'	Metric	330	ND	NA	ND	ND	ND	870	NA	ND	NA	NA	NA	NA	20000
Pit 1 @ 26.8-27.0'	Metric	ND	ND	NA	ND	ND	ND	160	NA	ND	NA	NA	NA	NA	11000
Pit 1 @ 30.6-30.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
Pit 1 @ 41.6-41.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	16
Pit 1 @ 43.5-43.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	56

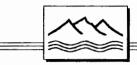
¹ Concentrations are in µg/kg unless otherwise noted

² HLA = Harding Lawson Associates (1991a)

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

Note: All HLA analyses performed in on-site mobile laboratory


- 1,1,1-TCA = 1,1,1-Trichloroethane
- 1,1-DCA = 1,1-Dichloroethane
- PCA = Tetrachloroethane
- PCE = Tetrachloroethene
- Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons

- NA = Not analyzed
- ND = Not detected

*

= Compound was also detected in the QC blanks

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

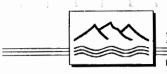
Table 3-2. Summary of Organic Compounds Detected in Soil Samples Roswell Compressor Station No. 9 Page 3 of 6

								Conce	ntration ¹						
Sample ID	Source ²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon- 113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH (mg/kg)
Pit 2 #1 @ 18.7-18.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
Pit 2 #2 @ 18.7-18.9'	Metric	370	ND	NA	ND	ND	ND	650	NA	ND	NA	NA	NA	NA	13000
Pit 2 @ 26.0-26.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	170
Pit 2 @ 29.1-29.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
Pit 2 @ 39.8-39.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	2600
Pit 2 @ 44.1-44.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	44
Pit 2 @ 57.5-57.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	250
Pit 2 @ 69.9-70.1'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Pit 3 BH-1 @ 30.7-30.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Pit 3 BH-2 @ 25.0-25.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
SG 86 @ 13.5-13.7'	Metric	240	ND	NA	ND	ND	ND	1900	NA	ND	NA	NA	NA	NA	18000
SG 86 @ 18.7-18.9'	Metric	ND	ND	NA	ND	ND	ND	230	NA	ND	NA	NA	NA	NA	5200
SG 86 @ 24.9-25.1'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 86 @ 35.0-35.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	8.0
SG 86 @ 40.5-40.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
SG 91 @ 28.6-28.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
SG 349 @ 0.0-1.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 349 @ 2.9-4.6'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND

¹ Concentrations are in µg/kg unless otherwise noted

² HLA = Harding Lawson Associates (1991a)

- Metric = Metric Corporation (1991)
- B&R = Brown and Root Environmental (1993)


Note: All HLA analyses performed in on-site mobile laboratory

- 1,1,1-TCA = 1,1,1-Trichloroethane
- 1,1-DCA = 1,1-Dichloroethane
- PCA = Tetrachloroethane
- PCE = Tetrachloroethene
- Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons

- NA = Not analyzed
- ND = Not detected
- * = Compound was also detected in the QC blanks

4115(2)\CLOS-PLN.FNL\SO-V&SV.531

1 5

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil SamplesRoswell Compressor Station No. 9Page 4 of 6

								Concer	ntration ¹						
Sample ID	Source ²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon- 113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH (mg/kg)
SG 349 @ 9.0-10.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 349 @ 14.0-14.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 349 @ 20.3-21.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 349 @ 5.3-26.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 349 @ 29.7-30.4'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
SG 360 @ 0.0-2.5'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 4.0-5.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 9.0-9.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 14.0-14.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 19.0-20.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 24.0-25.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 360 @ 29.0-29.4'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	2.0
SG 361 @ 0.0-2.5'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 4.0-5.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 9.0-10.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 16.0-16.4'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 19.5-19.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
SG 361 @ 24.0-25.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND

¹ Concentrations are in µg/kg unless otherwise noted

² HLA = Harding Lawson Associates (1991a)

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

Note: All HLA analyses performed in on-site mobile laboratory

1,1,1-TCA = 1,1,1-Trichloroethane

1,1-DCA = 1,1-Dichloroethane

PCA = Tetrachloroethane

- PCE = Tetrachloroethene
- Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane

TPH = Total petroleum hydrocarbons

- NA = Not analyzed
- ND = Not detected

*

Compound was also detected in the QC blanks

4115(2)\CLOS-PLN.FNL\SO-V&SV.531

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil SamplesRoswell Compressor Station No. 9Page 5 of 6

								Conce	ntration ¹						
Sample ID	Source ²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon- 113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH (mg/kg)
SG 361 @ 38.0-39.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-1 @ 18.9-19.1'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	12
OS BH-1 @ 34.3-34.5'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-2 @ 9.9-10.1'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-2 @ 22.5-22.6'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-2 @ 31.1-31.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	68
OS BH-2 @ 41.8-42.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	24
OS BH-2 @ 55.2-55.4'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
OS BH-2 @ 69.0-69.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
OS BH-3 @ 21.0-21.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
OS BH-3 @ 44.1-44.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
OS BH-3 @ 54.7-55.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	16
OS BH-4 @ 27.5-27.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
OS BH-5 @ 14.0-14.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-5 @ 19.6-19.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	16
OS BH-5 @ 23.4-23.6'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	12
OS BH-6 @ 13.6-13.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	12
OS BH-6 @ 47.0-47.2'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND

¹ Concentrations are in µg/kg unless otherwise noted

- ² HLA = Harding Lawson Associates (1991a)
- Metric = Metric Corporation (1991)
- B&R = Brown and Root Environmental (1993)
- Note: All HLA analyses performed in on-site mobile laboratory
- 1,1,1-TCA = 1,1,1-Trichloroethane
- 1,1-DCA = 1,1-Dichloroethane
- PCA = Tetrachloroethane
- PCE = Tetrachloroethene
- Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane
- TPH = Total petroleum hydrocarbons
- NA = Not analyzed
- ND = Not detected
 - = Compound was also detected in the QC blanks

4115(2)\CLOS-PLN.FNL\SO-V&SV.531

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-2. Summary of Organic Compounds Detected in Soil Samples **Roswell Compressor Station No. 9** Page 6 of 6

								Conce	ntration ¹						
Sample ID	Source ²	1,1,1-TCA	1,1-DCA	Acetone	Chloro- benzene	Chloro- form	PCA	PCE	Freon- 113	Methylene chloride	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPH (mg/kg)
OS BH-6 @ 52.6-52.8'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-6 @ 70.0-71.0'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
OS BH-7 @ 22.1-22.3'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
OS BH-7 @ 33.5-33.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	ND
OS BH-7 @ 37.0-37.2'	Metric	ND	ND	NA	ND	ND	ND	170	NA	ND	ND	ND	190	440	12
OS BH-8 @ 4.6-4.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	12
OS BH-8 @ 33.9-34.1'	Metric	ND	ND	NA	120	ND	ND	160	NA	ND	NA	NA	NA	NA	ND
OS BH-8 @ 49.7-49.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	140	300	12
OS BH-9 @ 4.5-4.9'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	8
OS BH-9 @ 32.0-32.5'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	150
OS BH-9 @ 49.5-49.7'	Metric	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	8
BH-10 @ 37.3-37.6'	Metric	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND
BH-11 @ 36.3-36.7'	Metric	NA	NA	NA	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	8
SB-1C @ 25-26'	B&R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB-5 @ 19-21'	B&R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20
SB-5 @ 64-66'	B&R	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<20

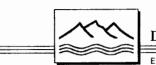
¹ Concentrations are in µg/kg unless otherwise noted

² HLA = Harding Lawson Associates (1991a)

Metric = Metric Corporation (1991)

B&R = Brown and Root Environmental (1993)

Note: All HLA analyses performed in on-site mobile laboratory

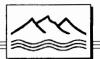

1,1,1-TCA = 1,1,1-Trichloroethane

1,1-DCA = 1,1-Dichloroethane PCA

- = Tetrachloroethane
- PCE = Tetrachloroethene
- Freon-113 = 1,1,2-Trichloro-1,2,2-trifluoroethane TPH

= Total petroleum hydrocarbons

- NA = Not analyzed
- ND = Not detected *
 - = Compound was also detected in the QC blanks



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-3. Summary of TCLP Inorganic Constituents Detected in Soil SamplesRoswell Compressor Station No. 9Page 1 of 2

		Concentration (mg/L)									
Sample ID	Source ¹	Arsenic (TCLP Extract)	Barium (TCLP Extract)	Cadmium (TCLP Extract)	Chromium (TCLP Extract)	Lead (TCLP Extract)	Mercury (TCLP Extract)	Selenium (TCLP Extract)	Silver (TCLP Extract)		
TCLP Limit		5.0	100.0	1.0	5.0	5.0	0.2	1.0	5.0		
SB9-6 @ 8-11'	HLA	0.004	0.63	0.0010	<0.006	<0.002	<0.0002	<0.003	<0.0005		
SB9-6 @ 18-20'	HLA	<0.003	1.21	<0.0005	<0.006	<0.002	<0.0002	<0.003	<0.0005		
SB9-6 @ 20-23'	HLA	<0.003	0.7	<0.0005	0.011	<0.002	<0.0002	<0.003	0.0026		
SB9-6 @ 26-28'	HLA	<0.003	1.22	0.0006	0.006	0.008	<0.0002	<0.003	<0.0005		
SB9-6 @ 26-28' Tube #5	HLA	<0.003	1.3	0.0012	0.007	0.002	<0.0002	<0.003	<0.0005		
SB9-6 @ 26-28' Tube #6	HLA	0.009	0.010	0.0008	0.011	<0.002	<0.0002	<0.003	<0.0005		
SB9-7 @ 9-12'	HLA	<0.003	0.75	0.0005	0.007	0.003	<0.0002	<0.003	<0.0005		
SB9-7 @ 21.5-24'	HLA	0.004	2.22	0.0010	<0.006	<0.002	<0.0002	<0.003	<0.0005		
SB9-7 @ 25.5-28'	HLA	<0.003	1.81	<0.0005	0.009	<0.002	<0.0002	<0.003	<0.0005		
SB9-7 @ 29-32'	HLA	0.008	3.59	0.0011	0.009	<0.002	<0.0002	<0.003	<0.0005		
SB9-7 @ 29-32' Tube #7	HLA	0.008	1.81	0.0012	0.006	<0.002	<0.0002	<0.003	<0.0005		
SB9-7 @ 35-37'	HLA	0.008	1.72	0.0007	0.007	<0.002	<0.0002	<0.003	<0.0005		
SB9-7 @ 35-37' Tube #8	HLA	0.005	1.84	0.0006	<0.006	<0.002	<0.0002	<0.003	<0.0005		
SB9-7 @ 35-37' Tube #9	HLA	0.004	3.12	0.0006	0.01	<0.002	<0.0002	<0.003	<0.0005		
P9-OS-349 @ 5'	HLA	0.007	1.21	0.0009	0.012	0.012	<0.0002	<0.003	<0.0006		
P9-OS-349 @ 10'	HLA	0.005	0.4	<0.0006	0.013	0.011	<0.0002	<0.01	<0.0006		
P9-OS-349 @ 20'	HLA	<0.003	0.77	<0.0006	0.009	0.004	<0.0002	<0.003	<0.0006		

¹ HLA = Harding Lawson Associates (1991a)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-3. Summary of TCLP Inorganic Constituents Detected in Soil SamplesRoswell Compressor Station No. 9Page 2 of 2

					Concentrat	ion (mg/L)			
Sample ID	Source ¹	Arsenic (TCLP Extract)	Barium (TCLP Extract)	Cadmium (TCLP Extract)	Chromium (TCLP Extract)	Lead (TCLP Extract)	Mercury (TCLP Extract)	Selenium (TCLP Extract)	Silver (TCLP Extract)
TCLP Limit		5.0	100.0	1.0	5.0	5.0	0.2	1.0	5.0
P9-OS-349 @ 30'	HLA	<0.003	1.48	<0.0006	0.009	0.007	<0.0002	<0.003	<0.0006
P9-OS-349 @ 35'	HLA	<0.003	1.36	<0.0006	0.011	0.005	<0.0002	<0.003	<0.0006
P9-OS-349 @ 40'	HLA	0.005	0.23	0.0013	<0.007	<0.002	<0.0002	<0.003	<0.0006
P9-OS-377 @ 5'	HLA	0.004	1.05	<0.0006	0.009	0.003	<0.0002	<0.003	<0.0006
P9-OS-377 @ 10'	HLA	0.01	0.19	0.0018	0.007	0.004	<0.0002	<0.01	<0.0006
P9-OS-377 @ 15'	HLA	<0.003	0.15	0.003	0.011	0.009	<0.0002	<0.003	<0.0006
P9-OS-377 @ 20'	HLA	0.003	0.16	0.0010	0.011	0.003	<0.0002	<0.01	<0.0006
P9-OS-377 @ 25'	HLA	0.006	0.06	0.0009	<0.007	<0.002	<0.0002	<0.02	<0.0006
P9-OS-377 @ 30'	HLA	0.011	0.32	<0.0006	<0.007	<0.002	<0.0002	<0.003	<0.0006

¹ HLA = Harding Lawson Associates (1991a)

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 3-4. Summary of Organic Compounds Detected in Ground-Water Samples **Roswell Compressor Station No. 9**

									Concentrat	tion ¹ Mg	Ĺ			
Sample ID	Source ²	Date	Benzene	Toluene	Ethyl- benzene		p-Xylene, m-Xylene	1,1,1-TCA	1,1-DCA	2-Butanone (MEK)	Naphthalene	2-Methyl- naphthalene	4-Methyl- phenol	Petroleum Hydrocarbons (mg/L)
	C Ground Standard	-Water	10	750	750	62	20 ³	60	NS	NS	NS	30⁴	NS	NS
MW-1	HB	09/21/92	370	61	110	120	820	180	560	220	34	51	250	37
MW-2	B&R	10/09/93	6,500	15,000	2,100	13,	000 ³	<300	<300	NA	NA	NA	NA	NA
MW-3	B&R	04/30/93	<5	<5	<5	NA	NA	<5	<5	NA	NA	NA	NA	<0.2
MW-5	B&R	04/30/93	<5	<5	<5	NA	NA	<5	<5	NA	NA	NA	NA	<0.2
MW-6	DBS&A	12/02/94	<0.5	<0.5	<0.5	<().5 ³	<0.2	<0.2	NA	NA	NA	NA	<2.5
TW-1	DBS&A	12/22/94	<1	<5	<5	<	<5	<5	<5	<100	<10	<10	<10	NA
Well #5⁵	DBS&A	12/22/94	<1	<5	<5	<	<5	<5	<5	<100	NA	NA	NA	NA

¹ Concentrations are in μg/L unless otherwise noted ² HB = Halliburton NUS Environmental Corp. (1992)

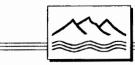
B&R = Brown and Root Environmental (1993)

DBS&A = Daniel B. Stephens & Associates, Inc. (1994)

³ Total xylenes

⁴ Sum of naphthalene and methylnaphthalene
 ⁵ Off-site water supply well; see Figure 2-5 for location

1.1.1-TCA = 1.1.1-Trichloroethane


1.1-DCA = 1.1-Dichloroethane

MEK = Methyl ethyl ketone

NA = Not analyzed

ND = Not detected

NS = No standard

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

										Cor	centratio	on (mg/L	.)						
			Arse	ənic	Ba	rium	Cadn	nium	Chro	mium	Le	ad	Mer	cury	Sele	nium	Sil	ver	
Sample ID	Source ¹	Date	Т	D	Т	D	Т	D	Т	D	Т	D	Т	D	Т	D	Т	D	TDS
11	CC Ground Standards	l-Water	NS	0.1	NS	1.0	NS	0.01	NS	0.05	NS	0.05	0.002	NS	NS	0.05	NS	0.05	1000
MW-1	HB	09/21/92	0.19	NA	4.4	NA	<0.005	NA	0.01	NA	<0.05	NA	<0.0002	NA	<0.003	NA	<0.01	NA	NA
MW-3	B&R	04/30/93	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,400
	CES	03/23/94	<0.03	<0.03	0.09	0.02	<0.01	<0.01	<0.01	<0.01	0.04	<0.03	<0.0002	<0.0002	<0.04	<0.04	<0.01	<0.01	NA
MW-5	B&R	04/30/93	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,800
	CES	03/23/94	<0.03	<0.03	0.38	0.01	<0.01	<0.01	0.03	<0.01	0.04	<0.03	<0.0002	<0.0002	<0.04	<0.04	<0.01	<0.01	NA
TW-1	DBS&A	12/22/94	<0.05	NA	0.14	NA	<0.005	NA	<0.01	NA	0.06	NA	<0.0002	NA	<0.1	NA	<0.01	NA	1,290
Well #5 ²	DBS&A	12/22/94	<0.05	NA	0.02	NA	<0.005	NA	<0.01	NA	<0.05	NA	<0.0002	NA	<0.1	NA	<0.01	NA	2,420

Table 3-5. Summary of Inorganic Constituents Detected in Ground-Water Samples Roswell Compressor Station No. 9

¹ HB = Halliburton NUS Environmental Corp. (1992)

B&R = Brown and Root Environmental (1993)

CES = Cypress Engineering Services (1994)

DBS&A = Daniel B. Stephens & Associates, Inc. (1994)

² Off-site water supply well; see Figure 2-5 for location.

TDS = Total dissolved solids

- T = Total metals concentrations determined on unfiltered samples
- D = Dissolved metals concentrations determined on samples filtered in the laboratory prior to analysis

NA = Not analyzed

NS = Not standard

Note: New Mexico Water Quality Control Commission (NMWQCC) ground-water standards pertain to dissolved constituents, except mercury; the mercury standard applies to the total (unfiltered) mercury concentration.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Monitor Well	Location ¹	RP Elevation ² (feet asl)	DTW ³ (feet)	Ground-Water Elevation (feet asl)	Date/Time Measured
RW-1	N1999.1 E224.4	3612.03	NA	NA	NA
MW-1	N2001.4 E217.6	3612.95	NA	NA	NA
MW-1B	N1854.0 E265.5	3610.44	NA	NA	NA
MW-2	N2034.3 E102.4	3612.83	NA	NA	NA
MW-3	N1629.8 E265.3	3614.88	64.6 64.58	3550.28 3550.30	12/04/94 1145 12/22/94 1721
MW-5	N2049.7 W151.0	3612.78	62.55 62.64	3550.23 3550.14	12/04/94 1140 12/22/94 1728
MW-6	N1607.4 W266.2	3618.62	65.5 63.59	3553.12 3555.03	12/04/94 1155 12/22/94 1715

Table 3-6. Well Coordinates and Depth to Water for Existing Monitor Wells

Note: Well coordinates surveyed December 1, 1994 by Atkins Engineering Associates, Inc. (Roswell)

¹ Horizontal coordinates relative to station datum (see Figure 2-1).
 ² Reference point elevation (feet above sea level) for each monitor well determined relative to station datum.

³ Depth to water (DTW) below RP on top of casing.

⁴ Ground-water elevation determined as RP elevation minus DTW

Boring logs, if available, are provided in Appendix G.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-1. Analytical Parameters, Methods, and Data Quality Objectives

Analyte Class	EPA Method ¹	Precision Objective (RPD) ²	Accuracy Objective (%R) ³	Completeness Objective (%)
Soils and Ground Water				
VOCs	8240	20	80 to 120	90
SVOCs	8270	30	60 to 140	90
PCBs	8080	30	60 to 140	90
Appendix IX total metals⁴	6010/7000	20	80 - 120	90
Total cyanide	9012	20	80 to 120	90
Total sulfide	9030	20	80 to 120	90
Total petroleum hydrocarbons	418.1	20	NA	90
Ground Water Only				
Major cations⁵	6010	20	NA	90
Total alkalinity	310.1	20	NA	90
Chloride	9250	20	NA	90
Sulfate	9038	20	NA	90
Nitrate and nitrite	9200	20	NA	90
TDS	160.1	20	NA	90

¹ U.S. EPA, 1986.

² Relative percent difference between duplicate.
 ³ Percent recovery of matrix spike.

⁴ Includes Ag, As, Ba, Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn, Tl, V, Zn.

⁵ Includes Ca, K, Mg, Na, Fe, Mn.

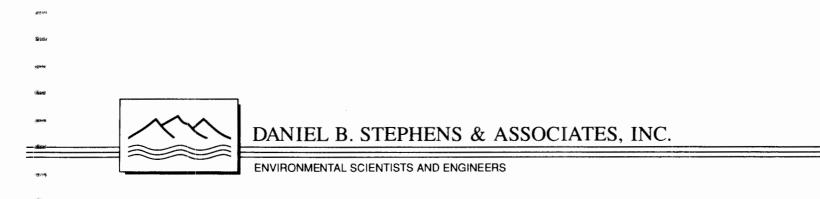

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Table 6-2.	Sample	Collection	Protocol
------------	--------	------------	----------

Analyte	EPA Method	Sample Volume/Container	Sample Preservation	Holding Time			
Soil Matrix							
VOCs	8010/8020	2.5" x 6" brass ring	Chill to 4°C	14 days			
SVOCs	8270	2.5" x 6" brass ring	Chill to 4°C	14/40 days			
PCBs	8080	2.5" x 6" brass ring	Chill to 4°C	14/40 days			
Appendix IX metals ¹	6010/7000	2.5" x 6" brass ring	Chill to 4°C	6 months			
Total cyanide	9010	2.5" x 6" brass ring	Chill to 4°C	14 days			
Total sulfide	9030	2.5" x 6" brass ring	Chill to 4°C	7 days			
TPH (gasoline)	418.1	2.5" x 6" brass ring	Chill to 4°C	28 days			
Ground-Water Matrix							
VOCs	8240	Two 40-mL septum vials	HCI to pH<2; chill to 4°C	14 days			
SVOCs	8270	1 L glass	Chill to 4°C	7/40 days			
Pests/PCBs	8080	1 L glass	Chill to 4°C	7/40 days			
Phosphorus pesticides	8140	1 L glass	Chill to 4°C	7/40 days			
Chlorinated herbicides	8150	1 L glass	Chill to 4°C	7/40 days			
Appendix IX metals ¹	6010/7000	1 L glass	Chill to 4°C	6 months			
Total cyanide	9010	1 L glass	NaOH to pH>12	14 days			
Total sulfide	9030	1 L glass	ZnAc + NaOH to pH>12	7 days			
TPH (gasoline)	418.1	Two 40-mL septum vials	HCI to pH<2; chill to 4°C	28 days			
Major cations ²	3010/6010	500-mL plastic	HNO₃ to pH<2	6 months			
Bicarbonate (total)	310.1	500-mL plastic	Chill to 4°C	14 days			
Chloride (total)	9250	500-mL plastic	Chill to 4°C	28 days			
Nitrate (total)	9200	500-mL plastic	H_2SO_4 to pH<2; chill to 4°C	28 days			
Sulfate (total)	9038	500-mL plastic	Chill to 4°C	28 days			
TDS	160.1	500-mL plastic	Cihll to 4°C	7 days			

Note: All laboratory analyses to be performed on unfiltered ground-water samples.

 1 Includes Ag, As, Ba, Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn, Tl, V, Zn. 2 Includes Ca, K, Mg, Na, Fe, Mn.

CLOSURE PLAN FOR ROSWELL COMPRESSOR STATION SURFACE IMPOUNDMENTS Volume II: Appendices A Through E

Prepared for ENRON Environmental Affairs Houston, Texas

January 16, 1995

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

CLOSURE PLAN FOR ROSWELL COMPRESSOR STATION SURFACE IMPOUNDMENTS Volume II: Appendices A Through E

TABLE OF CONTENTS

Appendix

- A NMED Notice of Deficiency
 - March 7, 1994 Notice of Deficiency
 - September 28, 1994 Notice of Deficiency
- B Closure Plan Checklist
- C ENRON Financial Assurance Documents
- D Events and Correspondence Chronology
- E Laboratory Reports from Previous Subsurface Investigations
 - Harding Lawson Associates 1990 Soil Analytical Results
 - Harding Lawson Associates 1990 Soil Gas Analytical Results
 - Harding Lawson Associates 1991 Soil Analytical Results
 - Metric Corporation 1991 Soil VOC Analytical Results
 - Metric Corporation 1991 Soil TRPH Analytical Results
 - Halliburton NUS 1992 Ground-Water Analytical Results
 - Brown & Root Environmental 1993 Ground-Water Analytical Results
 - Cypress Engineering Services 1994 Ground-Water Analytical Results
 - Daniel B. Stephens & Associates, Inc. 1994 Soil and Ground-Water Analytical Results

APPENDIX A

NMED NOTICE OF DEFICIENCY

. Norae

enterinante Nomenante

, a sui

jakosta Vakosta

geboon Minute

Nibaid

arte Maria

. Maria

横鲸

in.a

) stars

i (vija

icita Néla

HATO LINE

live

(dised

(free

Hine

İlisa

March 7, 1994 Notice of Deficiency

 $\dot{u}t.\vec{r}$

ATTACHMENT

TRANSWESTERN PIPELINE COMPANY

NOTICE OF DEFICIENCY

Liquid Waste Impoundment Closure Plan

MARCH 7, 1994

Introduction:

440

Sec.

-1068

0584

3. AN

.82

The following is a list of the required information that Transwestern Pipeline Company (TW) must provide to the New Mexico Environment Department (NMED), Hazardous and Radioactive Materials Bureau (HRMB). Quotes in bold, below, are taken directly from the text submitted by TW, dated June 21, 1993:

- I. Closure Plan [HWMR-7, Part VI, 40 CFR, §§265.111 and 112]
 - a) Provide a comprehensive Closure Plan identifying the steps necessary to perform closure of the Compression Station No. 9 Surface Impoundment (hereafter, facility). Include a description of how final closure of the facility will be conducted.
 - b) Present a closure schedule for the surface impoundment in question, including at a minimum, the total time required to close the hazardous waste management unit and the time required for intervening closure activities which will allow tracking of the progress of the partial and final closure.
 - c) (Page 5, Section 5.0,): "Summary of Interim Corrective Measures"

Submit a report to HRMB, on a monthly basis, describing the status of the interim corrective measures being implemented by TW. This will enable HRMB to keep track of the progress of the corrective action interim measures.

d) (Page 5, Section 6.0, second paragraph): "The vertical and lateral extent of contamination in this zone has been clearly defined."

Provide the documentation evidence necessary to support this statement. The copy of the Brown and Root letter report, enclosed in a September 7, 1993 letter to Mr.

TW NOD, Page 1

Edward Horst, is insufficient documentation to support this statement.

- e) Provide a map similar to Brown and Root's Attachment 1 of May 15, 1993, but with the limits of the recoverable petroleum hydrocarbons clearly established such that the lateral and vertical extent of the contamination plume limits of interest will no longer be termed "suspect" as indicated on the TW's Attachment 1 mentioned above. Include an indication of the locations of monitoring wells.
- f) (Page 6, Section 7.0, paragraph 4): "... an inside-out approach will be used to determine boring locations."

Provide an adequate method to delineate the horizontal and vertical extent of contamination. This is required because the general application of an "inside-out" approach to investigating the contamination, both within the perched aquifer and the uppermost aquifer is acceptable, however, the approach specified in this section is inadequate for delineating the extent of the contamination both vertically and horizontally.

- Submit a site-specific map indicating the location of g) the liquid waste impoundment under discussion in relation to the facility site. Include TW's Figure 2 that was mentioned, but not included in the June 21, 1993 report and closure plan.
- Furnish an estimate of the maximum inventory of h) hazardous waste that needs to be removed from the contaminated site, including, the methods and steps TW plans to use for removing, transporting, treating, storing or disposing of all hazardous waste of interest.
- i) Submit a detailed description of the measures that will be taken to remove or decontaminate all hazardous waste residues and contaminated equipment, containment system, structures, and soils during final closure.

Amendment of Plan [HWMR-7, Part VI, 40 CFR, §265.112(c)] II.

The Closure Plan must contain provisions for possible amendment of the Closure Plan and for notifying the Secretary, NMED at least 60 days prior to the any proposed change(s) in corrective action design or operation, preceded by a 180 day notification to the date on which TW expects to begin closure of the surface impoundment, in accordance with the approved closure plan.

3,048

6.99

III. Disposal or Decontamination of Equipment, Structures and Soils [HWMR-7, Part VI, 40 CFR, §265.114]

9.0**0**

200

4638

100

- a) Demonstrate how disposal or decontamination of all equipment, soils, and structures will be conducted during partial and final closure periods. Include the anticipated amount of time within which TW plans to submit to the Secretary, NMED, by registered mail, a certification that the hazardous waste management facility has been closed in accordance with specifications in the approved closure plan.
- b) (Page 5, Section 6.0, first paragraph): "Remediation of the shallow perched zone..."

Explain the "natural clay basin", and the "presumed basin", described in earlier portions of the Closure Plan [Section 4.0, paragraph 3, fourth sentence; and paragraph 4, first sentence]. This is confusing and may lead to misunderstanding in the future.

TW must assign a formal title to the liquid waste impoundment for all subsequent documentation. For purposes of the assessment portion of the Closure Plan, the saturated material within the liquid waste impoundment should henceforth be referred to as the "perched aquifer".

IV. Ground Water monitoring [HWMR-7, Part VI, §265.90-93]

- a) Provide a ground-water monitoring program capable of determining the facility's impact on the quality of the ground water in the uppermost aquifer underlying the facility. The ground water monitoring system must be capable of yielding ground water samples for analysis. Also explain how any leachate collection, and run-on and run-off controls will be managed.
- b) (Page 6, Section 7.0, paragraph 3): "Additional investigations and evaluation are required prior to development of a final corrective measures plan for the lower unconfined aquifer."

The requirements for additional investigations (a ground water quality assessment plan) are outlined and described in HWMR-7, Part VI, 40 CFR, \$265.93(d)(4), 265.93(e) and 265.94(b). Additional requirements pertaining to the ground water quality assessment plan may be found in HWMR-7, Part VI, 40 CFR, \$265.112(b)(4) and 265.112(b)(5).

For purposes of the assessment portion of the Closure

TW NOD, Page 3

Plan the "lower unconfined aquifer" will be referred to as the "uppermost aquifer". See HWMR-7, Part I, 40 CFR, §260.10 for the definition of "uppermost aquifer".

c) Provide an acceptable ground water quality assessment plan which should include, at a minimum, the following:

· . .

5.684

1.18

ي. الأراب

1.168

16.000

 A characterization of the uppermost aquifer including flow nets, cross-sections, hydraulic conductivities of the aquifer and any confining units based upon site-specific data (pump or slug test data), and all calculations of hydraulic conductivity based on the data.

- The hydraulic conditions and potential contaminant pathways;
- 3. The proposed assessment monitoring system;
- 4. The investigative approach that will be used to fully characterize the rate, extent and concentrations of hazardous constituents and each investigatory phase involved;
- 5. The number, location, screen placement and depth of the wells that will initially be installed and the rationale for these decisions;
- The strategy to be used in subsequent investigatory phases;
- 7. The chosen method of well drilling, construction and completion,
- A comprehensive sampling and analysis plan (program) that will be used, including the number of samples to be collected and analyzed;
- 9. A data collection and data analysis quality assurance/quality control (QA/QC) program
- 10. The data analysis procedures that will be used to interpret the analytical data; and
- 11. The schedule of implementation of each phase of the assessment program.

September 28, 1994 Notice of Deficiency

 $\hat{\chi}_{j}(\gamma, r)$

- .0

. . .

.

GOVERNOR

BRUCE KING

State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 St. Francis Drive, P.O. Box 26110 Santa Fe, New Mexico 87502 (505) 827-2850

JUDITH M. ESPINOSA SECRETARY

RON CURRY DEPUTY SECRETARY

CERTIFIED MAIL RETURN RECEIPT PROTECTED

September 28, 1994

 Post-it* Fax Note
 7671
 Date
 15/10
 Pages
 7

 To
 Bill KENDRACK
 From L
 CAMPES
 10
 Compages
 7

 To
 Bill KENDRACK
 From L
 Compages
 7
 10
 Compages
 7

 Co./Dept.
 Co.
 <

Mr. Larry Campbell Division Environmental Specialist Transwestern Pipeline Company Roswell, New Mexico 88202-1717

RE: Notice of Technical Deficiency (NOD) of Closure Plan for Roswell Compressor Station Surface Impoundments.

Dear Mr Campbell:

The New Mexico Environment Department (NMED) has reviewed for technical adequacy, the May 31, 1994 Transwestern Pipeline Company (TW) Closure Plan for Roswell Compressor Station Surface Impoundments as required under the Resource Conservation and Recovery Act (RCRA).

After reviewing the Closure Plan, NMED has found it to be technically deficient. The enclosed attachment lists the required information.

The information requested in the attachment must be submitted to NMED within thirty (30) days of receipt of this NOD. Failure to submit the required information in this designated time may result in our proposal to disapprove the closure plan or an appropriate enforcement act.

If you have any questions about how detailed your responses to any deficiency item should be, contact Ms. Teri Davis or Mr. Cornelius Amindyas at 827-4308 for further discussion.

Sincerely, an

Benito Garcia, Chief Hazardous and Radioactive Materials Bureau

cc: Barbara Hoditschek, HRMB Tracy Hughes, NMED David Neleigh, EPA Region 6, w/Enclosures Teri Davis, HRMB File Red-94

ATTACHMENT

CLOSURE PLAN FOR ROSWELL COMPRESSOR STATION SURFACE IMPOUNDMENTS

NOTICE OF DEFICIENCY

September 28, 1994

NOTE: (1) The sections and pages quoted in parentheses correspond to the sections and pages of the May 31, 1994 cover letter and Closure Plan that Transwestern Pipeline Company (TW) submitted to the New Mexico Environment Department/Hazardous and Radioactive Materials Bureau (HRMB).

(2) The New Mexico Hazardous Waste Management Regulations formerly written as HWMR-7, shall from now henceforth be written as 20 NMAC 4.1.

1. Performance Standards: 20 NMAC 4.1, Subpart VI, 40 CFR, \$265.112

(Cover Letter): As stated in May 31, 1994 TW cover letter, "the compounds which have triggered RCRA involvement at this site are present in concentrations below USEPA proposed action levels for RCRA closure(proposed Subpart S, 7/27/90)". It should be clarified that acceptable ground water protection standards for RCRA units are derived using the guidance of Subpart S (Appendices A[Examples of Concentrations Meeting Criteria for Action Levels], B[Maximum Contaminant Levels], and C[Range of Concentrations for Establishing Media Protection Standards for Carcinogens]), plus New Mexico and U.S. EPA Drinking Water Standards, as well as risk assessment-derived concentrations that consider the effects of multiple constituents [52 FR No. 53 p. 8706, March 19, 1987].

Semi-volatile organic compounds (SVOC), volatile organic compounds (VOC), and metals have been detected above acceptable levels in the ground water of the uppermost aquifer underlying the subject regulated units (see Tables 3-4 and 3-5 of Closure Plan). The determination of a release from the unit(s) has already been shown by previous analysis indicating concentrations of SVOC, VOC, and metals above appropriate regulatory levels.

The Toxicity Characteristic Leaching Procedure (TCLP) is designed to determine the mobility of both organic and inorganic analytes present within wastes. This test is not appropriate for comparison with concentration limits to be established in the closure plan to ensure hazardous constituents do not exceed ground water protection standards. Ground water monitoring for 20 NMAC 4.1, Subpart V, 40 CFR, §264 Appendix IX constituents should be proposed in the closure plan in lieu of TCLP for ground water evaluations.

2. Corrective Action Plan: 20 NMAC 4.1, Subpart V, 40 CFR, §264.97 and 264.112

(Section 1.2, Page 2): Bullet #7 indicates that TW intends to apply for clean closure certification. However, data indicates that the uppermost aquifer has already been impacted. TW must therefore provide HRMB with detailed ground water assessment and ground water remediation plans, as well as the time frames associated with ground water remediation at similar sites.

3. Location of Surface Impoundments

(2.1, Page 5): The latitude and longitude of all three surface impoundments should be included in this section.

4. Hazardous Waste Inventory

(Section 2.2, Page 6): This section must contain information describing knowledge of process for the spent halogenated solvents (F001 wastes). How were these wastes utilized at this facility, what was the disposal practice (burning pits?), and how much of the waste was handled at the facility during what periods of time, etc? What prompted TW to believe that a contamination problem may exist at the compressor station? What led to the initial soil gas survey? TW must explain and clarify these comments.

5. Releases from Surface Impoundments: 20 NMAC 4.1, Subpart V, 40 CFR, §264 Subpart F

(Section 3.6.3, Page 26): The sentence "the lateral extent is bounded on-site by two clean monitoring wells along the northern (MW-5) and eastern (MW-3) fencelines" must be verified by Appendix IX sampling. Additionally, TW must determine the background water quality and specify the statistical method(s) that will be used in evaluating ground-water monitoring data for all hazardous constituents listed in Appendix IX. The background water quality evaluation must follow the requirements of 20 NMAC 4.1 Subpart V, Section 264 Subpart F.

6. Ground Water Elevations

(Section 3.6.3, Page 26): Ground water elevations are not included in this closure plan, preventing the evaluation of the direction of ground-water flow using MW 1B, 2,3, and 5. The closure plan must include estimates on the direction of ground water flow, based on data from monitoring wells completed within the uppermost aquifer and screened within the same elevation intervals.

7. (Section 3.6.3, Page 27): Include a descriptive summary of the ground water impacts in this section.

8. Waste Characterization: 20 NMAC 4.1, Subpart V, §264 Appendix IX (Section 4.0, Page 28):

All surface impoundments should be characterized with respect to 20 NMAC 4.1, Subpart V, 40 CFR, \$264 Appendix VIII hazardous constituents.

9. Soil Assessment Plan: (Section 4.1, Page 28):

A plan should be included in the Closure Plan to satisfy the sampling requirements of characterization at each impoundment. Based on the results from the surface impoundment characterization, a complete hazardous constituent list for the soil-assessment plan should be compiled for HRMB's approval.

10. (Section 4.1, Page 28, Fig.4-1):

The proposed soil boring locations in Figure 4-1 are inadequate to assess the extent of contamination. As mentioned in the March 7, 1994 NOD, the investigatory approach that will be used to fully characterize the rate, extent and concentrations of hazardous constituents and each investigatory phase involved must specify the number, location and depth of sampling; the rationale of sampling locations must be clearly stated. A phased approach to the soil assessment should be included in this section.

For example, if contamination is detected in the Phase I soil borings, a Phase II sampling plan will be submitted to HRMB for approval to further define the extent of soil contamination. A contingency sampling plan should be included in this section which will include such information as a predetermined distance (horizonal and vertical) and direction proposed to extend the sampling locations when contamination is detected in any of the soil borings. This approach will assure that the extent of contamination in a lateral manner and vertical manner has been assessed.

11. (Section 4.1, Page 28):

Include in this section a reference to the Standard Operating Procedures for assuring that cross-contamination between zones of saturation (perched zone and the uppermost aquifer) will not occur.

12. Laboratory Analysis: 20 NMAC 4.1, Subpart V, 40 CFR, §264 Appendix IX (Section 4.4, Page 30):

Laboratory analysis of soil samples should include Appendix IX hazardous constituents for the soil samples characterizing the surface impoundments. Appropriate analytical methods and parameters should be in accordance with 20 NMAC 4.1, Subpart II, 40 CFR 261 Appendix VIII suggestions. Based on the results from the surface impoundments, the Director, Water and Waste Management Division (hereafter Director) will determine what hazardous constituents will constitute the list for sampling during the phased investigation for soil assessment. Table 5-1 should be revised as appropriate.

13. Ground Water Assessment Plan: (Section 5.1, Page 34).

All monitoring wells should be constructed in accordance with the U.S. EPA RCRA Ground-Water Monitoring Technical Enforcement Guidance Document (TEGD) (September 1986) and updates as appropriate from the EPA RCRA Ground-Water monitoring: Draft Technical Guidance (November 1992). The screened intervals proposed in the closure plan should not exceed fifteen feet within the aquifer.

14. (Section 5.1, Page 34):

The latitude and longitude of all monitoring wells to be utilized in the compliance monitoring program and corrective action program should be summarized in table form. The coordinate system utilized in correspondence with HRMB should be consistent. It is suggested that the location system shown in Table 3-1 be replaced with the latitude-longitude system for consistency with State Engineer Office records and surface impoundments descriptions.

15. (Section 5.1.1, Fage 34).

HRMB understands that the proposed locations of the monitoring wells are tentative. TW should address the possibility that information gained from drilling monitoring wells closest to the impoundments may change the proposed location of monitoring wells shown in Figure 5-1.

16. (Section 5.1.1, Page 34).

The proposed monitoring well locations in Figure 5-1 are

inadequate to assess the extent of contamination. As mentioned in the previous NOD, the investigatory approach that will be used to fully characterize the rate, extent and concentrations of hazardous constituents and each investigatory phase involved must specify the number, location and depth of sampling. Also, the rationale of sampling locations must be clearly stated.

A phased approach to the ground water assessment needs to be included in this section. If contamination is detected in the initial downgradient monitoring wells, a Phase II sampling plan will be submitted to HRMB for approval to further define the extent of ground water contamination. A contingency sampling plan should be included in this section which will include such information as a predetermined distance and direction proposed to extend the sampling locations in a lateral and vertical manner to determine extent.

17. (Section 5.1.2, Page 35).

The deep aquifer investigation should be a continuation of the ground water phased investigation. If ground water contamination is detected in any of the monitoring wells to be installed immediately from the regulated units, screened and completed as specified in the TEGD in the uppermost aquifer, the phased approach must be employed to investigate any contamination in the deep aquifer. In this case therefore, a deep monitoring well or deep monitoring wells must be installed to determine the vertical extent of contamination from the regulated units. TW must provide a proposal to install wells to determine the background conditions required in 20 NMAC 4.1, Subpart V, 40 CFR, Section 264. Mud rotary is not an acceptable drilling method for monitoring well installation or for determining hydrogeologic information while drilling. Air rotary is a more acceptable drilling method under these investigatory conditions.

18. (5.3, Page 37):

This section should be revised to be consistent with the requirements of ground water sampling under 20 NMAC 4.1, Subpart V, 40 CFR, Sections 264.97 and 264.99.

19. (Section 5.4, Page 39):

Laboratory analysis of ground water samples will consist of the 20 NMAC 4.1, Subpart V, 40 CFR Section 264, Appendix IX ground water monitoring list for all monitoring wells as outlined by the requirements of 20 NMAC 4.1, Subpart V, 40 CFR, Sections 264.99 and 264.97. Appropriate analytical methods and parameters should be in accordance with 20 NMAC 4.1, Subpart II, 40 CFR, Section 261, Appendix VIII suggestions. Based on the analytical results

from the initial monitoring wells, the Director will determine what parameters can be excluded from the Appendix IX list during the phase I ground water assessment plan. Table 5-1 should be revised as appropriate.

20. (Section 5.3, Page 38):

The interface between the Phase Separated Hydrocarbons (PSH) and water level should be determined by use of appropriate equipment or probes. The procedures for detecting and measuring immiscible layers should be outlined in the Quality Assurance Project Plan. Guidance on this procedure should follow EPA RCRA Ground Water Monitoring: Draft Technical Guidance (November 1992).

21. (Section 6.1, Page 43):

This section should be changed in accordance with comment #19 and 20 NMAC 4.1, Subpart V, Section §264 requirements.

22. (Section 6.2, Page 45):

Detection limits for EPA methods in Table 5-2 should be consistent with comment # 19.

23. Interim Measures: (Section 7.1, Page 51):

The interim measures involving the PSH recovery system should continue. However, MW-1 should be plugged and abandoned to prevent any further cross-contamination between the 30 foot and 70 foot zones of saturation beneath the unit. A proposal for generic plug and abandonment procedures must be included in the closure plan which should be sent under separate cover to HRMB for approval.

24. Remedial Options: (Section 7.3, Page 52);

HRMB is reserving comment on the soil and ground-water remedial options until the soil and ground-water assessments are complete and a baseline risk-assessment has been conducted. Guidance on the process of corrective action can be found in Closure process.

25. (7.5, Page 56):

Clean-up criteria should be established through a risk assessment in order to determine the risk associated with multiple contaminants. The Subpart S Standards are action levels and not necessarily cleanup standards. If a hazardous constituent is

found to be above Subpart S action level then further investigation is triggered. Guidance for risk assessment can be found in EPA's Risk Assessment Guidance for Superfund (RAGS) manuals. A baseline Risk Assessment (RA) should be proposed after the results of the phase I soil and ground water sampling results have identified the hazardous constituents that will be specified in the Closure Plan and the extent of contamination has been determined. The baseline RA will aid in determining the media cleanup standards for contamination in soil and ground water underlying the regulated units at TW.

26. (Section Table 3.1):

The elevations of monitoring wells need to be determined by a certified professional surveyor.

27. (All Tables):

÷.,

Tables showing analytical results should include a column showing appropriate regulatory levels for comparison to the data.

28. (Figure 3-5):

Pit 3 is labeled twice, and pit 2 is missing. This should be corrected.

29. (All Figures):

The locations of MW-2 and MW-5 are not consistent with past documents submitted to HRMB. This discrepancy needs to be clarified.

30. (Appendix E):

The data for MW-2 is missing. The data for MW-2 should be included in this section.

31. HRMB requests a copy of your worker health and safety documentation for the closure plan. However, it is the facility's responsibility to maintain working conditions that insure worker health and safety, pursuant to 24 CFR, Section 1910.120. Therefore liability for operations relating to worker health and safety remain with Transwestern Pipeline Company.

APPENDIX B

CLOSURE PLAN CHECKLIST

Mes.

1990-14 Maria

6600

818/~

814-6j

s in the

1.1912

etere Wester

1119

289630

ried

19124

15%

366

ومندرة

584

64.50**0**

CLOSURE PLAN CHECKLIST:

SURFACE IMPOUNDMENTS AT WHICH ALL WASTES ARE REMOVED

EPA I.D. 986676955

CLOSURE PLAN CHECKLIST SURFACE IMPOUNDMENTS: ALL HAZARDOUS WASTES REMOVED*

Ş	SUBJ	IECT REQUIREMENT	PART 264/265	PROVIDED	NOT APPLICABLE	CLOSURE PLAN SECTION
1. <u>f</u>	FACILITY DESCRIPTION		264.111/265.111			
1	1.1	General description (e.g., size, location)		X		2.1
1	1.2	Topographic map		X		Figures 1-1, 2-5
1	1.3	List of other HWM units and wastes handled in each			X	
1	1.4	Hydrogeologic information:				
		 Ground-water and soil conditions 		Χ		2.5, 3.7
		 Ground-water monitoring systems 		<u> </u>		2.5, 3.3, 3.4, 3.6, 5.0
		Corrective actions		Χ		3.5
	1.5	Surface impoundments description:				
		 Wastes managed (EPA hazardous waste numbers and quantities) 		X		1.1, 2.2
		 Number and size (aerial dimensions and depth) of impoundments (including engineering drawings) 		X		2.2, Figure 2-1
		 Liner systems and leachate collection systems design 		X		3.5
		 Run-on and run-off control systems 			<u> </u>	
	1.6	References to other environmental permits (NPDES, UIC, TSCA)		X		2.2
	1.7	Anticipated waivers or exemptions			X	
2. 9	CLO	SURE PROCEDURES				
:	2.1	Estimates of maximum quantity of inventory (by waste type) to be removed:	264.112(b)(3)/265.112(b)(3); 264.228(a)/265.228(a)			
		 Pumpable wastes in the impoundments 		X		2.2
		 Bottom sludges/residues in the impoundments 		X		4.1
1	2.2	Procedures for handling removed inventory (address quantities, waste types, methods):	264.112(b)(3)/265.112(b)(3); 264.228(a)/265.228			

See also Contingent Closure Plan Checklist for permitted impoundments without liner systems as specified in Section 264.221(a) (i.e., double liners)

*

EPA I.D. 986676955

CLOSURE PLAN CHECKLIST SURFACE IMPOUNDMENTS: ALL HAZARDOUS WASTES REMOVED*

SUB		PART 264/265	PROVIDED	NOT APPLICABLE	CLOSURE PLAN SECTION
	On-site treatment			X	
	On-site disposal			X	••••••••••••••••••••••••••••••••••••••
	 Transportation distance off-site 		<u> </u>		4.6, 5.7
	Off-site treatment		Χ		4.6, 5.7
	Off-site disposal			X	
2.3	Procedures for decontamination and/or disposal:	264.112(b)(4)/265.112(b)(4); 264.114/265.114; 264.228(a)/			
	 Equipment/structures (piping, pumps) decontamination (address sampling protocol) 	265.228(a)		X	
	 Cleaning agent/rinsewater treatment or disposal (address quantities, waste types, and methods): 				
	 On-site treatment/disposal 		X		4.6, 5.7
	 Off-site treatment/disposal 		X		4.6, 5.7
	 Containment systems (liners, dikes) and other equipment/structures demolition and removal (address quantities and methods): 				
	 On-site treatment/disposal 			<u> </u>	
	 Off-site treatment/disposal 			X	
	 Other contaminated soil removal: 	264.228(a)/265.228(a)			
	 List or sketch of potentially contaminated areas 		X		Figures 3-8, 3-9
	 Estimated amount of contaminated soil to be removed (address sampling protocol) 		X		2.2
	— Soil removal methods			X	
	— On-site disposal			X	
	— Off-site disposal			X	
	 Protocol for determining "clean" closure 			X	

See also Contingent Closure Plan Checklist for permitted impoundments without liner systems as specified in Section 264.221(a) (i.e., double liners)

*

EPA I.D. _986676955

CLOSURE PLAN CHECKLIST SURFACE IMPOUNDMENTS: ALL HAZARDOUS WASTES REMOVED*

SUBJECT REQUIREMENT		PART 264/265	PROVIDED	NOT APPLICABLE	CLOSURE PLAN SECTION
2.4	Ground-water monitoring:	264.112(b)(5)/265.112(b)(5); 264.90/265.90			
	 Number, location and frequency of samples 		X		5.3, Figure 5-1
	 Procedures for analysis 		X		5.4
2.5	Description of security systems:	264.14(b) and (c)/ 265.14(b) and (c)			
	 Posted signs and 24-hour surveillance system 		X		2.1
	Fence or natural barrier		X	<u></u>	2.1
2.6	Closure certification:	264.115/265.115			
	 Activities to be conducted 		X		7.0
	 Testing and analyses to be performed 		X		7.0
	 Criteria for evaluating adequacy 		X		7.0
	Schedule of inspections		X		7.0
	 Types of documentation 		X		7.0
CLC	SURE SCHEDULE	264.112(b)(6)/265.112(b)(6)			
3.1	Expected year of closure	264.112(b)(7)/265.112(b)(7)		<u> </u>	
3.2	Frequency of partial closures			X	
3.3	Milestone chart showing time for:				
	 Removal, treatment or disposal of inventory 	264.113(a)/265.113(a)		X	See Section 7.0
	 Decontamination of equipment/ structures 		····	X	See Section 7.0
	 Containment systems, equipment, and structures demolition and soil removal/disposal 			X	See Section 7.0
	Total time to close	264.113(b)/265.113(b)		x	See Section 7.0
3.4	Request for extension to deadlines for handling inventory or completing closure	264.113(c)/265.113(c)		X	See Section 7.0

See also Contingent Closure Plan Checklist for permitted impoundments without liner systems as specified in Section 264.221(a) (i.e., double liners)

٠

APPENDIX C

ENRON FINANCIAL ASSURANCE DOCUMENTS

in pice,

100

100

清晰的

- 81854

13164

Jext

1.00

37-8

27018

5184

1.200

-

ENRON Transwestern Pipeline Company

P. O. Box 1188 Houston, Texas 77251-1188 (713) 853-6161

June 28, 1993

36.93

Ms. Barbara Hoditschek RCRA Permit Program Manager Hazardous and Radioactive Materials Bureau State of New Mexico Environment Department Harold Runnels Bldg. 1190 St. Francis Drive, P.O. Box 26110 Santa Fe, N.M. 87502

Dear Ms. Hoditschek:

I am the chief financial officer of Transwestern Pipeline Company, 1400 Smith Street, Houston, Texas 77002. This letter is in support of this firm's use of the financial test to demonstrate financial assurance, as specified in subpart H of 40 CFR parts 264 and 265.

The firm identified above is the owner or operator of the following facilities for which liability coverage for both sudden and nonsudden accidental occurrences is being demonstrated through the financial test specified in subpart H of 40 CFR parts 264 and 265: Roswell Compressor Station.

The firm identified above guarantees, through the guarantee specified in subpart H of 40 CFR parts 264 and 265, liability coverage for both sudden and nonsudden accidental occurrences at the following facilities owned or operated by the following: Roswell Compressor Station.

- The firm identified above owns or operates the following facilities for which financial assurance for closure or post-closure care or liability coverage is demonstrated through the financial test specified in subpart H of 40 CFR parts 264 and 265. The current closure and/or post-closure cost estimate covered by the test are shown for each facility: Roswell Compressor Station - @ \$3,000,000.00.
- 2. The firm identified above guarantees, through the guarantee specified in subpart H of 40 CFR parts 264 and 265, the closure and post-closure care or liability coverage of the following facilities owned or operated by the guaranteed party. The current cost estimates for the closure or post-closure care so guaranteed are shown for each facility: NONE.
- 3. In States where EPA is not administering the financial requirements of subpart H of 40 CFR parts 264 and 265, this firm is demonstrating financial assurance for the closure or post-closure care of the following facilities through the use of a test equivalent or substantially equivalent to the financial test specified in subpart H of 40 CFR parts 264 and 265. The current closure or post-closure cost estimates covered by such a test are shown for each facility: NONE.

4. The firm identified above owns or operates the following hazardous waste management facilities for which financial assurance for closure or, if a disposal facility, post-closure care, is not demonstrated either to EPA or a State through the financial test or any other financial assurance mechanisms specified in subpart H of 40 CFR parts 264 and 265 or equivalent or substantially equivalent State mechanisms. The current closure and/or post-closure cost estimates not covered by such financial assurance are shown for each facility: NONE. .د

5. This firm is the owner or operator of the following UIC facilities for which financial assurance for plugging and abandonment is required under 40 CFR part 144. The current closure cost estimates as required by 40 CFR 144.62 are shown for each facility: NONE.

This firm is not required to file a Form 10K with the Securities and Exchange Commission (SEC) for the latest fiscal year.

The fiscal year of this firm ends on December 31st. The figures for the following items marked with an asterisk are derived from this firm's independently audited, year-end financial statements for the latest completed fiscal year ended December 31, 1992.

ALTERNATIVE II

1.	Sum of current closure and post-closure cost estimates
	(total of all cost estimates shown in the four paragraphs
	above)\$3,000,000.00
2.	Amount of annual aggregate liability coverage to be
	demonstrated\$2,000,000.00
3.	Sum of lines 1 and 2\$5,000,000.00
4.	Current bond rating of most recent issuance of this firm
	and name of rating service
5.	Date and issuance of bondN/A
6.	Date of maturity of bondN/A
* 7.	Tangible net worth (if any portion of the closure and
	post-closure cost estimates is included in "total
	liabilities" on your firm's financial statements, you
	may add the amount of that portion to this line)\$561,866,000.00
* 8.	Total assets in U.S. (required only if less than 90%
	of firm's assets are located in the U.S.)\$944,307,000.00
~	Te line 7 at least 610 million?
	Is line 7 at least \$10 million? X
	Is line 7 at least 6 times line 3? X
*11.	Are at least 90% of firm's assets located in the U.S.?
	If not, complete line 12 X

12. Is line 8 at least 6 times line 3?..... N/A

I hereby certify that the wording of this letter is identical to the wording specified in 40 CFR 264.151(g) as such regulations were constituted on the date shown immediately below.

105

E. G. Parks Vice President & Controller Transwestern Pipeline Company

ARTHUR ANDERSEN & CO.

٩

REPORT OF INDEPENDENT PUBLIC ACCOUNTANTS

To Transwestern Pipeline Company:

. .

We have audited, in accordance with generally accepted auditing standards, the balance sheet of Transwestern Pipeline Company, a wholly-owned subsidiary of Enron Corp., as of December 31, 1992, and the related statements of income, retained earnings and additional paid-in capital and cash flows for the year then ended and have issued our report thereon dated February 19, 1993. We have not audited any financial statements or performed any auditing procedures for any period subsequent to December 31, 1992.

At your request, we have read the letter dated June 28, 1993, from your Chief Financial Officer to the RCRA Permit Program Manager of the Hazardous and Radioactive Materials Bureau for the State of New Mexico Environment Department to demonstrate financial assurance for both closure and/or post-closure and liability care as specified in the Code of Federal Regulations Subpart H of 40 CFR Parts 264 and 265 for the United States Environmental Protection Agency. As further required by Sections 264.143 (f)(3)(iii) and 264.145 (f)(3)(iii), we have compared the amounts comprising the data, except for the tangible net worth which is discussed in the paragraph below, which the letter from the Chief Financial Officer specifies have been derived from the independently audited financial statements as of and for the year ended December 31, 1992, referred to above, with the corresponding amounts appearing in such financial statements and found them to be in agreement.

We compared the dollar amount representing tangible net worth appearing in the letter from the Chief Financial Officer to the corresponding amount appearing on an analysis schedule prepared by Transwestern Pipeline Company, and found such amount to be in agreement. Such analysis schedule shows the components of tangible net worth. We compared the amount appearing on such analysis schedule representing total stockholder's equity to the financial statements referred to above, and found such amount to be in agreement. We compared the amount appearing on such analysis schedule representing intangible assets to Transwestern Pipeline Company's accounting records and found such amount to be in agreement. We recomputed tangible net worth and found such amount to be arithmetically correct. In connection with the procedures described in the preceding paragraphs, no matters came to our attention that caused us to believe that the specified data should be adjusted.

This report relates only to the data specified above and does not extend to the financial statements of Transwestern Pipeline Company taken as a whole, for the year ended December 31, 1992. It is furnished solely for the use of Transwestern Pipeline Company for its distribution to the State of New Mexico Environment Department, and should not be used for any other purpose.

arthur Onderen 1 Co.

Houston, Texas June 25, 1993

150

3.48

A to a

-2-

٩

ARTHUR ANDERSEN & CO.

REPORT OF INDEPENDENT PUBLIC ACCOUNTANTS

To Transwestern Pipeline Company:

We have audited the accompanying balance sheets of Transwestern Pipeline Company (a Delaware Corporation and a wholly-owned subsidiary of Enron Corp.) as of December 31, 1992 and 1991, and the related statements of income, retained earnings and additional paid-in capital and cash flows for the years then ended. These financial statements are the responsibility of Transwestern Pipeline Company's management. Our responsibility is to express an opinion on these financial statements based on our audits.

We conducted our audits in accordance with generally accepted auditing standards. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the financial statements are free of material misstatement. An audit includes examining, on a test basis, evidence supporting the amounts and disclosures in the financial statements. An audit also includes assessing the accounting principles used and significant estimates made by management, as well as evaluating the overall financial statement presentation. We believe that our audits provide a reasonable basis for our opinion.

In our opinion, the financial statements referred to above present fairly, in all material respects, the financial position of Transwestern Pipeline Company as of December 31, 1992 and 1991, and the results of its operations and its cash flows for the years then ended, in conformity with generally accepted accounting principles.

arthur Anderen & Co.

ARTHUR ANDERSEN & CO.

Houston, Texas February 19, 1993

TRANSWESTERN PIPELINE COMPANY BALANCE SHEET

1

-14

ilising isising

1. W

-

- ĝi

(In Thousands)

	Decer	nber 31,
	1992	1991
ASSETS		
Current Assets:		
Cash and cash equivalents	\$5	\$3
Accounts receivable – Customers (net of allowance for doubtful accounts of \$269 at December 31,		
1992 and 1991)	615	52
Associated companies	251	157
Notes receivable from associated company	-	21,118
Materials and supplies, at average cost	6,707	6,626
Exchange gas receivable Other	8,306 640	2,104 674
Other	040_	0/4
Total current assets	16,524	30,734
Property, Plant and Equipment, at cost: Less – Accumulated depreciation and	1,098,711	1,044,343
amortization	218,273	194,592
Net property, plant and equipment	880,438	849,751
Deferred Charges and Other Assets:		
Deferred contract reformation costs, net	5,975	8,075
Environmental cleanup cost, net	26,585	26,708
Other	14,785	10,626
Total deferred charges and	47 945	45 400
other assets	47,345	45,409
Total assets	\$944,307	\$925,894

The accompanying notes are an integral part of these financial statements.

5

TRANSWESTERN PIPELINE COMPANY BALANCE SHEET

nois

- 1995 2.799

- 1.94 - 2.94

10-50

22.6

irina Vana

: 188

194

0d

1.6

- 18

(In Thousands)

	Decen	nber 31	1
	 1992		1991
LIABILITIES AND STOCKHOLDER'S EQUITY	 		
Current Liabilities:			
Current portion of long-term debt	\$ _	\$	40,000
Accounts payable –			
Trade	4,933		24,327
Other	1,779		39,426
Associated companies	3,958		4,453
Notes payable to associated companies	19,743		-
Accrued interest	1,056		3 ,515
Regulatory reserves	-		8,891
Other	 4,208		1,164
Total current liabilities	 35,677		121,776
Long-Term Debt, Net of Current Maturities	 150,000		50,000
Deferred Credits and Other Liabilities:			
Deferred income taxes	187,920		174,815
Other	 7,829		12,789
Total deferred credits and other			
liabilities	 195,749		187,604
Commitments and Contingencies (Notes 8 and 9)			
Stockholder's Equity			
Common stock	1		1
Additional paid-in capital	409,191		409,191
Retained earnings	 153,689		157,322
Total stockholder's equity	 562,881		566,514
Total liabilities and stockholder's			
equity	\$ 944,307	\$	9 25,894

The accompanying notes are an integral part of these financial statements.

\$

TRANSWESTERN PIPELINE COMPANY STATEMENT OF INCOME

-Peret

1

.

1014

-

16

199

ns**é**

inei

-164

19**74**

1.136

1.046

(In Thousands)

	Year Ended	December 31,
	1992	1991
Revenues:		
Gas Sales	\$ 15,679	\$ 37,288
Transport	193,295	210,292
Other	1,838	1,315
Total revenues	210,812	248,895
Operating Expenses:		
Natural gas purchased	8,432	41,015
Operations and maintenance	69,743	88,895
Amortization of deferred contract		
reformation costs	15,478	45,626
Depreciation and amortization	32,083	26,525
Taxes other than income taxes	6,384	6,511
Total operating expenses	132,120	208,572
Operating Income	78,692	40,323
Other (seems (Europea))		
Other Income (Expense): Interest income	102	6,233
	(7,225)	(11,287)
Interest expense and related charges Allowance for funds used during construction	10,857	11,907
Other, net	(77)	133
other, net	(11)	100
Total other income (expense)	3,657	6,986
Income Before Income Taxes	82,349	47,309
Income Tax Expense	31,607	18,027
Net Income	\$50,742_	\$29,282

9

The accompanying notes are an integral part of these financial statements.

TRANSWESTERN PIPELINE COMPANY STATEMENT OF RETAINED EARNINGS AND ADDITIONAL PAID-IN CAPITAL

(In Thousands)

29**9**9

400

. Aliaidh

1 1 1 1 1 1

170

(2:40

12

1946

1. AM

- And

- 10

1998

) RSB

29**49** 19**49**

*

4-44

3

3

1 × 1

.

	Additional Paid-In Capital	Retained Earnings
Balance, December 31, 1990	\$ 409,191	\$ 128,040
Net Income		 29,282
Balance, December 31, 1991	409,191	157,322
Dividend Net Income		 (54,375) 50,742
Balance, December 31, 1992	\$409,191	\$ 153,689

,

The accompanying notes are an integral part of these financial statements.

TRANSWESTERN PIPELINE COMPANY STATEMENT OF CASH FLOWS

(In Thousands)

		Year Ended	Decen	nber 31,
	_	1992	_	1991
sh Flows From Operating Activities:				
t income	\$	50,742	\$	29,282
conciliation of net income to net				
sh provided by operating activities:				
epreciation and amortization		32,083		26,525
mortization of deferred contract reformation costs		15,478		45,626
eferred income taxes		13,105		(12,668)
Nowance for funds used during construction		(10,857)		(11,907)
hanges in components of working capital:		()		
Accounts receivable		(657)		8,206
Naterials and supplies		(81)		(2,367)
Other current assets		(6,168)		4,975
Accounts payable		(57,536)		48,636
Notes payable – Enron Corp.		32,738		122,473
ccrued interest		(2,459)		(88)
Other current liabilities		(5,847)		(1,683)
eferred contract reformation costs:				(10.07.1)
Cash payments		(5,422)		(13,071)
Recoupments via direct bill		1,635		4,699
Other, net		(10,194)		24,288
at Cash Provided by Operating Activities	_	46,560		272,926
sh Flows Used in Investing Activities:				
Additions to property, plant and equipment		(41,802)		(243,952)
Other capital expenditures	_	(10,381)		(19,232)
at Cash Used in Investing Activities		(52,183)		(263,184)
sh Flows Provided by Financing Activities:				
ssuance of long-term debt		100,000		
Decrease in long-term debt		(40,000)		(10,000)
Dividend Paid		(54,375)		
et Cash Provided by (Used in) Financing Activities	-	5,625		(10,000)
crease (Decrease) in Cash		2		(258)
ash and Cash Equivalents, Beginning of Period		3		261
ash and Cash Equivalents, End of Period	\$	5	\$	3
ditional cash flow information:				
terest payments and income tax payments were as follows:		1992		1991
Interest (net of amounts capitalized)	\$	470	\$	1,975
income taxes	Ψ	18,502	Ψ	30,695

The accompanying notes are an integral part of these financial statements.

F

iliyica

stop

2480

- 499 - 199

1.63

朱麗

netă

:3.8**3**

1.00

1.13

- Mai

жź

17.066

TRANSWESTERN PIPELINE COMPANY

NOTES TO FINANCIAL STATEMENTS

(1) Summary of Significant Accounting Policies

Control and Financial Statement Presentation

Transwestern Pipeline Company (the Company) is a wholly-owned subsidiary of Enron Pipeline Company (EPC), which is a wholly-owned subsidiary of Enron Corp. (Enron). EPC and its subsidiaries are members of an operating group which engages in transactions characteristic of group administration and operations with other members of the group.

The Company's financial statements reflect the effect of the allocation of the purchase prices for prior acquisitions. As required under purchase accounting, the purchase price was allocated to the assets and liabilities acquired based upon their estimated value as of the acquisition dates.

Cash Equivalents

16.64

The Company records as cash equivalents all highly liquid short-term investments with original maturities of three months or less.

Property, Plant and Equipment

Property, plant and equipment is depreciated on the straight-line basis at rates ranging from 1.3% to 10%. Depreciation rates are based on the estimated useful lives of the individual properties and are subject to approval by the Federal Energy Regulatory Commission (FERC), except as discussed below.

Included in gross property, plant and equipment is an aggregate plant acquisition adjustment of \$438.8 million which represents the additional cost allocated to the Company's transmission plant, as a result of prior acquisitions. Currently, such amount is not considered by the FERC in determining the tariff the Company may charge to its regulated customers. The plant acquisition adjustment is being amortized over 40 years. At December 31, 1992, \$85.7 million is included in accumulated depreciation and amortization.

The Company charges to operations and maintenance expense the costs of repairs. Costs of replacements and renewals of units of property are capitalized. The original cost of property retired is charged to accumulated depreciation and amortization, net of salvage and removal costs.

Allowance for Funds Used During Construction (AFUDC)

The accrual of AFUDC is a utility accounting practice calculated under guidelines prescribed by the FERC and capitalized as part of the cost of utility plant representing the cost of servicing the capital invested in construction work in progress. Such AFUDC has been segregated into two component parts - borrowed and equity funds. The allowance for borrowed funds used during construction was \$1.4 million and \$1.8 million for 1992 and 1991, respectively. The allowance for equity funds was \$9.4 million and \$10.1 million for 1992 and 1991, respectively.

Income Taxes

F

The Company is included in the consolidated federal and state income tax returns filed by Enron. Under their tax sharing arrangement, each subsidiary in a taxable income position pays to Enron its income tax provision on a separate return basis. It is Enron's practice to reimburse each subsidiary in a tax loss position to the extent its deductions are utilized in the consolidated return.

The Company accounts for income taxes under the provisions of Statement of Financial Accounting Standards (SFAS) No. 96 - "Accounting for Income Taxes". Deferred income taxes have been provided for all differences in the bases of assets and liabilities for tax and financial reporting purposes.

During February 1992, the Financial Accounting Standards Board issued SFAS No. 109 - "Accounting for Income Taxes". SFAS No. 109 requires an asset and liability approach for financial accounting and reporting for income taxes and supercedes SFAS No. 96. SFAS No. 109 is effective for fiscal years beginning after December 15, 1992. The Company intends to retroactively adopt SFAS No. 109 during the first quarter of 1993 and believes the adoption will not have a material impact on the Company's results of operations or financial position.

Reclassifications

Certain reclassifications have been made in the 1991 amounts to conform with 1992 financial statement classifications.

(2) Income Taxes

The provisions for income taxes for 1992 and 1991 are as follows (in thousands):

	1992	1991
Payable currently Federal State	\$ 15,590 <u>2,912</u>	\$ 26,579 4,116
Total	18,502	30,695
Payment deferred Federal State	10,577 2,528	(11,466) (1,202)
Total	13,105	(12,668)
Total income tax expense	<u>\$ 31,607</u>	<u>\$ 18,027</u>

Deferred tax expense results from changes in the bases of assets and liabilities for tax and financial reporting purposes as follows (in thousands):

Ŷ,	1992	1991
Gas Contract Settlement Charges Depreciation and Amortization Purchase and Exchange Gas	\$ 2,869 3,289 2,446	\$(7,746) (977) 418
Reserve for Deferred Regulatory Costs and Contingencies Other	3,427 1,074	(6,8 60) 2,497
Total	<u>\$ 13,105</u>	\$(12,668)

The differences between taxes computed at the U.S. federal statutory rate and the Company's income taxes for financial reporting purposes are as follows (in thousands):

	1992	1991
Statutory federal income tax provision	\$ 27,999	\$ 16,085
Provision for state income taxes, net of federal benefit	3,590	1,923
Other	18	19
Income tax provision	\$ 31,607	<u>\$ 18,027</u>

(3) Long-Term Debt

-1

3

ារវិត

Long-term debt net of current maturities is summarized as follows (in thousands):

	Decemb	<u>ber 31.</u>
	1992	1991
9.10% Notes due 2000	\$ 23,000	\$ 23,000
7.55% Notes due 2000	100,000	-
9.20% Notes due 1998 to 2004	27,000	27,000
	\$150,000	\$ 50,000

Long-term debt outstanding will begin maturing with approximately \$3.9 million due in 1998 with the balance maturing through 2004.

A provision of the note agreements restricts the availability of retained earnings for the payment of dividends on common stock. Under such provision, at December 31, 1992, the Company's retained earnings was unrestricted.

At December 31, 1992, the estimated fair value of the Company's long-term debt was \$154.6 million. The fair value of long-term debt is based upon market quotations of similar debt at interest rates currently available. (4) Accounts Receivable Sales

1448

13368

116.40

The Company, through Enron, has entered into agreements which provide for the sale of trade accounts receivable with limited recourse provisions. At December 31, 1992 and 1991, the Company had sold receivables approximating \$18.6 million and \$31.7 million, respectively.

The fees incurred on the sales of these receivables and on the sales of rights to certain recoverable take-or-pay buy-out and contract reformation costs are included in "Interest expense and related charges" in the Statement of Income and totaled approximately \$.9 million and \$1.2 million for 1992 and 1991, respectively.

The Company has a concentration of customers in the electric and gas These concentrations of customers may impact the utility industries. Company's overall exposure to credit risk, either positively or negatively, in that the customers may be similarly affected by changes in economic or Credit losses incurred on receivables in these conditions. other compare favorably to losses experienced in the Company's industries receivable portfolio as a whole. The Company also has a concentration of customers located in the western United States, primarily within the state of California. Receivables are generally not collateralized. However, the Company's management believes that the portfolio of receivables, which companies and municipalities, is well local distribution includes diversified and that such diversification minimizes any potential credit risk.

(5) Revenue Transactions with Major Customer

The Company's revenues include billings for transportation to a major customer of approximately \$126 million and \$136 million for the years 1992 and 1991, respectively. The Company currently has a contract extending until October 1996 for approximately 750 mcf/day, and until October 2005 for approximately 300 mcf/day with this major customer to transport gas to California.

(6) Retirement Benefits

The Company participates in the Enron Retirement Plan (the Enron Plan), a noncontributory defined benefit plan which covers substantially all employees. Participants in the Enron Plan with five or more years of service are entitled to retirement benefits based on a formula that uses a percentage of final average pay and years of service.

As of September 30, 1992, the most recent valuation date, the actuarial present value of projected plan benefit obligations under the Enron Plan were. less than plan net assets by approximately \$15.1 million. The assumed discount rate used in determining the actuarial present value of projected plan benefits in both 1992 and 1991 was 9.0%. The expected long-term rate of return on assets was 10.5% and the assumed rate of increase in wages was 5.0% for both 1992 and 1991. The costs of pension expense for the Company were included in operating expense and were not significant.

Assets of the Enron Plan are comprised primarily of equity securities, fixed income securities and temporary cash investments. It is Enron's policy to fund all pension costs accrued to the minimum amount required by federal tax regulations. In addition to providing pension benefits, the Company also provides certain health care benefits to substantially all of its retired employees and life insurance benefits to certain retirees. The costs of these postretirement benefits are recognized as expense when paid, and were not significant in 1992 and 1991.

During December 1990, the Financial Accounting Standards Board issued SFAS No. 106 "Employers' Accounting for Postretirement Benefits Other Than Pensions." SFAS No. 106 is effective for fiscal years beginning after December 15, 1992 and requires that employers providing health, life insurance or other postretirement benefits (other than pension benefits) accrue the cost of those benefits over the service lives of the employees expected to be eligible to receive such benefits. Such costs are currently accounted for on an accrual basis and are not significant. The liability for such benefits existing as of the date of adoption of SFAS No. 106 (the transition obligation) may be immediately charged to earnings or may be amortized over a period not to exceed 20 years.

The Company will adopt the provisions of SFAS No. 106 during 1993 and will amortize the transition obligation (estimated to be \$2.0 million) over a period of approximately 19 years. In accordance with the FERC policy statement issued December 17, 1992, the Company intends to seek recovery of the transition obligation from its customers in future general rate case filings.

(7) Related Party Transactions

ł

v 14

The Company purchased natural gas from subsidiaries of Enron at market prices totaling approximately \$1.1 million and \$.5 million during 1992 and 1991, respectively. The Company recorded no sales revenue in 1992 and \$3.7 million in 1991 and transportation revenue totaling approximately \$6.7 million and \$25.8 million during 1992 and 1991, respectively, from subsidiaries of Enron.

The Company receives interest income and pays interest expense on its note with associated companies at rates equal to certain prevailing market rates. Interest income amounted to approximately \$1.4 million and \$16.9 million for 1992 and 1991, respectively. Interest expense was approximately \$4.1 million and \$10.8 million for 1992 and 1991, respectively.

The Company incurred corporate administrative expenses including employee benefit costs from Enron, primarily based upon usage and other factors, of approximately \$12.3 million and \$10.3 million for the years 1992 and 1991, respectively. The residual amounts are distributed based on components of gross property, plant and equipment, gross margin and annualized payroll.

(8) Litigation and Other Contingencies

The Company is party to various claims and litigation, the significant items of which are discussed below. Although no assurances can be given, the Company believes, based on its experience to date and additional recoveries from customers, that the ultimate resolution of such items, individually or in the aggregate, will not have a material adverse impact on its financial position or results of operations.

Take-or-Pay Provisions in Gas Purchase Contracts

substantially completed its Gas Purchase Contract Company has The Reformation/Termination efforts, though three cases are currently pending before arbitration panels. As of December 31, 1992, the Company had claims and litigation aggregating pending against it take-or-pay approximately \$13.0 million. However, based upon settlements reached to date, the Company believes that it is probable that those claims will be resolved at significantly less cost than the amounts claimed. Furthermore, up to seventy-five percent of prudently paid settlement costs are eligible for recovery from transportation customers under FERC Orders 500/528.

Mewbourne Oil Company (Mewbourne) has asserted claims against the Company for approximately \$250 million pursuant to pricing provisions of various gas purchase contracts between Mewbourne and the Company and as a result of alleged acts of the Company with respect to such contracts. Included are breach of contract, contract repudiation, fraud and allegations of violations of the federal Racketeering Influenced and Corrupt Organizations This dispute has been submitted to arbitration. No discovery has Act. been undertaken in this proceeding, and no date has been set for the arbitration hearing; accordingly, it is not possible to predict the outcome of this matter. However, although no assurances can be given, the Company believes that a significant portion of the claims for damages are either duplicative or without merit, and that the ultimate resolution of this matter will not have a materially adverse effect on its financial position or results of operations.

The Company continually evaluates its position relative to gas purchase contract matters, including the likelihood of loss from asserted or unasserted take-or-pay claims or above market prices. Based upon this evaluation and its experience to date, management believes that it has not incurred losses for which reserves should be provided at December 31, 1992.

Environmental Protection Agency

The Company has completed the cleanup of polychlorinated biphenyl (PCB) contaminated soils in Arizona pursuant to an agreement with the Environmental Protection Agency, Region 9, and has received final approval from Region 6, relative to the cleanup and disposal of PCB-contaminated liquids and soils in New Mexico that were found in or adjacent to its facilities. Approximately \$52.8 million has been incurred for cleanup as of December 31, 1992. The total cost amortized or written off as of December 31, 1992 was \$42.0 million with the remaining amount to be amortized through 1994.

As of year end, the Company has also paid \$11.9 million for litigation and damages incurred through December 31, 1990 related to PCBs that migrated into one of its customer's facilities through a PCB-based lubricant. The Company paid an additional \$1.8 million in January, 1993 for damages incurred through September 30, 1992. The Company is pursuing litigation against third parties for the amount paid to its customer for past damages, and for future reasonable damages.

The Company is subject to extensive federal, state and local environmental laws and regulations which require expenditures for remediation at various operating facilities and waste disposal sites, as well as expenditures in connection with the construction of new facilities. However, management does not believe that any such potential costs, including environmental cleanup mentioned above, will have a material impact on the Company's financial position or results of operations. (9) Rate Matters and Regulatory Issues

 $\lambda \geq 1$

The Company is involved in several rate matters and regulatory issues, the significant items of which are discussed below. The Company believes, based on appropriate reserves that have been established, that the ultimate outcome of such matters, individually or in the aggregate, will not have a material adverse impact in its financial position or results of operations.

The Company has filed approximately \$243.1 million in transition costs with the FERC under Order No. 500 providing for recovery from customers through direct billing of approximately \$58.5 million and surcharges of approximately \$123.8 million. In addition, the FERC has allowed the Company to collect certain post-GIC (Gas Inventory Charge) transition costs through the Order No. 500 recovery mechanism. This matter is currently pending before the D.C. Court of Appeals.

In 1992, the Company resolved its general section 4 rate case (Docket No. RP89-48-000) with its customers with the exception of one minor issue, which should be resolved in the very near term. On March 13, 1992, the Company filed an abbreviated section 4 rate case to establish rates for the newly constructed San Juan pipeline. On November 30, 1992, the Company filed a section 4 rate case with the FERC (Docket No. RP93-34-000). The filed rates, effective January 1, 1993, reflect a slight rate decrease from the rates previously on file. On December 31, the FERC issued an order placing the rates into effect, subject to refund upon hearing.

On April 8, 1992, the FERC issued Order No. 636, restructuring the pipeline industry to require the unbundling of transportation and sales services provided by pipelines. Order No. 636 requires pipelines to implement Straight Fixed Variable rate design and authorizes capacity release programs so that firm shippers can release unwanted capacity on a temporary or permanent basis to those desiring capacity. In addition, Order No. 636 allows pipelines to recover transition costs incurred as a result of implementing the Order. On February 1, 1993, the FERC issued a final order in the Company's Order No. 636 Compliance Filing, to be effective on February 1, 1993 implementing, among other things, the above mentioned requirements and a straight fixed variable rate design. Estimated future transition costs included in the filing under the provisions of the Order are not considered to be significant in relation to total costs.

APPENDIX D

EVENTS AND CORRESPONDENCE CHRONOLOGY

£sita. €sita.

W/2/9

Nitro

hibit

perces

parren Nesaa

1100 A

enen tasiot

ان ۽ جو

2.02-04

24.95

- 25-0-2

660

898768

1820.34

2064

160 %

200-09

. History

10.00

12:57

. Friend

EVENTS AND CORRESPONDENCE CHRONOLOGY

- 8/60 Compressor station begins operations.
- 6/73-4/81 Period during which Pits 2 and 3 are backfilled.
- Mid-1984 Last use of surface impoundments.
- 6/86 Pit 1 backfilled.
- 4/90 Transwestem requests permission from the State of New Mexico Office of the Commissioner of Public Lands to drill exploratory borings on State Trust land in order to collect soil samples to assess soil contamination.
- 4/2/90 State of New Mexico Office of the Commissioner of Public Lands (Surface Water Resources Division) authorizes Transwestern to drill exploratory borings on State Trust land for the purpose of obtaining soil samples to be tested for contamination.
- 6/20/91 Harding Lawson Associates completes shallow soil vapor investigation at Compressor Station No. 9.
- 7/17/91 Transwestern requests authorization to drill additional soil borings on State Trust land northeast of the compressor station.
- 7/22/91 State of New Mexico Office of the Commissioner of Public Lands (Surface Water Resources Division) authorizes Transwestern to drill approximately 15 soil borings to allow collection of soil samples.
- 12/91 Metric Corporation completes report on a shallow subsurface investigation at the compressor station.
- 2/14/92 Larry Campbell (Transwestern) meets with Coby Muckelroy and Bruce Swanton (New Mexico Environment Department [NMED]) to discuss closure of surface impoundment at Compressor Station No. 9.
- 2/14/92 Larry Campbell (Transwestern) meets with Roger Anderson (Oil Conservation Division [OCD]) to discuss closure of surface impoundment at Compressor Station No. 9.
- 4/29/92 Bruce Swanton (NMED) calls Larry Campbell (Transwestern) to request additional information regarding the former surface impoundments.
- 5/6/92 Joint meeting attended by Transwestern, NMED and OCD. Transwestern states intention to hire Halliburton-NUS Corporation to install a monitor well in the center of the former pit to remove and test liquids to determine their status as hazardous or non-hazardous waste. Field work scheduled to begin July 20, 1992.
- 7/92 Monitor well MW-1 installed by Halliburton-NUS Environmental Corporation.

- 10/15/92 Joint meeting attended by Transwestern, NMED and OCD. Transwestern presents the results of sampling and analysis of the new monitor well. Options for closure of the site are discussed.
- 11/30/92 Transwestern submits duplicate copies of a RCRA Part A permit application to NMED and OCD.
- 12/10/92 Joint meeting attended by Transwestern, NMED and OCD to discuss remediation and closure activities at former surface impoundments. NMED requests that the RCRA Part A permit application submitted previously be resubmitted using the proper EPA forms. The schedule for submittal of other documents and information is also discussed.
- 1/5/93 Transwestern resubmits RCRA Part A permit application using the EPA forms.
- 1/25/93 Transwestern notifies NMED that monitor wells will be installed to determine ground-water quality beneath the former surface impoundments.
- 2/7/93 Transwestern provides NMED with historical information on the use of the former surface impoundments.
- 2/17/93 Transwestern meets with NMED to discuss remediation and closure of the surface impoundment.
- 2/17/93 Transwestem requests permission from the State of New Mexico Office of the Commissioner of Public Lands to install two monitor wells on State Trust land in order to collect ground-water samples.
- 2/17/93 NMED requests that Transwestern submit a closure plan in accordance with the New Mexico Hazardous Waste Management Regulations, Part VI, Section 40 CFR 265.112(a). NMED also provides Transwestern with a list of Deficiency Comments related to NMED review of the RCRA Part A permit application previously submitted and requests that a new or amended Part A application be submitted within 30 days.
- 3/10/93 Transwestern requests NMED to grant a 60-day extension (until July 1, 1993) for filing the closure plan.
- 3/16/93 George Robinson (Cypress Engineering Services) meets with Larry Campbell (Transwestern) to discuss conclusions of Metric Report.
- 4/6/93 NMED grants extension for filing of closure plan.
- 4/7/93 Transwestern submits amended RCRA Part A permit application to NMED, along with a list of responses to NMED review comments on the previous permit application.
- 5/19/93 Larry Campbell and Lou Soldano (Transwestem) meet with NMED to discuss NMED request for closure plan for the surface impoundments. NMED requests information regarding the proposed installation of a product recovery pump.

- 5/21/93 Product recovery pump installed in MW-1. Interim corrective action begins by pumping product from MW-1 into aboveground storage tank.
- 6/11/93 Transwestern notifies the State of New Mexico Office of the Commissioner of Public Lands that remediation operations are in progress at the compressor station.
- 6/22/93 Brown & Root Environmental completes a report for Transwestern describing a ground-water assessment at the compressor station.
- 7/1/93 Larry Campbell (Transwestern) delivers closure plan to NMED. Transwestern begins free product recovery from recovery wells MW-1B, MW-2, and RW-1.
- 9/7/93 Transwestern notifies OCD of the installation of product recovery pumps in three monitor wells as part of ground-water cleanup and requests associated modifications to Discharge Plan GW-52.
- 9/22/93 OCD requests additional information regarding the design of the product recovery system prior to approving modifications to Discharge Plan GW-52.
- 10/25/93 Transwestern responds to comments from OCD regarding the product recovery system.
- 11/18/93 OCD approves Transwestem's proposed modifications to Discharge Plan GW-52 in accordance with ongoing remedial activities.
- 3/7/94 Transwestern receives a letter from NMED rejecting closure plan previously submitted on July 1, 1993, on the grounds that it is incomplete. NMED includes Notice of Deficiency listing items to be included in the closure plan.
- 3/23/94 Cypress Engineering Services removes inoperative product recovery pump from MW-1 and collects ground-water samples from MW-3 and MW-5.
- 4/5/94 George Robinson (Cypress Engineering Services) prepares letter report to Bill Kendrick (Enron Operations Corporation) discussing soil and ground-water quality at the Roswell compressor station.
- 4/8/94 Larry Campbell (Transwestem), Bill Kendrick (Enron Operations Corporation), and George Robinson (Cypress Engineering Services) meet with NMED to discuss Notice of Deficiency. NMED requests that another closure plan be submitted by June 1, 1994.
- 4/15/94 Brown & Caldwell installs new product recovery pump in MW-1 and measures depth to PSH and depth to ground water in MW-1, MW-1B, MW-2, and RW-1.
- 5/18/94 George Robinson (Cypress Engineering Services) and Jeffrey Forbes (DBS&A) meet with Marc Sides (NMED) to discuss closure plan format.
- 5/31/94 Closure Plan for Roswell Compressor Station Surface Impoundments submitted to NMED Hazardous and Radioactive Materials Bureau (HRMB).

- 9/28/94 NMED HRMB issues Notice of Deficiency (NOD) to Transwestern for closure plan dated May 31, 1994, including a list of NMED comments and requests for additional information. NMED gives Transwestern 30 days to revise the closure plan in response to their comments.
- 11/1/94 Bill Kendrick (Enron Operations Corporation) and George Robinson (Cypress Engineering Services) meet with NMED to discuss Notice of Deficiency dated September 28, 1994. NMED requests that Transwestern (1) submit request for extension of the closure plan due date, (2) evaluate the potential to collect and analyze ground-water samples from off-site wells and the deep on-site well (TW-1), and (3) revise the closure plan in accordance with NMED comments.
- 11/9/94 Transwestem requests a 75-day extension of the due date for the revised closure plan. Included with the letter is an attachment describing the procedure and method for installation of an upgradient monitor well.
- 12/1/94 Transwestem installs upgradient monitor well MW-6 approximately 500 feet southwest of the former surface impoundments. A ground-water sample collected by DBS&A from this well is submitted for laboratory analysis in accordance with procedures outlined in Transwestern's letter dated November 9, 1994. All existing on-site monitor wells are resurveyed.
- 12/2-3/94 Clayton Barnhill and George Robinson accurately locate off-site wells using Magellen GPS Satellite Navigator.
- 12/16/94 Transwestern receives letter from NMED dated December 8, 1994, granting a 75day extension of closure plan due date until January 16, 1995. Also included are NMED's comments on Transwestern's procedures and methods for installation of the upgradient monitor well.
- 12/19/94 Transwestern sends letter to NMED HRMB describing proposed ground-water sampling and analysis for off-site wells.
- 12/22/94 Ground-water samples are collected by DBS&A from on-site deep well TW-1 and off-site well #5 for laboratory analysis of Appendix IX constituents.
- 1/16/95 Transwestern submits revised closure plan to NMED HRMB.

APPENDIX E

LABORATORY REPORTS FROM PREVIOUS SUBSURFACE INVESTIGATIONS

pana Nora

100.00

iitse)

i.

Harding Lawson Associates 1990 Soil Analytical Results

:

FOOTNOTES FOR:

SUMMARY OF CORE SAMPLE ANALYTICAL RESULTS

ROSWELL, NEW MEXICO

- \sim = Reported value is less than the detection limit.
- < = Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.</p>
- * = Compound was also detected in the QC blanks.
- B = Reported value was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL).
- N = Spiked sample recovery not within control limits.
- S = Reported value determined by Method of Standard Addition (MSA).
- U = Reported value was analyzed for but not detected.
- W = Post-digestion spike for Furnace AA analysis is out of control limits (85-100%),
 while sample absorbance is less than 50% of spike absorbance.
- NA = Not analyzed by conventional, EPA-approved methods
- mg/kg = parts per million
- μ g/kg = parts per billion
- mg/l = parts per million
- $\mu g/l = parts per billion$

16.4.5. 10.4-2 -	en al anti-	- *	5.4	, ¢	いる	1 1	á	1.4%	÷	, pi	34	 ä.	i.	1. N. W.	. 2	÷	1	21	4	*

TABLE 1

Bender Bernen Be

۰.

31.64

PHASE A

SUMMARY OF ON-SITE CORE SAMPLE ANALYTICAL RESULTS

Roswell, New Mexico

Core Hole No. Sample Depth		989-1 5-6.5	SB9-1		Blarik # 1	Blank # 2		SB9-2	589-2 9'-12	SB9:2	6 B9-2 17 18 5		Elank #3	Elank V4	
8 waple ID		59-01-1-8	59-02-1-8		Equipment	Trip 1		59-031-8	59-04.1-8	59-05.1-8	89-06.1-8		Equipment	Trip	
						The Property of the Property o								· · · · · · · · · · · · · · · · · · ·	
TPH	mg/kg	<20	<20	mg/1	<1	6	mg/kg	40	BO	80	<20	mg/l	<1	<1	
Methanol	mg/l	NA	NA	mg/l	NA	NA	mg/l	NA	NA	NA	NA	ng/l	NA	NA	
Muthylene Chloride	ug/kg	NA	NA	ug/l	NA	NA	ug/kg	NA	NA	NA	NA	ug/i	NA	NA	
Acetone	ug/kg	NA	NA	ug/l	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
Carbon Disullide	ug/kg	NA	NA	ug/l	NA	NA	ug/kg	NA	NA	NA	NA	ug/l	NA	NA	
Trichlorofluoromethane	ug/kg	NA	NA	ug/1	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
Ethyl Ether	ug/kg	NA	NA	ug/1	NA	NA	ug/kg	NA	NA	NA	NA	Ug/1	NA	NA	
Freon (TF)	ug/kg	NA	NA	ug/1	NA	NA	ug/kg	NA	NA	NA	NA	ug/l	NA	NA	
2-Butanone	ug/kg	NA	NA	ug/1	NA	NA	ug/kg	NA	NA	NA	NA	ug/l	NA	NA	
1,1,1-Trichloroethane	ug/kg	NA	NA	ug/1	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
Carbon Tetrachloride	ug/kg	NA	NA	ug/l	NA	NA	ug/kg	NA	NA	NA	NA	ugA	NA	NA	
Cyclohexanone	ug/kg	NA	NA	<u>ug1</u>	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
Ethyl Acetate	ug/kg	NA	NA	ug/l	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
Isobutyl Alcohol	ug/kg	NA	NA	ugA	NA	NA	ug/kg	NA	NA	NA	NA	ug/l	NA	NA	
2-Ethoxyethanol	ug/kg	NA	NA	ug/1	NA	NA	ug/kg	NA	NA	NA	NA	ug/l	NA	NA	
n-Butyl Alcohol	ug/kg	NA	NA	ug/l	NA	NA	ug/kg	NA	NA	NA	NA	U0/1	NA	NA	
Trichioroethene	ug/kg	NA	NA	ug/t	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
1,1,2-Trichloroethane	ug/kg	NA	NA	ug⁄l	NA	NA	ug/kg_	NA	NA	NA	NA	ug/i	NA	NA	
Benzene	ug/kg	NA	NA	0 <u>1</u>	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
4 Methyl 2 Pentanone	ug/kg	NA	NA	ug/1	. NA	NA	ug/kg	NA	NA	NA	NA	uq⁄l	NA	NA	
Tetrachloroethane	<u>20/kg</u>	NA	NA	<u>u0/1</u>	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
Toluene	ug/kg	NA	NA	ug/l	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
Chlorobenzene	<u>u0/k0</u>	NA	NA	ug/1	NA	NA	u0/kg	NA	NA	NA	NA	ug/1	NA	NA	
Ethylbenzene	ug/kg	NA	NA	U0/1	NA	NA	uo/kg	NA	NA	NA	NA	ug/I	NA	NA	
Xylene (total)	u0/kg	NA	NA	UQ/I	NA	NA	ug/kg	NA	NA	NA	NA	ug/l	NA	NA	
Pyridine	ug/kg	NA	NA	U0/1	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
1,3-Dichlorobenzene	ug/kg	NA	NA	ug/i	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
1,4-Dichlorobenzene	ug/kg	NA	NA	u0/1	NA	NA	u0/kg	NA	NA	NA	NA	ug/l	NA	NA	
1,2-Dichlorobenzene	ug/kg	NA	NA	ug/1	NA	NA	ug/kg	NA	NA	NA	NA	ug/l	NA	NA	
2-Methylphenol	ug/kg	NA	NA	ug/l	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
3 Methylphenol	<u>u0/kg</u>	NA	NA	- ug/	NA	NA	ug/kg	A/I	NA	NA	NA	ug/1	NA	NA	
4 Methylphenol	<u>00/10</u>	NA	NA	U0/I	NA	NA	ug/kg_	NA	NA	NA	NA	ug/1	NA	NA	
Nitrobanzana	ug/kg	NA	NA	Ug/1	NA	NA	ug/kg	NA	NA	NA	NA	ug/1	NA	NA	
Silver, total	mg/1	0.0005UW	0.0005UW	m_/1	0.00050	0.0005U	mg/1	< 0005	< 0005	< 0005	< 0005	mg/I	< 0005	<.0005	
Arsenic, total	mq/1	0.0048	Q.004BW	mg/l	0.003(1	0.003U	m/1	QOSBW:	0048	< 003	QOSB	n_/i	< .003	< 003	
Barium, total	<u>mg/1</u>	038	0 128	n_/1	0 05U	0.05U	1	0 38	128	1.01	13	mg/i	< 05	< 05	
Cadmium, total	/	DOOSUW	0005U	M_1	0.00050	0 000617	mg/1	0006BW	0007BW	0006HW	DOOBBW	mg/1	<.0005W	<.0005W	
Chromium, total	_mq/1	0068	0060	m1	0 0098	0 006B	mg/1	< 006	0.008	< 006	0078	m/I	< 006	< 006	
Marcury, total	mg/l	00020	00024	m/1	0 00020	0.000213	mg/1	< 0002	< 0002	< 0002	< 0002	mg/l	< 0002	< 0002	
Lead, total	_mg/1	0028	002LAV	mg/t	0.007	0.003	mq/1	0028	0.004	002B	0003	n_/i	< 002W	< 002	
Selenium total	1 mg/l	DOJUW	0031.00	mg/t	0.0030	0.00011	mg/l	<.003W	< 003W	< 003W	< 003W	mg/1	< 003W	< 003W	

TABLE 1 (CONT)

.

SUMMARY OF ON-SITE CORE SAMPLE ANALYTICAL RESULTS Roswell, New Maxico

Controla No	hanna	501.5	589-3	IIIISEO2108		******	89899988	100000000	SB9-4	BUSBIE AND	0006002000	5894	111080518	6895	889-5	SBI 5
Saccole Depth		34	16 18 5	201-23					81-13	14-16	18.21	28.27	4.4	105-13	15:17.5	18'-20'
						Black#6			59-10.3-8	59-11.1-8	89-121-8	59-14-1-8	59-14-1-8	BØ 15.1-8	59-16.1. 3-5.7-8	
Sample ID		59-07,3-8	59-08.1-8	\$9-09.1-4,7-8		Equipment			08114.0-0	11 90 St 3 199 1		1100011-017911	1104117411741		Contraction of the second	ACC CONTRACTOR
ТРН	mg/kg	<20	<20		mg/l	<1		mg/kg	120	70		280	<20	100	<20	<20
Methanol	mg/l		NA	NA	mg/1	NA		mg/l	NA	NA	NA	NA	NA	NA	NA	NA
Methylene Chloride	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Acetone	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Disullide	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Trichlorofluoromethane	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Ethyl Ether	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Freon (TF)	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
2-Butanone	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Tetrachioride	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Cyclohexanone	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Ethyl Acetate	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Isobutyl Alcohol	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
2-Ethoxyethanol	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
n-Butyl Alcohol	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	<u>NA</u>
Trichloroethene	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
1,1,2-Trichloroethane	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Benzene	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
4 Methyl 2 Pentanone	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	<u>NA</u>
Tetrachloroethane	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Toluene	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Chlorobenzene	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Xylene (total)	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Pyridine	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
1,3-Dichiorobenzene	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
1,4-Dichlorobenzene	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Dichlorobenzene	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylphenol	ug/kg	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
3-Methylphenol	ug/kg	NA	NA	NA	ug/l	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
4-Methylphenol	ug/kg	NA	NA	<u>NA</u>	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Nitrobenzene	<u>ug/kg</u>	NA	NA	NA	ug/1	NA		ug/kg	NA	NA	NA	NA	NA	NA	NA	NA
Silver, total	1	< .0005	<.0005	<.0005	mg/1	<.0006		n	<.0005	< 0005	< .0005	<.0005	< .0005	< 0005	<.0005W	< 0005W
Arsenic, total	_mg/1	9.01	< 003	<.003	mg/1	<.003		mg/l	0098	<.003	<.003	<.003	QO6B	< 003W	< 003W	< 003
Barium, total	mg/1	024	0.39	1.0	(1	< .05		mg/1	093	0.83	0.9	178	0.63	0.72	103	3 05
Cadmism total	<u>mg/1</u>	DOOGBW	00098W	<.0005W	(1	< 0005		mg/1	<.0005W	<.0005W	OQ13BW	DODEBW	<.0005W	< 0005W	< 0005W	< 0005
Chromium, total	mg/1	< 006	< 0002	<.0002	mg/1	<.006		<u>mg/1</u>	<.006	< 006	< 006	<.008	<.008	< 006	< 006	< 006
Mercury, total	<u>-mg/1</u>	< 0002		< 0002 002B	1	< 0002			A STATE OF THE OWNER OF THE OWNER.		< 0002	< 0002	< 0002	< 0002	< 0002	< 0002
	_mg/1	- tes fact a fear fault - tradead when	0028	< 002H	mg/1	< 003W		<u>mg/1</u>	< 003	002B <.003	< 003	tatute heredes his his his to		0 003	0.007	< 002N
Selenium,total	1	<.003W	<.003W	<.003W	ng/t	< 003W		mg/1	<.003	<.003	<.003	<.003W	<.003W	< 003W	< 0003W	< 003WN

TABLE 1 (CONT)

SUMMARY OF ON-SITE CORE SAMPLE ANALYTICAL RESULTS

Roswell, New Mexico

								Roswell, Ne	W HIGKING							
Core Hole No.		989 -5	5 8 9•5	\$69 <i>\$</i>						SB9·Ø	5B9-8	589-8	889-6		88 9 -8	989-6
Sample Depth		20-22.5	201-22.6	20 22 5		Blank #8	Blank #7			8-11	16:20	20.23	28-68		26 28	28-28
Sample ID		89-18-114.7	Tube #3	tube #4		Equipment	Tre			\$9-20.1-8	S921368	592218	5923 1347		Tube #5	Tube #6
трн	mg/kg	<20	<20	<20	mg/l	<1	<1		mg/kg	<20	<20	120	<20	mg/kg	<20	20
Methanol	mg/l	NA	<1	<1	mg/1	<1	<1		mg/l	NA	NA	NA	NA	mg/kg	<50	<50
Methylene Chloride	ug/kg	NA	7	10	ug/1	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg		
Acetone	ug/kg	NA	26		ug/l	<10"	<10		ug/kg	NA	NA	NA	NA	ug/kg	<10	<14
Carbon Disulide	ug/kg	NA	<6	<6	ug/l	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Trichlorofluoromethane	ug/kg	NA	<6	<6	ug/1	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Ethyl Ether	ug/kg	NA	<6	<6	ug/1	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Freon (TF)	ug/kg	NA	16	16*	ug/1	<5	<6		ug/kg	NA	NA	NA	NA	ug/kg		20*
2-Butanone	ug/kg	NA ·	<11	<12	ug/l	<10	<10		ug/kg	NA	NA	NA	NA	ug/kg	<10	<14
1,1,1-Trichloroethane	ug/kg	NA	<6	<6	ug/1	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Carbon Tetrachloride	ug/kg	NA	<8	<6	ug/l	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Cyclohexanone	ug/kg	NA	<6	<6	ug/l	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Ethyl Acetate	ug/kg	NA	<6	<8	ug/l	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Isobutyl Alcohol	ug/kg	NA	<230	<230	ug/l	<200	<200		ug/kg	NA	NA	NA	NA	ug/kg	<200	<280
2-Ethoxyethanol	ug/kg	NA	<11	12	ug/l	<10	<10		ug/kg	NA	NA	NA	NA	ug/kg	<10	<14
n-Butyl Alcohol	ug/kg	NA	<110	<120	ug/1	<100	<100		ug/kg	NA	NA	NA	NA	ug/kg	<100	<140
Trichloroethene	ug/kg	NA	<6	<6	ug/l	<6	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
1,1,2-Trichloroethane	ug/kg	NA	<6	<6	ug/1	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Benzene	ug/kg	NA	<6	<6	ug/1	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
4 Methyl 2 Pentanone	ug/kg	NA	<11	<12	ug/l	<10	<10		ug/kg	NA	NA	NA	NA	ug/kg	<10	<14
Tetrachloroethane	ug/kg	NA	<6	<6	ug/l	<6	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Toluene	ug/kg	NA	<6	<6	ug/l	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Chlorobenzene	ug/kg	NA	<6	<6	ug/l	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Ethylbenzene	ug/leg	NA	<6	<6	ug/1	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Xylene (total)	ug/kg	NA	<6	<6	ug/l	<5	<5		ug/kg	NA	NA	NA	NA	ug/kg	<5	<7
Pyridine	ug/kg	NA	<370	<380	ug/1	<40	<40		ug/kg	NA	NA	NA	NA	ug/kg	<340	<430
1,3-Dichlorobenzene	ug/kg	NA	<370	<380	ug/l	<40	<40		ug/kg	NA	NA	NA	NA	ug/kg	<340	<430
1,4-Dichiorobenzene	ug/kg	NA	<370	<380	ug/l	<40	<40		ug/kg	NA	NA	NA	NA	ug/kg	<340	<430
1,2-Dichlorobenzene	ug/kg	NA	<370	<380	ug/i	<40	<40		ug/kg	NA	NA	NA	NA	ug/kg	<340	<430
2-Methylphenol	ug/kg	NA	<370	<380	ug/i	<40	<40		ug/kg	NA	NA	NA	NA	ug/kg	<340	<430
3-Methylphenol	ug/kg	NA	<370	<380	ug/i	<40	<40		ug/kg	NA	NA	NA	NA	ug/kg	<340	<430
4-Methylphenol	ug/kg	NA	<370	<380	ug/l	<40	<40		ug/kg	NA	NA	NA	NA	ug/kg	<340	<430
Nitrobenzene	ug/kg	NA	<370	<380	ug/l	<40	<40		ug/kg	NA	NA	NA	NA	ug/kg	<340	<430
Silver, total	mg/t	0022BW	<.0005W	<.0005	mg/l	<.0005	<.0005		mg/l	<.0005W	<.0005	00268	< 0005W	mg/l	<.0005W	< 0005
Arsenic, total	mg/1	003B	DOGE	.004 8	mg/1	< 003	< .003		mg/l	0048	< 003W	<.003	< 003W	mg/l	<.003	009B
Barium, total	mg/1	312	027	0.62	mg/l	< 05	<.05		mg/l	0.63	121	07	122	mg/l		0108
Cadmium, total	mg/l	DOUSBW	0005BW	DOTOBW	mg/l	<.0005W	<.0005W		mg/l	.00108W	< 0005	< 0005	00068	mg/1	00128	00088
Chromlum, total	_mg/1	<.006	<.006	<.006	mg/1	<.006	<.006		1	< 006	< 006	0011	006B	mg/1	0.0078	0.011
Mercury, total	_mg/1	<.0002	<.0002	<.0002	mg/l	< 0002	< 0002		mg/i	<.0002	< 0002	<.0002	< 0002	mg/l	< 0002	< 0002
Lead, total	_mg/1	<.002N	<.002WN	<.002WN	mg/l	0.004	0003		mg/l	<.002WN	<.002WN	<.002W	ODAW	mg/l	002W	< 002
Selenium,total	_mg/1	0058N	<.003N	<.003W	mg/1	<.003	<.003		mg/1	<.003WN	< 003N	< 003	<.003	mg/1	< 003	< 003

.

•

TABLE 1 (CONT)

ģ.

SUMMARY OF ON-SITE CORE SAMPLE ANALYTICAL RESULTS

	SUMMARY OF ON-SITE COHE BAMPLE ANALTTICAL MESULIS Roswell, New Mexico															
Core Hole No.	haaaa		********			1118B0 7111	5897	SEG 7	SE9.7	S89710	689.7	559710	8897	808888888888		100000000000
Sample Depth		Black #10	Blank #11			9.12	215-24	25 5 28	29 32	29 52	35.37	38 37	36-37		Blank #12	Blank #13
Sample ID		Equipment	Trip			59-24 1-8	59.65 1 8	59-26 1-8	59 27.3 8	Tube #7	89 28 3 8	Tube #8	Tube #9		Field	Equipment
		:: Ednibioeur::				3924.19	:ax co.1:a	134 60 119	1:04 C(.P.Q.	11111111 #X111	1.03 20.010	11.30.00.00	CONTRACT NEWS			T. T. Solution (11)
ТРН						and the second se	2000	2500	11000	6000	4600	13000	30000	mg/l	<4	<4
	1	<4	<4	·	mg/kg	\$100	Lident ide Laderder de	NA	NA	<1	NA	<1	<1		<10	<10
Methanol	(1	<50	<50		mg/l	NA	NA	NA	NA NA	<1300	NA NA	<640	<670		<5	<5
Methylene Chloride	<u>ug/1</u>	<5 10000020000	<5 (1000002000000		ug/kg	NA	NA	and the second data was shown in the second data was shown in the second data was shown in the second data was	NA NA	<1300	NA NA	<1300	<1300	<u>ug/1</u>	<10	<10
Acetone	ug/1				ug/kg	NA	NA	NA NA	<u>NA</u>	<1300	NA NA	<640	<670	ug/1	<5	<5
Carbon Disulfide	<u>ug/1</u>	<5	<5		ug/kg	NA	NA			<1300	NA NA	<640	<670	Lug/l	<5	<5
Trichlorofluoromethane	<u>ug/1</u>	<5	<6		ug/kg	NA	NA	NA	NA	<1300	NA NA	<640	<870	1 <u>001</u>	<5	<5
Ethyl Ether	_ug/1	<5	<5		ug/kg	NA	NA	<u>NA</u>	NA	5100	NA NA	<640	<670	<u>ug/1</u>	8	n ř
Freon (TF)	<u>ug/1</u>	77 46			ug/kg	<u>NA</u>	NA	NA	<u>NA</u>		NA	<1300	<1300	<u>ug/1</u>		<10
2-Butanone	ug/1		<10		ug/kg	NA	NA	NA	NA	<2600	NA NA	<1300	2000	<u>ug/1</u>	<10	
1,1,1-Trichloroethane	<u>ug/1</u>	<5	<5		ug/kg	NA	NA	NA	<u>NA</u>	<1300 <1300	NA NA	<640	<670	ug/1	<u><5</u> <5	<5 <5
Carbon Tetrachloride	_ug/1	<5	<5		ug/kg	NA	NA	NA	<u>NA</u>	<1300	NA NA	<640	<670	<u>ug/1</u>		and a company of the local sector and the
Cyclohexanone	ug/l	<5	<5		ug/kg	NA	NA	NA NA	NA NA	<1300	NA	<640	<670	Lig/1	<5 <5	<u><5</u> <5
Ethyl Acetale	<u>ug1</u>	<5	<5		ug/kg	NA	NA		NA NA	<53000	NA NA	<26000	<27000	ug/1	<200	<200
Isobutyl Alcohol	ug/1	<200	<200		ug/kg	NA	NA NA	NA		<2600	NA NA	<1300	<1300	ug/1	<10	<10
2-Ethoxyethanol	ug/1	<10	<10		ug/kg	NA NA	NA	NA NA	NA	<26000	NA NA	<1300	<1300	<u>1001</u>	<100	<100
n-Butyl Alcohol	_ug/1	<100	<100		ug/kg	NA	NA		NA	<1300	NA NA	<640	<670	1.001	The second s	<5
Trichloroethene	<u>ug/</u>	<5	<5		ug/kg	NA	NA	NA	NA	the relation of the second statements		COLUMN TWO IS NOT THE OWNER.		ug/1	<5	
1,1,2-Trichloroethane	_ug/1	<5	<5		ug/kg	NA	NA	NA	NA	<1300	NA	<640	<670	<u>ug/1</u>	<5	<5
Benzene	ug/1	<5	<5		ug/kg	NA	NA	NA	NA	<1300	NA	<640	<670	<u></u>	<5	<5
4 Methyl 2 Pentanone	Ug/1	<10	<10		ug/kg	NA	NA	NA	NA	<2600	NA	<1300	<1300	ug/l	<10	<10
Tetrachloroethane	-ug/1	<5	<5		ug/kg	NA	NA	NA	NA	<1300	NA	<640	2100	ug/l	<5	
Toluene	<u>ug/1</u>	<5	<5		ug/kg	NA	NA	NA	NA	<1300	NA	<640	<670	ug/1	<5	<5
Chiorobenzene	_ug/1	<5	<5	·	ug/kg	NA	NA'	NA	NA	<1300	NA	<640	<670	ug/1	<5	
Ethylbenzene	<u></u> UQ/1	<5	<6		ug/kg	NA	NA	NA	NA	720-	NA	1800	2800	UQ/1	<5	<5
Xylene (total)	_ug/1	<5	<ð		ug/kg	NA	NA	NA	NA	1800	NA		6600	ug/l	<5	<5
Pyridine	ug/1	<40	<87		ug/kg	NA	NA	NA	NA	<350	NA	<340	<21000	Ug/1	<40	<40
1,3-Dichlorobenzene	<u>ug/1</u>	<40	<87		ug/kg	NA	NA	NA	NA	<350	NA	<340	<21000		<40	<40
1,4-Dichlorobenzene	<u>ug/1</u>	<40	<87		ug/kg	NA	NA	NA	NA	<350	NA	<340	<21000	ug/	<40	<40
1,2-Dichlorobenzene	ug/l	<40	<87		ug/kg	NA	NA	NA	NA	<350	NA	<340	<21000	ug/1	<40	<40
2-Methylphenol	_ug/1	<40	<87		ug/kg	NA	NA	NA	NA	<350	NA	<340	<21000	ug/1	<40	<40
3-Methylphenol	ug/1	<40	<87		ug/kg	NA	NA	NA	NA	<350	NA	<340	<21000	ug/1	<40	<40
4-Methylphenol	ug/1	<40	<87		ug/kg	NA	NA	NA	NA	<350	NA	<340	<21000	ug/1	<40	<40
Nitrobenzene	0/1	<40	<87		ug/kg	NA	NA	NA	NA	<350	NA	<340	<21000	ug/l	<40	
Silver, total	_mg/1	< .0005	<.0005		mg/l	< 0005	< 0005WN	<.0005WN	<.0005WN	< 0005WN	< 0005WN	<.0005WN	< 0005WN	mg/1	0006W	< 0005
Arsenic, total	_mg/i	< .003	<.003		mg/1	< 003	0 0048	<.003W	0088	006B	DO8B	0058	Q048W	mg/l	<.003	< 003
Barium, total	_mg/1	< 05	<.05		mg/1	075	222	1.81	3 69	1.81	172	1.84	3 12	n	< 05	< .05
Cadmium, total	_mg/1	0010B	0011BW		mg/1	DOOSB	00108	<.0005	DO11BW	0012BW	0007BW	DOOGBWY	00069W	mg/1	< 0005	00068
Chromium, total	mg/l	< .006	<.006		mg/1	00719	< .006	0098	0098	0068	0078	< 006	001	mg/1	<u>0078</u>	< 006
Mercury, total	_mg/1	< 0002	<.0002		mg/1	< 0002	< 0002	< 0002	<.0002	< 0002	< 0002	< 0002	<.0002	mg/1	< 0002	< 0002
Lead, total	_mg/l	<.002B	< 002W		ng/1	OOSEWN	<.002WN	<.002WN	<.002WN	< 002N	<.002NW	< 002WN	< .002WN	ng/1	< 0025	002B8
Selenium total	_mg/1	<.003W	<.003		mg/1	<.003	<.003W	<.003WN	< 003	<.003W	<.003N	<.003N	<.003WN	mg/1	< 003	< 003W

.

.

٠

ĩA

.

.

Core Hole No. Sample Deplin		Blank #14	Blank#15	Blank #16
Sample ID		Trip		
	-internition			
ТРН	mg/l	<4	<1	<1
Methanol	mg/l	<1	<1	<1
Methylene Chloride	ug/	<5	<5	<5
Acetone	ug/	<10	<10	23
Carbon Disulfide	ug/	ۍ	<5	<5
Trichlorofluoromethane	ugA	<5	<5	<5
Ethyl Ether	ug/I	<5	<5	<5
Freon (TF)	ug/	g*	7*	61
2-Butanone	ug/i	<10	<10	150
1,1,1-Trichloroethane	ug/I	<5	<5	<5
Carbon Tetrachloride	ug/	<5	<5	<5
Cyclohexanone	ug/	<5	<5	<5
Ethyl Acetate	ug/	<5	<5	<5
Isobutyl Alcohol	ug/	<200	<200	<200
2-Ethoxyethanol	ug/	<10	<10	<10
n-Butyl Alcohol	ug/	<100	<100	<100
Trichloroethene	ug/i	<5	<5	<5
1,1,2-Trichloroethane	ug/	<5	<5	<5
Benzene	ugA	<5	<5	<5
4 Methyl 2 Pentanone	ug/	<10	<10	<10
Tetrachloroethane	ug/	<5	<5	<5
Toluene	ug/ľ	<5	<5	<5
Chlorobenzene	ug/	<5	<5	<5
Ethylbenzene	ugA	<5	<5	<5
Xylene (total)	ugA	<5	<5	<5
Pyridine	ug/l	<40	<40	<40
1,3-Dichlorobenzene	ug/	<40	<40	<40
1,4-Dichlorobenzene	ug/l	<40	<40	<40
1,2-Dichlorobenzene	ug/	<40	<40	<40
2-Methylphenol	ug/	<40	<40	<40
3-Methylphenol	ugA	<40	<40	<40
4-Methylphenol	ug/	<40	<40	<40
Nitrobenzene	ug/l	<40	<40	<40
Silver, total	mg/l	<.0005N	<.0005	<.0005
Arsenic, total	mg/l	<.003	<.003W	<.003
Barlum, total	mg/l	<.05	<.05	<.05
Cadmlum, total	mg/l	<.0005W	<.0005	<.0005
Chromlum, total	mg/l	<.006	<.006	<.006
Mercury, total	mg/l	<.0002	<.0002	<.0002
Lead, total	mg/	.004SN	<.002WN	<.002N
Selenium, total	mg/l	<.003	<.003N	<.003N

•

.

r

TABLE 1 (CONT)

	1	r	5 Š	1	- 7			-		F - 1	í I.	. 1		ġ		ê î .	100	
1 1		× 4_	·				Rosw	ell, New N	lexico									
Core Hale No.		P9-08-213	P9-08-213	P9-O\$-213	P9-05-213	P9-OS-213	P9-05-213	P9-05-213	19-05-238	19-09-238	P9-09-238	P9-03-238	P9-09-349	P9-05-349	P9-OS-349	19-05-349		19-05-349
Sample Depth		(\$	(10)	(15)	(30/)	(23')	(29'-30')	(31 5-32)	(5)	(10)	(15)	(30)	(\$)	(10)	(201)	(25)		(25) Duplicate
		Soll	Sóll	Soil	Soll	Soll	Rock	501	Soll	Soll	Soll .	Soll	<u>Şoli</u>	<u>Soll</u>	Soil	Soll	1	Soll/Waler
I'PH	oig/kg	<20	<20	< 20	<20	< 20	<20	<20	70	 120	<20] \$0	<20	100	<20	100		
Methanol	nig/1	<5	<5	<5	<5	<5	<1	<5	<20	< 5	< 10	<20	<1	< 5	<1	<10	ug/I	
Methylene Chloride	ug/Lg	9	<6	<7	7	<5	<5	<6	<5	<5	<5	<5	6.	9	<5°	10	ug/l	NA
Acetone	ug/kg	32 *	35.	59*	33*	29•	22*	394	294	22.	[7.	19.	<11	<11	<11	<11	ug/l	NA
Carbon Disulfide	ug/kg	<6	.<6	<5	<6	< 5	<5	<6	< 5	<5	< 5	< 5	<5	<6	<5	<5	ug/l	NA
Frichlorofluoromethane	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/I	NA
Ethyl Ether	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/l	NA
Freon (TP)	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	267	18	454	'n	ug/l	NA
2-Butanone	ug/kg	<12	<12	<10	<13	<10	<10	<12	<10	<10	<10	<10	<11	<11	<11	<11	ug/1	NA
1,1,1-Trichloroethane	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ugA	NA
Carbon Tetrachloride	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/I	NA
Cyclohexanone .	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	< 5	< 5	<6	<5	<5	ug/l	NA
Ethyl Acetate	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/l	NA
Isobutyl Alcohol	ug/kg	<230	<230	<210	<260	<200	< 200	<250	<200	<210	<210	<210	<220	<220	<210	<220	ug/l	NA
2-Ethoxyethanol	ug/kg	<12	<12	<10	<13	<10	< 10	<12	<10	<10	<10	<10	<11	<11	<11	<11	ug/l	NA
a-Butyl Alcohol	ug/kg	<120	<120	<100	<130	<100	<100	<120	<100	<100	< 100	<100	<110	<110	<110	<110	ug/l	NA
Frichloroethene	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/	NA
1,1,2.Trichloroethane	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/l	NA
Benzene	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	<u>ug/1</u>	NA
2 Methyl 4 Pentanone	ug/kg	<12	<12	<10	<13	<10	<10	<12	<10	<10	<10	<10	<11	<11	<11	<11	ug/l	NA
Tetrachloroethane Toluene	ug/kg	<6	<6 <6	<5 <5	<6	<5	<5 <5	<6 <6	<5 <5	<5 <5	<5	<5	<5	<6	<5 <5	<5	ug/1	NA NA
Chlorobenzene	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/1	NA NA
Ethylbenzene	ug/kg ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/i	NA NA
Xylene (total)	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/1	NA
Pyridine	ug/kg	<380	<380	<340	<420	< 340	<330	<410	<340	<3+0	<3+0	<340	<350	< 370	< 350	Not Tested	ug/l	NA
1,3-Dichlorobenzene	ug/kg	< 380	<380	<340	<420	<340	<330	<410	<340	<340	<340	<340	<350	<370	<350	Not Tested	1 2	NA
1,4 Dichlorobenzene	ug/kg	< 380	< 380	<340	<120	<340	<330	<410	<340	<340	<340	<340	<350	<370	<350	Not Tested	-	NA NA
1,2-Dichlorobenzene	ug/kg	<380	<380	<3+0	<420	<340	<330	<410	<340	<340	<340	<3+0	<350	<370	<350	Not Tested		NA NA
2-Methylphenol	ug/kg	<380	<380	<340	<420	<340	<330	<410	<340	<340	< 340	<340	<350	< 370	<350	Not Tested	-	NA
3-Methylphenol	ug/kg	<380	<380	<340	<420	<340	<330	<410	<340	< 3+0	< 340	<340	<350	<370	<350	Not Tested		NA
4-Methylphenol	ug/kg	< 380	< 380	<340	<420	<340	<330	<410	<340	<340	< 340	<340	<350	<370	<350	Not Tested		NA
Nitrobenzene	ug/kg	< 380	< 380	< 340	<420	< 340	<330	<410	<340	< 340	<340	<340	<350	<370	<350	Not Tested		NA
Silver, total	mg∕l	< 0.0006	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006	Not Tested	_	
Arsenic, total	mg/l	0.008	.00718	amo	<.003W	<.003	<.003W	.00418	0048W	<.003	.00318	.003B	.007B	.005B	<.003	Not Tested		and the second design of the s
Barium, total	∎ig/l	1.34	15B	0.22	1 05	1.54	2.03	0.68	1.01	0.39	0.33	<.06	121	0.4	0.77	Not Tested	I mg/I	0.96
Cadmium, total	nıg/l	<.0008BW	<.0006	<.0006	<.0006W	<.0006W	<.0006BW	.0011BW	WEIGOOD.	<.0006	.0009B	< 0006	W46000	<.0006	<.0006	Not Tested		
Chromium, total	mg/l	<.007	<.007	<.007	<.007	<.007	<.007	<.007	0.011	, .007B	0.01	0.01	0 012	0.013	.009B	Not Tester	1 218/	.007B
Mercury, total	aig/l	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	< .0002	Not Tester		
Lead, total	nig/l	<.002W	<.002	<.002W	<.002W	<.002W	0.004	.003B	.003N	.007N	.005N	,005WN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.0115	0.004	Not Tester		
Selenium, total	ung/1	<.003W	< 01W	<.003	<.003W	<.003W	<.01	<.003W	<.003W	<.003₩	<.003₩	< .02	<.003	<.01W	<.003W	Not Testad	i mg/	<.003₩

TABLE 2 PHASE

ROS-3-XLS, 6/17/91, 1 of 2

				4	SUMA	ARY OF O	FF-SITE CC			YTICAL RE	SULTS						I
							Rosw	ell, New M	exico								
Core Hale No.		19-05-349	P9-09-349	P9-OS-349	P9-OS-377	P9-08-377	P9-OS-377	P9-OS-377	P9-05-377	P9-03-377		P9-03-377	Field	Field	Tnp		
Sample Depth		(30)	(35)	(407)	(5)	(10)	(15')	(20)	(25')	(30)		(30')Duplical	Bhank	Blank	Blank		
		Soll	Soll	કુઓ	Sall	Soll	Soil	Soll	Sall	Soll		Soll/Water				 	
ThD				- 20		- 20			- 20							 	
TPH	mg/kg	<20	<20	< 20	200	< 20	<20	< 20	<20	<20	ngA	NA	<1	<1	<1	 	
Methanol	mg/l	<5	<1	<5	<5	<1	<1	<5	<1	<5	ang/l	NA	<1	<1	<1	 	
Methylene Chloride	ug/kg	<7	15	8	<6	<6	11	7	36	23	ug/l	NA	21•	<5	23*	 	
Acetone	ug/kg	<14	<14	<10	34*	27•	27*	374	<12	<13	ug/l	NA	<10	<10	<10	 	
Carbon Disulfide	ug/kg	<7	<1	<5	<6	<6	<6	<7	<6	<7	ug/l	NA NA	<5	<5 \$	<5 <5	 ┼──┨	
Trichlorofluoromethane	ug/kg	<7	<7	<5	<6	<6	<6	<7	<6	<7	ug/l	NA	<5	f		 	
Ethyl Ether	ug/kg	45*	<7	< 5	<6	<6	<6	<7	<6	<7	ug/l	NA	<5	<5	<5	 	
Freon (TF) 2-Butanone	ug/kg	1	39	40	<6	<6	<6	<7	46	69	ug/l	NA	< 5 < 10	<5 <10	<5 <10	 	
1,1,1-Trichloroethane	ug/kg	<14	<14 <7	<10 <5	<11 <6	<12 <6	<12	<13 <7	<12 <6	<13 <7	ug/1	NA NA	<10	<10	<10	 1	
Carbon Tetrachloride	ug/kg	<7	<7	<5	<0	<0	<6 <6	<7	< <u>6</u>	<1	ug/l	NA NA	<5	<5	<5	 	
Cyclohexanone	ug/kg ug/kg	<7	<7	<5	<0	<u><0</u> <6	<0 <6	<1	<0	<7	ug/l ug/l	NA	<5	<5	<5	 1-1	
Ethyl Acetate	ug/kg	<7	<7	<5	<6	<6	<6	<7	<6	<1	ug/i	NA	<5	<5	<5	 	
Isobutyl Alcohol	ug/kg	<290	<270	<200	<220	<240	<240	<270	< 250	<260	ug/l	NA	<200	<200	<200	 	
2-Ethoxyethanol	ug/kg	<14	<14	<10	<11	<12	<12	<13	<12	<13	ug/1	NA	<10	<10	<10	 	
n-Butyl Alcohol	ug/kg	<140	<140	<100	<110	<120	<120	<130	<120	<130	ug/1	NA	<100	<100	<100	 	
Trichloroethene	ug/kg	<1	<1	<5	<6	<6	<6	<1	<6	<7	 ug/l	NA	<5	<5	<5		
1,1,2-Trichloroethane	ug/kg	<7	<1	<5	<6	<6	<6	<1	<6	<1	ug/1	NA	<5	<5	<5		
Benzene	ug/kg	<1	<1	<5	<6	<6	<6	<1	<6	<7	ug/l	NA	<5	<5	<5		
2 Methyl 4 Pentanone	ug/kg	<14	<14	<10	<11	<12	<12	<13	<12	<13	ug/l	NA	<10	<10	<10		
Tetrachloroethane	ug/kg	<7	<1	<5	<6	<6	<6	<1	<6	<7	ug/l	NA	<5	<5	<5		
Toluene	ug/kg	<7	<7	<5	<6	<6	<6	<1	<6	<7	ug/l	NA	<5	<5	<5	 	
Chlorobenzene	ug/kg	<7	<7	<5	<6	<6	<6	<1	<6	<7	ug/l	NA	<5	<5	<5		
Ethylbenzene	ug/kg	<1	<7	<5	<6	<6	<6	<7	<6	<7	ug/l	NA	<5	<5	<5		
Xylene (total)	ug/kg	<1	<7	<5	<6	<6	<6	<1	<6	<1	ug/l	NA	<5	<5	<5	 	
Pyridine	ug/kg	<480	<450	< 390	<370	<400	< 400	<440	<410	Not Tested	ug/1	NA	<10	<10	<10	 1-1	
1,3-Dichlorobenzene	ug/kg	<480	<450	< 390	< 370	<400	<400	<440	<410	Not Tested	ug/l	NA	<10	< 10	<10		
1,4-Dichlorobenzene	ug/kg	<480	<450	< 390	< 370	<400	<400	<440	<410	Not Tested	ug/l	NA	<10	<10	<10		
1,2-Dichlorobenzene	ug/kg	<480	<450	<390	<370	<400	<400	<440	<410	Not Tested	ug/l	NA	<10	<10	< 10		
2-Methylphenol	ug/kg	<480	<450	<390	<370	<400	<400	<440	<410	Not Tested	ug/l	NA	<10	<10	<10	 	
3-Methylphenol	ug/kg	<480	<450	< 390	<370	<400	<400	<440	<410	Not Tested	ug/l	NA	<10	<10	<10	 	
4-Methylphenol	ug/kg	<480	<450	<390	<370	<400	<400	<440	<410	Not Tested	ug/l	NA	<10	<10	<10	 -	
Nitrobenzene	ug/kg	<480	<450	< 390	<370	<400	<400	<440	<410	Not Tested	ug/l	NA	<10	<10	<10	 	
Silver, total	mg/l	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006	<.0006W	<.0006	<.0006	mg/l	<.0006	<.0006	<.0006	<.0006		
Arsenic, total	mg/l	<.003	<.003	0.005B	.0048	0.01	<.003	_003B	.006B	0.011	nıg/l	0.011	<.003	<.003	<.003	 	
Barium, total	mg/l	1.48	1,36	0.23	1.05	.19B	.15B	.16B	.06B	Q 32	nıg/l	0.32	<.06	<.06	<.06	 	
Cadmium, total	mg/l	<.0006	<.0006W	0.0013BW	<.0006W	.0018BW	.00318	.00108	.0009B	<.0006	nıg/l	< 0.0006	<.0006W	<.0006W	<.0006W		
Chromium, total	mg/l	ae00,	0.011	< .007	,009B	.0078	0.011	0.011	<.007	<.007	mg/l	<0.007	<0.007	< 0.007	< 0.007		
Mercury, total	nıg/l	<.0002	<.0002	<.0002	<.0002	< .0002	<.0002	<.0002	<.0002	<.0002	mg/l	<.0002	<.0002	<.0002	<.0002	 	
Lead, total	nıg/l	0 007	0.005	<.002W	0 009	0,004	0.009	.003BW	<.002W	<.002	nıy/l	<.002W	.003B	0038	.002.BW		
Selenium, total	mg/l	<.003W	<.003W	<.003W	<.003W	<.01W	<.003W	<.01W	<.02	<.003	mg/l	<.003	< 003W	<.003	<.003W		

TABLE 2 (CONT)

.

Harding Lawson Associates 1990 Soil Gas Analytical Results

1.13

£ . 18

.

54.2

TABLE 2

1.218

-19**4**/

. 10.18

200**0**

.

(inte

s kat

17,00

- tagge

্যন ক প্ৰমন্ত্ৰ

140

3/68

~284 1844

3.45

19**908** ------

0 2 9**2**

1-1:31

Analysis Results for Soil Gas Samples, ppm v/v

Roswell, New Mexico 2/6/90 - 3/17/90

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCl₄ PPM (V/V)
N-00	2.0	0.02	-	1.46	-	-
N-00	4.0	-	-	0.09	-	-
N-00	9.0	-	-	0.01	-	-
N-00	14.0	0.02	-	0.45	-	-
N-01	2.0	-	-	-	-	-
N-01	4.5	-	-	-	-	-
N-01	9.0	-	-	-	-	-
N-02	2.0	-	-	<0.01	-	-
N-02	4.0	-	-	0.01	-	-
N-02	9 .0	-	-	0.01	-	-
N-02	14.0	-	-	<0.01	-	-
N-03	2.0	-	-	-	-	-
N-03	4.5	-	-	-	-	-
N-03	9.0	-	-	-	-	-
N-04	2.0	-	-	· _	-	-
N-04	5.0	-	-	-	-	-
N-05	4.0	-	-	-	-	-
N-06	2.0	-	-	-	-	-
N-07	1.0	0.02	-	-	-	-
N-07	3.5	0.35	-	<0.01	-	-
N-08	1.0	-	-	<0.01	-	-
N-09	1.0	0.06	-	0.03	-	-
N-09	4.5	0.31	-	0.13	-	-
N-09	6.8	0.40	-	0.20	-	-
N-09	14.0	0.62	-	0.34	-	-
N-10	8.0	-	-	-	-	-
N-11	2.0	-	-	-	-	-
N-11	4.5	<0.01	-	-	-	-
N-11	9.0	<0.01	-	-	-	-
N-12	1.0	<0.01	-	-	-	-
N-12	4.0	0.02	-	<0.01	-	-
N-12	9.5	0.05	-	<0.01	-	-
N-12	14.0	0.07	-	<0.01	-	-
N-13	3.0	0.02	-	-	-	-
N-13	4.5	0.03	-	-	-	-

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM	TCE PPM	PCE PPM	CHCl₃ PPM	CCI₄ PPM
		(\/\)	(V/V)	(\/\)	(V/V)	(V/V)
N-13	28.0	0.15	-	0.17	-	
N-14	2.0	0.11	-	-	-	-
N-14	4.5	0.14	-	-	-	-
N-14	11.0	0.38	-	0.02	-	-
N-14	34.0	0.14	-	0.14	-	-
N-15	2.0	<0.01	-	-	-	-
N-15	4.0	0.01	-	-	-	-
N-15	36.0	0.06	-	0.01	-	-
N-16	2.0	-	-	-	-	-
N-16	4.5	-	-	-	-	-
N-16A	2.0	0.01	-	-	-	-
N-16A	9.0	0.02	-	-	-	-
N-16A	14.0	0.06	-	-	-	-
N-17	1.5	-	-	-	-	-
N-17	4.0	<0.01	-	<0.01	0.01	0.01
N-17	18.0	-	-	<0.01	0.05	0.02
N-18	2.0	-	-	-	-	-
N-18	4.0	-	-	-	-	-
N-18	21.0	-	-	-	-	-
N-19	2.0	0.04	-	-	-	-
N-19	4.5	0.08	-	<0.01	<0.01	-
N-19	9.0	0.21	-	0.01	0.02	-
N-19	13.0	0.52	-	0.04	0.07	-
N-20	2.0	0.04	-	0.03	-	-
N-20	4.0	0.23	-	0.19	<0.01	-
N-22	2.0	0.06	-	0.01	0.22	0.07
N-22	5.0	0.08	-	0.02	0.34	0.10
N-22	28.0	0.16	-	0.22	0.20	0.13
N-23	2.0	-	-	-	-	-
N-23A	4.0	-	-	-	-	-
N-23A	9 .0	-	-	-	-	-
N-24	2.0	-	-	-	-	-
N-24	4.0	-	-	-	-	-
N-25	1.0	0.04	-	-	<0.01	-
N-25 .	4.0	0.07	-	<0.01	0.02	-
N-25	9.0	0.09	-	0.01	0.03	-
N-25	14.0	0.18	-	0.02	0.08	-
N-25	28.0	0.23	-	0.01	0.03	-
N-26	2.0	3.87	0.07	3.65	-	<0.01
N-26	4.0	2.93	0.05	3.65	-	<0.01

Table 2, Page 2

FAHRENTHOLD & Associates, Inc.

agés*

i-s-a

1990

See.

An est

Nº20

latik

1110 1-1-1-1

194.58 1.14

(1987)

19

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCl₄ PPM (V/V)
N-26	28.0	-	-	0.05	-	-
N-27	2.0	0.48	-	0.48	0.01	-
N-27	4.0	1.25	0.02	1.73	0.06	-
N-27	9.0	1.38	0.02	1.98	0.08	-
N-27	28.0	-	-	< 0.01	-	-
N-28	2.0	0.17	-	0.02	-	-
N-28	5.0	0.20	-	0.03	-	-
N-28	29.0	-	-	-	-	-
N-29	2.0	<0.01	-	-	-	-
N-29	4.0	0.02	-	-	-	-
N-29	28.0	-	-	-	-	-
N-30	2.0	0.41	-	0.76	-	-
N-30	4.0	0.41	0.01	0.89	-	-
N-30	23.0	0.44	0.03	1.22	-	-
N-31	2.0	0.19	-	0.27	-	-
N-31	4.0	0.23	-	0.23	-	-
N-32	2.0	-	-	-	-	-
N-32	4.0	-	-	-	•	-
N-32	9.0	<0.01	-	-	-	-
N-33	1.0	<0.01	-	-	-	-
N-33	4.5	0.18	0.38	-	-	-
N-33	9.0	0.07	0.08	-	-	-
N-33	13.0	0.03	0.02	-	-	-
N-33	19.0	0.05	-	-	-	-
N-34	2.0	-	· •	<0.01	-	-
N-34	4.0	-	-	-	-	-
N-34	9.0	-	-	-	-	-
N-34	14.0	<0.01	-	-	-	-
N-34	19.0	<0.01	-	-	-	-
N-35	2.0	-	-	-	-	-
N-35	4.0	-	-	-	-	-
N-35	9.0	-	-	-	-	-
N-36	2.0	0.43	-	0.02	-	-
N-36	4.0	0.35	-	0.02	-	-
N-36	9.0	0.53	-	0.04	-	-
N-36	10.5	0.53	-	0.04	-	-
N-37	2.0	<0.01	-	<0.01	-	-
N-37	4.0	<0.01	-	<0.01	-	-
N-37	15.0	0.03	-	0.06	-	-
N-38	2.0	-	-	0.04	-	-

100 100 100

1918) 1918)

urn. Ged

jiji a

11.14

1,425.00

15:02

nig

. . . .

1.44

144

ind.

arten 1945

-2006 -2006 -2006

-4704M

1210-8

1/2:11

-s vine

. rită

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCl₄ PPM (V/V)
		((), ()	((,,,))		((,,,)	(0/0/
N-38	5.0	-	-	0.06	-	-
N-38	10.0	-	-	0.06	-	-
N-38	14.0	-	-	0.07	-	-
N-38	23.5	<0.01	-	0.07	-	-
N-39	2.0	<0.01	-	0.01	-	-
N-39	4.5	<0.01	-	0.02	-	-
N-39	9.0	0.01	-	0.02	-	-
N-39	14.0	0.01	-	0.02	-	-
N-39	19.0	0.02	-	0.02	-	-
N-40	2.0	0.01	-	<0.01	-	-
N-40	5.0	0.03	-	0.02	-	-
N-40	9.0	0.04	-	0.03	-	-
N-40	14.0	0.07	-	0.04	-	-
N-41	2.0	0.01	-	-	-	-
N-41	9.0	0.11	-	0.01	-	-
N-42	1.5	0.14	-	0.01	-	-
N-42	4.5	0.23	-	0.02	-	-
N-42	9.5	0.28	-	0.02	-	-
N-43	2.0	0.02	-	<0.01	0.01	<0.01
N-43	4.0	0.02	-	<0.01	0.02	<0.01
N-43	9.0	0.03	-	<0.01	0.04	<0.01
N-43	14.0	0.05	-	0.02	0.04	<0.01
N-44	2.0	0.01	-	-	-	-
N-44	4.0	0.02	-	<0.01	-	
N-44	9.0	0.02	-	<0.01	-	-
N-45	2.0	0.05	-	< 0.01	0.01	0.06
N-45	4.0	0.11		0.01	0.03	0.08
N-45	9.0	0.12	-	0.02	0.05	0.16
N-45	14.0	0.20	-	0.03	0.05	0.17
N-46	2.0	0.13	-	-	-	-
N-46	4.0	0.21	-	-	-	-
N-46	9.0	0.30	-	-	-	-
N-47	2.0	-	-	-	<0.01	<0.01
N-47	4.0	-	-	-	<0.01	<0.01
N-47	9.0	-	-	-	0.03	0.01
N-47	29.0	-	-	-	0.02	<0.01
N-48	1.0	-	-	-	-	-
N-48	4.0	-	-	-	-	<0.01
N-48	9.0	-	-	-	<0.01	<0.01
N-48	28.5	-	-	-	< 0.01	<0.01

- 14 • • e soger 🛥 (en)**H** 1.095 ,78 428 والإسعاد er vili -ucone i ta an nia -\$1eq**6**# 1460 Acet

કરન

anta Sitat

44

1.20

-

ાંતાનાં

17.28

1. Martin

,e.169

ामक ामक जन्म

.......

- (1204) - - - - -- - - - - - - -

 $(x_i)_{i \in \mathcal{U}}$

Table 2, Page 4

•

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCI₄ PPM (V/V)
N-49	2.0	0.05	-	0.18	_	-
N-49	4.0	0.05	-	0.21	-	-
N-49	9.0	0.06	-	0.24	-	-
N-49	14.0	0.08	-	0.29	-	-
N-50	2.0	0.03	-	<0.01	-	-
N-50	4.0	0.04	-	<0.01	-	-
N-50	9.0	0.05	-	<0.01	-	-
N-50	14.0	0.10	-	0.02	-	-
N-51	1.5	-	-	-	-	-
N-51	4.0	<0.01	-	<0.01	-	-
N-51	8.0	<0.01	-	<0.01	-	-
N-52	2.0	-	-	-	-	-
N-52	5.0	-	-	-	-	-
N-52	9.0	-	-	-	-	-
N-53	2.0	-	-	<0.01	-	-
N-53	5.0	<0.01	-	<0.01	-	-
N-53	9.0	<0.01	-	<0.01	-	-
N-53	26.0	-	-	-	-	-
N-54	1.0	-	-	-	-	-
N-54	4.0	<0.01	-	-	-	-
N-54	9.0	0.01	-	-	-	-
N-55	2.0	-	-	-	-	-
N-55	4.0	-	-	-	-	-
N-55	9.0	-	-	-	-	-
N-55	18.5	-	-	-	-	-
N-56	1.0	-	-	-	-	-
N-56	5.0	-	-	-	-	-
N-56	9.0	-	-	-	-	-
N-56	18.5	-	-	-	-	-
N-56	24.5	0.03	-	0.02	-	-
N-57	2.0	0.02	-	0.01	-	-
N-57	4.5	0.02	-	0.01	-	-
N-57	9.5	0.04	-	0.02	-	-
N-57 N-58	26.0	0.41	-	0.04	-	-
N-58 N-58	1.0 4.0	0.03 0.08	-	-	-	-
N-58 N-58			PC	PC	PC	PC
N-58 N-58	9.0 14.0	PC PC	PC	PC	PC PC	PC PC
N-58	26.5	0.12	10	FC		<0.01
N-58 N-59	26.5	0.12			<0.01	NO.01
14-09	2.0					

PC = Probe Clogged

Table 2, Page 5

1.182

9998 2019

--- ⁰⁰⁹⁸⁸

0-0196 498**9**0

uina com

્ર<u>ભ</u>ેલ્લ . નાસ

or and a

-Antonia Antonia

-176-06 -176-06

2.0495

<u></u>interio

2-15 Hist

oire Side

1948 1948

-120

-iem siete

補護

- 1999 - 1999

state - ficett

> - 1628 - 1628 - 1628 - 16

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCI₄ PPM (V/V)
N-59	4.0	-	-	-	0.02	<0.01
N-59	9.0	-	-	-	0.02	<0.01
N-60	2.0	-	-	-	<0.01	<0.01
N-60	4.0	-	-	-	0.02	<0.01
N-60	9.0	-	-	-	0.04	<0.01
N-60	31.0	0.06	-	-	<0.01	<0.01
N-61	2.0	0.04	-	0.02	-	-
N-61	4.0	0.02	-	0.02	-	-
N-61	9.0	0.06	-	0.05	-	-
N-61	14.0	0.08	-	0.09	-	-
N-61	26.0	0.68	-	0.18	-	-
N-62	2.0	-	-	<0.01	-	-
N-62	4.0	-	-	<0.01	-	-
N-62	9.0	<0.01	-	0.02	-	-
N-62	14.0	<0.01	-	0.03	-	-
N-63	2.,0	<0.01	-	<0.01	-	-
N-63	4.0	<0.01	-	<0.01	-	-
N-63	9.0	0.02	-	0.01	-	-
N-63	27.0	0.09	-	0.03	-	-
N-64	1.0	<0.01	-	. -	-	-
N-64	4.0	0.02	-	<0.01	-	-
N-64	9.0	0.03	-	0.01	-	-
N-64	14.0	0.04	-	0.02	-	-
N-65	1.0	<0.01	-	<0.01	-	-
N-65	4.0	0.04	-	0.03	-	-
N-65	8.0	0.05	-	0.04	-	-
N-65	1 9 .0	0.12	-	0.10	-	-
N-65	35.0	0.10	-	0.13	-	-
N-66*	2.0	-	-	0.06	-	-
N-66*	5.0	<0.01	-	0.13	-	-
N-66*	10.0	0.02	-	0.23	-	-
N-66*	15.0	0.03	-	0.21	0.03	-
N-66*	20.0	0.17	-	0.85	0.03	-
N-67*	1.0	-	-	-	-	-
N-67*	5.0	SD	SD	SD	SD	SD
N-67	10.0	-	- ·	0.01	-	-
N-67	25.0	0.03	-	0.05	-	-
N-68	2.0	0.05	-	0.01	-	-
N-68	5.0	0.06	· -	0.01	-	-
N-68	9.0	0.07	-	0.02	-	-

SD = Sample Destroyed

* Analyzed on 3400 GC

Table 2, Page 6

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCl₄ PPM (V/V)
N-68	25.5	-	-	-	-	-
N-69	2.0	-	-	-	-	-
N-69	4.0	-	-	0.01	-	-
N-69	9.0	-	-	0.02	-	-
N-69	14.0	-	-	0.03	-	-
N-69	30.0	0.01	-	0.07	-	_
N-70	2.0	0.02	-	0.05	-	-
N-70	5.0	0.02	-	0.06	-	-
N-70	21.0	-	-	-	-	-
N-71	2.0	<0.01	-	-	-	-
N-71	4.0	0.02	-	<0.01	-	-
N-71	9.0	0.04	-	0.01	-	-
N-71	21.0	0.07	-	0.02	-	-
N-72	2.0	<0.01	-	-	-	-
N-72	4.0	<0.01	-	-	-	-
N-72	9.0	0.05	-	0.01	-	-
N-72	14.0	0.05	0.03	0.02	-	-
N-72	2 5.0	0.05	0.04	0.02	-	-
N-73	2.0	-	-	<0.01	-	-
N-73	5.0	0.01	-	0.02	-	-
N-73	9.0	0.02	-	0.02	-	-
N-73	2 5.0	0.06	-	0.04	-	-
N-74	2.0	-	-	0.01	-	-
N-74	4.0	-	-	0.03	-	-
N-74	9.0	<0.01	-	0.06	-	-
N-74	14.0	0.01	-	0.08	-	-
N-74	29.0	0.03	-	0.07	-	-
N-75	2.0	-	-	-	-	-
N-75	4.0	-	-	-	-	-
N-75	9.0	-	-	-	-	-
N-75	24.0	-	-	-	-	-
N-76	1.5	-	-	-	-	-
N-76	5.0	-	-	-	-	-
N-76	9.0	-	-	-	-	-
N-76	24.5	-	-	-	-	-
N-78	2.0	-	-	-	-	-
N-78	4.0	-	-	-	-	-
N-78	9.0	-	-	-	-	-
N-78	14.0	-	-	-	-	-
N-80	2.0	-	•	-	-	-

* Analyzed on 3400 GC

-2948

1948t

0.09

with Second

ingi dagi

- 1000

-

isin**a**

ener.

~198

. é . c . a

South

-149

10.909

creta

5000 大田

. inter

14.20

- Videold

-1.1755R

i dista Asta

Ce:08

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCI₄ PPM (V/V)
N-80	5.0	-	-	-		-
N-80	10.0	-	-	-	-	-
N-80	15.0	-	-	-	-	_
N-80	28.0	-	-	-	-	_
N-81	2.0	-	-	-	-	_
N-81	5.0	-	-	-	-	_
N-81	10.0	-	-	-	-	_
N-81	15.0	-	-	<0.01	-	-
N-81	20.0	-	-	0.01	-	-
N-81	32.0	-	- ·	< 0.01	-	-
N-82	1.0	0.02	-	0.02	-	-
N-82	4.5	0.09	-	0.09	-	-
N-82	9.0	0.18	-	0.15	-	-
N-83	2.0	0.10	-	0.07	-	-
N-83	5.0	0.21	-	0.14	-	-
N-83	9.0	0.51	-	0.33	-	· _
N-83	14.0	0.33	-	0.20	-	-
N-83	37.0	1.02	-	0.89	-	-
N-84*	2.0	0.11	-	0.04	-	- 1
N-84*	5.0	0.76	-	0.26	. -	-
N-84*	10.0	0.53	-	0.12	-	-
N-84*	15.0	4.19	-	1.76	-	-
N-84*	31.0	NS	NS	NS	NS	NS
N-85	1.0	0.21	-	0.07	-	-
N-85	4.0	1.61	-	0.39	-	-
N-85	9.0	1.75	-	0.59	-	-
N-85	14.0	1.99	-	0.83	-	-
N-85	30.0	3.71	0.06	2.14	-	
N-86	1.0	0.08	-	0.06	-	-
N-86	4.0	1.50	-	0.90	-	-
N-86	8.0	4.09	-	2.32	-	-
N-86	20.0	15.61	0.58	12.19	-	-
N-86	39.5	-	-	0.01	-	-
N-87*	2.0	0.22	-	0.02	-	-
N-87* .	5.0	1.95	-	0.13	-	-
N-87*	10.0	4.27	0.02	0.37	-	-
N-87*	15.0	7.29	0.05	0.92	-	-
N-87*	28.0	11.51	0.06	1.78	-	-
N-89*	2.0	0.12	-	< 0.01	-	-
N-89*	5.0	0.56	-	0.04	-	-
NS = No Sample						L]

NS = No Sample

ent tait

10.4

in and in the international sto international international international internationa

7 98 1908

sing

.રુપ્સં

wy ż

28.1

5-2-98 (3-634

51116

-848

4.94强

12-5

:Stat

ંજાન

110.0

* Analyzed on 3400 GC

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCI₄ PPM (V/V)
N-89*	10.0	1.06		0.09	-	-
N-89*	15.0	NS	NS	NS	NS	NS
N-89*	20.0	1.31	-	0.18	-	-
N-90*	2.0	6.18	-	-	-	-
N-90*	5.0	6.87	-	-	-	-
N-90*	10.0	13.73	-	0.02	-	-
N-90*	15.0	33.89	-	-	-	-
N-90*	27.0	30.77	-	-	-	-
N-91*	2.0	58.85	-	<0.01	-	-
N-91*	5.0	124.61	-	-	-	-
N-91*	10.0	175.18	-	-	-	-
N-91*	19.0	224.46	-	0.05	-	-
N-91*	28.0	371.86	-	0.29	-	-
N-92*	2.0	NS	NS	NS	NS	NS
N-92*	5.0	32.27	-	<0.01	-	-
N-92*	10.0	182.28	-	-	-	-
N-92*	15.0	177.95	-	-	-	-
N-92*	27.0	NS	NS	NS	NS	NS
N-93*	2.0	12.57	-	-	-	-
N-93*	5.0	99.53	-	-	-	-
N-93*	10.0	101.71	-	-	-	-
N-93*	15.0	160.50	-	-	-	-
N-93*	18.0	NS	NS	NS	NS	NS
N-94*	2.0	1.52	-	-	-	-
N-94*	5.0	5.34	-	-	-	-
N-94*	20.0	-	-	-	-	-
N-95*	2.0	0.72	-	-	-	-
N-95*	5.0	1.04	-	-	-	-
N-95*	10.0	2.63	-	-	-	-
N-95*	15.0	3.29	-	-	-	-
N-95*	18.0	10.34	-	<0.01	-	-
N-96*	2.0	5.70	-	-	-	-
N-96*	5.0	14.71	-	-	-	-
N-96*	10.0	20.08	-	-	-	-
N-96*	15.0	21.82	-	-	-	-
N-96*	18.0	-	-	-	-	-
N-97*	2.0	7.49	-	-	-	-
N-97*	5.0	11.62	-	-	-	-
N-97*	10.0	98.10	-	-	-	-
N-97*	15.0	150.50	-	-	-	-

NS = No Sample

- 194

-2473 -

3.40

 $\delta_{\rm eff}$

43; 303 Vēn 158

ाः ह भूषाः

ा रू.स. जहार्ष

-editory 10 859

.+4:0

- 348

itira 1846

20.05

-394

10.43

3994

3699

6988

-ti-se

410/8

· · •

 * Analyzed on 3400 GC

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl₃ PPM (V/V)	CCl₄ PPM (V/V)
N-97*	20.0	158.23	-	-	-	-
N-98	2.0	32.49	-	-	-	_
N-98	4.0	18.67	-	-	-	-
N-98	9.0	31.06	-	-	-	-
N-98	14.0	1.52	-	-	-	-
N-98*	26.5	150.79	-	-	-	_
N-99	1.0	2.99	-	-	-	-
N-99*	5.0	12.94	-	-	-	-
N-99	10.0	0.60	-	0.03	-	
N-99	14.0	0.47	-	0.03	-	-
N-99*	25.0	11.38	-	0.03	-	-
N-99*	35.0	19.00	-	0.07	-	-
N-100	2.0	12.93	-	0.02	-	-
N-100	5.0	18.34	-	0.03	-	-
N-100	9.0	SD	SD	SD	SD	SD
N-100	14.0	21.51	_	0.13	-	_
N-100	35.0	0.17	-	-	-	-
N-101	1.0	0.24	-	0.03	-	-
N-101	4.0	0.23	-	0.04	_	-
N-101	9.0	1.00	-	0.09	-	-
N-101	14.0	1.17	-	0.14	_	-
N-101	25.0	5.09	-	0.45	<0.01	-
N-102*	2.0	0.05	-	-	-	-
N-102*	5.0	0.50	-	-	-	-
N-102*	10.0	0.06	-	-	-	-
N-102*	15.0	0.49	-	-	-	-
N-102*	20.0	3.30	-	0.03	-	-
N-103*	2.0	0.13	-	-	-	-
N-103*	5.0	0.81	-	-	-	-
N-103*	10.0	1.26	-	-	-	-
N-103*	15.0	4.17	-	-	-	-
N-103*	20.0	5.07	-	-	-	-
N-105*	1.0	<0.01	-	-	-	-
N-105*	5.0	0.19	-	0.01	-	-
N-105*	10.0	0.11	-	<0.01	-	-
N-105*	15.0	0.79	-	0.03	-	-
N-105*	20.0	0.93	-	0.02	-	-
N-105*	35.0	1.13	-	0.10	-	-
N-106	2.0	0.23	-	0.08	-	-
N-106	4.5	0.60	-	0.15	-	-

SD = Sample Destroyed

* Analyzed on 3400 GC

Table 2, Page 10

- ~* . 2996

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCl₄ PPM (V/V)
N-106	9.0	.91	-	0.21	-	-
N-106	14.0	1.51	-	0.37	-	-
N-107	1.0	1.81	-	0.25	-	-
N-107	4.0	2.15	-	0.29	-	-
N-107	9.0	5.55	-	0.61	-	-
N-107	27.0	21.32	-	-	-	-
N-108	1.0	0.06	-	0.09	-	-
N-108	4.0	0.36	-	-	-	-
N-108	9.0	0.65	-	0.63	-	-
N-108	14.0	1.27	-	0.86	-	-
N-108	30.0	3.80	-	2.08	-	-
N-109	1.0	0.11	-	0.05	-	-
N-109	4.0	0.05	-	0.02	-	-
N-109	9.0	1.21	-	0.35	-	-
N-109	14.0	2.71	0.47	1.10	-	-
N-111	2.0	-	-	-	-	-
N-111	4.5	0.11	-	0.04	-	-
N-111	9.0	0.08	-	0.03	-	-
N-111	14.0	0.21	-	0.08	-	-
N-111	31.5	0.28	-	0.13	-	-
N-112	2.0	0.06	-	0.02	-	-
N-112	4.0	0.20	-	0.10	-	-
N-112	9.0	0.40	-	0.19	- .	-
N-112	14.0	0.52	-	0.24	-	-
N-114	1.5	0.03	-	0.02	-	-
N-114	4.5	0.13	-	0.09	-	-
N-114	9.0	0.28	-	0.17	-	-
N-114	14.0	0.49	-	0.31	-	-
N-114	34.0	0.25	-	0.19	-	-
N-115*	2.0	-	-	-	-	-
N-115*	5.0	0.04	-	0.02	-	-
N-115*	15.0	0.02	-	0.04	-	-
N-115*	33.0	0.05	-	0.10	-	-
N-116*	2.0	-	-	0.02	-	-
N-116*	5.0	-	-	0.03	-	-
N-116*	10.0	0.06	-	-	-	-
N-116*	15.0	0.01	-	0.05	-	-
N-116*	3 5.0	NS	NS	NS	NS	NS
N-117	1.0	0.23	-	-	-	-
N-117	4.5	0.01	-	-	-	-

* Analyzed on 3400 GC

. - A

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCl₄ PPM (V/V)
N-117	9.0	1.66	-	-	-	-
N-117	31.0	3.64	-	0.03	-	-
N-118	2.0	-	-	•	-	-
N-118	4.0	-	-	-	-	-
N-118	9.0	-	-	-	-	-
N-118	14.0	0.06	-	-	-	-
N-120	1.0	-	-	-	-	-
N-120	4.0	-	-	-	-	-
N-120	9.0	-	-	-	-	-
N-120	14.0	-	-	-	-	-
N-121*	2.0	-	-	-	-	-
N-121*	5.0	-	-	-	-	-
N-121*	10.0	-	-	-	-	-
N-121*	15.0	-	-	-	-	-
N-122*	1.0	-	-	-	-	-
N-122*	5.0	-	-	-	-	-
N-122*	10.0	-	-	-	-	-
N-123	2.0	-	-	-	-	-
N-123	4.5	-	-	-	-	-
N-123	9.0	-	-	-	-	-
N-123	14.0	-	-	-	-	-
N-124*	1.0	1.32	-	-	-	-
N-124*	5.0	5.23	-	-	-	-
N-124*	10.0	8.91	-	-	-	-
N-124*	15.0	17.52	-	-	-	-
N-124*	30.0	19.64	-	-	-	-
N-126	2.0	0.05	-	-	-	-
N-126	5.0	0.25	-	-	-	-
N-126	9.0	1.70	-	-	-	-
N-126	14.0	2.50	-	-	-	-
N-126	20.0	3.08	-	-	-	-
N-126	29.0	1.07	-	-	-	-
N-127	2.0	-	-	-	-	-
N-127	5.0	-	-	-	-	-
N-127	9.0	-	-	-	-	-
N-127	14.0	-	-	-	-	-
N-127	28.0	-	-	-	-	-
N-129*	1.0	0.61	-	-	-	-
N-129*	5.0	0.08	-	-	-	-
N-129*	10.0	0.48	-	-	-	-

* Analyzed on 3400 GC

Table 2, Page 12

. Harde

 $\gamma_{k^{\prime},k^{\prime}_{i}}$

فيحتو

Sec.

tiyadi 1 ng

> . Geogra

.....

448

./ār

-1/3

17.72%

,...e

 $i_{1,\mathcal{H}}$

SAMPLE ID	DEPTH (FT.)	1,1,1-TCA PPM (V/V)	TCE PPM (V/V)	PCE PPM (V/V)	CHCl ₃ PPM (V/V)	CCI₄ PPM (V/V)
N-129*	15.0	0.77	-	0.99	-	-
N-130*	1.0	0.07	-	0.03	-	-
N-130*	5.0	0.63	-	0.23	-	-
N-130*	10.0	0.97	-	0.34	-	-
N-130*	15.0	2.56	-	0.77	-	-
N-131	2.0	0.10	-	0.05	-	-
N-131	4.0	0.34	-	0.17	-	-
N-131	9.0	0.06	-	0.04	-	-
N-131	14.0	0.73	-	0.45	0.08	-

.

* Analyzed on 3400 GC

. Antonio

11.16

.

10784

1998

-588

-131N

1010

398

-

1992

- 49

lister.

diam

فنعر

使来

1 MA

1111日本

, v 1:00

5000

Table 2, Page 13

Off-Site

Roswell, New Mexico 4-4-90 to 5-1-90

SAMPLE ID	DEPTH (FT.)	TCA PPM	TCE PPM	PCE PPM
SG9-200	2	0	0	0
	5	<.01	0	0
	10	0	0	0
SG9-203	2	0	0	0
	5	<.01	0	0
	10	0	0	0
	15	0	0	0
SG9-211	2 5	<.01	0	0
	-	<.01	0	0
	10	0.02	0	<.01
	14.5	<.01	0	<.01
000.010	25.5	0	0	0
SG9-213	2 5	0	0	0
	5 9.5	0.11 0.10	0 0	<.01
	9.5 25.5	0.10	0	<.01
SG9-214	23.5	<.01	0 0	0 0
505-214	5	<.01	0	0
	9.5	0.02	0	<.01
	14	0.02	0	<.01
	19	0.04	0	<.01
	29	0.00	0	0
SG9-222	2	0	0	0
	5	<.01	0	0
	10	0.01	0	<.01
	14.5	0.02	0	<.01
	19.5	0.05	Ő	<.01
	30	0.11	0	<.01
	35	0	ŏ	0

Table 2, Page 14

in NR

- evite Sector

> sinini Va

(SESN

-1285

1997

100

18864

15 APR

Nie

. state

jajih

625

. Then

. 648

lines

2.4MR

-isei

1946

11000

SAMPLE ID	DEPTH (FT.)	TCA PPM	TCE PPM	PCE PPM
SG9-223	2	<.01	0	<.01
	5	0	0	0
	10	<.01	0	<.01
	15	0.02	0	<.01
	26	0.02	0	<.01
SG9-225	2	0	0	0
	5	<.01	0	<.01
	10	0	0	<.01
	14.5	0	0	<.01
	24	<.01	0	<.01
SG9-231	2	<.01	0	<.01
	4.5	<.01	0	<.01
	9.5	<.01	0	0
	14.5	<.01	0	<.01
	19.5	<.01	<.01	<.01
SG9-234	2	0	0	0
	5	0	0	0
	10	0	0	0
	15	0	0	0
	20	0	0	0
SG9-235	1	0	0	0
	4	0	0	0
	9	0	0	0
	14	0	0	0
	26	0	0	0
SG9-236	2	0	0	0
	10	0	0	0
	15	0	0	0
	20	0	0	0
	25	NS	NS	NS
SG9-237	1	0	0	0
	4.5	0	0	0
	9	0	0	0
	14	0	0	0
SG9-238	1	0	0	0
	4.5	0	0	<.01
	9	0	0	0
	14	0	0	0
	19.5	0	0	<.01

1.5

主体

*3

-3296 117878

na i

ari

54.06

《秋陽

ेल्ल जन्म

-

1.448

294 2014

(4)42 . .

(i) gé

NR

- 1200

.n. -

) king

. Nava

i kad

SAMPLE ID	DEPTH (FT.)	TCA PPM	TCE PPM	PCE PPM
SG9-239	2 5	<.01 <.01	0 0	<.01 0
	9.5	0	0	0
	14	0	0	0
SG9-244	2	0	0	0
	4.5	0	0	0
SG9-245	9 2	<.01	. 0 0	<.01 0
569-245	5	0	0	0
	10	0	0	0
	25	0	0	0
SG9-301	1	<.01	0.01	<.01
	5	0.12	0	0.05
	10	0.14	0	0.05
	15	0.17	0	0.06
	20	0.17	0	0.06
	25	0.27	0	0.09
000.000	30	<.01	<.01	<.01
SG9-303	2 5	0 0	0 0	0 0
	15	0	0	0
	20	0	0	0
	30	0	0 0	0
	35	0	0	0
	40	0	0	0.01
SG9-308	2	0	0	0
	5	0	0	0
	10	0	0	0
	15	0	0	0
000.000	20	NS	NS	NS
SG9-309	2 5	0	0	0
	5 10	0 0	0 0	0 0
SG9-310	2	<.01	0	<.01
	5	0.19	0	0.10
	10	0.18	0.08	0
SG9-312	1	0.12	0	0.03
	5	0.43	0	0.17
	10	0.85	0	0.19

FAHRENTHOLD &

;२७५४ २००६ दिहेल्स

> -1994 2899

-ter di

1.00

1.00

. Note

સાઇ

inte size

199

2.362

with

40

1.2943

- b tip get mite

SAMPLE ID	DEPTH	TCA	TCE	PCE
	(FT.)	PPM	PPM	PPM
SG9-314	2	0	0	<.01
	5	<.01	0	<.01
	10	<.01	0	<.01
	20	0.16	0	0.06
SG9-316	25	NS	NS	NS
	2	0.08	0	0.03
	4	0.30	0	0.09
	9	0.43	0	0.10
SG9-317	2 4 10 15	0 0 <.01 0	0 0 0	0 0 <.01 <.01
SG9-320	20 2 5 10 15	<.01 0.33 1.37 2.2 NS	0 0 0 NS	<.01 0.07 0.33 0.47 NS
SG9-322	2	0.01	0	0.010.01
	5	0.01	0	0.01
	9	0.02	0	<.01
	14.5	0.02	0	<.01
SG9-324	26 1 5 19 30	0 0 1.3 3.1 3.0	0 0 <.01 <.01	0 0.31 0.92 1.0 0
SG9-325	2 5 10 20	0 0 0 0	0 0 0 0 0 0	0 0 0 0
SG9-326	2 5 10 15	0 0 0 0		0 0 0 0
SG9-328	20	0	0	0
	1	0.14	0	0.02
	4	1.14	0	0.18
	9	2.5	0.01	0.4
	14	2.0	0.01	0.35

PAHRENTHOLD & ASSOCIATES, INC.

4.95

(stime

arine Societ

e anti

.494

1.048

-19**11**9

ात्म (१९७४

2.9**9**

- 68 - 68

-1-1

168

100

5.08**4**

SAMPLE ID	DEPTH (FT.)	TCA PPM	TCE PPM	PCE PPM
SG9-330	· 1	0.13	0	0.05
	4	0.74	0	0.24
	15	2.0	0	0.65
	20	2.8	<.01	0.97
	40	1.6	0	0.47
SG9-331	1	0.11	0	0.02
	5	3.7	<.01	0.48
	9	4.82	<.01	0.90
	14	5.93	<.01	1.08
	25	NS	NS	NS
SG9-332	2	0.27	0	0.04
	4	0.50	0	0.09
	9.5	0.82	0	0.09
	14	1.51	0	0.19
	20	5.2	0	1.02
	40	NS	NS	NS
SG9-333	1.5	0.01	<.01	<.01
	5	0.09	<.01	<.01
	9	0.19	0	0.01
	14	0.22	0	0.01
000.001	24	NS	NS	NS
SG9-334	2	<.01	0	0
	5	· 0	0	0.
	9	0	0	0
000.007	14.5	NS	NS	NS
SG9-337	2	0.10	0	<.01
	5 15	1.24	0	0.06
	· •	3.25	0	0.15
	25	6.92	0	0.39
600.000	30	7.65	0 *	0.43
SG9-338	2 5	0	0	0
		0.13	0	<.01
	10 15	0.50	-	<.01
800 220	15	NS	NS	NS
SG9-339	2 5	0.26	0	0.02
	10	0.98	0	0.07
	20	3.02 9.95	0	0.14 0.38
		9.95	U	0.30

1.49

«Бф

110

SAMPLE ID	DEPTH	TCA	TCE	PCE
	(FT.)	PPM	PPM	PPM
SG9-340	2 5 10 20	0.13 0.44 0.71 3.93	0 0 0	<.01 0.02 0.03 0.12
SG9-341	30	NS	NS	NS
	2	0	0	0
	5	0	0	0
	9	0	0	0
SG9-342	15 2 5 9 14	NS 0 <.01 <.01	NS 0 0 0 0	NS <.01 <.01 <.01 <.01
SG9-344	2	0	0	0
	4	0	0	0
	24.5	0	0	0.02
SG9-345	1 5 9 19	0 0.10 0.15 1.3		0 <.01 0.01 0.02
SG9-346	35 2 5 10	0 0.11 0.73 1.31	0 0 0 0	0.02 0.03 <.01 0 <.01
SG9-347	25	1.74	0	<.01
	2	5.8	<.01	0
	5.5	65.2	0	0.01
SG9-348	9.5	29.1	0	0
	2	4.13	0	0
	5	18.4	0.03	0.01
	10	102.4	0.21	0.09
SG9-349	25	99.4	0.30	0.12
	2	34.12	0	0
	5	142.0	0	0
	10	226.8	0	0
	15	2212.0	0.77	0.26
SG9-351	20	2053.0	0.54	0.45
	5	9.08	0	0.02
	10	8.23	0	0.02
	20	6.63	0	0.02
	30	NS	NS	NS

с отл**ай** "<u>ў</u> ўх**ала** . . . с тап,

البواد :

-5-04

-1:4B

: કાંશ્વે

1278

10.00

- 290**0**

- 150**0** - 155**0**

- song

24.0

100

44.98

3394

219 240

- Control

SAMPLE ID	DEPTH (FT.)	TCA PPM	TCE PPM	PCE PPM
SG9-352	2 5	<.01 0.02	0 0	<.01 <.01
	10	0.02	0	<.01
SG9-353	2	<.01	<.01	<.01
	5	<.01	0	<.01
	10	0.02	<.01	0.02
000.054	15	0.01	0	0.01
SG9-354	2 5	0 0	0 0	0 0
	5 15	0	0	0
	20	0	0	0.
SG9-355	2	0.08	0	0
	5	0.03	0	0
	10	0.04	0	<.01
	35	0.01	0	0.02
SG9-357	2	0.06	0	0
	5	0.45	0	0
	10	0.71	0	0 0
SG9-359	15 2	1.43 5.5	<.01	0 <.01
563-553	4	7.6	<.01	<.01
	9	11.3	<.01	<.01
	15	10.26	<.01	<.01
	19.5	80.45	<.01	<.01
	24	81.31	<.01	<.01
	35	86.56	<.01	<.01
SG9-360	2	2.99	0	<.01
	5	53.24	0.03	0.04
	15 20	73.22 83.46	0.08 0.11	0.10 0.18
	25	85.12	0.12	0.18
	30	NS	NS	NS
	35	86.41	0.12	0.27
SG9-361	5	33.21	0	0.01
	15	46.99	0	0.08
SG9-362	2	<.01	0	<.01
	5	<.01	0	<.01
	10	0	0	0

v eltik

1:38

-24**84** -25**8**8

ina Sector

siedi

wint

i vežd

્રે જ શ્ર

-299 -299

ieni

Q443

(alua)

5张帝

14

. 1-9

1.29

сê

. Nasil

FAHRENTHOLD &

SAMPLE ID	DEPTH	TCA	TCE	PCE
	(FT.)	PPM	PPM	PPM
SG9-363	2	<.01	0	<.01
	5	<.01	0	<.01
	10	0	0	<.01
	15	0	0	<.01
SG9-364	15 2 5 10	0 0 NS	0 0 NS	0 0 NS
SG9-366	2	0	0	0
	5	0	0	0
	15	0	0	0
	20	0	0	0
SG9-368	2	0.48	0.01	<.01
	4	4.10	<.01	<.01
	9	7.5	0.03	<.01
	14	36.4	0.27	0.03
SG9-369	19	0.74	0.20	0.03
	2	0.41	0	0
	5	4.56	0	0.10
	10	31.90	0	0.20
	20	<.01	0	0
SG9-370	2 5 10 15 20	0.20 0.15 2.16 2.16 0.48		0 <.01 <.01 <.01 0
SG9-371	2 5 10 15	<.01 0 <.01 <.01	<.01 <.01 <.01 <.01	<.01 <.01 <.01 <.01 <.01
SG9-372	2	<.01	0	<.01
	5	<.01	0	<.01
	10	<.01	0	<.01
SG9-373	2	0	0	0
	5	0	0	0
	10	0	0	0
	30	0	0	0

কলগই

anta Anta

~data

~~ø

100

-03**67**

->===

:4.94**4** :3**46**7

 $\frac{1}{2}$

1646

100

1018

. (1274)

121.04

SAMPLE ID	DEPTH (FT.)	TCA PPM	TCE PPM	PCE PPM
SG9-374	2	0.32	0	o
	4	1.0	0	0
	9	2.4	0	<.01
	20	2.0	0	<.01
SG9-375	2	0.11	0	<.01
	5	0.34	0	<.01
	10	0.43	0.04	0
	30	0.98	0	<.01
SG9-376	2	<.01	<.01	<.01
	5	<.01	<.01	<.01
	10	0	0	0
	15	0	0	0
SG9-377	2	<.01	0	<.01
	5	0	0	<.01
	9	<.01	0	<.01
SG9-381	2	0.09	0	0
	5	0	0	0
	10	<.01	0	0
SG9-382	2	0	0	0.01
	5	0	0	0
	10	0	0	0
SG9-383	2	0	0	0
	5	0	0	0
	10	0	0	0
	14	0	0	0
	19.5	0.01	0	<.01
SG9-387	2	0	0	0
	5	<.01	0	0
	10	0	0	0

÷e≇

ราสพิ

iong Noted L Conteg

্জ্ঞ

20

eres Sala

5 mg

49 10

999 200

12-38

;v.ə

1,028

ana ana En

2.49

s÷rak

Harding Lawson Associates 1991 Soil Analytical Results

yrda.i

1440-0

5. *****- 75

 $\phi_{ijk}\phi_{j}$

 $\lim_{n\to\infty} a_n$

41.0

-5.6

~ • 45-0

1019 1218

'eàna

113.68

iteen Vision

.30 ए संरक्ष

52%

1 15:00

TABLE 2

•

PHASE 2

[]						SUMMARY OF	ON SITE CO	RE SAMPLE	ANALYTICAL	RESULTS	· · · · · · · · · · · · · · · · · · ·					
								Roewell, No		1						
Core Hole Nour I	ATA US:	1046B9 14.8%	682 589-12 X	ENTER STREET	12.00000000	2 30002 4 FOL 12	20140VATC	UIS89-244	WSB9-21	6 8B9-214	** (SB9-2144	5-5713 SP (8)	15 march ors	CLASS PALASING	1992 MAR 182844	
Sample Depth Mi His of	ALAR	3.65769	211 (4'-17 ST	(Section) and for	Blank	BIANK # 2	Tribulated	5357.54	MØ 12-04	WSTAVIOU N	2317-18.5	ISTALL SILL	Blank #31	Blank 14 Hit	Y COM CALLY	
Sample ID (Clother Parts	5453	1169-01(1-8)	1459-021-82	44.855 0.84	Equipment	LANT THE SHA	V-STATES	169-03-1181	S9-04 1-8	CO-06 1-8 %	\$ 59-06.1-81	# 14 5 & L- 3	Equipment	1 #** qhT.	Marka Marka Sirk	
			22.9.2.1 (H.). 2.1.1	The list of the		A CONTRACTOR				1						
трн	mg/kg	<20	<20	mg/l	<1	KEP26EFC	mg/kg	40	1 4 BO 1003	VSU Yeot LAN	<20	mg/l	<1	<1		
Methanol	mg/l	<1	<1	mg/l	<1	<1	mg/l	<1	<1	<1	<1	mg/l	<1	<1		
Methylene Chloride	ug/kg	520A12 548	20 20 20	ug/l	<5	<5	ug/kg	1242	2.010 A 2	iste the respective	else, milest	ug/l	<5	<5		
Acetone	ug/kg	<9	<12	ug/l	29	<10	ug/kg	<11	<11	≤14	<10	ug/l	<10*	S		
Carbon Disulfide	ug/kg	<5	<6	ug/l	<5	<5	ug/kg	<8	<6	<7	<5	ug/I	<5	<5		
Trichlorofluoromethane	ug/kg	<5	Not Tested	ug/l	<5	<5	ug/kg	<8	<6	<7	<5	ug/l	<5	<5		
Ethyl Ether	ug/kg	<5	Not Tested	ug/i	<5	<5	ug/kg	<6	<6	<7	<5	ugA	<5	<5		
Freon (TF)	ug/kg	22+12B M	Not Tested	ug/l	<5	<5	ug/kg	574 0	961 (P)	250705HM8	P) 41377 4	ugA	<5	<5		
2-Butanone	ua/ka	<9	<12	ug/l	<10	<10	ug/kg	<11	<11	<14	<10	1	<10	<10		
1,1,1-Trichloroethane	ug/kg	<5	<6	Ug/1	<5	<5	ug/kg	<8	<6	<7	<5		<5	<5		
Carbon Tetrachloride	ug/kg	<5	<6	ug/i	<5	<5	ug/kg	<6	<6	<7	<5	ugA	<5	<5		
Cyclohexanone	ug/kg	<5	Not Tested	ug/l	<5	<5	ug/kg	<6	<6		<5	ug/l	<5	<5		
Ethyl Acetate	ug/kg	<5	Not Tested	<u>ug/</u>	<5	<5	ug/kg	<8	<6	<7	<5	<u>ug/</u>	<5	<5 <200		
Isobutyl Alcohol	ug/kg	<180	Not Tested	<u>ug/1</u>	<200	<200	ug/kg	<230	<220	<270	<190 <10	ug/l	<200 <10	<10		
2-Ethoxyethanol	uo/ko	<9	Not Tested	<u>ug/1</u>	<10	<10	ug/kg	<11	<11	<14 <140	<10	Non	<100	<100		
n-Butyl Alcohol	ug/kg	< 90	Not Tested	ug/l	<100 <5	<100 <5	ug/kg	<110 <6	<6	<7	<5	ug/1 ug/1	<5	<5		
Trichloroethene	ug/kg	<5	<8	ug/1	<5	<5	ug/kg	<6	<8	<7	<5	ug/1	<5	<5		
1,1,2-Trichloroethane	uo/ko	<5	<6	100/1	<5	<5	ug/kg ug/kg	<6	<6	<7	<5		<5	<5		
Benzene	ug/kg	<5 <9	<6	<u>ug/1</u>	<10	<10	ug/kg	<11	<11	<14	<10	ug/l	<10	<10		
4 Methyl 2 Pentanone Tetrachloroethane	ug/kg	<5	<6	<u>1001</u> Ug/l	<6	<5	ug/kg	. <6	<6	<7	<5	ual	<5	<5		
Toluene	ug/kg ug/kg	<5	<6	ugi	<5	<5	ug/kg	<6	<6	<7	<5	ugA	<5	<5		
Chlorobenzene	ug/kg	<5	<8	ug/1	<5	<5		<6	<8	<7	<5	ug/l	<5	<5		
Ethylbenzene	ug/kg	<5	<6		<5	<5	ug/kg	<6	<8	<7	<5	ug/l	<5	<5		
Xylene (total)	ug/kg	<5	<0	ug/	<5	<5	ug/kg	<6	<6	<7	<6	ug/l	<5	<5	·	
Pyddine	ug/kg	<340	<420	ug/i	<40	<40	ug/kg	<340	<340	<340	<340		<40	<40		
1.3-Dichlorobenzene	ug/kg	< 340	<420	ug/i	<40	<40	ug/kg	<340	<340	<340	<340	ug/l	<40	<40		
1.4-Dichlorobenzene	uq/kg	<340	<420	ug/l	<40	<40	ug/kg	<340	<340	<340	<340	ug/i	<40	<40		
1,2-Dichlorobenzene	uo/ko	< 340	<420	ug/l	<40	<40	ug/kg	<340	<340	<340	<340	ugA	<40	<40		
2-Methylphenol	uq/kg	< 340	< 420	ug/i	<40	<40	ug/kg	<340	<340	<340	< 340	ugA	< 40	< 40		
3-Methylphenol	uo/ko	<340	<420	ug/1	<40	<40	ug/kg	<340	<340	<340	<340	ugA	<40	<40		
4-Methylphenol	uo/kg	< 340	<420	ug/l	<40	<40	ug/kg	< 340	<340	<340	<340	ug/l	<40	<40		
Nivobenzene	ug/kg	< 340	<420	u <u>o</u> /I	<40	<40	ug/kg	<340	<340	<340	<340	ugA	<40	<40		
Silver, total	mg/l	RE0.0005UW X4			\$10.0005U9#		mg/l	<.0005	<.0005	<.0005	<.0005	mg/l	<.0005	<.0005		
Arsenic, total	mg/l	101 0.0048 NM		mg/l	200000051		mg/l		1872004BBS		1202005B1	mg/l	<.003	<.003		
Barlum, total	mg/l	#150.38 AKW			13005UNN					A		mg/1	<.05	<.05		
Cadmlum, total	mg/l	NIDOOSUW N	The local distance of the second second		N 0.0005U 18.8					NY WEBOOOS		ma/l	<.0005W	<.0005W		
Chromlum, total	mg/l				5 0.009B 1:2		mg/1		STD.008 1	the second se	<007B) 44	Nom	<.006	<.006		
Mercury, total	mg/l	1-14.0002U			**0.0002U1U		mg/l	<.0002	<.0002	<.0002	< .0002	man	<.0002	<.0002	·····	
Lead, total	_mg/l	141.0028447			No 0.007 # 81		mg/l	<.0029	<.003W	< 003W	and the second	n_/	<.002W <.003W	<.002 <.003W		
Selenium, total	mg/l	MILCOOJI WILL	NULOCOUW ZA	mg/1	1 0 DOBULIL	MAD, COOUSE H	mg/l	<.003W	<w< td=""><td>< 000W</td><td><.003W</td><td>mg/l</td><td><w< td=""><td>C.CUW</td><td>I</td><td></td></w<></td></w<>	< 000W	<.003W	mg/l	<w< td=""><td>C.CUW</td><td>I</td><td></td></w<>	C.CUW	I	

HOS-83-XLS, 8/22/90, 1 of 5

•

.

__...

TABLE 2 (CONT)

.

						SUMMARY OF	ON-SITE CO	AE SAMPLE	ANALYTICA	L RESULTS	l					
								Roswell, No								
Core Hole No. P.S. This	NOT STATES	Key 6B0-2 ER	142 SB9-3414	613 6B0-31571	SCHIUTENAS	CALL AND DESIGN	1.110/21.157	1.7430.101	and the second se	ROCERO AND	NO 689-4116	SUSPO-	CHEROLS N	MAR SAGARA	2 SB9-5 16 7.3	40 686 5 83
Sample Dooth A States				54.20-23 /24	12/23-65-046				18-13-22						EH15-17.675%	
Samole DISLART ANT				59.09.1-4,7-4	Selection As	(Foulpment)	and industry	1815.33192							59-161:3-8,7-8	
			3.000 0011.000			1-	10000000000000000000000000000000000000			1	3			AND THE REAL		
ТРН	ma/kg	<20	<20	A4491101	mg/l	<1		mg/kg	1005120019.S	5.8.870 State	15 2470 A. St.	100000	<20	1200 (100 (91) h.	<20	<20
Methanol	mg/l	<5	<1	<1	mg/l	<1		mg/l	<5 mg/kg		<1	<1	<1	<1	<1	<1
Methylene Chloride	ua/ka	ANTA'IS SAND			ug/l	<5		ug/kg		altheset	<6*	<18*	<6*	<8"	N. 8 6 1 19 1 19	
Acetone	ug/kg	NIL SALES	and the second se	<14	ug/l	574 68 3		UQ/kg	<11	<20	<12	<36	<12	<15	<10	<11
Carbon Diaulfide	ug/kg	<5	<6	<7	ua/i	<5		ug/kg	<6	<10	<6	<18	<6	<8	<5	<8
Trichlorofluoromethane	ug/kg	<5	<6	<7	ug/l	<5		ug/kg	<6	<10	<6	<18	<8	<8	<5	<6
Ethyl Ether	ug/kg	<5	<6	<7	ug/l	<5		ug/kg	<8	<10	<8	<18	<6	<6	<5	<6
Freen (TF)	ug/kg		8 4274		ug/i	<5		ug/kg	AND CHARM		<0	<16			STRAIN STRAIN	
2-Butanone	ug/kg	<10	<11	<14	ug/i	3311201018		ug/kg	<11	<20	<12	< 36	<12	<15	<10	<11
1,1,1-Trichloroethane	ug/kg	<5	<6	<7	ug/	<5		ug/kg	<6	<10	<6	<18	<6	<8	<5	<6
Carbon Tetrachloride	ug/kg	<5	<0	<7		<5		ug/kg	<8	<10	<6	<18	<6	<8	<5	<0
Cyclohexanone	ug/kg	<5	<6	<7	ug/1	<5		ua/ka	<6	<10	<6	<18	<0	<8	<5	<8
Ethyl Acetate	ug/kg	<5	<6	<7	ug/1	<5		ug/kg	<6	<10	<6	<18	<6	<8	<5	<8
leobutyl Alcohol	ug/kg	<190	<230	<280	ug/1	<200		ug/kg	<220	< 400	<240	<720	<240	<310	<200	<220
2-Ethoxyethanol	ua/ko	<10	<11	<14	ug/1	<10		ug/kg	<11	<20	<20	<36	<12	<15	<10	<11
n-Butyl Alcohol	uo/ko	<97	<110	<140	ug/l	<100		ug/kg	<110	<200	v. <120	<360	<120	<150	<100	<110
Trichloroethene	ug/ka	<5	<6	<7	ug/	<5		ug/kg	<6	<10	<6	<18	<6	<8	<5	<6
1,1,2-Trichloroethane	ua/ka	<5	<6	<7	ug/t	<5		ug/kg	<6	<10	<6	<18	<6	<8	<5	<8
Benzene	ug/kg	<5	<0	<7	ug/l	<5		ug/kg	<6	<10	<8	<18	<6	<8	<5	<6
4 Methyl 2 Pentanone	ug/kg	<10	<11	<14	ug/l	<10		ug/kg	<11	<20	<12	<38	<12	<15	<10	<11
Tetrachloroethane	ug/kg	<5	<0	<7	ugA	<5		ug/kg	<6	<10	<8	<18	<6	<8	<5	<8
Toluene	ug/kg	<5	<6	<7	ugA	<5		ug/kg	<6	<10	<8	<18	<8	<8	<5	<6
Chlorobenzene	ug/kg	<5	<6	<7	ugA	<5		ug/kg	<6	<10	<8	<18	<6	<8	<5	<6
Ethylbenzene	ug/kg	<5	<8	<7	ual	<5		ug/kg	<6	<10	<6	<18	<6	<8	<5	<0
Xylene (total)	ug/kg	<5	<8	<7	μŋΛ	<5		ug/kg	<8	<6	<8	<18	<6	<8	<5	<8
Pyridine	ug/kg	<350	<340	<340	uqA	<40		ug/kg	<330	<370	<350	<340	<340	<340	< 340	< 370
1.3-Dichlorobenzene	ug/kg	< 350	<340	< 340	ug/	<40		ua/ko	<330	<370	<350	<340	< 340	< 340	< 340	< 370
1,4-Dichlorobenzene	ug/kg	<350	< 340	<340		<40		UQ/kg	<330	<370	< 350	< 340	< 340	<340	<340	<370
1,2-Dichlorobenzene	ug/kg	<350	<340	<340		<40		ug/kg	<330	<370	< 350	<340	< 340	<340	< 340	< 370
2-Methylphenol	ug/kg	<350	<340	<340	ug/I	<40		ug/kg	<330	<370	< 350	<340	< 340	<340	<340	<370
3-Methylphenol	ug/kg	< 350	<340	<340	ug/l	<40		ug/kg	<330	<370	<350	<340	< 340	<340	< 340	< 370
4-Methylphenol	ug/kg	<350	<340	<340	ug/l	<40		ug/kg	<330	<370	< 350	<340	< 340	<340	< 340	<370
Nitrobenzene	ug/kg	< 350	<340	<340	ugA	<40			<330	<370	<350	<340	<340	<340	< 340	< 370
Silver, total	mg/l	<.0005	<.0005	<.0005	mgA	<.0006		mg/	<.0005	<.0005	<.0005	<.0005	<.0005	<.0005	<.0005W	<.0005W
Arsenio, total	ma/l	11 TO.01 4	<.003	<.003	mg/l	<.003			SNO098 X/S	<.003	<.003		04.0058191J	<.003W	<.003W	<.003
Barlum, total	mal		NALO DO AL		mg/l	<.05									CLAIN LOS MAN	
Cedmlum, total	mg/l	the second second second	.0000DWA	<.0005W	mg/l	<,0005		man	<.0005W	<.0005W	00138W 014		<.0005W	< 0005W	<.0005W	< .0005
Chromium, total	mg/l	<.008	S-20088		mg/l	<.006		mg/l	<.008	<.008	<.006	<.008	<.006	<.006	<.008	<.008
Mercury, total	mg/l	<.0002	<.0002	<.0002	mg/l	<.0002		mg/l	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002
Lead, total	mg/l	0.003111	2002B	DOCH AN		STO COOL		mg/l	1 0 000 th	A LOOZE SAS	0.003 3 426		S. 2,0028 40 m			<.002N
Selenium, total	mg/l	<.003W	<.003W	<.003W	mg/l	<.003W		mg/l	<.003	<.003	<.003	<.003W	<.003W	<.003W	<.0003W	<.003WN

ROS-83-XL8, 8/22/90, 2 of 5

.

. . .

TABLE 2 (CONT)

		T	1			SUMMARY O	ON SITE OC	RE SAMPLE	ANALYTICA	RESUNTS	r	[
						301110	Contraction of the local division of the loc	Roswell, Nev		LOOLIS						
Core Hole No.5 25	1.0001234	SEC680-5 109	Sta CDd Start	ST COO'S ME	Tura: Prelim Soft	MPS IS ALL STREET				\$27 COO'43183	Maleno's 23	ALCOG BINA	SIC DO COM	10,000	2.51 SB9-6 1977	1 6 6B9-6 15
		C+ 20'-22 5'				Blank #68	in the second second	Exercisity St	0.05 0.05					140 (161 62 5		28-26-26 41
Sample Deputante Entre														NI STATES		L Tube 16
Sample KJ (Kerkingerster	1134 80-64	203-10.1-4.74	USAL UDO # 3 mg	SOUL OF A SEA	CONCLUSION OF	Ecquipments	8201 019 20 33	STREET, STREET	ALX: AND DAY	3100-20,1+0 <u>3</u>	CO0-21-2-0-01	E 09-2211-0 3	19-23.1 3:4,73	NET NOT TRANSFER	CON LUDO D TANK	1000 PG 26
трн	mg/kg	<20	<20	<20	mg/l	<1	<1		mg/kg	<20	<20	120	<20	mg/kg	<20	< 20
Methanol	maA	<1	<1	<1	mg/l	<1	<1		ma/l	<1	<1	<10	<10	ma/kg	<50	<50
Methylene Chloride	ug/kg	1. S D. S. 1. S.	UNIT TO DES		ual	<5	<5		ug/kg		HER. 8 12 14454		<5	ug/kg	1 MALIO 19444	(44) A & A & A & A & A & A & A & A & A & A
Acetone	Ug/kg	HEHE AT SHALL	ALA 11 26 8440	S AND S A	ua/I	<10*	<10		ug/kg	<12	<11	CHARLES COMMENT	<10	ug/kg	<10	<14
Carbon Disulfide	ug/kg	<6	<0	<8	ug/l	<5	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
Trichlorofluoromethane	ug/kg	< 6	<6	<6	ug/l	<5	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
Ethyl Ether	ug/kg	<6	<8	<6	ugA	<5	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
Freen (TF)	ug/kg	10216144	EU(4151) 4151	1.1.169	ugA	<5	<5		ug/kg	CURR CHINES	1	2. 2. 269 4.4	ALC: INCOM	ug/kg	CAN GOLDER	1 21 MA
2-Butanone	ug/kg	<13	<11	<12	ug/l	<10	<10		ug/kg	<12	<11	<10	<10	ug/kg	<10	<14
1,1,1-Trichloroethane	ug/kg	<6	<6	<6	ug/l	<5	<5		ug/kg	<8	<5	1. 25(2) (5)	<5	ug/kg	<5	<7
Carbon Tetrachloride	uo/kg	<8	< 6	<6	ug/l	<5	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
Oyclohexanone	ug/kg	<6	<6	<6	ug/l	<5	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
Ethyl Acetale	ug/kg	<6	<6	<6	ugΛ	<5	<5		ug/kg	<8	<5	<5	<5	ug/kg	<5	<7
Isobutyl Aloohol	ug/kg	<250	<230	<230	ug/1	<200	<200		ug/kg	<250	<210	<210	<200	ug/kg	< 200	<280
2-Ethoxyethanol	ug/kg	<13	<11	144,12461	ug/l	<10	<10		ug/kg	ANI264S	<11	<10	<10	ug/kg	<10	<14
n-Butyl Alcohol	ug/kg	<130	<110	<120	ug/l	<100	<100		ug/kg	<120	<110	<100	<100	ug/kg	< 100	<140
Trichloroethene	ug/kg	<6	<6	<6	ug/l	<5	<5		ug/kg	<8	. <5	<5	<5	ug/kg	<5	<7
1.1.2-Trichloroethane	ug/kg	<6	<8	<6	ug/l	<5	<5		ug/kg	<6	, <5	<5	<5	ug/kg	<5	<7
Benzene	ug/kg	<6	<8	<8	ug/l	<5	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
4 Methyl 2 Pentanone	ua/ka	<13	<11	<12	υgΛ	<10	<10		ug/kg	<12	<11	<10	<10	ug/kg	<10	<14
Tetrachloroethane	ug/kg	<8	<8	<6	Ug/I	<6	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
Toluene	ua/ka	<8	<8	<6	ugA	<5	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
Chloroberizene	ug/kg	<8	<8	<6	ug/l	<5	<5		ug/kg	<8	<5	<5	<5	ug/kg	<5	<7
Ethylbenzene	ug/kg	<6	<8	<6	ugA	<5	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
Xylene (total)	ug/kg	<8	<6	<8	ug/l	<5	<5		ug/kg	<6	<5	<5	<5	ug/kg	<5	<7
Pyridine	ug/kg	<420	<370	<380	ugA	<40	<40		ug/kg	<330	<350	< 390	<340	ug/kg	<340	<430
1,3-Dichlorobenzene	ug/kg	<420	<370	<380	ug/l	<40	<40		ug/kg	<330	<350	< 390	<340	ug/kg	<340	<430
1,4-Dichlorobenzene	ug/kg	<420	<370	< 380	ug/l	<40	<40		ug/kg	<330	<350	< 390	<340	ug/kg	<340	<430
1,2-Dichlorobenzene	ug/kg	<420	< 370	<380	ug/i	<40	<40		ug/kg	<330	<350	<390	<340	ug/kg	<340	<430
2-Methylphenol	ug/kg	<420	<370	<380	ug/	<40	<40		ug/kg	<330	<350	<390	<340	ug/kg	< 340	<430
3-Methylphenol	ug/kg	<420	<370	<380	Ug/I	<40	<40		ug/kg	<330	<350	<390	<340	ug/kg	<340	<430
4 Methylphenol	ug/kg	<420	<370	<380	Ug/l	<40	<40		ug/kg	<330	<350	< 390	<340	ug/kg	<340	<430
Nitrobenzene	ug/kg	<420	<370	<380	ug/l	<40	<40		ug/kg	<330	<350	< 390	<340	ug/kg	<340	<430
Silver, total	ma/l	\$60022BW	<.0005W	<.0005	mgA	<.0005	<.0005		mg/l	<.0005W	<.0005	14 0026B 11	<.0005W	moA	<.0005W	<.0005
Arsenio, total	maA	SULLOOSE TO MA	SSVADOBB NAME	A 10048144	mg/l	<.003	<.003		mg/l	AS-K00481	<.003W	<.003	<.003W	mgA	<.003	AL 80098
Barlum, total	mg/l		\$110027.ML		mg/l	<.05	<.05		mg/l	10.6314593		0746		Man	CHERON IS IN LOUGH	
Cedmlum, total	mg/l	N.COOSBW S	S.J.0005BW AN	ACCOLORING	mg/l	<.0005W	<.0005W		ma/t	X WOOLOBW &	<.0005		Lib COOKE	mg/l	A Dialog and Shi	
Chromium, total	mg/l	<.006	<.008	<.006	mg/l	<,006	<.008		mg/l	<.006	<.006	LH. 0.011		mg/l	374 0.007 B	the second second second
Mercury, total	mg/l	<.0002	<.0002	<.0002	mgA	<.0002	<.0002		mg/l	<.0002	<.0002	<.0002	<.0002	mg/l	<.0002	<.0002
Lead, total	mg/l	<.002N	<.002WN	<.002WN		1. 0 004 At h			mg/l	<.002WN	<.002WN		EL DOBWAL	mgA	The BLOOCW AND	<.002
Selenium total	mo/l	49.005BN	<.003N	<.003W	mg/l	<.003	<.003		mo/l	<.003WN	<.003N	<.003	< .003	mgΛ	<.003	<.003

ROS-83-XLS, 8/22/90, 3 of 5

..

•

		1	<u>г</u>	1		SUMMARY OF	ON SITE CO	ORE SAMPLE	ANALYTICAL	RESULTS	1					
			-					Roewell, No	w Maxico							
Core Hole No.	RATES	212-202-27/6	(10.95×2093/	kata anta area	if the state of the	1 SB9-7 6	(H S89-7 M	616895780	46689-7	3 4 889 7 A B	INA SB9-7 (1)	145 589-7424	SIS SB9 702	an - any erry	MAN SHALL HAVE	1.2 Missishiki
Sample Depth & Land			Blank #11	2.3.7.9.216	1. 1. 11 5 . 12 . 1. 2	110 12.58	121181241	\$25.5 28	29-32 6	129.32	14935-37	1 35-371	1135-37 24	Sec. 1:654 (1)-12	11 Blank #12 14	Blank #131
Sample Diversit				1.44.227.63			59-25.1-81	69-26 1-8	59-27.3-8	STUDE 774	\$9-28.3-8	Tube #6 S	Tube 19 K	7. Jerino	the Flaid State	#Equipment
		A BALL OF				A	19 19 19 19 19 19	1			1		1			
ТРН	mg/l	<4	<4		mg/kg	1100 8 36	× 12000 +	AP4 250014R	1111100010	1	48001014	13000 1	ASTIS0000 +	mg/1	<4	<4
Methanol	mg/l	< 50	<50		mg/l	<1	<1	<1	<1	<1	<1	<1	<1	mg/l	<10	<10
Methylene Chloride	ug/l	<5	<5			1.82 172.6%	12121	3.1.71 MA	<1300	<1300	1 2 740 983	< 640	<670	ug/l	<5	<5
Acetone	40/1	1 4 Vesto 1 7581	AMARTIO HINE		ug/kg	1. 20 1.1	13 ALBINA	111270 \$1	<2600	<2600	<1300	<1300	<1300	ug/l	<10	<10
Cerbon Disulfide	Ug/1	<5	<5		ug/kg	<8	<5	<29	<1300	<1300	<640	<640	<670	ug/l	<5	<5
Trichlorofluoromethane	UQ/1	<5	<5		ug/kg	<6	<5	<29	<1300	<1300	<640	<640	<670	ug/1	<5	<5
Ethyl Ether	ug/l	<5	<5		ug/kg	<6	<5	<29	<1300	<1300	<640	<640	<670	ug/l	<5	<5
Freon (TF)	μαΛ	24 697.1. 81	6+ 5+ 6* 15 A			CHI18 424	10.26	A TTOOLA	MU 3700 1	A	<640	<640	<670	ugA	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Hinor Prix
2-Butanone	ug/1	WW 246 1 242	<10		ug/kg			14 26 83 1 X X 44	<2600	<2600	<1300	<1300	<1300	ug/I	<10	<10
1,1,1-Trichloroethana	ug/l	<5	<5		ug/kg	<8	<5	<29	<1300	<1300	<640	<640	2000	ug/l	<5	<5
Carbon Tetrachloride	ug/1	<5	<5		ug/kg	<6	<5	<29	<1300	<1300	<640	<640	<670	ug/l	<5	<5
Cyclohexanone	ug/l	<5	<5		ug/kg	<6	<5	<29	<1300	<1300	<640	<640	<670	ug/l	<5	<5
Ethyl Acetate	ug/1	<5	<5		ug/kg	<6	<5	<29	<1300	<1300	<640	<640	<670	ugA	<5	<5
leobutyl Alcohol	ug/l	<200	<200		ug/kg	<230	<210	<1200	<51000	<53000	<26000	<26000	<27000	ug/l	<200	< 200
2-Ethoxyethanol	ug/1	<10	<10		ug/kg	<11	<10	<59	<2600	<2600 1	<1300	<1300	<1300	ug/l	<10	<10
n-Butyl Alcohol	ugA	<100	<100		ug/kg	<110	<100	<590	<26000	<26000	<13000	<13000	<13000	ug/l	<100	<100
Trichloroethene		<5	<5		ug/kg	<6	<5	<29	<1300	<1300	<640	<640	<670	ug/l	<5	<5
1,1,2-Trichloroethane		<5	<5		ug/kg	<6	<5	<29	<1300	<1300	<640	<640	< 670	ug/l	<5	<5
Benzene	υ <u>ο</u> /Ι υο/Ι	<5	<5		ug/kg	<8	<5	<29	<1300	<1300	<640	<640	<670	ug/1	<5	<5
4 Methyl 2 Pentanone	- ug/i	<10	<10			<11	<10	. <59	<2600	<2600	<1300	<1300	<1300	ug/1	<10	<10
Tetrachloroethane	ug/1	<5	<5		ug/kg	<6	<5	<29	<1300	<1300	A		2100	ug/l	<5	<5
Toluene	ug/1	<5	<5		ug/kg	<6	<5	<29	<1300	<1300	<640	<840	<670		<5	<5
Chlorobenzene	- UQ/1 - UQ/1	<5	<5		ug/kg	<0	<5	<29	<1300	<1300	< 640	<640	<670	ug/l	<5	<5
Ethylbenzene	ua/1	<5	<5								A107 230016 F			ug/l	<5	<5
Xylene (total)	ug/	<5	<5								ANL-C480011			μοΛ	<5	<5
Pyridine	UQ/1	<40	<87	· · · · · · · · · · · · · · · · · · ·	ug/kg	<370	<340	<390	< 340	<350	< 340	<340	<21000	<u>ug/</u>	<40	<40
1.3-Dichlorobenzene	 υ <u>α</u> Λ	<40	<87		ug/kg	<370	<340	<390	<340	<350	<340	< 340	<21000		<40	<40
1,4-Dichlorobenzene	ug/1	<40	<87		ug/kg	<370	<340	<390	<340	<350	<340	<340	<21000	ugA	<40	<40
1,2-Dichlorobenzene	Ug/1	<40	<87		ug/kg	<370	<340	<390	<340	<350	<340	<340	<21000	Ug/	<40	< 40
2-Methylphenol	ug/l	<40	<87			<370	<340	<390	<340	<350	<340	<340	<21000	ug/1	<40	<40
3-Methylphenol	ug/1	<40	<87		ug/kg	<370	<340	<390	<340	<350	<340	< 340	<21000	ugA	< 40	<40
4-Methylphenol	ug/1	<40	<87		ug/kg	<370	<340	<390	<340	<350	<340	< 340	<21000	ug/l	<40	<40
Nitrobenzene	ug/l	<40	<87		ug/kg	<370	<340	<390	<340	<350	<340	<340	<21000	ug/i	< 40	<40
Silver, total	mg/l	<.0005	<.0005		mg/l	<.0005	<.0005WN	<.0005WN	<.0005WN	<.0005WN	<.0005WN	<.0005WN	<.0005WN		14 0005W 2.4	< 0006
Arsenio, total	mg/l	<.003	<.003		mg/l	<.003	N0.004B				1-0-000B			maA	< .003	<.003
Barlum, total	mal	<.05	<.05			and the second se			An	The second s	14 1172 4		tree de la companya de la comp	mg/l	<.05	<.05
Cadmium, total	mg/l		414.0011BW SY			1\$(0006B) \$		<.0005			4		THE REAL PROPERTY OF THE PARTY	mg/l	<.0005	RAT CODE B S
Chromlum, total	ma/i	<.006	<.006			4.9.007B	<.006	CONTRACTOR OF THE OWNER	terre to the terre	0068 ci+	mett mechaner.		A 60.012	mg/l	.007B	< 006
Mercury, total	mg/l	<.0002	<.0002		mgA	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	mg/l	<.0002	<.0002
Lead, total	mg/l	<.002B	<.002W		mg/l	1003BWN	<.002WN	<.002WN	<.002WN	<.00211	<.002MW	<.002WN	<.002WN	mg/l	<.0025	18 002BS
Selenium, total	mg/l	<.003W	<.003		mg/l	<.003	<.003W	<.003WN	<.003	<.003W	<.003N	<.003N	<.003WN	mg/l	<.003	<.003W

ROS-83-XLS, 8/22/90, 4 of 5

•••

.

•

			l		 SUMMARY O	ON SITE C	ORE SAMPLE	ANALYTICA	RESULTS		·		 	
							Roewell, No						 	
Core Hole No. Chester	1972	2.352652775	heladlan (Vik	DISS STOLD	 		1						 	
Sample Depth17		Black A14	BLACK #15	BIADZALES	 <u> </u>								 	
Sample ID 1 18 alt 1 1.5 1		STUTION AND	Cale The D	DUNW/YY	 						t		 	
	Conversion of	Second The work of	Sector of the sector	NO PROVIDENTIAL	 						1		 	
трн	mg/l	<4	<1	<1	 			<u> </u>					 	
Methanol	mg/l	<1	<1	<1	 					1	1		 	
Methylene Chloride	ug/l	<5	<5	<5	 								 	
Acetone	ug/l	<10	<10	9.272318 BY	 	·			[
Carbon Disuilide	ug/1	<5	<5	<5	 				1				 	1
Trichlorofluoromethane	ugA	<5	<5	<5	 									
Ethyl Ether	ug/1	<5	<5	<5	 								 	
Freon (TF)	ug/1	SALS POOL OF	LIL STREAM		 ·								 	
2-Butanone	Ug/1	<10	<10	110-1160-0112	 1				1			f	 	
1,1,1-Trichloroethane	ug/l	<5	<5	<5	 						1			
Carbon Tetrachloride	ug/l	<5	<5	<5	 								 	1
Oyclohexanone	ug/1	<5	<5	<5	 									
Ethyl Acetate	ug/i	<5	<5	<5	 									
isobutyl Alcohol	ug/l	<200	<200	<200	 									
2-Ethoxyethanol	ug/1	< 10	<10	<10	 						1			
n-Butyl Alcohol	ugA	<100	<100	<100										
Trichloroethene	ug/l	<5	<5	<5	 									
1,1,2-Trichloroethane	ug/l	<5	<5	<5	 									
Benzene	ug/l	< 5	<5	<5	 									
4 Methyl 2 Pentanone	ugA	<10	<10	<10	 									
Tetrachloroethane	ugA	<5	<5	<5			·							
Toluene	ug/l	<5	<5	<5										
Chlorobenzene	ug/l	<5	<5	<5										
Ethylbenzene	υgΛ	<5	<5	<5										
Xylene (total)	ug/l	<5	<5	<5										
Pyridine	ug/l	< 40	< 40	<40										
1,3-Dichlorobenzene	Ug/1	<40	<40	<40										
1,4-Dichlorobenzene	ug/l	< 40	<40	<40										
1,2-Dichlorobenzene	ug/l	<40	<40	<40										
2-Methylphenol	ug/l	< 40	<40	<40										
3-Methylphenol	ug/l	< 40	<40	<40										
4-Methylphenol	ug/l	< 40	<40	<40										
Nitrobenzene	ugA	<40	<40	<40										
Silver, total	mg/l	<.0005N	<.0005	<.0005										
Arsenic, total	mg/l	<.003	<.003W	<.003									 	
Barlum, total	mg/l	<.05	<.05	<.05	 								 	
Cadmium, total	mg/l	<.0005W	<.0005	<.0005									 	
Chromlum, total	mg/l	<.006	<.006	<.008	 								 	
Mercury, total	mg/i	<.0002	<.0002	<.0002	 									
Lead, total	mg/l			<.002N	 								 	
Selenium,total	mg/l	<.003	<.003N	<.003N										

ROS-83-XLB, 8/22/90, 5 of 5

•

TABLE 3

PHASE 3

				r		SUMMARY O	E OFE-SITE	CORE SAMP	LE ANALYTIC	AL RESULTS			·			1		
								well, Now Me	and the second se									
tore Hole No.	A 120.00	P9-06-213	P9-05-213	PP-06-213	P9-05-213	109-08-2130				P9-OS-238	3 P9-09-238 1	P9-06-238	P9-03-349	P2-05-549	P9-06-349	P9-06-349	8 I	1 P9-05-349 3
Sample Depth	The state	1.1.151/1.5	6 (10) e	1 (15)	201 st 1	10.4 (231 - 1 I	1/29/301%	6315-3251	11115 (5) mai	10160	HiFS/151	1111 (2011)	A	Signo aut	Ban (20) B.A	211 (25112	11.2	(25) Duplicate
De 1994 MARSON	Lars Res	A Sold Str.	Soll "	SAL BOIL	Selle Boll	ALL BOIL	AT Bookset	COLOR BOIL	SAL GOILLIN	WAR Collector	Coll +	ANKY GODINE	S. Soil K.	Sal Boll Ku	SAN GOIL	- Goll	10.4	as Sol Water a
	T			I				1										
трн	mg/kg	<20	<20	<20	<20	<20	<20	<20	18870524	6145 120 H	<20	1 10 50 101	<20	A STIDO	<20	H# 100%		
Methanol	mg/l	<5	<5	<5	<5	<5	<1	<5	<20	<5	<10	<20	<1	<5	<1	<10	ug/l	
Methylene Chloride	ug/kg	4.5910.7	<6	<7	6-3 (% 7 x 1 m)	<5	<5	<6	<5	<5	<5	<5	Stor Sin	SNA O AUT	<5*	1.1.10	ug/l	<5
Acetone	ug/kg	11:32-4.54				And 29* coll			A 41 297 A 4			1.311832.44	<11	<11	<11	<11	uoЛ	<10
Carbon Disulfide	ug/kg	<6	< 6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/I	<5
Trichlorofluoromethane	ug/kg	<6	<6	<5	<6	<5	<5	<8	<5	<5	<5	<5	<5	<6	<5	<5	ugΛ	<5
Ethyl Ether	ug/kg	<8	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/	<5
Fieon (TF)	ug/kg	<6	<8	<5	<8	<5	<5	<6	<5	<5	<5	<5	141261 ka	AN ALL PROPERTY OF	1 46+1	19121-00	ugΛ	1 10 35 14.1
2-Butanone	ug/kg	<12	<12	<10	<13	<10	<10	<12	<10	<10	<10	<10	<11	<11	<11	<11	ugЛ	< 10
1,1,1-Trichloroethane	ug/kg	<6	<6	<5	<6	<5	<5	<8	<5	<5	<5	<5	<5	<6	<5	<5		No 136 . 3 . 5
Carbon Tetrachloride	ug/kg	<6	<6	<5	<6	<5	<5	<8	<5	<5	<5	<5	<5	<6	<5	<5	ug/I	<5
Cyclohexenone	ug/kg	<6	<8	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<8	<5	<5	ugA	<5
Ethyl Acetate	uo/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ug/l	<5
leobutyl Alcohol	ug/kg	<230	<230	<210	<260	<200	<200	<250	<200	<210	<210	<210	<220	<220	<210	<220	ug/	<200
2-Ethoxyethanol	ug/kg	<12	<12	<10	<13	<10	<10	<12	<10	<10	<10	<10	<11	<11	<11	<11	ug/l	<10
n-Butyl Alcohol	ug/kg	<120	<120	<100	<130	<100	<100	<120	<100	<100	<100	<100	<110	<110	<110	<110	ug/l	<100
Trichloroethene	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	uaA	<5
1,1,2-Trichloroethane	ug/kg	<8	<6	<5	<6	<5	<5	<8	<5	<5	<5	<5	<5	<8	<5	<5	ug/i	<5
Benzene	ug/kg	<6	<6	<5	<6	<5	<5	<8	<5	<5	<5	<5	<5	<6	<5	<5	ug/l	<5
2 Methyl 4 Pentanone	uo/kg	<12	<12	<10	<13	<10	<10	<12	<10	<10	<10	<10	<11	<11	<11	<11	ug/I	<10
Tetrachloroethane	ug/kg	<6	<6	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	ugA	<5
Toluene	uo/kg	<6	<6	<5	<8	<5	<5	<6	<5	<5	<5	<5	<5	<8	<5	<5	uqA	1.2.56
Chlorobenzene	uo/kg	<6	<8	<5	<6	<5	<5	<8	<5	<5	<5	<5	<5	<8	<5	<5	ugA	<5
Ethylbenzene	uq/kg	<0	<8	<5	<6	<5	<5	<6	<5	<5	<5	<5	<5	<6	<5	<5	uαΛ	<5
Xylene (total)	ug/kg	<8	<8	<5	<6	<5	<5	<8	<5	<5	<5	<5	<5	<6	<5	<5	ug/I	<5
Pyridine	ug/kg	<380	< 380	<340	<420	<340	<330	<410	<340	<340	<340	<340	<350	<370	<350	Not Tested	-	<350
1.3-Dichlorobenzene	ug/kg	<380	< 380	<340	<420	<340	<330	<410	<340	<340	<340	<340	<350	<370	<350	Not Tested	_	<350
1.4-Dichlorobenzene	ug/kg	< 380	< 360	<340	<420	<340	<330	<410	<340	<340	<340	<340	<350	<370	< 350	Not Tested		< 350
1.2-Dichlorobenzene	ua/ka	< 380	< 380	<340	<420	<340	<330	<410	<340	<340	< 340	<340	<350	<370	<350	Not Tested		<350
2-Methylphenol	ug/kg	< 380	< 380	<340	<420	<340	<330	<410	<340	<340	< 340	<340	<350	<370	<350	Not Tested		< 350
3-Methylphenol	ua/ka	< 380	< 380	<340	<420	<340	<330	<410	<340	<340	<340	<340	<350	<370	< 350	Not Tested		<350
4-Methylphenol	uo/ka	<380	< 380	<340	<420	<340	< 330	<410	<340	<340	<340	<340	<350	<370	< 350	Not Tested		< 350
Nitrobenzene	uo/ko	< 380	< 380	<340	<420	<340	<330	<410	<340	<340	<340	<340	< 350	<370	< 350	Not Tested	ug/1	< 350
Silver, total	mg/l	<0.0006	<.0006	<.0006	<.0006	<.0008	<.0006	<.0008	<.0008	<.0006	<.0006	<.0006	<.0008	<.0006	<.0006	Not Tested	mg/l	<.0006
Arsenic, total	mg/l	1.0.000 445	2.007B	01.004B	<.003W	<.003	<.003W	0048 M	152.004BW.D.	<.003	0.003B	14 003B			<.003	Not Tested	and the second	<.003
Barlum, total	mg/i	11.11.34 90	₩.16B*	1 0.22 VIN	1.05+67	ADAK1 54 MIL	1 2.03	0.68	1255 1 01 Km	A.C. 0.39 5 10	And 0.33 1	<.06	1161218	041	N 10.77			0.96
Cadmium, total	mg/l	<.0008BW	<.0006	<.0006	<.0006W	<.0006W	<.0006BW	20011BW/	1.00098W	<.0006	AP 00098 4	<.0008	0009BW	and the second s	<.0006			12.0009BW
Chromlum, total	mg/l	<.007	<.007	<.007	<.007	<.007	<.007	<.007	*120.011#31	007B Sit	SI 10.01618	110.01208.0	0.012		LAS, DOGE	Not Tested	mg/l	
Mercury, total	maA	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	Not Tested		<.0002
Lead, lotal	mgA	<.002W	<.002	<.002W	<.002W	<.002W	430.004	100363	003N	1.007N1.0	005N 45	A005WN #1	0012	D11640	0.004	Not Tested	mg/l	0.009
Selenium,total	mg/l	<.003W	<.01W	<.003	<.003W	<.003W	<.01	<.003W	<.003W	<.003W	<.003W	<.02	<.003	<.01W	<.003W	Not Tested	mg/l	<.003W

• .

ROS-3-XLS, 8/20/90, 1 of 2

·			r		r	SUMMARY O	E OFF SITE	CORESAUR		AL RESULTS								
						John Will C	the state of the s	well. Now Ma										
AS Core Hole No. 1	1.11241.4	IPO OS NOT	P1 05:340	100,09,140	PROS 377	* P0.09.1773				PR 09.9778	101.235	P0/09/377	E SIATA S	Constant and a	PS AT dated			
Bample Depth Sale																		
International Statistics	Jun al	Dire Soll at 8	Soll at	A Boll In	S Soll Mis	SALE GOIL	CALSO HUN	Sol D	COLORING COLORI	NAME OF COLUMN	da seresti	50LWater	NAME OF CASE		A. 10			
	L'and the second second			1	I			1	965 m b.d. 4.5. m h			T	Layton Col Calvador	1	Γ			
трн	mg/kg	<20	<20	<20	200 480	<20	<20	<20	<20	<20	mg/l	Not Tested	<1	<1	<1			
Methanol	mg/l	<5	<1	<5	<5	<1	<1	<5	<1	<5	mg/l	Not Tested	<1	<1	<1			
Methylene Chloride	ug/kg	<7		WAR BUILT	<0	<6				812323 F.V.	ug/1	N 42 20 57 / 1			2311			
Acetone	ug/kg	<14	<14	<10		in the later	SUP-2710.15		<12	<13	ug/l	0.57 /39 -251		<10	<10			
Carbon Disulfide	ug/kg	<7	<7	<5	<6	<6	<6	<7	<6	<7	ug/1	<5	<5	<5	<5			
Trichlorofluoromethene	ug/kg	<7	<7	<5	<6	<8	<6	<7	<6	<7	ug/l	<5	<5	A	<5			
Ethyl Ether	ug/kg	<7	<7	<5	<6	<6	<6	<7	<8	<7	ug/l	<5	<5	<5	<5			
Freen (TF)	ug/kg			ANNE 40 X M	<0	<0	<8	<7		effication March		<5	<5	<5	<5			
2-Butanone	ug/kg	<14	<14	<10	<11	<12	<12	<13	<12	<13	ug/l	1111160 14	<10	<10	<10			- · · · · · · · · · · · · · · · · · · ·
1,1,1-Trichiorcethane	ug/kg	<7	<7	<5	<6	<8	<6	<7	<6	<7	ug/1	<5	<5	<5	<5			
Carbon Tetrachloride	ug/kg	<7	<7	<5	<6	<6	<6	<7	<8	<7	ug/i	<5	<5	<5	<5			
Cyclohexanone	ug/kg	<7	<7	<5	<6	<6	<6	<7	<8	<7	ug/l	<5	<5	<5	<5			
Ethyl Acetate	ug/kg	<7	<7	<5	<6	<6	<6	<7	<6	<7	ug/l	<5	<5	<5	<5			
Isobutyl Alcohol	ug/kg	<290	<270	<200	<220	<240	<240	<270	<250	<260	ug/l	<200	<200	<200	<200			
2-Ethoxyethanol	ug/kg	<14	<14	<10	<11	<12	<12	<13	<12	<13	ug/l	<10	<10	<10	<10			
n-Butyl Alcohol	ug/kg	<140	<140	<100	<110	<120	<120	<130	<120	<130	uΩΛ	<100	<100	<100	<100			
Trichloroethene	ug/kg	<7	<7	<5	<6	<6	<8	<7	<6	<7		<5	<5	<5	<5			
1,1,2-Trichloroethane	ug/kg	<7	<7	<5	<6	<0	<6	<7 ·	<0	<7	ug/l	<5	<5	<5	<5			
Benzene	ug/kg	<7	<7	<5	<6	<0	<6	<7	<8	<7	ug/l	<5	<5	<6	<5			
2 Methyl 4 Pentanone	ug/kg	<14	<14	<10	<11	<12	<12	<13	<12	<13	ug/i	<10	<10	<10	<10			
Tetrachloroethane	uo/ko	<7	<7	<5	<6	<6	<8	<7	<8	<7	ug/l	<5	<5	<5	<5			
Toluene	ua/ka	<7	<7	<5	<8	<6	<8	<7	<6	<7	ug/l	<5	<5	<5	<5			
Chiorobenzene	ug/kg	<7	<7	<5	<6	<8	<6	<7	<6	<7	ug/l	<5	<5	<5	<5			
Ethylbenzene	ug/kg	<7	<7	<5	<8	<6	<8	<7	<6	<7	ug/l	<5	<5	<5	<5			
Xylene (total)	ug/kg	<7	<7	<5	<6	<6	<6	<7	<8	<7	цдЛ	<5	<5	<5	<5	·		
Pyridine	ug/kg	<480	<450	<390	<370	<400	<400	<440	<410	Not Tested	ugΛ	<430	<10	<10	<10			
1,3-Dichlorobenzene	ua/ka	<480	<450	<390	<370	<400	<400	<440	<410	Not Tested	ug/l	<430	<10	<10	<10			
1,4-Dichlorobenzene	uo/ko	<480	<450	<390	<370	<400	<400	<440	<410	Not Tested	ug/l	<430	<10	<10	<10			
1,2-Dichlorobenzene	ug/kg	<480	<450	<390	<370	<400	<400	<440	<410	Not Tested	ug/l	<430	<10	<10	<10		_	
2-Methylphenol	uo/kg	<480	<450	<390	< 370	<400	<400	<440	<410	Not Tested	ug/l	<430	<10	<10	<10			
3-Methylphenol	ug/kg	<480	<450	<390	<370	< 400	<400	<440	<410	Not Tested	ug/l	<430	<10	<10	<10			
4-Methylphenol	ug/kg	<480	<450	< 390	<370	<400	<400	<440	<410	Not Tested	սց/	<430	<10	<10	<10			
Nitrobenzene	ug/kg	<480	<450	<390	<370	<400	<400	<440	<410	Not Tested	ug/l	<430	<10	<10	<10			
Silver, total	mgA	<.0006	<.0006	<.0006	<.0006	<.0008	<.0006	<.0006W	<.0006	<.0006	mg/l	<.0006	<.0006	<.0006	<.0006			
Arsenic, total	mg/l	<.003			adin:004834			Cistoo3El Ex			mg/1	41001144	<.003	<.003	<.003			
Barlum, total	mg/i				4 11 06 N					and the second data where the second data wh	mg/l	410.32	<.06	<.06	<.06			
Cadmium, total	mg/l	<.0006		0.0013BW		Scoot8BW/				<.0006	mg/l	< 0.0006	<.0006W	<.0006W	<.0006W			
Chromlum, total	_mg/l	14.000B	the second se	<.007	and the second se	2.007B			<.007	<.007	mg/l	<0.007	<0.007	<0.007	<0.007			
Mercury, total	mg/l	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	<.0002	mg/1	<.0002	<.0002	<.0002	<.0002			
Lead, total	mg/l	10.007.65		<.002W		10.004 V.X			<.002W	< .002	mg/1	<.002W	\$.003B		14.0028W L			
Selenium,total	mg/l	<.003W	<.003W	<.003W	<.003W	<.01W	<.003W	<.01W	<.02	<.003	mgΛ	<.003	<.003W	<.003	<.003W			•

ROS-3-XLS, 8/20/90, 2 of 2

TABLE 4

PHASE 4

······································				Roswoll, New M	exico	[[
		T		HOSWOR, HOW M							
Core Hole No.	1	SG-09-910 (M	01 80.00 A1UUU	BQ.09.01	000000000000000000000000000000000000000	8 6G-09-9114	Bas Schog Blight	3+ BG-00-91*	SG OB.PI	60-09-91	SG 09-81
Sample Dopth			1-1+*(4*9)+*1							(29:31) +	The second second second second
											Soll'I
	1										
K. S. TFillst Alcohols											
loobutanol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
n-Butanol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methanol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Family Filst Semi-Vol											
M-Cresol	mg/kg	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133
O-Cresol	mg/kg	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
P-Cresol	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2
1,2-Dichlorobenzene	mg/kg	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033
Nitrobenzene	mg/kg	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033
Pyridine	ma/ka	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633
Cyclohexanone	mg/kg	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167
A STE-Ust Volalilos											
Acetone	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Carbon Diaulfide	mg/kg	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Carbon Tetrachloride	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2
Chlorobenzene	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2
Ethyl acolate	mg/kg	<.8	<.6	<.6	<.6	<.6	<.6	<.6	<.6	<.6	< .6
Ethylbenzene	mg/kg	<.4	<.4	<.4	' <.4	<.4	<.4	<.4	<.4	<.4	<.4
Ethylether	mg/kg	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Methylene Chloride	mg/kg	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Methyl ethyl ketone	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl isobutyl ketone	mg/kg	<.8	<.6	<.8	<.8	<.8	<.6	<.8	<.6	<.8	<.6
Tetrachloroethylene	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<2	<.2	<2
Foluene	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2
1,1,1-Trichloroethane	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2
Frichtoroethylene	mg/kg	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Frichlorofluoromethane	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<2	<.2	<.2
1,1,2-Trichlorotrifluoroethan	ma/kg	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Kylenes (total)	mg/kg	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Total Recoverable HC	mo/kg	<50	<50	<50	<50	<50	<50	< 50	<50	<50	< 50
Arsenic	mg/l	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
Barlum	mg/l	101118 (118)	11 10'36" Alla	S.I.1.1.041	ANNINITA HA				1. 1249 44	111.1.1.67 * 1034	1 4 1 1 61 36
Cadmium	mg/l	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01
Chromlum	mg/l	0	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02
Lead	mg/l	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Mercury	mg/l	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02
Silver	mg/l	0.33 - 17	0.08 612 1	<.01	<.01	<.01	<.01	<.01	10.07	<.01	<.01
Selenium	mg/l	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10

.

.

r		1	6	INVERY OF C	FE STE CORE	BAMPLE ANALY	TICAL RESULTS	TWINNED SOIL	-ALS/CORF HO	ELOCATIONS				
						where the party of the local day is the second day of the local day of	swell, New Mexi	the state of the s						
Core Hole No.	SPARK S	5 6G-09-331	60-09-531	50.09.1117	\$60.0931M	SISO 09-33114			150.09331	S0'09-331	11-50 09-311	50 09-331	50 09-331. 4	\$6'09-331
Sample Depth	1: 260°	(D-3 feed)	14-8 100U	(B-13 feet)	1/14-18 teens	2(19-2) (4et)	1102-24 (een 14	1125-27 (eef st	2/28-30 (aet) (130-02 leet +1	132-34 leet	(34-36 feet)	(36-38 leet)	- (38-40 leet)
2250304.0	102 2 1	Soll		SHOP A	Boll	14 × 6311	Text Bdills 215	1.022931554	Star Ball Stat	1950 Soll	Boll a	Boll	Ball	Sal Gall
F-List Alcohols in Water		and a state of the				NAME OF A LIGITLATION	2 Contract of Contraction			Contraction of the second				
n-Butanol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
lonatudoal	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methanol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
F-List Semivolatiles In Water														
m-Cresol (3-Methylphenol)	mg/kg	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133
o-Cresol (2-Methylphenol)	mg/kg	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
p-Cresol (4-Methylphenol)	mg/kg	<.2	<2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2
1,2-Dichlorobenzene	mg/kg	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033
Nitrobenzene	mg/kg	<.033	<.033	<.033	<.033	<.033	<,033	<.033	<.033	<.033	<.033	<.033	<.033	<.033
Pyridine	mg/kg	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633
Cyclohexanone	mg/kg	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167
Toxicity Characteristic Leaching		done	done	done	done	done	done	done	done	done	done	done	done	done
F-List Volatiles														
Acetone	mg/kg	<2	<.9	۹.>	۹.>	<.9	<.9	<2	<2	<2	<2	<2	<2	<.9
Carbon disulfide	mg/kg	<.4	<.2	<2	<.2	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	< 2
Carbon tetrachloride	mg/kg	<.2	<.1	<.1	<.1	<.1	<.1	<2	<.2	<.2	<.2	< 2	<.2	<.1
Chlorobenzene	mg/kg	<.2	<.1	<.1	<.1	<.1	<.1	<.2	< 2	<.2	<.2	<.2	<.2	<.1
Ethyl acetate	mg/kg	<.6	<.3	<.3	<.3	<.3	<.3	<.6	<.6	<.6	<.6	<.6	<.6	<.3
Ethylbenzene	ma/ka	<.4	<.2	<.2	<.2	<.2	<.2	<,4	<,4	<.4	<.4	<.4	<.4	< 2
Ethyl ether	mg/kg	<.4	<.2	<.2	<.2	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	< 2
Methylene chloride	mg/kg	<.4	<.2	<.2	<.2	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<2
Methyl ethyl ketone (2-Butanone)	mg/kg	<1	<.6	<.6	<.6	<.8	<.6	<1	<1	<1	<1	<1	<1	<.8
Methyl Isobutyl ketone (4Me2C5one	mg/kg	<.6	<.3	<.3	<.3	<.3	<.3	<.6	<.6	<.6	<.6	<.8	<.6	<.3
Tetrachloroethylene	mg/kg	<.2	<.1	<.1	<.1	<.1	<.1	<.2	<.2	<.2	<2	<2	<2	<.1
Toluene	mg/kg	6.>	<.3	<.3	<.3	<.3	<.3	<.6	6.>	6.>	<.6	<.6	<.8	<.3
1,1,1-Trichloroethane	mg/kg	6.>	<.3	<.3	<.3	<.3	<.3	٥.>	<.6	<.6	<.6	<.8	<.8	< 3
Trichloroethylene	mg/kg	<.4	<.2	<.2	<.2	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	< 2
Trichlorofluoromethane	mg/kg	<.2	<.1	<.1	<.1	<.1	<.1	<.2	<.2	<.2	<2	<2	<2	<.1
1,1,2-Trichlorotrilluoroethane	mg/kg	<.4	<2	<.2	<.2	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	< 2
Xylenes (totel)	mg/kg	<.4	<.2	<.2	<.2	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	< 2
Total Recoverable Hydrocarbona	mg/kg	<50	<50	< 50	< 50	<50	<50	<50	< 50	< 50	<50	< 50	< 50	< 50
Arsenic (As), TCLP Extraction	mg/l	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
Barlum (Bas), TCLP Extraction	mg/l	2.85%	1.03	N1 581 .K	0.81	20.20	0X0	ារ ជា	0.64	2-2 #11701 JP12	261 (0.99 (-S.)	101-1231401	9 H & 1 974 1	104128¥4
Cadmium (Cd), TCLP Extraction	mg/l	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01
Chromium (Cr), TCLP Extraction	mgΛ	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02
Lead (Pb), TCLP Extraction	mg/l	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Mercury (Hg), TCLP Extraction	mg/l	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001
Silver (Ag), TCLP Extraction	mg/l	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01
Selenium (Se), TCLP Extraction	mg/l	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10

٠

ſ			60	MMARY OF C	FF-SITE CORE	SAMPLE ANALY	TICAL RESULTS	- TWINNED SOI	-GAS/CORE HO	LE LOCATIONS				
						the state of the s	well, New Mexi	Name of Street or other Designation of the Owner, which t						
Cord Hole No. 1.71 117 Stores	internation	6G-09-331	80-09-331	SG-09-337	3 6G-09-537 %				SG-09-337 #	48 SQ-09-337 IS	SG-09-337	\$0.09-358	SQ-09-358	MSG-09-358
Sample Depth	(1). JA	(40-42 log1) 23	42-43 1000	6 10-5 feet)	4 (3-8 (eet) to	Al (8-13 100)			118-23 1000 ×		x (24-33 leet)	1. (0-5 feet)	(5.9 feet) 1.	\$10-16 foet :*
A Star Star Star	the second second	Soll	Gôll is	AL HSON	8	TEall 1974	Nat U Goll 21	N II6a	Ball	e la Gall n	Boll	Boll	Ball	air Ball
F-List Alcohols in Water			2000 A	<u></u>										
nButenol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Isobutanol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methanol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
F-List Semivolatiles in Water														
m-Cresol (3-Methylphenol)	mg/kg	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133
o-Cresol (2-Methylphenol)	mg/kg	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
p-Cresol (4-Methylphenol)	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	< 2	<.2	< 2
1,2-Dichlorobenzene	mg/kg	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	< .033
Nitrobenzene	mg/kg	<.033 ·	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	< 033	<.033
Pyridine	mg/kg	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633
Cyclohexanone	mg/kg	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167
Toxicity Characteristic Leaching		done	done	done	done	done	done	done	done	done	done	done	done	done
F-List Volatiles														
Acetone	mg/kg	<.9	<.9	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Carbon disulfide	ma/ka	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Carbon tetrachloride	mg/kg	<.1	<.1	<.2	<2	<.2	<.2	<.2	<.2	<.2	<.2	< 2	<.2	<2
Chlorobenzene	mg/kg	<.1	<.1	<2	<.2	<.2	<2	<2	<.2	<.2	< 2	<.2	< 2	<2
Ethyl acetate	mg/kg	<.3	<.3	<.6	<.8	<.6	<.6	<.6	<.6	<.6	<.6	<.6	<.6	<.6
Ethylbenzene	mg/kg	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Ethyl ether	mg/kg	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Methylene chloride	mg/kg	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Methyl ethyl ketone (2-Butanone)	mg/kg	<.6	<.6	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methyl laobutyl ketone (4Me2C5one	mg/kg	<.3	<.3	<.6	<.6	<.8	<.6	<.8	6.>	<.6	<.6	6.>	<.8	<.8
Tetrachloroethylene	mg/kg	<.1	<.1	<.2	<.2	<.2	<.2	<.2	<.2	<.2	<.2	< 2	< 2	<2
Toluene	mg/kg	<.3	<.3	<.8	<.6	<.6	<.6	<.6	<.6	6.>	<.6	6.8	<.6	<.6
1,1,1-Trichloroethane	mg/kg	<.3	<.3	<.8	<.6	<.8	<.8	<.6	<.6	<.8	<.6	6.>	<.6	<.6
Trichloroethylene	mg/kg	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Trichlorofluoromethane	mg/kg	<.1	<.1	<.2	<.2	<.2	<.2	<.2	<2	<.2		<.2		<2
1,1,2-Trichlorotrifluoroethene	mg/kg	<.2	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4	<u><.4</u> <.4	<.4 <.4	<.4	<.4
Xylenes (total)	mg/kg	<.2	<.2 <50	<.4 <50	<.4 <50	<.4 <50	<.4 <50	<u><.4</u> <50	<.4	<50	<50	<u>``</u>		
Total Recoverable Hydrocarbons	mg/kg	< 50			<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
Arsenio (As), TCLP Extraction	mg/1	<.1	<.1	<.1		0.56		<.01	No. 1. 2.101. 100					26. 0.52 W
Barlum (Bae), TCLP Extraction Cadmium (Cd), TCLP Extraction	<u>mg/l</u>	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	< .01	<.01	< .01
Chromium (Cd), TCLP Extraction	mg/l mg/l	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	< .02
Lead (Pb), TCLP Extraction	mg/l	<.02	<.02	<.02	<.02	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05
Mercury (Hg), TCLP Extraction	mg/l	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001
Silver (Ag), TCLP Extraction	mg/l	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	D \$1 (0.03 m.51	<.01
Selenium (Se), TCLP Extraction	mg/l	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10

.

ROS-17.XL8, 8/21/90, 3 of 7

.

r	r	Y	E	WILLIAMY OF C		BAMPLE ANALY	TICAL DECLATO	THANKIED CON	OLODDE HO	EL OCATIONA	·			
				MMANT OF C	FF-SITE CORE	And in the second day in the second	nune nesoura	the second se		LELOUAINIS				
Core Hole No. 53 - 10 - 14		1 6G-09-358 /	80-09-358	CO 00 148		SO-09-35840			Sec. 00 360	1250-09-360 1	-4 SQ'00 360	SG-09-360 *	5. 60-09-360	SG 09-360 1
Sample Depth Laboration		(18-20 leat)	00-00-000	DA 10 Lad	00-09-3001) (25-30 leet) 4	302024000	3044400	V /8.14 (act)			(18-25 leet) I	1 (25-29 (++)	a (20-30 feet)
Series Contraction of the series of the seri	1.20	Soll	Dolt 3	ALL CALL	COSU 10003	20-01	AND	AND ALL SHOW	Coll &	Ball	1 Ball	Boll	Boll	17 8oll,
F-Uat Alcohols in Water	1. 1.01 1.11	0011	1000 000 554	24-2-30N 2009	100 C C C C C C C C C C C C C C C C C C	Street Boll Street	Press of Colorador	Solution Coll Statistics	States Odi assess	ALCONE OVER STREET,	Second O'dil Notest			
n-Butanol		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Isobutanol	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methanol	mg/kg		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	_mg/kg	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>`</u>		<u>></u> '	<u>`'</u>	<u>`</u>	·		
F-List Semivolatiles in Water					<.133		<.133	<.133	<.133	<.133	<.133	<.133	<.133	<.133
m-Cresol (3-Methylphenol)	mg/kg	<.133	<.133	<.133		<.133					<.1	<.1	<.1	<.1
o-Cresol (2-Methylphenol)	mg/kg	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1 <.2	<.1	<.2	<.2	<.2	<.2
p-Cresol (4-Methylphenol)	mg/kg	< 2	<.2	<.2	<.2	<.2	<.2	<.2		<.033	<.033	<.033	<.033	<.033
1,2-Dichlorobenzene	mg/kg	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033
Nhrobenzene	mg/kg	<.033	<.033	<.033	<.033	<.033	<.033	<.033	<.033		<.633	<.633	< .633	<.633
Pyrldine	mg/kg	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.633	<.167	<.167	<.167	<.167
Cyclohexanone	mg/kg	<.187	<.167	<.167	<.167	<.167	<.167	<.167	<.167	<.167 done	done	done	done	done
Toxicity Characteristic Lesching		done	done	done	done	done	done	done	done	done	done	done	oone	done
F-List Volatiles									<2	<2	<2	<2	<2	<2
Acetone	mg/kg	<2	<2	<2	<2	<2	<.9	<2		<.4	<.4	<.4	<.4	<.4
Carbon disulfide	mg/kg	<.4	<.4	<.4	<.4	<.4	<.2	<.4	<.4	<.4	<.2	<.2	< 2	< 2
Carbon tetrachloride	mg/kg	<.2	<.2	<.2	<.2	<.2	<.1	<.2	< 2	< 2	<.2	< 2	<.2	< 2
Chlorobenzene	mg/kg	<.2	< 2	<.2	<.2	<.2	<.1	<u><.2</u> <.6	<.8	<.6	<.6	<.6	<.6	<.6
Ethyl acetate	mg/kg	<.6	<.6	6,>	< .6	<.8	<.3				<.4	<.4	<.4	<.4
Ethylbenzene	mg/kg	<.4	<.4	<.4	<.4	<.4	· <.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Ethyl ether	ma/ka	<.4	<.4	<.4	<.4	<.4	<.2	<.4	<.4	<u><.4</u> <.4	<.4	<.4	<.4	<.4
Methylene chloride	mg/kg	<.4	<.4	<.4	<.4	<.4	<.2	<.4	<.4				<1	<1
Methyl ethyl ketone (2-Butanone)	mg/kg	<1	<1	<1	<1	<1	<.6	<1	<1	<1	<1	<1	<.6	<.6
Methyl Isobutyl ketone (4Me2C5one	mg/kg	<.6	<.6	8.>	<.6	<.8	<.3	<.6	6.>	<.6	<.6	<.6	the second se	
Tetrachloroethylene	mg/kg	<.2	<.2	<.2	<.2	<.2	<.1	<.2	<.2	<.2	<.2	<2	<2	<2
Toluene	mo/kg	<.6	<.6	<.6	<.6	<.8	<.3	8,>	<.6	<.6	6.>	<u> </u>	<.6	<.8
1,1,1-Trichloroethane	mg/kg	<.6	<.6	<.8	<.6	<.8	<.3	<.6	<.6	<.6	<.6	<.6	<.6	<.6
Trichloroethylene	mg/kg	<.4	<.4	<.4	<.4	<.4	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Trichlorofluoromethane	mg/kg	<.2	<.2	<.2	<.2	<.2	<.1	<.2	<.2	<.2	<.2	<2	< 2	<2
1,1,2-Trichlorotrifluoroethane	mg/kg	<.4	<.4	<.4	<.4	<.4	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Xylenes (lotel)	_mg/kg	<.4	<.4	<.4	<.4	<.4	<.2	<.4	<.4	<.4	<.4	<.4	<.4	<.4
Total Recoverable Hydrocarbons	_mg/kg	Not Tested	Not Tested	<50	Not Tested	< 50	<50	<50	<50	<50	<50	<50	< 50	< 50
Arsenic (As), TCLP Extraction	mg/l	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1	<.1
Barlum (Bas), TCLP Extraction	<u>mg/l</u>										59 18 0.41 NIL			
Cadmium (Cd), TCLP Extraction	_mg/l	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01
Chromium (Cr), TCLP Extraction		<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<.02
Lead (Pb), TCLP Extraction	ma/l	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05		<.001
Mercury (Hg), TCLP Extraction	mg/l	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	
Silver (Ag), TCLP Extraction	mg/l	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	0.18	<.01	<.01	<.01	<.01
Selenium (Se), TCLP Extraction	mg/l	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.1U

ROS-17.XL8, 8/21/90, 4 of 7

.

٠

÷

.

•

.

.

r	·	1	6	INVARY OF C	FE SITE CORE		TICAL RESULTS	- TWINNED GOIL	ALS/CORF HO	FLOCATIONS	 r	r	
							swell, New Mex				 		
Com Hole No.	1.000	5 6G-09-360 V	60-09-370	50.09-3701	80.09370	SG 09 370					 		
Sample Depth is 2 10.	S. 199.2.1.	(30-34.6 feet) *				(15-19 1000)					 		
CAT ::		Soll	Boll	J. Soll	Boll	N Kal Balls a .	1 651 AV				 		
F-List Alcohols in Water											 		
n-Butanol	mg/kg	<1	<1	<1	<1	<1	<1				 		[
Isobutanol	mg/kg	ND	<1	<1	<1	<1	<1				 		
Methanol	mg/kg	<1	<1	<1	<1	<1	<1						
F-List Semivolatiles in Water													
m-Cresol (3-Methylphenol)	mg/kg	<.133	<.133	<.133	<.133	<.133	<.133						
o-Cresol (2-Methylphenol)	mg/kg	<.1	<.1	<.1	<.1	<.1	<.1						
p-Cresol (4-Methylphenol)	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2						I
1,2-Dichlorobenzene	mg/kg	<.033	<.033	<.033	<.033	<.033	<.033						
Nłuobenzene	mg/kg	<.033	<.033	<.033	<.033	<.033	<.033						
Pyridine	mg/kg	<,633	<.633	<.633	<.633	<.633	<.633						
Cyclohexanone	mg/kg	<.167	<.167	<.167	<.167	<.167	<.167						
Toxicity Characteristic Leaching		done	done	done	done	done	done						
F-List Volatiles													
Acetone	mg/kg	<2	<2	<2	<2	<2	<2						
Carbon disutide	mg/kg	<.4	<.4	<.4	<.4	<.4	<.4						
Carbon tetrachloride	mg/kg	<.2	<.2	<.2	<.2	<2	<.2						
Chlorobenzene	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2				 		
Ethyl acetate	mg/kg	<.6	<.6	<.6	<.6	<.6	<.6						
Ethylbenzene	mg/kg	<.4	<.4	<.4	<.4	<.4 '	<.4						·
Ethyl ether	mg/kg	<.4	<.4	<.4	<.4	<.4	<.4				 		
Methylene chloride	mg/kg	<.4	<.4	<.4	<.4	<.4	<,4						
Methyl ethyl ketone (2-Butanone)	mg/kg	<1	<1	<1	<1	<1	<1						
Methyl leobutyl ketone (4Me2C5one	mg/kg	<.6	<.8	<.8	<.8	<.6	<.8						
Tetrachloroethylene	mg/kg	<.2	<.2	<.2	<.2	<.2	<.2						l
Toluene	mg/kg	<.6	<.6	<.6	<.6	<.6	<.6		·				l
1,1,1-Trichloroethane	mg/kg	≤.6	<.6	<.6	<.ô	<.6	6.>						
Trichloroethylene	mg/kg	<.4	<.4	<,4	<.4	<.4	<.4						
Trichiorofluoromethane	mg/kg	<.2	<.2	<.2	<2	<.2	<.2						
1,1,2-Trichiorotrifluoroethane	mg/kg	<.4	<.4	<.4	<.4	<.4	<.4						
Xylenes (total)	mg/kg	<.4	<.4	<.4	<.4	<.4	<.4						
Total Recoverable Hydrocarbons	mg/kg	< 50	< 50	< 50	<50	< 50	< 50				 		
Arsenio (As), TCLP Extraction	mg/l	<.1	<.1	<.1	<.1	<.1	<.1				 		
Berlum (Bes), TCLP Extraction	mg/l	1.5 1.5 5	1.69 -1	0.54	45170.313tm	IEI MISAIST	1190 HT /				 		
Cadmium (Cd), TCLP Extraction	mg/l	<.01	<.01	<.01	<.01	<.01	<.01				 		
Chromlum (Cr), TCLP Extraction	mg/l	<.02	<.02	<.02	<.02	<.02	<.02				 		
Lead (Pb), TCLP Extraction	mg/l	<.05	<.05	<.05	<.05	<.05	<.05				 		
Mercury (Hg), TCLP Extraction	mg/l	<.001	<.001	<.001	<.001	<.001	<.001				 		l
Silver (Ag), TCLP Extraction	mg/l	<.01	<.01	<.01	<.01	St St (0,03) 5511					 		
Selenium (Se), TCLP Extraction	mg/l	<.10	<,10	<.10	<.10	<.10	<.10				 I		I

•

to the second se

•

.

.

TABLE 4 (CONT)

.

		S	UMMARY OF	OFF-SITE C	ORE BAMP	EANALYTI	CAL RESULT	S - TWINNE	D SOIL-GAS/	CORE HOLE	LOCATIONS	3						
							voll, Now Me			l	T							
Sample ID		Blank #331	Blank #331	Blank #331	Blank #331	Blank #337	Blank #337	Blenk#337	Blank #337	Blank #358	Blank #358	Blenk #358	Blank #360	Blank #360	Blank #360	Blank #360	Blank #370	Blank #370
·		EQ	N IBTIN	E FD we		EQ			IVA TRANK	12 FD I		EQ1	tek EQ 14	TR	FD	TR	TR 👘	IN EQ
• C	131.5	Water	Water #	Waters	Water	Waterla	Water	Water	Waler	Waters	Weterat	Water	Weler L	Water	Waler	Water	Water	Water
F-List Alcohols in Water											1							
n-Butanol	mg/i	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
leobutenol	mg/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methanol	mgA	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
F-List Semivolatiles in Water																		
m-Cresol (3-Methylphenol)	ug/l	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<.0133	<4	<4	<4	<4
o-Cresol (2-Methylphenol)	ug/1	< 3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<.01	<3	<3	<3	<3
p-Cresol (4-Methylphenol)	<u>ug/</u>	<8	<8	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<.02	<6	<6	<6	<6
1,2-Dichlorobenzene	ug/l	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<.033	<1	<1		<u><1</u>
Nitrobenzene	սց/	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	< .033	<1	<1	<1	<1
Pyridine	սց/լ	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	<19	<.633	<19	<19	<19	<19
Cyclohexanone	<u>ug/</u>	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<.167	<5	<5	<5	<5
Toxicity Characteristic Leaching	I	done	done	done	done	done	done	done	done	done	done	done	done	done	done	done	done	done
F-List Volatiles	-																	
	<u>ug/</u>	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17	<17
Carbon disullide	ug/	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	< 3	<3	<3	<3	<3	<3 <2
	ug/l	<2	<2	<2	<2	<2	<2	· <2	<2	<2	<2	<2	<2	<2	<2	<2		
Chlorobenzene	ug/l	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Ethyl acetale	ug/l	<6	<6	<6	<8	<6	<8	<6	<6	<8	<8	<6	<8	<6	<0	<6	<6	<6
	ug/l	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Ethyl ether	uo/I	<4	<4	<4	<4	<4	_<1 '	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
	ug/l	_<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
	ug/1	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12	<12
	ug/l	<8	<8	<6	<0	<6	<8	<8	<6	<6	<8	<8	<8	<8	<8	<6	<6	<8
	ug/l	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	ug/	<2	<2	<5	<5	<5	<6	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	ug/l	<2	<2	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichloroethylene	ug/i	_<4	<4	<4	<4			<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
	ug/l	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
	ugA	<4	<4	<4		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
	ugΛ	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
	mg/l	<1	<1	<1	1.010	<1		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	<u>mg/</u>	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1 0.43	<0.1	<0.1
Barlum (Ba), TCLP Extraction	mg/)	0.03		101178							And in case of the local division of the loc	0.36		the second s	Contraction of the local division of the loc		the second s	CONT
	mg/l	<.01	<.01	<.01	<.01	<.01 <.02	<.01	<.01 <.02	<.01	<.01	<.01	<.01 <.02	<.01	<.01	<.01	<.01	< .01	<.01
Chromium (Cr), TCLP Extraction	<u>mg/</u>	< .02	<.02	<.02	<.02	<.02	<.02		<.02				<.02	<.02	<.02	0.43 4	1 2 02	
	mg/l	<.05	<.05	<.05	<.05		a state of the sta				< .001	<.001	<.001	<.001	<.001	< .001	< .001	< .001
	mg/l	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001	<.001		<.001	<.01	<.01	<.01	<.01	<.01	<.01
	mg/l	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	the second s	<.10	<.10	<.10	<.10	<.10	<.10
Selenium (Se), TCLP Extraction	mg/l	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<.10	<u> </u>

ROS-18/17.XLS, 8/21/90, 6 of 7

SUMM	ARYOF	OFF-	SITE SAMPLE ANA	LYTICAL RESULTS	- TWINNED SOIL-C	AS/CORE HOLE L	OCATIONS
			Roew	ell, New Mexico			
Sample D \$1/11		124	Blank #091 st	Blahk #091	#Blank #091 M	Blank #091	Blank #001
Sample D S	\$1.7 Mar	i.s.	************************************	FD	EQ #14.1	TR 🗧	FD / J
S.C. Williams	5.741	ρň	Wafer	Water	Water	Watior .	- Watership
E-fist Alcohols							
Isobutanol	mg/l		<1	<1	<1	<1	<1
n-Butanol	mg/t		<1	<1	<1	<1	<1
Methanol	mg/l		<1	<1	<1	<1	
Star Filet Semi-Volt 1 15							
M-Cresol	ug/l		Not Tested	Not Tested	<4	Not Tested	Not Tested
O-Cresol	ug/l	-	Not Tested	Not Tested	<3	Not Tested	Not Tested
P-Creeol	ugA		Not Tested	Not Tested	<6	Not Tested	Not Tested
1.2-Dichlorobenzene	ug/l		Not Tested	Not Tested	<1	Not Tested	Not Tested
Nitrobenzene	ug/l	-	Not Tested	Not Tested	<1	Not Tested	Not Tested
Pyridine	ugA		Not Tested	Not Tested	<19	Not Tested	Not Tested
Cyclohexanone	ug/l	-	Not Tested	Not Tested	<5	Not Tested	Not Tested
Cyclonexanone		-		1101 1 00100			
Conse F-List Volatilies Mildle		-					
Acetone	ug/i	-	<17	<17	<17	<17	<17
Carbon Disulfide	ug/i		<3	<3	<3	<3	<3
Carbon Tetrachloride	ug/		<2	<2	<2	<2	<2
Chlorobenzene	ug/1		<2	<2	<2	<2	<2
Ethyl acetate			<6	<6	<6	<6	<6
Ethylbenzene	ug/	-	<3	<3	<3	<3	<3
Ethylether		-	<4	<4	<4	<4	<4
Methylene Chloride			<4	<4	<4	<4	<4
	ug/l	-	<25	<25	<12	<25	<25
Methyl ethyl ketone	ug/l			<6	<6	<8	<6
Methyl isobutyl ketone	ug/1	—	<8	<0	<8	<8	<2
Tetrachloroethylene	ug/l			The second s			
Toluene	ug/		<4	<4	<2	<4	<4
1,1,1-Trichloroethane	ug/		<4		and the second sec		
Trichloroethylene	ug/i	_	<4	<4	<4	<4	<4
Trichlorofluoromethane	ug/l		<2	<2	<2	<2	<2
1,1,2-Trichlorotrifiuoroethan	_ug/l		<4	<4	<4	<4	<4
Xylenes (total)	ug/l	_	<3	<3	<3	<3	<3
Total Recoverable HC	mg/i		Not Tested	Not Tested	<1	Not Tested	Not Tested
Arsenlo	mg/i	-	Not Tested	Not Tested	<.1	Not Tested	Not Tested
Barium	mgA		Not Tested	Not Tested	0.11 mil 2	Not Tested	Not Tested
Cadmlum	_mg/l		Not Tested	Not Tested	<.01	Not Tested	Not Tested
Chromlum	_mg/l		Not Tested	Not Tested	<.02	Not Tested	Not Tested
Load	mg/l		Not Tested	Not Tested	<.05	Not Tested	Not Tested
Mercury	mg/l		Not Tested	Not Tested	<.02	Not Tested	Not Tested
Silver	_mg/l	_	Not Tested		0.07.61.41	Not Tested	Not Tested
			Mad Tanks d	Also Tasked		AL. A.T	ALC: T A. A

Metric Corporation 1991 Soil VOC Analytical Results

601

ev 2011 1.1.1.1

3013

 $\mathbf{\hat{n}} \in \mathcal{J}_{\mathcal{O}}$

43,55 P

--- 2-4

-

1.13

 $M_{1} \rightarrow 0$

tik W

44-54

TABLE 2

SUMMARY OF ANALYTICAL RESULTS FOR PURGEABLE HALOCARBON OCCURRENCE AT ROSWELL COMPRESSOR STATION

Pit 1 9.2'-9.4'	Pit 1 13.5'-13.7'	Pit 1 18.8'-19.0'	Pit 1 26.8'-27.0'	Pit 1 30.6'-30.8'	Pit 1 41.6'-41.8'	Pit 1 43.5'-43.7'	Pit 2 001 (18.7'-1	Pit 2 002 8.9')	Pit 2 26.0'-26.2
19 0.26 BDL BDL	18 0.33 0.20 0.59	0.33 0.87 BDL BDL	BDL 0.16 BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL	0.37 0.65 BDL BDL BDL	BDL BDL BDL BDL
	2 Pit	2 Pi	t 2 F	12 2	Pit 3, BH-1	Pit 3, BH-2			SG 86 18.7'-18.9
	BDL	BDL 0.59 Pit 2 Pit	BDL 0.59 BDL Pit 2 Pit 2 Pi	BDL 0.59 BDL BDL SAMPLE NU P1t 2 P1t 2 P1t 2 P	BDL 0.59 BDL BDL BDL BDL SAMPLE NUMBER Pit 2 Pit 2 Pit 2 Pit 2	BDL 0.59 BDL BDL BDL BDL BDL BDL SAMPLE NUMBER Pit 2 Pit 2 Pit 2 Pit 3, BH-1	BDL BDL <td>BDL BDL BDL<td>BOL 0.59 BOL BOL</td></td>	BDL BDL <td>BOL 0.59 BOL BOL</td>	BOL 0.59 BOL BOL

TABLE 2 (Continued)

SUMMARY OF ANALYTICAL RESULTS FOR PURGEABLE BALOCARBON OCCURRENCE AT ROSWELL COMPRESSOR STATION

PARAMETER				<u>8</u> A	MPLE_NUMBER					
	SG 86 24.9'-25.1'	5G 86 35.0'-35.2'	5G 86 40.5'-40.7'	\$G 91 28.6'-28.8'	50 349 0.0'-1.8'	5G 349 2.9'-4.6'	5G 349 9.0'-10.0'	\$G 349 14.0°-14.8°	\$G 349 20.3'-21.3'	5.3'-26.3'
Purgeable Helocarbon Compounds (mg/kg) Method 8010	BDL	BDL.	BDL.	BDL.	BDL.	BDL	BDL.	BDL.	BDL	BDL
				54	MPLE NUMBER					
	SG 349 29.7'-30.4'	SG 360 0.0'-2.5'	SG 360 4.0'-5.0	5G 3 9.0'-		5G 360 14.0'-14.7'	5G 360 19.0'-20.0'	5G 360 24.0'-25.0'	5G 360 29.0'-29.4'	5G 361 0.0'-2.5
Purgeable Halocarbon Compounds (mg/kg) Method 8010	BDL	BDI.	BDL	BD	L	BDL	BDL.	BDL.	BDL	BDL
PARAMETER				SA	MPLE NUMBER	, I		· · · · · · · · · · · · · · · · · · ·		
	'SG 361 4.0'-5.0'	SG 361 9.0'-10.0'	SG 361 16.0'-16.4'	\$G 361 19.5'-19.8'	SG 361 24.0'-25.	5G 36 0' 38.0'-3			OS BH-2 9.9'-10.1	08 BH-2 22.5'-22.6
Purgeable Halocarbon Compounds (mg/kg) Method 8010										
	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

i. i i	i i	Î	X) R	à	19 1		ŝ	- 1998	\$. Settle	1. Aler) Ağışın	Medic	99	1	alify'.	 a G	-ive	2 A	1. 1.	1 2	1. Line	÷
										•														

TABLE 2 (Continued)

SUMMARY OF ANALYTICAL RESULTS FOR PURGEABLE HALOCARBON OCCURRENCE AT ROSWELL COMPRESSOR STATION

PARAMETER		•		SAMPLE NU	@ER			· · · · · · · · · · · · · · · · · · ·	
	, 05 BH-2 31.1'-31.3'	OS BH-2 41.6'-42.0'	08 BH-2 55.2'-55.4'	05 BH-2 69.0'-69.2		OS BH-3 .0'-21.2'	08 BH-3 44.1°-44.3°	08 BH-3 54.7'-55.0'	08 BH-4 27.5'-27.7'
Purgeable Halocarbon Compounds (mg/kg) Method 8010	BDI.	BDI.	BDI.	BDI.		BDI.	BDL.	BDL	BDI.
PARAMETER				SAMPLE NU	MBER				
	OS BH-5 14.0'-14.2'	OS BH-5 19.6'-19.9'	OS BH-5 23.4'-23.6'	OS BH-6 13.6'-13.8' 4	OS BH-6 7.0'-47.2'	OS BH-6 52.6'-52.8'	08 BH-6 70.0'-71.0'	05 BH-7 22.1*-22.3*	OS BH-7 33.5'-33.7
Purgeable Helocarbon Compounds (mg/kg) Method 8010									
	BDL	BDL.	BDL	BDL	BDL.	BDL	BDL	BDI.	BDL.
PARAMETER				SAMPLE NU	MBER				
	OS BH-7 37.0'-37.2'	OS BH-8 4,6'-4,9'	OS BH-8 33.9'-34.1	OS BH-6		08 BH-9 4.5'-4.9'	OS BH-9 .32.0'-32.5'	08 BH-9 49.5'-49.7'	
Purgeable Halocarbon Compounds (mg/kg) Method 8010					<u>, , , , , , , , , , , , , , , , , , , </u>				
Tetrachloroethene Clorobenzene	0.17 BDL	BDL BDL	0.16 0.12	BDL BDL		BDL BDL	bdi. Bdi	BDL BDL	

DBL = below detection limit of 0.1 mg/kg.

- ชี่ และ เริ่มไว้ แล้วได้หลายนี้หลายสี้นและ นี้หนะ หรือบางสร้านเอกที่โทเธะ หรือไปหมูนี้แนดแก้ พิธพิษณณ ซึ่ง109

Work Order # 91-07-257

Page 1 Received: 07/23/91

REPORT	ENRON/TRANSWESTERN	PIPELINE
ТО	6381 N. MAIN STREET	p
	P.O. BOX 1717	
	ROSWELL, NM 88202-	-1717
ATTEN	LARRY CAMPBELL	
CLIENT	ENRO3	SAMPLES 12
COMPANY	ENRON/TRANSWESTERN	PIPELINE
FACILITY	ROSWELL, NEW MEXICO)
	ENR03	
WORK ID	STATION #9	7784
TAKEN	7/22/91	
TRANS	FEDERAL EXPRESS	
TYPE	SOIL	
P.O. #		

07/31/91	10:36:55	

PRDOPT

PREPARED	<u>Assaigai Analytical Labs</u>		
	7300 Jefferson NE	Syed	P.
	Albuquerque, NM 87109	(•
	· .	CERTIFIED	BY
ልጥጥድክ	SVED RIZVI		

PHONE (505)345-8964

CONTACT LAB MANAGER

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

SAMPLE IDENTIFICATION

INVOICE under separate cover

<u>01</u>	PIT	2	SAMPLE 001
02	PIT	2	SAMPLE 002
03	PIT	2	26.0-26.2
04	PIT	2	29,1-29.3
05	PIT	2	39.8-39.9
0 6	PIT	2	44.1-44.3
07	PIT	2	57.5-57.8
08	PIT	2	69.9-70.1
0 9			
10			·
11	PIT	3	BH-2 25.0-25.2
12	PIT	3	BH-1 30.7-30.9

TEST CODES and NAMES used on this workorder

8010_S PURGEABLE HALOCARBONS-SOIL 8020 AROMATIC VOLATILE ORGANICS

<u>TRPH</u>	TOTAL	REC	PET	HYDROCARBONS

2. Ľ L £., ANALYTICAL LABORATORIES, INC. • 7300 Jefferron, N.E. • Albuquerque, New Mexico \$7109

Page 2 Received: 07/23/91

SAMPLE ID PIT 2 SAMPLE 001

Results by Sample

TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL FRACTION **01A** Date & Time Collected 07/22/91

LIMIT

REPORT

RESULT

Category

PA	RA	ME	ТЕ	R
----	----	----	----	---

BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM 2-CHLOROETHYL VINYL ETHER CHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE **DICHLORODIFLUOROMETHANE** 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE trans-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE cis-1,3-DICHLOROPROPENE 1,1,2,2-TETRACHLOROETHANE trans-1,3-DICHLOROPROPENE METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TETRACHLOROETHENE TRICHLOROFLUOROMETHANE TRICHLOROETHENE VINYL CHLORIDE

LOODI	111114 1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0,1
<0,1	0.1
<0,1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	<u> 0.1</u>
<0.1	<u> </u>
<0.1	<u> 0.1</u>
<0.1	<u> </u>
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1

tember: American Council of Independent Laboratories, Inc.

Page 3 Received: 07/23/91 REPORT Results by Sample Work Order # 91-07-257 Continued From Above

SAMPLE ID PIT 2 SAMPLE 001

FRACTION 01ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/22/91Category _____

i i

EXTRACTED	07/29/91
DATE RUN	07/29/91
ANALYST D/R	
UNITS	MG/KG

ANALI IICAL LABURATORIES, MYC. . 7300 JELICESON, N.D. . Albuquerque, IVEW MELIOS . /109

Page 4 Received: 07/23/91 REPORT

Work Order # 91-07-257

Results by Sample

SAMPLE ID PIT 2 SAMPLE 002

TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL FRACTION 02A Date & Time Collected 07/22/91 Category ____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0,1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0,1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0,1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0,1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0:1
1,3-DICHLOROBENZENE	<0.1	0,1
1,4-DICHLOROBENZENE	<0.1	<u> </u>
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0,1
1,2-DICHLOROETHANE	<0.1	<u> </u>
1,1-DICHLOROETHENE	<0.1	
trans-1,2-DICHLOROETHENE	<0.1	
1,2-DICHLOROPROPANE	<0.1	0,1
cis-1,3-DICHLOROPROPENE	<0,1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	0.37	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	0.65	
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

Member: American Council of

ANALY HEAL LANDURATORIES, INC. - Tow JEHERVER, N.H. - Albuquerque, New Mericu &/109

Page 5 Received: 07/23/91

REPORT . Results by Sample

Work Order # 91-07-257 Continued From Above

SAMPLE ID PIT 2 SAMPLE 002

FRACTION 02ATEST CODE 8010_8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/22/91Category _____

EXTRACTED	07/29/91
DATE RUN	07/29/91
ANALYST D/R	
UNITS	MG/KG

Page 6 Received: 07/23/91 REPORT

Results by Sample

SAMPLE ID PIT 2 26.0-26.2

5.0-26.2 FRACTION <u>03A</u> TEST CODE <u>8010 8</u> NAME <u>PURGEABLE HALOCARBONS-SOIL</u> Date & Time Collected <u>07/22/91</u> Category _____

> 0.10.10.1

0,1 0,1 0,1 0,1 0,1

0,1 0.1 0,1 0,1 0.1 0.1 0.1 0.1 0,1 0,1 0,1 0.1 0.1 0.1 0.1 0,1 0.1 0.1 0.1 0.1 0.1

73.57

476

遷

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0
BROMOFORM	<0.1	0
BROMOMETHANE	<u> <0.1</u>	0
CARBON TETRACHLORIDE	<0,1	0
CHLOROBENZENE	<0.1	
CHLOROETHANE	<0.1	
CHLOROFORM	<0.1	(
2-CHLOROETHYL VINYL ETHER	<0.1	(
CHLOROMETHANE	<0.1	· (
DIBROMOCHLOROMETHANE	<0.1	
1,2-DICHLOROBENZENE	<0.1	
1,3-DICHLOROBENZENE	<0.1	
1,4-DICHLOROBENZENE	<0.1	
DICHLORODIFLUOROMETHANE	<0.1	
1,1-DICHLOROETHANE	<0.1	
1,2-DICHLOROETHANE	<0.1	
1,1-DICHLOROETHENE	<0,1	
trans-1,2-DICHLOROETHENE	<0.1	
1,2-DICHLOROPROPANE	<0.1	
cis-1,3-DICHLOROPROPENE	<0,1	
1,1,2,2-TETRACHLOROETHANE	<0.1	
trans-1,3-DICHLOROPROPENE	<0.1	
METHYLENE CHLORIDE	<0.1	
1,1,1-TRICHLOROETHANE	<u> <0,1</u>	
1,1,2-TRICHLOROETHANE	<0.1	
TETRACHLOROETHENE	<0.1	
TRICHLOROFLUOROMETHANE	<0.1	
TRICHLOROETHENE	<0.1	·
VINYL CHLORIDE	<0.1	

Member: American Council of Independent Laboratories, Inc.

潭

SNia

1

1. B.

4

100

4 ...

.

1 1

han and a HAR and an AT Brand and C. . som and control , san - relaging with ster the and a /109

a a 4 7

Page 7 Received: 07/23/91

REPORT Results by Sample

Work Order # 91-07-257 Continued From Above

SAMPLE ID **PIT 2 26.0-26.2**

FRACTION 03ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/22/91Category

EXTRACTED	07/29/91
DATE RUN	07/29/91
ANALYST D/R	
UNITS	MG/KG

N \mathbf{u} ۴. ANALY ITCAL LABURATORIES, INC. + 7300 Jefferson, N.H. + Albuquerque, New Mexico \$7109

REPORT

Received: 07/23/91

Page 8

SAMPLE ID **PIT 2 29.1-29.3**

Results by Sample

FRACTION 04ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/22/91Category _____

Ĩ.....

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0,1	0.1
CARBON TETRACHLORIDE	<0.1	
CHLOROBENZENE	<0.1	0,1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0,1
2-CHLOROETHYL VINYL ETHER	<0,1	
CHLOROMETHANE	<0,1	
DIBROMOCHLOROMETHANE	<0.1	
1,2-DICHLOROBENZENE	<u> </u>	0.1
1, 3-DICHLOROBENZENE	<u><0,1</u>	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0,1	0.1
1,1-DICHLOROETHANE	<0,1	
1,2-DICHLOROETHANE	<0,1	0.1
1,1-DICHLOROETHENE	<u> </u>	<u> </u>
trans-1,2-DICHLOROETHENE	<0,1	
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0,1	<u> </u>
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0,1
METHYLENE CHLORIDE	<0,1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0,1
TRICHLOROFLUOROMETHANE	<0,1	0,1
TRICHLOROETHENE	<0,1	<u> 0.1</u>
VINYL CHLORIDE	<u> </u>	0.1

.

.

Member: American Council of Independent Laboratories, Inc.

ANALYTICAL LABORATORIES, INC. • 7300 Jefferson, N.E. • Albuquerque, New Mexico 87109

Page 9 Received: 07/23/91 RBPORT Results by Sample Work Order # 91-07-257 Continued From Above

SAMPLE ID **PIT 2 29.1-29.3**

FRACTION <u>04A</u> TEST CODE <u>8010_8</u> NAME <u>PURGEABLE HALOCARBONS-SOIL</u> Date & Time Collected <u>07/22/91</u> Category _____

二章:"东三藩,三藩,立二军,以

EXTRACTED	07/29/91
DATE RUN	07/29/91
ANALYST D/R	
UNITS	MG/KG

REPORT

RESULT

Results by Sample

Received: 07/23/91

Page 10

SAMPLE ID **PIT 2 39.8-39.9**

FRACTION 05A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected 07/22/91 Category _____

LIMIT

PARAMETER

BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM 2-CHLOROETHYL VINYL ETHER CHLOROMETHANE DIBROMOCHLOROMETHANE 1.2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE trans-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE cis-1,3-DICHLOROPROPENE 1,1,2,2-TETRACHLOROETHANE trans-1,3-DICHLOROPROPENE METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TETRACHLOROETHENE TRICHLOROFLUOROMETHANE TRICHLOROETHENE VINYL CHLORIDE

<0.1	0.1
<0.1	0.1
<0,1	0,1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0.1
<0,1	0,1
<0,1	0,1
<0.1	0,1
<0.1	0,1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0,1
<0.1	0,1
<0,1	0.1
<0.1	0,1
<0.1	0,1
<0.1	0.1
<0.1	0,1
<0,1	0.1
<0.1	0.1
<0.1	0,1
<0,1	0,1
<0.1	0,1

Member: American Council of

「き」、「ち」、「ち」

1. 1. 1. 1. - 'Ag 16.4 Anne i ilche ensoral diass, ilc. . in sieren in ins. - Albuguerun iter Me 109 ÷. 2

Page 11 Received: 07/23/91

REPORT Results by Sample

Work Order # 91-07-257 Continued From Above

SAMPLE ID PIT 2 39.8-39.9

.

FRACTION 05A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL Date & Time Collected 07/22/91 Category _

EXTRACTED	07/29/91
DATE RUN	07/29/91
ANALYST D/R	
UNITS	MG/KG

,

REPORT Results by Sample

Received: 07/23/91

Page 12

SAMPLE ID PIT 2 44.1-44.3

L-44.3 FRACTION <u>06A</u> TEST CODE <u>8010 8</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>07/22/91</u> Category _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0,1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	
CHLOROMETHANE	<0.1	
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0,1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	
1,2-DICHLOROPROPANE	<0.1	
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0,1
METHYLENE CHLORIDE	<0,1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0,1	0,1
TRICHLOROFLUOROMETHANE	<0,1	0.1
TRICHLOROETHENE	<0,1	0.1
VINYL CHLORIDE	<0.1	0.1

Member: American Council of

Page 13 Received: 07/23/91

REPORT Results by Sample

Work Order # 91-07-257 Continued From Above

SAMPLE ID **PIT 2 44.1-44.3**

FRACTION 06ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-80ILDate & Time Collected 07/22/91Category _____

EXTRACTED	07/29/91
DATE RUN	07/29/91
ANALYST D/R	
UNITS	MG/KG

۰.

Work Order # 91-07-257

Received: 07/23/91

Page 14

REPORT Results by Sample

SAMPLE IDPIT 244.1-44.3FRACTION06ATEST CODE8020NAMEAROMATIC VOLATILE ORGANICSDate & Time Collected07/22/91Category

PARAMETER	RESULT	DET LIMIT
BENZENE Chlorobenzene	<u><0,1</u> 	<u> </u>
1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE	<u><0.1</u> <0.1	<u> </u>
1,2-DICHLOROBENZENE ETHYL BENZENE	<u><0.1</u> <0.1	$\underline{\begin{array}{c} 0.1\\ 0.1\end{array}}$
TOLUENE Xylenes	<u> </u>	<u> 0.1</u> <u> 0.1</u>

EXTRACTED	07/29/91
DATE RUN	07/29/91
ANALYST D/R	
UNITS	MG/KG

Page 15 Received: 07/23/91 Results by Sample

SAMPLE IDPIT 257.5-57.8FRACTION07ATEST CODE8010_8NAMEPURGEABLE HALOCARBONS-801LDate & Time Collected07/22/91Category

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0,1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0,1	0.1
CARBON TETRACHLORIDE	<0,1	0,1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0,1
CHLOROMETHANE	<0,1	<u> </u>
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0,1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0,1	0,1
1,2-DICHLOROETHANE	<0,1	0.1
1,1-DICHLOROETHENE	<0.1	0,1
trans-1,2-DICHLOROETHENE	<0.1	0,1
1,2-DICHLOROPROPANE	<0.1	0,1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	<u> 0.1</u>
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0,1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

ال المراجع الم Alixieuri - Alix

REPORT

Work Order # 91-07-257 Continued From Above

Page 16 Received: 07/23/91

Results by Sample

SAMPLE ID PIT 2 57.5-57.8

FRACTION 07ATEST CODE 8010_8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/22/91Category _____

Notes and Definitions for this Report:

EXTRACTED	07/29/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

Member: American Council of Independent Laboratorics, Inc.

AT CAL.	ATOL IC I. enon, Ibuqu. iew M.	109 109 109
Page 17 Received:		REPORT Work Order # 91-07-257 Results by Sample
SAMPLE ID	<u>PIT 2 69.9-70.1</u>	FRACTION <u>OBA</u> TEST CODE <u>8010_8</u> NAME <u>PURGEABLE HALOCARBONS-SOIL</u> Date & Time Collected <u>07/22/91</u> Category
	PARAMETER	RESULT LIMIT

_
_
_
_
_
-
_
-
_
•
· _
· -
-
-
-
-
_
-
-
-
-
-
-
-
-
-
-
-
-

<0.1	0,1
<0.1	0.1
<0,1	0.1
<0,1	0.1
<0.1	0,1
<0.1	0,1
<0.1	0,1
<0,1	0.1
<0.1	0,1
<0.1	0,1
<0,1	0.1
<0,1	0.1
<0.1	0,1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0,1
<0,1	0,1
<0,1	0.1
<0,1	0.1
<0.1	0,1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0,1

.

Page 18 Received: 07/23/91

REPORT Results by Sample

Work Order # 91-07-257 Continued From Above

SAMPLE ID **PIT 2 69.9-70.1**

 FRACTION
 OBA
 TEST CODE
 B010_B
 NAME
 PURGEABLE HALOCARBONS-SOIL

 Date & Time Collected
 07/22/91
 Category

Notes and Definitions for this Report:

BP REPRODUCTO IN PARTOR IN 1991. WITHOUT THE PYPELSS WRITTED CONCEPT OF THE LABORATORY

EXTRACTED	07/29/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

2 through 4 as it relates to the red clay surface and the estimated zone for TRPH.

<u>Bibliography</u>

(#19

12月1日

The following bibliographic sources document the methods utilized in performing laboratory analyses for the investigation. Specific laboratory tests performed are indicated in parentheses.

- USEPA SW-846 Method #8010 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition, 1986. (Test 8010 for purgeable halocarbons).
- USEPA SW-846 Method #8020 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition, 1986. (Test 8020 for aromatic volatile organics).
- USEPA Method #602/8020 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 3rd Edition 1986 -Guidelines Establishing Test Procedures for the Analysis of Pollutants under the Clean Water Act 40 CFR Part 139, October 1984 (Test 8020 for BTEX).

USEPA Method #418.1 - Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, revised March 1983. (Test 418.1 for TRPH).

ANA! I LICAL LABORATORIES, INC. . 7300 Jetterson, N.E. . Albuquerque, ivew Mexico # / 109

age 1

leceived: 07/18/91

REPORT ENRON/TRANSWESTERN PIPELINE TO 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 ATTEN LARRY CAMPBELL

CLIENT ENRO3 SAMPLES 10 COMPANY ENRON/TRANSWESTERN PIPELINE FACILITY ROSWELL, NEW MEXICO ENR03

WORK ID	STATION 9 77	<u>52</u>
TAKEN		
TRANS	FED X NEXT DAY	
TYPE	SOIL	
P.O. #		
INVOICE	under separate cover	

SAMPLE IDENTIFICATION

TEST CODES and NAMES used on this workorder 8010 S PURGEABLE HALOCARBONS-SOIL

WITHOUT THE EVENTSS WRITTEN CONSERTS OF SHILL ABOUT ATOM

AROMATIC VOLATILE ORGANICS 8020 BENZENE, TOLUENE, EBENZ, XYLE BTEX TOTAL REC PET HYDROCARBONS TRPH

THE DEWORD KARY NOT BE REPRODUCED IN PART OR IN 1911

<u>01</u>			
<u>02</u>		•	
<u>03</u>	PIT]	2.8-3.0	
<u>04</u>	PIT 1	9.2-9.4	
05	PIT 1	13.5-13.7	
06	PIT 1	18.8 - 19.0)
07	PIT 1	26.8 - 27.0)
08	PIT 1	30,6-30.8	
09	PIT 1	41.6 - 41.8	3
10	PTT 1	43.5-43.7	

et: American Council of

REPORT 07/31/91 14:28:41

PREPARED Assaigai Analytical Labs BY 7300 Jefferson NE Albuquerque, NM 87109

CERTIFIED BY

ATTEN SYED RIZVI PHONE (505)345-8964

CONTACT LAB MANAGER

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUEROUE, N.M. 87109

ANAL & FICAL LABORATORIES, unc. + 7300 seuceson, N.H. + Aubuquerque, men Mexico + 109

Work Order # 91-07-215

'age 6 teceived: 07/18/91

REPORT Results by Sample

SAMPLE ID PIT I 2.8-3.0

FRACTION 03A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL Date & Time Collected not specified

0.1

0.1

0.1 0,1

0.1

0.1

0.1

0.1 0.1

0.1 0.1 0.1 0,1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1

0.1

Category

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0
BROMOFORM	<0.1	0
BROMOMETHANE	<0.1	0
CARBON TETRACHLORIDE	<0.1	0
CHLOROBENZENE	<0.1	0
CHLOROETHANE	<0.1	
CHLOROFORM	<0.1	0
2-CHLOROETHYL VINYL ETHER	<0,1	(
CHLOROMETHANE	<0,1	
DIBROMOCHLOROMETHANE	<0,1	
1,2-DICHLOROBENZENE	<0.1	
1,3-DICHLOROBENZENE	<0.1	
1,4-DICHLOROBENZENE	<0.1	
DICHLORODIFLUOROMETHANE	<u> <0.1</u>	
1,1-DICHLOROETHANE	<0.1	(
1,2-DICHLOROETHANE	<0.1	(
1,1-DICHLOROETHENE	<0.1	
trans-1,2-DICHLOROETHENE	<0.1	(
1,2-DICHLOROPROPANE	<u> </u>	(
cis-1,3-DICHLOROPROPENE	<0.1	(
1,1,2,2-TETRACHLOROETHANE	<0,1	(
trans-1,3-DICHLOROPROPENE	<0.1	(
METHYLENE CHLORIDE	<0.1	
1,1,1-TRICHLOROETHANE	3.2	(
1,1,2-TRICHLOROETHANE	<0.1	(
TETRACHLOROETHENE	<u> </u>	
TRICHLOROFLUOROMETHANE	<0.1	
TRICHLOROETHENE	<0,1	
VINYL CHLORIDE	<0.1	(

ember: American Council of Independent Laboratories, Inc.

AN	JAL I	VIOR	2 • 71	ston, l	buqui	sw Mc	:09
----	-------	------	--------	---------	-------	-------	-----

REPORT

Results by Sample

Work Order # 91-07-215 Continued From Above

Received: 07/18/91

?age 7

SAMPLE ID PIT I 2.8-3.0

FRACTION 03ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected not specifiedCategory

Notes and Definitions for this Report:

EXTRACTED	07/23/91	
DATE RUN	07/23/91	
ANALYST D/R		
UNITS	MG/KG	

Member: American Council of Independent Laboratories, Inc.

THIS DOWN THIS DOWN TO REPROTATION PARTY TILD AT THE SS WRIT ON SPLE SHILL FRY THE STATE ON SPLE

Page 8 Received: 07/18/91

REPORT Results by Sample

REPORT Work Order # 91-07-215

SAMPLE ID PIT I 9.2-9.4

FRACTION <u>04A</u> TEST CODE <u>8010 8</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>not specified</u> Category _____

PARAMETER

RESULT LIMIT

BROMODICHLOROMETHANE	<u> </u>
BROMOFORM	<0,
BROMOMETHANE	<0.
CARBON TETRACHLORIDE	<0,
CHLOROBENZENE	<0,
CHLOROETHANE	<0,
CHLOROFORM	<0,
2-CHLOROETHYL VINYL ETHER	<0,
CHLOROMETHANE	<0,
DIBROMOCHLOROMETHANE	<0,
1,2-DICHLOROBENZENE	<0.
1,3-DICHLOROBENZENE	<0,
1,4-DICHLOROBENZENE	<0,
DICHLORODIFLUOROMETHANE	<0,
1,1-DICHLOROETHANE	<0,
1,2-DICHLOROETHANE	<0,
1,1-DICHLOROETHENE	<0,
trans-1,2-DICHLOROETHENE	<0,
1,2-DICHLOROPROPANE	<0,
cis-1,3-DICHLOROPROPENE	<0,
1,1,2,2-TETRACHLOROETHANE	<0,
trans-1,3-DICHLOROPROPENE	<0,
METHYLENE CHLORIDE	<0,
1,1,1-TRICHLOROETHANE	1
1,1,2-TRICHLOROETHANE	<0,
TETRACHLOROETHENE	0.2
TRICHLOROFLUOROMETHANE	<0,
TRICHLOROETHENE	<0.
VINYL CHLORIDE	<0.

<0.1	0.1
<0,1	0,1
<0.1	0,1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<0,1	0,1
<0.1	0.1
<0.1	0.1
<0.1	01.
<0.1	0.1
<0.1	0,1
<0.1	0,1
<0,1	0.1
<0.1	
<0.1	0.1
<0.1	
<0.1	0,1
<0.1	
<0.1	0.1
<0.1	
19	0,1
<0.1	0.1
0.26	0.1
<0.1	0.1
<0.1	<u> </u>
<0.1	0.1

Page 9 Received: 07/18/91 REPORT Results by Sample Work Order # 91-07-215 Continued From Above

SAMPLE ID PIT I 9.2-9.4

FRACTION 04ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-BOILDate & Time Collected not specifiedCategory _____

Notes and Definitions for this Report:

EXTRACTED	07/23/91
DATE RUN	07/23/91
ANALYST D/R	
UNITS	MG/KG

Vember: American Council of

.

Page 10 Received: 07/18/91

REPORT

Work Order # 91-07-215

Results by Sample . .

SAMPLE ID	PIT	<u>I 1</u>	3.5-	13.7	
-----------	-----	------------	------	------	--

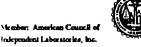
FRACTION 05A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-801L Date & Time Collected not specified Category _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0,1	0.1
BROMOMETHANE	<0.1	
CARBON TETRACHLORIDE	<0.1	
CHLOROBENZENE	<0.1	
CHLOROETHANE	<0,1	0.1
CHLOROFORM	0,20	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0,1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	0,59	
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0,1	
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0,1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0,1	0.1
1,1,1-TRICHLOROETHANE	18	
1,1,2-TRICHLOROETHANE	<0.1	0,1
TETRACHLOROETHENE	0.33	
TRICHLOROFLUOROMETHANE	<0.1	0,1
TRICHLOROETHENE	<0,1	0,1
VINYL CHLORIDE	<0.1	0.1

|--|

Member: American Council of Independent Laboratories, Inc.

Page 11 Received: 07/18/91


REPORT Results by Sample

Work Order # 91-07-215 Continued From Above

SAMPLE ID PIT I 13.5-13.7

_ FRACTION <u>05A</u> TEST CODE <u>8010</u> <u>8</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>not specified</u> Category _____

EXTRACTED	07/23/91
DATE RUN	07/23/91
ANALYST D/R	
UNITS	MG/KG

ANALI MCATUKLES, MC. • 73W JEJEBON, N.E. • ANDIQUENJUS, NEW MERLU • 7109

REPORT Results by Sample

Work Order # 91-07-215

AMPLE ID **PIT I 18.8 - 19.0**

FRACTION 06A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected not specified Category _____

> 0.1

BROMOFORM $< 0,1$ $< 0,1$ < 0 BROMOMETHANE $< 0,1$ $< 0,1$ < 0 CARBON TETRACHLORIDE $< 0,1$ $< 0,1$ < 0 CHLOROBENZENE $< 0,1$ $< 0,1$ < 0 CHLOROETHANE $< 0,1$ $< 0,1$ < 0 CHLOROFORM $< 0,1$ $< 0,1$ < 0 2-CHLOROETHYL VINYL ETHER $< 0,1$ < 0 CHLOROMETHANE $< 0,1$ < 0 DIBROMOCHLOROMETHANE $< 0,1$ < 0 1, 2-DICHLOROBENZENE $< 0,1$ < 0 1, 3-DICHLOROBENZENE $< 0,1$ < 0 1, 4-DICHLOROBENZENE $< 0,1$ < 0 1, 1-DICHLOROETHANE $< 0,1$ < 0 1, 2-DICHLOROETHANE $< 0,1$ < 0 1, 2-DICHLOROETHANE $< 0,1$ < 0 1, 2-DICHLOROETHENE $< 0,1$ < 0 1, 2-DICHLOROETHENE $< 0,1$ < 0 1, 2, 2-TETRACHLOROETHENE $< 0,1$ < 0 1, 1, 2, 2-TETRACHLOROETHANE $< 0,1$ < 0 1, 1, 2, 2-TETRACHLOROPROPENE $< 0,1$ < 0 <t< th=""><th>PARAMETER</th><th>RESULT</th><th>LIMIT</th></t<>	PARAMETER	RESULT	LIMIT
BROMOMETHANE $<0,1$ $<0,1$ <0 CARBON TETRACHLORIDE $<0,1$ <0 <0 CHLOROBENZENE $<0,1$ <0 <0 CHLOROETHANE $<0,1$ <0 <0 CHLOROETHANE $<0,1$ <0 <0 CHLOROETHYL VINYL ETHER $<0,1$ <0 CHLOROMETHANE $<0,1$ <0 DIBROMOCHLOROMETHANE $<0,1$ <0 1, 2-DICHLOROBENZENE $<0,1$ <0 1, 3-DICHLOROBENZENE $<0,1$ <0 1, 4-DICHLOROBENZENE $<0,1$ <0 1, 1-DICHLOROETHANE $<0,1$ <0 1, 2-DICHLOROETHANE $<0,1$ <0 1, 2-DICHLOROETHANE $<0,1$ <0 1, 2-DICHLOROETHANE $<0,1$ <0 1, 2-DICHLOROETHANE $<0,1$ <0 1, 2-DICHLOROPROPANE $<0,1$ <0 1, 1, 2, 2-TETRACHLOROETHANE $<0,1$ <0 1, 1, 2, 2-TETRACHLOROETHANE $<0,1$ <0 1, 1, 2-TRICHLOROETHANE $<0,1$ <td>BROMODICHLOROMETHANE</td> <td><0.1</td> <td>0</td>	BROMODICHLOROMETHANE	<0.1	0
CARBON TETRACHLORIDE < 0.1 (0.1) CHLOROBENZENE < 0.1 (0.1) CHLOROETHANE < 0.1 (0.1) CHLOROFORM < 0.1 (0.1) 2-CHLOROETHYL VINYL ETHER < 0.1 (0.1) CHLOROMETHANE < 0.1 (0.1) DIBROMOCHLOROMETHANE < 0.1 (0.1) $1, 2$ -DICHLOROBENZENE < 0.1 (0.1) $1, 3$ -DICHLOROBENZENE < 0.1 (0.1) $1, 4$ -DICHLOROBENZENE < 0.1 (0.1) $1, 4$ -DICHLOROBENZENE < 0.1 (0.1) $1, 4$ -DICHLOROETHANE < 0.1 (0.1) $1, 1$ -DICHLOROETHANE < 0.1 (0.1) $1, 2$ -DICHLOROETHANE < 0.1 (0.1) $1, 2$ -DICHLOROETHENE < 0.1 (0.1) $1, 2$ -DICHLOROPROPANE < 0.1 (0.1) $1, 1, 2, 2$ -TETRACHLOROETHANE < 0.1 (0.1) $1, 1, 2, 2$ -TETRACHLOROETHANE < 0.1 (0.1) $1, 1, 2$ -TRICHLOROETHANE < 0.33 (0.1) $1, 1, 2$ -TRICHLOROETHANE < 0.33 (0.1) $1, 1, 2$ -TRICHLOROETHANE < 0.1 (0.1) $1, 1, 2$ -	BROMOFORM	<u> </u>	0
CHLOROBENZENE $<0,1$ $<0,1$ $<0,1$ CHLOROETHANE $<0,1$ $<0,1$ $<0,1$ CHLOROFORM $<0,1$ $<0,1$ $<0,1$ 2-CHLOROETHYL VINYL ETHER $<0,1$ $<0,1$ CHLOROMETHANE $<0,1$ $<0,1$ DIBROMOCHLOROMETHANE $<0,1$ $<0,1$ 1, 2-DICHLOROBENZENE $<0,1$ $<0,1$ 1, 3-DICHLOROBENZENE $<0,1$ $<0,1$ 1, 4-DICHLOROBENZENE $<0,1$ $<0,1$ 1, 1-DICHLOROETHANE $<0,1$ $<0,1$ 1, 2-DICHLOROETHANE $<0,1$ $<0,1$ 1, 1-DICHLOROETHANE $<0,1$ $<0,1$ 1, 2-DICHLOROETHENE $<0,1$ $<0,1$ 1, 2-DICHLOROETHENE $<0,1$ $<0,1$ 1, 2, 2-TETRACHLOROETHANE $<0,1$ $<0,1$ 1, 1, 2, 2-TETRACHLOROETHANE $<0,1$ $<0,1$ 1, 1, 1-TRICHLOROETHANE $<0,1$ $<0,1$ 1, 1, 2-TRICHLOROETHANE $<0,1$ $<0,1$	BROMOMETHANE		
CHLOROETHANE <0.1 <0.1 CHLOROFORM <0.1 <0.1 2-CHLOROETHYL VINYL ETHER <0.1 CHLOROMETHANE <0.1 DIBROMOCHLOROMETHANE <0.1 1,2-DICHLOROBENZENE <0.1 1,3-DICHLOROBENZENE <0.1 1,4-DICHLOROBENZENE <0.1 0 <0.1 1,1-DICHLOROBENZENE <0.1 1,2-DICHLOROBENZENE <0.1 1,1-DICHLOROETHANE <0.1 1,2-DICHLOROETHANE <0.1 1,1-DICHLOROETHANE <0.1 1,2-DICHLOROETHENE <0.1 1,2-DICHLOROETHENE <0.1 1,2-DICHLOROPROPANE <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	CARBON TETRACHLORIDE		0
CHLOROFORM < 0.1 < 0.1 < 0.1 $2-CHLOROETHYL VINYL ETHER$ < 0.1 < 0.1 < 0.1 $CHLOROMETHANE$ < 0.1 < 0.1 < 0.1 $DIBROMOCHLOROMETHANE$ < 0.1 < 0.1 < 0.1 $1, 2-DICHLOROBENZENE$ < 0.1 < 0.1 < 0.1 $1, 3-DICHLOROBENZENE$ < 0.1 < 0.1 < 0.1 $1, 4-DICHLOROBENZENE$ < 0.1 < 0.1 < 0.1 $1, 1-DICHLOROBENZENE$ < 0.1 < 0.1 < 0.1 $1, 2-DICHLOROETHANE$ < 0.1 < 0.1 < 0.1 $1, 2-DICHLOROETHANE$ < 0.1 < 0.1 < 0.1 $1, 2-DICHLOROETHENE$ < 0.1 < 0.1 < 0.1 $1, 2-DICHLOROPROPANE$ < 0.1 < 0.1 < 0.1 $1, 1, 2, 2-TETRACHLOROETHANE$ < 0.1 < 0.1 < 0.1 $1, 1, 2-TRICHLOROETHANE$ < 0.1 < 0.1 < 0.1 $1, 1, 2-TRICHLOROETHANE$ < 0.33 < 0.1 < 0.1 $1, 1, 2-TRICHLOROETHANE$ < 0.87 < 0.1 $1, 1, 2-TRICHLOROETHANE$ < 0.87 < 0.1 $1, 1, 2-TRICHLOROETHANE$ < 0.87 < 0.1 $1, 1, 2-TRICHLOROETHANE$ < 0.1 < 0.1 $1, 1, 2-TRICHLOROETHENE$ <td< td=""><td>CHLOROBENZENE</td><td><0,1</td><td>0</td></td<>	CHLOROBENZENE	<0,1	0
2-CHLOROETHYLVINYLETHER $< 0,1$ $< 0,1$ CHLOROMETHANE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ DIBROMOCHLOROMETHANE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,2-DICHLOROBENZENE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,4-DICHLOROBENZENE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,1-DICHLOROBENZENE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,1-DICHLOROETHANE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,2-DICHLOROETHANE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,2-DICHLOROETHENE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,2-DICHLOROPROPANE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,1,2,2-TETRACHLOROETHANE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,1,1-TRICHLOROETHANE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ 1,1,2-TRICHLOROETHANE $< 0,1$ $< 0,87$ $< 0,1$ $< 0,1$ TRICHLOROFLUOROMETHANE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$ TRICHLOROFLUOROMETHANE $< 0,1$ $< 0,1$ $< 0,1$ $< 0,1$	CHLOROETHANE	<0,1	0
CHLOROMETHANE < 0.1 < 0.1 DIBROMOCHLOROMETHANE < 0.1 < 0.1 1, 2-DICHLOROBENZENE < 0.1 < 0.1 1, 3-DICHLOROBENZENE < 0.1 < 0.1 1, 4-DICHLOROBENZENE < 0.1 < 0.1 DICHLORODIFLUOROMETHANE < 0.1 < 0.1 1, 1-DICHLOROETHANE < 0.1 < 0.1 1, 2-DICHLOROETHANE < 0.1 < 0.1 1, 1-DICHLOROETHENE < 0.1 < 0.1 1, 2-DICHLOROETHENE < 0.1 < 0.1 1, 2-DICHLOROPROPANE < 0.1 < 0.1 1, 1, 2, 2-TETRACHLOROETHANE < 0.1 < 0.1 1, 1, 2, 2-TETRACHLOROETHANE < 0.1 < 0.1 1, 1, 1-TRICHLOROETHANE < 0.1 < 0.1 1, 1, 2-TRICHLOROETHANE < 0.33 < 0.1 1, 1, 2-TRICHLOROETHANE < 0.87 < 0.1 TETRACHLOROETHENE < 0.1 < 0.1 TRICHLOROFLUOROMETHANE < 0.1 < 0.1 TRICHLOROETHENE < 0.1 < 0.1	CHLOROFORM	<0.1	0
DIBROMOCHLOROMETHANE < 0.1 < 0.1 1,2-DICHLOROBENZENE < 0.1 < 0.1 1,3-DICHLOROBENZENE < 0.1 < 0.1 1,4-DICHLOROBENZENE < 0.1 < 0.1 DICHLORODIFLUOROMETHANE < 0.1 < 0.1 1,1-DICHLOROETHANE < 0.1 < 0.1 1,2-DICHLOROETHANE < 0.1 < 0.1 1,1-DICHLOROETHANE < 0.1 < 0.1 1,2-DICHLOROETHENE < 0.1 < 0.1 1,2-DICHLOROPROPANE < 0.1 < 0.1 1,2,2-DICHLOROPROPANE < 0.1 < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 < 0.1 1,1,1-TRICHLOROETHANE < 0.1 < 0.33 1,1,2-TRICHLOROETHANE < 0.1 < 0.87 TRICHLOROFLUOROMETHANE < 0.1 < 0.1 TRICHLOROFLUOROMETHANE < 0.1 < 0.1 TRICHLOROFLUOROMETHANE < 0.1 < 0.1 TRICHLOROETHENE < 0.1 < 0.1 TRICHLOROETHENE < 0.1 < 0.1 TRICHLOROETHENE < 0.1 < 0.1	2-CHLOROETHYL VINYL ETHER		
1, 2-DICHLOROBENZENE < 0.1 1, 3-DICHLOROBENZENE < 0.1 1, 4-DICHLOROBENZENE < 0.1 DICHLORODIFLUOROMETHANE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 1-DICHLOROETHENE < 0.1 1, 1-DICHLOROETHENE < 0.1 1, 2-DICHLOROETHENE < 0.1 1, 2-DICHLOROPROPANE < 0.1 cis-1, 3-DICHLOROPROPENE < 0.1 1, 1, 2, 2-TETRACHLOROETHANE < 0.1 1, 1, 2, 2-TETRACHLOROETHANE < 0.1 1, 1, 1-TRICHLOROETHANE < 0.33 1, 1, 2-TRICHLOROETHANE < 0.33 1, 1, 2-TRICHLOROETHANE < 0.87 TRICHLOROFLUOROMETHANE < 0.1 TRICHLOROFLUOROMETHANE < 0.1	CHLOROMETHANE	<0.1	
1, 3-DICHLOROBENZENE $<0,1$ 1, 4-DICHLOROBENZENE $<0,1$ DICHLORODIFLUOROMETHANE $<0,1$ 1, 1-DICHLOROETHANE $<0,1$ 1, 2-DICHLOROETHANE $<0,1$ 1, 1-DICHLOROETHENE $<0,1$ trans-1, 2-DICHLOROETHENE $<0,1$ trans-1, 2-DICHLOROETHENE $<0,1$ cis-1, 3-DICHLOROPROPANE $<0,1$ cis-1, 3-DICHLOROETHANE $<0,1$ 1, 1, 2, 2-TETRACHLOROETHANE $<0,1$ trans-1, 3-DICHLOROPROPENE $<0,1$ 1, 1, 2, 2-TETRACHLOROETHANE $<0,1$ 1, 1, 1-TRICHLOROETHANE $<0,1$ 1, 1, 2-TRICHLOROETHANE $<0,1$ 1, 1, 2-TRICHLOROETHANE $<0,1$ TRICHLOROFLUOROMETHANE $<0,1$ TRICHLOROFLUOROMETHANE $<0,1$	DIBROMOCHLOROMETHANE	<0.1	
1,3 - DICHLOROBENZENE <0.1 1,4 - DICHLORODIFLUOROMETHANE <0.1 0 <0.1 1,1 - DICHLOROETHANE <0.1 1,2 - DICHLOROETHANE <0.1 1,1 - DICHLOROETHENE <0.1 1,1 - DICHLOROETHENE <0.1 1,2 - DICHLOROETHENE <0.1 1,2 - DICHLOROPROPANE <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	1,2-DICHLOROBENZENE		Contractive state of the second s
DICHLORODIFLUOROMETHANE < 0.1 1,1-DICHLOROETHANE < 0.1 1,2-DICHLOROETHANE < 0.1 1,1-DICHLOROETHANE < 0.1 1,1-DICHLOROETHENE < 0.1 trans-1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROPROPANE < 0.1 cis-1,3-DICHLOROPROPENE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 trans-1,3-DICHLOROPROPENE < 0.1 trans-1,3-DICHLOROPROPENE < 0.1 methylenechloride1,1,2-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.33 1,1,2-TRICHLOROETHANE < 0.87 TRICHLOROFLUOROMETHANE < 0.1 TRICHLOROFLUOROMETHANE < 0.1	1,3-DICHLOROBENZENE	<0,1	<u> </u>
1,1-DICHLOROETHANE <0.1 1,2-DICHLOROETHANE <0.1 1,1-DICHLOROETHENE <0.1 1,1-DICHLOROETHENE <0.1 trans-1,2-DICHLOROETHENE <0.1 1,2-DICHLOROPROPANE <0.1 cis-1,3-DICHLOROPROPENE <0.1 1,1,2,2-TETRACHLOROETHANE <0.1 trans-1,3-DICHLOROPROPENE <0.1 trans-1,3-DICHLOROPROPENE <0.1 METHYLENECHLORIDE1,1,1-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 TETRACHLOROETHENE <0.1 TRICHLOROETHENE <0.1 TRICHLOROFLUOROMETHANE <0.1			
1,2-DICHLOROETHANE $<0,1$ 1,1-DICHLOROETHENE $<0,1$ trans-1,2-DICHLOROETHENE $<0,1$ 1,2-DICHLOROPROPANE $<0,1$ cis-1,3-DICHLOROPROPENE $<0,1$ 1,1,2,2-TETRACHLOROETHANE $<0,1$ trans-1,3-DICHLOROPROPENE $<0,1$ METHYLENE CHLORIDE $<0,1$ 1,1,1-TRICHLOROETHANE 0.33 1,1,2-TRICHLOROETHANE $<0,1$ TETRACHLOROETHANE $<0,1$ TRICHLOROETHENE $<0,1$ TRICHLOROFLUOROMETHANE $<0,1$			
1,1-DICHLOROETHENE $<0,1$ 1,1-DICHLOROETHENE $<0,1$ trans-1,2-DICHLOROETHENE $<0,1$ 1,2-DICHLOROPROPANE $<0,1$ cis-1,3-DICHLOROPROPENE $<0,1$ 1,1,2,2-TETRACHLOROETHANE $<0,1$ trans-1,3-DICHLOROPROPENE $<0,1$ METHYLENE CHLORIDE $<0,1$ 1,1,1-TRICHLOROETHANE 0.33 1,1,2-TRICHLOROETHANE $<0,1$ TETRACHLOROETHENE 0.87 TRICHLOROFLUOROMETHANE $<0,1$ TRICHLOROETHENE $<0,1$			(
trans-1,2-DICHLOROETHENE $<0,1$ 1,2-DICHLOROPROPANE $<0,1$ cis-1,3-DICHLOROPROPENE $<0,1$ 1,1,2,2-TETRACHLOROETHANE $<0,1$ trans-1,3-DICHLOROPROPENE $<0,1$ METHYLENE CHLORIDE $<0,1$ 1,1,1-TRICHLOROETHANE 0.33 1,1,2-TRICHLOROETHANE $<0,1$ TETRACHLOROETHANE $<0,1$ TRICHLOROFLUOROMETHANE $<0,1$ TRICHLOROFLUOROMETHANE $<0,1$	•		(
1,2-DICHLOROPROPANE <0.1 cis-1,3-DICHLOROPROPENE <0.1 1,1,2,2-TETRACHLOROETHANE <0.1 trans-1,3-DICHLOROPROPENE <0.1 methyleneCHLORIDE1,1,1-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 TETRACHLOROETHANE <0.1 TETRACHLOROETHANE <0.87 TRICHLOROFLUOROMETHANE <0.1 TRICHLOROETHENE <0.1	1,1-DICHLOROETHENE	<0,1	(
cis-1,3-DICHLOROPROPENE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 trans-1,3-DICHLOROPROPENE < 0.1 trans-1,3-DICHLOROPROPENE < 0.1 METHYLENE CHLORIDE < 0.1 1,1,1-TRICHLOROETHANE 0.33 1,1,2-TRICHLOROETHANE < 0.1 TETRACHLOROETHENE 0.87 TRICHLOROFLUOROMETHANE < 0.1 TRICHLOROETHENE < 0.1	trans-1,2-DICHLOROETHENE	<u> <0,1</u>	
1,1,2,2-TETRACHLOROETHANE<0.1	1,2-DICHLOROPROPANE		(
trans-1,3-DICHLOROPROPENE <0.1 METHYLENE CHLORIDE <0.1 1,1,1-TRICHLOROETHANE 0.33 1,1,2-TRICHLOROETHANE <0.1 TETRACHLOROETHENE 0.87 TRICHLOROFLUOROMETHANE <0.1 TRICHLOROETHENE <0.1	cis-1,3-DICHLOROPROPENE		(
METHYLENE CHLORIDE<0.11,1,1-TRICHLOROETHANE0.331,1,2-TRICHLOROETHANE<0.1	1,1,2,2-TETRACHLOROETHANE	<0,1	(
1,1,1-TRICHLOROETHANE0.331,1,2-TRICHLOROETHANE<0.1	trans-1,3-DICHLOROPROPENE	<0,1	(
1,1,2-TRICHLOROETHANE<0.1	METHYLENE CHLORIDE	<0.1	(
TETRACHLOROETHENE0.87TRICHLOROFLUOROMETHANE<0.1	1,1,1-TRICHLOROETHANE	0.33	(
TRICHLOROFLUOROMETHANE<0.1TRICHLOROETHENE<0.1	1,1,2-TRICHLOROETHANE	<0.1	(
TRICHLOROETHENE <0,1	TETRACHLOROETHENE	0,87	(
	TRICHLOROFLUOROMETHANE	<0.1	(
VINYL CHLORIDE	TRICHLOROETHENE	<0.1	(
	VINYL CHLORIDE	<0.1	

AN. CALL STOR. 2 + 73 aron, 1 buques in Me. .0

age 13 eceived: 07/18/91

Results by Sample

Work Order # 91-07-215 Continued From Above

AMPLE ID **PIT I 18.8 - 19.0**

FRACTION 06ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected not specifiedCategory

Notes and Definitions for this Report:

REPORT

EXTRACTED	07/23/91
DATE RUN	07/23/91
ANALYST D/R	,
UNITS	MG/KG

mber: American Council of

AL LAOUATORIES, INE + ABUREAM, NE + ABUREAM, ABUREAM Work Order # 91-07-215 Page 14 REPORT leceived: 07/18/91 Results by Sample SAMPLE ID **PIT I 26.8 - 27.0** FRACTION 07A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL Date & Time Collected not specified Category _____ PARAMETER RESULT LIMIT

BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0,1	0,1
BROMOMETHANE	<0,1	0,1
CARBON TETRACHLORIDE	<0,1	0,1
CHLOROBENZENE	<0,1	0,1
CHLOROETHANE	<0,1	0.1
CHLOROFORM	<0,1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0,1	<u> </u>
1,2-DICHLOROBENZENE	<0.1	0,1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0,1
DICHLORODIFLUOROMETHANE	<0.1	0,1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0,1
1,1-DICHLOROETHENE	<0.1	0,1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<u> <0,1</u>	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0,1	0.1
1,1,2-TRICHLOROETHANE	<u> </u>	0,1
TETRACHLOROETHENE	0,16	0.1
TRICHLOROFLUOROMETHANE	<u> <0.1</u>	0,1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	<u> 0,1</u>

ANALT FICAL LABORATORIES, INC. • 7300 JETERION, N.E. • Albuquerque, New Mexico \$ /109

REPORT Results by Sample Work Order # 91-07-215 Continued From Above

Page 15 Received: 07/18/91

SAMPLE ID **PIT I 26.8 - 27.0**

FRACTION 07ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected not specifiedCategory

Notes and Definitions for this Report:

EXTRACTED	07/23/91
DATE RUN	07/23/91
ANALYST D/R	
UNITS	MG/KG

Member: American Council of

har and

.....

HUMP

Sec. a

.....

Page 16	REPORT	<pre>% # # # # # # # # # # # # # # # # # # #</pre>
Received: 07/18/91	Results by Sample	WOLK OLDEL F 91-07-215
SAMPLE ID PIT I 30.6-30.8	FRACTION <u>08A</u> TEST CODE <u>8010</u> Date & Time Collected <u>not spec</u>	
	· · · · ·	

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	<u> 0,1</u>
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0,1
CARBON TETRACHLORIDE	<u> <0,1</u>	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0,1	0,1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0,1	0.1
CHLOROMETHANE	<0,1	0.1
DIBROMOCHLOROMETHANE	<0,1	0,1
1,2-DICHLOROBENZENE	<u> <0.1</u>	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0,1	0.1
1,1-DICHLOROETHANE	<u> <0,1</u>	0.1
1,2-DICHLOROETHANE	<0,1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0,1	0,1
1,2-DICHLOROPROPANE	<0.1	0,1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0,1
trans-1,3-DICHLOROPROPENE	<0.1	0,1
METHYLENE CHLORIDE	<0.1	0,1
1,1,1-TRICHLOROETHANE	<0.1	0,1
1,1,2-TRICHLOROETHANE	<0.1	0,1
TETRACHLOROETHENE	<0.1	0,1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0,1

,

.

.

.

Page 17 Received: 07/18/91

REPORT Results by Sample

Work Order # 91-07-215 Continued From Above

SAMPLE ID PIT I 30.6-30.8

FRACTIONOBATEST CODE8010BNAMEPURGEABLEHALOCARBONS-BOILDate & TimeCollectednotspecifiedCategory______

EXTRACTED	07/23/91
DATE RUN	07/23/91
ANALYST D/R	
UNITS	MG/KG

age 18 teceived: 07/18/91

REPORT Results by Sample

Work Order # 91-07-215

r' la

AMPLE ID PIT I 41.6 - 41.8

FRACTION 09A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL Date & Time Collected not specified Category ___

PARAMETER	PA	RAM	ET	ER
-----------	----	-----	----	----

ET	ER		
\mathbf{ET}	ER		

. .

RESULT	LIMIT

1

N. 20

•
BROMODICHLOROMETHANE
BROMOFORM
BROMOMETHANE
CARBON TETRACHLORIDE
CHLOROBENZENE
CHLOROETHANE
CHLOROFORM
2-CHLOROETHYL VINYL ETHER
CHLOROMETHANE
DIBROMOCHLOROMETHANE
1,2-DICHLOROBENZENE
1, 3-DICHLOROBENZENE
1,4-DICHLOROBENZENE
DICHLORODIFLUOROMETHANE
1,1-DICHLOROETHANE
1,2-DICHLOROETHANE
1,1-DICHLOROETHENE
trans-1,2-DICHLOROETHENE
1,2-DICHLOROPROPANE
cis-1,3-DICHLOROPROPENE
1,1,2,2-TETRACHLOROETHANE
trans-1,3-DICHLOROPROPENE
METHYLENE CHLORIDE
1,1,1-TRICHLOROETHANE
1,1,2-TRICHLOROETHANE
TETRACHLOROETHENE
TRICHLOROFLUOROMETHANE TRICHLOROETHENE
VINYL CHLORIDE
ATMUE CUPOKIDE

<u><0,1</u>	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0,1
<0.1	0.1
<0,1	0,1
<0.1	0,1
<0.1	0,1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<u><0,1</u> <0,1	0,1
<0,1	0,1
<0.1	0.1
<0,1	0,1
<0,1	0.1
<0.1	0,1
<0.1	0.1
<0,1	0.1
<0,1	0,1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1

an Counci

AN 2AL1 TOR 2.+7: man, 1. Alque in Mr. 09

REPORT

Work Order # 91-07-215 Continued From Above

1

leceived: 07/18/91

age 19?

SAMPLE ID PIT I 41.6 - 41.8

FRACTION 09ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected not specifiedCategory

Notes and Definitions for this Report:

EXTRACTED	07/23/91
DATE RUN	07/23/91
ANALYST D/R	
UNITS	MG/KG

Results by Sample

A LALL LAUUKA LUKALUKILS, INC. + /300 Jeiferson, 11 H. + Albuquergus, New Mexico 8/109 ŝ

DET LIMIT

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Work Order # 91-07-215

age 20 .eceived: 07/18/91

REPORT -Results by Sample

AMPLE ID PIT I 41.6 - 41.8

FRACTION 09A TEST CODE 8020 NAME AROMATIC VOLATILE ORGANICS Date & Time Collected not specified

RESULT

Category

PARAMETER

BENZENE	<0.1
CHLOROBENZENE	<0.1
1,4-DICHLOROBENZENE	<0,1
1,3-DICHLOROBENZENE	<0.1
1,2-DICHLOROBENZENE	<0.1
ETHYL BENZENE	<0,1
TOLUENE	<0,1
XYLENES	<0.1

Notes and Definitions for this Report:

EXTRACTED	07/23/91
DATE RUN	07/23/91
ANALYST DD	•
UNITS	MG/KG

Laboratorica In

REPORT

Results by Sample

leceived: 07/18/91

'age 21

SAMPLE ID PIT 1 43.5-43.7

FRACTION 10ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-BOILDate & Time Collected not specifiedCategory _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<u> <0,1</u>	
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<u> </u>	0,1
CHLOROBENZENE	<u> </u>	0.1
CHLOROETHANE	<0.1	
CHLOROFORM	<0.1	
2-CHLOROETHYL VINYL ETHER	<0,1	
CHLOROMETHANE	<u> <0.1</u>	
DIBROMOCHLOROMETHANE	<0.1	0,1
1,2-DICHLOROBENZENE	<u> </u>	0.1
1,3-DICHLOROBENZENE	<0.1	
1,4-DICHLOROBENZENE	<0,1	
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<u> </u>	0.1
1,2-DICHLOROETHANE	<u> </u>	0.1
1,1-DICHLOROETHENE	<u> <0,1</u>	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<u> (0.1</u>	0.1
cis-1,3-DICHLOROPROPENE	<u> <0,1</u>	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	
trans-1,3-DICHLOROPROPENE	<0.1	
METHYLENE CHLORIDE	<u> <0,1</u>	0.1
1,1,1-TRICHLOROETHANE	<u> </u>	
1,1,2-TRICHLOROETHANE	<0.1	
TETRACHLOROETHENE	<0.1	
TRICHLOROFLUOROMETHANE	<0.1	
TRICHLOROETHENE	<0.1	
VINYL CHLORIDE	<0.1	0.1

nerican Council of

Page 22 Received: 07/18/91

REPORT Results by Sample

Work Order # 91-07-215 Continued From Above

SAMPLE ID **PIT I 43.5-43.7**

FRACTION 10ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected not specifiedCategory _____

.

Notes and Definitions for this Report:

EXTRACTED	07/23/91
DATE RUN	07/23/91
ANALYST D/R	
UNITS	MG/KG

Work Order # 91-07-215

Page 23 Received: 07/18/91 REPORT

Results by Sample

SAMPLE ID <u>PIT I 43.</u>	5-43.7
----------------------------	--------

FRACTION 10A	TEST CODE 8020	NAME AROMATIC VOLATILE ORGANICS	
Date & Time Col	lected not spec	ified Category	

PARAMETER	RESULT	DET LIMIT
BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES		$ \begin{array}{r} 0.1 \\ 0. \\ 0.1 \\ 0. \\ 0.1 \\ 0.1$

Notes and Definitions for this Report:

EXTRACTED	07/23/91
DATE RUN	07/23/91
ANALYST DD	· .
UNITS	MG/KG


						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HAZARDOU		DOUS DATE RECEIVED	71		ESTIMATED	COST
JSTOMER P.O. NU	UMBER	TIME RÉCEIVED			DUE DATE	$ c_1 $
		ACCOUN		FORMATION		
EN.CN		STERA THEUR	Ē		LIIKI	4 Crantere
ADDRESS	· · ·				PHONE NUME	
TY / STATE / ZIP	el.				L	·····
		BLE FOR PAYMEN	TIFO	THER THAN ABO	VE	ACCOUNT STATUS
AME				CONTACT		
ADDRESS				PHONE NUMBER		PAYMENT REC'D.
ITY / STATE / ZIP	· · · · · · · · · · · · · · · · · · ·					CHECK NUMBER
PECIAL BILLING	INSTRUCTIONS					<b>k</b> a ang ang ang ang ang ang ang ang ang an
		SAMPLE		ORMATION		
TYPE OF SAMPLE	NO. OF SAMPLES	TURN AROUND TIME			TIFICATION A	ND / OR SAMPLE SITE
WATER SOIL OIL SLUDGE OTHER		REGULAR (10 WKG D     RUSH (3 DAYS)     EMERGENCY (STAT)     •(SUBJECT TO WORK		Station 9-	Pit I	
AMPLE DELIVERE	DBY	1 1	SIGNA			DATE
Theat Y NEWT DAY MILL 7/13/91						
		ANAL	YSIS	REQUEST		•
WORK DESCRIPTIC	N					
<u> </u>	, ETC	× %010		() بر ن بر	<u>ن ن</u>	<u>(()), (),</u>
· · · · · · · · · · · · · · · · · · ·	······································					
	· · ·	······		· · ······		· ·····
SPECIAL INSTRUC	TIONS					
				LOGGED IN BY		
7300 Jefferso	n NE • Albuc	querque, New Me	exicc	87109 • (505)	345-8964	• FAX (505) 345-7259

### TRANSWESTERN PIPELINE COMPANY

CHAIN OF CUSTODY

District: RoSwell

Date: <u>7-17-91</u>

Sample Location Valve or Receiver No. Vol. Collect. During Flush

-

Sampler

STATION 9-CAS TANK STATION 9-PIT 1

		1.	•	
SAMPLE ID NUMBER	SOLVENT USED	SAMPLE ICED	ANALY	SES REQUESTED
GAS TANE COMPOSITE		1000		
0-1.6. 2. 9-4.2. 7.8.9.2		YES	TPH	BTEX
GAR TANE 16.0 -16.3		234	TCH	
PIT 1 2.8-3.0		YES		
PIT 1 9.2 - 9.4		YES		
PIT 1 13.5-13.7		YES		
PIT1 19.8 - 19.0		Yes	80 10	
PIT 1 26.8 - 27.0		NES	8010	
PIT 1 30.6-30.8		YES	2010	
PIT 1 41.6 - 41.P		Ves 1	8010	9020
P17 1 43.5-43.7		453	8010	, <b>8</b> 020
Relinquished By EAR	L SHANLEY /	TW PL CO.		Date 7-17-91
Relinquished To	» −%			Date 7-17-91
Relinguished BV Fc.	0-1			Date
Relinquished By <u>f</u> e Relinquished To <u>As</u>	SACI LAS		-	Date
Relinquished By				Date
Relinquished To				Date Date
Relinquished By				Date
Relinquished By				Date
Laboratory: ASSAN	10. 1045			
LADORATORY: ITSSMI	GHI CHOS			Data 7/18/01
Received: COA	in the second se			
Received:	my	· · · · · · · · · · · · · · · · · · ·		

Roswell N.M. 88202-1717

### TRANSWESTERN PIPELINE COMPANY

CHAIN OF CUSTODY

### District: <u>RoSwell</u>

Date: 7-17-91

Sampler

Sample Location Valve or Receiver No. Vol. Collect. During Flush

STATION 9-CAN TANK STATION 9-PIT 1

ANALYSES REQUESTED SAMPLE ID NUMBER SOLVENT SAMPLE USED ICED GAD TONE CONSISTE FTEX YES <del>.</del> . . . . ETEX GOL TANK 16.4 -16.3 155 T P H PIT I 2.P-3.5 YES 2010 r171 - 2 - 1 - -76 5 8010 PIT 1 . 12 2 - 13.7 755 X - 1 15 PITI : 4.8-19.0 FULU Y = 5 22 2 . 27.0 NE C 8010 2. . . PITI 2. 6 - 2. 4 * • -1010 S 2 0 PIT 1 9-10 716 2 41.6 - 41. -43.5 - 43.7 752 ×01- .2022 Date 7-17-91 Relinquished By EARL COMPLEY / TW PLCO. Date 7-11-1 Relinquished To recent Relinquished By <u>Figure</u> Relinquished To <u>Active 103</u> Date Date Relinquished By__ Date Relinquished To Date Date Relinguished By Date Relinquished By Laboratory: The Packs Creek Date Received: A PROBLE THAT REPUETS TO LARRY CAMPARILL ビッシーム ビー・シッシュ 

i.

#### Page 19 Received: 07/23/91

REPORT

RESULT

Results by Sample

SAMPLE ID **PIT 2 69.9-70.1** 

FRACTION 08A TEST CODE 8020 NAME AROMATIC VOLATILE ORGANICS Date & Time Collected 07/22/91

DET LIMIT

	Categor	Y
--	---------	---

#### PARAMETER

BENZENE <0.1 0.1 0.1 CHLOROBENZENE <0.1 1,4-DICHLOROBENZENE <0.1 0.1 1,3-DICHLOROBENZENE <0.1 0.1 <0.1 1,2-DICHLOROBENZENE 0.1 ETHYL BENZENE <0.1 0.1 TOLUENE <0.1 0.1 XYLENES <0.1 0.1

### Notes and Definitions for this Report:

EXTRACTED	07/29/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

tember: American Council of Independent Laboratories, Inc.

A MC/LL MALO AND AND STREAM THE AND A MEN		
age 21 eceived: 07/23/91	REPORT Results by Sample	Work Order # 91-07-257
AMPLE ID <b>PIT 3 BH-2 25.0-25.2</b>	FRACTION <u>11A</u> TEST CODE <u>8010</u> Date & Time Collected <u>07/22/91</u>	<u>8 NAME PURGBABLE HALOCARBONS-BOIL</u> Category
PARAMETER	RESULT LIMIT	

I AIGHIDI DI	NEDOCHI .	
BROMODICHLOROMETHANE	<0.1	0,1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<u> &lt;0.1</u>	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<u>&lt;0,1</u>	0,1
CHLOROETHANE	<0.1	<u>     0,1</u>
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1, 3-DICHLOROBENZENE	<0.1	0,1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0,1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<u> </u>	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0,1	0,1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0,1	0.1

.



.

.

Page 22 Received: 07/23/91

#### REPORT Results by Sample

Work Order # 91-07-257 Continued From Above

SAMPLE ID **PIT 3 BH-2 25.0-25.2** 

FRACTION <u>11A</u> TEST CODE <u>8010</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>07/22/91</u> Category _____

Notes and Definitions for this Report:

EXTRACTED	07/29/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

Member: American Council of Independent Laboratories, Inc.

Α 3	<b>KAL</b>	A10	الله من ا	å.s.u.1,	ú. , š	k s *	Å09	. ŝ	1	÷	宠 大	10. a	2 ył.	i k	ź.	÷ 2,	¥ , \$	14 J.	4 2	а		Ä
Page Recei	23 Lved:	07/23	/91			•		Resu	lts	ьу	Ban	EPOR'	r			Wor	k Orđe	r # 91	L-07-2	257		
SAMPI	LE ID	<u>pit 3</u>	BH-2	25.0	-25.2		FRAC Date					ST CO ced <u>0</u>			NAM	E <u>AR</u>		<b>VOLA</b> egory		ORGAN	<u>1C8</u>	

PARAMETER	RESULT	DET LIMIT
BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES	$ \begin{array}{r} <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ \\ <0.1 \end{array} $	$     \begin{array}{r}         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\     $

.

## Notes and Definitions for this Report:

EXTRACTED	07/29/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG



Page 24 Received: 07/23/91 REPORT Results by Sample

 SAMPLE ID
 PIT 3
 BH-1
 30.7-30.9
 FRACTION
 12A
 TEST CODE
 8010
 NAME
 PURGEABLE
 HALOCARBONS-SOIL

 Date & Time Collected
 07/22/91
 Category
 ______

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0,1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0,1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	<u> </u>
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<u> &lt;0.1</u>	0,1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<u> &lt;0.1</u>	0,1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	<u>        0,1</u>
trans-1,3-DICHLOROPROPENE	<0.1	<u>0.1</u>
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	<u> </u>
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0,1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

Nember: American Council of

The second 
*** 1	and a	and §		itut,	ુઝ્પવા ટ્ર	jwn, g	jus č	a.	e803.	18	-			÷.	- 18	- 194		ion -		1.1.1	1411-		48k .		7/Jda	100
-------	-------	-------	--	-------	------------	--------	-------	----	-------	----	---	--	--	----	------	-------	--	-------	--	-------	-------	--	-------	--	-------	-----

Page 25 Received: 07/23/91 REPORT Results by Sample Work Order # 91-07-257 Continued From Above

SAMPLE ID **PIT 3 BH-1 30.7-30.9** 

FRACTION 12ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/22/91Category _____

Notes and Definitions for this Report:

EXTRACTED	07/29/91
DATE RUN	07/30/91
ANALYST D/R	•
UNITS	MG/KG



<i>n</i> .	IC AL	MIU,	1C. • 7	lemon. Libuqi	tew h	09		
Page Recei	26 ived:	07/23/	/91			R Results by Samp	BPORT le	Work Order # 91-07-257
				30.7-30.9	F		r code <u>8020</u>	NAME AROMATIC VOLATILE ORGANICS
		<u></u>				ate & Time Collect		Category

PARAMETER	RESULT	DET LIMIT
BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES	$ \begin{array}{r} < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ \hline \end{array} $	$     \begin{array}{r}         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\     $

# Notes and Definitions for this Report:

.

EXTRACTED	07/29/91
DATE RUN	07/30/91
ANALYST D/R	· .
UNITS	MG/KG

.



,

.





HAZARDOU	S INON-HAZARD	OUS DATE RECEIVED		ESTIMATED	COST				
SUSTOMER P.O. NI	JMBER			DUE DATE					
		ACCOUNT IN	FORMATION						
CUSTOMER'S NAM	entran di anta.	and / Endras	·····		- Kergel				
ADDRESS	· .	· · · · · ·		PHONE NUM	BER				
CITY / STATE / ZIP		·		<u> </u>					
* ² PA	RTY RESPONSIB	LE FOR PAYMENT IF	OTHER THAN ABC	VE .	ACCOUNT STATUS				
NAME	<u> </u>	· · · · · · · · · · · · · · · · · · ·	CONTACT		PAYMENT REC'D.				
ADDRESS			PHONE NUMBER						
CITY / STATE / ZIP									
SPECIAL BILLING	INSTRUCTIONS	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
·		SAMPLE	ORMATION						
TYPE OF SAMPLE	NO. OF SAMPLES	*TURN AROUND TIME	SAMPLE IDEN	TIFICATION A	ND / OR SAMPLE SITE				
WATER SOIL OIL SLUDGE		] REGULAR (10 WKG DAYS) ] RUSH (3 DAYS) ] EMERGENCY (STAT)	<u>Sliction 9.</u>						
	1.2	*(SUBJECT TO WORK LOG)			······································				
AMPLE DELIVERE	DBY		TURE		DATE				
3	File X	NEXT Liny	HIR		7,63,44				
		ANALYSIS	REQUEST		·······				
		Ħ							
			<u></u>						
••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································						
	•								
	· · · · · · · · · · · · · · · · · · ·				·				
SPECIAL INSTRUC	TIONS								
			LOGGEDINBY						
7300 lefferse		Ieralie New Mexico		345-8964	• FAX (505) 345-7259				

### TRANSWESTERN PIPELINE COMPANY

CHAIN OF CUSTODY

District: <u>RoSwell</u>

Date: <u>7-22-91</u>

Sample Location Valve or Receiver No.	Vol. Collect. During Flush	Sampler	
STATION 9 -		DOCTRIE CORP.	

SAMPLE ID NUMBER	<u>SOLVENT</u> <u>USED</u>	SAMPLE ICED	- ANALYSES REQUESTED
PIT 2 SAMELE OCI		725	Rola
PIT 2 SAMPLE COZ		YES	5010
PIT 2 26.0-26.2		YES	9010
PIT 2 291-293		YES	8010
PIT 2 39 8 - 39 5		755	8010
P,72 441-443		YEA	Feis - 8020
PIT 2 57.5-57.8		YES	5010
P.T 2 699.70.1		Yes	fele - 8=2=
DIESL TONE 4.3-4.5		764	<u>трн</u>
DIELL TANK 7.4-7.9		Y25	ТРИ
PIT 3 BH-2 25.4-25.		YES	5010 -3020
PIT 3 BH-1 347-30		YES	6 610 - 502G
Relinquished By EAR		were	
Relinquished To re	Date 7.22.91		
	· ·		
Relinquished By		-	Date
Relinquished To		•	Date
			e
Relinquished By			Date
Relinquished To			Date
noringaronoa ro			
Relinquished By			Date
Relinquished By			Date
Keringerated Dy			
Laboratory: ASSA	GAI LAB	~	1 .
Received: 09	Kim -	<u></u>	Date <u>7/23/9/</u>
Receiveu:		· · · · · · · · · · · · · · · · · · ·	Date_ <u>p.491</u>
V	0		
* MAIL RESULTS TO :	LARRY CAMPBE	LL	(505-625-8622)
	P.O. 312 1717		(505-625-8622)

MM. SFLOJ.IJI

کوه ۲۰۰ تدر

Paĝe 1

### Received: 07/24/91

#### REPORT 07/31/91 14:20:37

重 注 盖 注 法 一次 一次 。

REPORT	ENRON/TRANSWESTERN PIPELINE
то	6381 N. MAIN STREET
	P.O. BOX 1717
	ROSWELL, NM 88202-1717
ATTEN	LARRY CAMPBELL
	·
CLIENT	ENR03 SAMPLES 6
COMPANY	ENRON/TRANSWESTERN PIPELINE
FACILITY	ROSWELL, NEW MEXICO

.,....

PREPARED <u>Assaigai Analytical Labs</u> BY <u>7300 Jefferson NE</u>

Albuquerque, NM 87109

In Rizi

CERTIFIED BY

ATTEN <u>SYED RIZVI</u> PHONE (505)345-8964

CONTACT LAB MANAGER

QUESTIONS	ABOUT THIS	REPORT	SHOULD BE	ADDRESSED	TO:
LABORA	TORY OPERAT	IONS MAN	AGER/ASSAI	GAI ANALY	TICAL
7300	JEFFERSON N	.E.,ALBU	QUERQUE, N.	M. 87109	

	ENRUS	
WORK ID	STATION #9	7799
TAKEN		
TRANS	FED X	
TYPE	SOIL	

P.O. #

INVOICE under separate cover

#### SAMPLE IDENTIFICATION

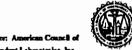
THDOT

<u>)1</u>	SG	91	28.6 - 28.8	
)2	SG	86	13.5 - 13.7	
			18.7 - 18.9	
			24.9 - 25.1	
			35.0 - 35.2	
			40.5 - 40.7	

TEST CODES and NAMES used on this workorder8010_SPURGEABLE HALOCARBONS-SOIL8020AROMATIC VOLATILE ORGANICS

er: American Council of

## REPORT


Results by Sample

age 2 eceived: 07/24/91

SAMPLE ID **BG 91 28.6 - 28.8** 

FRACTION01ATESTCODE8010BNAMEPURGEABLEHALOCARBONS-BOILDate & TimeCollectednotspecifiedCategory______

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0,1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0,1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0,1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0,1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0,1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0,1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<u>&lt;0.1</u>	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1



ir pendent Laboratories, Inc.

Page 3 Received: 07/24/91

Results by Sample

REPORT Work Order # 91-07-276 Continued From Above

SAMPLE ID <u>8G 91 28.6 - 28.8</u>

FRACTION 01A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL Date & Time Collected not specified Category

Notes and Definitions for this Report:

EXTRACTED	07/30/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG



REPORT Results by Sample

#### Work Order # 91-07-276

eceived: 07/24/91

AMPLE ID <u>8G 91 28,6 - 28,8</u> FRACTION <u>01A</u> TEST CODE <u>8020</u> NAME <u>AROMATIC VOLATILE ORGANICS</u>

Date & Time Collected not specified Category _____

PARAMETER	RESULT	DET LIMIT				
BENZENE	<0,1	0.1				
CHLOROBENZENE	<0.1	0.1				
1,4-DICHLOROBENZENE	<0,1	0,1				
1,3-DICHLOROBENZENE	<0.1	0.1				
1,2-DICHLOROBENZENE	<0,1	0.1				
ETHYL BENZENE	<0.1	0.1				
TOLUENE	<0.1	0.1				
XYLENES	<0,1	0.1				

.09

### Notes and Definitions for this Report:

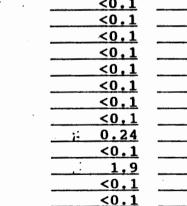
EXTRACTED	07/30/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

ber: American Council of

\$		)	.4. 10	, <b>*</b>	 3,. <b></b> ≇	3 <b>4</b> 1 2	207 2	*	<i>.</i>					•								
Page 5	5									REI	POR	(T		- W (	OLK	UL	aer	. <b>.</b> .	91-0	7-2	/0	

age 5 eceived: 07/24/91

#### REPORT Results by Sample


TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL

SAMPLE ID 86 86 13.5 - 13.7

FRACTION 02A Date & Time Collected not specified Category _

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0,1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0,1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0,1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0,1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0,1	0.1

1,4-DIG DICHLO 1,1-DI 1,2-DI 1,1-DI trans-1.2-DICHLOROPROPANE cis-1,3-DICHLOROPROPENE 1,1,2,2-TETRACHLOROETHANE trans-1,3-DICHLOROPROPENE METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TETRACHLOROETHENE TRICHLOROFLUOROMETHANE TRICHLOROETHENE VINYL CHLORIDE



<0.1

r: American Council of endent Laboratorica, Inc.

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

REPORT

: Results by Sample Work Order # 91-07-276 Continued From Above

eceived: 07/24/91

age 6

AMPLE ID 8G 86 13.5 - 13.7

FRACTION <u>02A</u> TEST CODE <u>8010 8</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>not specified</u> Category _____

Notes and Definitions for this Report:

EXTRACTED	07/30/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

an Court I a radani Laboratorica, Inc.

> ABOR THUS REPORT ... SY NOT # " " RODUCE" ... #ART OF " ... #L. WITE 劉相 EX@ Syrifin . ੈਂਦਸਾ ਹੈ

Work Urder # 91-07-276

Received: 07/24/91

Page 7

#### REPORT Results by Sample

TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL SAMPLE ID **8G 86 18.7 - 18.9** FRACTION 03A Date & Time Collected not specified Category

> 0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0,1

0.1

0,1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

RESULT LIMIT PARAMETER BROMODICHLOROMETHANE <0.1 <0.1 BROMOFORM <0.1 BROMOMETHANE CARBON TETRACHLORIDE <0.1 <0.1 CHLOROBENZENE <0.1 CHLOROETHANE <0.1 CHLOROFORM <0.1 2-CHLOROETHYL VINYL ETHER <0.1 CHLOROMETHANE <0.1 DIBROMOCHLOROMETHANE <0.1 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE <0.1 <0.1 1,4-DICHLOROBENZENE <0.1 **DICHLORODIFLUOROMETHANE** <0.1 1,1-DICHLOROETHANE · 0.1 1,2-DICHLOROETHANE <0.1 1,1-DICHLOROETHENE <0.1 trans-1,2-DICHLOROETHENE <0.1 <0.1 1.2-DICHLOROPROPANE cis-1,3-DICHLOROPROPENE <0.1 <0.1 1, 1, 2, 2-TETRACHLOROETHANE trans-1,3-DICHLOROPROPENE <0.1 <0.1 METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE <0.1 <0.1 1,1,2-TRICHLOROETHANE :: 0.23 **TETRACHLOROETHENE** <0.1 **TRICHLOROFLUOROMETHANE** <0.1 TRICHLOROETHENE VINYL CHLORIDE <0.1



Page 8 Received: 07/24/91 REPORT Results by Sample Work Order # 91-07-276 Continued From Above

1

AMPLE ID **86 86 18.7 - 18.9** 

FRACTION 03ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected not specifiedCategory

Notes and Definitions for this Report:

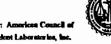
EXTRACTED	07/30/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

mber: American Council of rependent Laboratories, Inc. Page 9 Results by Sample Results by Sample

SAMPLE IDBG 8624.9 - 25.1FRACTION04ATEST CODE8010 BNAMEPURGEABLE HALOCARBONS-SOILDate & Time Collected not specifiedCategory

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0,1	0,1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0,1	
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0,1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0,1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0,1
1,1,2,2-TETRACHLOROETHANE	<0.1	0,1
trans-1,3-DICHLOROPROPENE	<0,1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1




age 10 eceived: 07/24/91 REPORT Results by Sample Work Order # 91-07-276 Continued From Above

AMPLE ID <u>86 86 24.9 - 25.1</u>

FRACTION04ATESTCODE80108NAMEPURGEABLEHALOCARBONS-BOILDate & TimeCollectednotspecifiedCategory______

Notes and Definitions for this Report:

EXTRACTED	07/30/91
DATE RUN	07/30/91
ANALYST D/R	,
UNITS	MG/KG



THUS REPORT MAY NOT BE REPRODUCED IN PART OR IN FULL WITHOUT THE EXPERS. WRITTEN CONSERVICE OF THE SUBGRATION

age 11

eceived: 07/24/91 Results by Sample

AMPLE ID 8G 86 35.0 - 35.2 FRACTION 05A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected not specified Category

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0.1	. 0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0,1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<u> </u>	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0,1	0.1
1,2-DICHLOROPROPANE	<0,1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	
VINYL CHLORIDE	<0.1	0.1



eceived: 07/24/91

AMPLE ID **BG 86 35.0 - 35.2** 

FRACTION 05A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected not specified Category

Notes and Definitions for this Report:

REPORT

EXTRACTED	07/30/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

ber: American Council of kryendant Laboratorica, inc.

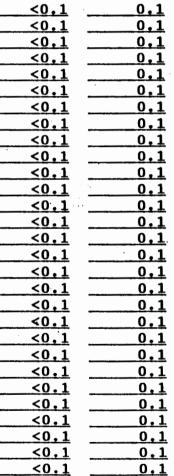
氰

the second

THIS REPORT MAY NOT BE REPRODUCED IN PART OR IN PULL WITHOUT THE BOPRESS WRITTEN CONSENT OF THE LABORATORY 灌 藍

1. I. 1

N.


Work Order # 91-07-276 Continued From Above

Results by Sample

aye 12

Page 13 Received:		i. · · · · · lentor · ·	⁵ Albu [≗] ∿Nc	cw:*****17109*	Results by	REPORT y Sample	* * *	W	fork Order	# 91-07-27	'6
SAMPLE ID	<u>8G 86</u>	40.5 - 40	0.7		CTION <u>06A</u> 2 & Time Co	TEST CODE ollected <u>not</u>			<b><u>PURGEABLE</u></b> _ Categ		<u>18-8011</u>

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0
BROMOFORM	<0.1	0
BROMOMETHANE	<0.1	
CARBON TETRACHLORIDE	<0.1	
CHLOROBENZENE	<0.1	0
CHLOROETHANE	<0.1	0
CHLOROFORM	<u> &lt;0,1</u>	0
2-CHLOROETHYL VINYL ETHER	<u> &lt;0.1</u>	0
CHLOROMETHANE	<0.1	0
DIBROMOCHLOROMETHANE	<0.1	0
1,2-DICHLOROBENZENE	<0.1	0
1,3-DICHLOROBENZENE	<0.1	0
1,4-DICHLOROBENZENE	<0.1	0
DICHLORODIFLUOROMETHANE	<u> </u>	0
1,1-DICHLOROETHANE	<u> </u>	0
1,2-DICHLOROETHANE	<u> &lt;0.1</u>	0
1, 1-DICHLOROETHENE	<0.1	0
trans-1,2-DICHLOROETHENE	<0.1	0
1,2-DICHLOROPROPANE	<0.1	0
cis-1,3-DICHLOROPROPENE	<0.1	
1,1,2,2-TETRACHLOROETHANE	<0.1	
trans-1,3-DICHLOROPROPENE	<0.1	0
METHYLENE CHLORIDE	<0.1	0
1,1,1-TRICHLOROETHANE	<0.1	
1,1,2-TRICHLOROETHANE	<0.1	
TETRACHLOROETHENE	<0.1	
TRICHLOROFLUOROMETHANE	<0.1	
TRICHLOROETHENE	<0.1	0
VINYL CHLORIDE	<0.1	0



2



.

Page 14 Received: 07/24/91

REPORT Results by Sample

Work Order # 91-07-276 Continued From Above

AMPLE ID **86 86 40.5 - 40.7** 

FRACTION 06A TEST CODE 8010 B NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected not specified Category ____

Notes and Definitions for this Report:

EXTRACTED	07/30/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG



THUS REPORT MAY NOT BE REPRODUCED IN PART OR IN PULL WITHOUT THE EXPRESS WRITTEN CONSENT OP THE LABORATORY

Page 15 Received: 07/24/91

5 8 G

Section 3

11 July (

### REPORT Results by Sample

, nuyà à à à a a la 🛔 à 🛔 à 🚡

SAMPLE ID <u>8G 86 40.5 - 40.7</u> FRACTION <u>06A</u> TEST CODE <u>8020</u> NAME <u>AROMATIC VOLATILE ORGANICE</u> Date & Time Collected <u>not specified</u> Category _____

PARAMETER	RESULT	DET LIMIT
BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES	$ \begin{array}{r} <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ \\ <0.1 \end{array} $	$     \begin{array}{r}         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\         0.1 \\     $

## Notes and Definitions for this Report:

EXTRACTED	07/30/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

### TRANSWESTERN PIPELINE COMPANY

CHAIN OF CUSTODY

District: Posmerc

Date: 7-23-91

ъ.e.i.

Sample Location Valve or Receiver No.

Vol. Collect. During Flush

Sampler

STATION 9

METRIC CORP.

SAMPLE ID NUMBER SOLVENT SAMPLE ANALYSES REQUESTED USED ICED SG 91 28.6-28.8 Yes 9016 - FOZC YES Sala SG 86 12.5 13.7. 56.86 18.7-18.9 YES 8012 SER6 24.9 - 251 YEC 8010 SCRL 35.C - 35.2 8010 745 SG86 40.5 - 40.7 YEL 8010 - 8020

Relinquished	BY FARL CHANLET / TWEPLC	Date <u>7-23-51</u>
Relinquished	To_ <u>FE0</u> -	Date 7-23-51
Relinquished		Date
Relinquished	То	Date
Relinquished	Ву	Date
Relinquished	То	Date
Relinquished	Ву	Date
Relinquished	Ву	Date
	•	
Laboratory:	assance Lorss	
Received:	OFfing	Date 7/24/91
		/ /

* MAIL RESULTS TO . LARRY CAMPBELL 12.0. BOX 1717 ROSWILL N.M. 882-2-1117

(505-625-8022)





	11.111		ESTIMATED	COST
CUSTOMER P.O. NUMBER	TIME RECEIVED_		DUE DATE	1.1
	ACCOUNT IN	FORMATION	· · · · · · · · · · · · · · · · · · ·	
CUSTOMER'S NAME			CONTACT	C- Porch
ADDRESS ADDRESS		······································	PHONE NUM	
CITY / STATE / ZIP				
PARTY RESPONSIBLE	FOR PAYMENT IF	OTHER THAN ABO	OVE ·	ACCOUNT STATUS
NAME		CONTACT		
ADDRESS		PHONE NUMBER		PAYMENT REC'D.
				OPEN ACCOUNT
SITY / STATE / ZIP				
SPECIAL BILLING INSTRUCTIONS	·			I
·				•
TYPE OF SAMPLE NO. OF SAMPLES +TU	SAMPLE INF			
	EGULAR (10 WKG DAYS)		ITIFICATION A	ND / OR SAMPLE SITE
	JSH (3 DAYS)	S-1x. t.c.	1	·····
	REAGENCY (STAT)	·		
				· · · · · · · · · · · · · · · · · · ·
	SUBJECT TO WORK LOG			
	A Y	ATURE		DATE 7/34/31
······································	ANALYSIS	REQUEST		
WORK DESCRIPTION	•			
si C C C	1070			
;				
* <u></u>		<u> </u>		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>		
				<u></u>
SPECIAL INSTRUCTIONS				
N				
&:				
BILLING: PICKUP MAIL		LOGGED IN BY		
······································		07400 (505)	0.45.00/	
7300 Jefferson NE • Albuquera	que, New Mexico	o 8/109 • (505)	345-8964	• FAX (505) 345-7259

NALY IICAL LABORATORIES, INC. + 7300 Jefferron, N.E. + Albuquerque, New Mexico \$7109

1 ept

aceived: 07/30/91

REPORT	ENRON/TRANSWESTERN PIPELINE
то	6381 N. MAIN STREET
	P.O. BOX 1717
	ROSWELL, NM 88202-1717
ATTEN	LARRY CAMPBELL

CLIENT	ENR03	SAMPLES 22
COMPANY	ENRON/TRANSWESTERN	PIPELINE
ACILITY	ROSWELL, NEW MEXICO)
	ENRO3	

WORK ID	STATION 9-0.S. YARD 7848
TAKEN	7/29/91
TRANS	FEDERAL EXPRESS
TYPE	SOIL
P.O. #	
INVOICE	under separate cover

SAMPLE IDENTIFICATION

l	OSBH3		
2	SG349	0-1,8	
3	SG349	2,9-4,6	
4	SG349	9.0-10.0	
5	<u>SG349</u>	14.0-14.8	
6	SG349	20,3-21,3	
1	SG349	25,3-26,3	
8	SG349	29,7-30,4	
9	SG360	0,0-2,5	
Õ	SG360	4.0-5.0	
ī	SG360	9,0-9,9	
2_	SG360	14.0-14.7	
3	<u>SG360</u>	19.0-20.0	
1	<u>SG360</u>	24.0-25.0	
5	<u>SG360</u>	29,0-29.4	

	<u></u>	· · · · · · · · ·	•	
OMPANY	ENRON/TRA	ANSWI	ESTERN	PIP
CILITY	ROSWELL,	NEW	MEXIC	0
	ENRO3			

Assaigai Analytical	Labs
	09
	Assaigai Analytical 7300 Jefferson NE Albuquerque, NM 8710

CERTIFIED BY

ATTEN SYED RIZVI PHONE (505)345-8964

08/09/91 10:27:50

CONTACT LAB MANAGER

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

8010 S PURGEABLE HALOCARBONS-SOIL 8020 AROMATIC VOLATILE ORGANICS

TEST CODES and NAMES used on this workorder

REPORT

Work Order # 91-07-330

NALYTICAL LA BORATORIES, LNC. + 7300 Jeffeman, N.E. + Albuquerque, New Mexico 17109

ag**e 2** ec**eived: 07/30/91**

REPORT 08/09/91 10:27:50

á.

Work Order # 91-07-330

Same &

Same 8

SAMPLE IDENTIFICATION

<u>6</u>	SG361	0-2.5	
Ž	SG361	4.0-5.0	. •
8	SG361	9,0-10,0	
9	SG361	16.0-16.4	
Õ	SG361	19.5-19.8	
		24.0-25.0	. *
2	SG361	38,9-39,3	

• • •

. 1

1 -- 1

. .

2

•

. . . .

ther: American Council of pendent Laboratories, Inc. NALI IILAL LABUKA (ORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico 87109

age 3 eceived: 07/30/91

Results by Sample

Work Order # 91-07-330

AMPLE ID OBBH3

FRACTION 01A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL Date & Time Collected 07/29/91 Category

> 0.1 0,1 0.1 0.1 0,1 0.1 0.1 0,1

PARAMETER

RESULT LIMIT

REPORT

BROMODICHLOROMETHANE	<0.1
BROMOFORM	<0.1
BROMOMETHANE	
CARBON TETRACHLORIDE	<0.1
CHLOROBENZENE	<0.1
CHLOROETHANE	$ \begin{array}{r} <0.1 \\ <0.1 \\ \hline \end{array} $
CHLOROFORM	<0.1
2-CHLOROETHYL VINYL ETHER	<0.1
CHLOROMETHANE	<0.1
DIBROMOCHLOROMETHANE	<0,1
1,2-DICHLOROBENZENE	<0.1
1,3-DICHLOROBENZENE	<0.1
1,4-DICHLOROBENZENE	<0.1
DICHLORODIFLUOROMETHANE	<0.1
1,1-DICHLOROETHANE	<0.1
1,2-DICHLOROETHANE	<0,1
1,1-DICHLOROETHENE	<0.1
trans-1,2-DICHLOROETHENE	<0,1
1,2-DICHLOROPROPANE	<0.1
cis-1,3-DICHLOROPROPENE	<0,1
1,1,2,2-TETRACHLOROETHANE	<0.1
trans-1,3-DICHLOROPROPENE	<0,1
METHYLENE CHLORIDE	<0.1
1,1,1-TRICHLOROETHANE	<0.1
1,1,2-TRICHLOROETHANE	<0.1
TETRACHLOROETHENE	$ \begin{array}{r} <0.1 \\ <0.1 \\ <0.1 \\ \hline \\ \hline <0.1 \\ \hline \end{array} $
TRICHLOROFLUOROMETHANE	<0.1
TRICHLOROETHENE	<0.1
VINYL CHLORIDE	<u><0.1</u>

fices Council of

age 4 eceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

AMPLE ID OBBH3

 FRACTION 01A
 TEST CODE 8010 8
 NAME PURGEABLE HALOCARBONS-BOIL

 Date & Time Collected 07/29/91
 Category

Notes and Definitions for this Report:

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

Work Order # 91-07-330

1

ge 5 sceived: 07/30/91

Results by Sample

MPLE ID OBBH3	FRACTION 01A	TEST CODE 8020	NAME AROMATIC VOLATILE ORGANICS
	Date & Time Col	lected <u>07/29/91</u>	Category

PARAMETER	RESULT	DET LIMIT
BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES	$ \begin{array}{r} <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ <0.1 \\ \\$	$ \begin{array}{r} 0.1 \\ $

Notes and Definitions for this Report:

REPORT

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

 1 Y

.

Ť,

NALT IILAL LABURA JURIES, INC. . 7300 Jefferson, N.E. . Albuquerque, New Mexico 87109

2 B

age 6 ceived: 07/30/91

MPLE ID 86349 0-1.8

REPORT Results by Sample

1

. 1

FRACTION 02A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected 07/29/91

Category

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0,1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0,1	0,1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0,1	0.1
1,2-DICHLOROBENZENE	<0.1	0,1
1,3-DICHLOROBENZENE	<0.1	0,1
1,4-DICHLOROBENZENE	<0.1	0,1
DICHLORODIFLUOROMETHANE	<0.1	0,1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0,1
1,1-DICHLOROETHENE	<0.1	0,1
trans-1,2-DICHLOROETHENE	<0.1	0,1
1,2-DICHLOROPROPANE	<0.1	0,1
cis-1,3-DICHLOROPROPENE	<0.1	0,1
1,1,2,2-TETRACHLOROETHANE	<u> <0.1</u>	0,1
trans-1,3-DICHLOROPROPENE	<0.1	0,1
METHYLENE CHLORIDE	<0.1	0,1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

age 7 aceived: 07/30/91

Results by Sample

Work Order # 91-07-330 Continued From Above

MPLE ID <u>8G349 0-1.8</u>

FRACTION02ATESTCODE8010_6NAMEPURGEABLEHALOCARBONS-BOILDate & TimeCollected07/29/91Category______

Notes and Definitions for this Report:

REPORT

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

American Council of

NALYTICAL LABURATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico \$7109 age 8 Work Order # 91-07-330 REPORT aceived: 07/30/91 **Results by Sample** AMPLE ID 86349 2.9-4.6 TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-BOIL FRACTION 03A Date & Time Collected 07/29/91 Category PARAMETER RESULT LIMIT BROMODICHLOROMETHANE <0.1 0.1 <0.1 0.1 BROMOFORM <0.1 0.1 BROMOMETHANE CARBON TETRACHLORIDE <0.1 0.1 <0.1 0.1 CHLOROBENZENE <0.1 0.1 CHLOROETHANE CHLOROFORM <0.1 0.1 2-CHLOROETHYL VINYL ETHER <0.1 0.1 <0.1 0.1 CHLOROMETHANE <0.1 0.1 DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE <0.1 0.1 0.1 1,3-DICHLOROBENZENE <0.1 <0.1 0.1 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE <0.1 0.1 <0.1 1,1-DICHLOROETHANE 0.1 1,2-DICHLOROETHANE <0.1 0.1 1.1-DICHLOROETHENE <0.1 0.1 trans-1,2-DICHLOROETHENE <0.1 0.1 1,2-DICHLOROPROPANE <0.1 0.1 cis-1,3-DICHLOROPROPENE <0.1 0.1 1,1,2,2-TETRACHLOROETHANE <0.1 0.1 trans-1,3-DICHLOROPROPENE <0.1 0.1 METHYLENE CHLORIDE <0.1 0.1 1,1,1-TRICHLOROETHANE <0.1 0.1 1,1,2-TRICHLOROETHANE <0.1 0.1 TETRACHLOROETHENE <0.1 0.1 <0,1 TRICHLOROFLUOROMETHANE 0,1 TRICHLOROETHENE <0.1 0.1 VINYL CHLORIDE <0.1 0.1

. 1

age 9 aceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

AMPLE ID <u>8G349 2.9-4.6</u>

FRACTION 03ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-BOILDate & Time Collected 07/29/91Category _____

Notes and Definitions for this Report:

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

ber: American Council of endent Laboratorics, Inc. ANALY I ICAL LABURA I UNILS, INC. + 7300 Jefferion, N.E. + Albuquerque, New Mexico 17109

age 40 eceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

AMPLE ID 86361 9.0-10.0

 FRACTION 18A
 TEST CODE 8010 8
 NAME PURGEABLE HALOCARBONS-SOIL

 Date & Time Collected 07/29/91
 Category

Notes and Definitions for this Report:

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

11 JH. ALYFICAL LABORATORIES, INC. + 7300 Jefferron, N.B. + Albuquerque, New Mexico \$7109

ige 10. ceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330

MPLE ID **BG349 9.0-10.0**

FRACTION 04ATEST CODE 8010 SNAME PURGEABLE HALOCARBONS-BOILDate & Time Collected 07/29/91Category _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0,1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<u><0.1</u>	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0,1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0,1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0,1	0,1
TRICHLOROETHENE	<u> <0.1</u>	0.1
VINYL CHLORIDE	<0.1	0.1
	۰.	

daries, loc.

ALYTICAL LABORATORIES, INC. • 7300 Jefferson, N.B. • Albuquerque, New Mexico	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
1ge 11 3ceived: 07/30/91	REPORT Results by Sample	Work Order # 91-07-330 Continued From Above
AMPLE ID <u>8G349 9,0-10,0</u>	FRACTION <u>04A</u> TEST CODE <u>8010_8</u> Date & Time Collected <u>07/29/91</u>	NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Category
	Notes and Definitions for this	Report:
	EXTRACTED 08/05/91 DATE RUN 08/05/91	

DATE RUN <u>08/0</u> ANALYST <u>D/R</u> UNITS <u>MG/KG</u>

•

.

ALYTICAL LABORATORIES, INC. • 7300 Jeffesson, N.E. • Albuquerque, New Mexico \$7109

1ge 12 sceived: 07/30/91

REPORT. Results by Sample

Work Order # 91-07-330

MPLE ID 86349 14.0-14.8

FRACTION 05ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/29/91Category _____

٢.

\$

\$

1 1

を決

3

金属 医尿道

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0,1	0.1
1, 3-DICHLOROBENZENE	<0.1	
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0,1	0,1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0,1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

rican Council Star at or le #

IALYTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico 87109

1ge 13 1ceived: 07/30/91 REPORT Results by Sample Work Order # 91-07-330 Continued From Above

AMPLE ID 86349 14.0-14.8

FRACTION 05ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-80ILDate & Time Collected 07/29/91Category _____

Notes and Definitions for this Report:

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

H ∴**T**† NALTTICAL LABORATORIES, INC. + 7300 Jeffeston, N.E. + Albuquerque, New Mexico \$7109

age 14 eceived: 07/30/91

A

REPORT

Work Order # 91-07-330

Results by Sample

AMPLE ID 8G349 20.3-21.3

TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL FRACTION 06A Date & Time Collected 07/29/91 Category

PARAMETER

BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE **CHLOROETHANE** CHLOROFORM 2-CHLOROETHYL VINYL ETHER CHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE trans-1, 2-DICHLOROETHENE 1,2-DICHLOROPROPANE cis-1,3-DICHLOROPROPENE 1,1,2,2-TETRACHLOROETHANE trans-1,3-DICHLOROPROPENE METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TETRACHLOROETHENE **TRICHLOROFLUOROMETHANE** TRICHLOROETHENE VINYL CHLORIDE

RESULT	LIMIT
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<u> </u>	0.1

ALYTICAL LABORATORIES, INC. . 7300 Jefferson, N.E. . Albuquerque, New Mexico 17109

ige 15 sceived: 07/30/91 REPORT Results by Sample Work Order # 91-07-330 Continued From Above

MPLE ID 86349 20.3-21.3

FRACTION <u>06A</u> TEST CODE <u>8010</u> NAME <u>PURGEABLE HALOCARBONS-801L</u> Date & Time Collected <u>07/29/91</u> Category _____

Notes and Definitions for this Report:

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

BT! **tx** 11 ALYTICAL LABORATORIES, INC. + 7300 Jeffeston, N.E. + Albuquerque, New Mexico \$7109

1**Ge 16**

ceived: 07/30/91

REPORT

1. Sec.

100

3

Results by Sample

MPLE ID 86349 25.3-26.3

FRACTION <u>07A</u> TEST CODE <u>8010 8</u> Date & Time Collected <u>07/29/91</u> NAME PURGEABLE HALOCARBONS-BOIL Category

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<u> </u>	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	. <0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0,1
DIBROMOCHLOROMETHANE	<0,1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1, 3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0,1	0.1
1,1-DICHLOROETHANE	<0.1	0,1
1,2-DICHLOROETHANE	<u> <0,1</u>	0.1
1,1-DICHLOROETHENE	<0,1	0.1
trans-1,2-DICHLOROETHENE	<0,1	0.1
1,2-DICHLOROPROPANE	<0,1	0.1
cis-1,3-DICHLOROPROPENE	<0,1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<u> <0.1</u>	0,1
METHYLENE CHLORIDE	<0.1	<u> 0,1</u>
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	<u> 0,1</u>
TRICHLOROFLUOROMETHANE	<0,1	0,1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<u> <0.1</u>	0.1

ALTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico 87109 Ige 17 Sceived: 07/30/91 Results by Sample Work Order # 91-07-330 Continued From Above MPLE ID <u>8G349 25.3-26.3</u> FRACTION <u>07A</u> TEST CODE <u>8010 6</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>07/29/91</u> Category ______ Notes and Definitions for this Report: <u>EXTRACTED</u> _____08/05/91

08/05/91

MG/KG

DATE RUN

UNITS

ANALYST D/R

ALYTICAL LABORATORIES, INC. • 7300 Jefferson, N.E. • Albuquerque, New Mexico \$7109

ge 18 ceived: 07/30/91

REPORT Results by Sample

PARAMETER	RESULT
BROMODICHLOROMETHANE	<0,1
BROMOFORM	<0.1
BROMOMETHANE	<0,1
CARBON TETRACHLORIDE	<0.1
CHLOROBENZENE	<0.1
CHLOROETHANE	<0.1
CHLOROFORM	<0.1
2-CHLOROETHYL VINYL ETHER	<0,1
CHLOROMETHANE	<0.1
DIBROMOCHLOROMETHANE	<0.1
1,2-DICHLOROBENZENE	<0.1
1,3-DICHLOROBENZENE	<0,1
1,4-DICHLOROBENZENE	<0.1
DICHLORODIFLUOROMETHANE	<0.1
1,1-DICHLOROETHANE	<0.1
1,2-DICHLOROETHANE	<0.1
1,1-DICHLOROETHENE	<0.1
trans-1,2-DICHLOROETHENE	<0.1
1,2-DICHLOROPROPANE	<0,1
cis-1,3-DICHLOROPROPENE	<0.1
1,1,2,2-TETRACHLOROETHANE	<0,1
trans-1,3-DICHLOROPROPENE	<0,1
METHYLENE CHLORIDE	<0,1
1,1,1-TRICHLOROETHANE	<0,1
1,1,2-TRICHLOROETHANE	<0.1
TETRACHLOROETHENE	<0.1
TRICHLOROFLUOROMETHANE	<0.1
TRICHLOROETHENE	<0.1
VINYL CHLORIDE	<0.1

•	
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0,1
<0.1	0.1
<0,1	0.1
<0,1	0.1
<0.1	0,1
<0,1	0,1
<0,1	0,1
<0.1	0.1
<0.1	0.1

LIMIT

American Council of

ALYTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico \$7109

ge 19 ceived:	07/30/91	RBPORT Results by Sample	Work Order # 91-07-330 Continued From Above
MPLE ID	8G349 29,7-30,4	FRACTION <u>OBA</u> TEST CODE <u>8010_8</u> Date & Time Collected <u>07/29/91</u>	NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Category
		Notes and Definitions for this	Report:
	•	EXTRACTED 08/05/91	

DATE RUN <u>08/05/91</u> ANALYST <u>D/R</u> UNITS <u>MG/KG</u>

American Court

A r# **t**ri' ALYTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico \$7109

1ge 20 ceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330

MPLE ID 86349 29.7-30.4

FRACTION 08A TEST CODE 8020 NAME AROMATIC VOLATILE ORGANICS Date & Time Collected 07/29/91 Category

DET LIMIT

PARAMETER

BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1, 3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES

<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0.1	0,1

Notes and Definitions for this Report:

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

RESULT

21 ived: 07/30/91	Jeffeeson, N.B. • Albuquerque, New Mexico 17109 Results	REPORT by Sample		Work Order # 91-07-330
LE ID <u>86360 0.0-</u>	2.5 FRACTION <u>09A</u> Date & Time	TEST CODE Collected 07/		E <u>PURGEABLE HALOCARBONS-BOIL</u> Category
	•			
	PARAMETER	RESULT	LIMIT	
	BROMODICHLOROMETHANE	<0.1	0.1	
	BROMOFORM	<0.1	0.1	
	BROMOMETHANE	<0.1	0.1	
	CARBON TETRACHLORIDE	<0.1	0,1	
	CHLOROBENZENE	<0.1	0.1	
	CHLOROETHANE	<0.1	0,1	·
	CHLOROFORM	<0.1	0.1	
	2-CHLOROETHYL VINYL ETHER	<0.1	0.1	<i>.</i>
	CHLOROMETHANE	<0.1	0.1	
	DIBROMOCHLOROMETHANE	<0.1	0,1	•
	1,2-DICHLOROBENZENE	<0,1	0.1	
	1, 3-DICHLOROBENZENE	<0,1	0.1	
	1,4-DICHLOROBENZENE	<0.1	0.1	
	DICHLORODIFLUOROMETHANE	<0,1	0.1	
	1,1-DICHLOROETHANE	<0.1	0,1	· · ·
	1,2-DICHLOROETHANE	<0.1	0.1	
	1,1-DICHLOROETHENE	<0,1	0,1	
	trans-1,2-DICHLOROETHENE	<0.1	0.1	· · ·
	1,2-DICHLOROPROPANE	<0.1	0.1	
	cis-1, 3-DICHLOROPROPENE	<0.1	0.1	
	1,1,2,2-TETRACHLOROETHANE	<0.1	0,1	
	trans-1, 3-DICHLOROPROPENE	<0.1	0.1	
	METHYLENE CHLORIDE	<0.1	0,1	
	1,1,1-TRICHLOROETHANE	<0.1	0,1	
	1,1,2-TRICHLOROETHANE	<0.1	0,1	
	• •	<0.1		
	TETRACHLOROETHENE TRICHLOROFLUOROMETHANE	<0.1		
	TRICHLOROFLOOROMETHANE	<0.1		
	TRICHLOROETHENE	<u> </u>	t	•

\$

.

. •

A LA JA: 'ALI IIIL LABURA I ORIES, INC. • 7300 Jeffesson, N.B. • Albuquerque, New Mexico \$7109

tge 22 Sceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

MPLE ID 86360 0.0-2.5

FRACTION 09ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/29/91Category _____

Notes and Definitions for this Report:

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

A'r. ALYTICAL LABORATORIES, INC. + 7300 Jefferron, N.E. + Albuquerque, New Mexico \$7109 Work Order # 91-07-330 1ge 23 REPORT ceived: 07/30/91 **Results by Sample** MPLE ID 8G360 4.0-5.0 FRACTION 10A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL Date & Time Collected 07/29/91 Category PARAMETER RESULT LIMIT BROMODICHLOROMETHANE <0.1 0.1 BROMOFORM <0.1 0.1 <0.1 0.1 BROMOMETHANE CARBON TETRACHLORIDE <0.1 0.1 0.1 CHLOROBENZENE <0.1 <0.1 0.1 CHLOROETHANE 0.1 CHLOROFORM <0.1 0.1 2-CHLOROETHYL VINYL ETHER <0.1 CHLOROMETHANE <0.1 0.1 0.1 DIBROMOCHLOROMETHANE <0.1 1,2-DICHLOROBENZENE <0.1 0.1 1,3-DICHLOROBENZENE <0.1 0.1 1,4-DICHLOROBENZENE <0.1 0.1 DICHLORODIFLUOROMETHANE 0.1 <0.1 <0.1 0.1 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE <0.1 0.1 1,1-DICHLOROETHENE <0.1 0.1 trans-1, 2-DICHLOROETHENE <0.1 0.1 1.2-DICHLOROPROPANE <0.1 0.1 cis-1,3-DICHLOROPROPENE <0.1 0.1 1,1,2,2-TETRACHLOROETHANE <0.1 0.1 trans-1,3-DICHLOROPROPENE <0.1 0.1 METHYLENE CHLORIDE <0.1 0.1 1,1,1-TRICHLOROETHANE <0.1 0.1 1,1,2-TRICHLOROETHANE <0.1 0.1 TETRACHLOROETHENE <0.1 0.1 TRICHLOROFLUOROMETHANE <0.1 0.1 TRICHLOROETHENE <0.1 0.1 VINYL CHLORIDE <0.1 0.1

8

AL 1-3 113 IALY HCAL LABORATORIES, INC. • 7300 Jefferson, N.E. • Albuquerque, New Mexico \$7109

ge 24 ceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

MPLE ID 8G360 4.0-5.0

FRACTION 10ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-BOILDate & Time Collected 07/29/91Category _____

Notes and Definitions for this Report:

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

AÎ ICAL	AllOl IC. • 7 ceron, Jbuqu ew M	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
Page 9 Received:	07/26/91	REPORT Work Order # 91-07-299 Results by Sample Continued From Above
SAMPLE ID	<u>08BH2 22.5 - 22.6</u>	FRACTION <u>04A</u> TEST CODE <u>8010_8</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>not specified</u> Category

Notes and Definitions for this Report:

,

.

•

EXTRACTED	08/01/91
DATE RUN	08/01/91
ANALYST D/R	,
UNITS	MG/KG

.

.

,

.

REPORT

RESULT

Results by Sample

Received: 07/26/91

Page 10

SAMPLE ID OBBH2_31.1 - 31.3

FRACTION 05A TEST CODE 8010 B NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected not specified Category

LIMIT

PARAMETER

BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM 2-CHLOROETHYL VINYL ETHER CHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE **DICHLORODIFLUOROMETHANE** 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE trans-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE cis-1,3-DICHLOROPROPENE 1,1,2,2-TETRACHLOROETHANE trans-1,3-DICHLOROPROPENE METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TETRACHLOROETHENE TRICHLOROFLUOROMETHANE TRICHLOROETHENE VINYL CHLORIDE

<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<u><0.1</u>	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<u><0.1</u>	0.1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1

: American Connell of

· A1 ICAL OTA! IC. •1 .bum lew M. /109 caron. Work Order # 91-07-299 Page 11 REPORT Results by Sample Continued From Above Received: 07/26/91 FRACTION 05A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL SAMPLE ID **O8BH2 31.1 - 31.3** Date & Time Collected not specified Category

Notes and Definitions for this Report:

EXTRACTED	<u> </u>
DATE RUN	08/01/91
ANALYST D/R	
UNITS	MG/KG

Page 12 Received: 07/26/91

Results by Sample

REPORT

1101

1. 17 1

SAMPLE ID 08BH2 41.8 - 42.0

FRACTION 06ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-BOILDate & Time Collected not specifiedCategory

· . .

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM .	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0,1
CHLOROBENZENE	<0.1	0,1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0,1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<u> </u>	0.1
1,2-DICHLOROPROPANE	<u> <0.1</u>	0.1
cis-1,3-DICHLOROPROPENE	<u> <0.1</u>	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<u> <0.1</u>	0.1
1,1,2-TRICHLOROETHANE	<0.1	<u> </u>
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<u> <0.1</u>	0.1

American Council of

15

, N	ICAL:	AIU	10. •7	calon,	,lbuqu	lew M	109		ć	1	18. 1	*	ě.	, in the second s	κ ž	16. 6.	ă.	i. i	-5	8	9 ¥	- i - magaze
Page	13	07/26						Resu				REPO				Wor		der			-299 ve	
					•														•			

Notes and Definitions for this Report:

EXTRACTED	08/01/91
DATE RUN	08/01/91
ANALYST D/R	
UNITS	MG/KG

endent Laboratorica, Inc.

.

Page 14 Received: 07/26/91 REPORT Results by Sample

SAMPLE ID 08BH2 55.2 - 55.4

1......

FRACTION 07ATEST CODE 8010 6NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected not specifiedCategory

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0,1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0,1	0.1
METHYLENE CHLORIDE	<0.1	0,1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

107

1. . .

10.114

a a

kenber: American Council o stependent Laboratorica, Inc.

ILAI RATC NC. . Temar Jour New 1 7109

Page 15 Received: 07/26/91

Å.

REPORT Results by Sample

Work Order # 91-07-299 Continued From Above

SAMPLE ID 08BH2 55.2 - 55.4

FRACTION07ATESTCODE8010BNAMEPURGEABLEHALOCARBONS-BOILDate & TimeCollectednotspecifiedCategory______

Notes and Definitions for this Report:

EXTRACTED	08/01/91
DATE RUN	08/01/91
ANALYST D/R	
UNITS	MG/KG

· ·

REPORT Results by Sample

RESULT

Received: 07/26/91

Page 16

SAMPLE ID OSBH2 69.0 - 69.2

FRACTION <u>OBA</u> TEST CODE <u>8010 8</u> NAME <u>PURGEABLE HALOCARBONS-80IL</u> Date & Time Collected not specified Category

LIMIT

PARAMETER

BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE **CHLOROETHANE** CHLOROFORM 2-CHLOROETHYL VINYL ETHER CHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE DICHLORODIFLUOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE trans-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE cis-1,3-DICHLOROPROPENE 1,1,2,2-TETRACHLOROETHANE trans-1,3-DICHLOROPROPENE METHYLENE CHLORIDE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TETRACHLOROETHENE TRICHLOROFLUOROMETHANE TRICHLOROETHENE VINYL CHLORIDE

<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<0.1	0,1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1

American Council of

ě.	KAL	(ALU	*~ • '	lesor	ւլբով	lew	7109	· · · .		
Page Rece		07/26	91				Results by	REPORT 8ample	Work Order # Continued Fro	
SAMP	LE ID	<u>08BH2</u>	69.0	- 69	.2		FRACTION <u>08A</u> Date & Time Co	TEST CODE <u>s</u> llected <u>not s</u>	E <u>PURGEABLE HA</u> Categor	LOCARBONS-SOIL Y

. .

Notes and Definitions for this Report:

EXTRACTED	08/01/91
DATE RUN	08/01/91
ANALYST D/R	······
UNITS	MG/KG

.

TRANSWESTERN PIPELINE COMPANY

CHAIN OF CUSTODY

District: Roswell

Date: 7-25-91 ...

Sample Location Valve or Receiver No.

Vol. Collect. During Flush

Sampler

STATION 9 NATTRIC CORP.

SAMPLE ID NUMBER	SOLVENT USED	SAMPLE ICED	ANALYSES REQUESTED
95 BH1 18.9 - 19.1	•	YES	8010
058H1 35.3.34.5		YES	8010
1 hel - P. P SH 820	······	7#5	8010
OSBHZ 27.5-22.6		YES	8 9 1 0
ASAH7 31.1-31.3		YES	8019
0.54-9.14 SH8 20		745	8.10
4.22-5.23 SH220		465	80 in
OSRH2 (9.0 - 67.2		725	8010
		1	

Relinquished	By EARL CHANLEY / TWPLCO.	Date 7.25.91
Relinquished	To F20-X	Date 7-25-9/
Relinquished	Ву	Date
Relinquished	Το	Date
Relinquished	Ву	Date
Relinquished	То	Date
Relinquished	Ву	Date
Relinquished	By	Date
Laboratory:		
Received:		Date
MAIL RESULTS	TI : LARRY CAMPBELL	(505-625-8022)

P.o. Box 1717 ROSWELL NM 882+2-1717

25-1022)

in i

ASSAIGAI ANALYTICAL LABORATORIE	ES		WORK	CORDER 7821
HAZARDOUS NON-HAZARDOUS	Silved /	1	ESTIMATED	COST
CUSTOMER P.O. NUMBER TIME RECEI			DUE DATE	24/91
ACC		ORMATION	<u> </u>	
CUSTOMER'S NAME			CONTACT	
ADDRESS			PHONE NUMBER	
CITY/STATE/ZIP	······································			
PARTY RESPONSIBLE FOR PAYN	IENT IF O	THER THAN ABO	DVE .	ACCOUNT STATUS
NAME		CONTACT	-	
ADDRESS		PHONE NUMBER		OPEN ACCOUNT
CITY / STATE / ZIP				CASH
SPECIAL BILLING INSTRUCTIONS			<u>.</u>	
SAN				AND / OR SAMPLE SITE
WATER		Startics-	C7	
OIL NO. OF CONTAINERS EMERGENCY (S			/.	
SAMPLE DELIVERED BY	WORK LOG	TURF		DATE
SAMPLE DELIVERED BI				11:4/91
A	NALYSIS	REQUEST		/ /
WORK DESCRIPTION				
		·····		
, <u> </u>		<u></u>	<u> </u>	
· · · · · · · · · · · · · · · · · · ·				
<u></u>				
SPECIAL INSTRUCTIONS				
			ł	
	1	LOGGED IN BY		

BILLING: PICKUP	MAIL		
7300 Jefferson N	E • Albuquerque, New Mexic	0.87109 • (505) 345-8964	• FAX (505) 345-7259

10-68

.109

REPORT

Work Order # 91-07-257

Received: 07/23/91

JOTA

N. 1. 1 ICAL

٨!

Page 24

Results by Sample

SAMPLE ID **PIT 3 BH-1 30,7-30.9**

FRACTION 12ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/22/91Category _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	
CHLOROETHANE	<0.1	
CHLOROFORM	<u> <0.1</u>	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	
1,2-DICHLOROBENZENE	<0.1	<u> 0.1</u>
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	
DICHLORODIFLUOROMETHANE	<0.1	
1,1-DICHLOROETHANE	<0.1	
1,2-DICHLOROETHANE	<0.1	
1,1-DICHLOROETHENE	<0.1	
trans-1,2-DICHLOROETHENE	<0.1	
1,2-DICHLOROPROPANE	<0.1	
cis-1,3-DICHLOROPROPENE	<0:1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	
1,1,2-TRICHLOROETHANE	<0.1	<u> 0.1</u>
TETRACHLOROETHENE	<0.1	
TRICHLOROFLUOROMETHANE	<0.1	
TRICHLOROETHENE	<0.1	
VINYL CHLORIDE	<0.1	0.1

A ICAL ATO IC. • lew N ./109 . enton . Jbug Work Order # 91-07-257 Page 25 REPORT Results by Sample Received: 07/23/91 **Continued From Above** TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL FRACTION 12A SAMPLE ID PIT 3 BH-1 30.7-30.9 Date & Time Collected 07/22/91 Category

Notes and Definitions for this Report:

EXTRACTED	07/29/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

Member: American Council of Interpendent Laboratories, Inc.

Work Order # 91-07-257

Received: 07/23/91

Page 26

SAMPLE ID PIT 3 BH-1 30.7-30.9

TEST CODE 8020 FRACTION 12A

REPORT

NAME AROMATIC VOLATILE ORGANICS Category

PARAMETER

RESULT DET LIMIT BENZENE 0.1 <0.1 CHLOROBENZENE <0.1 0.1 0.1 1,4-DICHLOROBENZENE <0.1 0.1 1,3-DICHLOROBENZENE <0.1 0.1 1,2-DICHLOROBENZENE <0.1 ETHYL BENZENE <0.1 0.1 <0.1 0.1 TOLUENE XYLENES <0.1 0.1

Results by Sample

Date & Time Collected 07/22/91

Notes and Definitions for this Report:

EXTRACTED	07/29/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

r: American Council of Integendent Laboratories, Inc.

- 19 - -

	DATE RECEIVED		ESTIMATED	COST
SUSTOMER P.O. NUMBER	TIME RECEIVED	· · · · · · · · · · · · · · · · · · ·	. js:	
		FORMATION		
CUSTOMER'S NAME				Calification
ADDRESS	<i>.</i>		PHONE NUM	BER
CITY / STATE / ZIP	<u> </u>		_1	
PARTY RESPONSIBLE F		THER THAN AB	OVE	ACCOUNT STATUS
AME		CONTACT		
DDRESS		PHONE NUMBER		PAYMENT REC'D. OPEN ACCOUNT
ITY / STATE / ZIP			i	
PECIAL BILLING INSTRUCTIONS	<u> </u>			L <u></u>
·	SAMPLE INF	ORMATION	<u></u>	· · · · · · · · · · · · · · · · · · ·
YPE OF SAMPLE NO. OF SAMPLES TUP	RN AROUND TIME		NTIFICATION	AND / OR SAMPLE SITE
XI SOIL Image: Constainers RU OIL NO. OF CONTAINERS EM SLUDGE Image: Constainers EM OTHER Image: Constainers Image: Constainers AMPLE DELIVERED BY Image: Constainers Image: Constainers	GULAR (10.WKG DAYS) SH (3 DAYS) ERGENCY (STAT) UBJECT TO WORK LOG) SIGNA	1	· · · · · · · · · · · · · · · · · · ·	DATE
	ANALYSIS			
ORK DESCRIPTION				. <u>, , , , , , , , , , , , , , , , , , ,</u>
	······································			
YUIU YU NO TH		·		
				·····
				·
······································			<u></u>	
	<u></u>	<u></u>		
PECIAL INSTRUCTIONS				
		······································		· · · · · · · · · · · · · · · · · · ·
		LOGGEDINBY		
300 lefferson NE • Albuquero				

TRANSWESTERN PIPELINE COMPANY

CHAIN OF CUSTODY

District: <u>RoSwell</u>

Date: 7-22-91

Sample Location Valve or Receiver No. Vol. Collect. During Flush Sampler

6653

STATION 9 -

INCTRIC CORP.

SAMPLE SOLVENT ANALYSES REQUESTED SAMPLE ID NUMBER ICED USED 72S 8012 PIT ? SAMELE OGI YES 8010 PITZ SAMPLE COZ YES PIT 2 21.0-26.2 Soin 291-293 P17 2 YES 8010 PIT 2 39 8 - 399 455 8010 Feis - 8020 P172 441-443 ¥ ... PIT 2 575-57.8 YES 8010 PIT 2 699-701 Yec 8010 8020 DICSL TANK 4.3-4.5 753 TPH DIELL TANE 7.4-7.9 Y 25 TPH PIT 3 BH-2 25.0-25.2 PIT 3 BH-1 347-3019 8010 -3020 YES YES 8010 - 5020 Relinquished By FARL CHANLEY - TWPLC Date 7.22.91 Relinquished To rep-x Date 7.22.91 Date Relinquished By___ Relinquished To_____ Date Date Relinquished By Relinguished To Date

Relinquished By_____Date_____Relinquished By_____Date_____

AB T SSAGA Laboratory: - Date 7/23/91 Received: * MAIL RESULTS TO : LARRY CAMPBELL (505-625-8622) P.O. BLY 1717 Roswill IN M. SF202-1717

lew N 109 Ibua: Work Order # 91-07-276 REPORT Page 1 07/31/91 14:20:37 Received: 07/24/91

	-	· · · · · · · · · · · · · · · · · · ·	
	ENRON/TRANSWESTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717	PREPARED <u>Assaigai Analytical Labs</u> BY <u>7300 Jefferson NE</u> Albuquerque, NM 87109	Synd Rezai
	ROSWELL, NM 88202-1717	· · · · ·	CERTIFIED BY
ATTEN	LARRY CAMPBELL	ATTEN SYED RIZVI	
	· · · · ·	PHONE (505)345-8964	CONTACT LAB MANAGE
CLIENT	ENR03 SAMPLES 6		
COMPANY	ENRON/TRANSWESTERN PIPELINE	QUESTIONS ABOUT THIS REPORT SHOU	LD BE ADDRESSED TO:
FACILITY	ROSWELL, NEW MEXICO	LABORATORY OPERATIONS MANAGER	ASSAIGAL ANALYTICAL
	ENR03	7300 JEFFERSON N.E., ALBUQUER	QUE,N.M. 87109
WORK ID TAKEN	STATION #9 7799	•	
TRANS	FED X		
TYPE	SOIL		
P.O. #			
INVOICE	under separate cover		

SAMPLE IDENTIFICATION

01	<u>SG</u>	<u>91</u>	28.6	-	28.8	
02	SG	86	13.5	-	13.7	
03	SG	86	18.7	-	18.9	
			24.9			
05	SG	86	35.0	-	35.2	
			40.5			

TEST CODES and NAMES used on this workorder 8010 S PURGEABLE HALOCARBONS-SOIL 8020 AROMATIC VOLATILE ORGANICS

MANAGER

REPORT

Received: 07/24/91

Page 2

Results by Sample

SAMPLE ID <u>BG 91 28.6 - 28.8</u>

FRACTION 01ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected not specifiedCategory _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0,1
2-CHLOROETHYL VINYL ETHER	<u> <0.1</u>	0.1
CHLOROMETHANE	<0.1	
DIBROMOCHLOROMETHANE	<0.1	
1,2-DICHLOROBENZENE	<0.1	
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	
1,1-DICHLOROETHANE	<u> <0,1</u>	
1,2-DICHLOROETHANE	<0,1	0.1
1,1-DICHLOROETHENE	<0,1	
trans-1,2-DICHLOROETHENE	<0.1	
1,2-DICHLOROPROPANE	<0.1	
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

mber: American Council of

THIS REPORT MAY NOT BE REPRODUCED IN PART OR IN 1911 . WITHOUT THE EXTRESS WRITTEN CONSENT OF THE LAROPATORY

Λ ILΛĪ.	LATO IC. • a cman, Jbup lew A	109		
Page 3 Received:	07/24/91	Results by	REPORT Sample	Work Order # 91-07-276 Continued From Above
SAMPLE ID	<u>8G 91 28.6 - 28.8</u>	FRACTION <u>01A</u> Date & Time Col	TEST CODE <u>8010_8</u> llected <u>not specifi</u> e	NAME <u>PURGBABLE HALOCARBONS-80IL</u> ed Category

Notes and Definitions for this Report:

EXTRACTED	07/30/91
DATE RUN	07/30/91
ANALYST D/R	
UNITS	MG/KG

.

T 1

÷

wither: American Council of Argendrat Laboratorica, Inc.

Page 2

3

Order # 91-08-024 08/16/91 14:31

fentor

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

Certified By SYED N. RIZVI

Vibugi Vew N. 109

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: SYED RIZVI Phone: (505)345-8964

ENRON/TRANSWÉSTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 Attn: LARRY CAMPBELL Invoice Number:

ICAL

UTA

€C. • :

'en on

Order #: 91-08-024 Date: 08/16/91 14:31 Work ID: STATION 9 - O.S. YARD Date Received: 08/02/91 Date Completed: 08/16/91

7885

SAMPLE IDENTIFICATION

Sample Number		Sample Description		Sample Number		Sample Description	
01	OSBH3	44.1-44.3		02	OSBH3	54.8 - 55.0	
03	OSBH4	27.5 - 27.7		04	OSBH5	14.0 - 14.2	
05	OSBH5	19.6 - 19.9	-	06	OSBH5	23.4 - 23.6	
07	OSBH6	13.6 - 13.8		08	OSBH6	47.0 - 47.2	
09	OSBH6	52.6 - 52.8		10	OSBH6	70.0 - 71.0	
11	OSBH7	22.1 - 22.3					

Order # 91-08-024 08/16/91 14:31

1 1 ...

Assaigai Analytical Labs

Page 3

TEST RESULTS BY SAMPLE

Sample: 01A , OSBH3 44.1-44.3

Collected:

Test Description	<u>Result</u>	<u>Limit</u>	<u>Units</u>	Analyzed	Ву
PURGEABLE HALOCARBONS-SOIL		0.1			
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOFORM	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROFORM	<0.1	0.1	MG/KG	08/14/91	D/R
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/14/91	D/R
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R

THIS REPORT MAY NOT BE REPRODUCED IN PART OR IN PIN J. WITH MALT THE ENTERIN CONSULT OF THE LADORATORY

Member: American Council of Independent Laboratories, Inc.

Order # 91-08-024 08/16/91 14:31	Assaigai Analytic	Assaigai Analytical Labs		Page 4		
				•		
Test Description	Result	<u>Limit</u>	•.	Units	Analyzed	By
METHYLENE CHLORIDE	<0.1	0.1		MG/KG	08/14/91	D/F
1,1,1-TRICHLOROETHANE	<0.1	0.1		MG/KG	08/14/91	D/I
1,1,2-TRICHLOROETHANE	<0.1	0.1		MG/KG	08/14/91.	•
TETRACHLOROETHENE	<0.1	0.1		MG/KG	08/14/91	D)
TRICHLOROFLUOROMETHANE	<0.1	0.1		MG/KG	08/14/91	D/1
TRICHLOROETHENE	<0.1	0.1		MG/KG	08/14/91	D/1
VINYL CHLORIDE	<0.1	0.1		MG/KG	08/14/91	D/1
Sample: 02A OSBH3 54.8 -	55.0 Coll	ected:				
Test Description	55.0 Coll <u>Result</u>	Limit		<u>Units</u>	Analyzed	By
Test Description	Result	Limit 0.1	·			
Test Description AROMATIC VOLATILE ORGANICS BENZENE	<u>Result</u> <0.1	<u>Limit</u> 0.1 0.1		MG/KG	08/14/91	D/
Test Description AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE	<u>Result</u> <0.1 <0.1	<u>Limit</u> 0.1 0.1 0.1		MG/KG MG/KG	08/14/91 08/14/91	D/ D/
Test Description AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE	<u>Result</u> <0.1 <0.1 <0.1	Limit 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91	D/ D/ D/
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE	<u>Result</u> <0.1 <0.1 <0.1 <0.1 <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91	D/ D/ D/ D/
<u>Fest Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/ D/ D/ D/
<u>Fest Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/ D/ D/ D/ D/
<u>Fest Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/ D/ D/ D/ D/ D/
<u>Fest Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/ D/ D/ D/ D/ D/
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES PURGEABLE HALOCARBONS-SOIL	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/ D/ D/ D/ D/ D/ D/
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES PURGEABLE HALOCARBONS-SOIL BROMODICHLOROMETHANE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/ D/ D/ D/ D/ D/ D/
Test Description AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES PURGEABLE HALOCARBONS-SOIL BROMODICHLOROMETHANE BROMOFORM	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/ D/ D/ D/ D/ D/ D/ D/
Test Description AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES PURGEABLE HALOCARBONS-SOIL BROMODICHLOROMETHANE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	By D/1 D/1 D/1 D/1 D/1 D/1 D/1 D/1 D/1 D/1

.

•

.

.

Assaigai Analytical Labs

Order # 91-08-024 08/16/91 14:31

Test_Description	Result	Limit	Units	Analyzed	<u>By</u>
CHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROFORM	<0.1	0.1	MG/KG	08/14/91	D/R
2–CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1, 3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1, 1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,2-DICHLOROETHENE	<0.1	. 0.1	MG/KG		D/R
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/14/91	D/R
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R

Member: American Council of Independent Laboratorica, Inc.

慈

.

ANDRITOP

:

ير. . .a

Order # 91-08-024 Assaigai Analytical Labs 08/16/91 14:31

April 2 April

Page 6

Sample: 03A OSBH4 27.5 - 27.7

Collected:

Test Description	Result	Limit	<u>Units</u>	Analyzed	By
AROMATIC VOLATILE ORGANICS		0.1			
BENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
ETHYL BENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
TOLUENE	<0.1	0.1	MG/KG	08/14/91	D/R
XYLENES	<0.1	0.1	MG/KG	08/14/91	D/R
PURGEABLE HALOCARBONS-SOIL		0.1	•		•
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOFORM	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROFORM	<0.1	0.1	MG/KG	08/14/91	D/R
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1, 3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R

Order # 91-08-024 08/16/91 14:31

Assaigai Analytical Labs

Page 7

書

<u>Test Description</u>	<u>Result</u>	Limit	<u>Units</u>	<u>Analyzed</u>	<u>By</u>
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/14/91	D/R
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1, 1, 2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROETHENE	<0.1	0.1	' MG/KG	08/14/91	D/R
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R

Sample: 04A OSBH5 14.0 - 14.2

Collected:

Test Description	<u>Result</u>	<u>Limit</u>	<u>Units</u>	Analyzed	<u>By</u>
PURGEABLE HALOCARBONS-SOIL		0.1			
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOFORM	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROFORM	<0.1	0.1	MG/KG	08/14/91	D/R

ICAL VATO VC.•' iezzon, Ubuq	ана и при на br>При на при на При на при на При на при на При на при на	- 1900 to 1900 to 1900 to	
Order # 91-08-024 08/16/91 14:31	Assaigai Analytica	l Labs	Page 8
Test Description	Result	Limit	Units Analyzed By
2-CHLOROETHYL VINYL ETHER		0.1	MG/KG 08/14/91 D/R
CHLOROMETHANE	<0.1	0.1	MG/KG 08/14/91 D/R
DIBROMOCHLÓROMETHANE	<0.1	0.1	MG/KG 08/14/91 D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG 08/14/91 D/R
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG 08/14/91 D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG 08/14/91 D/R
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG 08/14/91 D/R
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG 08/14/91 D/R
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG 08/14/91 D/R
1, 1-DICHLOROETHENE	<0.1	0.1	MG/KG 08/14/91 D/R
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG 08/14/91 D/R
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG 08/14/91 D/R
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG 08/14/91 D/R
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG 08/14/91 D/R
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG 08/14/91 D/R
METHYLENE CHLORIDE	<0.1	0.1	MG/KG 08/14/91 D/R
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG 08/14/91 D/R
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG 08/14/91 D/R
TETRACHLOROETHENE	<0.1	0.1	MG/KG 08/14/91 D/R
TRICHLOROFLUOROMETHANE	<0.1	0.1	
TRICHLOROETHENE	<0.1	0.1	MG/KG 08/14/91 D/R
VINYL CHLORIDE	<0.1	0.1	MG/KG 08/14/91 D/R

.

.

٨

Assaigai Analytical Labs

7109

19.9

Order # 91-08-024 08/16/91 14:31

Sample: 05A

ПСА

OSBH5 19.6 -

Collected:

Test Description	Result	Limit	<u>Units</u>	<u>Analyzed</u>	<u>Вү</u>
PURGEABLE HALOCARBONS-SOIL		0.1			all a state of the
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOFORM	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	
CHLOROFORM	<0.1	0.1	MG/KG	08/14/91	D/R
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/14/91	
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R

Member: American Council of Independent Laboratorica, Inc. Page 9

				-	
Drder # 91-08-024 D8/16/91 14:31	Assaigai Analytic	al Labs		Page 10	
		· · · ·	· <u>·</u> ·		
Test Description	Result	Limit	Units	Analyzad	Dur
1,1,2-TRICHLOROETHANE	<0.1		MG/KG	<u>Analyzed</u> 08/14/91	<u>By</u> D/B
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	• •	D/R
TRICHLOROETHENE	· <0.1	0.1		• •	D/R
VINYL CHLORIDE	<0.1	0.1	MG/KG MG/KG	08/14/91 08/14/91	D/R D/R
Sample: 06A OSBH5 23.4 -	23.6 Coll	ected:			
-			Units	Analyzed	Bv
Test Description	23.6 Coll <u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>Analyzed</u>	By
Test Description	Result	<u>Limit</u> 0.1			
Test Description AROMATIC VOLATILE ORGANICS BENZENE	<u>Result</u> <0.1	<u>Limit</u> 0.1 0.1	MG/KG	08/14/91	D/R
Test Description AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE	<u>Result</u> <0.1 <0.1	<u>Limit</u> 0.1 0.1 0.1	MG/KG MG/KG	08/14/91 08/14/91	D/R D/R
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE	<u>Result</u> <0.1	<u>Limit</u> 0.1 0.1	MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91	D/R D/R D/R
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R D/R
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R D/R D/R
<u>Cest Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R D/R
<u>Cest Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R D/R D/R D/R
<u>Cest Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES PURGEABLE HALOCARBONS-SOIL	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R D/R D/R D/R D/R
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES PURGEABLE HALOCARBONS-SOIL BROMODICHLOROMETHANE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R D/R D/R D/R D/R D/R
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES PURGEABLE HALOCARBONS-SOIL BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R D/R D/R D/R D/R D/R
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES PURGEABLE HALOCARBONS-SOIL BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R D/R D/R D/R D/R D/R
<u>Test Description</u> AROMATIC VOLATILE ORGANICS BENZENE CHLOROBENZENE 1,4-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE ETHYL BENZENE TOLUENE XYLENES PURGEABLE HALOCARBONS-SOIL BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE	Result <0.1	Limit 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91 08/14/91	D/R D/R D/R D/R D/R D/R D/R D/R D/R D/R

.

ň

Order # 91-08-024

08/16/91 14:31

Assaigai Analytical Labs

1

雪

200

. •

ss wi

}r PUL≸

อับา ทศ์

20NSP

IB LA

RY F

Test_Description	Result	Limit	Units Analyzed H	<u>3y</u>
2-CHLOROETHYL VINYL ETHER	<0.1	0.1		D/ R
CHLOROMETHANE	<0.1	0.1)/R
DIBROMOCHLOROMETHANE	<0.1	0.1		D/R
1,2-DICHLOROBENZENE	<0.1	0.1	• • •) /R
1,3-DICHLOROBENZENE	<0.1	0.1		D/R
1,4-DICHLOROBENZENE	<0.1	0.1	• • •	D/R
DICHLORODIFLUOROMETHANE	<0.1	0.1		D/R
1,1-DICHLOROETHANE	<0.1	0.1		D/R
1,2-DICHLOROETHANE	<0.1	0.1	• • •	D/R
1,1-DICHLOROETHENE	<0.1	0.1		D/R
trans-1,2-DICHLOROETHENE	<0.1	0.1		D/R
1,2-DICHLOROPROPANE	<0.1	0.1		D/R
cis-1,3-DICHLOROPROPENE	<0.1	0.1		D/R
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1		D/R
trans-1,3-DICHLOROPROPENE	<0.1	0.1		D/R
METHYLENE CHLORIDE	<0.1	0.1		D/R
1,1,1-TRICHLOROETHANE	<0.1	0.1		D/R
1,1,2-TRICHLOROETHANE	<0.1	0.1		D/R
TETRACHLOROETHENE	<0.1	0.1	• • •	D/R
TRICHLOROFLUOROMETHANE	<0.1	0.1	• •	D/R
TRICHLOROETHENE	<0.1	0.1		D'/R
VINYL CHLORIDE	<0.1	0.1	• • •	D'/R
				-

Member: American Council of Independent Laboratories, Inc.

580

意志

8

1185

T MAY

🖁 REPR 🖗

D IN PA

ICAL ATC IC.

Order # 91-08-024 08/16/91 14:31

A .

1109 lew N

Assaigai Analytical Labs

Page 12

医黄素素黄素 医子宫囊

Sample: 07A OSBH6 13.6 - 13.8

: fentan

Collected:

豪美

Test Description	<u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>Analyzed</u>	<u>By</u>
PURGEABLE HALOCARBONS-SOIL		0.1			
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOFORM	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROFORM	<0.1	0.1	MG/KG	08/14/91	D/R
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROMETHANE	<0.1	0.1	MG / KG	08/14/91	D/R
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/14/91	D/R
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
			•	• •	•

ANALYTICAL LABORATORIES, INC. • 7300 Jeffesson, N.E. • Albuquerque, New Mexico 17109

Page 25 Received: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330

SAMPLE ID **BG360 9.0-9.9**

FRACTION 11ATEST CODE 8010_8NAME PURGEABLE HALOCARBONS-BOILDate & Time Collected 07/29/91Category _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0,1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0,1	0.1
CHLOROETHANE	<0,1	0.1
CHLOROFORM	<0,1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0,1	0,1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0,1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0,1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0,1	0,1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0,1	0.1
TETRACHLOROETHENE	<u> </u>	0.1
TRICHLOROFLUOROMETHANE	<0,1	0.1
TRICHLOROETHENE	<0,1	0.1
VINYL CHLORIDE	<u> <0,1</u>	0.1

distri-

·2 🔹 b

age 26 eceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

AMPLE ID **BG360 9.0-9.9**

FRACTION <u>11A</u> TEST CODE <u>8010</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>07/29/91</u> Category _____

Notes and Definitions for this Report:

EXTRACTED	08/05/91
DATE RUN	08/05/91
ANALYST D/R	
UNITS	MG/KG

REPORT

0.1 0.1

0.1 0.1

0.1 0.1

0.1 0.1

0.1

0.1 0.1

0.1

0.1

0.1 0.1

0.1

0.1 0,1

0,1

0.1

0.1 0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

<0.1

Received: 07/30/91

11

1.

Page 27

Results by Sample

SAMPLE ID 86360 14.0-14.7

۰

FRACTION 12A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL Date & Time Collected 07/29/91

Category

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0
BROMOFORM	<0.1	
BROMOMETHANE	<0.1	(
CARBON TETRACHLORIDE	<0.1	(
CHLOROBENZENE	<0.1	
CHLOROETHANE	<0.1	(
CHLOROFORM	<0.1	(
2-CHLOROETHYL VINYL ETHER	<0.1	(
CHLOROMETHANE	<0.1	(
DIBROMOCHLOROMETHANE	<0.1	(
1,2-DICHLOROBENZENE	<0.1	(
1, 3-DICHLOROBENZENE	<0.1	(
1,4-DICHLOROBENZENE	<0.1	(
DICHLORODIFLUOROMETHANE	<0.1	(
1,1-DICHLOROETHANE	<0.1	·(
1,2-DICHLOROETHANE	<0.1	(
1,1-DICHLOROETHENE	<0.1	(
trans-1,2-DICHLOROETHENE	<0,1	
1,2-DICHLOROPROPANE	<0,1	
cis-1,3-DICHLOROPROPENE	<0.1	
1,1,2,2-TETRACHLOROETHANE	<0.1	
trans-1,3-DICHLOROPROPENE	<0.1	
METHYLENE CHLORIDE	<0.1	
1,1,1-TRICHLOROETHANE	<0.1	
1,1,2-TRICHLOROETHANE	<0.1	
TETRACHLOROETHENE	<0.1	
TRICHLOROFLUOROMETHANE	<0.1	
TRICHLOROETHENE	<0.1	

VINYL CHLORIDE

AN ALL	، تعدید ، ۲۵۱، ۲۵۰، ۲۵۰، ۲۵۰، ۲۵۰، ۲۵۰، ۲۵۰، ۲۵۰، ۲۵۰		
Page 28 Received:	07/30/91	REPORT Results by Sample	Work Order # 91-07-330 Continued From Above
SAMPLE IC	8G360 14.0-14.7	FRACTION <u>12A</u> TEST CODE <u>8010</u> Date & Time Collected <u>07/29/91</u>	B NAME <u>PURGBABLE HALOCARBONS-BOIL</u> Category

Notes and Definitions for this Report:

1

囊

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

.

Page 29 Received: 07/30/91 REPORT

Results by Sample

SAMPLE ID 8G360 19.0-20.0

 FRACTION 13A
 TEST CODE 8010 8
 NAME PURGEABLE HALOCARBONS-BOIL

 Date & Time Collected 07/29/91
 Category

LIMIT PARAMETER RESULT BROMODICHLOROMETHANE <0.1 0.1 <0.1 0.1 BROMOFORM <0.1 0.1 BROMOMETHANE CARBON TETRACHLORIDE <0.1 0.1 <0.1 0.1 CHLOROBENZENE <0.1 0.1 CHLOROETHANE <0.1 0.1 CHLOROFORM <0.1 0.1 2-CHLOROETHYL VINYL ETHER <0.1 0.1 CHLOROMETHANE DIBROMOCHLOROMETHANE <0.1 0.1 <0.1 0.1 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE <0.1 0.1 <0.1 0.1 1.4-DICHLOROBENZENE <0.1 0.1 DICHLORODIFLUOROMETHANE 1,1-DICHLOROETHANE <0.1 0.1 1,2-DICHLOROETHANE <0.1 0.1 1,1-DICHLOROETHENE <0.1 0.1 trans-1,2-DICHLOROETHENE <0.1 0.1 1,2-DICHLOROPROPANE <0.1 0.1 cis-1,3-DICHLOROPROPENE <0.1 0.1 <0.1 1,1,2,2-TETRACHLOROETHANE 0.1 trans-1,3-DICHLOROPROPENE <0.1 0.1 <0.1 METHYLENE CHLORIDE 0.1 <0.1 1,1,1-TRICHLOROETHANE 0.1 1,1,2-TRICHLOROETHANE <0.1 0.1 <0.1 TETRACHLOROETHENE 0.1 <0.1 0.1 TRICHLOROFLUOROMETHANE <0.1 TRICHLOROETHENE 0.1 VINYL CHLORIDE <0.1 0.1

the mbert American Council of

THIS REPORT MAY NOT BEREFRODUCED IN PART OR IN PUTL WITHOUT THE EXPRESS WRITTEN CONSENT OF THE LABORATORY

Page 30 Received: 07/30/91

REPORT Results by Sample Work Order # 91-07-330 Continued From Above

SAMPLE ID 86360 19,0-20,0

FRACTION 13ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/29/91Category _____

Notes and Definitions for this Report:

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

רדבי `H A ANALYTICAL LABORATORIES, INC. + 7300 Jefferron, N.H. + Albuquerque, New Mexico \$7109

?age 31 teceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330

SAMPLE ID **BG360 24.0-25.0**

FRACTION 14A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected 07/29/91

Category _

	·	
PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0,1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0,1	0.1
2-CHLOROETHYL VINYL ETHER	<0,1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	<u> </u>
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0,1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

an Council o

ANALYTICAL LABORATORIES, INC. + 7300 Jefferson, N.B. + Albuquerque, New Mexico 87109

'age 32 teceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

AMPLE ID 86360 24.0-25.0

 FRACTION 14A
 TEST CODE 8010_8
 NAME PURGEABLE HALOCARBONS-BOIL

 Date & Time Collected 07/29/91
 Category

Notes and Definitions for this Report:

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	,
UNITS	MG/KG

ican Council of

'age 33 :eceived: 07/30/91 REPORT

Results by Sample

AMPLE ID 86360 29.0-29.4

____ FRACTION <u>15A</u> TEST CODE <u>8010_8</u> NAME <u>PURGEABLE HALOCARBONS-801L</u> Date & Time Collected <u>07/29/91</u> Category _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0,1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0,1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0,1	0.1
1,1,2,2-TETRACHLOROETHANE	<0,1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0,1	0,1
1,1,1-TRICHLOROETHANE	<0,1	0,1
1,1,2-TRICHLOROETHANE	<0.1	<u> 0.1</u>
TETRACHLOROETHENE	<0,1	0,1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<u> </u>	0.1

writesa Council of

Page 34 REPORT Work Order # 91-07-330

Received: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

SAMPLE ID 86360 29.0-29.4

FRACTION <u>15A</u> TEST CODE <u>8010</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>07/29/91</u> Category _____

Notes and Definitions for this Report:

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

?age 35 leceived: 07/30/91 REPORT

Results by Sample

SAMPLE ID 86361 0-2.5

TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL FRACTION 16A Date & Time Collected 07/29/91 Category ____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0,1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0,1	0.1
1,1-DICHLOROETHANE	<0.1	0,1
1,2-DICHLOROETHANE	<0.1	0,1
1,1-DICHLOROETHENE	<0.1	0,1
trans-1,2-DICHLOROETHENE	<u> </u>	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	<u> </u>
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0,1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0,1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<u> </u>	0,1

1 worrs V D 4 8 7% #+=== u ₹ S THE P.S. 2 5 2 2

'age 36 Received: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

AMPLE ID 8G361 0-2.5

FRACTION 16A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected 07/29/91 Category _____

Notes and Definitions for this Report:

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

H A NALYTICAL LABORATORIES, INC. . 7300 Jefferson, N.E. . Albuquerque, New Mexico \$7109

REPORT

age 37 :eceived: 07/30/91

Results by Sample

AMPLE ID 86361 4.0-5.0

T

TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL FRACTION 17A Date & Time Collected 07/29/91

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

 $\begin{array}{r} 0.1 \\ 0.1 \end{array}$

0.1

0.1

0.1

0,1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Category

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	
BROMOFORM	<0.1	(
BROMOMETHANE	<0.1	(
CARBON TETRACHLORIDE	<0.1	(
CHLOROBENZENE	<0,1	
CHLOROETHANE	<0.1	
CHLOROFORM	<0.1	
2-CHLOROETHYL VINYL ETHER	<0.1	
CHLOROMETHANE	<0.1	
DIBROMOCHLOROMETHANE	<0,1	
1,2-DICHLOROBENZENE	<0.1	
1, 3-DICHLOROBENZENE	<0.1	
1,4-DICHLOROBENZENE	<0.1	
DICHLORODIFLUOROMETHANE	<0.1	
1,1-DICHLOROETHANE	<0.1	.
1,2-DICHLOROETHANE	<0.1	
1, 1-DICHLOROETHENE	<0.1	·····
trans-1,2-DICHLOROETHENE	<0.1	
1,2-DICHLOROPROPANE	<0.1	<u></u>
cis-1,3-DICHLOROPROPENE	<0.1	
1,1,2,2-TETRACHLOROETHANE	<0,1	
trans-1,3-DICHLOROPROPENE	<0.1	
METHYLENE CHLORIDE	<0.1	
1,1,1-TRICHLOROETHANE	<0.1	
1,1,2-TRICHLOROETHANE	<0.1	
TETRACHLOROETHENE	<0.1	······
TRICHLOROFLUOROMETHANE	<0.1	
TRICHLOROETHENE	<0.1	
VINYL CHLORIDE	<u> <0,1</u>	· · · · · · · · · ·

ions Council of

L _ _ / L _ _ J _ L _ _ L _ _ L _ _ L _ _ _ L _ _ L _ _ L ABORATORIES, INC. • 7300 Jefferson, N.B. • Albuquerque, Liew Marton 17109

age 38 eceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

AMPLE ID 8G361 4.0-5.0

FRACTION 17A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-80IL Date & Time Collected 07/29/91 Category _____

Notes and Definitions for this Report:

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

'age 39 teceived: 07/30/91

REPORT

Results by Sample

AMPLE ID 86361 9.0-10.0

LO.O FRACTION <u>18A</u> TEST CODE <u>8010</u> B NAME <u>PURGEABLE HALOCARBON8-801L</u> Date & Time Collected <u>07/29/91</u> Category _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0.1
BROMOFORM	<0.1	0.1
BROMOMETHANE	<0.1	0.1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0.1
CHLOROETHANE	<0.1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0,1	0,1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0.1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0.1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0,1	0.1
trans-1,2-DICHLOROETHENE	<0,1	0.1
1,2-DICHLOROPROPANE	<0,1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0,1
1,1,2,2-TETRACHLOROETHANE	<0,1	0,1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0,1	0,1
1,1,1-TRICHLOROETHANE	<0,1	0,1
1,1,2-TRICHLOROETHANE	<u> <0.1</u>	0,1
TETRACHLOROETHENE	<0,1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0,1	0.1
VINYL CHLORIDE	<0.1	0.1

r: American Council of

ANALY IIČAL LABORATORIES, INČ. • 73.00 Jeticason, N.E. • Albuquerque, New Merico \$71.09

Page 41 eceived: 07/30/91

REPORT Results by Sample

Work Order **# 91-**07-330

SAMPLE ID **BG361 16.0-16.4**

FRACTION 19ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/29/91Category _____

LIMIT

PARAMETER	RESULT
BROMODICHLOROMETHANE	<0
BROMOFORM	<0
BROMOMETHANE	<0
CARBON TETRACHLORIDE	<0
CHLOROBENZENE	<0
CHLOROETHANE	<0
CHLOROFORM	<0
2-CHLOROETHYL VINYL ETHER	
CHLOROMETHANE	<0
DIBROMOCHLOROMETHANE	<0
1,2-DICHLOROBENZENE	<0
1,3-DICHLOROBENZENE	<0
1,4-DICHLOROBENZENE	<0
DICHLORODIFLUOROMETHANE	<0
1,1-DICHLOROETHANE	<0
1,2-DICHLOROETHANE	<0
1,1-DICHLOROETHENE	<0
trans-1,2-DICHLOROETHENE	<(
1,2-DICHLOROPROPANE	<u> </u>
cis-1,3-DICHLOROPROPENE	<(
1,1,2,2-TETRACHLOROETHANE	<(
trans-1,3-DICHLOROPROPENE	<0
METHYLENE CHLORIDE	<0
1,1,1-TRICHLOROETHANE	<(
1,1,2-TRICHLOROETHANE	(
TETRACHLOROETHENE	<(
TRICHLOROFLUOROMETHANE	<(
TRICHLOROETHENE	<(
VINYL CHLORIDE	<(

<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	
<0.1	
<0.1	
<0.1	$\frac{0.1}{0.1}$
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0,1	0,1
<0,1	0.1

ANALYTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico \$7109

'age 42
'eceived: 07/30/91

REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

AMPLE ID 86361 16.0-16.4

FRACTION 19ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-SOILDate & Time Collected 07/29/91Category _____

Notes and Definitions for this Report:

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

ANALYTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico 87109 Page 43 REPORT Work Order # 91-07-330 Received: 07/30/91 Results by Sample SAMPLE ID **BG361 19.5-19.8** TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL FRACTION 20A Date & Time Collected 07/29/91 Category

PARAMETER	RESULT
BROMODICHLOROMETHANE	<0
BROMOFORM	<0
BROMOMETHANE	<0
CARBON TETRACHLORIDE	<0
CHLOROBENZENE	<0
CHLOROETHANE	<0
CHLOROFORM	<0
2-CHLOROETHYL VINYL ETHER	<0
CHLOROMETHANE	<0
DIBROMOCHLOROMETHANE	<0
1,2-DICHLOROBENZENE	<0
1,3-DICHLOROBENZENE	<0
1,4-DICHLOROBENZENE	<0
DICHLORODIFLUOROMETHANE	<0
1,1-DICHLOROETHANE	<0
1,2-DICHLOROETHANE	<0
1,1-DICHLOROETHENE	<0
trans-1,2-DICHLOROETHENE	<0
1,2-DICHLOROPROPANE	<0
cis-1,3-DICHLOROPROPENE	<0
1,1,2,2-TETRACHLOROETHANE	<0
trans-1,3-DICHLOROPROPENE	<0
METHYLENE CHLORIDE	<0
1,1,1-TRICHLOROETHANE	
1,1,2-TRICHLOROETHANE	<0
TETRACHLOROETHENE	<0
TRICHLOROFLUOROMETHANE	<0
TRICHLOROETHENE	<0
VINYL CHLORIDE	

<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0,1
<0.1	0,1
<0.1	0.1
<0,1	0,1
<0,1	0,1
<0,1	0.1
<0.1	0,1
<0.1	0,1
<0.1	0,1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0,1	<u> </u>

LIMIT

'age 44
teceived: 07/30/91

Results by Sample

Work Order # 91-07-330 Continued From Above

AMPLE ID 86361 19.5-19.8

FRACTION 20ATEST CODE 8010 8NAME PURGEABLE HALOCARBONS-80ILDate & Time Collected 07/29/91Category _____

Notes and Definitions for this Report:

REPORT

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

Page 45 Received: 07/30/91	Results b	REPORT y Sample	•	Work Order #	91-07-330
GAMPLE ID 8G361 24.0-25.0	FRACTION <u>21A</u> Date & Time C			AME <u>PURGEABLE H</u> Catego	
				<i>,</i>	
PARAMETER		RESULT	LIMIT		
BROMODICHLOROM BROMOFORM BROMOMETHANE CARBON TETRACH CHLOROBENZENE CHLOROFTHANE CHLOROFTHANE 2-CHLOROETHYL CHLOROMETHANE DIBROMOCHLOROM 1,2-DICHLOROBE 1,3-DICHLOROBE 1,4-DICHLOROBE 1,4-DICHLOROBE DICHLORODIFLUO 1,1-DICHLOROET 1,2-DICHLOROET 1,2-DICHLOROET trans-1,2-DICH 1,2-DICHLOROPR cis-1,3-DICHLO 1,1,2,2-TETRAC trans-1,3-DICH METHYLENE CHLO 1,1,1-TRICHLOR TETRACHLOROETH TRICHLOROFLUOR	LORIDE VINYL ETHER ETHANE NZEN	$ \begin{array}{c} < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 $	$\begin{array}{c} 0.1 \\$		

~

REPORT

Work Order # 91-07-330 Continued From Above

Page 46 Received: 07/30/91

SAMPLE ID 86361 24.0-25.0

FRACTION 21A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-BOIL Date & Time Collected 07/29/91 Category _____

Notes and Definitions for this Report:

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

Results by Sample

tember: American Council of

 A
 ICAL
 <t

RESULT

a a construction of the second s

PARAMETER	
BROMODICHLOROMETHANE	
BROMOFORM	
BROMOMETHANE	
CARBON TETRACHLORIDE	
CHLOROBENZENE	
CHLOROETHANE	
CHLOROFORM	
2-CHLOROETHYL VINYL ETHER	
CHLOROMETHANE	
DIBROMOCHLOROMETHANE	
1,2-DICHLOROBENZENE	
1, 3-DICHLOROBENZENE	
1,4-DICHLOROBENZENE	
DICHLORODIFLUOROMETHANE	
1,1-DICHLOROETHANE	
1,2-DICHLOROETHANE	
1,1-DICHLOROETHENE	
trans-1,2-DICHLOROETHENE	
1,2-DICHLOROPROPANE	·
cis-1,3-DICHLOROPROPENE	
1,1,2,2-TETRACHLOROETHANE	
trans-1,3-DICHLOROPROPENE	
METHYLENE CHLORIDE	
1,1,1-TRICHLOROETHANE	
1,1,2-TRICHLOROETHANE	
TETRACHLOROETHENE	
TRICHLOROFLUOROMETHANE	<u> </u>
TRICHLOROETHENE	•
VINYL CHLORIDE	

PARAMETER

<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0.1	
<0.1	
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0,1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<0.1	0.1
<0.1	0,1
<0.1	0.1
<0.1	0,1
<u> </u>	<u>V</u>

LIMIT

or 't 't ANALYTICAL LABORATORIES, INC. + 7300 Jefferson, N.E. + Albuquerque, New Mexico \$7109

> REPORT Results by Sample

Work Order # 91-07-330 Continued From Above

Page 48 Received: 07/30/91

T

SAMPLE ID 86361 38.9-39.3

NAME PURGEABLE HALOCARBONS-BOIL FRACTION 22A TEST CODE 8010 8 Date & Time Collected 07/29/91 Category

Notes and Definitions for this Report:

EXTRACTED	08/06/91
DATE RUN	08/06/91
ANALYST D/R	
UNITS	MG/KG

American Council of

TRANSWESTERN PIPELINE COMPANY

CHAIN OF CUSTODY

District: ROSWELL

Date: 7-29-91

Sample Location Valve or Receiver No.	Vol. Collect. During Flush	Sampler
STATION 9 - D.S YARD		DIETRIC CARP
·		· · · · · · · · · · · · · · · ·

SAMPLE ID NUMBER	SOLVENT USED	SAMPLE ICED	-ANALYSES REQUESTED
OSBH3	•	YES	Felo Pozo
5G349 0-1.8		YES	801:
SC349 2.9-4.6		YES	8010
SB347 9.0-10.0		Yes	8010
56399 19-0-19.8		Yes	8010
SG349 24.3-21.3		YES	Feio
SG745 25.3-26.3		Y = 5	felo
SE245 29.7-3.4		YES	Kola 802 :
SE360 0.0 - 2.5		YES	8510
5636 4.0-5.0		Yes	tric
SC360 9.0-9.9		YES	feic

Relinquished	BY FARL CHANLEY - TWPL CO.	Date <u>7.29-91</u>
Relinquisned	TO FED -X	Date 7-29-91
Relinquished	1 By	Date
Relinquished	I To	Date
Relinquished	BV	Date
Relinquished		Date
Delinguished		Data
Relinquished		Date
Relinquished	л ву	Date

Laboratory: Date 7/30/91 Received:

RESWELL NIMER. 88212-1717

MALL RESULTS TO LARRY CAMPBELL P.C. BOX 1717 (505-625-0:22)

REPORT

Received: 07/26/91

Page 1

REPORT	ENRON/TRANSWESTERN_PIPELINE
то	6381 N. MAIN STREET
	P.O. BOX 1717
	ROSWELL, NM 88202-1717
ATTEN	LARRY CAMPBELL

PREPARED Assaigai Analytical Labs

08/05/91 09:26:18

ATTEN SYED RIZVI

PHONE (505)345-8964

BY <u>7300 Jefferson NE</u> Albuquerque, NM 87109

CERTIFIED BY

CONTACT LAB MANAGER

CLIENT	ENR03	SAMPLES <u>8</u>
	ENRON/TRANSWESTERN	PIPELINE
	ROSWELL, NEW MEXIC	
	ENR03	

QUESTIONS	ABOUT THIS	REPORT SHOULD	D BE ADDRESSED TO	:
LABORA	TORY OPERAT	IONS MANAGER/A	SSAIGAI ANALYTIC	AL
7300	JEFFERSON N	.E., ALBUQUERQU	JE, N.M. 87109	

WORK ID	STATION 9 7821
TAKEN	
TRANS	FED X
TYPE	SOIL
P.O. #	
INVOICE	under separate cover

SAMPLE IDENTIFICATION

- 01 OSBH1 18.9 19.1 02 OSBH1 34.3 - 34.5 03 OSBH2 9.9 - 10.1 04 OSBH2 22.5 - 22.6 05 OSBH2 31.1 - 31.3 06 OSBH2 41.8 - 42.0 07 OSBH2 55.2 - 55.4
- 08 OSBH2 69.0 69.2

TEST CODES and NAMES used on this workorder 8010 S PURGEABLE HALOCARBONS-SOIL

Work Order # 91-07-299

Page 2 Received: 07/26/91

RBPORT Results by Sample

SAMPLE ID <u>O8BH1 18.9 - 19.1</u> FRACTION <u>01A</u> TEST CODE <u>8010 8</u> NAME <u>PURGEABLE HALOCARBONS-801L</u> Date & Time Collected <u>not specified</u> Category _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0.1
BROMOFORM	<0,1	0,1
BROMOMETHANE	<0.1	0,1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0,1	0.1
CHLOROETHANE	<0,1	0.1
CHLOROFORM	<0.1	0.1
2-CHLOROETHYL VINYL ETHER	<0.1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	
1,2-DICHLOROBENZENE	<0.1	0,1
1,3-DICHLOROBENZENE	<0.1	0,1
1,4-DICHLOROBENZENE	<0,1	0,1
DICHLORODIFLUOROMETHANE	<0.1	0.1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<0.1	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0,1
trans-1,3-DICHLOROPROPENE	<0.1	0.1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0.1
1,1,2-TRICHLOROETHANE	<0.1	0.1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<u> <0.1</u>	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

REPORT Results by Sample Work Order # 91-07-299 Continued From Above

Page 3 Received: 07/26/91

SAMPLE ID **OBBH1 18.9 - 19.1**

FRACTION 01A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-SOIL Date & Time Collected not specified _____ Category _____

Notes and Definitions for this Report:

EXTRACTED	08/01/91
DATE RUN	08/01/91
ANALYST D/R	
UNITS	MG/KG

SAMPLE ID 08BH1 34.3 - 34.5

Work Order # 91-07-299

Page 4 Received: 07/26/91

REPORT Results by Sample

FRACTION <u>02A</u> TEST CODE <u>8010_8</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>not specified</u> Category _____

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0.1	0,1
BROMOFORM	<0.1	0,1
BROMOMETHANE	<0.1	0,1
CARBON TETRACHLORIDE	<0.1	0.1
CHLOROBENZENE	<0.1	0,1
CHLOROETHANE	<0.1	0,1
CHLOROFORM	<0.1	0,1
2-CHLOROETHYL VINYL ETHER	<0,1	0.1
CHLOROMETHANE	<0.1	0.1
DIBROMOCHLOROMETHANE	<0.1	0,1
1,2-DICHLOROBENZENE	<0.1	0.1
1,3-DICHLOROBENZENE	<0.1	0,1
1,4-DICHLOROBENZENE	<0.1	0.1
DICHLORODIFLUOROMETHANE	<u> <0.1</u>	0,1
1,1-DICHLOROETHANE	<0.1	0.1
1,2-DICHLOROETHANE	<0.1	0.1
1,1-DICHLOROETHENE	<0.1	0.1
trans-1,2-DICHLOROETHENE	<0.1	0.1
1,2-DICHLOROPROPANE	<0.1	0.1
cis-1,3-DICHLOROPROPENE	<u> </u>	0.1
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1
trans-1,3-DICHLOROPROPENE	<0,1	0,1
METHYLENE CHLORIDE	<0.1	0.1
1,1,1-TRICHLOROETHANE	<0.1	0,1
1,1,2-TRICHLOROETHANE	<0.1	0,1
TETRACHLOROETHENE	<0.1	0.1
TRICHLOROFLUOROMETHANE	<0.1	0.1
TRICHLOROETHENE	<0.1	0.1
VINYL CHLORIDE	<0.1	0.1

REPORT Results by Sample Work Order # 91-07-299 Continued From Above

Received: 07/26/91

Page 5

SAMPLE ID **O8BH1 34.3 - 34.5**

____ FRACTION <u>02A</u> TEST CODE <u>8010 8</u> NAME <u>PURGEABLE HALOCARBONS-BOIL</u> Date & Time Collected <u>not specified</u> Category _____

Notes and Definitions for this Report:

EXTRACTED	08/01/91
DATE RUN	08/01/91
ANALYST D/R	,
UNITS	MG/KG

ember: Amorican Council of dependent Laboratorics, Inc.

0.1

 $\frac{0.1}{0.1}$

 $\frac{0.1}{0.1}$

 $\frac{0.1}{0.1}$

0.1

0.1

0.1

 $\frac{0.1}{0.1}$

0.1

 $0.1 \\ 0.1$

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Work Order # 91-07-299

Received: 07/26/91

Page 6

REPORT

Results by Sample

SAMPLE ID <u>OSBH2 9.9 - 10.1</u> FRACTION <u>O3A</u> TEST CODE <u>8010 8</u> NAME <u>PURGEABLE HALOCARBONS-SOIL</u> Date & Time Collected <u>not specified</u> Category _____

BROMODICHLOROMETHANE $< 0,1$ BROMOFORM < 0.1 BROMOMETHANE < 0.1 CARBON TETRACHLORIDE < 0.1 CARBON TETRACHLORIDE < 0.1 CHLOROBENZENE < 0.1 CHLOROBENZENE < 0.1 CHLOROETHANE < 0.1 CHLOROFORM < 0.1 2-CHLOROETHYL VINYL ETHER < 0.1 DIBROMOCHLOROMETHANE < 0.1 1, 2-DICHLOROBENZENE < 0.1 1, 3-DICHLOROBENZENE < 0.1 1, 4-DICHLOROBENZENE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHENE < 0.1 1, 1-DICHLOROETHENE < 0.1 1, 2-DICHLOROETHENE < 0.1 1, 1, 2-TETRACHLOROETHENE < 0.1 1, 1, 2-TETRACHLOROETHANE < 0.1 1, 1, 1-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1 1, 1, 1-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1	MIT	RESULT	PARAMETER
BROMOMETHANE < 0.1 CARBON TETRACHLORIDE < 0.1 CHLOROBENZENE < 0.1 CHLOROETHANE < 0.1 CHLOROFORM < 0.1 2-CHLOROETHYL VINYL ETHER < 0.1 CHLOROMETHANE < 0.1 DIBROMOCHLOROMETHANE < 0.1 1, 2-DICHLOROBENZENE < 0.1 1, 3-DICHLOROBENZENE < 0.1 1, 4-DICHLOROBENZENE < 0.1 1, 1-DICHLOROBENZENE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHENE < 0.1 1, 2-DICHLOROPROPANE < 0.1 $< 1, 2, 2$ -TETRACHLOROETHENE < 0.1 1, 1, 2, 2-TETRACHLOROETHANE < 0.1 1, 1, 1-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1	0	<0,1	BROMODICHLOROMETHANE
CARBON TETRACHLORIDE < 0.1 CHLOROBENZENE < 0.1 CHLOROETHANE < 0.1 CHLOROFORM < 0.1 2-CHLOROETHYL VINYL ETHER < 0.1 CHLOROMETHANE < 0.1 DIBROMOCHLOROMETHANE < 0.1 1, 2-DICHLOROBENZENE < 0.1 1, 3-DICHLOROBENZENE < 0.1 1, 4-DICHLOROBENZENE < 0.1 1, 1-DICHLOROBENZENE < 0.1 1, 2-DICHLOROBENZENE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 1, 2-DICHLOROPROPANE < 0.1 1, 1, 2, 2-TETRACHLOROETHANE < 0.1 1, 1, 2, 2-TETRACHLOROETHANE < 0.1 1, 1, 1-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1	0	<0.1	BROMOFORM
CARBON TETRACHLORIDE < 0.1 CHLOROBENZENE < 0.1 CHLOROETHANE < 0.1 CHLOROFORM < 0.1 2-CHLOROETHYL VINYL ETHER < 0.1 CHLOROMETHANE < 0.1 DIBROMOCHLOROMETHANE < 0.1 1, 2-DICHLOROBENZENE < 0.1 1, 3-DICHLOROBENZENE < 0.1 1, 4-DICHLOROBENZENE < 0.1 1, 1-DICHLOROBENZENE < 0.1 1, 2-DICHLOROBENZENE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 1-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 2-DICHLOROETHANE < 0.1 1, 1, 2-DICHLOROPROPANE < 0.1 1, 1, 2, 2-TETRACHLOROETHANE < 0.1 1, 1, 2, 2-TETRACHLOROETHANE < 0.1 1, 1, 1-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1 1, 1, 2-TRICHLOROETHANE < 0.1	0	<0.1	BROMOMETHANE
CHLOROBENZENE < 0.1 CHLOROETHANE < 0.1 CHLOROFORM < 0.1 2-CHLOROETHYL VINYL ETHER < 0.1 DIBROMOCHLOROMETHANE < 0.1 1,2-DICHLOROBENZENE < 0.1 1,3-DICHLOROBENZENE < 0.1 1,4-DICHLOROBENZENE < 0.1 1,1-DICHLOROBENZENE < 0.1 1,1-DICHLOROBENZENE < 0.1 1,2-DICHLOROBENZENE < 0.1 1,1-DICHLOROETHANE < 0.1 1,2-DICHLOROETHANE < 0.1 1,1-DICHLOROETHANE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROPROPANE < 0.1 1,2-DICHLOROPROPANE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 1,1,1-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1	0	<0.1	CARBON TETRACHLORIDE
CHLOROETHANE < 0.1 CHLOROFORM < 0.1 2-CHLOROETHYL VINYL ETHER < 0.1 CHLOROMETHANE < 0.1 DIBROMOCHLOROMETHANE < 0.1 1,2-DICHLOROBENZENE < 0.1 1,3-DICHLOROBENZENE < 0.1 1,4-DICHLOROBENZENE < 0.1 DICHLORODIFLUOROMETHANE < 0.1 1,1-DICHLOROETHANE < 0.1 1,2-DICHLOROETHANE < 0.1 1,1-DICHLOROETHANE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROPROPANE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 1,1,1-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1	0	<0,1	CHLOROBENZENE
2-CHLOROETHYL VINYL ETHER $<0,1$ CHLOROMETHANE $<0,1$ DIBROMOCHLOROMETHANE $<0,1$ 1,2-DICHLOROBENZENE $<0,1$ 1,3-DICHLOROBENZENE $<0,1$ 1,4-DICHLOROBENZENE $<0,1$ 1,1-DICHLOROBENZENE $<0,1$ 1,1-DICHLOROETHANE $<0,1$ 1,2-DICHLOROETHANE $<0,1$ 1,1-DICHLOROETHANE $<0,1$ 1,1-DICHLOROETHANE $<0,1$ 1,2-DICHLOROETHENE $<0,1$ 1,2-DICHLOROETHENE $<0,1$ 1,2-DICHLOROPROPANE $<0,1$ 1,2,2-TETRACHLOROETHANE $<0,1$ 1,1,2,2-TETRACHLOROETHANE $<0,1$ 1,1,1-TRICHLOROETHANE $<0,1$ 1,1,2-TRICHLOROETHANE $<0,1$ 1,1,2-TRICHLOROETHANE $<0,1$ 1,1,2-TRICHLOROETHANE $<0,1$ 1,1,2-TRICHLOROETHANE $<0,1$		<0,1	CHLOROETHANE
CHLOROMETHANE $<0,1$ DIBROMOCHLOROMETHANE $<0,1$ 1,2-DICHLOROBENZENE $<0,1$ 1,3-DICHLOROBENZENE $<0,1$ 1,4-DICHLOROBENZENE $<0,1$ DICHLORODIFLUOROMETHANE $<0,1$ 1,1-DICHLOROETHANE $<0,1$ 1,2-DICHLOROETHANE $<0,1$ 1,1-DICHLOROETHANE $<0,1$ 1,2-DICHLOROETHENE $<0,1$ 1,2-DICHLOROETHENE $<0,1$ 1,2-DICHLOROETHENE $<0,1$ 1,2-DICHLOROPROPANE $<0,1$ 1,2,2-TETRACHLOROETHANE $<0,1$ 1,1,2,2-TETRACHLOROETHANE $<0,1$ 1,1,1-TRICHLOROETHANE $<0,1$ 1,1,2-TRICHLOROETHANE $<0,1$ 1,1,2-TRICHLOROETHANE $<0,1$ 1,1,2-TRICHLOROETHANE $<0,1$ 1,1,2-TRICHLOROETHANE $<0,1$		<0.1	CHLOROFORM
DIBROMOCHLOROMETHANE < 0.1 1,2-DICHLOROBENZENE < 0.1 1,3-DICHLOROBENZENE < 0.1 1,4-DICHLOROBENZENE < 0.1 DICHLORODIFLUOROMETHANE < 0.1 1,1-DICHLOROETHANE < 0.1 1,2-DICHLOROETHANE < 0.1 1,1-DICHLOROETHENE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROPROPANE < 0.1 1,2-DICHLOROPROPANE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 1,1,2,2-TETRACHLOROPROPENE < 0.1 1,1,1-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1	0	<0,1	2-CHLOROETHYL VINYL ETHER
DIBROMOCHLOROMETHANE < 0.1 1,2-DICHLOROBENZENE < 0.1 1,3-DICHLOROBENZENE < 0.1 1,4-DICHLOROBENZENE < 0.1 DICHLORODIFLUOROMETHANE < 0.1 1,1-DICHLOROETHANE < 0.1 1,2-DICHLOROETHANE < 0.1 1,1-DICHLOROETHENE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROPROPANE < 0.1 1,2-DICHLOROPROPANE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 1,1,2,2-TETRACHLOROPROPENE < 0.1 1,1,1-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1		<0.1	CHLOROMETHANE
1,2-DICHLOROBENZENE <0.1 1,3-DICHLOROBENZENE <0.1 1,4-DICHLOROBENZENE <0.1 DICHLORODIFLUOROMETHANE <0.1 1,1-DICHLOROETHANE <0.1 1,2-DICHLOROETHANE <0.1 1,1-DICHLOROETHENE <0.1 1,2-DICHLOROETHENE <0.1 1,2-DICHLOROETHENE <0.1 1,2-DICHLOROPROPANE <0.1 1,2-DICHLOROPROPANE <0.1 1,1,2,2-TETRACHLOROETHENE <0.1 1,1,2,2-TETRACHLOROETHANE <0.1 1,1,1-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHENE <0.1	0	<0.1	DIBROMOCHLOROMETHANE
1, 3-DICHLOROBENZENE $<0,1$ 1, 4-DICHLOROBENZENE <0.1 DICHLORODIFLUOROMETHANE <0.1 1, 1-DICHLOROETHANE <0.1 1, 2-DICHLOROETHANE <0.1 1, 1-DICHLOROETHENE <0.1 1, 1-DICHLOROETHENE <0.1 1, 2-DICHLOROETHENE <0.1 1, 2-DICHLOROPROPANE <0.1 1, 2-DICHLOROPROPANE <0.1 1, 1, 2, 2-TETRACHLOROETHANE <0.1 1, 1, 2, 2-TETRACHLOROETHANE <0.1 1, 1, 1-TRICHLOROETHANE <0.1 1, 1, 2-TRICHLOROETHANE <0.1 1, 1, 2-TRICHLOROETHANE <0.1 1, 1, 2-TRICHLOROETHANE <0.1 1, 1, 2-TRICHLOROETHANE <0.1	C		1,2-DICHLOROBENZENE
1,4-DICHLOROBENZENE < 0.1 DICHLORODIFLUOROMETHANE < 0.1 1,1-DICHLOROETHANE < 0.1 1,2-DICHLOROETHANE < 0.1 1,1-DICHLOROETHENE < 0.1 1,1-DICHLOROETHENE < 0.1 1,2-DICHLOROETHENE < 0.1 1,2-DICHLOROPROPANE < 0.1 1,2-DICHLOROPROPANE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 1,1,1-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1		<0.1	•
DICHLORODIFLUOROMETHANE <0.1 1,1-DICHLOROETHANE <0.1 1,2-DICHLOROETHANE <0.1 1,1-DICHLOROETHENE <0.1 1,1-DICHLOROETHENE <0.1 trans-1,2-DICHLOROETHENE <0.1 1,2-DICHLOROPROPANE <0.1 cis-1,3-DICHLOROPROPENE <0.1 1,1,2,2-TETRACHLOROETHANE <0.1 trans-1,3-DICHLOROPROPENE <0.1 METHYLENECHLORIDE1,1,1-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 TETRACHLOROETHENE <0.1	0		
1,1-DICHLOROETHANE <0.1 1,2-DICHLOROETHANE <0.1 1,1-DICHLOROETHENE <0.1 trans-1,2-DICHLOROETHENE <0.1 1,2-DICHLOROPROPANE <0.1 cis-1,3-DICHLOROPROPENE <0.1 1,1,2,2-TETRACHLOROETHANE <0.1 trans-1,3-DICHLOROPROPENE <0.1 methyleneclo.11,1,1-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 TETRACHLOROETHENE <0.1	(<0.1	•
1,2-DICHLOROETHANE <0.1 1,1-DICHLOROETHENE <0.1 trans-1,2-DICHLOROETHENE <0.1 1,2-DICHLOROPROPANE <0.1 cis-1,3-DICHLOROPROPENE <0.1 1,1,2,2-TETRACHLOROETHANE <0.1 trans-1,3-DICHLOROPROPENE <0.1 methylenechloride1,1,1-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 TETRACHLOROETHENE <0.1	<u> </u>		1,1-DICHLOROETHANE
trans-1,2-DICHLOROETHENE <0.1 1,2-DICHLOROPROPANE <0.1 cis-1,3-DICHLOROPROPENE <0.1 1,1,2,2-TETRACHLOROETHANE <0.1 trans-1,3-DICHLOROPROPENE <0.1 mETHYLENECHLORIDE1,1,1-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 TETRACHLOROETHENE <0.1	(1,2-DICHLOROETHANE
trans-1,2-DICHLOROETHENE <0.1 1,2-DICHLOROPROPANE <0.1 cis-1,3-DICHLOROPROPENE <0.1 1,1,2,2-TETRACHLOROETHANE <0.1 trans-1,3-DICHLOROPROPENE <0.1 mETHYLENECHLORIDE1,1,1-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 1,1,2-TRICHLOROETHANE <0.1 TETRACHLOROETHENE <0.1	0	<0.1	1,1-DICHLOROETHENE
1,2-DICHLOROPROPANE < 0.1 cis-1,3-DICHLOROPROPENE < 0.1 1,1,2,2-TETRACHLOROETHANE < 0.1 trans-1,3-DICHLOROPROPENE < 0.1 METHYLENECHLORIDE1,1,1-TRICHLOROETHANE < 0.1 1,1,2-TRICHLOROETHANE < 0.1 TETRACHLOROETHENE < 0.1	(trans-1,2-DICHLOROETHENE
cis-1,3-DICHLOROPROPENE <0.1			1,2-DICHLOROPROPANE
1, 1, 2, 2-TETRACHLOROETHANE<0,1	(cis-1,3-DICHLOROPROPENE
trans-1,3-DICHLOROPROPENE<0.1METHYLENE CHLORIDE<0.1			1,1,2,2-TETRACHLOROETHANE
METHYLENE CHLORIDE<0.11,1,1-TRICHLOROETHANE<0.1	(trans-1,3-DICHLOROPROPENE
1,1,1-TRICHLOROETHANE <0.1	(METHYLENE CHLORIDE
1,1,2-TRICHLOROETHANE<0.1			1,1,1-TRICHLOROETHANE
TETRACHLOROETHENE	(1,1,2-TRICHLOROETHANE
TRICHLOROFLUOROMETHANE <0.1	(TETRACHLOROETHENE
	(<0.1	TRICHLOROFLUOROMETHANE
TRICHLOROETHENE <a><0.1		<0.1	TRICHLOROETHENE
VINYL CHLORIDE <u><0.1</u>	(<0.1	VINYL CHLORIDE

mber: American Council of Icoendent Laboratorica, Ioc. REPORT

Work Order # 91-07-299 Continued From Above

Received: 07/26/91

Page 7

Results by Sample

SAMPLE ID **OSBH2 9.9 - 10.1**

FRACTION 03A TEST CODE 8010 8 NAME PURGEABLE HALOCARBONS-80IL Date & Time Collected not specified Category _____

Notes and Definitions for this Report:

EXTRACTED	08/01/91
DATE RUN	08/01/91
ANALYST D/R	•
UNITS	MG/KG

er: American Council of

, ALL RATE NC. fase sibility rewa		
Page 8 Received: 07/26/91	REPORT Results by Sample	Work Order # 91-07-299
SAMPLE ID <u>O8BH2 22.5 - 22.6</u>	FRACTION <u>04A</u> TEST CODE <u>8010 8</u> Date & Time Collected <u>not specific</u>	NAME <u>PURGEABLE HALOCARBONS-SOIL</u> d Category

0.1

0,1

0.1

0.1

0.1

0.1 0.1 0.1

0,1

0,1

0,1

0.1

0,1

0.1

0,1

0.1

0.1

0.1

0.1

0.1

0,1

0.1

0.1

0.1

0.1

0.1

0.1 0.1

0.1

PARAMETER	RESULT	LIMIT
BROMODICHLOROMETHANE	<0,1	0
BROMOFORM	<0.1	0
BROMOMETHANE	<0.1	
CARBON TETRACHLORIDE	<0.1	
CHLOROBENZENE	<0,1	
CHLOROETHANE	<0.1	
CHLOROFORM	<0,1	
2-CHLOROETHYL VINYL ETHER	<0,1	
CHLOROMETHANE	<0.1	
DIBROMOCHLOROMETHANE	<0.1	
1,2-DICHLOROBENZENE	<u> </u>	
1,3-DICHLOROBENZENE	<0.1	
1,4-DICHLOROBENZENE	<0.1	
DICHLORODIFLUOROMETHANE	<u> </u>	
1,1-DICHLOROETHANE	<0.1	
1,2-DICHLOROETHANE	<0.1	
1,1-DICHLOROETHENE	<0.1	
trans-1,2-DICHLOROETHENE	<0.1	
1,2-DICHLOROPROPANE	<0.1	(
cis-1,3-DICHLOROPROPENE	<0.1	
1,1,2,2-TETRACHLOROETHANE	<0.1	
trans-1,3-DICHLOROPROPENE	<0,1	
METHYLENE CHLORIDE	<0.1	
1,1,1-TRICHLOROETHANE	<0.1	
1,1,2-TRICHLOROETHANE	<0.1	
TETRACHLOROETHENE	<0.1	
TRICHLOROFLUOROMETHANE	<0.1	
TRICHLOROETHENE	<0.1	(
VINYL CHLORIDE	<0.1	(

•

Order # 91-08-024 08/16/91 14:31

Assaigai Analytical Labs

Page 13

Limit Units Analyzed By Test Description Result 08/14/91 D/R <0.1 0.1 MG/KG 1,1,2-TRICHLOROETHANE MG/KG 08/14/91 D/R <0.1 0.1 TETRACHLOROETHENE 08/14/91 D/R MG/KG <0.1 0.1 TRICHLOROFLUOROMETHANE 08/14/91 MG/KG D/R <0.1 0.1 TRICHLOROETHENE MG/KG 08/14/91 D/R <0.1 0.1 VINYL CHLORIDE

OSBH6 47.0 - 47.2 Sample: 08A

Test Description	Result	Limit	<u>Units</u>	<u>Analyzed</u>	<u>By</u>	
PURGEABLE HALOCARBONS-SOIL		0.1				
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R	
BROMOFORM	<0.1	0.1	MG/KG	08/14/91	D/R	
BROMOMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R	
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R	
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
CHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R	
CHLOROFORM	<0.1	0.1	MG/KG	08/14/91	D/R	
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/14/91	D/R	
CHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R	
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R	
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R	
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R	
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R	

.

.

4.

Test_Description	Result	Limit	Units	Analyzed	<u>By</u>
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/14/91	D/R
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R

Sample: 09A OSBH6 52.6 - 52.8

Test Description	<u>Result</u>	Limit	<u>Units</u>	Analyzed	By
PURGEABLE HALOCARBONS-SOIL		0.1			
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOFORM	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROFORM	<0.1	0.1	MG/KG	08/14/91	D'R
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/14/91	D/R

Assaigai Analytical Labs

Order # 91-08-024 08/16/91 14:31

Test Description	<u>Result</u>	<u>Limit</u>	Units	<u>Analyzed</u>	<u>By</u>
CHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1, 1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/14/91	D/R
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,3-DICHLOROPROPENE	· <0.1	0.1	MG/KG	08/14/91	D/R
METHYLENE CHLORIDE	<0.1	. 0.1	MG/KG	08/14/91	D/R
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R

Sample: 10A OSBH6 70.0 - 71.0

Test_Description	Result	<u>Limit</u>	<u>Units</u>	Analyzed	<u>Вy</u>
AROMATIC VOLATILE ORGANICS		0.1			

Page 16

. •

Order # 91-08-024 Assaigai Analytical Labs 08/16/91 14:31

Test Description	<u>Result</u>	<u>Limit</u>	Units	<u>Analyzed</u>	By
BENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
ETHYL BENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
TOLUENE	<0.1	0.1	MG/KG	08/14/91	D/R
XYLENES	<0.1	· 0.1	MG/KG	08/14/91	D/R
PURGEABLE HALOCARBONS-SOIL		0.1			·
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOFORM	<0.1	0.1	MG/KG	08/14/91	D/R
BROMOMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROFORM	<0.1	0.1	MG/KG	08/14/91	D/R
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/14/91	D/R
CHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/14/91	D/R

.

Order # 91-08-024 08/16/91 14:31

Test_Description	<u>Result</u>	<u>Limit</u>	Units	Analyzed	<u>By</u>
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/14/91	D/R
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R
TRICHLOROETHENE	<0.1	0.1	MG/KG	08/14/91	D/R
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/14/91	D/R

Sample: 11A OSBH7 22.1 - 22.3

Collected:

Test Description	<u>Result</u>	Limit	<u>Units</u>	<u>Analyzed</u>	By	
AROMATIC VOLATILE ORGANICS		0.1				
BENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
CHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
1, 3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
ETHYL BENZENE	<0.1	0.1	MG/KG	08/14/91	D/R	
TOLUENE	<0.1	0.1	MG/KG	08/14/91	D/R	
XYLENES	<0.1	0.1	MG/KG	08/14/91	D/R	
PURGEABLE HALOCARBONS-SOIL		0.1	•	• •	:	
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/14/91	D/R	
BROMOFORM	<0.1	0.1	MG/KG	08/14/91	D/R	
			•		•	

THUS REPORT MAY NOT BE REPRODUCED IN PART OR IN FULL WITHOUT THIS EXPRESS WRITTEN CONSENT OF THE LABORATORY

08/16/91 14:31

Order # 91-08-024

Assaigai Analytical Labs

Page 18

Test Description Units Analyzed Result Limit By BROMOMETHANE <0.1 0.1 MG/KG 08/14/91 D/R CARBON TETRACHLORIDE <0.1 0.1 MG/KG 08/14/91 D/R CHLOROBENZENE <0.1 0.1 MG/KG 08/14/91 D/R CHLOROETHANE <0.1 0.1 08/14/91 MG/KG D/R CHLOROFORM <0.1 0.1 08/14/91 MG/KG D/R 2-CHLOROETHYL VINYL ETHER <0.1 0.1 MG/KG 08/14/91 D/R CHLOROMETHANE <0.1 0.1 MG/KG 08/14/91 D/R DIBROMOCHLOROMETHANE <0.1 0.1 MG/KG 08/14/91 D/R 1,2-DICHLOROBENZENE <0.1 0.1 MG/KG 08/14/91 D/R 1,3-DICHLOROBENZENE <0.1 0.1 MG/KG 08/14/91 D/R 1,4-DICHLOROBENZENE <0.1 0.1 MG/KG 08/14/91 D/R **DICHLORODIFLUOROMETHANE** <0.1 0.1 MG/KG 08/14/91 D/R 1,1-DICHLOROETHANE <0.1 0.1 08/14/91 , MG/KG D/R 1,2-DICHLOROETHANE <0.1 0.1 MG/KG 08/14/91 D/R 1,1-DICHLOROETHENE <0.1 0.1 08/14/91 MG/KG D/R trans-1, 2-DICHLOROETHENE <0.1 0.1 MG/KG 08/14/91 D/R 1,2-DICHLOROPROPANE <0.1 0.1 MG/KG 08/14/91 D/R cis-1,3-DICHLOROPROPENE <0.1 0.1 MG/KG 08/14/91 D/R 1,1,2,2-TETRACHLOROETHANE <0.1 MG/KG 0.1 08/14/91 D/R trans-1, 3-DICHLOROPROPENE <0.1 0.1 08/14/91 MG/KG D/R METHYLENE CHLORIDE <0.1 0.1 MG/KG 08/14/91 D/R 1,1,1-TRICHLOROETHANE <0.1 0.1 MG/KG 08/14/91 D/R 1,1,2-TRICHLOROETHANE <0.1 MG/KG 0.1 08/14/91 D/R **TETRACHLOROETHENE** <0.1 0.1 MG/KG 08/14/91 D/R TRICHLOROFLUOROMETHANE <0.1 0.1 08/14/91 MG/KG D/R TRICHLOROETHENE <0.1 0.1 MG/KG 08/14/91 D/R VINYL CHLORIDE <0.1 0.1 08/14/91 MG/KG D/R

Assaigai Analytical Labs

Page 20

Order # 91-08-024 08/16/91 14:31

TEST METHODOLOGIES

8010_S = USEPA SW-846 METHOD # 8010

8020 = USEPA' SW-846 METHOD # 8020

TRANSWESTERN PIPELINE COMPANY

CHAIN OF CUSTODY

District: Roswell

Date: 8-1-91

Sample Location Valve or Receiver No.	Vol. Collect. During Flush	Sampler
STATION 9-0.1. YARD		METRIC CORP

		1	
SAMPLE ID NUMBER	SOLVENT	SAMPLE	ANALYSES REQUESTED
	USED	ICED	· · ·
SBA3 44.1-44.2		YES	8010
SAH3 54.1 - 55.4		YES	Pala - Pala
SRH4 27.5-27.7		YES	Fala - Kaza
SRHS 14.0 -14.2		YKS	£010
SEH 5 19.6 -19.9		YES	9010
18H5 23.4-21.6		YES	8610 -8020
SBH6 13.6-13.8		234	2 al a
SBHC +7.8 - 47.2		YES	8.10
858H6 52.6 - 52.8		482	
58 H 6 70. 6 - 71.4		LYes	8010 - 8020
DEBH1 22.1-22.3		Yes	8010 - 8020
	RL SHANLET	• –	
Relinquished By LA	RL CHANLET	• –	
Relinquished By LA Relinquished To Fr	20-2	-TWPL C	Date <u>8-1-91</u> Date <u>1-91</u>
Relinquished By LA Relinquished To P Relinquished By	<u>20 - X</u>	-TWPL C	Date 8-1-91
Relinquished By <u>EA</u> Relinquished To <u>F</u> Relinquished By Relinquished By Relinquished By	<u>0 -1</u>	- 7 WPL C	Date 8-1-91 Date 1-91 Date Date Date
Relinquished By LA Relinquished To F Relinquished By Relinquished To	<u>2 - 7</u>	- 7 WPL C	Date <u>9-1-91</u> Date <u>1-91</u> Date
Relinquished By LA Relinquished To P Relinquished By	<u>`0 -1</u>	- T WPL C	Date <u>9-1-91</u> Date <u>1-91</u> Date <u>1-1-91</u> Date <u>Date</u> Date <u>Date</u>

Laboratory: Received:	assainai Laks.	Data Slalar
Received:	- Of g	Date <u>X [2]9</u>

ASSAIC ANALY LABOR	GAI TICAL ATORIES	WO	RK ORDER 7885
	DUS S S S	ESTIMA	TED COST
CUSTOMER P.O. NUMBER	TIME RECEIVED	DUE DA	
		FORMATION	8/16/91
CUSTOMER'S NAME	· · ·	CONTA	
ADDRESS / I amplica	(siv-	PHONE	NUMBER
CITY / STATE / ZIP			
	LE FOR PAYMENT IF	OTHER THAN ABOVE	ACCOUNT STATUS
			PAYMENT REC'D.
DDRESS		PHONE NUMBER	
TTY / STATE / ZIP		•••••••••••••••••••••••••••••••••••••••	
PECIAL BILLING INSTRUCTIONS			
	SAMPLE INF	ORMATION	
YPE OF SAMPLE NO. OF SAMPLES	TURN AROUND TIME	SAMPLE IDENTIFICAT	ION AND / OR SAMPLE SITE
	CREGULAR (10 WKG DAYS) RUSH (3 DAYS) EMERGENCY (STAT)	Etation 1-C	.S. Yard.
	•(SUBJECT TO WORK LOG)	·	
AMPLE DELIVERED BY		ATURE	DATE
Fia	×	·	12/9/
Hand Hank & Han	ANALYSIS	REQUEST	
CORK DESCRIPTION			
SPECIAL INSTRUCTIONS	· · · · · · · · · · · · · · · · · · ·		
		LOGGED IN BY	
		LOGGED IN BI	

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: SYED RIZVI Phone: (505)345-8964

244 6 2

ENRON/TRANSWÉSTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 Attn: LARRY CAMPBELL Invoice Number: Order #: 91-08-048 Date: 08/20/91 14:21 Work ID: STA 9 0.S.YARD Date Received: 08/06/91 Date Completed: 08/20/91

7908

SAMPLE IDENTIFICATION

Sample		Sample		Sample		Sample	
Number		Description		<u>Number</u>		<u>Description</u>	
01		33.5 - 33.7	•	02	OSBH7	37.0 - 37.2	
03	OSHB8	4.6 - 4.9		04	OSBH8	33.9 - 34.1	
05	OSBH8	49.7 - 49.9		06	OSBH9	4.5 - 4.9	
07	OSBH9	32.0 - 32.5	· .	08	OSBH9	49.5 - 49.7	

Order # 91-08-048 08/20/91 14:21

· .

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

1/103

in

Certified By SYED N. RIZVI

Assaigai Analytical Labs

Order # 91-08-048 08/20/91 14:21

and the second

TEST RESULTS BY SAMPLE

Sample: 01A OSBH7 33.5 - 33.7

Collected:

Test Description	Result	<u>Limit</u>	Units	Analyzed	<u>By</u>
PURGEABLE HALOCARBONS-SOIL		0.1			
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
BROMOFORM	<0.1	0.1	MG/KG	08/15/91	SR
BROMOMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROFORM	<0.1	0.1	MG/KG	08/15/91	SR
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/15/91	SR
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG		SR
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
crans 1/3 DICHTOROFROP	×0.1	0.1	rid/ KG	00/15/91	BR

Page 3

.

Assaigai Analytical Labs

Order # 91-08-048 08/20/91 14:21

marlerear

Page 4

<u>Test Description</u>	Result	Limit	<u>Units</u>	<u>Analyzed</u>	By
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR

Sample: 02A OSBH7 37.0 - 37.2

Collected:

Test Description	Result	Limit	Units	<u>Analyzed</u>	<u>By</u>
AROMATIC VOLATILE ORGANICS		0.1			
BENZENE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
ETHYL BENZENE	<i>ï</i> 0.19	0.1	MG/KG	08/15/91	SR
TOLUENE	<0.1	0.1	MG/KG	08/15/91	SR
XYLENES	0.44	0.1	MG/KG	08/15/91	SR
PURGEABLE HALOCARBONS-SOIL		0.1			
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
BROMOFORM	<0.1	0.1	MG/KG	08/15/91	SR
BROMOMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR

Member: American Council of Independent Laboratorics, Inc.

遺

10 M 10

Order # 91-08-048	Assaigai Analytica	Page 5			
08/20/91 14:21				•	
			·		
			·		
Test Description	Result	Limit	Units	<u>Analyzed</u>	By
CHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROFORM	<0.1	0.1	MG/KG	08/15/91	SR
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR

_*/11/ ± §

MUA 🛓

LICH :

41.1.1

....

41.48

.

. .

2-CHLOROETHYL VINYL ETHER		<0.1	0.1	MG/KG	08/15/91	SR
CHLOROMETHANE		<0.1	0.1	MG/KG	08/15/91	SR
DIBROMOCHLOROMETHANE		<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE		<0.1	0.1	MG/KG	08/15/91	SR
1,3-DICHLOROBENZENE		<0.1	0.1	MG/KG	08/15/91	SR
1,4-DICHLOROBENZENE		<0.1	0.1	MG/KG	08/15/91	SR
DICHLORODIFLUOROMETHANE		<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHANE		<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROETHANE		<0.1	0.1	MG/KG	08/15/91	SR
1, 1-DICHLOROETHENE		<0.1	0.1	MG/KG	08/15/91	SR
trans-1,2-DICHLOROETHENE		<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROPROPANE		<0.1	0.1	MG/KG	08/15/91	SR
cis-1,3-DICHLOROPROPENE		<0.1	0.1	MG/KG	08/15/91	SR
1,1,2,2-TETRACHLOROETHANE		<0.1	0.1	MG/KG	08/15/91	SR
trans-1,3-DICHLOROPROPENE		<0.1	0.1	MG/KG	08/15/91	SR
METHYLENE CHLORIDE		<0.1	0.1	MG/KG	08/15/91	SR
1,1,1-TRICHLOROETHANE		<0.1	0.1	MG/KG	08/15/91	SR
1,1,2-TRICHLOROETHANE		<0.1	0.1	MG/KG	08/15/91	SR
TETRACHLOROETHENE	7	0.17	0.1	MG/KG	08/15/91	SR
TRICHLOROFLUOROMETHANE	•	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROETHENE		<0.1	0.1	MG/KG	08/15/91	SR
VINYL CHLORIDE		<0.1	0.1	MG/KG	08/15/91	SR

Order # 91-08-048 08/20/91 14:21

Assaigai Analytical Labs

Page 6

Sample: 03A OSHB8 4.6 - 4.9

Collected:

Test Description	Result	Limit	<u>Units</u>	Analyzed	<u>Ву</u>
PURGEABLE HALOCARBONS-SOIL		0.1			
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
BROMOFORM	<0.1	0.1	MG/KG	08/15/91	SR
BROMOMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROFORM	<0.1	0.1	MG/KG	08/15/91	SR
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	• •	SR
CHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1, 1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,2-DICHLOROETHENE	<0.1	.0.1	MG/KG	08/15/91	SR
1,2-DICHLOROPROPANE	. <0.1	0.1	MG/KG	08/15/91	SR
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	•. •	SR
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	•••	SR
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	• •	SR

Member: American Council of

Order # 91-08-048 08/20/91 14:21	Assaigai Analytical	Labs	Page 7
			• .
Test Description	Result	Limit	Units Analyzed
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG 08/15/91
TETRACHLOROETHENE	<0.1	0.1	MG/KG 08/15/91
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG 08/15/91

4 ž

<u>Test_Description</u>	Result	<u>Limit</u>	Units	Analyzed	By
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR

Sample: 04A OSBH8 33.9 - 34.1 Collected:

4 4 j. 19 -÷. 1

Test Description	<u>Result</u>	Limit	Units	<u>Analyzed</u>	<u>By</u>	
PURGEABLE HALOCARBONS-SOIL		0.1				
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR	
BROMOFORM	<0.1	0.1	MG/KG	08/15/91	SR	
BROMOMETHANE	<0.1	0.1	MG/KG	08/15/91	SR	
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR	
CHLOROBENZENE	☆ 0.12	0.1	MG/KG	08/15/91	SR	
CHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR	
CHLOROFORM	<0.1	0.1	MG/KG	08/15/91	SR	
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/15/91	SR	
CHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR	
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR	
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR	
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR	
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR	
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR	
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR	
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR	

....

Order # 91-08-048 08/20/91 14:21

		+ 1	. Markhan	Inclused	D
<u>Test Description</u>	Result	Limit	Units	<u>Analyzed</u>	By
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	.08/15/91	SR
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,1-TRICHLOROETHANE	<0.1	0,1	MG/KG	08/15/91	SR
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TETRACHLOROETHENE	× 0.16	0.1	MG/KG	08/15/91	SR
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR

Sample: 05A OSBH8 49.7 - 49.9

<u>Test_Description</u>	Result	<u>Limit</u>	<u>Units</u>	<u>Analyzed</u>	<u>Вy</u>
AROMATIC VOLATILE ORGANICS		0.1			
BENZENE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
ETHYL BENZENE	¥ 0.14	0.1	MG/KG	08/15/91	SR
TOLUENE	<0.1	0.1	MG/KG	08/15/91	SR
XYLENES	⊾ 0.3	0.1	MG/KG	08/15/91	SR

Order # 91-08-048 08/20/91 14:21 5.

Test Description	Result	Limit	<u>Units</u>	Analyzed	<u>By</u>
PURGEABLE HALOCARBONS-SOIL		0.1		- · · ·	
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
BROMOFORM '	<0.1	0.1	MG/KG	08/15/91	SR
BROMOMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROFORM	<0.1	0.1	MG/KG	08/15/91	SR
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1, 1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/15/91	SR
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR

× 1

2.

Assaigai Analytical Labs

1103

Order # 91-08-048 08/20/91 14:21

Sample: 06A OSBH9 4.5 - 4.9

1.104

.....

Collected:

Test Description	<u>Result</u>	<u>Limit</u>	<u>Units</u>	<u>Analyzed</u>	<u>By</u>
PURGEABLE HALOCARBONS-SOIL		0.1			
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
BROMOFORM	<0.1	0.1	MG/KG	08/15/91	SR
BROMOMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROFORM	<0.1	0.1	MG/KG	08/15/91	SR
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	• •	SR
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/15/91	SR
cis-1, 3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	•••	SR
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR

American Council of

ାମାଣ REPORT MAY NOT BE REPRODUCED IN PART OR IN FULL ଆମାରଥୀ ମାଣ୍ଟମସ୍ଟରେ ଏନସ୍ଟ୍ରିଆ କରୁ ଦାନ୍ତ୍ରକା କରୁ ମହା ନାର୍ଥ୍ୟ କରୁ ଅନ୍ତି 👔 👘 💈 💈 💈 💈 💈 👘 💈 💈 👘 💈

Independent Laboratorica, Inc.

Page 10

Order # 91-08-048 08/20/91 14:21	Assaigai Analytical Labs			Page 11	
<u>Test Description</u> 1,1,2-TRICHLOROETHANE TETRACHLOROETHENE TRICHLOROFLUOROMETHANE TRICHLOROETHENE VINYL CHLORIDE	Result <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	Limit 0.1 0.1 0.1 0.1 0.1	<u>Units</u> Mg/Kg Mg/Kg Mg/Kg Mg/Kg Mg/Kg	<u>Analyzed</u> 08/15/91 08/15/91 08/15/91 08/15/91 08/15/91	By SR SR SR SR SR
Sample: 07A 08BH9 32.0 -	32.5 Coll	lected:			
Test_Description PURGEABLE HALOCARBONS-SOIL	Result	Limit 0.1	Units	<u>Analyzed</u>	Ву
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
BROMOFORM	<0.1	0.1	MG/KG	08/15/91	SR
BROMOMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROFORM	<0.1	0.1	MG/KG	08/15/91	SR
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR

4

ė

5

.

Independent Laboratorics, Inc.

1

Order # 91-08-048 08/20/91 14:21

Test_Description	Result	Limit	Units	Analyzed	By
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/15/91	SR
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROETHENE	<0.1	0.1	MG/KG	. 08/15/91	SR
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR

Sample: 08A OSBH9 49.5 - 49.7

憲 豪 子

Collected:

Test Description	<u>Result</u>	<u>Limit</u>	Units	<u>Analyzed</u>	<u>By</u>
AROMATIC VOLATILE ORGANICS		0.1			
BENZENE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,3-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
ETHYL BENZENE	<0.1	0.1	MG/KG	08/15/91	SR
TOLUENE	<0.1	0.1	MG/KG	08/15/91	SR
XYLENES	<0.1	0.1	MG/KG	08/15/91	SR

新した

Assaigai Analytical Labs

ź

a.

2

Order # 91-08-048 08/20/91 14:21

Page 13

a 🛓 🖾 🕯

<u>Test_Description</u>	Result	Limit	Units	<u>Analyzed</u>	<u>By</u>
PURGEABLE HALOCARBONS-SOIL		0.1			
BROMODICHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
BROMOFORM	<0.1	0.1	MG/KG	08/15/91	SR
BROMOMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CARBON TETRACHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROFORM	<0.1	. 0.1	MG/KG	08/15/91	SR
2-CHLOROETHYL VINYL ETHER	<0.1	0.1	MG/KG	08/15/91	SR
CHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
DIBROMOCHLOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
1, 3-DICHLOROBENZENE	<0.1	0.1	MG/KG		SR
1,4-DICHLOROBENZENE	<0.1	0.1	MG/KG	08/15/91	SR
DICHLORODIFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,2-DICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
1,2-DICHLOROPROPANE	<0.1	0.1	MG/KG	08/15/91	SR
cis-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2,2-TETRACHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
trans-1,3-DICHLOROPROPENE	<0.1	0.1	MG/KG	08/15/91	SR
METHYLENE CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,1-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
1,1,2-TRICHLOROETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TETRACHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROFLUOROMETHANE	<0.1	0.1	MG/KG	08/15/91	SR
TRICHLOROETHENE	<0.1	0.1	MG/KG	08/15/91	SR
VINYL CHLORIDE	<0.1	0.1	MG/KG	08/15/91	SR

ndependent Labor stories, Inc.

Order # 91-08-048 08/20/91 14:21

TEST METHODOLOGIES

8010_S = USEPA SW-846 METHOD # 8010

8020 = USEPA' SW-846 METHOD # 8020

THUS REPORT MAY NOT BE REPRODUCED IN PART OR IN PULL WITHOUT THE EXPRESS WRITTEN CONSENT OF THE LABORATORY

	DATE RECEIVED		ESTIMATED	COST
CUSTOMER P.O. NUMBER	TIME RECEIVED		DUE DATE	sofi
· · · · · · · · · · · · · · · · · · ·	ACCOUNT IN	FORMATION	,	,
CUSTOMER'S NAME-	· · · · · · · ·			l'a bell
ADDRESS	/		PHONE NUME	SCZ Z_
CITY/STATE/ZIP				
PARTY RESPONSIBLE F	OR PAYMENT IF	THER THAN ABC	VE	ACCOUNT STATUS
NAME	-	CONTACT		
ADDRESS		PHONE NUMBER		OPEN ACCOUNT
CITY / STATE / ZIP	· · · .			CASH
SPECIAL BILLING INSTRUCTIONS	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
	SAMPLE INF	ORMATION		يمين ملكمية مشروعة بمعالية المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا
TYPE OF SAMPLE NO. OF SAMPLES *TUP	RN AROUND TIME	SAMPLE IDEN	TIFICATION A	ND / OR SAMPLE SITE
	GULAR (10 WKG DAYS) SH (3 DAYS)	577 9	05	YAND
	ERGENCY (STAT)	<u> </u>		
	UBJECT TO WORK LOG			
SAMPLE DELIVERED BY	SIGNA	TURE		DATE
7.				0/0/4/
	ANALYSIS	REQUEST		
WORK DESCRIPTION			-	
				<u>.</u>
<u>(10.2</u> m. +0				
	· · · · · · · · · · · · · · · · · · ·			
-				
SPECIAL INSTRUCTIONS				
	· · · · · · · · · · · · · · · · · · ·			
BILLING: PICKUP MAIL		LOGGED IN BY		
7300 Jefferson NE • Albuquero	que, New Mexico	87109 4/(505)	345-8964	• FAX (505) 345-7259

TRANSWESTERN PIPELINE COMPANY

CHAIN OF CUSTODY

District: RoswELL

Date: 8-5-91

Sample Location Valve or Receiver No. Vol. Collect. During Flush Sampler

DETRIC

STAT. 9 - 0.5 YARD

SAMPLE ID NUMBER	<u>SOLVENT</u> <u>USED</u>	SAMPLE ICED	ANALYSES REQUESTED
OSBH7 33.5-33.7	· · · · · · · · · · · · · · · · · · ·	YES	8010
OSBH7 37.0-37.2		YES	Polo 1020
058 HP 4.6 - 4.9	•	YES	8019
OSBHP 33.9.34.1		YES	8010
OS BH& +9.7.49.9		755	8010 8120
OS 8 H9 1.5 - +.9		YES	2011
DS 8 H9 32.0-32.5		YES	8010
OS RH9 47.5-49.7		YES	8010, 8220

Relinquished Relinquished	BY EARL CHANLEY / TWPL TO FED =X	Date 8-5-91 Date 8-5-91
Relinquished Relinquished		Date Date
Relinquished Relinquished		Date Date
Relinquished Relinquished		Date Date

Laboratory: ASSA16A1 LABS Received:

Date 7/6/91

APPENDIX C

LABORATORY RESULTS AND TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: SYED RIZVI Phone: (505)345-8964

ENRON/TRANSWESTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 Attn: LARRY CAMPBELL Invoice Number: 911774 Order #: 91-08-239 Date: 09/05/91 12:15 Work ID: STATION 9 Date Received: 08/22/91 Date Completed: 09/05/91

7752

SAMPLE IDENTIFICATION

Sample	Sample					
Number	Description					
03	PIT I 2.8 - 3.0					
05	PIT I 13.5 - 13.7					
07	PIT I 26.8 - 27.0					
09	PIT I 41.6 - 41.8					

Sample	Sample						
Number	Description						
04	PIT I 9.2 - 9.4						
06	PIT I 18.8 - 19.0						
08	PIT I 30.6 - 30.8						
10	PIT I 43.5 - 43.7						

THIS REPORT MAY NOT BE REPRODUCED IN PART OR IN FULL WITHOUT THE EXPRESS WRITTEN CONSENT OF THE LABORATORY

.

Order # 91-08-239

09/05/91 12:15

£ 1

Assaigai Analytical Labs

4

1

Page 2

.

1 1

1

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

1109

CIM

Certified By SYED N. RIZVI

and the second

Assaigai Analytical Labs

Order # 91-08-239 09/05/91 12:15

REGULAR TEST RESULTS BY TEST

Page 3

	REC PET HYDROCARBONS I: EPA 418.1	Minimum:	5.0 Maximu	m: 10	0	
Sample	Sample Description	<u>Result</u>	<u>Units</u>	Extracted	<u>Analyzed</u>	<u>By</u>
03A	PIT I 2.8 - 3.0	25,000	MG/KG	08/30/91	09/05/91	PV
04A	PIT I 9.2 - 9.4	39,000	MG/KG	08/30/91	09/05/91	PV
05A	PIT I 13.5 - 13.7	55,000	MG/KG	08/30/91	09/05/91	PV
06A	PIT I 18.8 - 19.0	20,000	MG/KG	08/30/91	09/05/91	PV
07A	PIT I 26.8 - 27.0	11,000	MG/KG	08/30/91	09/05/91	PV
08A	PIT I 30.6 - 30.8	16	MG/KG	08/30/91	09/05/91	PV
09A	PIT I 41.6 - 41.8	16	MG/KG	08/30/91	09/05/91	PV
10A	PIT I 43.5 - 43.7	56	MG/KG	08/30/91	09/05/91	PV

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: SYED RIZVI Phone: (505)345-8964

109

'ew }

ENRON/TRANSWÉSTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 Attn: LARRY CAMPBELL Invoice Number: 911769 Order #: 91-08-240 Date: 09/03/91 13:53 Work ID: STATION #9 Date Received: 08/22/91 Date Completed: 09/03/91 REFERENCE WO#: 91-07-257

All and an an

7784

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	PIT 2 SAMPLE 001	02	PIT 2 SAMPLE 002
03	PIT 2 26.0 - 26.2	04	PIT 2 29.1 - 29.3
05	PIT 2 39.8 - 39.9	06	PIT 2 44.1 - 44.3
07	PIT 2 57.5 - 57.8	08	РЈТ 2 69.9 - 70.1
09		10	
11	PIT 3 BH-2 25.0 - 25.2	12	PIT 3 BH-1 30.7 - 30.9

1CAT

LATC

10 .

-

lbur

Assaigai Analytical Labs

Order # 91-08-240 09/03/91 13:53

Page 2

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

Kisn

Certified By SYED N. RIZVI

Order # 91-08-240 09/03/91 13:53

.

Assaigai Analytical Labs

Page 3

REGULAR TEST RESULTS BY TEST

TOTAL REC PET HYDROCARBONS Method: EPA 418.1	Minimum:	5.0	Maximu	m: 10	DO	
Sample Sample Description	<u>Result</u>		<u>Units</u>	Extracted	<u>Analyzed</u>	By
01A PIT 2 SAMPLE 001	<5.0		MG/KG	08/30/91	09/03/91	PV
02A PIT 2 SAMPLE 002	13,000		MG/KG	08/30/91	09/03/91	PV
03A PIT 2 26.0 - 26.2	170		MG/KG	08/30/91	09/03/91	PV
04A PIT 2 29.1 - 29.3	<5.0		MG/KG	08/30/91	09/03/91	PV
05A PIT 2 39.8 - 39.9	2600		MG/KG	08/30/91	09/03/91	PV
06A PIT 2 44.1 - 44.3	44	•	MG/KG	08/30/91	09/03/91	PV
07A PIT 2 57.5 - 57.8	250		MG/KG	08/30/91	09/03/91	PV
08A PIT 2 69.9 - 70.1 09A	<5,0		MG/KG	08/30/91	09/03/91	PV
10A						
	<5.0		MG/KG	08/30/91	09/03/91	PV
11A PIT 3 BH-2 25.0 - 25.2			•		• •	
12A PIT 3 BH-1 30.7 - 30.9	<5.0		MG/KG	08/30/91	09/03/91	PV

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: SYED RIZVI Phone: (505)345-8964

ENRON/TRANSWESTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 Attn: LARRY CAMPBELL Invoice Number: 911768 Order #: 91-08-241 Date: 09/03/91 13:52 Work ID: STATION #9 Date Received: 08/22/91 Date Completed: 09/03/91 REFERENCE WO#: 91-07-276

7799

SAMPLE IDENTIFICATION

Sample		Sample		Samp	le	Sample	
Number		Description		Numb	<u>er</u>	<u>Description</u>	
01	SG 91	28.6 - 28.8	*	02	SG 86	13.5 - 13.7	
03	SG 86	18.7 - 18.9		04	SG 86	24.9 - 25.1	
05	SG 86	35.0 - 35.2		06	SG 86	40.5 - 40.7	

terre en la construcción de la cons la construcción de la construcción d la construcción de la construcción d

1

Order # 91-08-241 09/03/91 13:52 Assaigai Analytical Labs

Page 2

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

used Kizin

Certified By SYED N. RIZVI

Order # 91-08-241 09/03/91 13:52

Assaigai Analytical Labs

REGULAR TEST RESULTS BY TEST

	REC PET : EPA 4	HYDROCARBONS	Minimum:	5.0	Maximu	m :	100	
Sample	Sample	Description	<u>Result</u>		<u>Units</u>	<u>Extracte</u>	d Analyzed	<u>By</u>
01A	SG 91	28.6 - 28.8	<5.0		MG/KG	08/30/91	09/03/91	PV
02A	SG 86	13.5 - 13.7	18,000		MG/KG	08/30/91	09/03/91	PV
03A	SG 86	18.7 - 18.9	5200		MG/KG	08/30/91	09/03/91	PV
04A	SG 86	24.9 - 25.1	<5.0		MG/KG	08/30/91	09/03/91	PV
05A	SG 86	35.0 - 35.2	8.0		MG/KG	08/30/91	09/03/91	PV
06A	SG 86	40.5 - 40.7	<5.0		MG/KG	08/30/91	09/03/91	PV

New ! 7109

Albur

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: SYED RIZVI Phone: (505)345-8964

ENRON/TRANSWESTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 Attn: LARRY CAMPBELL Invoice Number: 911773

ICAL

RATC

NC. •

lenar

Order #: 91-08-246 Date: 09/05/91 12:13 Work ID: STATION #9 0.S. YARD Date Received: 08/22/91 Date Completed: 09/05/91

7848

REFERENCE WO#: 91-07-330

SAMPLE IDENTIFICATION

Sample		Sample
Number		Description
01	OSBH3	
03	SG349	2.9-4.6
05	SG349	14.0-14.8
07	SG349	25.3-26.3
09	SG360	0.0-2.5
11	SG360	9.0-9.9
13	SG360	19.0-20.0
15	SG360	29.0-29.4
17	SG361	4.0-5.0

Sample		Sample	
<u>Number</u>		Description	_
02	SG349	0-1.8	
04	SG349	9.0-10.0	
06	SG349	20.3-21.3	
08	SG349	29.7-30.4	
10	SG360	4.0-5.0	
12	SG360	14.0-14.7	
14	SG360	24.0-25.0	
16	SG361	0-2.5	
18	SG361	9.0-10.0	

Assaigai Analytical Labs

Order # 91-08-246 09/05/91 12:13

SAMPLE IDENTIFICATION

Sample [.]		Sample	Sample		Sample	
<u>Number</u>		Description	<u>Number</u>		Description	
19 9	SG361	16.0-16.4	20	SG361	19.5-19.8	
21	SG361	24.0-25.0	22	SG361	38.9-39.3	

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

Risi

Certified By SYED N. RIZVI Page 2

THIS REPORT MAY NOT BE REPROTXICED IN PART OR IN FULL WITHOUT THE EXPRESS WRITTEN CONSENT OF THE LABORATORY

tional constraints and the second se 12. .: enon.

Order # 91-08-246 09/05/91 12:13

.

ATO S

acal 4

۸

Assaigai Analytical Labs

Page 3 .

.

REGULAR TEST RESULTS BY TEST

	REC PET : EPA 4	HYDROCARBONS 18.1	Minimum:	5.0	Maximu	n: 1	00	
Sample	Sample	Description	Result		<u>Units</u>	Extracted	Analyzed	By
01A	OSBH3		<5.0		MG/KG	08/30/91	09/04/91	РV
02A	SG349	0-1.8	<5.0		MG/KG	08/30/91	09/05/91	PV
03A	SG349	2.9-4.6	<5.0		MG/KG	08/30/91	09/05/91	PV
04A	SG349	9.0-10.0	<5.0		MG/KG	08/30/91	09/04/91	PV
05A	SG349	14.0-14.8	<5.0		MG/KG	08/30/91	09/04/91	PV
06A	SG349	20.3-21.3	<5.0		MG/KG	08/30/91	09/04/91	PV
07A	SG349	25.3-26.3	<5.0		MG/KG	08/30/91	09/04/91	PV
A80	SG349	29.7-30.4	8.0		MG/KG	08/30/91	09/04/91	PV
09A	SG360	0.0-2.5	<5.0		MG/KG	08/30/91	09/04/91	PV
10A	SG360	4.0-5.0	<5.0		MG/KG	08/30/91	09/04/91	PV
11A	SG360	9.0-9.9	<5.0		MG/KG	08/30/91	09/04/91	PV
12A	SG360	14.0-14.7	8.0		MG/KG	08/30/91	09/04/91	PV
13A	SG360	19.0-20.0	<5.0		MG/KG	08/30/91	09/04/91	PV
14A	SG360	24.0-25.0	<5.0		MG/KG	08/30/91	09/04/91	PV
15A	SG360	29.0-29.4	20		MG/KG	08/30/91	09/04/91	PV
16A	SG361	0-2.5	<5.0		MG/KG	08/30/91	09/04/91	PV
17A	SG361	4.0-5.0	<5.0	•	MG/KG	08/30/91	09/04/91	PV
18A	SG361	9.0-10.0	<5,0		MG/KG	08/30/91	09/04/91	PV
19A	SG361	16.0-16.4	<5.0		MG/KG	08/30/91	09/04/91	PV
20A	SG361	19.5-19.8	<5.0		MG/KG	08/30/91	09/04/91	PV
21A	SG361	24.0-25.0	<5.0		MG/KG	08/30/91	09/04/91	PV
22A	SG361	38.9-39.3	<5.0		MG/KG	08/30/91	09/04/91	PV

. C

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: SYED RIZVI Phone: (505)345-8964

ENRON/TRANSWESTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 Attn: LARRY CAMPBELL Invoice Number: 911790 Order #: 91-08-245 Date: 09/06/91 08:52 Work ID: STATION #9 Date Received: 08/22/91 Date Completed: 09/06/91

7821

********	*****************	* * * * * * * * * * * * * * * * *	************
*	REFERENCE WO#	: 91-07-299	*
*********	**************	**************	******

SAMPLE IDENTIFICATION

Sample		Sample	Sample		Sample
Number		<u>Description</u>	<u>Number</u>		Description
01	OSBH1	18.9 - 19.1	.02	OSBH1	34.3 - 34.5
03	OSBH2	9.9 - 10.1	04	OSBH2	22.5 - 22.6
05	OSBH2	31.1 - 31.3	06	OSBH2	41.8 - 42.0
07	OSBH2	55.2 - 55.4	.08	OSBH2	69.0 - 69.2

A. ICAL IATO. KC.+; eson, Ibuqu, /ew h. 109

Order # 91-08-245 09/06/91 08:52 Assaigai Analytical Labs

Page 2

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

Kizn

Certified By SYED N. RIZVI

mber: American Council of Sependent Laboratories, Inc. Assaigai Analytical Labs

Order # 91-08-245 09/06/91 08:52

REGULAR TEST RESULTS BY TEST

TOTAL REC Method: E	,	HYDROCARBONS 18.1	Minimum:	5.0	Maximu	m: 1	.00	
Sample Sam	mple	Description	Result		<u>Units</u>	Extracted	<u>Analyzed</u>	By
01A OS	BH1	18.9 - 19.1	12		MG/KG	08/28/91	09/04/91	PV
02A OS	BH1	34.3 - 34.5	<5.0		MG/KG	08/28/91	09/04/91	PV
03A OS	BH2	9.9 - 10.1	<5.0		MG/KG	08/28/91	09/04/91	PV
	BH2	22.5 - 22.6	<5.0		MG/KG	08/28/91	09/04/91	PV
	BH2	31.1 - 31.3	68		MG/KG	08/28/91	09/04/91	PV
	BH2	41.8 - 42.0	24		MG/KG	08/28/91	09/04/91	PV
	BH2	55.2 - 55.4	16		MG/KG	08/30/91	09/05/91	PV
	SBH2	69.0 - 69.2	16		MG/KG	08/30/91	09/05/91	PV

Unovican Council of

٦

2

£ 3

÷ *

調査

**

1

冕 荽

1

New (7105

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: SYED RIZVI Phone: (505)345-8964

ENRON/TRANSWESTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 Attn: LARRY CAMPBELL Invoice Number: 911791

Order #: 91-08-247 Date: 09/06/91 09:01 Work ID: STATION 9 0.S. YARD Date Received: 08/22/91 Date Completed: 09/05/91

7885

SAMPLE IDENTIFICATION

Sample		Sample	
Number		Description	
01	OSBH3	44.1-44.3	
03	OSBH4	27.5-27.7	
05	OSBH5	19.6-19.9	
07	OSBH6	13.6-13.8	
09	OSBH6	52.6-52.8	
11	OSBH7	22.1-22.3	

Sample		Sample	
<u>Number</u>		Description	
02	OSBH3	54.8-55.0	
04	OSBH5	14.0-14.2	
06	OSBH5	23.4-23.6	
08	OSBH6	47.0-47.2	
10	OSBH6	70.0-71.0	

Assaigai Analytical Labs

Page 2

Order # 91-08-247 09/06/91 09:01

> QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

Kezni

CertifiedUBy SYED N. RIZVI

ICAL IATO IC.

Jbuq. [cw]. /109

100

Order # 91-08-247 09/06/91 09:01 Assaigai Analytical Labs

Minimum:

and the second

Page 3

REGULAR TEST RESULTS BY TEST

5.0 Maximum:

TOTAL REC PET HYDROCARBONS Method: EPA 418.1

enton

Sampl	e Sample	Description	Result	Units	Extracted		<u>By</u>
01A	OSBH3	44.1-44.3	16	MG/KG	08/29/91	09/03/91	PV
02A	OSBH3	54.8-55.0	16	MG/KG	08/29/91	09/03/91	PV
03A	OSBH4	27.5-27.7	<5.0	MG/KG	08/29/91	09/03/91	PV
04A	OSBH5	14.0-14.2	<5.0	MG/KG	08/29/91	09/03/91	PV
05A	OSBH5	19.6-19.9	16	MG/KG	08/29/91	09/03/91	PV
06A	OSBH5	23.4-23.6	12	MG/KG	08/29/91	09/03/91	PV
07A	OSBH6	13.6-13.8	12	MG/KG	08/29/91	09/03/91	PV
08A	OSBH6	47.0-47.2	<5.0	MG/KG	08/29/91	09/03/91	PV
09A	OSBH6	52.6-52.8	<5.0	MG / KG	08/29/91	09/03/91	PV
10A	OSBH6	70.0-71.0	<5.0	MG/KG	08/29/91	09/03/91	PV
11A	OSBH7	22.1-22.3	<5.0	MG/KG	08/29/91	09/03/91	PV
	220111			,			

Assaigai Analytical Labs 7300 Jefferson NE Albuquerque, NM 87109

Attn: SYED RIZVI Phone: (505)345-8964

ENRON/TRANSWÉSTERN PIPELINE 6381 N. MAIN STREET P.O. BOX 1717 ROSWELL, NM 88202-1717 Attn: LARRY CAMPBELL Invoice Number: 911792 Order #: 91-08-248 Date: 09/06/91 09:02 Work ID: STATION 9 O.S. YARD Date Received: 08/22/91 Date Completed: 09/05/91

7908

SAMPLE IDENTIFICATION

Sample <u>Number</u>		Sample Description	Sample <u>Number</u>		Sample Description
01	OSBH7	33.5-33.7	02	OSBH7	37.0-37.2
03	OSHB8	4.6-4.9	04	OSBH8	33.9-34.1
05	OSBH8	49.7-49.9	06	OSBH9	4.5-4.9
07	OSBH9	32.0-32.5	.08	OSBH9	47.5-49.7

Page 2

Order # 91-08-248 09/06/91 09:02

.

Assaigai Analytical Labs

QUESTIONS ABOUT THIS REPORT SHOULD BE ADDRESSED TO: LABORATORY OPERATIONS MANAGER/ASSAIGAI ANALYTICAL 7300 JEFFERSON N.E., ALBUQUERQUE, N.M. 87109

Kizi

Certified By SYED N. RIZVI

Assaigai Analytical Labs

Order # 91-08-248 09/06/91 09:02

REGULAR TEST RESULTS BY TEST

Page 3

3

TOTAL REC Method: E		HYDROCARBONS 8.1	Minimum:	5.0	Maximu	n: 1)	00 ·	
<u>Sample Sa</u>	ample	Description	Result		<u>Units</u>	Extracted	<u>Analyzed</u>	<u>Вy</u>
01A 05	SBH7	33.5-33.7	<5.0		MG/KG	08/28/91	09/04/91	PV
02A 05	SBH7	37.0-37.2	12		MG/KG	08/28/91	09/04/91	PV
03A 05	SHB8	4.6-4.9	12		MG/KG	08/28/91	09/04/91	PV
04A 05	SBH8	33.9-34.1	<5.0		MG/KG	08/28/91	09/04/91	PV
	SBH8	49.7-49.9	12		MG/KG	08/28/91	09/04/91	PV -
	SBH9	4.5-4.9	8.0		MG/KG	08/28/91	09/04/91	PV
		32.0-32.5	150		MG/KG	08/28/91	09/04/91	PV
		47.5-49.7	8.0		MG/KG	08/28/91	09/04/91	PV

r. American Council of derit Labor stories, Inc.

TUS REPORT MAY NOT BE REPRODUCED IN PART OR IN PULL WITHOUT THE EXPRESS WRITTEN CONCERN OF THE CARDON

A		. 1.	ुः 	ÎÎ			•		Ē.	1 MARTIN 2	1	1 Anna 1	1 in and	i incli	j) . (
	Order 11/20		56		As	saig	ai	Ana	lyt	ica	1 I	Labe	,				Page 6		
	•															• '		• •	

Test [)esci	:ipt	lon
TOTAL	REC	PET	HYDROCARBONS

<u>Result</u> 8.0 Limit 5.0

1

<u>Units</u> <u>Analyzed</u> <u>By</u> MG/KG 11/19/91 PV

.

THIS REPORT MUST NOT BE USED IN ANY MANNER BY THE CLIENT OR ANY OTHER THIRD PARTY TO CLAIM PRODUCT ENDORSEMENT BY THE

∩ ∧ l∿⁄ഷപ

adependent Laboratorica, Inc.

ANALYTICAL LABORATORIES, INC. + 7300 Jeffesten, N.H. + Albuquerque, New Mexico \$710

Order # 91-11-156 11/20/91 14:50 Assaigai Analytical Labs

Page 7

TEST METHODOLOGIES

BENZENE, TOLUENE, ETHYLBENZENE, XYLENES: USEPA METHOD # 602/8020 TOTAL RECOVERABLE PETROLEUM HYDROCARBONS(IN SOIL) = USEPA METHOD # 418.1

Metric Corporation 1991 Soil TRPH Analytical Results

61.9

38

en el

i un e

200 200

gar pe

. ...

TABLE 4

SUMMARY OF ANALYTICAL RESULTS FOR TOTAL RECOVERABLE PETROLEUM HYDROCARBON OCCURRENCE AT ROSWELL COMPRESSOR STATION

PARAMETER					SANPLE NUMBER					
	Pit 1 2.8'-3.0'	Pit 1 9.2'-9.4'	Pit 1 13.5'-13.7'	Pit 1 18.8'-19.0'	Pit 1 26.8'-27.0'	Pit 1 30.6+-30.8	Pit 1 • 41.6+-41.8•	Pit 1 43.5'-43.7'		Pit 2 002 8,9')
<u>Total Recoverable</u> <u>Petroleum Hydrocarbons</u> (mg/kg) Hethod 418.1	<u>e</u> 25,000	39,000	55,000	20,000	11,000	16	16	56	BÖL	13,000
PARAMETER					SANPLE NUMBER					
						9it 2 51-57.81 6	Pit 2 9.9'-70.1'	Pit 3, BH-1 30.7'-30.9'	Pit 3, BH- 25.0'-25.2	2
Total Recoverable Petroleum Hydrocarbon (mg/kg) Method 418.1	-	70 1	BDL 26	00 4	4 2	250	BDL	BDL	BOL	
					SAMPLE NUMBER		• • • • • • • • • • • • • • • • • • • •			
1	SG 86 3.5'-13.7'	\$G 86 18.7'-18.9'	SG 86 24.9'-25.1'	\$G 86 35.0'-35.2'	SG 86 40.51-40.71	SG 91 28.6'-28.8'	SG 349 0.0'-1.8'	SG 349 2.9'-4.6'	SG 349 9.0'-10.0'	5G 349 14.0'-14.8'
Total Recoverable Petroleum Hydrocarbon (mg/kg) Hethod 418,1	<u>8</u>									
	18,000	5200	BDL	8.0	BDL	BDL	BDL	BDL	BDL	BOL

TABLE 4 (Continued)

SUMMARY OF ANALYTICAL RESULTS FOR TOTAL RECOVERABLE PETROLEUM HYDROCARBON OCCURRENCE AT ROSWELL COMPRESSOR STATION

.

PARAMETER				SAMPL	<u>E NUMBER</u>				
	\$G 349 20.3'-21.3'	SG 349 25.3'-26.3'	\$G 349 29.7'-30.4'	SG 349 0.0'-2.5'	SG 360 4.0'-5.0'	SG 360 9.01-9.91	\$0 360 14.01-14.71	5G 360 19.01-20.01	SG 360 24.0*-25.0*
Total Recoverable Petroleum Hydrocarbo (mg/kg) Method 418.1	<u>ns</u>								
	BDL	BDL	BDL	BDL	BDL	BDL	BOL	BDL	BOL
PARAMETER				SAMP	LE NUMBER				
	SG 360 29.0'-29.4'	SG 361 0.01-2.51	\$6 361 4.0'-5.0'	\$6 361 9.01-10.01	SG 361 16.0'-16.4'	sg 361 19.51-19.81	5G 361 24.01-25.01	SG 361 38.9'-39.3'	OS BH-1 18.9*-19.1
<u>Total Recoverable</u> <u>Petroleum Hydrocarbo</u> (mg/kg) Method 418,1									
	2.0	BDL	BDL	BDL	BDL	BDL	BOL	BDL	12
PARAMETER				SAMP	LE_NUMBER				
	OS BH-1 34.3'-34.5'	OS 8H-2 9.9'-10.1'	0\$ BH-2 22.5'-22.6'	OS BH-2 31.1'-31.3'	OS BH-2 41.8'-42.0'	OS BH-2 55.21-55.4	OS BH • 69.0'-6		6 BH-3)•-21.2•
<u>Total Recoverable</u> <u>Petroleum Hydrocarbo</u> (mg/kg) Hethod 418,1									
	BDL	8 0L	BDL	68	24	16	16		BDL

TABLE 4 (Continued)

SUMMARY OF ANALYTICAL RESULTS FOR TOTAL RECOVERABLE PETROLEUM HYDROCARBON OCCURRENCE AT ROSWELL COMPRESSOR STATION

ARAMETER				SAMPLE	NUMBER			
	OS BH-3 44.1'-44.3'	OS BH-3 54.8'-55.0'	OS BH-4 27.5'-27.2'	OS BH-5 14.0'-14.2'	OS BH-5 19.6'-19.9'	OS BH-5 23.4*-23.6*	OS BH-6 13.6*-13.8*	05 BH-6 47.0'-47.2'
<u>otal Recoverable</u> Petroleum Hydrocar (mg/kg) Method 418	bons 1,1							
	16	16	BDL	BDL	16	12	12	BOL
ARAMETER				SAMPLE	NUMBER			
	OS BH-6 52.61-52.81	OS BH-6 70.0'-71.0'	OS BH-7 22.11-22.31		H-7 33.7'	OS 8H-7 37.04-37.24	OS BH-8 4.61-4.91	OS BH-8 33.9'-34.1'
Total Recoverable Petroleum Hydrocar (mg/kg) Method 418	bons							
	BDL	BDL	BDL	80	DL	12	12	BDL
PARAMETER				SAMPLE	NUMBER			
	OS BH-8 49.7'-49.9'	OS 8H-9 4.5'-4.9'	OS BH-9 32.01-32.5	08 I 47.5*		BH-10 37.31-37.61	BH-11 36.3'-36.7'	
fotal Recoverable Petroleum Hydrocar (mg/kg) Method 418	rbons							
	12	8	150	1	3	BDL	8	

BDL = below detection limit of 5.0 mg/kg.

Halliburton NUS 1992 Ground-Water Analytical Results

 $\langle \sigma_{ij} \rangle$

: ----

4.00

ा भव**।** स्रोतने

 $\gamma \in \mathcal{A}$

ny ita

4.14

494

- 9

 γ_{ijk}

-540'**8**

· · 朱 在海

-

APPENDIX E

•

ANALYTICAL LABORATORY REPORTS

R-48-09-2-003H

15:70A 21:00

rtizije

vra Veza

-rint -rint

ारम् अर्थ

ده سنور. ۲۹۵۵ و.

- 63

n de la composition de la comp

94**4**

inter Notae

~57.R.

100.04

ion testa

> ात है। - जाता

> > era se estate

1914

-9-19 19-19

- 6949

· 12944

- 689

HALLIBURTON NUS Environmental Corporation

Environmental Laboratories

5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

			Report No.:		
		I ADODATION ANALYSTS OFTIGDT	Section A	Page I	
		LABORATORY ANALYSIS REPORT			
CLIENT	NAME:	ENRON GAS PIPELINE/TRANSHESTERN	NUS CLIENT NO:	0065 0044	
AD	ORESS:	P.O. BOX 1717	HORK ORDER NO:	55580	
		ROSHELL, NH 88201-	VENDOR NO:		
ATTENTION: SAMPLE ID:		LARRY CAMPBELL			
		STATION 9 - PIT	DATE SAMPLED:	21- 5EP-9	
		H0219130	DATE RECEIVED:	22-5EP-9	
	NO.:		APPROVED BY:	L Beyer	
		·			
	TEST				
LN	CODE	DETERMINATION	RESULT	UN	
1	OSVIDU	APPENDIX IX SEMIVOLATILES IN WATER 1,2,4-Trichlorobenzene	< 33	100.0	
		1,2-Dichlorobenzene	< 33	ug/L ug/L	
		1,3-Dichlorobenzene	< 33	ug/L	
		1,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	-	
		2,4,5-Trichlorophenol	< 65	ug/L ug/L	
		2:4:5-Trichlorophenol	< 33	ug/L	
		2,4-Dichlorophenol	< 33	ug/L	
		2,4-Dimethylphenol	< 33	ug/L	
		2,4-Dinitrophenol	< 160	ug/L	
		2,4-Dinitrotoluene	< 33	ug/L	
		2,6-Dinitrotoluene	< 33	ug/L	
		2-Chloronaphthalene	< 33	ug/L	
		2-Chlorophenol	< 33	ug/L	
		2-Hethylnaphthalene	51	ug/L	
		2-Hethylphenol (o-Cresol)	< 33	ug/L	
		2-Nitroaniline	< 160	ug/L	
		2-Nitrophenol	< 33	ug/L	
		3,3'-Dichlorobenzidine	< 66	ug/L	
		3-Hethylphenol	< 33	ug/L	
		3-Nitroaniline	< 160	ug/L	
		4.6-Dinitro-2-methylphenol	< 160	ug/L	
		4-Bromophenyl phenyl ether	< 33	ug/L	
		4-Chloro-3-methylphenol	< 33	ug/L	
		4-Chloroaniline	< 33	ug/L	
		4-Chlorophenyl phenyl ether	< 33	ug/L	
		4-Hethylphenol	250	ug/L	
		4-Nitroaniline	< 160	ug/L	
		4-Nitrophenol	< 160	ug/L	
		Acenaphthene	< 33	ug/L	
		Acenaphthylene	< 33	ug/L	

- 6 (16)

.

12-W

-544

- 18 A

5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section A Page 2

LABORATORY ANALYSIS REPORT

	CLIENT NAME:	ENRON GAS PIPELINE/TRANSMESTERN
रक ं	SAMPLE ID:	STATION 9 - PIT
1 5x24	NUS SAMPLE NO:	H0219130

	TEST CODE	DETERMINATION	RESULT	UNITS
30 ³⁹⁴				
1.12.1 3 4	AC	etophenone	< 33	
	An	iline	< 33	ug/L
~9#	An	thracene	< 33	ug/L
->2 with	Be	nzidine	< 160	
~ 0 1	8e	nzo(a)anthracene	< 33	
13400 #		nzo(a)pyrene	< 33	
		nzo(b)fluoranthene	< 33	
47 48		nzo(ghi)perylene	< 33	
-28- 89	_	nzo(k)fluoranthene	< 33	
		nzoic Acid	< 160	
.i €= sóg		nzyi alcohol	< 33	
		nzyl butyl phthalate	< 33	
. 66 m		s(2-Chloroethoxy)methane	< 33	
147304		s(2-Chloroethyl)ether	< 33	
		s(2-Chloroisopropyl)ether	< 33	
- tsr≓∰f		s(2-Ethylhexyl)phthalate	< 33	•
		rysene	< 33	
: Mille		-n-buthyl phthalate	< 33	
ार्थक		-n-octyl phthalate	< 33	
		benzofuran	< 33	
2-91		ethyl phthalate	< 33	
		methyl phthalate	< 33	
		uoranthene	< 33	
, 79	• =	uorene	< 33	
		xachlorobenzene	< 33	
- 10¥		pachlorobutadiene	< 33	
		xachlorocyclopentadiene	< 33	•
549g		xachloroethane	< 33	
nh diak		deno(1,2,3-cd)pyrene	< 33	
		aphorone de la companya de la company	< 33	•
it rem		Nitrosodimethylamine	< 33	-
Same		Nitrosodiphenylamine	< 33	•
		phthalene	34	-
121 (8 1)		trobenzene	< 33	-
		ntachlorophenol	< 160	•
- 25d y altr 		enanthrene	< 33	
		enol	< 33	•
HARM		rene	< 53 · < 65	
. Unit	ry	ridine	× 00	uy/L
		• HOUSTON	•	PITTSBURG
			-	

(216) 891-4700

HOUSTON (713) 488-1810

5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section A Page 3

LABORATORY ANALYSIS REPORT

	CLIENT NAME:	ENRON GAS PIPELINE/TRANSMESTERN
100	SAMPLE ID:	STATION 9 - PIT
4307	NUS SAMPLE NO:	H0219130

	TEST CODE	DETERMINATION	RESULT	UNITS
240				
->- <u>-</u>		n-Nitroso-di-n-propylamine	< 33	ug/L
3 (NIX	APPENDIX IX VOLATILES IN HATER	180	1.00.0
		1,1,1-Trichloroethane	< 30	ug/L
. (39.00		1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	< 30	ug/L
		1,1-Dichloroethane	580	ug/L
			< 30	ug/L
-943		1,1-Dichloroethene	< 30	ug/L
-94,0		1,2,3-Trichloropropane	< 30	ug/L
- i tsajā		1,2-Dichloroethane		ug/L
		1,2-Dichloropropane	< 30	ug/L
19 mg.		1,4-Dichloro-2-butene	< 60	ug/L
Laterate		2-Butanone (MEK)	220	ug/L
		2-Chloroethylvinyl Ether	< 60	ug/L
-149 8		2-Hexanone	< 50	ug/L
		4-Hethyl-2-Pentanone (MIBK)	< 60	ug/L
		Acetone	< 50	ug/L
		Acrolein	< 600	ug/L
		Acrylonitrile	< 600	ug/L
. · 16688		Benzene	370	ug/L
		Browodichlorowethane	< 30	ug/L
		Browoform	< 30	ug/L
		Browowethane	< 60	ug/L
· * (1998		Carbon disulfide	< 30	ug/L
5 <i>86</i> e		Carbon tetrachloride	< 30	ug/L
		Chlorobenzene	< 30	ug/L
2 9.8+8		Chlorodibromomethane	< 30	ug/L
		Chloroethane	< 60	ug/L
23460		Chloroform	< 30	ug/L
10.62		Chloromethane	< 60	ug/L
		Dibromomethane	< 30	ug/L
		Dichlorodifluoromethane	< 120	ug/L
		Ethanol	¥	ug/L
19 t 985		Ethyl methacrylate	< 50	ug/L
		Ethylbenzene	110	ug/L
-ijn 0%		Iodomethane (Methyl iodide)	< 50	ug/L
44.449		Methylene chloride	< 30	ug/L
•		P/M Xylene	820	ug/L
210.6kg		Styrene	< 30	ug/L
()))		Tetrachloroethene	< 30	ug/L
CLEVELA	ND	HOUSTON	•	PITTSBURG
				(410) 747.05

(216) 891-4700

. Walio HOUSTON (713) 488-1810

1-116

-

ań

HALLIBURTON NUS Environmental Corporation

Environmental Laboratories

CHENI DUPLICATE

HALLIBURTON NUS Environmental Corporation

Environmental Laboratories

900 Gemini Avenue Houston, TX 77058

October 01: 1992 Report No.: 00020808 Section A Page 4

LABORATORY ANALYSIS REPORT

.

CLIE	NT NAME:	ENRON GAS PIPELINE/TRANSMESTERN
54	PLE ID:	STATION 9 - PIT
NUS SA	MPLE NO:	H0219130

calda Selan	LN	TEST	DETERMINATION	RESULT	UNITS
1. aş			Toluene	61	ug/L
			Trichloroethene	< 30	ug/L
200			Trichlorofluoromethane	< 30	ug/L
			Vinyl acetate	< 60	ug/L
-skara			Vinyl chloride	< 60	ug/L
****			cis-1,2-Dichloroethene	< 30	ug/L
			cis-1,3-Dichloropropene	< 30	ug/L
+44			o-Xylene	120	ug/L
			trans-1,2-Dichloroethene	< 30	ug/L
·₩-8 1			trans-1,3-Dichloropropene	< 30	ug/L
. 21/0/4	5	AASH	Arsenic, Total (As)	0.19	8 9/1.
- 2 mart	6	ABAN	Barium, Total (Ba)	4.4	1 9/L
- 589399	7	ACDH	Cadmium, Total (Cd)	< 0.005	₩ġ/L
	8	ACRH	Chromium, Total (Cr)	0.01	3 9/L
- 14 .09	9	AHGH	Hercury, Total (Hg)	< 0.0002	sg∕L
-34538	10	AAGH	Silver, Total (Ag)	< 0.01	sg/L
	11	APSN	Lead, Total (Pb)	< 0.05	19 /L
< : 84 101	12	ASEN	Selenium, Total (Se)	< 0.003	mg/L
	13	1685	Petroleum Hydrocarbons	37	8 9/L

143

annia

anna Shin

1814B

法间期

266318 -▲ ••●

40.0g

49668

-2001

184

COMMENTS: * This analyte was not detected by a computerized search of the chromatogram.

CLEVELAND (216) 891-4700

.

•

•

HALLIBURTON NUS Environmental Corporation Environmental Laboratories

5350 Campbells Run Road Pittsburgh, PA 15205

900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section 8 Page 1

NUS SAMPLE NO: H0219130

QUALITY CONTROL REPORT SUPPLEMENTAL INFORMATION

	SAMPLE P	EPARATION				SAMPLE ANALY	5IS
lr- Hethod	DATE/TIME	ANALYST	-	.R- Ethod	DATE/TIME	ANALYST	ANLS BATCH INSTRUMENT

AMPLE ID: STATION 9 - PIT

,, ••

(idad

1000 149.2

-188**9**

હતા કરે

يون.

siese 1.00

i nik

-1-110

•.

	OSVIDGI	26261	19-3520	23-SEP-92 0400	RDQ	19-8270	25 -5EP-9 2	1205	GTIN	26145	SCHST
1	OVIXH	26366	NA			19-8240	25-5EP-92	1615	GBF	26278	GCMSQ
·	AASH	26313	19-7060	23-SEP-92 0930) TH	19-7060	24-5EP-92	2224	CMG		405FET
	ABAN	26312	19-3010			19-6010	24-5EP-92	1215	JSP		4001ET
	ACDH	26312	19-3010	23-5EP-92 0900	HT C	19-7130	24-5EP-92	1942	Pea		300HET
	ACRH	26312	19-3010			19-6010	24-5EP-92	1405	JSP		4001ET
	AHGH	26333	NA			19-7470	24-5EP-92	1000	RAS		124HAT
0	AAGH	26313	19-7060			19-7760	26-5EP-92	1004	CHG		300FET
1	APBH	26312	19-3010			1 9-60 10	2 4-5EP-9 2	1405	JSP		400HET
2	ASEN	26313	19-7740			19-7740	24-SEP-92	1837	CMG		305HET
3	1685	26286	02-418.1			02-418.1	22-5EP-92	1159	LJH		302HAT

Method Literature Reference

<u>R</u> 2 EPA-Methods for Chemical Analysis of Water & Wastes, 1984.

9 EPA-Test Methods for Evaluating Solid Waste, 3rd ed, Nov. 1986

.

10.110 -241

275.9

CLIENT DUPLIC

12.48

÷н,

- 11

1918

1999

Same

~~~~~

15/14

1840

à củ đ

ज सम राजन्म

-

4-36**3**6

液磷

- -----

31,98

ernb Ekkaz

医纤维

5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemin: Avenue Houston, TX 77058

| October     | 01 | l. 19 | 92    |
|-------------|----|-------|-------|
| Report No.: | :  | 000   | 20808 |
| Section     | C  | Page  | 1     |

### QUALITY CONTROL REPORT SURROGATE STANDARD RECOVERY

| LN        |       |             | surrogate<br>Compound      | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | ref<br>Ln |
|-----------|-------|-------------|----------------------------|---------------------|----------------------|-----------|
| SAMPLE ID | : \$1 | TATI        | N 9 - PIT                  | NUS SAMPLE NO:      | H0219130             |           |
| 2         | 58    | SNAH        | GC/MS BNA SURROGATES       |                     |                      | 1         |
|           |       |             | 2,4,8-Tribromophenol       | 83                  | -                    |           |
|           |       |             | 2-Fluorobiphenyl           | 87                  | -                    |           |
|           |       |             | 2-Fluoropnenol             | 28                  | -                    |           |
|           |       |             | N1trobenzene-d5            | 53                  | -                    |           |
|           |       |             | Phenol-d5                  | 28                  | -                    |           |
|           |       |             | p-Terphenyl-d14            | 53                  | -                    |           |
| 4         | SU    | <b>JOAH</b> | GC/HS VOLATILES SURROGATES |                     |                      | 3         |
|           |       |             | 1,2-Dichloroethane-d4      | 102                 | -                    |           |
|           |       |             | 4-Bromofluorobenzene       | 109                 | -                    |           |
|           |       |             | Toluene-d8                 | 98                  | -                    |           |

..

.. ..

.



.. ..

un darig

the the test

196.66

5.30

16 mil

i com

reid

~14 14

in the

sona sosae

- 14

2.0

. 14 jul

- 64-58

 $\dot{\gamma}(\bar{q})$ 

.) da

心注嘲

۰,

٠

900 Gemini Avenue Houston, TX 77058

| October (   | 01, 1992 |
|-------------|----------|
| Report No.: | 00020808 |
| Section (   | ) Page 1 |

### QUALITY CONTROL REPORT

### LABORATORY CONTROL SAMPLE RECOVERY

| TEST<br>CODE DETERMINATION                 | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS |          |
|--------------------------------------------|---------------------|----------------------|----------|
| BATCH: 26286 SAMPLE ID: Lab Control Sample |                     | NUS SAMPLE NO:       | H0219864 |
| 1685 Petroleum Hydrocarbons                | 94.0                | -                    |          |
| 1685 Petroleum Hydrocarbons                | 94.0                | -                    |          |
| BATCH: 20312 SAMPLE ID: Lab Control Sample |                     | NUS SAMPLE NO:       | H0219893 |
| ABAM Barium, Total (Ba)                    | 90.0                | -                    |          |
| ACDH Cadmium, Total (Cd)                   | 106.0               | -                    |          |
| ACRH Chromium, Total (Cr)                  | 95.0                | -                    |          |
| APBN Lead, Total (Pb)                      | 96.0                | -                    |          |
| BATCH: 20313 SAMPLE ID: Lab Control Sample |                     | NUS SAMPLE NO:       | H0219895 |
| AAGH Silver, Total (Ag)                    | 105.0               | -                    |          |
| AASH Arsenic, Total (As)                   | 115.0               | -                    |          |
| ASEM Selenium, Total (Se)                  | 110.0               | -                    |          |
| BATCH: 26333 SAMPLE ID: Lab Control Sample |                     | NUS SAMPLE NO:       | H0219924 |
| AHGH Mercury, Total (Hg)                   | 95.0                | -                    |          |

.

•

- V-1928



1.00

- j- topă

-125

-2-43

्ड**ल** 

1.0.166

1500

-inde -inde

. 2-260 25-66

1079

31419**4** -{180**8** 

-544

504 8,94

132-68

.P refer

41.00

. 41.2

:416

Jane

5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section E Page 1

| QUALITY | CONTROL | REPORT |
|---------|---------|--------|
| METHO   | D BLANK | DATA   |

|              | test<br>Code | Determination                      | RESULT     | UNITS         |
|--------------|--------------|------------------------------------|------------|---------------|
|              |              |                                    |            |               |
| IATCH: 26261 | SAMPLE       | ID: Method Blank                   | NUS SAMPLE | NO: H021983   |
|              | OSVIXH       | APPENDIX IX SEMIVOLATILES IN WATER |            |               |
|              |              | 01-n-buthyl phthalate              | < 10       | ug/L          |
|              |              | Di-n-octyl phthalate               | < 10       | ug/L          |
|              |              | Dibenzofuran                       | < 10       | ug/L          |
|              |              | Diethyl prithalate                 | < 10       | ug/L          |
|              |              | Dimethyl phthalate                 | < 10       | ug/L          |
|              |              | Fluoranthene                       | < 10       | ug/L          |
|              |              | Fluorene                           | < 10       | ug/L          |
|              |              | Hexachlorobenzene                  | < 10       | ug/L          |
|              |              | Hexachlorobutadiene                | < 10       | ug/L          |
|              |              | Hexachlorocyclopentadiene          | < 10       | ug/L          |
|              |              | Hexachloroethane                   | < 10       | ug/L          |
|              |              | Indeno(1,2,3-cd)pyrene             | < 10       | ug/L          |
|              |              | 1,2,4-Trichlorobenzene             | < 10       | ug/L          |
|              |              | 1.2-Dichlorobenzene                | < 10       | ug/L          |
|              |              | 1,3-Dichlorobenzene                | < 10       | ug/L          |
|              |              | 1.4-Dichlorobenzene                | < 10       | ug/L          |
|              |              | 2,4,5-Trichlorophenol              | < 50       | ug/L          |
|              |              | 2,4,6-Trichlorophenol              | < 10       | ug/L          |
|              |              | 2,4-Dichlorophenol                 | < 10       | ug/L          |
|              |              | 2.4-Dimethylphenol                 | < 10       | ug/L          |
|              |              | 2.4-Dinitrophenol                  | < 50       | ug/L          |
|              |              | 2.4-Dinitrotoluene                 | < 10       | ug/L          |
|              |              | 2,6-Dinitrotoluene                 | < 10       | ug/L          |
|              |              | 2-Chloronaphthalene                | < 10       | ug/L          |
|              |              | 2-Chlorophenol                     | < 10       | ug/L          |
|              |              | 2-Hethylnaphthalene                | < 10       | ug/L          |
|              |              | 2-Hethylphenol (o-Cresol)          | < 10       | ug/L          |
|              |              | 2-Nitroaniline                     | < 50       | ug/L          |
|              |              | 2-Nitrophenol                      | < 10       | ug/L          |
|              |              | 4-Methylphenol                     | < 10       | ug/L          |
|              |              | 3,3°-Dichlorobenzidine             | < 20       | ug/L          |
|              |              | 3-Nitroaniline                     | < 50       | ug/L          |
|              |              | 4.6-Dinitro-2-methylphenol         | < 50       | ug/L          |
|              |              | 4-Bromophenyl phenyl ether         | < 10       | ug/L          |
|              |              | 4-Chioro-3-methylphenol            | < 10       | ug/L          |
|              |              | Isophorone                         | < 10       | ug/L          |
|              |              | N-Nitrosodimethylamine             | < 10       | ug/L          |
|              |              | N-Nitrosodiphenylamine             | < 10       | ug/L          |
|              |              | Naphthalene                        | < 10       | ug/L          |
| CLEVE        |              | • HOUSTON                          | •          | PITTSBURGH    |
| (216) 89     |              | (713) 488-1810                     |            | 412) 747-2580 |

HALLIBURTON NUS Environmental Corporation Environmental Laboratories

ini)

48

يوير در.

inine Sout

. 1998

0.894

10.00

1.000 7860

> ाम्लक स्वर्भन्ते

-89**8** 1990

1

199**0** 

908 2018

4499

26**830** 

999**0** 

er se til Se se til

. 4 40

7.35

-teolii

16968

. . . . .

5350 Campbells Run Road Pittsburgh, PA 15205

900 Gemini Avenue Houston, TX 77058

CLIENT DUPLICAT

October 01, 1992 Report No.: 00020808 Section E Page 2

### QUALITY CONTROL REPORT METHOD BLANK DATA

|             | test<br>Code | Determination                  | RESULT UNITS            |
|-------------|--------------|--------------------------------|-------------------------|
|             |              | Nitrobenzene                   | < 10 ug/L               |
|             |              | Pentachiorophenoi              | < 50 ug/L               |
|             |              | Phenanthrene                   | < 10 ug/L               |
|             |              | Phenoi                         | < 10 ug/L               |
|             |              | Pyrene                         | < 10 ug/L               |
|             |              | Pyridine                       | < 20 ug/L               |
|             |              | n-Nitroso-di-n-propylamine     | < 10 ug/L               |
|             |              | 3-Tethylphenol                 | < 10 ug/L               |
|             |              | 4-Chloroaniline                | < 10 ug/L               |
|             |              | 4-Chloropnenyl phenyl ether    | < 10 ug/L               |
|             |              | 4-Nitroaniline                 | < 50 ug/L               |
|             |              | 4-Nitrophenol                  | <50 ug/L                |
|             |              | Acenaphthene                   | < 10 ug/L               |
|             |              | •                              |                         |
|             |              | Acenaphthylene<br>Acetophenone |                         |
|             |              |                                |                         |
|             |              | Aniline<br>Anthracene          | <b></b>                 |
|             |              | Benzidine                      |                         |
|             |              |                                |                         |
|             |              | Benzo(a)anthracene             |                         |
|             |              | Benzo(a)pyrene                 |                         |
|             |              | Benzo(b)fluoranthene           | < 10 ug/L               |
|             |              | Benzo(gh1)perylene             | < 10 ug/L               |
|             |              | Benzo(k)fluoranthene           | < 10 ug/L               |
|             |              | Benzoic Acid                   | < 50 ug/L               |
|             |              | Benzyl alcohol                 | < 10 ug/L               |
|             |              | Benzyl butyi phthalate         | < 10 ug/L               |
|             |              | Bis(2-Chloroethoxy)methane     | < 10 ug/L               |
|             |              | Bis(2-Chloroethyl)ether        | < 10 ug/L               |
|             |              | Bis(2-Chloroisopropyl)ether    | < 10 ug/L               |
|             |              | Bis(2-Ethylhexyl)phthalate     | < 10 ug/L               |
|             |              | Chrysene                       | < 10 ug/L               |
| ATCH: 26286 | SAMPLE       | ID: Method Blank               | NUS SAMPLE NO: HO219865 |
|             | 1685         | Petroleum Hydrocarbons         | < 0.2 mg/L              |
|             | 1685         | Petroleum Hydrocarbons         | < 0.2 Bg/L              |
| ATCH: 26312 | SAMPLE       | ID: Method Blank               | NUS SAMPLE NO: H0219894 |
|             | ABAN         | Barium, Total (Ba)             | < 0.1 mg/L              |
|             | ACDN         | Cadmium, Total (Cd)            | < 0.005 Bg/L            |
|             | ACRI         | Chromium, Total (Cr)           | < 0.01 mg/L             |
|             | apsw         | Lead, Total (Pb)               | < 0.05 ∎g/L             |
| CLEVEL      | AND          | • HOUSTON                      | • PITTSBURGH            |
| (216) 891   | 1-4700       | (713) 488-1810                 | (412) 747-2580          |



- 24

-- 34 15246

014

'oficed

7,78

100

11194 . محمد

......

-14.16

984**8** dist.

~ 4-1**9** ALC: NO

1000

. Sector

47.0 ine

-540

1:240

4:272 14.468

. 29% 

28 Wi

-- ......

5350 Campbells Run Road Pittsburgh, PA 15205

900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section E Page 3

| *            | TEST<br>CODE | Determination                  |               | RES  | ult u      | 1175        |
|--------------|--------------|--------------------------------|---------------|------|------------|-------------|
| BATCH: 25313 | SAMPLE       | ID: Method Blank               |               | NUS  | sample no: | : H021989   |
|              | AAGH         | Silver, Total (Ag)             |               | < 0  | .01 🗮      | <b>1</b> /L |
|              | AASH         | Arsenic, Total (As)            |               | < 0. | 003 🔤      | <b>1</b> 1  |
|              | ASEN         | Selenium, Total (Se)           | •             | < 0. | 003        | <b>1</b> /L |
| Batch: 26366 | SAMPLE       | ID: Hethod Blank               |               | NUS  | SAMPLE NO: | H021996     |
|              | OVIXH        | APPENDIX IX VOLATILES IN WATER | 2             |      |            |             |
|              |              | 1,1,1-Trichloroethane          |               |      | <5 ug      | <b>1</b>    |
|              |              | 1,1,2,2-Tetrachioroethane      |               |      |            | 1           |
|              |              | 1,1,2-Trichloroethane          |               |      | <5 u       | 1           |
|              |              | 1,1-Dichioroethane             |               |      | <5 ug      | 1           |
|              |              | 1,1-Dichloroethene             |               |      | <5 uğ      | 1           |
|              |              | 1,2,3-Trichloropropane         |               |      | <5 u       | <b>/</b> L  |
|              |              | 1.2-Dichloroethane             |               |      | <5 ug      | <b>/</b> L  |
|              |              | 1.2-Dichloropropane            |               |      | <5 ug      | <b>1</b>    |
|              |              | 1.4-Dichloro-2-butene          |               | <    | 10 Ug      | <b>1</b>    |
|              |              | 2-Butanone (NEK)               |               | <    | 10 ug      | <b>1</b>    |
|              |              | 2-Chloroethylvinyl Ether       |               | C    | 10 ut      | <b>1</b>    |
|              |              | 2-Hexanone                     |               | <    | 10 ug      | <b>/</b> L  |
|              |              | 4-Hethyl-2-Pentanone (MIBK)    |               | <    | 10 ug      | <b>/</b> L  |
|              |              | Acetone                        |               |      |            | <b>/</b> L  |
|              |              | Acrolein                       |               |      |            | <b>/</b> .  |
|              |              | Acrylonitrile                  |               | < د  |            | <b>/</b> L  |
|              |              | Benzene                        |               |      | <5 u       | 1           |
|              |              | <b>Bromo</b> dichloromethane   |               |      | <5 ug      | <b>1</b> 1  |
|              |              | Bromoform                      |               |      | <5 ug      | <b>1</b>    |
|              |              | Browowethane                   |               | C    | 10 U       | <b>1</b> /L |
|              |              | Carbon disulfide               |               |      | <5 ug      | <b>1</b> /L |
|              |              | Carbon tetrachloride           |               |      | <5 ug      | <b>1</b>    |
|              |              | Chlorobenzene                  |               |      | <5 u       | <b>1</b>    |
|              |              | Chlorodibromomethane           |               |      | <5 ug      | <b>1</b> 1  |
|              |              | Chloroethane                   |               | C    | 10 u       | <b>1</b> 1  |
|              |              | Chloroform                     |               |      |            | <b>/</b> L  |
|              |              | Chloromethane                  |               | C    | 10 ug      | <b>3</b> /L |
|              |              | Dibromomethane                 |               |      | <5 ug      | <b>1</b> /L |
|              |              | Dichlorodifluoromethane        |               | <    | 20 U       | <b>1/L</b>  |
|              |              | Ethanol                        |               |      |            | y/L         |
|              |              | Ethyl methacrylate             |               |      |            | <b>1</b> /L |
|              |              | Ethylbenzene                   |               |      |            | <b>1</b>    |
|              |              | Iodomethane (Methyl iodide)    |               | <    | 10 U       | <b>9</b> /L |
| CLEVEL       |              | •                              | HOUSTON       | •    | PITT       | SBURGH      |
| (216) 891    |              | (                              | 713) 488-1810 |      |            | 747-2580    |

QUALITY CONTROL REPORT METHOD BLANK DATA

\*\* \*\* \* \*5

1.14

v 19.55

2.48

ēģ.

1528

-748

1948

5 AND

-sho#

0.08

2.68

ः अन्द्र

150

ंत

17.97**1** 

- Store

- SKAR

्राष्ट्र देखाः

1.4

- 164 (154)

14.44

19 **-**

 $-(f_{i})/h_{i}$ 

- 143 2734

10.54

dáa¥



5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

| October     | 01, | 19  | 12    |
|-------------|-----|-----|-------|
| Report No.: | : 1 | 000 | 20808 |
| Section     | EP  | 192 | 4     |

### QUALITY CONTROL REPORT NETHOD BLANK DATA

| TEST<br>CODE       | Determination                                            | RESULT | UNITS |
|--------------------|----------------------------------------------------------|--------|-------|
|                    | Methylene chloride                                       | < 5    | ug/L  |
|                    | P/M Xylene                                               | < 5    | ug/L  |
|                    | Styrene                                                  | < 5    | ug/L  |
|                    | Tetrachloroethene                                        | < 5    | ug/L  |
|                    | Toluene                                                  | < 5    | ug/L  |
|                    | Trichloroethene                                          | < 5    | ug/L  |
|                    | Trichlorofluoromethane                                   | < 5    | ug/L  |
|                    | Vinyl acetate                                            | < 10   | ug/L  |
|                    | Vinyl chloride                                           | < 10   | ug/L  |
|                    | cis-1,2-Dichloroethene                                   | < 5    | ug/L  |
|                    | cis-1,3-Dichloropropene                                  | < 5    | ug/L  |
|                    | o-Xylene                                                 | < 5    | ug/L  |
|                    | trans-1,2-Dichloroethene                                 | < 5    | ug/L  |
|                    | trans-1,3-Dichloropropene                                | < 5    | ug/L  |
| his analyte was no | t detected by a computerized search of the chromatogram. |        |       |

.

•

### HALLIBURTON NUS Environmental Corporation Environmental Laboratories

5350 Campbells Run Road Pittsburgh, PA 15205 900 Gemini Avenue Houston, TX 77058

October 01, 1992 Report No.: 00020808 Section F Page 1

### QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE DATA

| BATCH: 26313                            |                 |               |            |                   | NUS SAM | PLE NO: H0219 | 9130         |
|-----------------------------------------|-----------------|---------------|------------|-------------------|---------|---------------|--------------|
|                                         | ORIGINAL        | DUPLICATE     |            | RANGE /           |         | MS            | HS Z         |
| TEST DETERMINATION                      | RESULT          | RESULT        | UNITS      | RPD               | UNITS   | RESULT        | REVR         |
| AASH Arsenic, Total (As)                | 0.19            | 0.20          | sg/L       | <u>RPD</u><br>5.1 | Bg/L    | 0.20          | *            |
| * The concentration of the analyte prev | ented accurate  | determination | of the     |                   | -       |               |              |
| matrix spike recovery.                  |                 |               |            |                   |         |               |              |
| AAGN Silver, Total (Ag)                 | < 0.01          | < 0.01        | ∎g/L       |                   | ∎g/L    | 0.04          | <b>20.</b> 0 |
| * Recovery of the spike indicates the p | resence of a ma | trix interfer | ence. This | 5                 | -       |               |              |
| should be considered in evaluating the  | data.           |               |            |                   |         |               |              |
| ASEM Selenium, Total (Se)               | < 0.003         | < 0.003       | ag∕L       |                   | sg/L    | < 0.003¥      |              |
| * Recovery of the spike indicates the p | resence of a ma | trix interfer | ence.      |                   | -       |               |              |
| This should be considered in evaluating |                 |               |            |                   |         |               |              |

#### BATCH: 26312

. .....

يەن. ئۇرىچە

100

108

k iş şi

2-98 9.55

500

5.4

. Bjed

- 1442

440

:4.9

1

-isona

Section

410 8

#### NUS SAMPLE NO: H0219127

|        | DETERMINATION<br>Barium, Total (Ba)<br>Cadmium, Total (Cd)<br>overy of the spike indicates the |              | DUPLICATE<br><u>RESULT</u><br>< 0.1<br>< 0.005<br>trix interfer | UNITS<br>ag/L<br>ag/L<br>ence. | RANGE /<br><u>RPD</u><br> | UNITS<br>Hg/L<br>Hg/L | ns<br><u>Result</u><br>1.9<br>0.027 * | NS 2<br>RCVRY<br>95.0<br>54.0 |
|--------|------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------|--------------------------------|---------------------------|-----------------------|---------------------------------------|-------------------------------|
| This s | should be considered in evaluatin                                                              | ig the data. |                                                                 |                                |                           |                       |                                       |                               |
| ACRH   | Chromium, Total (Cr)                                                                           | 0.01         | 0.01                                                            | aq/L                           | 0.0                       | BG/L                  | 0.20                                  | 95.0                          |
| APBN   | Lead, Total (Pb)                                                                               | < 0.05       | < 0.05                                                          | sg/L                           |                           | <b>Bg</b> /L          | 0.48                                  | <b>96.</b> 0                  |

#### BATCH: 26333

#### NUS SAMPLE NO: H0219127

|      |                     | ORIGINAL | DUPLICATE |       | RANGE / |       | HS     | HS Z  |
|------|---------------------|----------|-----------|-------|---------|-------|--------|-------|
| TEST | CETERMINATION       | RESULT   | RESULT    | UNITS | RPD     | UNITS | RESULT | REVRY |
| AHGH | Mercury, Total (Hg) | < 0.0002 | < 0.0002  | ng/L  |         | ∎g∕L  | 0.0037 | 92.5  |

CLEVELAND (216) 891-4700

----

•

•

# Brown & Root Environmental 1993 Ground-Water Analytical Results

. С. н

### CONFIDENTIAL ATTORNEY/CLIENT PRIVILEGE

### TABLE 3-1

### TOTAL PETROLEUM HYDROCARBONS SOIL ANALYTICAL DATA IN mg/kg TRANSWESTERN COMPRESSOR STATION NO. 9 ROSWELL, NEW MEXICO

| BORING NO. | DEPTH (FT) | ТРН  |
|------------|------------|------|
| SB-5       | 19-21      | < 20 |
| SB-5       | 64-66      | < 20 |
| SB-1C      | 25-26      | < 20 |

O:\BD\Techrpt\017

2.64

Vet

1.5%

winit!

1.14

6,79

. Nga

-20

490

1500

-sa -baø

-29 -29

1.45

10.00

171.08

n tisiset

ina.



January 03, 1995 Report No.: 00037170 Section A Page 1 LABORATORY ANALYSIS REPORT LIMS CLIENT: 0734 0050 CLIENT NAME: TRANSWESTERN PIPELINE COMPANY PACE PROJECT: ADDRESS: P.O. BOX 1717 PACE CLIENT: 620562 ROSWELL, NM 88202-1717 P.O. NO: VERBAL ATTENTION: LARRY CAMPBELL SAMPLE ID: GROUNDWATER MW-2, STATION 9 DATE SAMPLED: 09-OCT-93 SAMPLE NO: H254783 DATE RECEIVED: 15-OCT-93 \_\_\_\_\_ TEST RESULT UNITS LN CODE DETERMINATION \_\_\_\_\_ 1 OVTCW TCL - Volatiles in Water < 300 ug/L 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane < 300 ug/L < 300 1,1,2-Trichloroethane ug/L < 300 ug/L 1,1-Dichloroethane 1,1-Dichloroethene < 300 ug/L < 300 ug/L 1,2-Dichloroethane 1,2-Dichloroethene (total) < 300 ug/L < 300 1,2-Dichloropropane ug/L 2-Butanone < 600 ug/L 2-Hexanone < 600 ug/L < 600 ug/L 4-Methyl-2-pentanone < 600 ug/L Acetone 6,500 ug/L Benzene < 300 Bromodichloromethane ug/L < 300 Bromoform ug/L Bromomethane < 600 ug/L < 300 Carbon disulfide ug/L < 300 ug/L Carbon tetrachloride < 300 ug/L Chlorobenzene < 600 Chloroethane ug/L < 300 Chloroform ug/L Chloromethane < 600 ug/L Dibromochloromethane < 300 ug/L Ethvlbenzene 2,100 ug/L < 300 ug/L Methylene chloride < 300 ug/L Styrene < 300 Tetrachloroethene ug/L Toluene 15,000 ug/L < 300 Trichloroethene ug/L < 600 ug/L Vinyl acetate < 600 ug/L Vinyl chloride 13,000 ug/L Xylene(total) < 300 ug/L cis-1,3-Dichloropropene trans-1,3-Dichloropropene < 300 ug/L



January 03, 1995 Report No.: 00037170 Section B Page 1

#### SUPPLEMENTAL INFORMATION

|      |              | LCSR          | DUP/MS          |           | SAMPLE PREP | ARATION |           | SAMPLE ANAL | YSIS      |            |
|------|--------------|---------------|-----------------|-----------|-------------|---------|-----------|-------------|-----------|------------|
| _N   | TEST<br>CODE | BLNK<br>BATCH | MS/MSD<br>BATCH | LR-METHOD | DATE/TIME   | ANALYST | LR-METHOD | DATE/TIME   | ANALYST   | INSTRUMENT |
|      |              |               |                 |           |             |         |           |             |           |            |
| MPLE | ID:          | GROUNDWAT     | ER MW-2,        | STATION 9 |             |         |           | SAMPLE      | NO: H2547 | 83         |

<u>LR</u>

05 EPA-40 CFR 136, October 26, 1984.



January 03, 1995 Report No.: 00037170 Section C Page 1

1

#### SURROGATE STANDARD RECOVERY

| LN     | TEST<br>CODE | SURROGATE COMPOUND          | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS | REF LN |
|--------|--------------|-----------------------------|---------------------|----------------------|--------|
| SAMPLE |              | GROUNDWATER MW-2. STATION 9 |                     | SAMPLE NO:           |        |

| SAMPLE ID: | GROUNDWATER MW-2, STATION 9 |  |
|------------|-----------------------------|--|
| 2 \$VOAW   | GC/MS Volatiles Surrogates  |  |

| 1,2-Dichloroethane-d4 | 92 | • |
|-----------------------|----|---|
| 4-Bromofluorobenzene  | 98 | - |
| Toluene-d8            | 95 | - |



January 03, 1995 Report No.: 00037170 Section D Page 1

### LABORATORY CONTROL SAMPLE RECOVERY

| TEST |               | LCS %    | ACCEPTANCE |  |
|------|---------------|----------|------------|--|
| CODE | DETERMINATION | RECOVERY | LIMITS     |  |
|      |               |          |            |  |

| BATCH NO: 3 | 4916                     |     | SAMPLE ND: H256681 |
|-------------|--------------------------|-----|--------------------|
| OVTCW       | TCL - Volatiles in Water |     |                    |
|             | 1,1-Dichloroethene       | 104 | -                  |
|             | Benzene                  | 118 | -                  |
|             | Chlorobenzene            | 121 | •                  |
|             | Toluene                  | 108 | -                  |
|             | Trichloroethene          | 115 | -                  |
|             |                          |     |                    |



January 03, 1995 Report No.: 00037170 Section E Page 1

SAMPLE NO: H256682

#### METHOD BLANK DATA

### TEST CODE DETERMINATION RESULT UNIT

| CODE | DETERMINATION | KESULI | UNII |
|------|---------------|--------|------|
|      |               |        |      |

| BATCH | NO: | 34916 |
|-------|-----|-------|
|-------|-----|-------|

| OVTCW | TCL - Volatiles in Water   |      |      |
|-------|----------------------------|------|------|
|       | 1,1,1-Trichloroethane      | < 5  | ug/L |
|       | 1,1,2,2-Tetrachloroethane  | < 5  | ug/L |
|       | 1,1,2-Trichloroethane      | < 5  | ug/L |
|       | 1,1-Dichloroethane         | < 5  | ug/L |
|       | 1,1-Dichloroethene         | < 5  | ug/L |
|       | 1,2-Dichloroethane         | < 5  | ug/L |
|       | 1,2-Dichloroethene (total) | < 5  | ug/L |
|       | 1,2-Dichloropropane        | < 5  | ug/L |
|       | 2-Butanone                 | < 10 | ug/L |
|       | 2-Hexanone                 | < 10 | ug/L |
|       | 4-Methyl-2-pentanone       | < 10 | ug/L |
|       | Acetone                    | < 10 | ug/L |
|       | Benzene                    | < 5  | ug/L |
|       | Bromodichloromethane       | < 5  | ug/L |
|       | Bromoform                  | < 5  | ug/L |
|       | Bromomethane               | < 10 | ug/L |
|       | Carbon disulfide           | < 5  | ug/L |
|       | Carbon tetrachloride       | < 5  | ug/L |
|       | Chlorobenzene              | < 5  | ug/L |
|       | Chloroethane               | < 10 | ug/L |
|       | Chloroform                 | < 5  | ug/L |
|       | Chloromethane              | < 10 | ug/L |
|       | Dibromochloromethane       | < 5  | ug/L |
|       | Ethylbenzene               | < 5  | ug/L |
|       | Methylene chloride         | < 5  | ug/L |
|       | Styrene                    | < 5  | ug/L |
|       | Tetrachloroethene          | < 5  | ug/L |
|       | Toluene                    | < 5  | ug/L |
|       | Trichloroethene            | < 5  | ug/L |
|       | Vinyl acetate              | < 10 | ug/L |
|       | Vinyl chloride             | < 10 | ug/L |
|       | Xylene(total)              | < 5  | ug/L |
|       | cis-1,3-Dichloropropene    | < 5  | ug/L |
|       | trans-1,3-Dichloropropene  | < 5  | ug/L |
|       |                            |      |      |



January 03, 1995 Report No.: 00037170 Section H Page 1

### MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

| TEST          |                | MS     | MSD    |       |      | MS PCT       | MSD PC     |
|---------------|----------------|--------|--------|-------|------|--------------|------------|
| CODE          | DETERMINATION  | RESULT | RESULT | UNITS | RPD  | RCVRY        | RCVRY      |
| TCH NO: 34915 |                |        |        |       | SAM  | PLE NO: H254 | 552        |
| OVPPW Vola    | tiles in Water |        |        |       |      |              |            |
| 1,1-          | Dichloroethene | 49.6   | 52.4   | ug/L  | 5.45 | 99           | 105        |
| Benz          | ene            | 48.5   | 49.7   | ug/L  | 2.56 | 97           | 99         |
| Chlo          | robenzene      | 47.5   | 52.8   | ug/L  | 10.5 | 95           | 106        |
| Tolu          | lene           | 46.0   | 49.7   | ug/L  | 7.58 | 92           | 9 <b>9</b> |
| Toio          | hloroethene    | 48.3   | 49.5   | ug/L  | 2.46 | 97           | 99         |

•

| Dace.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    | C<br>R:          | 0                                       | ict i       | 250         | ۹۴<br>- (۲۱3)         | Lake       | for<br>A a a     |          | <i>(Y</i> )                                                                                                     | 12                                                                                                               | 8100                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|------------------|-----------------------------------------|-------------|-------------|-----------------------|------------|------------------|----------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INCORPORATED<br>THE ASSURANCE OF QUALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | * .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                    | 1.51             | -                                       |             |             |                       |            |                  |          | CHAIN-U                                                                                                         | F-CUSTC                                                                                                          | DY RECO                               | RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Client Transwestern - Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  | Rep                                     | ort To: Se  | USG         | NNE Ric               | hord       | Krow<br>FCe      | Id ar II | Pace Clien                                                                                                      | t No.                                                                                                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  | Bill                                    | To: 114     | NSN         | restern               |            |                  |          | Pace Proje                                                                                                      | ct Manager                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  | P.O.                                    | # / Billing | Refere      |                       |            |                  |          | Pace Proje                                                                                                      | ct No.                                                                                                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  | Proj                                    | ect Name /  | No.         | Statio                | IN 9       |                  |          | *Requested                                                                                                      | Due Date:                                                                                                        | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampled By (PRINT):<br><u>SUSANNE Richard</u> 10/9/9:<br>Sampler Signature<br>For S. Richard by allow J. Fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | OF CONTAINERS      | UNPRESERVED      |                                         |             |             | ANALYSES<br>REQUESTO  | 5          |                  |          |                                                                                                                 |                                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ITEM SAMPLE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TIME .                                 | MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PACE NO.                  | NO.                | UNP              | H <sub>2</sub> SO,<br>HNO <sub>3</sub>  | D<br>N<br>T |             | 5/5                   |            |                  |          |                                                                                                                 | REMA                                                                                                             | RKS                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 Ground water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1900                                   | wfr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lot.                      | 2                  | 0                |                                         | X           |             | X                     |            |                  | N.       | , enals Search                                                                                                  | adite and we do                                                                                                  |                                       | έn,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 Ground water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1200                                   | ST?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VOA                       | <b>P</b>           | 0                | X                                       |             | 際           | $\mathbb{N}$          |            |                  |          |                                                                                                                 |                                                                                                                  | -70 Car                               | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  |                                         |             |             | 開國際                   |            |                  |          |                                                                                                                 |                                                                                                                  |                                       | 89 - E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  |                                         |             |             |                       |            |                  |          |                                                                                                                 | <b>A</b> ther                                                                                                    | eresernt                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sector                    |                    |                  |                                         |             |             |                       |            |                  |          |                                                                                                                 | Aus                                                                                                              | nns F                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  |                                         |             |             |                       |            |                  |          |                                                                                                                 | and M                                                                                                            | 1 min 10-                             | 15-9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Providence of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20000000000000000000000000000000000000 | n on the second s |                           | 89,679<br>18 6 6 9 | ्रम्बहरू<br>जन्म |                                         |             | RAGE        |                       |            |                  |          | n name and an and a state                                                                                       | and the second |                                       | 25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  |                                         |             |             | 朝閉聽                   |            |                  |          |                                                                                                                 |                                                                                                                  |                                       | 1990 - Contraction of the second seco |
| 12.98 State of the |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  |                                         |             |             |                       |            |                  |          |                                                                                                                 |                                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COOLER NOS. BAILERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OUT                                    | SHIPMEN<br>DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NT METHOD<br>RETURNED / I |                    |                  | l<br>R                                  |             |             | Y / AFFILIATI         |            |                  |          | Y / AFFILIATIO                                                                                                  |                                                                                                                  | DATE TIM                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    | 10-12-           |                                         | lant        | T           | non                   |            | PK               |          | PAC                                                                                                             |                                                                                                                  | an ar                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Additional Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I                         |                    | (Sett            |                                         | V           | 47.5        |                       |            |                  |          |                                                                                                                 |                                                                                                                  |                                       | 题                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    | 1                |                                         |             |             |                       | - <b>-</b> | and but card a d |          | A REPORT OF A R | Analy and the                                                                                                    | and a second set for states and       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  |                                         | 1.1         | •           |                       |            |                  |          |                                                                                                                 |                                                                                                                  | Stores Silver                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  |                                         |             |             |                       |            |                  |          |                                                                                                                 |                                                                                                                  |                                       | 697<br>675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                    |                  | an inan inan inan inan inan inan inan i |             | aprie Press | and the second second |            | 学校的              | 547      | 23                                                                                                              | and the state of the second  | nie ine ziele die zielen              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

ORIGINAL

SEE REVERSE SIDE FOR INSTRUCTIONS

1.0



175

- 6

. 6

論語

2.4

1.16

*s*i

i≥~≹

10.18

(ast

1.1954

-11:54

-28

1.44

: 556

-----

er ski

•

-

## **REPORT OF LABORATORY ANALYSIS**

.

|        |          | QUALITY                       | May 12,<br>Report No.:<br>Section A | 00024452  |
|--------|----------|-------------------------------|-------------------------------------|-----------|
|        |          |                               |                                     |           |
|        |          | TRANSWESTERN PIPELINE COMPANY | LSG CLIENT NO:                      | 0734 0002 |
|        | ADDRESS: | P.O. BOX 1717                 | PACE PROJECT:                       | H07340002 |
|        |          | ROSWELL, NM 88202-1717        | PACE CLIENT:                        | 620562    |
| AT     | TENTION: | LARRY CAMPBELL                |                                     |           |
| SA     | MPLE ID: | MW-3                          | DATE SAMPLED:                       | 30-APR-93 |
| LSG SA | MPLE NO: | H0235758                      | DATE RECEIVED:                      | 03-MAY-9  |
| Ρ.     | 0. NO.:  | VERBAL                        | APPROVED BY:                        | L Beyer   |
|        | TEST     |                               |                                     |           |
| LN     | CODE     | DETERMINATION                 | RESULT                              | UNI       |
| 1      | OVPPW    | Volatiles in Water            |                                     |           |
| •      |          | 1,1,1-Trichloroethane         | < 5                                 | ug/L      |
|        |          | 1, 1, 2, 2-Tetrachloroethane  | < 5                                 | ug/L      |
|        |          | 1,1,2-Trichloroethane         | < 5                                 | ug/L      |
|        |          | 1,1-Dichloroethane            | < 5                                 | ug/L      |
|        |          | 1,1-Dichloroethene            | < 5                                 | ug/l.     |
|        |          | 1,2-Dichloroethane            | < 5                                 | ug/L      |
|        |          | 1,2-Dichloroethene (total)    | < 5                                 | ug/L      |
|        |          | 1,2-Dichloropropane           | < 5                                 | ug/L      |
|        |          | 2-Chloroethylvinylether       | < 10                                | ug/L      |
|        |          | Acrolein                      | < 100                               | ug/L      |
|        |          | Acrylonitrile                 | < 100                               | ug/L      |
|        |          | Benzene                       | < 5                                 | ug/L      |
|        |          | Bromoform                     | < 5                                 | ug/L      |
|        |          | Bromomethane                  | < 10                                | ug/L      |
|        |          | Carbon tetrachloride          | < 5                                 | ug/L      |
|        |          | Chlorobenzene                 | < 5                                 | ug/L      |
|        |          | Chlorodibromomethane          | < 5                                 | ug/L      |
|        |          | Chloroethane                  | < 10                                | ug/L      |
|        |          | Chloroform                    | < 5                                 | ug/L      |
|        |          | Chloromethane                 | < 10                                | ug/L      |
|        |          | Dichlorobromomethane          | < 5                                 | ug/L      |
|        |          | Ethylbenzene                  | < 5                                 | ug/L      |
|        |          | Methylene chloride            | < 5                                 | ug/L      |
|        |          | Tetrachloroethene             | < 5                                 | ug/L      |
|        |          | Toluene                       | < 5                                 | ug/L      |
|        |          | Trichloroethene               | < 5                                 | ug/L      |
|        |          | Vinyl chloride                | < 10                                | ug/L      |
|        |          | cis-1,3-Dichloropropene       | < 5                                 | ug/L      |
|        |          | cis-i, p-prenetor opropene    | < 5                                 | uy/ L     |



- 22

. .•

-1-<del>12</del>

-yəd

- international

-451W

فعد

- 224

-

5.4

्रत्यांत्र

: 653**H** .

> 5-4 - 5-1

-1944

## **REPORT OF LABORATORY ANALYSIS**

May 12, 1993 Report No.: 00024452 Section A Page 2

#### LABORATORY ANALYSIS REPORT

| CLIENT NAME:<br>SAMPLE ID:<br>LSG SAMPLE NO: |              | TRANSWESTERN PIPELINE COMPANY<br>MW-3<br>H0235758   |                          |
|----------------------------------------------|--------------|-----------------------------------------------------|--------------------------|
| <br>LN                                       | TEST<br>CODE | DETERMINATION                                       | RESULT UNITS             |
| 3<br>4                                       | 1590<br>1685 | Solids, Dissolved at 180C<br>Petroleum Hydrocarbons | 3,400 mg/L<br>< 0.2 mg/L |

COMMENTS:



si.a

1.14

12.665

. ~2

1.9 ar

1999 1-1-1-1

3688

 $(q_{\rm P})$ 

-ten

----4

- 134

t 5r∰d

¥1999 مريد -

# **REPORT OF LABORATORY ANALYSIS**

| THE ASSURANCE OF                          | QUALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May 12, 1993<br>Report No.: 00024452<br>Section A Page 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | LABORATORY ANALYSIS REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ADDRESS:                                  | TRANSWESTERN PIPELINE COMPANY<br>P.O. BOX 1717<br>ROSWELL, NM 88202-1717<br>LARRY CAMPBELL                                                                                                                                                                                                                                                                                                                                                                                         | LSG CLIENT NO: 0734 0002<br>PACE PROJECT: H07340002<br>PACE CLIENT: 620562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SAMPLE ID:<br>LSG SAMPLE NO:<br>P.O. NO.: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATE SAMPLED: 30-APR-93<br>DATE RECEIVED: 03-MAY-93<br>APPROVED BY: L Beyer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TEST<br><u>LN</u> CODE                    | DETERMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RESULT UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 <b>ОУРРЫ</b>                            | Volatiles in Water<br>1,1,1-Trichloroethane<br>1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloroethane<br>1,1-Dichloroethane<br>1,2-Dichloroethane<br>1,2-Dichloroethene (total)<br>1,2-Dichloropropane<br>2-Chloroethylvinylether<br>Acrolein<br>Acrylonitrile<br>Benzene<br>Bromomethane<br>Carbon tetrachloride<br>Chlorobenzene<br>Chlorodibromomethane<br>Chloroethane<br>Chloroform<br>Chloromethane<br>Ethylbenzene<br>Methylene chloride<br>Tetrachloroethene<br>Yinyl chloride | <pre>&lt; 5 ug/L &lt; 10 ug/L &lt; 10 ug/L &lt; 100 ug/L &lt; 5 ug/L &lt; 10 ug/L &lt; 5 ug/L &lt; 5 ug/L &lt;&lt; lt; 5 ug/L &lt;&lt; lt; 5 ug/L &lt;&lt;&lt; 5 ug/L &lt;&lt; 5 ug/L &lt;&lt;&lt;  5 ug/L &lt;&lt;&lt;</pre> |
| 3 1590<br>4 1685                          | cis-1,3-Dichloropropene<br>trans-1,3-Dichloropropene<br>Solids, Dissolved at 180C<br>Petroleum Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                        | < 5 ug/L<br>< 5 ug/L<br>3,800 mg/L<br>< 0.2 mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

-214



May 12, 1993 Report No.: 00024452 Section A Page 4

### LABORATORY ANALYSIS REPORT

| SAM | PLE ID: | TRANSWESTERN PIPELINE<br>MW-5<br>H0235759 | COMPANY       |              |
|-----|---------|-------------------------------------------|---------------|--------------|
| LN  | TEST    |                                           | DETERMINATION | RESULT UNITS |

COMMENTS:

1944

- Už

್ಷ

. Sing

. Giore

化物

(98**5**)

- 3768

- 383

. 633)á

- 144

•



Petroleum Hydrocarbons

.

----

12.12

.546

- 196

ige#

5.09

(Fold

,344

 $z_1 = 0$ 

viet. -

-state

18:18

-izano

. je na

1,024

- 1104

### **REPORT OF LABORATORY ANALYSIS**

|                | LABORATORY ANALYSIS REPORT    | May 12, 1993<br>Report No.: 00024-52<br>Section A Page 5 |
|----------------|-------------------------------|----------------------------------------------------------|
|                |                               |                                                          |
| CLIENT NAME:   | TRANSWESTERN PIPELINE COMPANY | LSG CLIENT NO: 0734 000                                  |
| ADDRESS:       | P.O. BOX 1717                 | PACE PROJECT: H0734000                                   |
|                | ROSWELL, NM 88202-1717        | PACE CLIENT: 620562                                      |
| ATTENTION:     | LARRY CAMPBELL                |                                                          |
| SAMPLE ID:     | SB-5-1921                     | DATE SAMPLED: 29-APR-9                                   |
| LSG SAMPLE NO: | H0235760                      | DATE RECEIVED: 03-MAY-9                                  |
| P.O. NO.:      | E51209/ROSWELL                | APPROVED BY: L Beyer                                     |
| TEST           |                               |                                                          |
| LN CODE        | DETERMINATION                 | RESULT UNITS                                             |

1 1685S

COMMENTS:

900 Gemini Avenue Houston, TX 77058

An Equal Opportunity Employer

< 20

mg/kg



:39t

1.40

小小道

ाल के उस

1.00

di di

i te

1.04

10-10**1** 

344

15-98

(1914 (1987

15.02

ia.......

- gilik

10.100

17.99

2:1-03

 $i \in [n]$ 

# **REPORT OF LABORATORY ANALYSIS**

| INE ASSUMANCE UP | LABORATORY ANALYSIS REPORT                     | Nay 12,<br>Report No.:<br>Section A | 00024452               |
|------------------|------------------------------------------------|-------------------------------------|------------------------|
|                  | TRANSWESTERN PIPELINE COMPANY<br>P.O. BOX 1717 | LSG CLIENT NO:<br>Pace project:     | 0734 0002<br>H07340002 |
| ADDRESS:         | ROSWELL, NM 88202-1717                         | PACE CLIENT:                        |                        |
| ATTENTION:       | LARRY CAMPBELL                                 |                                     |                        |
| SAMPLE ID:       | SB-5-6466                                      | DATE SAMPLED:                       | 29-APR-93              |
| LSG SAMPLE NO:   |                                                | DATE RECEIVED:                      |                        |
| P.O. NO.:        | E51209/ROSWELL                                 | APPROVED BY:                        | L Beyer                |
| TEST             |                                                | 250111                              |                        |
| <u>LN</u> CODE   | DETERMINATION                                  | RESULT                              | UNITS                  |
| 1 16855          | Petroleum Hydrocarbons                         | < 20                                | mg/kg                  |

COMMENTS:



3.39

法理

160

-Grid

·海 泽菊

20.44 19.24

- 290

1

782**4** 

1:64

**1**23

104

. 5.i.j.

- 44

E.A.

, nij

1.4

- 142

胡蘭

riet

s ige

1934/

# **REPORT OF LABORATORY ANALYSIS**

•

May 12, 1993 Report No.: 00024452 Section A Page 7

### LABORATORY ANALYSIS REPORT

|       | ADDRESS                   | : TRANSWESTERN PIPELINE COMP<br>: P.O. BOX 1717<br>ROSWELL, NM 88202-1717<br>: LARRY CAMPBELL | ANY           | LSG CLIENT NO:<br>PACE PROJECT:<br>PACE CLIENT: | H07340002            |
|-------|---------------------------|-----------------------------------------------------------------------------------------------|---------------|-------------------------------------------------|----------------------|
|       | LSG SAMPLE NO<br>P.O. NO. | E51209/ROSWELL                                                                                |               | DATE SAMPLED:<br>DATE RECEIVED:<br>APPROVED BY: | 03-МАҮ-93<br>L Веуег |
| ••••• | TEST                      |                                                                                               |               |                                                 |                      |
|       | LN CODE                   |                                                                                               | DETERMINATION | RESULT                                          |                      |
|       | 1 I685s                   | Petroleum Hydrocarbons                                                                        |               | < 20                                            | mg/kg                |
|       | COMMENTS:                 |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |
|       |                           |                                                                                               |               |                                                 |                      |



بنغر

-ittija

. فيون

aradi aradi

100

500 2010

iya 🖌

ie.

iner El ve

444

-

 $v_{1}$ 

1948.0

3974

-044

## **REPORT OF LABORATORY ANALYSIS**

May 12, 1993 Report No.: 00024452 Section B Page 1

### QUALITY CONTROL REPORT SUPPLEMENTAL INFORMATION

|          |         |                                                                                                                  |                        | SA       |        | PREPARATIO |             |            |          |          | 3AM    | PLE / |       |             | ••••••••••••••••••••••••••••••••••••••• |
|----------|---------|------------------------------------------------------------------------------------------------------------------|------------------------|----------|--------|------------|-------------|------------|----------|----------|--------|-------|-------|-------------|-----------------------------------------|
| N        | TEST    | BATCH                                                                                                            | LR-<br>METHOD          | DATE/T   | IME    | ANALY      | ST          | LR-<br>MET | HOD      | DATE/TIM | E      | ANAL  |       | NLS<br>Atch | INSTRUMENT                              |
|          |         |                                                                                                                  |                        | •••••    |        |            | •••••       | ••••••     |          |          | •••••  |       |       | •••••       | ••••••                                  |
| AM       | PLE ID: | MW-3                                                                                                             |                        |          |        |            |             |            |          | LSG      | SAMPLE | NO:   | H0235 | 758         |                                         |
|          | OVPPW   | 30795                                                                                                            | NA                     |          |        |            |             | 05 -       | 624      | 06-MAY-9 | 3 2037 | JP    | 30    | 0724        | GCMSR                                   |
|          | 1590    | 30720                                                                                                            | NA                     |          |        |            |             | 02-        | 160.1    | 03-MAY-9 | 3 2300 | DP    | 0     |             | 005WAT                                  |
|          | 1685    | 30692                                                                                                            | 02-418.                | 1        |        |            |             | 02-        | 418.1    | 04-MAY-9 | 3 700  | Rac   | 0     |             | 302WAT                                  |
| R        | Metho   | d Litera                                                                                                         | ature Ref              | erence   |        |            |             |            |          |          |        |       |       |             |                                         |
| 2        | EPA-M   | ethods                                                                                                           | for Chemi              | cal Anal | ysis   | of Water & | Wastes,     | 1984.      |          |          |        |       |       |             |                                         |
| 5        | EPA-4   | 0 CFR 13                                                                                                         | 36, Octob              | er 26, 1 | 984.   |            |             |            |          |          |        |       |       |             |                                         |
| AM       | PLE ID: | MW-5                                                                                                             |                        |          |        |            |             |            |          | LSG      | SAMPLE | NO:   | H0235 | 759         |                                         |
|          | OVPPW   | 30795                                                                                                            | NA                     |          |        |            |             | 05 -       | 624      | 06-MAY-9 | 3 2107 | JP    | 30    | 0724        | GCMSR                                   |
|          | 1590    | 30720                                                                                                            | NA                     |          |        |            |             |            |          | 03-MAY-9 |        |       |       |             | 005WAT                                  |
| ,        | 1685    | 30692                                                                                                            | 02-418.                | 1        |        |            |             | 02-        | 418.1    | 04-MAY-9 | 3 700  | Rac   | 0     |             | 302WAT                                  |
| R        | _       | and the second | ature Ref              |          |        |            |             |            |          |          |        |       |       |             |                                         |
| 12<br>15 |         |                                                                                                                  | for Chemi<br>36, Octob |          |        | of Water i | Wastes,     | 1984.      |          |          |        |       |       |             |                                         |
| AM       | PLE ID: | <b>\$8-</b> 5-1                                                                                                  | 1921                   |          |        |            |             |            |          | LSG      | SAMPLE | NO:   | H0235 | 760         |                                         |
|          | 16855   | 30691                                                                                                            | 19-3550                |          |        |            |             | 02-        | 418.1    | 04-MAY-9 | 3 700  | Rac   | 0     |             | 302wat                                  |
| R        | Metho   | d Litera                                                                                                         | ature Ref              | erence   |        |            |             |            |          |          |        |       |       |             |                                         |
| 2        |         |                                                                                                                  |                        |          | ysis   | of Water   | Wastes, 1   | 1984.      |          |          |        |       |       |             |                                         |
| 9        | EPA-T   | est Meth                                                                                                         | nods for               | Evaluati | ing So | lid Waste  | , 3rd ed, ) | lov. 1986  | <b>b</b> |          |        |       |       |             |                                         |
| AM       | PLE ID: | SB-5-0                                                                                                           | 5466                   |          |        |            |             |            |          | LSG      | SAMPLE | NO:   | H0235 | 761         |                                         |
|          |         | 70/04                                                                                                            | 19-3550                |          |        |            |             | 07.        | /10 1    | 04-MAY-9 | 3 700  | Pac   | 0     |             | 302WAT                                  |



dian

5.08

فغدر

- init

-em

a-sa

- 1997 W

istá

rdati

5-3498

-199

ich Saided

-1201

动种

1948. 1. 1947.

ज**ार्थ्य** 

- 406

1.3.40

25.0% 小板網

北南美

115

## **REPORT OF LABORATORY ANALYSIS**

May 12, 1993 Report No.: 00024452 Section B Page 2

|          |              |        |               |                | QUALITY CONTROL<br>SUPPLEMENTAL INF          | and the second |               | Sec       | tion B        | Page 2     |
|----------|--------------|--------|---------------|----------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|-----------|---------------|------------|
| •        |              |        |               | SAMPLE P       | REPARATION                                   |                                                                                                                  | SAI           | MPLE ANAL | rsis          |            |
| LN       | TEST<br>CODE | BATCH  | LR-<br>METHOD | DATE/TIME      | ANALYST                                      | LR-<br>METHOD                                                                                                    | DATE/TIME     | ANALYST   | ANLS<br>BATCH | INSTRUMENT |
| 12<br>19 |              |        |               |                | f Water & Wastes, 19<br>id Waste, 3rd ed, No |                                                                                                                  |               |           |               |            |
| 19       |              |        |               | Evaluating Sol | id Waste, 3rd ed, No                         | v. 1986                                                                                                          |               |           |               |            |
| SAMF     | PLE ID       | SB1C-2 | 2526          |                |                                              |                                                                                                                  | LSG SAMPLE    | E NO: HO2 | 235762        |            |
| 1        | 16855        | 30691  | 19-3550       |                |                                              | 02-418.1                                                                                                         | 04-MAY-93 700 | Rac       | 0             | 302wat     |
| LR       |              |        | ature Refe    |                |                                              |                                                                                                                  |               |           |               |            |
| 02       |              |        |               | •              | f Water & Wastes, 19                         |                                                                                                                  |               |           |               |            |

19 EPA-Test Methods for Evaluating Solid Waste, 3rd ed, Nov. 1986



٠

society i

10108

19564

1250R

.....

16.98

-----

-Site S. A

. 19

(外心)

- 199**4** - 1964

...,

2 d High

> -1-1R -1-1R

ener Frace

26765

(134 ~38<sup>1</sup>

.સ્ટેગ્સ્

30.08

s vije

1-24

49

## **REPORT OF LABORATORY ANALYSIS**

May 12, 1993 Report No.: 00024452 Section C Page 1

#### QUALITY CONTROL REPORT SURROGATE STANDARD RECOVERY

|        |     | TEST  | SURROGATE                  | PERCENT       | ACCEPTANCE | REF |
|--------|-----|-------|----------------------------|---------------|------------|-----|
|        | LN  | CODE  | COMPOUND                   | RECOVERY      | LIMITS     | LN  |
| SAMPLE | ID: | MW-3  |                            | LSG SAMPLE NO | : H0235758 |     |
|        | 2   | SVOAW | GC/MS Volatiles Surrogates |               |            | 1   |
|        |     |       | 1,2-Dichloroethane-d4      | 10            | 7 -        |     |
|        |     |       | 4-Bromofluorobenzene       | 10            | 7 -        |     |
|        |     |       | Toluene-d8                 | 9             | <b>,</b> - |     |
| SAMPLE | ID: | MW-5  |                            | LSG SAMPLE NO | H0235759   |     |
|        | 2   | SVOAW | GC/MS Volatiles Surrogates |               |            | 1   |
|        |     |       | 1,2-Dichloroethane-d4      | 104           | 3.         |     |
|        |     |       | 4-Bromofluorobenzene       | 104           | 5 -        |     |
|        |     |       | Toluene-d8                 | 90            | 5 -        |     |



~30

reng

20**10** 

-29Å

Sinne Intelfet

14.548

. 298

ा जन्म

-159**4** 

-04

100

21-10 前個

নার ব্যায়া

acts Sett

295

. 1997

. ......

3194

ti lange

{#<del>49</del>

1.695

## **REPORT OF LABORATORY ANALYSIS**

May 12, 1993 Report No.: 00024452 Section D Page 1

#### QUALITY CONTROL REPORT LABORATORY CONTROL SAMPLE RECOVERY

| TEST<br>CODE DETERMINATION                 | PERCENT<br>RECOVERY | ACCEPTANCE<br>LIMITS |          |
|--------------------------------------------|---------------------|----------------------|----------|
| BATCH: 30691 SAMPLE ID: Lab Control Sample |                     | LSG SAMPLE NO:       | H0236448 |
| 16855 Petroleum Hydrocarbons               | 102.0               |                      |          |
| BATCH: 30692 SAMPLE ID: Lab Control Sample |                     | LSG SAMPLE NO:       | H0236450 |
| 1685 Petroleum Hydrocarbons                | 104.0               |                      |          |

.



441

 $\psi_{ij} \varphi$ 

.....

175,#ð

1998 1998

> erent Social

ini

1241

t-30%

- 1849

ाक दर्भ

- 409.39

cant

-49

وونو. ۲۰

499

100

-7:10

计同时

白癬

471.1

# **REPORT OF LABORATORY ANALYSIS**

May 12, 1993 Report No.: 00024452 Section E Page 1

| QUALITY | CONTROL | REPORT |
|---------|---------|--------|
| METHO   | D BLANK | DATA   |

|        |       | TEST<br>CODE | Determination              | RE  | SULT   | UNI | TS               |
|--------|-------|--------------|----------------------------|-----|--------|-----|------------------|
| BATCH: | 30691 | SAMPLE       | ID: Method Blank           | LSG | SAMPLE | NO: | H0236449         |
|        |       | 16855        | Petroleum Hydrocarbons     |     | < 20   | mg/ | kg               |
| BATCH: | 30692 | SAMPLE       | ID: Method Blank           | LSG | SAMPLE | NO: | H0236451         |
|        |       | 1685         | Petroleum Hydrocarbons     | <   | 0.2    | mg/ | Ľ                |
| BATCH: | 30720 | SAMPLE       | ID: Method Blank .         | LSG | SAMPLE | NO: | H0236491         |
|        |       | 1590         | Solids, Dissolved at 180C  |     | < 10   | mg/ | Ľ                |
| BATCH: | 30795 | SAMPLE       | ID: Method Blank           | LSG | SAMPLE | NO: | <b>H023</b> 7606 |
|        |       | OVPPW        | Volatiles in Water         |     |        |     |                  |
|        |       |              | 1,1,1-Trichloroethane      |     | < 5    | ug/ | L                |
|        |       |              | 1,1,2,2-Tetrachloroethane  |     | < 5    | ug/ | L                |
|        |       |              | 1,1,2-Trichloroethane      |     | < 5    | ug/ | L                |
|        |       |              | 1,1-Dichloroethane         |     | < 5    | ug/ | L                |
|        |       |              | 1,1-Dichloroethene         |     | < 5    | ug/ | L                |
|        |       |              | 1,2-Dichloroethane         |     | < 5    | ug/ | L                |
|        |       |              | 1,2-Dichloroethene (total) |     | < 5    | ug/ | L                |
|        |       |              | 1,2-Dichloropropane        |     | < 5    | ug/ | L                |
|        |       |              | 1,3-Dichloropropylene      |     | < 5    | ug/ | L                |
|        |       |              | 2-Chloroethylvinylether    |     | < 10   | ug/ | L                |
|        |       |              | Acrolein                   | <   | 100    | ug/ | L                |
|        |       |              | Acrylonitrile              | <   | 100    | ug/ | L                |
|        |       |              | Benzene                    |     | < 2    | ug/ | L                |
|        |       |              | Bromoform                  |     | < 5    | ug/ | L                |
|        |       |              | Bromomethane               |     | < 10   | ug/ | L                |
|        |       |              | Carbon tetrachloride       |     | < 5    | ug/ | L                |
|        |       |              | Chlorobenzene              |     | < 2    | ug/ | L                |
|        |       |              | Chlorodibromomethane       |     | < 5    | ug/ | L                |
|        |       |              | Chloroethane               | •   | < 10   | ug/ | L                |
|        |       |              | Chloroform                 |     | < 5    | ug/ | L                |
|        |       |              | Chloromethane              |     | < 10   | ug/ | L                |
|        |       |              | Dichlorobromomethane       |     | < 5    | ug/ | L                |
|        |       |              | Ethylbenzene               |     | < 5    | ug/ | L                |
|        |       |              | Methylene chloride         |     | < 5    | ug/ | L                |
|        |       |              | Tetrachloroethene          |     | < 5    | ug/ | L                |
|        |       |              | Toluene                    |     | < 2    | ug/ | L                |
|        |       |              | Trichloroethene            |     | < 5    | ug/ | L                |



dorfd

srine:

46-14

219 219

15.98

alite alite

192-624

. 1540 (1**644** 

14:08

4.6d

49.06

1993 PAL

-New P

uses tr Scati

> > -

-1848 1986

1120

2000 2010

- 1994

# **REPORT OF LABORATORY ANALYSIS**

May 12, 1993 Report No.: 00024452 Section E Page 2

#### QUALITY CONTROL REPORT METHOD BLANK DATA

| TEST | Determination             | RESULT | UNITS |
|------|---------------------------|--------|-------|
|      | Vinyl chloride            | < 10   | ug/L  |
|      | cis-1,3-Dichloropropene   | < 5    | ug/L  |
|      | trans-1,3-Dichloropropene | < 5    | ug/L  |



a .:55p

्यत्रं

7 स्टाइस्ट्री

1.058 (374

- 25

504

ony aan

> ~~\*\* 56.38

> > :0\*

1639

-investore

. .....

: 587

. No side

51**16** 

 $\sim 16$ 

(t, t, 0)

់ក្នុន្

-

### **REPORT OF LABORATORY ANALYSIS**

---

mg/kg

mg/kg

May 12, 1993 Report No.: 00024452 Section F Page 1

111.0

360

#### QUALITY CONTROL REPORT DUPLICATE AND MATRIX SPIKE DATA

|                     |                                            |                                    |                                     |                      |                              |                      | •••••               | •••••                |
|---------------------|--------------------------------------------|------------------------------------|-------------------------------------|----------------------|------------------------------|----------------------|---------------------|----------------------|
| PREP                | BATCH: 30720                               |                                    |                                     |                      |                              | LSG SAMP             | LE NO: H023         | 5758                 |
| <u>TEST</u><br>1590 | DETERMINATION<br>Solids, Dissolved at 180C | ORIGINAL<br><u>RESULT</u><br>3,400 | DUPLICATE<br><u>RESULT</u><br>3,400 | <u>UNITS</u><br>mg/L | RANGE /<br><u>RPD</u><br>0.0 | <u>UNITS</u><br>mg/L | MS<br><u>RESULT</u> | MS %<br><u>RCVRY</u> |
| PREP                | BATCH: 30691                               |                                    |                                     |                      |                              | LSG SAMP             | LE NO: H023         | 5762                 |
| TEST                | DETERMINATION                              | ORIGINAL<br>RESULT                 | DUPLICATE<br>RESULT                 | UNITS                | RANGE /<br>RPD               | UNITS                | MS<br>RESULT        | MS %                 |

· < 20

< 20

| 16855 | Petroleum | Hydrocarbons |  |
|-------|-----------|--------------|--|
|       |           |              |  |



May 12, 1993 Report No.: 00024452 Section H Page 1

LSG SAMPLE NO: H0235403

### QUALITY CONTROL REPORT MATRIX SPIKE AND MATRIX SPIKE DUPLICATE DATA

-----

ANLS BATCH: 30724

1.00

l ante

. 1998)

150

Natak

5-08 2013

. 494

209

. 1994

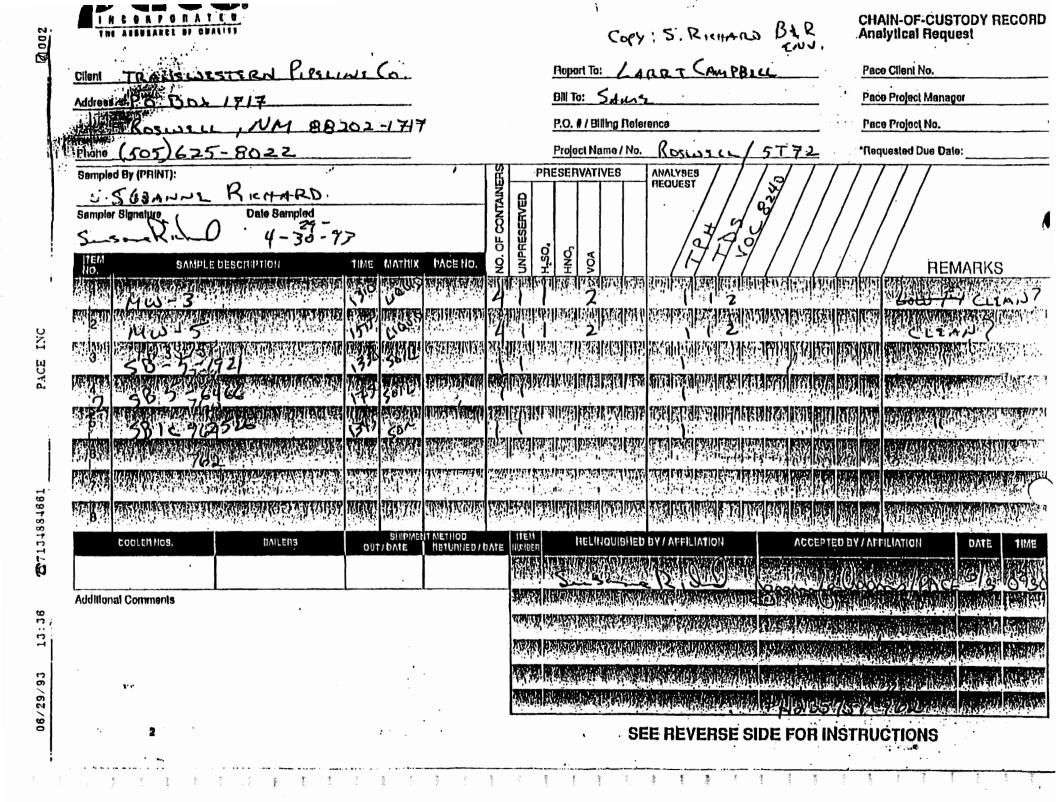
sizal

19.94

22%

р-**т** 

dath


> ्र १२ इन्द्र

> - 15

|       |                    | MS     | MSD    |       |      | MS PCT   | MSD PCT  |
|-------|--------------------|--------|--------|-------|------|----------|----------|
| TEST  | DETERMINATION      | RESULT | RESULT | UNITS | RPD  | RECOVERY | RECOVERY |
| OVPPW | 1,1-Dichloroethene | 51.9   | 43.1   | ug/L  | 18.7 | 104      | 86       |
| OVPPW | Benzene            | 50.8   | 46.3   | ug/L  | 9.29 | 102      | 93       |
| OVPPW | Chlorobenzene      | 49.0   | 46.3   | ug/L  | 5.75 | 98       | 93       |
| OVPPW | Toluene            | 49.5   | 45.3   | ug/L  | 8.81 | 99       | 91       |
| OVPPW | Trichloroethene    | 49.9   | 44.5   | ug/L  | 11.5 | 100      | 89       |

.

900 Gemini Avenue Houston, TX 77058 TEL: 713-488-1810



Daniel B. Stephens & Associates, Inc. 1994 Soil and Ground-Water Analytical Results



Hall Environmental Analysis Laboratory 2403 San Mateo NE, Suite P-13 Albuquerque, NM 87110 12/9/94

12/12/94

Daniel B. Stephens and Associates, Inc. 6020 Academy NE, Suite 100 Albuquerque, NM 87109

Dear Mr. Jeff Forbes,

1.018

5.4

12164

Enclosed are the results for the analyses that were requested. These were done according to EPA procedures or the equivalent.

Detection limits are determined by EPA methodology. Unless noted on sample page, all criteria for QA/QC acceptance levels fall within established parameters. These parameters are modeled from the EPA-600 14-79 019, March 1979, "Handbook for Analytical Quality Control in Water and Waste Water."

Please don't hesitate to contact me for any additional information or clarifications

Sincerely,

ott Hall

Scott Hallenbeck, Lab Manager

Project: ENRON - Roswell

#### Results for sample: MW-6 (64.5'-65.0')

| Date collected: 11/30/94              | Date received: 12/5/94      |
|---------------------------------------|-----------------------------|
| Date extracted: 12/5/94               | Date analyzed: 12/6/94      |
| Client: Daniel B. Stephens and Associ | ates, Inc.                  |
| Project Name: ENRON -Roswell          | HEAL #: 9412008-1           |
| Project Manager: Jeff Forbes          | Sampled by: Bill Casadevall |
| Matrix: Non-Aqueous                   |                             |

#### Test: EPA 8010/8020

10.3

and a

1.1

1.98

网络

. . .

| Analyte:                   | Results | Detection Limit | Units       |
|----------------------------|---------|-----------------|-------------|
| Benzene                    | nd      | 0.05            | PPM (MG/KG) |
| Bromodichloromethane       | nd      | 0.01            | PPM (MG/KG) |
| Bromoform                  | nd      | 0.05            | PPM (MG/KG) |
| Bromomethane               | nd      | 0.05            | PPM (MG/KG) |
| Carbon Tetrachloride       | nd      | 0.01            | PPM (MG/KG) |
| Chlorobenzene              | nd      | 0.01            | PPM (MG/KG) |
| Chloroethane               | nd      | 0.01            | PPM (MG/KG) |
| Chloroform                 | nd      | 0.01            | PPM (MG/KG) |
| Chloromethane              | nd      | 0.01            | PPM (MG/KG) |
| 2-Chloroethylvinyl Ether   | nd      | 0.05            | PPM (MG/KG) |
| Dibromochloromethane       | nd      | 0.01            | PPM (MG/KG) |
| 1,3-Dichlorobenzene        | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichlorobenzene        | nd      | 0.01            | PPM (MG/KG) |
| 1,4-Dichlorobenzene        | nd      | 0.01            | PPM (MG/KG) |
| Dichlorodifluoromethane    | nd      | 0.01            | PPM (MG/KG) |
| 1,1-Dichloroethane         | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichloroethane         | nd      | 0.01            | PPM (MG/KG) |
| 1,1-Dichloroethene         | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichloroethene (Cis)   | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichloroethene (Trans) | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichloropropane        | nd      | 0.01            | PPM (MG/KG) |
| cis-1,3-Dichloropropene    | nd      | 0.01            | PPM (MG/KG) |
| trans-1,3-Dichloropropene  | nd      | 0.01            | PPM (MG/KG) |
| Ethylbenzene               | nd      | 0.05            | PPM (MG/KG) |
| Dichloromethane            | nd      | 0.1             | PPM (MG/KG) |
| 1,1,2,2-Tetrachloroethane  | nd      | 0.01            | PPM (MG/KG) |
| Tetrachloroethene (PCE)    | nd      | 0.01            | PPM (MG/KG) |
| Toluene                    | nd      | 0.05            | PPM (MG/KG) |
| 1,1,1-Trichloroethane      | nd      | 0.01            | PPM (MG/KG) |
| 1,1,2-Trichloroethane      | nd      | 0.01            | PPM (MG/KG) |
| Trichloroethene (TCE)      | nd      | 0.01            | PPM (MG/KG) |
| Vinyl Chloride             | nd      | 0.01            | PPM (MG/KG) |
| Xylenes (Total)            | nd      | 0.05            | PPM (MG/KG) |
| Trichlorofluoromethane     | nd      | 0.1             | PPM (MG/KG) |

n

BFB (Surrogate) Recovery = 79 % BCM (Surrogate) Recovery = 98 % Dilution Factor = 1

#### Results for sample: MW-6 (64.5'-65.0')

Date collected: 11/30/94Date received: 12/5/94Date extracted: 12/6/94Date analyzed: 12/6/94Client: Daniel B. Stephens and Associates, Inc.Project Name: ENRON -RoswellHEAL #: 9412008-1Project Manager: Jeff ForbesSampled by: Bill CasadevallMatrix: Non-AqueousKatalogo Agencies

#### **Test: EPA 418.1**

| Compound | Result | <b>Detection Limit</b> | Units      |
|----------|--------|------------------------|------------|
| TPH      | nd     | 20                     | PPM(MG/KG) |

Dilution Factor = 1

6-99

e cradi

. 8144

< 34

3

#### **Results for sample: MW-6**

| Date collected: 12/2/94                | Date received: 12/5/94     |
|----------------------------------------|----------------------------|
| Date extracted: NA                     | Date analyzed: 12/5/94     |
| Client: Daniel B. Stephens and Associa | ates, Inc.                 |
| Project Name: ENRON -Roswell           | Heal #: 9412008-2          |
| Project Manager: Jeff Forbes           | Sampled by:Bill Casadevall |
| Matrix: Aqueous                        |                            |

#### Test: EPA 8010/8020

1.28

ie 4

4.54

00.5

- 1104

o taña

| Analyte:                   | Results | Detection Limit | Units      |
|----------------------------|---------|-----------------|------------|
| Benzene                    | nd      | 0.5             | PPB (UG/L) |
| Bromodichloromethane       | nd      | 0.2             | PPB (UG/L) |
| Bromoform                  | nd      | 1.0             | PPB (UG/L) |
| Bromomethane               | nd      | 1.0             | PPB (UG/L) |
| Carbon Tetrachloride       | nd      | 0.2             | PPB (UG/L) |
| Chlorobenzene              | nd      | 0.2             | PPB (UG/L) |
| Chloroethane               | nd      | 0.2             | PPB (UG/L) |
| Chloroform                 | nd      | 0.2             | PPB (UG/L) |
| Chloromethane              | nd      | 0.2             | PPB (UG/L) |
| 2-Chloroethylvinyl Ether   | nd      | 1.0             | PPB (UG/L) |
| Dibromochloromethane       | nd      | 0.2             | PPB (UG/L) |
| 1,3-Dichlorobenzene        | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichlorobenzene        | nd      | 0.2             | PPB (UG/L) |
| 1,4-Dichlorobenzene        | nd      | 0.2             | PPB (UG/L) |
| Dichlorodifluoromethane    | nd      | 0.2             | PPB (UG/L) |
| 1,1-Dichloroethane         | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloroethane         | nd      | 0.2             | PPB (UG/L) |
| 1,1-Dichloroethene         | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloroethene (Cis )  | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloroethene (Trans) | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloropropane        | nd      | 0.2             | PPB (UG/L) |
| cis-1,3-Dichloropropene    | nd      | 0.2             | PPB (UG/L) |
| trans-1,3-Dichloropropene  | nd      | 0.2             | PPB (UG/L) |
| Ethylbenzene               | nd      | 0.5             | PPB (UG/L) |
| Dichloromethane            | nd      | 2.0             | PPB (UG/L) |
| 1,1,2,2-Tetrachloroethane  | nd      | 0.2             | PPB (UG/L) |
| Tetrachloroethene (PCE)    | nd      | 0.2             | PPB (UG/L) |
| Toluene                    | nd      | 0.5             | PPB (UG/L) |
| 1, 1, 1-Trichloroethane    | nd      | 0.2             | PPB (UG/L) |
| 1,1,2-Trichloroethane      | nd      | 0.2             | PPB (UG/L) |
| Trichloroethene (TCE)      | nd      | 0.2             | PPB (UG/L) |
| Vinyl Chloride             | nd      | 0.2             | PPB (UG/L) |
| Xylenes (Total)            | nd      | 0.5             | PPB (UG/L) |
| Trichlorofluoromethane     | nd      | 0.2             | PPB (UG/L) |

BFB (Surrogate) Recovery = 95% BCM (Surrogate) Recovery = 102 % Dilution Factor = 1

#### **Results for sample: MW-6**

Date collected:12/2/94Date received:12/5/94Date extracted:12/9/94Date analyzed:12/9/94Client:Daniel B. Stephens and Associates, Inc.Project Name:ENRON -RoswellHeal #:9412008-2Project Manager:Jeff ForbesSampled by:Bill CasadevallMatrix:Aqueous

**Test: EPA 418.1** 

And

2.30

1.048

4.004

| Co | ompound | Result | <b>Detection Limit</b> | Units      |
|----|---------|--------|------------------------|------------|
| TF | PH      | nd     | 2.5                    | PPM (MG/L) |

5

Dilution Factor = 1

#### **Results for sample: Trip Blank**

| Date collected: 11/30/94               | Date received: 12/5/94     |
|----------------------------------------|----------------------------|
| Date extracted: NA                     | Date analyzed: 12/6/94     |
| Client: Daniel B. Stephens and Associa | ates, Inc.                 |
| Project Name: ENRON -Roswell           | Heal #: 9412008-3          |
| Project Manager: Jeff Forbes           | Sampled by:Bill Casadevall |
| Matrix: Aqueous                        |                            |

#### Test: EPA 8010/8020

++4 5783

4 (15)

-5-53

ie) au

| Analyte:                   | Results | Detection Limit | Units      |
|----------------------------|---------|-----------------|------------|
| Benzene                    | nd      | 0.5             | PPB (UG/L) |
| Bromodichloromethane       | 0.7     | 0.2             | PPB (UG/L) |
| Bromoform                  | nd      | 1.0             | PPB (UG/L) |
| Bromomethane               | nd      | 1.0             | PPB (UG/L) |
| Carbon Tetrachloride       | nd      | 0.2             | PPB (UG/L) |
| Chlorobenzene              | nd      | 0.2             | PPB (UG/L) |
| Chloroethane               | nd      | 0.2             | PPB (UG/L) |
| Chloroform                 | 4.1     | 0.2             | PPB (UG/L) |
| Chloromethane              | nd      | 0.2             | PPB (UG/L) |
| 2-Chloroethylvinyl Ether   | nd      | 1.0             | PPB (UG/L) |
| Dibromochloromethane       | 0.2     | 0.2             | PPB (UG/L) |
| 1,3-Dichlorobenzene        | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichlorobenzene        | nd      | 0.2             | PPB (UG/L) |
| 1,4-Dichlorobenzene        | nd      | 0.2             | PPB (UG/L) |
| Dichlorodifluoromethane    | nd      | 0.2             | PPB (UG/L) |
| 1,1-Dichloroethane         | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloroethane         | nd      | 0.2             | PPB (UG/L) |
| 1,1-Dichloroethene         | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloroethene (Cis )  | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloroethene (Trans) | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloropropane        | nd      | 0.2             | PPB (UG/L) |
| cis-1,3-Dichloropropene    | nd      | 0.2             | PPB (UG/L) |
| trans-1,3-Dichloropropene  | nd      | 0.2             | PPB (UG/L) |
| Ethylbenzene               | nd      | 0.5             | PPB (UG/L) |
| Dichloromethane            | nd      | 2.0             | PPB (UG/L) |
| 1,1,2,2-Tetrachloroethane  | nd      | 0.2             | PPB (UG/L) |
| Tetrachloroethene (PCE)    | nd      | 0.2             | PPB (UG/L) |
| Toluene                    | nd      | 0.5             | PPB (UG/L) |
| 1,1,1-Trichloroethane      | nd      | 0.2             | PPB (UG/L) |
| 1,1,2-Trichloroethane      | nd      | 0.2             | PPB (UG/L) |
| Trichloroethene (TCE)      | nd      | 0.2             | PPB (UG/L) |
| Vinyl Chloride             | nd      | 0.2             | PPB (UG/L) |
| Xylenes (Total)            | nd      | 0.5             | PPB (UG/L) |
| Trichlorofluoromethane     | nd      | 0.2             | PPB (UG/L) |

BFB (Surrogate) Recovery = 93 % BCM (Surrogate) Recovery = 104 % Dilution Factor = 1

#### **Results for sample:** Trip Blank

Date collected:12/2/94Date received:12/5/94Date extracted:12/9/94Date analyzed:12/9/94Client:Daniel B. Stephens and Associates, Inc.Project Name:ENRON -RoswellHeal #:9412008-3Project Manager:Jeff ForbesSampled by:Bill CasadevallMatrix:Aqueous

**Test: EPA 418.1** 

e de la

met

1.26

| C | ompound | Result | <b>Detection Limit</b> | Units      |
|---|---------|--------|------------------------|------------|
| T | PH      | nd     | 2.5                    | PPM (MG/L) |

Dilution Factor = 1

#### **Results for sample: Reagent Blank**

Date extracted: NADate analyzed: 12/6/94Client: Daniel B. Stephens and Associates, Inc.Project Name: ENRON -RoswellHEAL #:RB 12/5Project Manager: Jeff ForbesMatrix: Non-Aqueous

#### Test: EPA 8010/8020

A038

| Analyte:                   | Results | Detection Limit | Units       |
|----------------------------|---------|-----------------|-------------|
| Benzene                    | nd      | 0.05            | PPM (MG/KG) |
| Bromodichloromethane       | nd      | 0.01            | PPM (MG/KG) |
| Bromoform                  | nd      | 0.05            | PPM (MG/KG) |
| Bromomethane               | nd      | 0.05            | PPM (MG/KG) |
| Carbon Tetrachloride       | nd      | 0.01            | PPM (MG/KG) |
| Chlorobenzene              | nd      | 0.01            | PPM (MG/KG) |
| Chloroethane               | nd      | 0.01            | PPM (MG/KG) |
| Chloroform                 | nd      | 0.01            | PPM (MG/KG) |
| Chloromethane              | nd      | 0.01            | PPM (MG/KG) |
| 2-Chloroethylvinyl Ether   | nd      | 0.05            | PPM (MG/KG) |
| Dibromochloromethane       | nd      | 0.01            | PPM (MG/KG) |
| 1,3-Dichlorobenzene        | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichlorobenzene        | nd      | 0.01            | PPM (MG/KG) |
| 1,4-Dichlorobenzene        | nd      | 0.01            | PPM (MG/KG) |
| Dichlorodifluoromethane    | nd      | 0.01            | PPM (MG/KG) |
| 1,1-Dichloroethane         | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichloroethane         | nd      | 0.01            | PPM (MG/KG) |
| 1,1-Dichloroethene         | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichloroethene (Cis )  | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichloroethene (Trans) | nd      | 0.01            | PPM (MG/KG) |
| 1,2-Dichloropropane        | nd      | 0.01            | PPM (MG/KG) |
| cis-1,3-Dichloropropene    | nd      | 0.01            | PPM (MG/KG) |
| trans-1,3-Dichloropropene  | nd      | 0.01            | PPM (MG/KG) |
| Ethylbenzene               | nd      | 0.05            | PPM (MG/KG) |
| Dichloromethane            | nd      | 0.1             | PPM (MG/KG) |
| 1,1,2,2-Tetrachloroethane  | nd      | 0.01            | PPM (MG/KG) |
| Tetrachloroethene (PCE)    | nd      | 0.01            | PPM (MG/KG) |
| Toluene                    | nd      | 0.05            | PPM (MG/KG) |
| 1,1,1-Trichloroethane      | nd      | 0.01            | PPM (MG/KG) |
| 1,1,2-Trichloroethane      | nd      | 0.01            | PPM (MG/KG) |
| Trichloroethene (TCE)      | nd      | 0.01            | PPM (MG/KG) |
| Vinyl Chloride             | nd      | 0.01            | PPM (MG/KG) |
| Xylenes (Total)            | nd      | 0.05            | PPM (MG/KG) |
| Trichlorofluoromethane     | nd      | 0.1             | PPM (MG/KG) |

BFB (Surrogate) Recovery = 84 % BCM (Surrogate) Recovery = 98 % Dilution Factor = 1

8

### **Results for sample: Reagent Blank**

| Date extracted: 12/6/94             | Date analyzed: 12/6/94 |
|-------------------------------------|------------------------|
| Client: Daniel B. Stephens and Asso | ciates, Inc.           |
| Project Name: ENRON -Roswell        | HEAL #:RB 12/6         |
| Project Manager: Jeff Forbes        |                        |
| Matrix: Non-Aqueous                 |                        |

Test: EPA 418.1

 $(x, \dot{y})$ 

1.528

1.4.48

197**6** 

a into

Sect

44.4

có yak

12.34

dia.

279

小品類

100

31.73

1.125

0.16

- 769

-----

| C | Compound | Result | <b>Detection Limit</b> | Units       |
|---|----------|--------|------------------------|-------------|
| Т | PH       | nd     | 20                     | PPM (MG/KG) |

9

Dilution Factor = 1

#### **Results for QC: Reagent Blank**

Date extracted: NADate analyzed: 12/5/94Client: Daniel B. Stephens and Associates, Inc.Project Name: ENRON -RoswellHEAL #: RB 12/5Project Manager: Jeff ForbesMatrix: Aqueous

#### Test: EPA 8010/8020

\*-18 Hills

4.6

| Analyte:                   | Results | Detection Limit | Units      |
|----------------------------|---------|-----------------|------------|
| Benzene                    | nd      | 0.5             | PPB (UG/L) |
| Bromodichloromethane       | nd      | 0.2             | PPB (UG/L) |
| Bromoform                  | nd      | 1.0             | PPB (UG/L) |
| Bromomethane               | nd      | 1.0             | PPB (UG/L) |
| Carbon Tetrachloride       | nd      | 0.2             | PPB (UG/L) |
| Chlorobenzene              | nd      | 0.2             | PPB (UG/L) |
| Chloroethane               | nd      | 0.2             | PPB (UG/L) |
| Chloroform                 | nd      | 0.2             | PPB (UG/L) |
| Chloromethane              | nd      | 0.2             | PPB (UG/L) |
| 2-Chloroethylvinyl Ether   | nd      | 1.0             | PPB (UG/L) |
| Dibromochloromethane       | nd      | 0.2             | PPB (UG/L) |
| 1,3-Dichlorobenzene        | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichlorobenzene        | nd      | 0.2             | PPB (UG/L) |
| 1,4-Dichlorobenzene        | nd      | 0.2             | PPB (UG/L) |
| Dichlorodifluoromethane    | nd      | 0.2             | PPB (UG/L) |
| 1,1-Dichloroethane         | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloroethane         | nd      | 0.2             | PPB (UG/L) |
| 1,1-Dichloroethene         | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloroethene (Cis)   | nd      | 0.2             | PPB (UG/L) |
| 1.2-Dichloroethene (Trans) | nd      | 0.2             | PPB (UG/L) |
| 1,2-Dichloropropane        | nd      | 0.2             | PPB (UG/L) |
| cis-1,3-Dichloropropene    | nd      | 0.2             | PPB (UG/L) |
| trans-1,3-Dichloropropene  | nd      | 0.2             | PPB (UG/L) |
| Ethylbenzene               | nd      | 0.5             | PPB (UG/L) |
| Dichloromethane            | nd      | 2.0             | PPB (UG/L) |
| 1,1,2,2-Tetrachloroethane  | nd      | 0.2             | PPB (UG/L) |
| Tetrachloroethene (PCE)    | nd      | 0.2             | PPB (UG/L) |
| Toluene                    | nd      | 0.5             | PPB (UG/L) |
| 1, 1, 1-Trichloroethane    | nd      | 0.2             | PPB (UG/L) |
| 1,1,2-Trichloroethane      | nd      | 0.2             | PPB (UG/L) |
| Trichloroethene (TCE)      | nd      | 0.2             | PPB (UG/L) |
| Vinyl Chloride             | nd      | 0.2             | PPB (UG/L) |
| Xylenes (Total)            | nd      | 0.5             | PPB (UG/L) |
| Trichlorofluoromethane     | nd      | 0.2             | PPB (UG/L) |

BFB (Surrogate) Recovery = 95 % BCM (Surrogate) Recovery = 96 % Dilution Factor = 1

10

#### **Results for QC: Reagent Blank**

Date extracted: 12/9/94Date analyzed: 12/9/94Client: Daniel B. Stephens and Associates, Inc.Project Name: ENRON -RoswellHeal #: RB 12/9Project Manager: Jeff ForbesMatrix: Aqueous

**Test: EPA 418.1** 

| Compound | Result | <b>Detection Limit</b> | Units      |
|----------|--------|------------------------|------------|
| TPH      | nd     | 2.5                    | PPM (MG/L) |

Dilution Factor = 1

## Results for QC: Matrix Spike / Matrix Spike Dup

| Date extracted: 12/5,6/94           | Date analyzed: 12/6,7/94 |
|-------------------------------------|--------------------------|
| Client: Daniel B. Stephens and Asso | ociates, Inc.            |
| Project Name: ENRON -Roswell        | HEAL #: 9412008-1 MS/MSD |
| Project Manager: Jeff Forbes        | 9412008-1 Dup, BS 12/6   |
| Matrix: Non-Aqueous                 | Units: PPM (MG/KG)       |

### Test: EPA 8010/8020

- (e d)

| Compound      | Sample | Amount | Matrix |      | MSD    | MSD |     |
|---------------|--------|--------|--------|------|--------|-----|-----|
|               | Result | Added  | Recov. | MS % | Recov. | %   | RPD |
| Chlorobenzene | < 0.01 | 1.00   | 0.98   | 98   | 0.98   | 98  | 0   |
| Ethylbenzene  | < 0.05 | 1.00   | 0.97   | 97   | 0.95   | 95  | 2   |
| 1,1-DCE       | < 0.01 | 1.00   | 0.85   | 85   | 0.96   | 96  | 12  |
| Trans-1,2-DCE | < 0.01 | 1.00   | 0.90   | 90   | 1.01   | 101 | 12  |
| 1,2-DCA       | <0.01  | 1.00   | 1.18   | 118  | 1.17   | 117 | 1   |
| PCE           | < 0.01 | 1.00   | 1.15   | 115  | 1.17   | 117 | 2   |
| 1,3-Dichloro- |        |        |        |      |        |     |     |
| benzene       | < 0.01 | 1.00   | 1.02   | 102  | 1.00   | 100 | 2   |
| 1,4-Dichloro- |        |        |        |      |        |     |     |
| benzene       | < 0.01 | 1.00   | 1.04   | 104  | 1.11   | 111 | 7   |

**Test: EPA 418.1** 

|          | Sample | Dup    |     |       | Blank | BS    | BS  |
|----------|--------|--------|-----|-------|-------|-------|-----|
| Compound | Result | Result | RPD | Blank | Spike | Recov | %   |
| TPH      | <20    | <20    | NA  | <20   | 100   | 110   | 110 |

### Results for QC: Matrix Spike / Matrix Spike Dup

| Date extracted: NA                  | Date analyzed: 12/5/94        |
|-------------------------------------|-------------------------------|
| Client: Daniel B. Stephens and Asso | ciates, Inc.                  |
| Project Name: ENRON -Roswell        | HEAL #: 9412008-1 MS/MSD      |
| Project Manager: Jeff Forbes        |                               |
| Matrix: Aqueous                     | Units: PPB (UG/L), PPM (MG/L) |

#### Test: EPA 8010/8020

 $c_{\rm poly}$ 

-Artist

5-854

News

 $\tilde{x}_{1,2}$ 

3.6

,9,19

142.75

1.04

570

1.6

- 65

Sec.

| Compound      | Sample | Amount | Matrix |      | MSD    | MSD |     |
|---------------|--------|--------|--------|------|--------|-----|-----|
|               | Result | Added  | Recov. | MS % | Recov. | %   | RPD |
| Chlorobenzene | <0.2   | 20.0   | 19.7   | 99   | 21.0   | 105 | 6   |
| Ethylbenzene  | <0.5   | 20.0   | 19.8   | 99   | 20.6   | 103 | 4   |
| 1,1-DCE       | <0.2   | 20.0   | 22.2   | 111  | 20.5   | 103 | 8   |
| Trans-1,2-DCE | <0.2   | 20.0   | 19.1   | 96   | 19.4   | 97  | 2   |
| Carbon Tet.   | < 0.2  | 20.0   | 18.3   | 92   | 16.9   | 85  | 8   |
| 1,2-DCA       | <0.2   | 20.0   | 16.2   | 81   | 17.0   | 85  | 5   |
| 1,2-Dichloro- |        |        |        |      |        |     |     |
| propane       | <0.2   | 20.0   | 20.7   | 104  | 20.4   | 102 | 1   |
| 1,1,2-TCA     | < 0.2  | 20.0   | 19.2   | 96   | 18.4   | 92  | 4   |
| PCE           | <0.2   | 20.0   | 21.6   | 108  | 20.4   | 102 | 6   |
| 1,3-Dichloro- |        |        |        |      |        |     |     |
| benzene       | < 0.2  | 20.0   | 19.8   | 99   | 19.6   | 98  | 1   |
| 1,4-Dichloro- |        |        |        |      |        |     |     |
| benzene       | <0.2   | 20.0   | 20.8   | 104  | 18.5   | 93  | 12  |

17

#### Test: EPA 418.1

|          | Sample | Amount | Matrix |      |
|----------|--------|--------|--------|------|
| Compound | Result | Added  | Recov. | MS % |
| TPH      | <1.0   | 5.0    | 5.0    | 100  |

|           |        |           | DY RECORD                             |                                          |                   |        |              |                |                        |                        |                                  | 24                                | 03 S                             | m Ma                    |                   |                    | nite P |              |  |  |                                   |
|-----------|--------|-----------|---------------------------------------|------------------------------------------|-------------------|--------|--------------|----------------|------------------------|------------------------|----------------------------------|-----------------------------------|----------------------------------|-------------------------|-------------------|--------------------|--------|--------------|--|--|-----------------------------------|
|           | anie/  | B         | Stephens Assoc.                       | Project Name:<br>ENROI                   |                   | RA     | swf          | • //           |                        |                        |                                  |                                   | -                                | r <b>que</b> ,<br>0.18( |                   | Mex                | ico 87 | 7110         |  |  |                                   |
| Address:  | 6020   | s Aca     | demy NE #100<br>M 87109               | Project #:                               |                   |        |              | ~11            |                        |                        |                                  |                                   |                                  | A٨                      | ALYS              | SIS RE             | QUES   | T            |  |  |                                   |
|           | A160   | g. N      | M 87109                               | 4119<br>Project Manager                  |                   |        |              |                |                        |                        | liesel)                          | (ylu                              | sel)                             |                         |                   |                    |        |              |  |  | 1                                 |
|           |        |           |                                       | Jeff<br>Sompler: Bij                     |                   | rbe    | 2            |                | (20)                   | ()20)                  | (PH Method 8015 MOD (Gas/Diesel) | BTEX + TPH + MTBE (Gasoline Only) | BTEX + MTBE + TPH (Gas + Diesel) |                         |                   |                    |        |              |  |  | Air Rubbles or Hendsonce (Y or N) |
| 'hone # : | 8zz    | -940      | 0                                     | Sampler: Bi                              | 11 Ca             | ssa.   | der          | /al1           | 02/80                  | 02/80                  | 5 MOD                            | TBE (G                            | TPH (G                           | 8.1)                    | les               | <b>4</b> .1)       |        | Ŧ            |  |  |                                   |
| fax # :   | 822    | -883      | 77                                    | Samples Cold?                            |                   |        |              | No No          | sthod 6                | NTBE (6                | 108 bot                          | M + HY                            | ATBE +                           | thod 41                 | 2 Volati          | thod 50            |        | (PNA or PAH) |  |  | re or He                          |
| Date      | Time   | Matrix    | Sample I.D. No.                       | Number/Volume                            |                   | servat | ive<br>Other | HEAL No.       | 3TEX (Method 602/8020) | 3TEX + MTBE (602/8020) | PH Meth                          | ITEX + T                          | ITEX + N                         | TPH (Method 418.1)      | 601/602 Volatiles | EDB (Method 504.1) | ЭĊ     | 610 (PN      |  |  | 1997                              |
| 30-94     | - 1426 | Sail      | MW-6 (64.5-65.0                       | 2×3"rino                                 | HgCl <sub>2</sub> | HCI    | Uniter       | 9412008-1      | <del>a</del>           |                        |                                  |                                   |                                  | X                       | ×                 |                    |        |              |  |  | $\vdash$                          |
| 2-94      | -1405  | H,0       | MW-6                                  | 4 × 40ml Vot                             | X                 |        |              | 9412008-2      | 7                      |                        |                                  |                                   |                                  | ×                       | ×                 |                    |        |              |  |  |                                   |
| :0-94     | 0800   | 4         | MW-6 (64.5-65.0<br>MW-6<br>Trip Blank | 3×40m/Vol                                | X                 |        |              | 9412008-3      |                        |                        |                                  |                                   |                                  | •                       | ×                 |                    |        |              |  |  | _                                 |
|           |        |           |                                       |                                          |                   |        |              |                |                        |                        |                                  |                                   |                                  |                         |                   |                    |        |              |  |  |                                   |
|           |        |           |                                       |                                          |                   |        |              |                |                        |                        |                                  |                                   |                                  |                         |                   |                    |        |              |  |  |                                   |
|           |        |           |                                       |                                          |                   |        |              |                |                        |                        |                                  |                                   |                                  |                         |                   |                    |        |              |  |  |                                   |
|           |        |           |                                       |                                          |                   |        |              |                |                        |                        |                                  |                                   |                                  |                         |                   |                    |        |              |  |  |                                   |
| Date:     | Time:  | Relinquic | ned By: (Signature)                   | Receiver                                 | Bv: (S            | innatu |              |                | Por                    | marke.                 |                                  |                                   |                                  |                         |                   |                    |        |              |  |  |                                   |
|           | 0800   |           | free Jorles                           | Received By: (Signature)<br>Thereso Lave |                   |        |              | ۱۱۱۱۲۵.<br>۲ ۲ | ava                    | s.<br>il a             | ta.<br>61e                       | × /                               | pre                              | e lin                   | 45.               | as                 | 500    | 5            |  |  |                                   |
| Date:     | Time:  | Relinquis | hed By: (Signature)                   | Received                                 | l By: (S          | ignatu | re)          |                | 1                      |                        |                                  |                                   |                                  |                         |                   |                    |        |              |  |  |                                   |

|                                                                                                               |       |                           |          |        | i .      |                                       |
|---------------------------------------------------------------------------------------------------------------|-------|---------------------------|----------|--------|----------|---------------------------------------|
| 22 DECEMBER 94                                                                                                |       |                           | Temp     | JAC    | pH       | Eh. DO.                               |
|                                                                                                               | 1058  | 16730                     | 19.1     | 2010   | 9.62     | -251                                  |
| 0805: muie formell - stop for supplies                                                                        | 1110  | 16840                     | 19.4     | 2260   | 7.81     | -241                                  |
|                                                                                                               | ///9  | 16940                     | 19.5     | 2240   | 7.37     | - 212                                 |
| OB30; WELL 5: willfrad sealed, Epichie Jung Can                                                               | 1152  | 16170<br>Scogol.<br>17230 | 19.6     | 2230   | 7.28     |                                       |
| OB30: WELL 5: willhad sealed. Electric fund can<br>Se turned an At Arwer pole, Sischarge to food w/satalizer. | 1239  | 1000                      | 19.7     | 2230   | 7.24     |                                       |
|                                                                                                               | 1328  | 1500                      | 23.3     | 2290   | 7.24     | -                                     |
| OSto: WELL VERNSWESTER - water lund = 65.41                                                                   | 1482  | 2000                      | 19.7     | 2240   | 7.20     | · · · · · · · · ·                     |
|                                                                                                               | 1515  | 2500                      | 19.6     | 2240   | 7.17     | -179 1.9                              |
| 2 = are setting up and suparing                                                                               | 1607  | 3000                      | 19.5     | 2250   | 7.13     | -197 1.3                              |
| Lom TOC. Clayton Dainwill And<br>? are sixting up and subaring<br>to decon.                                   |       |                           |          |        |          |                                       |
|                                                                                                               |       |                           |          |        |          | · · ·                                 |
| 1049: calibrate SAC 10340 umbos (10,000 5+1)                                                                  |       |                           |          |        |          | · · · · · · · · · · · · · · · · · · · |
| 1049: califiate Spc 10340 ymhos (10,000 5+4)<br>14 = 7.0/10.0 - DO calib (16°@ 36001): 8.67                   | Aun   | p is set                  | ax 200   | STOC . | in Mansw | estima well.                          |
| mg/L.                                                                                                         |       |                           |          |        |          |                                       |
| 1056: Lovalizu = 167175 Be 16710                                                                              | 1200: | Vatali ju                 | on w     | 1115=  | 223450   |                                       |
|                                                                                                               |       | Tempor                    |          | SAC    | 1        |                                       |
| 1105: regulibrate SH 7.0/10.0 after initial                                                                   | 1201  | 68.6                      | 7.59     | 4260   | 22345    | DO<br>cloudy<br>D ndor.               |
| 1105: recalibrate AH 7.0/10.0 after initial<br>readings - may se subber in hose.                              | 1208  | 70.0                      | 7.05     | 3840   | 223500   |                                       |
|                                                                                                               | 1216  | 69.5                      | 7.00     | 3820   | 2235500  |                                       |
| 286' alunter in caring (95/8")                                                                                | 1226  | 69.0                      | 6.91     | 3830   |          | 3.6/2.8*                              |
| 286' of water in caring (978)                                                                                 | 1235  | 69.0                      | 6.91     | 3770   | 2236500  |                                       |
| assume well is 95/8" to TD - reduce                                                                           | 1244  | 70.2                      | 7.25     | 3760   | 2237000  | 3.5                                   |
|                                                                                                               | 1252  | 68.4                      | 6-97     | 3710   | 2237500  | 3.6                                   |
| 3.8 gol/ft & 3 coving vol 3,260 gol.                                                                          | 1301  | 69.0                      | 6.92     | 3740   | 223800   |                                       |
| and the first the first                                                                                       | 2-,   |                           |          |        |          |                                       |
|                                                                                                               | adj.  | "Salinity"                | 6 TDS VO | tue.   |          |                                       |

1340 - deave well +1000 5 and return to APOTO 11 - win N of well 5. How of lift, well we at cuter, and Artalijer at rijdt. Sideharge Gehind AVOTO 10: vin 10 1 1093 from well 5. Transweddere welle where surging continued 12/22/94 particulated as suggended perticles 1500 - Call Self - will ship sayteren 1410 - dennie Karnes and fuild present 1425 - Go ve Viel Ex. 40 steel up Vild alkalinky 200. at 1500 gol. to J = 10" fm 0-160' =4.1 gult -720 = 370' certiry : 8.25 m 200-370 = 2,899/4. 3×40 ml for app. IX VOCS Mutaler calling. 8' caring - 1, 76 + gol (3 cm, 02L.) - 210' 10" " (, 169 pol (" " ") - 95' 2933 gol (" " ") - 95' 1325 - collect sorth for fuld alkalint Aboro 9 - wins 10 of well #5 - well is go right of south pale. Vobelju is Sy that what hull indicentar. 46/22/21 1307 - Aun A well 5 + 2238300. 1305 JANPLE "WELL NO.5" 1×500 mL 1×540 ML 1×JOD ML 4.

12/22/94 Well TW-1 is purged by let sub 3.5" albutity, this plaude, suger. 1710: leave site Tes-1 No meduce water 1740: Leave Ensen 26 return to albuque ge 1615: alkalinily = 160 (32 drags × 5). 320 mL fre gar IX VOCS W/HCE 1x14 fre gar IX 5VOCS 1x12 fre gar IX 5VOCS 46/22/94 rade, a gyr. II mitals up can level in Hup-3, -3, and -6. 62.64 64.58 1715: 1410-6 water level : 63.59 the Company 2 2 1445: SANDLE TW-1 1/21 : HW-3 4 1/28 : HW-5 " 1×500mL June 2x1 1×300 mc 4 1×500 ml . 1× Jeo m2 ( /xJob m26



CORE LABORATORIES A N A L Y T I C A L R E P O R T Job Number: 943236 Prepared For: DANIEL B. STEPHENS & ASSOCIATES JEFF FORBES 6020 ACADEMY NE, #100 ALBUQUERQUE, NM 87109 Date: 01/09/95

Signature

Dignadard

Name: Ron Fuller

1/9/95 Date:

Core Laboratories 10703 East Bethany Drive Aurora, CO 80014

Title: LABORATORY MANAGER

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Fore Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories. CORVILAB

# LORE LADURATORIES, INC.

## **\*\*)**,20743

CHAIN OF CUSTODY RECORD

| C                             | USTOMER INFORMATION                                                                  |                                          |                    | PROJECT INFORMATION                                                                   |           |                                                                                          |          |               |              | /                                                     | 8                        |                 | /\$               | 2            | 7                          | A S       | PI /                                          |        | r/      |         |
|-------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|--------------------|---------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------|----------|---------------|--------------|-------------------------------------------------------|--------------------------|-----------------|-------------------|--------------|----------------------------|-----------|-----------------------------------------------|--------|---------|---------|
| COMPANY                       | L B. STEAKENS & AS                                                                   | SOC                                      | PROJECT NAM        | E/NUMBER:                                                                             | 4115.2    |                                                                                          |          | S             | 4N41.        |                                                       | Ĕ.                       |                 | /                 | /            | <u>\$</u>                  | es e      |                                               |        | /       |         |
| SEND REPORT TO:               | EFF FORBES                                                                           |                                          |                    | BILI                                                                                  | ING INFOR | MÁTION                                                                                   |          | NEA           |              | / ₹                                                   | S                        | 2.24<br>2.24    | 0/ 4 <sup>1</sup> | ° ∛          | %+X                        |           |                                               | 10     |         |         |
| ADDRESS                       | O ACADENY NE                                                                         | #100                                     | BILL TO:           |                                                                                       |           |                                                                                          | AND AND  | OF CONTAINERS |              | ŚŚ                                                    | <u>}</u> /               | ~ V             | ,6/               | 27           | UN V                       | ¥ /       | / / /.                                        |        |         |         |
|                               | QUERQUE, NH B                                                                        |                                          | ADDRESS:           |                                                                                       |           |                                                                                          |          | 8             | 3            | ŢÆ                                                    | 1                        | // ;            | r/X               | У ь          | ×/                         |           | / /ð                                          |        | 01. 8   | B NO.   |
| TILOU                         | QUEEQUE, NIT D                                                                       | //0/                                     |                    |                                                                                       |           |                                                                                          | В.       | A             | /            | .v/                                                   | $\sqrt{3}$               | , AX            |                   | /            |                            | 0?/:      | <b></b>                                       |        |         |         |
| PHONE:                        | 5/822-9400                                                                           |                                          | PHONE:             |                                                                                       |           |                                                                                          |          | NUMBER        |              | 1                                                     | Y.                       | א/פ             | ‴र                | ¥.s          | <i>٤</i> /                 | ¥/``,     | N. N      | 1      | 432     | 26      |
| FAX: 50                       | · .                                                                                  |                                          | FAX:               |                                                                                       | PO NO.:   |                                                                                          |          | E             | /            | A                                                     | ₰                        | \$.             | \$#/              | <b>.</b>     | <br>                       | <b>1</b>  | N.                                            |        |         |         |
| SAMPLE NO.                    | SAMPLE ID/DESCRIP                                                                    | TION                                     | SAMPLE             | SAMPLE                                                                                | SAMPLE    | CONTAINER TYPE                                                                           | PRESERV. |               | 1/3          | \/ {                                                  | ŶŶ                       | Ŷ               | S (               | ΰŸ Ι         | 5% <b>`</b>                | $\delta $ | REMA                                          | RKS /  | PREC    | AUTIONS |
|                               | TRIPBLAN                                                                             | 2                                        | 12/22/94           | 0000                                                                                  | WATER     | 1=40 mL                                                                                  | Hee      |               | X            |                                                       |                          |                 |                   |              |                            |           | 05                                            | e APA  | EUD     | LTX.    |
| toot.                         | WELL#5                                                                               |                                          | /-/                |                                                                                       | 1         | 3×40 mL                                                                                  | Hee      |               | X            |                                                       |                          |                 |                   |              |                            |           |                                               | LYSES  |         |         |
| sample                        | -Taut-1- BC                                                                          |                                          |                    | 16 BC                                                                                 |           | 2×1L                                                                                     |          |               |              | X                                                     | X                        |                 |                   |              |                            |           | VOC                                           | 3. JV  | bCs     | HETALS, |
| time from                     | Dottles 12/28                                                                        | 3 <b>A</b> ¥                             |                    | Ţ                                                                                     |           | 5 × 500 mL                                                                               | Various  |               |              |                                                       |                          | X               | Х                 | Х            | ×                          | ×         |                                               | Aestre |         |         |
|                               | TW-1                                                                                 |                                          |                    | 16A5                                                                                  |           | 3×40 mL                                                                                  |          |               | X            |                                                       |                          |                 |                   |              |                            |           |                                               |        | ,       |         |
|                               | Į.                                                                                   |                                          | 1                  | ł                                                                                     | ↓<br>↓    | 5× 500 mL                                                                                |          |               |              |                                                       |                          | X               | Х                 | X            | X                          | X         |                                               |        |         |         |
|                               |                                                                                      |                                          |                    |                                                                                       |           |                                                                                          |          |               |              |                                                       |                          |                 |                   |              |                            |           |                                               |        |         |         |
|                               | talled up be                                                                         | ff Forbes                                | 12/28/9            | 4                                                                                     |           |                                                                                          |          |               |              |                                                       |                          |                 |                   |              |                            |           |                                               |        |         |         |
|                               | - Sample bo                                                                          |                                          |                    |                                                                                       | E SVO     | C & AP                                                                                   | T        | De            | st           | /pcl                                                  | b's                      |                 |                   |              |                            |           |                                               |        |         |         |
|                               | are actuc                                                                            | uly so                                   | mple               | TW-1                                                                                  |           | weil+S                                                                                   |          | 12/           | 28           | F                                                     | -                        |                 |                   |              |                            |           |                                               |        |         |         |
|                               | il CASADEVA                                                                          | •                                        | • • • •            | SHIPMENT M                                                                            |           | EDERAL E                                                                                 | ARASS    | 5             |              |                                                       |                          | AIRBIL          | LL NO.            |              | 33                         | 25        | 35772                                         | 81     |         |         |
| REQUIRED TURNARO              |                                                                                      |                                          | 48 HOURS           | . ] 72 HOUI                                                                           |           | . /                                                                                      |          |               | E            | OTHER                                                 | ·                        |                 |                   |              |                            |           |                                               |        |         |         |
| 1. RELINQUISHED BY:           |                                                                                      | DA                                       | ,                  |                                                                                       | BY:       |                                                                                          |          |               | DATE         |                                                       |                          | ELINQU<br>GNATU |                   | BY:          |                            |           |                                               |        |         | DATE    |
| SIGIVATURE.                   | Casadurall_                                                                          | 14                                       | ILH IM             |                                                                                       |           |                                                                                          |          |               |              |                                                       |                          |                 |                   |              |                            |           |                                               |        |         |         |
| PRINTED NAME/COMP             | DBS&A.                                                                               | ð                                        | <b>9</b> 30 PRI    | NTED NAME/C                                                                           | OMPANY:   |                                                                                          |          |               | TIME         |                                                       | PRIN                     | ITED N          | AME/C(            |              | NY:                        |           |                                               |        |         | TIME    |
| 1. RECEIVED BY:<br>SIGNATURE: | America                                                                              | DA                                       | 1 1 7              | RECEIVED BY:                                                                          |           |                                                                                          |          |               | DATE         |                                                       |                          | GNATU           | -                 |              |                            |           |                                               |        |         | DATE    |
| PRINTED NAME/COM              | Ingrary                                                                              |                                          | 28/94 S            | NTED NAME/C                                                                           | OMPANY    |                                                                                          |          |               | TIME         |                                                       | PRIN                     | ITED N          | AME/C             | OMPAN        | NY:                        |           | •····                                         |        |         | ТІМЕ    |
| PRINTED NAME/COMPANY:         |                                                                                      |                                          |                    |                                                                                       |           |                                                                                          |          |               |              |                                                       |                          |                 |                   |              |                            |           |                                               |        |         |         |
| Anaheim, Call<br>1250 E. Gene | ifornis Long Beac<br>Autry Way 3700 Cherr<br>ifornia 92805 Long Beac<br>94 (310) 595 | ry Avenue<br>n, California 90807<br>8401 | 107<br>Aur<br>(30) | iver (Aurora), Ci<br>03 E. Bethany (<br>ora, Colorado 8<br>3) 751-1780<br>0) 972-2673 | Drive     | Casper, Wyomin<br>420 West 1st Str<br>Casper, Wyomin<br>(307) 235-5741<br>(800) 666-0306 | eet      | ۵             | Hous<br>(713 | ton, Te<br>Mosley<br>iton, Te<br>) 943-97<br>) 734-26 | r Road<br>xas 770<br>776 | 75              |                   | 1<br>C<br>() | 733 No<br>orpus<br>512) 28 |           | <b>exas</b><br>re Island Drive<br>Texas 78408 | (      | 3645 Be |         |





#### SAMPLE DELIVERY GROUP NARRATIVE

January 9, 1995

Customer:Daniel B. Stephens & AssociatesProject:4115.2Core Laboratories Project Number:943236

On 12-28-94 Core Laboratories received samples for analysis. The following information is pertinent to the interpretation of the data package.

#### **Organic Analysis:**

During analysis for semivolatiles, a spike blank and spike blank duplicate were analyzed. The spike blank had a high percent recovery for 4-chloro-3-methylphenol at 99%. The EPA recommended criteria for 4-chloro-3-methylphenol is 23% to 97%.

J.Binkens

Linda L. Benkers QA/QC Coordinator

Douglas Georgic Laboratory Supervisor

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



## LABORATORY TESTS RESULTS 01/09/95

JOB NUMBER: 943236

ſ

CUSTOMER: DANIEL B. STEPHENS & ASSOCIATES

ATTN: JEFF FORBES

CLIENT I.D..... 4115.2 DATE SAMPLED..... 12/22/94 TIME SAMPLED..... 08:00 WORK DESCRIPTION...: TRIP BLANK

#### LABORATORY I.D...: 943236-0001 DATE RECEIVED...: 12/28/94 TIME RECEIVED...: 14:15 REMARKS.....

| TEST DESCRIPTION                    | FINAL RESULT | LIMITS/*DILUTION | UNITS OF MEASURE | TEST METHOD           | DATE TECHN   |
|-------------------------------------|--------------|------------------|------------------|-----------------------|--------------|
| APPENDIX IX VOLATILE ORGANICS       |              | *1               |                  | 8240 (2)              | 12/30/94 MLA |
| Acetone                             | ND           | 100              | ug/L             |                       |              |
| Acetonitrile                        | ND           | 100              | ug/L             |                       |              |
| Acrolein                            | ND           | 50               | ug/L             |                       |              |
| Acrylonitrile                       | ND           | 20               | ug/L             |                       |              |
| Allyl chloride                      | ND           | 20               | ug/L             |                       |              |
| Benzene                             | ND           | 1                | ug/L             |                       |              |
| Bromodichloromethane                | ND           | 5                | ug/L             |                       |              |
| Bromoform                           | ND           | 5                | ug/L             |                       |              |
| Bromomethane                        | ND           | 10               | ug/L             |                       |              |
| Carbon Disulfide                    | ND           | 5                | ug/L             |                       |              |
| Carbon tetrachloride                | ND           | 5                | ug/L             |                       |              |
| Chlorobenzene                       | ND           | 5                | ug/L             |                       |              |
| Chloroethane                        | ND           | 10               | ug/L             |                       |              |
| Chloroform                          | ND           | 5                | ug/L             |                       |              |
| Chloromethane                       | ND           | 5                | ug/L             |                       |              |
| Chloroprene                         | ND           | 5                | ug/L             |                       |              |
| Dibromochloromethane                | ND           | 5                | ug/L             |                       |              |
|                                     | ND           | 20               | ug/L             |                       |              |
| 1,2-Dibromo-3-chloropropane         | ND           | 20               | ug/L             |                       |              |
| 1,2-Dibromoethane<br>Dibromomethane | ND           | 5                | ug/L             |                       |              |
|                                     | ND           | 50               | -                |                       |              |
| trans-1,4-Dichloro-2-butene         |              | 10               | ug/L             |                       |              |
| Dichlorodifluoromethane             | ND<br>ND     | 5                | ug/L             |                       |              |
| 1,1-Dichloroethane                  |              | 5                | ug/L             |                       |              |
| 1,2-Dichloroethane                  | ND           |                  | ug/L             |                       |              |
| 1,1-Dichloroethene                  | ND           | 5                | ug/L             |                       |              |
| 1,2-Dichloroethene (total)          | ND           | 5                | ug/L             |                       |              |
| Dichloromethane                     | ND           |                  | ug/L             |                       |              |
| 1,2-Dichloropropane                 | ND           | 5                | ug/L             |                       |              |
| cis-1,3-Dichloropropene             | ND           | 5                | ug/L             |                       |              |
| trans-1,3-Dichloropropene           | ND           | 5                | ug/L             |                       |              |
| Ethyl benzene                       | ND           | 5                | ug/L             |                       |              |
| Ethyl methacrylate                  | ND           | 5                | ug/L             |                       |              |
| 2-Hexanone                          | ND           | 50               | ug/L             |                       |              |
| Iodomethane                         | ND           | 5                | ug/L             |                       |              |
| Isobutyl alcohol                    | ND           | 50               | ug/L             |                       |              |
| Methylacrylonitrile                 | ND           | 50               | ug/L             |                       |              |
| 2-Butanone                          | ND           | 100              | ug/L             |                       |              |
| Methyl isobutyl ketone              | ND           | 50               | ug/L             |                       |              |
| Methyl methacrylate                 | ND           | 5                | ug/L             |                       |              |
| Propionitrile                       | ND           | 100              | ug/L             |                       |              |
| Styrene                             | ND           | 5                | ug/L             |                       |              |
| 1,1,1,2-Tetrachloroethane           | ND           | 5                | ug/L             |                       |              |
| 1,1,2,2-Tetrachloroethane           | ND           | 5                | ug/L             |                       |              |
|                                     |              | I                | I                |                       |              |
|                                     |              |                  |                  | 03 East Bethany Drive |              |
|                                     |              |                  | Aur              | ora, CO 80014         |              |

10703 East Bethany Drive Aurora, CO 80014 (303) 751-1780

PAGE:1

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gos, coal or or prior mineral, propeny, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| ſ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LABORATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DRY TESTS<br>01/09/95                                                                       | RESULTS                                                      | dégenerati de querta difice y processive de proposition |           |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------|--|--|--|
| JOB NUMBER: 943236 CUSTOMER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : DANIEL B. STEPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             | ATTN: J                                                      | EFF FORBES                                              |           |  |  |  |
| CLIENT I.D: 4115.2       LABORATORY I.D: 943236-0001         DATE SAMPLED: 12/22/94       DATE RECEIVED: 12/28/94         TIME SAMPLED: 08:00       TIME RECEIVED: 14:15         WORK DESCRIPTION: TRIP BLANK       REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |                                                              |                                                         |           |  |  |  |
| TEST DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FINAL RESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LIMITS/*DILUTION                                                                            | UNITS OF MEASURE                                             | TEST METHOD                                             | DATE TECH |  |  |  |
| Tetrachloroethene<br>Toluene<br>1,1,1-Trichloroethane<br>1,1,2-Trichloroethane<br>Trichlorofluoromethane<br>1,2,3-Trichloropropane<br>Vinyl acetate<br>Vinyl chloride<br>Xylenes-total<br>Dibromofluoromethane (Surrogate)<br>Toluene-d8 (Surrogate)<br>4-Bromofluorobenzene (Surrogate)<br>Time Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>107<br>104<br>102<br>1823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 86-118% Limit<br>88-110% Limit<br>86-115% Limit         |           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                                                                           | Auro                                                         | )3 East Bethany Drive<br>Dra, CO 80014<br>3) 751-1780   |           |  |  |  |
| y benegative distributions of the second state of t | are assumed, it will be a first and a second s | PAGE:2                                                                                      |                                                              |                                                         |           |  |  |  |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or politions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| JOB NUMBER: 943236 CUSTOME                                                                      | : DANIEL B. STEP | HENS & ASSOCIATES | ATTN:            | JEFF FORBES                                     |                                          |       |
|-------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|-------------------------------------------------|------------------------------------------|-------|
| CLIENT I.D 4115.2<br>DATE SAMPLED: 12/22/94<br>TIME SAMPLED: 13:05<br>WORK DESCRIPTION: WELL #5 |                  |                   | DATE RECEI       | I.D: 943236-0002<br>VED: 12/28/94<br>VED: 14:15 | 2012-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |       |
| TEST DESCRIPTION                                                                                | FINAL RESULT     | LIMITS/*DILUTION  | UNITS OF MEASURE | TEST METHOD                                     | DATE                                     | TECHN |
| Alkalinity, Total (Unfilt.)                                                                     | 154              | 5                 | mg/L CaCO3       | 310.1 (1)                                       | 12/30/94                                 | RPK   |
| Chloride (Unfilt.)                                                                              | 750              | 5                 | mg/L             | 325.2 (1)                                       | 01/05/95                                 | DME   |
| :<br>Cyanide, Total (Unfilt.)                                                                   | <0.02            | 0.02              | mg/L             | 335.2 (1)                                       | 01/04/95                                 | RJC   |
| Nitrate + Nitrite (as N) [Unfilt.]                                                              | 1.74             | 0.05              | mg/L (as N)      | 353.2 (1)                                       | 01/03/95                                 | DME   |
| Solids, Total Dissolved (TDS)                                                                   | 2420             | 10                | mg/L             | 160.1 (1)                                       | 12/28/94                                 | RJC   |
| Sulfate (Unfilt.)                                                                               | 768              | 200               | mg/L             | 375.2 (1)                                       | 01/04/95                                 | DME   |
| Sulfide (Unfilt.)                                                                               | <0.05            | 0.05              | mg/L             | 376.2 (1)                                       | 12/29/94                                 | SLS   |
| Antimony, Total (Sb)                                                                            | <0.1             | 0.1               | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Arsenic, Total (As)                                                                             | <0.05            | 0.05              | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Barium, Total (Ba)                                                                              | 0.02             | 0.01              | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Beryllium, Total (Be)                                                                           | <0.005           | 0.005             | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Cadmium, Total (Cd)                                                                             | <0.005           | 0.005             | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Calcium, Total (Ca)                                                                             | 297              | 1                 | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Chromium, Total (Cr)                                                                            | <0.01            | 0.01              | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Cobalt, Total (Co)                                                                              | <0.03            | 0.03              | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Copper, Total (Cu)                                                                              | <0.01            | 0.01              | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Iron, Total (Fe)                                                                                | 0.32             | 0.03              | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Lead, Total (Pb)                                                                                | <0.05            | 0.05              | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Mercury, Total (Hg)                                                                             | <0.0002          | 0.0002            | mg/L             | 7470 (2)                                        | 12/30/94                                 | BPB   |
| Magnesium, Total (Mg)                                                                           | 80.5             | 0.1               | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| langanese, Total (Mn)                                                                           | <0.01            | 0.01              | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| Nickel, Total (Ni)                                                                              | <0.04            | 0.04              | mg/L             | 6010 (2)                                        | 12/30/94                                 | WGL   |
| '<br>'otassium, Total (K)                                                                       | 1.7              | 0.1               | mg/L             | 7610 (2)                                        | 01/04/95                                 | BPB   |

PAGE:3

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or imolied, as to the productivity, proper operations, or prolitableness of any oil; gas, doal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



|                                                                                                                                                                                                                         | LABORAT           | ORY TESTS<br>01/09/95 | RESULTS          |             |          |      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|------------------|-------------|----------|------|--|
| JOB NUMBER: 943236 CUSTOME                                                                                                                                                                                              | R: DANIEL B. STEP | HENS & ASSOCIATES     | ATTN:            | JEFF FORBES |          |      |  |
| LIENT I.D: 4115.2       LABORATORY I.D: 943236-0002         DATE SAMPLED: 12/22/94       DATE RECEIVED: 12/28/94         TIME SAMPLED: 13:05       TIME RECEIVED: 14:15         WORK DESCRIPTION: WELL #5       REMARKS |                   |                       |                  |             |          |      |  |
| TEST DESCRIPTION                                                                                                                                                                                                        | FINAL RESULT      | LIMITS/*DILUTION      | UNITS OF MEASURE | TEST METHOD | DATE     | ТЕСН |  |
| elenium, Total (Se)                                                                                                                                                                                                     | <0.1              | 0.1                   | mg/L             | 6010 (2)    | 12/30/94 | WGL  |  |
| Silver, Total (Ag)                                                                                                                                                                                                      | <0.01             | 0.01                  | mg/L             | 6010 (2)    | 12/30/94 | WGL  |  |
| Godium, Total (Na)                                                                                                                                                                                                      | 502               | 10                    | mg/L             | 6010 (2)    | 12/30/94 | WGL  |  |
| Thallium, Total (Tl)                                                                                                                                                                                                    | <0.1              | 0.1                   | mg/L             | 6010 (2)    | 12/30/94 | WGL  |  |
| in, Total (Sn)                                                                                                                                                                                                          | <0.05             | 0.05                  | mg/L             | 6010 (2)    | 12/30/94 | WGL  |  |
| Vanadium, Total (V)                                                                                                                                                                                                     | <0.05             | 0.05                  | mg/L             | 6010 (2)    | 12/30/94 | WGL  |  |
| ?inc, Total (Zn)                                                                                                                                                                                                        | <0.01             | 0.01                  | mg/L             | 6010 (2)    | 12/30/94 | WGL  |  |
| APPENDIX IX VOLATILE ORGANICS                                                                                                                                                                                           |                   | *1                    |                  | 8240 (2)    | 12/30/94 | MLA  |  |
| Acetone                                                                                                                                                                                                                 | ND                | 100                   | ug/L             |             |          |      |  |
| Acetonitrile                                                                                                                                                                                                            | ND                | 100                   | ug/L             |             |          |      |  |
| Acrolein                                                                                                                                                                                                                | ND                | 50                    | ug/L             |             |          |      |  |
| Acrylonitrile                                                                                                                                                                                                           | ND                | 20                    | ug/L             |             |          |      |  |
| Allyl chloride                                                                                                                                                                                                          | ND                | 20                    | ug/L             |             |          |      |  |
| Benzene                                                                                                                                                                                                                 | ND                | 1                     | ug/L             |             |          |      |  |
| Bromodichloromethane                                                                                                                                                                                                    | ND                | 5                     | ug/L             |             |          |      |  |
| Bromoform                                                                                                                                                                                                               | ND                | 5                     | ug/L             |             |          |      |  |
| Bromomethane                                                                                                                                                                                                            | ND                | 10                    | ug/L             |             |          |      |  |
| Carbon Disulfide                                                                                                                                                                                                        | ND                | 5                     | ug/L             |             |          |      |  |
| Carbon tetrachloride                                                                                                                                                                                                    | ND                | 5                     | ug/L             |             |          |      |  |
| Chlorobenzene                                                                                                                                                                                                           | ND                | 5                     | ug/L             |             |          |      |  |
| Chloroethane                                                                                                                                                                                                            | ND                | 10                    | ug/L             |             |          |      |  |
| Chloroform                                                                                                                                                                                                              | ND                | 5                     | ug/L             |             |          |      |  |
| Chloromethane                                                                                                                                                                                                           | ND                | 5                     | ug/L             |             |          |      |  |
| Chloroprene                                                                                                                                                                                                             | ND                | 5                     | ug/L             |             |          |      |  |
| Dibromochloromethane                                                                                                                                                                                                    | ND                | 5                     | ug/L             |             |          |      |  |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                             | ND                | 20                    | ug/L             |             |          |      |  |
| 1,2-Dibromoethane                                                                                                                                                                                                       | ND                | 20                    | ug/L             |             |          |      |  |
| Dibromomethane                                                                                                                                                                                                          | ND                | 5                     | ug/L             |             |          |      |  |
| trans-1,4-Dichloro-2-butene                                                                                                                                                                                             | ND                | 50                    | ug/L             |             |          |      |  |
| Dichlorodifluoromethane                                                                                                                                                                                                 | ND                | 10                    | ug/L             |             |          |      |  |
| 1,1-Dichloroethane                                                                                                                                                                                                      | ND                | 5                     | ug/L             |             |          |      |  |
| 1,2-Dichloroethane                                                                                                                                                                                                      | ND                | 5                     | ug/L             |             |          |      |  |
| 1,1-Dichloroethene                                                                                                                                                                                                      | ND                | 5                     | ug/L             |             |          |      |  |
| 1,2-Dichloroethene (total)                                                                                                                                                                                              | ND                | 5                     | ug/L             |             |          |      |  |
| Dichloromethane                                                                                                                                                                                                         | ND                | 5                     | ug/L             |             |          |      |  |
|                                                                                                                                                                                                                         | ND                | 5                     | ug/L             |             |          |      |  |
| 1,2-Dichloropropane                                                                                                                                                                                                     |                   |                       |                  |             |          |      |  |
| 1,2-Dichloropropane<br>cis-1,3-Dichloropropene                                                                                                                                                                          | ND                | 5                     | ug/L             |             |          |      |  |

10703 East Bethany Driv Aurora, CO 80014 (303) 751-1780

PAGE:4

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpret it ons or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LABORATI                                                                        | DRY TESTS<br>01/09/95                                                              | RESULTS                                                      |                                                       |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|----------|
| OB NUMBER: 943236 CUSTOMER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DANIEL B. STEP                                                                  | HENS & ASSOCIATES                                                                  | ATTN: J                                                      | EFF FORBES                                            |          |
| LIENT I.D 4115.2<br>ATE SAMPLED 12/22/94<br>IME SAMPLED 13:05<br>ORK DESCRIPTION: WELL #5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                                                    | DATE RECEIV                                                  | I.D: 943236-0002<br>ED: 12/28/94<br>ED: 14:15         |          |
| EST DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FINAL RESULT                                                                    | LIMITS/*DILUTION                                                                   | UNITS OF MEASURE                                             | TEST METHOD                                           | DATE TEC |
| trans-1,3-Dichloropropene<br>Ethyl benzene<br>Ethyl methacrylate<br>2-Hexanone<br>Iodomethane<br>Isobutyl alcohol<br>Methylacrylonitrile<br>2-Butanone<br>Methyl isobutyl ketone<br>Methyl methacrylate<br>Propionitrile<br>Styrene<br>1,1,2-Tetrachloroethane<br>1,1,2-Tetrachloroethane<br>Tetrachloroethene<br>Toluene<br>1,1,1-Trichloroethane<br>1,2,2-Trichloroethane<br>Trichlorofluoromethane<br>1,2,3-Trichloropropane<br>Vinyl acetate<br>Vinyl acetate<br>Vinyl chloride<br>Xylenes-total<br>Dibromofluoromethane (Surrogate)<br>Toluene-d8 (Surrogate)<br>4-Bromofluorobenzene (Surrogate)<br>Time Analyzed | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | 5<br>5<br>5<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 86-118% Limit<br>88-110% Limit<br>86-115% Limit       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                                                    | Auro                                                         | 03 East Bethany Drive<br>Dra, CO 80014<br>5) 751-1780 |          |

PAGE:5

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



|                                                                                            |                  | 01/09/95          |                  |                                                         |          | No. 10. |
|--------------------------------------------------------------------------------------------|------------------|-------------------|------------------|---------------------------------------------------------|----------|---------|
| JOB NUMBER: 943236 CUSTOMER                                                                | : DANIEL B. STEP | HENS & ASSOCIATES | ATTN:            | JEFF FORBES                                             |          |         |
| CLIENT I.D 4115.2<br>DATE SAMPLED 12/22/94<br>TIME SAMPLED 16:45<br>WORK DESCRIPTION: TW-1 |                  |                   | DATE RECEI       | 'I.D: 943236-0003<br>VED: 12/28/94<br>VED: 14:15<br>    |          |         |
| TEST DESCRIPTION                                                                           | FINAL RESULT     | LIMITS/*DILUTION  | UNITS OF MEASURE | TEST METHOD                                             | DATE     | TECH    |
| Alkalinity, Total (Unfilt.)                                                                | 10               | 5                 | mg/L CaCO3       | 310.1 (1)                                               | 12/30/94 | RPK     |
| Chloride (Unfilt.)                                                                         | 631              | 5                 | mg/L             | 325.2 (1)                                               | 01/05/95 | DME     |
| Cyanide, Total (Unfilt.)                                                                   | <0.02            | 0.02              | mg/L             | 335.2 (1)                                               | 01/04/95 | RJC     |
| Nitrate + Nitrite (as N) [Unfilt.]                                                         | 0.16             | 0.05              | mg/L (as N)      | 353.2 (1)                                               | 01/03/95 | DME     |
| Solids, Total Dissolved (TDS)                                                              | 1290             | 10                | mg/L             | 160.1 (1)                                               | 12/28/94 | RJC     |
| Sulfate (Unfilt.)                                                                          | 140              | 10                | mg/L             | 375.2 (1)                                               | 01/04/95 | DME     |
| Sulfide (Unfilt.)                                                                          | 0.13             | 0.05              | mg/L             | 376.2 (1)                                               | 12/29/94 | SLS     |
| Antimony, Total (Sb)                                                                       | <0.1             | 0.1               | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Arsenic, Total (As)                                                                        | <0.05            | 0.05              | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Barium, Total (Ba)                                                                         | 0.14             | 0.01              | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Beryllium, Total (Be)                                                                      | <0.005           | 0.005             | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Sadmium, Total (Cd)                                                                        | <0.005           | 0.005             | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Calcium, Total (Ca)                                                                        | 184              | 0.1               | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Chromium, Total (Cr)                                                                       | <0.01            | 0.01              | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Cobalt, Total (Co)                                                                         | <0.03            | 0.03              | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Copper, Total (Cu)                                                                         | 0.01             | 0.01              | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Iron, Total (Fe)                                                                           | 4.22             | 0.03              | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Lead, Total (Pb)                                                                           | 0.06             | 0.05              | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Mercury, Total (Hg)                                                                        | <0.0002          | 0.0002            | mg/L             | 7470 (2)                                                | 12/30/94 | BPB     |
| Magnesium, Total (Mg)                                                                      | 23.5             | 0.1               | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| langanese, Total (Mn)                                                                      | 0.39             | 0.01              | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Nickel, Total (Ni)                                                                         | <0.04            | 0.04              | mg/L             | 6010 (2)                                                | 12/30/94 | WGL     |
| Potassium, Total (K)                                                                       | 20.2             | 0.5               | mg/L             | 7610 (2)                                                | 01/04/95 | BPB     |
|                                                                                            | 1                |                   | Aur              | 703 East Bethany Driv<br>cora, CO 80014<br>03) 751-1780 | e        |         |

PAGE:6

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or imolied, as to the productivity, proper operations, or profitableness of any oil, gas, upor or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| JOB NUMBER: 943236 CUSTOM                                                                                                                                                                                               | ER: DANIEL B. STEPH | ENS & ASSOCIATES | ATTN:            | JEFF FORBES |            |       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|------------------|-------------|------------|-------|--|--|
| :LIENT I.D: 4115.2       LABORATORY I.D: 943236-0003         IDATE SAMPLED: 12/22/94       DATE RECEIVED: 12/28/94         TIME SAMPLED: 16:45       TIME RECEIVED: 14:15         WORK DESCRIPTION: TW-1       REMARKS: |                     |                  |                  |             |            |       |  |  |
| TEST DESCRIPTION                                                                                                                                                                                                        | FINAL RESULT        | LIMITS/*DILUTION | UNITS OF MEASURE | TEST METHOD | DATE       | TECHN |  |  |
| jelenium, Total (Se)                                                                                                                                                                                                    | <0.1                | 0.1              | mg/L             | 6010 (2)    | 12/30/94   | WGL   |  |  |
| Silver, Total (Ag)                                                                                                                                                                                                      | <0.01               | 0.01             | mg/L             | 6010 (2)    | 12/30/94   | WGL   |  |  |
| ;<br>Godīum, Total (Na)                                                                                                                                                                                                 | 264                 | 10               | mg/L             | 6010 (2)    | 12/30/94   | WGL   |  |  |
| Thallium, Total (Tl)                                                                                                                                                                                                    | <0.1                | 0.1              | mg/L             | 6010 (2)    | 12/30/94   | WGL   |  |  |
| in, Total (Sn)                                                                                                                                                                                                          | <0.05               | 0.05             | mg/L             | 6010 (2)    | 12/30/94   | WGL   |  |  |
| Vanadium, Total (V)                                                                                                                                                                                                     | <0.05               | 0.05             | mg/L             | 6010 (2)    | 12/30/94   | WGL   |  |  |
| Zinc, Total (Zn)                                                                                                                                                                                                        | 0.05                | 0.01             | mg/L             | 6010 (2)    | 12/30/94   | WGL   |  |  |
| APPENDIX IX VOLATILE ORGANICS                                                                                                                                                                                           |                     | *1               |                  | 8240 (2)    | 12/30/94   | MLA   |  |  |
|                                                                                                                                                                                                                         |                     |                  |                  | 0240 (2)    | 12/ 30/ 94 | HLA   |  |  |
| Acetone                                                                                                                                                                                                                 | ND                  | 100              | ug/L             |             |            |       |  |  |
| Acetonitrile                                                                                                                                                                                                            | ND                  | 100              | ug/L             |             |            |       |  |  |
| Acrolein                                                                                                                                                                                                                | ND                  | 50<br>20         | ug/L             |             |            |       |  |  |
| Acrylonitrile                                                                                                                                                                                                           | ND                  | 20               | ug/L             |             |            |       |  |  |
| Allyl chloride                                                                                                                                                                                                          | ND                  |                  | ug/L             |             |            |       |  |  |
| Benzene                                                                                                                                                                                                                 | ND                  |                  | ug/L             |             |            |       |  |  |
| Bromodichloromethane                                                                                                                                                                                                    | ND                  | 5                | ug/L             |             |            |       |  |  |
| Bromoform                                                                                                                                                                                                               | ND                  | 10               | ug/L             |             |            |       |  |  |
| Bromomethane                                                                                                                                                                                                            | ND                  | 5                | ug/L             |             |            |       |  |  |
| Carbon Disulfide                                                                                                                                                                                                        | ND<br>ND            | 5                | ug/L             |             |            |       |  |  |
| Carbon tetrachloride<br>Chlorobenzene                                                                                                                                                                                   | ND                  | 5                | ug/L<br>ug/L     |             |            |       |  |  |
| Chloroethane                                                                                                                                                                                                            | ND                  | 10               | ug/L             |             |            |       |  |  |
| Chloroform                                                                                                                                                                                                              | ND                  | 5                | ug/L             |             |            |       |  |  |
| Chloromethane                                                                                                                                                                                                           | ND                  | 5                | ug/L             |             |            |       |  |  |
| Chloroprene                                                                                                                                                                                                             | ND                  | 5                | ug/L             |             |            |       |  |  |
| Dibromochloromethane                                                                                                                                                                                                    | ND                  | 5                | ug/L             |             |            |       |  |  |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                             | ND                  | 20               | ug/L             |             |            |       |  |  |
| 1,2-Dibromoethane                                                                                                                                                                                                       | ND                  | 20               | ug/L             |             |            |       |  |  |
| Dibromomethane                                                                                                                                                                                                          | ND                  | 5                | ug/L             |             |            |       |  |  |
| trans-1,4-Dichloro-2-butene                                                                                                                                                                                             | ND                  | 50               | ug/L             |             |            |       |  |  |
| Dichlorodifluoromethane                                                                                                                                                                                                 | ND                  | 10               | ug/L             |             |            |       |  |  |
| 1,1-Dichloroethane                                                                                                                                                                                                      | ND                  | 5                | ug/L             |             |            |       |  |  |
| 1,2-Dichloroethane                                                                                                                                                                                                      | ND                  | 5                | ug/L             |             |            |       |  |  |
| 1,1-Dichloroethene                                                                                                                                                                                                      | ND                  | 5                | ug/L             |             |            |       |  |  |
| 1,2-Dichloroethene (total)                                                                                                                                                                                              | ND<br>ND            | 5                | ug/L<br>ug/L     |             |            |       |  |  |
| Dichloromethane<br>1,2-Dichloropropane                                                                                                                                                                                  | ND                  | 5                | ug/L             |             |            |       |  |  |
| cis-1,3-Dichloropropane                                                                                                                                                                                                 | ND                  | 5                | ug/L             |             |            |       |  |  |
| LIST DTUICNLOFODFODEDE                                                                                                                                                                                                  | NU                  | J J              | I MM/L           |             | 1          |       |  |  |

\_\_\_\_\_

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Fore Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or

PAGE:7

other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



|                                                                                                                                                                                                                       | DANTEL & STEDH  | ENS & ASSOCIATES | ATTN-              | JEFF FORBES   |          |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------------------|---------------|----------|-----|
| NUMBER: 943236 CUSTOMER:                                                                                                                                                                                              | DANIEL B. STEPH |                  | Alla.              | JELL LORDES   |          |     |
| CLIENT I.D: 4115.2       LABORATORY I.D: 943236-0003         DATE SAMPLED: 12/22/94       DATE RECEIVED: 12/28/94         TIME SAMPLED: 16:45       TIME RECEIVED: 14:15         WORK DESCRIPTION: TW-1       REMARKS |                 |                  |                    |               |          |     |
| T DESCRIPTION                                                                                                                                                                                                         | FINAL RESULT    | LIMITS/*DILUTION | UNITS OF MEASURE   | TEST METHOD   | DATE     | TEC |
| trans-1,3-Dichloropropene                                                                                                                                                                                             | ND              | 5                | ug/L               |               |          |     |
| Ethyl benzene                                                                                                                                                                                                         | ND              | 5                | ug/L               |               |          |     |
| Ethyl methacrylate                                                                                                                                                                                                    | ND              | 5                | ug/L               |               |          |     |
| 2-Hexanone                                                                                                                                                                                                            | ND              | 50               | ug/L               |               |          |     |
| Iodomethane                                                                                                                                                                                                           | ND              | 5                | ug/L               |               |          |     |
| Isobutyl alcohol                                                                                                                                                                                                      | ND              | 50               | ug/L               |               |          |     |
| Methylacrylonitrile                                                                                                                                                                                                   | ND              | 50               | ug/L               |               |          |     |
| 2-Butanone                                                                                                                                                                                                            | ND              | 100              | ug/L               |               |          |     |
| Methyl isobutyl ketone                                                                                                                                                                                                | ND              | 50               | ug/L               |               |          |     |
| Methyl methacrylate                                                                                                                                                                                                   | ND              | 5                | ug/L               |               |          |     |
| Propionitrile                                                                                                                                                                                                         | ND              | 100              | ug/L               |               |          |     |
| Styrene                                                                                                                                                                                                               | ND              |                  | ug/L               |               |          |     |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                             | ND              | 5                | ug/L               |               |          |     |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                             | ND              | 5                | ug/L               |               |          |     |
| Tetrachloroethene                                                                                                                                                                                                     | ND              | 5                | ug/L               |               |          |     |
| Toluene                                                                                                                                                                                                               | ND              | 5                | ug/L               |               |          |     |
| 1,1,1-Trichloroethane                                                                                                                                                                                                 | ND              | 5                | ug/L               |               |          |     |
| 1,1,2-Trichloroethane                                                                                                                                                                                                 | ND              | 5                | ug/L               |               |          |     |
| Trichloroethene                                                                                                                                                                                                       | ND              | 5                | ug/L               |               |          |     |
| Trichlorofluoromethane                                                                                                                                                                                                | ND              | 5                | ug/L               |               |          |     |
| 1,2,3-Trichloropropane                                                                                                                                                                                                | ND              | 5                | ug/L               |               |          |     |
| Vinyl acetate                                                                                                                                                                                                         | ND              | 50<br>10         | ug/L               |               |          |     |
| Vinyl chloride                                                                                                                                                                                                        | ND<br>ND        | 5                | ug/L               |               |          |     |
| Xylenes-total<br>Dibromofluoromethane (Surrogate)                                                                                                                                                                     | 111             | 0                | ug/L<br>% Recovery | 86-118% Limit |          |     |
| Toluene-d8 (Surrogate)                                                                                                                                                                                                | 104             | 0                | % Recovery         | 88-110% Limit |          |     |
| 4-Bromofluorobenzene (Surrogate)                                                                                                                                                                                      | 102             | ő                | % Recovery         | 86-115% Limit |          |     |
| Time Analyzed                                                                                                                                                                                                         | 1936            | Ő                | N Recovery         |               |          |     |
| ENDIX IX BNA ORGANICS                                                                                                                                                                                                 |                 | *1               |                    | 8270 (2)      | 01/03/95 | JM  |
| Acenaphthene                                                                                                                                                                                                          | ND              | 10               | ug/L               |               |          |     |
| Acenaphthylene                                                                                                                                                                                                        | ND              | 10               | ug/L               |               |          |     |
| 2-Acetylaminofluorene                                                                                                                                                                                                 | ND              | 10               | ug/L               |               |          |     |
| Acetophenone                                                                                                                                                                                                          | ND              | 10               | ug/L               |               |          |     |
| 4-Aminobiphenyl                                                                                                                                                                                                       | ND              | 10               | ug/L               |               |          |     |
| Aniline                                                                                                                                                                                                               | ND              | 10               | ug/L               |               |          |     |
| Anthracene                                                                                                                                                                                                            | ND              | 10               | ug/L               |               |          |     |
| Aramite                                                                                                                                                                                                               | ND              | 10               | ug/L               |               |          |     |
| Benzo(a)anthracene                                                                                                                                                                                                    | ND              | 10               | ug/L               |               |          |     |
| Benzo(b)fluoranthene                                                                                                                                                                                                  | ND              | 10               | ug/L               |               |          |     |
| Benzo(k)fluoranthene                                                                                                                                                                                                  | ND              | 10               | ug/L               |               |          |     |
| Benzo(a)pyrene                                                                                                                                                                                                        | ND              | 10               | ug/L               |               |          |     |
| Benzo(ghi)perylene<br>Benzyl Alcohol                                                                                                                                                                                  | ND<br>ND        | 10<br>20         | ug/L<br>ug/L       |               |          |     |
|                                                                                                                                                                                                                       |                 |                  |                    |               |          |     |

PAGE:8

The analyses, collisions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and contidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, in weight and only oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirely, without the written approval of Core Laboratories.



| CLIENT I.D: 4115.2 LABOR/<br>DATE SAMPLED: 12/22/94 DATE I<br>TIME SAMPLED: 16:45 TIME I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TN: JEFF FORBES                                                      |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------|
| ATE SAMPLED: 12/22/94.       DATE         THE SAMPLED: 16:45       TIME         CORK DESCRIPTION: TW-1       FINAL RESULT       LIMITS/*DILUTION         Bis(2-chloroethoxy)methane       ND       10       ug/L         Bis(2-chloroethyl)ether       ND       10       ug/L         Bis(2-chloroethyl)ether       ND       10       ug/L         Bis(2-chloroethyl)ether       ND       10       ug/L         Bis(2-chloroethyl)ether       ND       10       ug/L         4-Bromophenyl phenyl ether       ND       10       ug/L         4-Chloroanjthalate       ND       10       ug/L         C-Chloroaphthalene       ND       10       ug/L         C-Chlorobaphthalene       ND       10       ug/L         C-Chlorobenzene       ND       10       ug/L         J-2-Dichlorobenzene       ND       10       ug/L         J-2-Dichlorobenzene       ND       10       ug/L         J-2-Dichlorobenzene       ND       10       ug/L         J-2-Dichlorobenzene       ND       10       ug/L         J-3-Dichlorobenzene       ND       10       ug/L         J-2-Dimethylbenz(a)antracene       ND                                                                                                            | IN: JEFF FURDES                                                      |          |
| Bis(2-chloroethoxy)methane         ND         10         ug/L           Bis(2-chloroethyl)ether         ND         10         ug/L           Bis(2-chloroethyl)ether         ND         10         ug/L           Bis(2-chloroethyl)ether         ND         10         ug/L           Bis(2-chloroethyl)phthalate         ND         10         ug/L           A-Bromophenyl phenyl ether         ND         10         ug/L           A-chlorophenyl phenyl ether         ND         10         ug/L           C-chlorophenyl phenyl ether         ND         10         ug/L           C-chlorophenyl phenyl ether         ND         10         ug/L           Dibenzo(a,h)anthracene         ND         10         ug/L           Dibenzofuran         ND         10         ug/L           Di-n-butyl phthalate         ND         10         ug/L           J,3-Dichlorobenzene         ND         10         ug/L           J,3-Dichlorobenzene         ND         10         ug/L           J,3-Dimethylenzidine         ND         10         ug/L           J,3-Dimethylenzidine         ND         10         ug/L           J,3-Dimethylenninoazobenzene         ND         10                              | ATORY I.D: 943236-000<br>RECEIVED: 12/28/94<br>RECEIVED: 14:15<br>KS | 3        |
| Bis(2-chloroethyl)ether         ND         10         ug/L           Bis(2-chloroethyl)ether         ND         10         ug/L           Bis(2-chloroethyl)phthalate         18         10         ug/L           Bis(2-chloroethyl)phthalate         18         10         ug/L           Butyl benzyl phthalate         ND         10         ug/L           Butyl benzyl phthalate         ND         10         ug/L           2-chloroaniline         ND         20         ug/L           4-chlorophthalene         ND         10         ug/L           4-chlorophthalene         ND         10         ug/L           2-chlorophthalene         ND         10         ug/L           1benzo(a,h)anthracene         ND         10         ug/L           1.3-Dichlorobenzene         ND         10         ug/L           1.3-Dichlorobenzene         ND         10         ug/L           3.3-Dinethylbenzidine         ND         10         ug/L           3.3-Dinethylbenzidine         ND         10         ug/L           3.3-Dinethylbenzidine         ND         10         ug/L           2.3-Dinethylbenzidine         ND         10         ug/L                                                     | JRE TEST METHOD                                                      | DATE TEC |
| Bis(2-chloroethyl)ether         ND         10         ug/L           Bis(2-chloroe1-methylethyl)ether         ND         10         ug/L           Bis(2-chloroe1-methylethyl)ether         ND         10         ug/L           Bis(2-chloroe1-methylethyl)ether         ND         10         ug/L           Bis(2-chloroe1-methylphalate         ND         10         ug/L           Butyl benzyl phthalate         ND         10         ug/L           4-Chloroaniline         ND         10         ug/L           4-Chloroaniline         ND         10         ug/L           2-Chloroaphthalene         ND         10         ug/L           4-Chlorophenyl phthalate         ND         10         ug/L           Dibenzo(a, h)anthracene         ND         10         ug/L           Dibenzofuran         ND         10         ug/L           1, 3-Dichlorobenzene         ND         10         ug/L           1, 3-Dichlorobenzene         ND         10         ug/L           1, 3-Dinethylbenzidine         ND         10         ug/L           2, 3-Dinethylbenzidine         ND         10         ug/L           1, 3-Dinethylbenzidine         ND         10 <td< td=""><td></td><td></td></td<> |                                                                      |          |
| Bis(2-chloro-1-methylethyl)ether         ND         10         ug/L           Bis(2-chloro-1-methylethyl)ether         ND         10         ug/L           A-Bromophenyl phenyl ether         ND         10         ug/L           Butyl benzyl phthalate         ND         10         ug/L           4-Chloroanltine         ND         10         ug/L           2-chloronaphthalene         ND         10         ug/L           2-chloronaphthalene         ND         10         ug/L           Chrysene         ND         10         ug/L           Dibenzofa,h)anthracene         ND         10         ug/L           Di-n-butyl phthalate         ND         10         ug/L           J.2-Dichlorobenzene         ND         10         ug/L           J.3-Dichlorobenzene         ND         10         ug/L           J.4-Dichlorobenzidine         ND         10         ug/L           J.3-Dichlorobenzidine         ND         10         ug/L           J.4-Dichlorobenzidine         ND         10         ug/L           J.4-Dichlorobenzene         ND         10         ug/L           J.4-Dichlorobenzene         ND         10         ug/L <tr< td=""><td></td><td></td></tr<>                |                                                                      |          |
| Bis(2-ethylhexyl)phthalate1810ug/L4-aromophenyl phenyl etherND10ug/LButyl benzyl phthalateND10ug/L2-ChloronaphthaleneND10ug/L2-ChloronaphthaleneND10ug/L2-ChloronaphthaleneND10ug/LChryseneND10ug/LDibenzofuranND10ug/LDibenzofuranND10ug/L1,2-DichorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L3,5-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,2-DimethylenzidineND10ug/L1,2-DimethylenzidineND10ug/L2,4-DinitrotolueneND10ug/L1,4-DinitrobueneeND10ug/L2,4-DinitrotolueneND10ug/L1,4-DinitrobueneeND10ug/L1,4-DinitrobueneeND10ug/L2,4-DinitrotolueneND10ug/L1,4-DitrobuenzeneND10ug/L1,4-DitrobuenzeneND <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |          |
| 4-Bromophenyl phenyl etherND10Ug/LButyl benzyl phthalateND10ug/LButyl benzyl phthalateND20ug/L2-ChloronaphthaleneND10ug/L2-ChloronaphthaleneND10ug/L4-Chlorophenyl phenyl etherND10ug/LDibenzofa, A)anthraceneND10ug/LDibenzofa, A)anthraceneND10ug/LDibenzofuranND10ug/L1, 3-DichlorobenzeneND10ug/L1, 4-DichlorobenzeneND10ug/L1, 4-DichlorobenzeneND10ug/L2, 3-DichlorobenzeneND10ug/L1, 4-DichlorobenzeneND10ug/L2, 3-Dimethylbenz(a)anthraceneND10ug/L2, 3-Dimethylbenz(a)anthraceneND10ug/L3, 3-Dimethylbenz(a)anthraceneND10ug/L2, 4-DinitrotolueneND10ug/L2, 4-DinitrotolueneND10ug/L2, 4-DinitrotolueneND10ug/L1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |          |
| Butyl benzyl phthalateND10Ug/L4-ChloroanithaleneND20Ug/L2-ChloronaphthaleneND10Ug/L2-ChloronaphthaleneND10Ug/LChronaphthaleneND10Ug/LChryseneND10Ug/LDibenzofuranND10Ug/LDibenzofuranND10Ug/L1,2-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10Ug/L1,3-DintorobenzeneND10Ug/L1,2-DimethylenzidineND10Ug/L1,2-DinitrotolueneND10Ug/L2,6-DinitrotolueneND10Ug/L1,6-DinitrotolueneND10Ug/L1,10ND10Ug/L1,10ND10Ug/L1,10ND10Ug/L1,10ND10Ug/L1,10ND10Ug/L1,10ND10Ug/L1,10ND10Ug/L1,10ND10Ug/L1,10ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |          |
| 4-ChloroanilineND20ug/L2-ChloronaphthaleneND10ug/L2-Chlorophenyl phenyl etherND10ug/LChryseneND10ug/LDibenzo(a,h)anthraceneND10ug/LDibenzofuranND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L2,3-DichlorobenzeneND10ug/L2,3-DichlorobenzeneND10ug/L2,3-DichlorobenzeneND10ug/L2,3-Dimethylenz(a)anthraceneND10ug/L3,3-Dimethylbenz(a)anthraceneND10ug/L2,4-DinitrotolueneND10ug/L2,6-DinitrotolueneND10ug/L2,6-DinitrotolueneND10ug/LLion-octyl phthalateND10ug/LLion-octyl phthalateND10ug/LLion-octyl phthalateND10ug/LLion-octyl phthalateND10ug/LLion-octyl phthalateND10ug/LLioneneND10ug/LLioneneND10ug/LLioneneND10ug/LLion-octyl phthalateND10ug/LLion-octyl phthalateND10ug/LLion-octyl phthalateND10ug/LHexachlorocthaneND1                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |          |
| 2-chloronaphthaleneND10ug/L4-ChloronaphthaleneND10ug/LChryseneND10ug/LDibenzo(a,h)anthraceneND10ug/LDibenzofuranND10ug/LDin-butyl phthalateND10ug/L1,2-DichlorobenzeneND10ug/L3,3-DichlorobenzeneND10ug/L3,3-DichlorobenzeneND10ug/Lj.4-DichlorobenzeneND10ug/Lj.5-DimethylaminoazobenzeneND10ug/Lj.6-DimethylaminoazobenzeneND10ug/Lj.7-DimethylbenzidineND10ug/Lj.7-DimethylbenzidineND10ug/Lj.7-DimethylbenzidineND10ug/Lj.6-DinitroblueneND10ug/Lj.6-DinitrotolueneND10ug/Lj.6-DinitrotolueneND10ug/Lj.6-DinitrotolueneND10ug/Lj.7-octyl phthalateND10ug/Lj.7-octyl opentadieneND10ug/LHexachloroburatieneND10ug/LHexachloroburatieneND10ug/LIorn-octyl phthalateND10ug/LJiphenylamineND10ug/LIloreneND10ug/LHexachloroburatieneND10ug/LJiphenylamineND10ug/LJiphenylamineND                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |          |
| 4-Chlorophenyl phenyl etherND10ug/LChryseneND10ug/LDibenzo(a,h)anthraceneND10ug/LDibenzofuranND10ug/LDi-n-butyl phthalateND10ug/L1,2-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L3,3-DichlorobenzeneND10ug/Lj.3-DichlorobenzeneND10ug/Lj.4-DithlorobenzeneND10ug/Lj.4-DithlorobenzeneND10ug/Lj.4-DithlorobenzeneND10ug/Lj.5-DimethylphthalateND10ug/Lj.3-DimethylphthalateND10ug/Lj.3-DimethylphenethylamineND10ug/Lj.3-DimethylphenethylamineND10ug/Lj.3-DinitrotolueneND10ug/Lj.4-DinitrotolueneND10ug/Lj.4-DinitrotolueneND10ug/Lj.4-DinitrotolueneND10ug/Lj.4-DinitrotolueneND10ug/Lj.1-noctyl phthalateND10ug/Lj.1-noctyl phthalateND10ug/Lj.1-notoutadieneND10ug/LHexachlorobenzeneND10ug/LHexachlorobenzeneND10ug/Lj.1-noctyl phthalateND10ug/Lj.1-noctyl phthalateND10ug/Lj.1-noctyl                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |          |
| ChryseneND10ug/LDibenzo(a,h)anthraceneND10ug/LDibenzo(a,h)anthraceneND10ug/LDibenzo(a,h)anthraceneND10ug/LDinn-butyl phthalateND10ug/L1,3-DichlorobenzeneND10ug/L1,4-DichlorobenzeneND10ug/L3,3-DichlorobenzeneND10ug/Lj-thyl phthalateND10ug/Lp-DimethylaminoazobenzeneND10ug/Lj-thyl phthalateND10ug/Lj-thyl phthalateND10ug/Lj-thyl phthalateND10ug/Lj-thyl phthalateND10ug/Lj-thyl phthalateND10ug/Lj-thyl phthalateND10ug/Lj-thorobenzeneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/Lj-thorolueneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |          |
| Dibenzo(a,h)anthraceneND10ug/LDibenzofuranND10ug/LDi-n-butyl phthalateND10ug/L1,2-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,12-DimethylaminoazobenzeneND10ug/L1,12-DimethylbenzidineND10ug/L1,12-DimethylbenzidineND10ug/L1,12-DintrotolueneND10ug/L1,12-DintrotolueneND10ug/L2,4-DinitrotolueneND10ug/L1,12-DintrotolueneND10ug/L1,12-DintrotolueneND10ug/L1,12-DintrotolueneND10ug/L1,12-DintrotolueneND10ug/L1,12-DintrotolueneND10ug/L1,12-DielorobenzeneND10ug/L1,12-DielorobenzeneND10ug/L1,12-DielorobenzeneND10ug/L1,12-DielorobenzeneND10ug/L1,12-DielorobenzeneND10ug/L1,12-DielorobenzeneND10ug/L1,12-Dielo                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |          |
| DibenzofuranND10ug/LDi-n-butyl phthalateND10ug/L1,2-DichlorobenzeneND10ug/L1,3-DichlorobenzeneND10ug/L1,4-DichlorobenzeneND10ug/L3,3-DichlorobenzeneND10ug/Ljethyl phthalateND10ug/Lp-DimethylaminoazobenzeneND10ug/Ljethyl phthalateND10ug/Ljethyl p                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |          |
| Di-n-butyl phthalateND10Ug/L1,2-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10Ug/L1,4-DichlorobenzeneND10Ug/L3,3-DichlorobenzeneND10Ug/LbithlateND10Ug/Lp-DimethylaminoazobenzeneND10Ug/Lr,12-Dimethylbenz(a)anthraceneND10Ug/Lalpha, alpha-DimethylphenethylamineND10Ug/LbithlatateND10Ug/Lalpha, alpha-DimethylphenethylamineND10Ug/L2,6-DinitrotolueneND10Ug/LbiphenylamineND10Ug/LbiphenylamineND10Ug/LbiphenylamineND10Ug/LbiphenylamineND10Ug/LbiphenylamineND10Ug/LFluorantheneND10Ug/LHexachlorobutadieneND10Ug/LHexachloropopeneND10Ug/LHexachloropopeneND10Ug/LIsophoroneND10Ug/LIsophoroneND10Ug/LIsophoroneND10Ug/LSosafroleND10Ug/LKeponeND10Ug/LSosafroleND10Ug/LAlenapyrileneND10Ug/LSosafroleND10Ug/LAlenapyrileneND <td< td=""><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |          |
| 1,2-DichlorobenzeneND10Ug/L1,3-DichlorobenzeneND10ug/L1,4-DichlorobenzeneND10ug/L1,3-DichlorobenzidineND20ug/LDiethyl phthalateND10ug/Lp-DimethylaminoazobenzeneND10ug/L7,12-DimethylbenzidineND10ug/Lalpha, alpha-DimethylphenethylamineND10ug/Lalpha, alpha-DimethylphenethylamineND10ug/LDimethyl phthalateND10ug/L2,4-DinitrotolueneND10ug/L2,6-DinitrotolueneND10ug/LDiphenylamineND10ug/LFluoranteneND10ug/LVLND10ug/LVLND10ug/LSystemND10ug/LVLND10ug/LVLND10ug/LVLND10ug/LVLND10ug/LVLND10ug/LVLND10ug/LSystemND10ug/LND10ug/LND10ug/LND10ug/LND10ug/LND10ug/LND10ug/LND10ug/LND10ug/LND10ug/LND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |          |
| 1,3-DichlorobenzeneND10ug/L1,4-DichlorobenzeneND10ug/L3,3-DichlorobenzidineND20ug/LDiethyl phthalateND10ug/Lp-DimethylaminoazobenzeneND10ug/L7,12-Dimethylbenz(a)anthraceneND10ug/Lalpha,alpha-DimethylphenethylamineND10ug/Lm-DinitrobenzeneND10ug/Lz,4-DinitrotolueneND10ug/Lz,6-DinitrotolueneND10ug/LDiphenylamineND10ug/LbiphenylamineND10ug/Lz,6-DinitrotolueneND10ug/LbiphenylamineND10ug/LbiphenylamineND10ug/LbiphenylamineND10ug/LfluorantheneND10ug/LfluorantheneND10ug/LHexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropopeneND10ug/LIsodrinND10ug/LIsodrinND10ug/LIsophoroneND10ug/LSophoroneND10ug/LSophoroneND10ug/LSophoroneND10ug/LSophoroneND10ug/LSophylcholanthreneND10ug/LSophoroneND10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |          |
| 1,4-DichlorobenzeneND10ug/L3,3-DichlorobenzidineND20ug/LDiethyl phthalateND10ug/Lp-DimethylaminoazobenzeneND10ug/L3,3-Dimethylbenz(a)anthraceneND10ug/L3,3-Dimethylbenz(a)anthraceneND10ug/L3,3-Dimethylbenz(a)anthraceneND10ug/Lalpha,alpha-DimethylphenethylamineND10ug/LDimethyl phthalateND10ug/Lp-initrobenzeneND10ug/L2,4-DinitrotolueneND10ug/LbinenylamineND10ug/LbiphenylamineND10ug/LfluoreneND10ug/LgluoreneND10ug/LfluoreneND10ug/LfluoreneND10ug/LHexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopeneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LIsophoroneND10ug/LMethapyrileneND10ug/LXeppeneND10ug/LMethapyrileneND10ug/LXeppeneND10ug/LMethapyrileneND10ug/LXeppeneND10ug/LMethapyrileneND <td< td=""><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |          |
| 3,3-DichlorobenzidineND20ug/LDiethyl phthalateND10ug/Lp-DimethylaminoazobenzeneND10ug/Lr,12-Dimethylbenz(a)anthraceneND10ug/Lalpha,alpha-DimethylphenethylamineND10ug/LDimethyl benzidineND10ug/Lalpha,alpha-DimethylphenethylamineND10ug/LDimethyl phthalateND10ug/L2,4-DinitrotolueneND10ug/L2,6-DinitrotolueneND10ug/LDiphenylamineND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LHexachlorobenzeneND10ug/LLioreneND10ug/LHexachloropthaleneND10ug/LHexachloropthaleneND10ug/LHexachloropthaleneND10ug/LHexachloropthaleneND10ug/LHexachloropthaleneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LKeponeND10ug/LMethapyrileneND10ug/LZophulanthreneND10ug/LND10ug/Lug/LND10ug/LND10ug/LND10ug/LND10ug/LND10ug/L<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |          |
| Diethyl phthalateND10ug/Lp-DimethylaminoazobenzeneND10ug/L7,12-Dimethylbenz(a)anthraceneND10ug/L3,3-Dimethylbenz(a)anthraceneND10ug/Lalpha, alpha-DimethylphenethylamineND10ug/LDimethyl phthalateND10ug/Lm-DinitrobenzeneND10ug/L2,6-DinitrotolueneND10ug/LDiphenylamineND10ug/LDiphenylamineND10ug/LfluorantheneND10ug/LfluorantheneND10ug/LfluorantheneND10ug/LHexachlorobutadieneND10ug/LHexachloroptopeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsophoroneND10ug/LIsophoroneND10ug/LKeponeND10ug/LKeponeND10ug/LXeponeND10ug/LNaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |          |
| p-DimethylaminoazobenzeneND10ug/L7,12-Dimethylbenz(a)anthraceneND10ug/L3,3-Dimethylbenz(a)anthraceneND10ug/Lalpha,alpha-DimethylphenethylamineND10ug/LDimethyl phthalateND10ug/LDimethyl phthalateND10ug/L2,4-DinitrotolueneND10ug/L2,4-DinitrotolueneND10ug/L2,4-DinitrotolueneND10ug/L2,6-DinitrotolueneND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LFluoreneND10ug/LHexachlorobutadieneND10ug/LHexachloropyclopentadieneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsosafroleND10ug/LKeponeND10ug/LKeponeND10ug/LNo10ug/LNo10ug/LNo10ug/LNo10ug/LNo10ug/LNo10ug/LNo10ug/LKeponeND10ug/LNo10ug/LNo10ug/LNo10ug/LNo10ug/LNo10ug/LNo10ug/LNo10ug/LN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |          |
| 7,12-0 imethylbenz(a)anthraceneND10ug/L3,3-D imethylbenzidineND10ug/Lalpha,alpha-D imethylphenethylamineND10ug/LDimethyl phthalateND10ug/Lw-DinitrobenzeneND10ug/L2,4-D initrotolueneND10ug/L2,6-D initrotolueneND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LFluorantheneND10ug/LHexachlorobenzeneND10ug/LHexachlorobenzeneND10ug/LHexachlorobenzeneND10ug/LHexachloropopeneND10ug/LHexachloropopeneND10ug/LIsoghroneND10ug/LIsoghroneND10ug/LIsoghroneND10ug/LSasafroleND10ug/LKeponeND10ug/LSasafroleND10ug/LNohololanthreneND10ug/LSasafroleND10ug/LArethylcholanthreneND10ug/LNaphthaleneND10ug/LNaphthaleneND10ug/LNaphthaleneND10ug/LNaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |          |
| 3,3-DimethylbenzidineND10ug/Lalpha,alpha-DimethylphenethylamineND10ug/LDimethyl phthalateND10ug/Lm-DinitrobenzeneND10ug/L2,4-DinitrotolueneND10ug/L2,6-DinitrotolueneND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LFluorantheneND10ug/LFluorantheneND10ug/LHexachlorobenzeneND10ug/LHexachlorobenzeneND10ug/LHexachlorobenzeneND10ug/LHexachloropenzeneND10ug/LHexachloropenzeneND10ug/LHexachloropenzeneND10ug/LHexachloropenzeneND10ug/LHexachloropeneneND10ug/LIsodrinND10ug/LIsosafroleND10ug/LKeponeND10ug/LSeforeneND10ug/LSeforeneND10ug/LSeforeneND10ug/LNohroneND10ug/LSeforeneND10ug/LSeforeneND10ug/LSeforeneND10ug/LSeforeneND10ug/LSeforeneND10ug/LSeforeneND10 <t< td=""><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |          |
| alpha, alpha-DimethylphenethylamineND10ug/LDimethyl phthalateND10ug/Lm-DinitrobenzeneND10ug/L2,4-DinitrotolueneND10ug/L2,6-DinitrotolueneND10ug/LDi-n-octyl phthalateND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LHexachlorobenzeneND10ug/LHexachlorobenzeneND10ug/LHexachloropopeneND10ug/LHexachloropopeneND10ug/LHexachloropropeneND10ug/LHexachloropropeneND10ug/LHexachloropropeneND10ug/LKeponeND10ug/LIsosafroleND10ug/LKeponeND10ug/LMethapyrileneND10ug/LNo10ug/Lug/LNo10ug/LKeponeND10ug/LMethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |          |
| Dimethyl phthalateND10ug/Lm-DinitrobenzeneND10ug/L2,4-DinitrotolueneND10ug/L2,6-DinitrotolueneND10ug/LDi-n-octyl phthalateND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LFluoreneND10ug/LHexachlorobenzeneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropeneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LIsophoroneND10ug/LMethapyrileneND10ug/LMethapyrileneND10ug/LMethapyrileneND10ug/LMethapyrileneND10ug/LMethapyrileneND10ug/LNaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |          |
| m-DinitrobenzeneND10ug/L2,4-DinitrotolueneND10ug/L2,6-DinitrotolueneND10ug/LDi-n-octyl phthalateND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LFluoreneND10ug/LHexachlorobenzeneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloroporpeneND10ug/LIsosafroleND10ug/LIsosafroleND10ug/LKeponeND10ug/LMethapyrileneND10ug/LS-MethylcholanthreneND10ug/LNaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |          |
| Z,4-DinitrotolueneND10ug/LZ,6-DinitrotolueneND10ug/LDi-n-octyl phthalateND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LFluoreneND10ug/LHexachlorobenzeneND10ug/LHexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropoteneND10ug/LHexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsosafroleND10ug/LIsosafroleND10ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/L2-MethylnaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |          |
| Z,6-DinitrotolueneND10ug/LDi-n-octyl phthalateND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LFluoreneND10ug/LHexachlorobenzeneND10ug/LHexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopenteND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsosafroleND10ug/LIsosafroleND10ug/LSeponeND10ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |          |
| Di-n-octyl phthalateND10ug/LDi-n-octyl phthalateND10ug/LDiphenylamineND10ug/LFluorantheneND10ug/LFluoreneND10ug/LHexachlorobenzeneND10ug/LHexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND50ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |          |
| DiphenylamineND10ug/LFluorantheneND10ug/LFluoreneND10ug/LHexachlorobenzeneND10ug/LHexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND10ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |          |
| FluorantheneND10ug/LFluorantheneND10ug/LFluoreneND10ug/LHexachlorobenzeneND10ug/LHexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsodrinND10ug/LIsosafroleND10ug/LKeponeND50ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |          |
| FluoreneND10ug/LHexachlorobenzeneND10ug/LHexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND10ug/LMethapyrileneND10ug/L2-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |          |
| HexachlorobenzeneND10ug/LHexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND10ug/LMethapyrileneND10ug/L2-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |          |
| HexachlorobutadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND10ug/LMethapyrileneND10ug/L2-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |          |
| HexachlorocyclopentadieneND10ug/LHexachlorocyclopentadieneND10ug/LHexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND10ug/LMethapyrileneND10ug/L2-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |          |
| HexachloroethaneND10ug/LHexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND50ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      |          |
| HexachloropropeneND10ug/LIndeno(1,2,3-cd)pyreneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND50ug/LMethapyrileneND10ug/L2-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |          |
| Indeno(1,2,3-cd)pyreneND10ug/LIsodrinND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND50ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                      |          |
| IsodrinND10ug/LIsophoroneND10ug/LIsosafroleND10ug/LKeponeND50ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/L2-MethylnaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |          |
| IsophoroneND10ug/LIsosafroleND10ug/LKeponeND50ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/L2-MethylnaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |          |
| IsosafroleND10ug/LKeponeND50ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/L2-MethylnaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |          |
| KeponeND50ug/LMethapyrileneND10ug/L3-MethylcholanthreneND10ug/L2-MethylnaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                      |          |
| MethapyrileneND10ug/L3-MethylcholanthreneND10ug/L2-MethylnaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |          |
| 3-MethylcholanthreneND10ug/L2-MethylnaphthaleneND10ug/LNaphthaleneND10ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |          |
| 2-Methylnaphthalene ND 10 ug/L<br>Naphthalene ND 10 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |          |
| Naphthalene ND 10 ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |          |
| LA-NADDIDODE I NU I UU IUU/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10703 East Bethany Dri<br>Aurora, CO 80014                           | ve       |

PAGE:9

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any original coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entry, without the written approval of Core Laboratories.



## LABORATORY TESTS RESULTS 01/09/95

| JOB NUMBER: 943236 | CUSTOMER: | DANIEL B. STE | PHENS & ASSOCIATES | ATTN: | JEFF FORBES | <b>)</b> |  |
|--------------------|-----------|---------------|--------------------|-------|-------------|----------|--|
|                    |           |               |                    |       |             |          |  |
|                    |           |               |                    |       |             |          |  |

CLIENT I.D..... 4115.2 DATE SAMPLED..... 12/22/94 TIME SAMPLED..... 16:45 VORK DESCRIPTION...: TW-1

Ì

LABORATORY I.D...: 943236-0003 DATE RECEIVED...: 12/28/94 TIME RECEIVED...: 14:15 REMARKS.....

| EST DESCRIPTION                   | FINAL RESULT | LIMITS/*DILUTION | UNITS OF MEASURE | TEST METHOD            | DATE TECH |
|-----------------------------------|--------------|------------------|------------------|------------------------|-----------|
| 1-Naphthylamine                   | ND           | 10               | ug/L             |                        |           |
| 2-Naphthylamine                   | ND           | 10               | ug/L             |                        |           |
| o-Nitroaniline                    | ND           | 50               | ug/L             |                        |           |
| m-Nitroaniline                    | ND           | 50               | ug/L             |                        |           |
| p-Nitroaniline                    | ND           | 50               | ug/L             |                        |           |
| Nitrobenzene                      | ND           | 10               | ug/L             |                        |           |
| 4-Nitroquinoline 1-oxide          | ND           | 10               | ug/L             |                        |           |
| N-Nitrosodi-n-butylamine          | ND           | 10               | ug/L             |                        |           |
| N-Nitrosodiethylamine             | ND           | 10               | ug/L             |                        |           |
| N-Nitrosodimethylamine            | ND           | 10               | ug/L             |                        |           |
| N-Nitrosodiphenylamine            | ND           | 10               | ug/L             |                        |           |
| N-Nitrosodipropylamine            | ND           | 10               | ug/L             |                        |           |
| N-Nitrosomethylethylamine         | ND           | 10               | ug/L             |                        |           |
| N-Nitrosomorpholine               | ND           | 10               | ug/L             |                        |           |
| N-Nitrosopiperidine               | ND           | 10               | ug/L             |                        |           |
| N-Nitrosopyrrolidine              | ND           | 10               | ug/L             |                        |           |
| 5-Nitro-o-toluidine               | ND           | 10               | ug/L             |                        |           |
| Pentachlorobenzene                | ND           | 10               | ug/L             |                        |           |
| Pentachloroethane                 | ND           | 10               | ug/L             |                        |           |
| Pentachloronitrobenzene           | ND           | 10               | ug/L             |                        |           |
| Phenacetin                        | ND           | 10               | ug/L             |                        |           |
| p-Phenylenediamine                | ND           | 10               | ug/L             |                        |           |
| Phenanthrene                      | ND           | 10               | ug/L             |                        |           |
| 2-Picoline                        | ND           | 10               | ug/L             |                        |           |
| Pronamide                         | ND           | 10               | ug/L             |                        |           |
| Pyrene                            | ND           | 10               | ug/L             |                        |           |
| Pyridine                          | ND           | 10               | ug/L             |                        |           |
| Safrole                           | ND           | 10               | ug/L             |                        |           |
| 1,2,4,5 Tetrachlorobenzene        | ND           | 10               | ug/L             |                        |           |
| o-Toluidine                       | ND           | 10               | ug/L             |                        |           |
| 1,2,4-Trichlorobenzene            | ND           | 10               | ug/L             |                        |           |
| sym-Trinitrobenzene               | ND           | 10               | ug/L             |                        |           |
| Chlorobenzilate                   | ND           | 10               | ug/L             |                        |           |
| 4-Chloro-3-methylphenol           | ND           | 20               | ug/L             |                        |           |
| 2-Chlorophenol                    | ND           | 10               | ug/L             |                        |           |
| o-Cresol (2-Methylphenol)         | ND           | 10               | ug/L             |                        |           |
| m & p-Cresol (3 & 4-Methylphenol) | ND           | 10               | ug/L             |                        |           |
| Diallate                          | ND           | 10               | ug/L             |                        |           |
| 2,4-Dichlorophenol                | ND           | 10               | ug/L             |                        |           |
| 2,6-Dichlorophenol                | ND           | 10               | ug/L             |                        |           |
| 2,4-Dimethylphenol                | ND           | 10               | ug/L             |                        |           |
| 4,6-Dinitro-o-cresol              | ND           | 50               | ug/L             |                        |           |
| 2,4-Dinitrophenol                 | ND           | 50               | ug/L             |                        |           |
| Ethyl methanesulfonate            | ND           | 10               | ug/L             |                        |           |
| Hexachlorophene                   | ND           | 200              | ug/L             |                        |           |
| ·                                 |              | 1 - C.           | ,                |                        | 1         |
|                                   |              |                  | 10 <sup>.</sup>  | 703 East Bethany Drive | ····      |
|                                   |              |                  |                  | rora, CO 80014         |           |

10703 East Bethany Drive Aurora, CO 80014 (303) 751-1780

PAGE:10

The analyses, comisions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or prohitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



#### LABORATORY TESTS RESULTS 01/09/95

|                    | DANIEL B. STEPHENS |                   |
|--------------------|--------------------|-------------------|
|                    |                    |                   |
| JOB NUMBER: 943236 |                    | ATTN: JEFF FORBES |
|                    |                    |                   |

LIENT I.D...... 4115.2 DATE SAMPLED..... 12/22/94 TIME SAMPLED.....: 16:45 YORK DESCRIPTION...: TW-1

LABORATORY I.D...: 943236-0003 DATE RECEIVED....: 12/28/94 TIME RECEIVED....: 14:15 REMARKS.....

| EST DESCRIPTION                  | FINAL RESULT | LIMITS/*DILUTION | UNITS OF MEASURE | TEST METHOD            | DATE     | TECH |
|----------------------------------|--------------|------------------|------------------|------------------------|----------|------|
| Methyl methanesulfonate          | ND           | 10               | ug/L             |                        |          |      |
| 2-Nitrophenol                    | ND           | 10               | ug/L             |                        | 1        |      |
| 4-Nitrophenol                    | ND           | 50               | ug/L             |                        |          |      |
| Pentachlorophenol                | ND           | 50               | ug/L             |                        |          |      |
| Phenol                           | ND           | 10               | ug/L             |                        |          |      |
| 2,3,4,6-Tetrachlorophenol        | ND           | 10               | ug/L             |                        |          |      |
| 2,4,5-Trichlorophenol            | ND           | 10               | ug/L             |                        |          |      |
| 2,4,6-Trichlorophenol            | ND           | 10               | ug/L             |                        |          |      |
| Nitrobenzene-d5 (Surrogate)      | 99           | 0                | % Recovery       | 35-114% Limit          |          |      |
| 2-Fluorobiphenyl (Surrogate)     | 96           | 0                | % Recovery       | 43-116% Limit          |          |      |
| 4-Terphenyl-d14 (Surrogate)      | 94           | 0                | % Recovery       | 33-141% Limit          |          |      |
| Phenol-d6 (Surrogate)            | 84           | 0                | % Recovery       | 10-94% Limit           |          |      |
| 2-Fluorophenol (Surrogate)       | 95           | 0                | % Recovery       | 21-100% Limit          |          |      |
| 2,4,6-Tribromophenol (Surrogate) | 91           | 0                | % Recovery       | 10-123% Limit          |          |      |
| Time Analyzed                    | 1821         | Ő                | a Recovery       |                        |          |      |
| Date Extracted                   | 12/28/94     | Ŏ                |                  |                        |          |      |
| PPENDX IX ORGANOCHLORINE PEST    |              | *10              |                  | 8080 (2)               | 12/29/94 | LB   |
| Aldrin                           | ND           | 0.040            | ug/L             |                        |          |      |
| alpha-BHC                        | ND           | 0.030            | ug/L             |                        |          |      |
| beta-BHC                         | ND           | 0.060            | ug/L             |                        |          |      |
| delta-BHC                        | ND           | 0.090            | ug/L             | l l                    |          |      |
| gamma-BHC                        | ND           | 0.040            | ug/L             |                        |          |      |
| Chlordane                        | ND           | 0.140            | ug/L             |                        |          |      |
| 4,4'-DDD                         | ND           | 0.110            | ug/L             |                        |          |      |
| 4,4'-DDE                         | ND           | 0.040            | ug/L             |                        |          |      |
| 4,4'-DDT                         | ND           | 0.120            | ug/L             |                        |          |      |
| Dieldrin                         | ND           | 0.020            | ug/L             |                        |          |      |
| Endosulfan I                     | ND           | 0.140            | ug/L             |                        |          |      |
| Endosulfan II                    | ND           | 0.040            | ug/L             |                        |          |      |
| Endosulfan sulfate               | ND           | 0.660            | ug/L             |                        |          |      |
| Endosultan sultate<br>Endrin     | ND           | 0.060            | ug/L             |                        |          |      |
|                                  | ND           | 0.230            | ug/L             |                        |          |      |
| Endrin aldehyde                  | ND           | 0.030            |                  |                        |          |      |
| Heptachlor                       |              | 0.830            | ug/L             |                        |          |      |
| Heptachlor epoxide               | ND           |                  | ug/L             |                        |          |      |
| Methoxychlor                     | ND           | 1.8              | ug/L             |                        |          |      |
| Toxaphene                        | ND           | 2.4              | ug/L             |                        |          |      |
| Aroclor 1016                     | ND           | 0.50             | ug/L             |                        |          |      |
| Aroclor 1221                     | ND           | 0.50             | ug/L             |                        |          |      |
| Aroclor 1232                     | ND           | 0.50             | ug/L             |                        |          |      |
| Aroclor 1242                     | ND           | 0.50             | ug/L             |                        |          |      |
| Aroclor 1248                     | ND           | 0.50             | ug/L             |                        |          |      |
| Aroclor 1254                     | ND           | 0.50             | ug/L             |                        |          |      |
| Aroclor 1260                     | ND           | 0.50             | ug/L             |                        |          |      |
|                                  | 1            | 1                | 10               | 703 East Bethany Drive |          |      |
|                                  |              |                  |                  | rora, CO 80014         |          |      |

(303) 751-1780

PAGE:11

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the dest judgment of Care Laboratories. Care Laboratories, however, assumes no responsibility and makes no warrantly or representations, express or implied, as to the productivity, proper operations, or prolitableness of any oil, gas, coal or

other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratones.



#### LABORATORY TESTS RESULTS 01/09/95

JOB NUMBER: 943236 CUSTOMER: DANIEL B. STEPHENS & ASSOCIATES ATTN: JEFF FORBES

CLIENT I.D...... 4115.2 DATE SAMPLED.....: 12/22/94 TIME SAMPLED.....: 16:45 WORK DESCRIPTION...: TW-1

LABORATORY I.D...: 943236-0003 DATE RECEIVED...: 12/28/94 TIME RECEIVED...: 14:15 REMARKS.....

| EST DESCRIPTION                                                                                         | FINAL RESULT                  | LIMITS/*DILUTION | UNITS OF MEASURE         | TEST METHOD                                           | DATE TECHN |
|---------------------------------------------------------------------------------------------------------|-------------------------------|------------------|--------------------------|-------------------------------------------------------|------------|
| 2,4,5,6-Tetrachloro-m-xylene(Surr)<br>Decachlorobiphenyl (Surrogate)<br>Time Analyzed<br>Date Extracted | 100<br>83<br>1610<br>12/28/94 | 0<br>0<br>0<br>0 | % Recovery<br>% Recovery | 60-150% Limit<br>60-150% Limit                        |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  |                          |                                                       |            |
|                                                                                                         |                               |                  | 107(<br>Auro<br>(302     | 03 East Bethany Drive<br>ora, CO 80014<br>3) 751-1780 |            |
|                                                                                                         |                               | PAGE:12          |                          |                                                       |            |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Care Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirely, without the writen approval of Care Laboratories.



#### LABORATORY TESTS RESULTS 01/09/95

| JOB NUMBER: 943236 CUSTOMER: DANIEL B. STEPHENS & ASSOCIATES |  |  |
|--------------------------------------------------------------|--|--|
|--------------------------------------------------------------|--|--|

ATTN: JEFF FORBES

LABORATORY I.D...: 943236-0004

DATE RECEIVED....: / / TIME RECEIVED....: : REMARKS.....

LIENT I.D...... DATE SAMPLED.....: / / TIME SAMPLED.....: : YORK DESCRIPTION...: METHOD BLANK

| EST DESCRIPTION              | FINAL RESULT | LIMITS/*DILUTION | UNITS OF MEASURE | TEST METHOD | DATE TECH    |
|------------------------------|--------------|------------------|------------------|-------------|--------------|
| PPENDIX IX VOLATILE ORGANICS |              | *1               |                  | 8240 (2)    | 12/30/94 MLA |
| Acetone                      | ND           | 100              | ug/L             |             |              |
| Acetonitrile                 | ND           | 100              | ug/L             |             |              |
| Acrolein                     | ND           | 50               | ug/L             |             |              |
| Acrylonitrile                | ND           | 20               | ug/L             |             |              |
| Allyl chloride               | ND           | 20               | ug/L             |             |              |
| Benzene                      | ND           | 1                | ug/L             |             |              |
| Bromodichloromethane         | ND           | 5                | ug/L             |             |              |
| Bromoform                    | ND           | 5                | ug/L             |             |              |
| Bromomethane                 | ND           | 10               | ug/L             |             |              |
| Carbon Disulfide             | ND           | 5                | ug/L             |             |              |
| Carbon tetrachloride         | ND           | 5                | ug/L             |             |              |
| Chlorobenzene                | ND           | 5                | ug/L             |             |              |
| Chloroethane                 | ND           | 10               | ug/L             |             |              |
| Chloroform                   | ND           | 5                | ug/L             |             |              |
| Chloromethane                | ND           | 5                |                  |             |              |
| Chloroprene                  | ND           | 5                | ug/L             |             |              |
| Dibromochloromethane         | ND           | 5                | ug/L<br>ug/L     |             |              |
|                              | ND           | 20               |                  |             |              |
| 1,2-Dibromo-3-chloropropane  | ND           | 20               | ug/L             |             |              |
| 1,2-Dibromoethane            |              | 20               | ug/L             |             |              |
| Dibromomethane               | ND           | -                | ug/L             |             |              |
| trans-1,4-Dichloro-2-butene  | ND           | 50               | ug/L             |             |              |
| Dichlorodifluoromethane      | ND           | 10               | ug/L             |             |              |
| 1,1-Dichloroethane           | ND           | 5                | ug/L             |             |              |
| 1,2-Dichloroethane           | ND           | 5                | ug/L             |             |              |
| 1,1-Dichloroethene           | ND           | 5                | ug/L             |             |              |
| 1,2-Dichloroethene (total)   | ND           | 5                | ug/L             |             |              |
| Dichloromethane              | ND           | 5                | ug/L             |             |              |
| 1,2-Dichloropropane          | ND           | 5                | ug/L             |             |              |
| cis-1,3-Dichloropropene      | ND           | 5                | ug/L             |             |              |
| trans-1,3-Dichloropropene    | ND           | 5                | ug/L             |             |              |
| Ethyl benzene                | ND           | 5                | ug/L             |             |              |
| Ethyi methacrylate           | ND           | 5                | ug/L             |             |              |
| 2-Hexanone                   | ND           | 50               | ug/L             |             |              |
| Iodomethane                  | ND           | 5                | ug/L             |             |              |
| Isobutyl alcohol             | ND           | 50               | ug/L             |             |              |
| Methylacrylonitrile `        | ND           | 50               | ug/L             |             |              |
| 2-Butanone                   | ND           | 100              | ug/L             |             |              |
| Methyl isobutyl ketone       | ND           | 50               | ug/L             |             |              |
| Methyl methacrylate          | ND           | 5                | ug/L             |             |              |
| Propionitrile                | ND           | 100              | ug/L             |             |              |
| Styrene                      | ND           | 5                | ug/L             |             |              |
| 1,1,1,2-Tetrachloroethane    | ND           | 5                | ug/L             |             |              |
| 1,1,2,2-Tetrachloroethane    | ND           | 5                | ug/L             |             |              |
|                              |              |                  |                  |             |              |

Aurora, CO 80014 (303) 751-1780

PAGE:13

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Fore Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or protitableness of any oil, gas, coal or offer mineral, procent, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the writen approval of Core Laboratories.



## LABORATORY TESTS RESULTS 01/09/95

| 1 | JOB | NUMBER: 943236 | CUSTOMER: | DANIEL B. | STEPHENS & | ASSOCIATES     | ATTN: | JEFF | FORBES      |                               |           |  |
|---|-----|----------------|-----------|-----------|------------|----------------|-------|------|-------------|-------------------------------|-----------|--|
| 1 | 1.5 |                |           |           |            | ana ang pagang |       |      | 30-1 - 20 L | <br>1987 <u>(1997</u> - 1997) | 1.194.194 |  |

LIENT I.D..... DATE SAMPLED.....: / / TIME SAMPLED.....: :

WORK DESCRIPTION ...: METHOD BLANK

LABORATORY I.D...: 943236-0004 DATE RECEIVED....: / / TIME RECEIVED....: : REMARKS......

| T DESCRIPTION                    | FINAL RESULT | LIMITS/*DILUTION | UNITS OF MEASURE | TEST METHOD           | DATE     | TECH |
|----------------------------------|--------------|------------------|------------------|-----------------------|----------|------|
| Tetrachloroethene                | ND           | 5                | ug/L             |                       |          |      |
| Toluene                          | ND           | 5                | ug/L             |                       |          |      |
| 1,1,1-Trichloroethane            | ND           | 5                | ug/L             |                       |          |      |
| 1,1,2-Trichloroethane            | ND           | 5                | ug/L             |                       |          |      |
| Trichloroethene                  | ND           | 5                | ug/L             |                       |          |      |
| Trichlorofluoromethane           | ND           | 5                | ug/L             |                       | 1        |      |
| 1,2,3-Trichloropropane           | ND           | 5                | ug/L             |                       |          |      |
| Vinyl acetate                    | ND           | 50               | ug/L             |                       |          |      |
| Vinyl chloride                   | ND           | 10               | ug/L             |                       |          |      |
| Xylenes-total                    | ND           | 5                | ug/L             |                       |          |      |
| Dibromofluoromethane (Surrogate) | 108          | Ő                | % Recovery       | 86-118% Limit         |          |      |
| Toluene-d8 (Surrogate)           | 103          | ő                | % Recovery       | 88-110% Limit         |          |      |
| 4-Bromofluorobenzene (Surrogate) | 102          | ů ő              | % Recovery       | 86-115% Limit         |          |      |
|                                  | 1746         | 0                | % Recovery       |                       |          |      |
| Time Analyzed                    | 1740         | U                |                  |                       |          |      |
| ENDIX IX BNA ORGANICS            |              | *1               |                  | 8270 (2)              | 01/03/95 | ٩L   |
| Acenaphthene                     | ND           | 10               | ug/L             |                       |          |      |
| Acenaphthylene                   | ND           | 10               | ug/L             |                       |          |      |
| 2-Acetylaminofluorene            | ND           | 10               | ug/L             |                       |          |      |
| Acetophenone                     | ND           | 10               | ug/L             |                       |          |      |
| 4-Aminobiphenyl                  | ND           | 10               | ug/L             |                       |          |      |
| Aniline                          | ND           | 10               | ug/L             |                       |          |      |
| Anthracen                        | ND           | 10               | ug/L             |                       |          |      |
| Aramite                          | ND           | 10               | ug/L             |                       |          |      |
| Benzo(a)anthracene               | ND           | 10               | ug/L             |                       |          |      |
| Benzo(b)fluoranthene             | ND           | 10               | ug/L             |                       |          |      |
| Benzo(k)fluoranthene             | ND           | 10               | ug/L             |                       |          |      |
| Benzo(a)pyrene                   | ND           | 10               | ug/L             |                       |          |      |
|                                  | ND           | 10               | ug/L             |                       |          |      |
| Benzo(ghi)perylene               | ND           | 20               | •                |                       |          |      |
| Benzyl Alcohol                   |              | 10               | ug/L             |                       | 1        |      |
| Bis(2-chloroethoxy)methane       | ND           |                  | ug/L             |                       |          |      |
| Bis(2-chloroethyl)ether          | ND           | 10<br>10         | ug/L             |                       | 1        |      |
| Bis(2-chloro-1-methylethyl)ether | ND           |                  | ug/L             |                       |          |      |
| Bis(2-ethylhexyl)phthalate       | ND           | 10               | ug/L             |                       |          |      |
| 4-Bromophenyl phenyl ether       | ND           | 10               | ug/L             |                       |          |      |
| Butyl benzyl phthalate           | ND           | 10               | ug/L             |                       |          |      |
| 4-Chloroaniline                  | ND           | 20               | ug/L             |                       |          |      |
| 2-Chloronaphthalene              | ND           | 10               | ug/L             |                       |          |      |
| 4-Chlorophenyl phenyl ether      | ND           | 10               | ug/L             |                       |          |      |
| Chrysene                         | ND           | 10               | ug/L             |                       |          |      |
| Dibenzo(a,h)anthracene           | ND           | 10               | ug/L             |                       |          |      |
| Dibenzofuran                     | ND           | 10               | ug/L             |                       |          |      |
| Di-n-butyl phthalate             | ND           | 10               | ug/L             |                       |          |      |
| 1,2-Dichlorobenzene              | ND           | 10               | ug/L             |                       |          |      |
|                                  | 1            |                  | 107              | 03 East Bethany Drive |          |      |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or protitableness of any oil. gas, coal of other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



日婚

## **CORE LABORATORIES**

| IENT I.D:                                                      | USTOMER: DAN | IEL B. STEP | PHENS & ASSOCIATES |              |         | EFF FORBES            |         |
|----------------------------------------------------------------|--------------|-------------|--------------------|--------------|---------|-----------------------|---------|
| TE SAMPLED: / /<br>ME SAMPLED: :<br>RK DESCRIPTION: METHOD BL/ | ANK          |             |                    |              |         | ED: / /<br>ED: :<br>: |         |
| ST DESCRIPTION                                                 | FINA         | LRESULT     | LIMITS/*DILUTION   | UNITS OF     | MEASURE | TEST METHOD           | DATE TE |
| 1,3-Dichlorobenzene                                            |              | ND          | 10                 | ug/L         |         |                       |         |
| 1,4-Dichlorobenzene                                            |              | ND          | 10                 | ug/L         |         | 1                     |         |
| 3,3-Dichlorobenzidine                                          |              | ND          | 20                 | ug/L         |         |                       |         |
| Diethyl phthalate                                              |              | ND          | 10                 | ug/L         |         |                       |         |
| p-Dimethylaminoazobenzene                                      |              | ND          | 10                 | ug/L         |         |                       |         |
| 7,12-Dimethylbenz(a)anthra                                     | cene         | ND          | 10                 | ug/L         |         |                       |         |
| 3,3-Dimethylbenzidine                                          |              | ND          | 10                 | ug/L         |         |                       |         |
| alpha,alpha-Dimethylphenet                                     | hylamine     | ND          | 10                 | ug/L         |         |                       |         |
| Dimethyl phthalate                                             |              | ND          | 10                 | ug/L         |         |                       |         |
| m-Dinitrobenzene                                               |              | ND          | 10                 | ug/L         |         |                       |         |
| 2,4-Dinitrotoluene                                             |              | ND          | 10                 | ug/L         |         |                       |         |
| 2,6-Dinitrotoluene                                             |              | ND          | 10                 | ug/L         |         |                       |         |
| Di-n-octyl phthalate                                           |              | ND          | 10                 | ug/L         |         |                       |         |
| Diphenylamine                                                  |              | ND          | 10                 | ug/L         |         |                       |         |
| Fluoranthene                                                   |              | ND          | 10                 | ug/L         |         |                       |         |
| Fluorene                                                       |              | ND          | 10                 | ug/L         |         |                       |         |
| Hexachlorobenzene                                              |              | ND          | 10                 | ug/L         |         |                       |         |
| Hexachlorobutadiene                                            |              | ND          | 10                 | ug/L         |         |                       |         |
| Hexachlorocyclopentadiene                                      |              | ND          | 10                 | ug/L         |         |                       |         |
| Hexachloroethane                                               |              | ND          | 10<br>10           | ug/L         |         |                       |         |
| Hexachloropropene                                              |              | ND<br>ND    | 10                 | ug/L         |         |                       |         |
| Indeno(1,2,3-cd)pyrene                                         |              | ND          | 10                 | ug/L<br>ug/L |         |                       |         |
| Isodrin                                                        |              | ND          | 10                 | ug/L         |         |                       |         |
| Isophorone                                                     |              | ND          | 10                 | ug/L         |         |                       |         |
| Isosafrole                                                     |              | ND          | 50                 | ug/L         |         |                       |         |
| Kepone<br>Methapyrilene                                        |              | ND          | 10                 | ug/L         |         | -                     |         |
| 3-Methylcholanthrene                                           |              | ND          | 10                 | ug/L         |         |                       |         |
| 2-Methylnaphthalene                                            |              | ND          | 10                 | ug/L         |         |                       |         |
| Naphthalene                                                    |              | ND          | 10                 | ug/L         |         |                       |         |
| 1,4-Naphthoquinone                                             |              | ND          | 10                 | ug/L         |         |                       |         |
| 1-Naphthylamine                                                |              | ND          | 10                 | ug/L         |         |                       |         |
| 2-Naphthylamine                                                |              | ND          | 10                 | ug/L         |         | 1                     |         |
| o-Nitroaniline                                                 |              | ND          | 50                 | ug/L         |         | 1                     | 1       |
| m-Nitroaniline                                                 |              | ND          | 50                 | ug/L         |         |                       |         |
| p-Nitroaniline                                                 |              | ND          | 50                 | ug/L         |         |                       |         |
| Nitrobenzene                                                   |              | ND          | 10                 | ug/L         |         |                       |         |
| 4-Nitroquinoline 1-oxide                                       |              | ND          | 10                 | ug/L         |         |                       |         |
| N-Nitrosodi-n-butylamine                                       |              | ND          | 10                 | ug/L         |         |                       |         |
| N-Nitrosodiethylamine                                          |              | ND          | 10                 | ug/L         |         |                       |         |
| N-Nitrosodimethylamine                                         |              | ND          | 10                 | ug/L         |         |                       |         |
| N-Nitrosodiphenylamine                                         |              | ND          | 10                 | ug/L         |         |                       |         |
| N-Nitrosodipropylamine                                         |              | ND          | 10                 | ug/L         |         |                       |         |
| N-Nitrosomethylethylamine                                      |              | ND          | 10                 | ug/L         |         |                       |         |
| N-Nitrosomorpholine                                            | 1            | ND          | 10                 | ug/L         |         |                       |         |

PAGE:15

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or continons expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or prohableness of any o4, gas coar or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories



# LABORATORY TESTS RESULTS 01/09/95

#### JOB NUMBER: 943236 CUSTOMER: DANIEL B. STEPHENS & ASSOCIATES ATTN: JEFF FORBES

DATE SAMPLED.....: / / TIME SAMPLED.....: / /

VORK DESCRIPTION...: METHOD BLANK

LABORATORY I.D...: 943236-0004 DATE RECEIVED....: / / TIME RECEIVED....: : REMARKS......

| EST DESCRIPTION                   | FINAL RESULT | LIMITS/*DILUTION | UNITS OF MEASURE         | TEST METHOD                    | DATE TECH |
|-----------------------------------|--------------|------------------|--------------------------|--------------------------------|-----------|
| N-Nitrosopiperidine               | ND           | 10               | ug/L                     |                                |           |
| N-Nitrosopyrrolidine              | ND           | 10               | ug/L                     |                                |           |
| 5-Nitro-o-toluidine               | ND           | 10               | ug/L                     |                                |           |
| Pentachlorobenzene                | ND           | 10               | ug/L                     |                                |           |
| Pentachloroethane                 | ND           | 10               | ug/L                     |                                |           |
| Pentachloronitrobenzene           | ND           | 10               | ug/L                     |                                |           |
| Phenacetin                        | ND           | 10               | ug/L                     |                                |           |
| p-Phenylenediamine                | ND           | 10               | ug/L                     |                                |           |
| Phenanthrene                      | ND           | 10               | ug/L                     |                                |           |
| 2-Picoline                        | ND           | 10               | ug/L                     |                                |           |
| Pronamide                         | ND           | 10               | ug/L                     |                                |           |
| Pyrene                            | ND           | 10               | ug/L                     |                                |           |
| Pyridine                          | ND           | 10               | ug/L                     |                                |           |
| Safrole                           | ND           | 10               | ug/L                     |                                |           |
| 1,2,4,5 Tetrachlorobenzene        | ND           | 10               | ug/L                     |                                |           |
| o-Toluidine                       | ND           | 10               | ug/L                     |                                |           |
| 1,2,4-Trichlorobenzene            | ND           | 10               | ug/L                     |                                |           |
| sym-Trinitrobenzene               | ND           | 10               | ug/L                     |                                |           |
| Chlorobenzilate                   | ND           | 10               | ug/L                     |                                |           |
| 4-Chloro-3-methylphenol           | ND           | 20               | ug/L                     |                                |           |
| 2-Chlorophenol                    | ND           | 10               | ug/L                     |                                |           |
| o-Cresol (2-Methylphenol)         | ND           | 10               | ug/L                     |                                |           |
| m & p-Cresol (3 & 4-Methylphenol) | ND           | 10               | ug/L                     |                                |           |
| Diallate                          | ND           | 10               | ug/L                     |                                |           |
| 2,4-Dichlorophenol                | ND           | 10               | ug/L                     |                                |           |
| 2,6-Dichlorophenol                | ND           | 10               | ug/L                     |                                |           |
| 2,4-Dimethylphenol                | ND           | 10               | ug/L                     |                                |           |
| 4,6-Dinitro-o-cresol              | ND           | 50               | ug/L                     |                                |           |
| 2,4-Dinitrophenol                 | ND           | 50               | ug/L                     |                                |           |
| Ethyl methanesulfonate            | ND           | 10               | ug/L                     |                                |           |
| Hexachlorophene                   | ND           | 200              | ug/L                     |                                |           |
| Methyl methanesulfonate           | ND           | 10               | ug/L                     |                                |           |
| 2-Nitrophenol                     | ND           | 10               | ug/L                     |                                |           |
| 4-Nitrophenol                     | ND           | 50               | ug/L                     |                                |           |
| •                                 | ND           | 50               | ug/L                     |                                |           |
| Pentachlorophenol<br>Phenol       | ND           | 10               | ug/L                     |                                |           |
|                                   | ND           | 10               | ug/L                     |                                |           |
| 2,3,4,6-Tetrachlorophenol         | ND           | 10               | ug/L                     |                                |           |
| 2,4,5-Trichlorophenol             | ND           | 10               | ug/L                     |                                |           |
| 2,4,6-Trichlorophenol             | 100          | 0                |                          | 35-114% Limit                  |           |
| Nitrobenzene-d5 (Surrogate)       | 96           | 0                | % Recovery               |                                |           |
| 2-Fluorobiphenyl (Surrogate)      | 96           | 0                | % Recovery               | 43-116% Limit<br>33-141% Limit |           |
| 4-Terphenyl-d14 (Surrogate)       | 83           | 0                | % Recovery<br>% Recovery | 10-94% Limit                   |           |
| Phenol-d6 (Surrogate)             | 97           | 0                |                          |                                |           |
| 2-Fluorophenol (Surrogate)        | 88           | 0                | % Recovery               | 21-100% Limit<br>10-123% Limit |           |
| 2,4,6-Tribromophenol (Surrogate)  | 00           | 0                | % Recovery               | 10-123% Limit                  |           |
|                                   |              |                  | 10                       | 703 East Bethany Drive         |           |
|                                   |              |                  |                          | rora, CO 80014                 |           |
|                                   |              |                  |                          | 03) 751-1780                   |           |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or principal events are the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or

other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories



#### LABORATORY TESTS RESULTS 01/09/95

JOB NUMBER: 943236 CUSTOMER: DANIEL B. STEPHENS & ASSOCIATES ATTN: JEFF FORBES

DATE SAMPLED.....: / / TIME SAMPLED.....: / / TIME SAMPLED.....: : WORK DESCRIPTION...: METHOD BLANK

LABORATORY I.D...: 943236-0004 DATE RECEIVED....: / / TIME RECEIVED....: : REMARKS......

| 1625     |                                                                                 | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 0                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12/28/94 | 0                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | *10                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8080 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12/29/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND       | 0.040                                                                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 0.040                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       | 0.120                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       | 0.020                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       | 0.140                                                                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       | 0.040                                                                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       | 0.660                                                                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       | 0.060                                                                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       | 0.230                                                                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       | 0.030                                                                           | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 | ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 | 1 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40-150% Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 | % Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12/20/94 | Ū                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          |                                                                                 | AU<br>(3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 101a, CU 00014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | ND         0.040           ND         0.030           ND         0.060           ND         0.090           ND         0.040           ND         0.140           ND         0.140           ND         0.140           ND         0.120           ND         0.140           ND         0.040           ND         0.140           ND         0.040           ND         0.040           ND         0.140           ND         0.040           ND         0.040           ND         0.230           ND         0.230           ND         0.230           ND         0.230           ND         0.230           ND         0.50           ND         0.50 | ND         0.040         ug/L           ND         0.030         ug/L           ND         0.060         ug/L           ND         0.040         ug/L           ND         0.140         ug/L           ND         0.140         ug/L           ND         0.110         ug/L           ND         0.110         ug/L           ND         0.120         ug/L           ND         0.120         ug/L           ND         0.120         ug/L           ND         0.140         ug/L           ND         0.120         ug/L           ND         0.120         ug/L           ND         0.140         ug/L           ND         0.230         ug/L           ND         0.660         ug/L           ND         0.300         ug/L           ND         0.300         ug/L           ND         0.300         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND | ND         0.040         ug/L           ND         0.030         ug/L           ND         0.060         ug/L           ND         0.040         ug/L           ND         0.040         ug/L           ND         0.140         ug/L           ND         0.140         ug/L           ND         0.140         ug/L           ND         0.140         ug/L           ND         0.120         ug/L           ND         0.200         ug/L           ND         0.201         ug/L           ND         0.2020         ug/L           ND         0.3030         ug/L           ND         0.3030         ug/L           ND         0.3030         ug/L           ND         0.501         ug/L           ND         0.501         ug/L           ND         0.501         ug/L           ND         0.501         ug/L           ND< | ND         0.040         ug/L           ND         0.030         ug/L           ND         0.060         ug/L           ND         0.040         ug/L           ND         0.040         ug/L           ND         0.040         ug/L           ND         0.100         ug/L           ND         0.101         ug/L           ND         0.1040         ug/L           ND         0.1040         ug/L           ND         0.1020         ug/L           ND         0.1020         ug/L           ND         0.020         ug/L           ND         0.660         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND         0.50         ug/L           ND |

PAGE:17

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or coner mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| JOB NUMBER:                                                                                               | 943236                                                           | CUSTOME                                                                                          | R: DANIEL                                                                                                       | B. STEPHENS                 | & ASSOCIATE                 | S                                    | ATTN: JEF             | F FORBES                    |                  |                            |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|--------------------------------------|-----------------------|-----------------------------|------------------|----------------------------|
|                                                                                                           | ANA                                                              | LYSIS                                                                                            |                                                                                                                 | DUPL                        | ICATES                      | REFERENC                             | E STANDARDS           |                             | MATRIX SPIKE     | S                          |
| ANALYSIS<br>TYPE                                                                                          | ANALYSIS<br>SUB-TYPE                                             | ANALYSIS<br>I.D.                                                                                 | ANALYZED<br>VALUE (A)                                                                                           | DUPLICATE<br>VALUE (B)      | RPD or<br>( A-B )           | TRUE<br>VALUE                        | PERCENT<br>RECOVERY   | ORIGINAL<br>VALUE           | SP I KE<br>ADDED | PERCENT<br>RECOVERY        |
|                                                                                                           | ulfide (Unfi<br>IMIT/DF: 0.0                                     | lt.)<br>5 UNITS:mg/L                                                                             |                                                                                                                 | DATE/TIME A<br>METHOD REFE  |                             | 29/94 10:30<br>.2 (1)                |                       |                             |                  | UMBER:31741<br>CHNICIAN:SL |
| BLANK<br>3LANK<br>STANDARD<br>STANDARD<br>SPIKE<br>3UPLICATE                                              | ICB<br>CCB<br>ICV<br>CCV<br>MS<br>MD                             | S0<br>S0.40<br>S0.80<br>943236-2<br>943236-2                                                     | <0.05<br><0.05<br>0.41<br>0.83<br>0.73<br><0.05                                                                 | <0.05                       | NC                          | 0.40<br>0.80                         | 102<br>104            | <0.05                       | 0.92             | 79                         |
|                                                                                                           | olids, Total<br>IMIT/DF: 10                                      | Dissolved (T<br>UNITS:mg/L                                                                       |                                                                                                                 | DATE/TIME A<br>METHOD REFE  | 16.65.65 - 1.62 P.A.A.      | 28/94 15:00<br>.1 (1)                |                       |                             |                  | UMBER:31743<br>CHNICIAN:RJ |
| SLANK<br>STANDARD<br>DUPLICATE<br>DUPLICATE<br>DUPLICATE                                                  | MB<br>LCS<br>MD<br>MD<br>MD                                      | 941228<br>G941121A<br>943222-1<br>943236-2<br>943197-1                                           | <10<br>494<br>9150<br>2420<br>169                                                                               | 9200<br>2430<br>172         | 1<br>0<br>2                 | 500                                  | 99                    |                             |                  |                            |
|                                                                                                           | lercury, Tota<br>IMIT/DF: 0.0                                    | l (Hg)<br>002UNITS:mg/L                                                                          |                                                                                                                 | DATE/TIME A<br>METHOD REFE  |                             |                                      |                       |                             |                  | UMBER:31748<br>CHNICIAN:BP |
| BLANK<br>BLANK<br>BLANK<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>SPIKE<br>DUPLICATE | ICB<br>CCB<br>CCB<br>ICV<br>CCV<br>CCV<br>CCV<br>CCV<br>MS<br>MD | 12304<br>12304<br>12304<br>12304<br>1121H<br>1013P<br>1013P<br>1013P<br>943236-003<br>943236-002 | <0.0002<br><0.0002<br><0.0002<br><0.0002<br>0.0041<br>0.0024<br>0.0024<br>0.0024<br>0.0024<br>0.0049<br><0.0002 | <0.0002                     | NC                          | 0.0040<br>0.0025<br>0.0025<br>0.0025 | 103<br>96<br>96<br>96 | <0.0002                     | 0.0050           | 98                         |
| PARAMETER:A<br>REPORTING L                                                                                |                                                                  | otal (Unfilt.<br>UNITS:mg/L                                                                      | )<br>CaCO3                                                                                                      | DATE/TIME A<br>METHOD REFE  |                             |                                      |                       |                             |                  | UMBER:31748<br>CHNICIAN:RP |
| 3LANK<br>STANDARD<br>DUPLICATE<br>DUPLICATE<br>SUPLICATE<br>SUPLICATE<br>DUPLICATE                        | MB<br>LCS<br>MD<br>MD<br>MD<br>MD<br>MD                          | 941230<br>G941027A<br>943197-9<br>943197-18<br>943197-24<br>943197-28<br>943230-14               | <5<br>167<br>54<br>54<br>60<br>70<br>116                                                                        | 50<br>55<br>58<br>70<br>110 | 8<br>2<br>3<br>0<br>5       | 167                                  | 100                   |                             |                  |                            |
|                                                                                                           | Silver, Total<br>IMIT/DF: 0.0                                    | (Ag)<br>11 UNITS:mg/L                                                                            |                                                                                                                 | DATE/TIME A<br>METHOD REFE  | 사망 승규는 가지는 고등을 가지 않는 것이 없다. | 30/94 13:24<br>0 (2)                 |                       |                             |                  | UMBER:31751<br>CHNICIAN:WG |
| BLANK<br>BLANK                                                                                            | I CB<br>CCB                                                      | 1212J<br>1212J                                                                                   | <0.01<br><0.01                                                                                                  |                             |                             |                                      |                       |                             |                  |                            |
|                                                                                                           | 1                                                                |                                                                                                  |                                                                                                                 |                             |                             |                                      | <br>10703<br>Aurora   | East Bethany<br>a, CO 80014 |                  | 1                          |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, and profitableness of any oil, gas, coal or timer mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



|                                                                                                                                                                                                                                                                                                                                                                                                | 943236                                                                                                                                     | CUSTOME                                                                                                                                                                                                                                         | R: DANIEL                                                                                                                                                                                                                                                                  | B. STEPHENS                | & ASSOCIATES      | 5                                                                                    | ATTN: JEF                                                             | F FORBES          |                |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|----------------|----------------------------|
| b b                                                                                                                                                                                                                                                                                                                                                                                            | ANA                                                                                                                                        | LYSIS                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                            | DUPL                       | ICATES            | REFERENC                                                                             | E STANDARDS                                                           |                   | MATRIX SPIK    | S                          |
| ÄNALYSIS<br>TYPE                                                                                                                                                                                                                                                                                                                                                                               | ANALYSIS<br>SUB-TYPE                                                                                                                       | ANALYSIS<br>I.D.                                                                                                                                                                                                                                | ANALYZED<br>VALUE (A)                                                                                                                                                                                                                                                      | DUPLICATE<br>VALUE (B)     | RPD or<br>( A-B ) | TRUE<br>VALUE                                                                        | PERCENT<br>RECOVERY                                                   | ORIGINAL<br>VALUE | SPIKE<br>ADDED | PERCENT<br>RECOVERY        |
| ARAMETER:                                                                                                                                                                                                                                                                                                                                                                                      | Silver, Total<br>IMIT/DF: 0.0                                                                                                              | . (Ag)<br>)1 UNITS:mg/L                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                            | DATE/TIME A<br>METHOD REFE |                   | 50/94 13:24<br>) (2)                                                                 |                                                                       |                   |                | UMBER:31751<br>CHNICIAN:WO |
| BLANK<br>LANK<br>LANK<br>BLANK<br>BLANK<br>LANK<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD | MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>ICV<br>CCV<br>ISB<br>CCV<br>CCV<br>CCV<br>CCV<br>ISB<br>CCV<br>LCS<br>LCS<br>MS<br>MD<br>MD | 1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0801S<br>0913K<br>1123J<br>0913K<br>0913K<br>0913K<br>1123J<br>0913K<br>1123J<br>0913K<br>1222G<br>1222G<br>943176-002<br>943227-001<br>943176-001<br>943212-006 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br>2.47<br>1.03<br>2.47<br>0.97<br>2.49<br>2.48<br>2.54<br>1.09<br>2.57<br>1.15<br>1.16<br>1.12<br>1.13<br><0.01<br><0.01                                                                                               | <0.01<br><0.01             | NC<br>NC          | 2.50<br>1.00<br>2.50<br>1.00<br>2.50<br>2.50<br>2.50<br>1.00<br>2.50<br>1.00<br>1.00 | 99<br>103<br>99<br>97<br>100<br>99<br>102<br>109<br>103<br>115<br>116 | <0.01<br><0.01    | 1.00<br>1.00   | 112<br>113                 |
| EPORTING<br>BLANK<br>LANK<br>LANK<br>LANK<br>BLANK<br>BLANK<br>SLANK<br>LANK                                                                                                                                                                                                                                                                                                                   | Arsenic, Tota<br>IMIT/DF: 0.0<br>ICB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB                                   | 05 UNITS:mg/l<br>1212J<br>1229<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1017J<br>1122D<br>1017J<br>1123J                                                                                               | <pre></pre> <0.05<0.05<0.05<0.05<0.05<0.05<0.05<0.05<0.05<0.05<0.05<0.05<2.55<2.60 <p< td=""><td>DATE/TIME A<br/>METHOD REFE</td><td></td><td></td><td>102<br/>103<br/>104<br/>100<br/>103<br/>101<br/>106</td><td></td><td></td><td>NUMBER:3175<br/>ECHNICIAN:W</td></p<> | DATE/TIME A<br>METHOD REFE |                   |                                                                                      | 102<br>103<br>104<br>100<br>103<br>101<br>106                         |                   |                | NUMBER:3175<br>ECHNICIAN:W |
| JANK<br>STANDARD<br>STANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD                                                                                                                                                                                                                                                           | ISB<br>CCV<br>CCV<br>CCV<br>ISB<br>CCV<br>LCS<br>LCS                                                                                       | 1017J<br>1017J<br>1017J<br>1123J<br>1017J<br>1222G<br>1222G                                                                                                                                                                                     | 2.53<br>2.65<br>1.03<br>2.68<br>1.03<br>1.03                                                                                                                                                                                                                               |                            |                   | 1.00<br>2.50<br>1.00<br>1.00                                                         | 103<br>107<br>103<br>103                                              |                   |                |                            |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or prolitableness of any bill gas, coal or other mineral, propeny, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, whout the written approval of Core Laboratories.



| JOB NUMBER:                                                                                                                                                                                                                                                                                                                                    | 943236                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CUSTOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R: DANIEL                                                                                                                                                                                              | B. STEPHENS                | & ASSOCIATES               | 3                                                            | ATTN: JEF                                                               | FORBES                               |                  |                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|------------------|------------------------------|
| Q*                                                                                                                                                                                                                                                                                                                                             | ANA                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>                                                                                                                                                                                                | DUPL                       | ICATES                     | REFERENC                                                     | E STANDARDS                                                             |                                      | MATRIX SPIKE     | IS                           |
| ANALYSIS<br>TYPE                                                                                                                                                                                                                                                                                                                               | ANALYSIS<br>SUB-TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANALYSIS<br>I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANALYZED<br>VALUE (A)                                                                                                                                                                                  | DUPLICATE<br>VALUE (B)     | RPD or<br>( A-B )          | TRUE<br>VALUE                                                | PERCENT<br>RECOVERY                                                     | ORIGINAL<br>VALUE                    | SP I KE<br>ADDED | PERCENT<br>RECOVERY          |
|                                                                                                                                                                                                                                                                                                                                                | rsenic, Tota<br>IMIT/DF: 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                      | l (As)<br>5 UNITS:mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                        | DATE/TIME A<br>METHOD REFE |                            | 50/94 10:28<br>) (2)                                         |                                                                         |                                      |                  | NUMBER:31751<br>ECHNICIAN:WO |
| SPIKE<br>PIKE<br>UPLICATE<br>UPLICATE                                                                                                                                                                                                                                                                                                          | MS<br>MS<br>MD<br>MD                                                                                                                                                                                                                                                                                                                                                                                                                                              | 943176-002<br>943227-001<br>943212-006<br>943176-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.97<br>0.96<br><0.05<br><0.05                                                                                                                                                                         | <0.05<br><0.05             | NC<br>NC                   |                                                              |                                                                         | <0.05<br><0.05                       | 1.00<br>1.00     | 97<br>96                     |
|                                                                                                                                                                                                                                                                                                                                                | larium, Total<br>IMIT/DF: 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Ba)<br>1 UNITS:mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                      | DATE/TIME A<br>METHOD REFE |                            |                                                              | _ I                                                                     |                                      |                  | NUMBER:3175                  |
| BLANK<br>BLANK<br>LANK<br>LANK<br>BLANK<br>BLANK<br>BLANK<br>LANK<br>LANK<br>STANDARD<br>STANDARD<br>TANDARD<br>STANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD | I CB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>I CV<br>I CV<br>CCV<br>I SB<br>CCV<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>CCV<br>I SB<br>CCD<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>I SB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CC | 1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1022G<br>943176-002<br>943227-001<br>9432176-002 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br>5.01<br>1.03<br>5.10<br>0.49<br>5.04<br>4.95<br>5.17<br>0.50<br>5.06<br>1.04<br>1.04<br>1.08<br>1.02<br>0.14<br><0.01 | 0.15<br><0.01              | 7<br>NC                    | 5.00<br>1.00<br>5.00<br>0.50<br>5.00<br>5.00<br>5.00<br>5.00 | 100<br>103<br>102<br>98<br>101<br>99<br>103<br>100<br>101<br>104<br>104 | 0.14<br>0.06                         | 1.00<br>1.00     | 94<br>96                     |
|                                                                                                                                                                                                                                                                                                                                                | Beryllium, To<br>.IMIT/DF: 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                    | otal (Be)<br>105 UNITS:mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                      |                            | NALYZED: 12/<br>RENCE :601 | a - Colombia 1980, e - 1                                     |                                                                         |                                      |                  | NUMBER:3175<br>ECHNICIAN:W   |
| BLANK<br>LANK<br>LANK<br>BLANK<br>BLANK<br>LANK<br>LANK<br>BLANK<br>STANDARD                                                                                                                                                                                                                                                                   | I CB<br>CCB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC                                                                                                                                                                                                                                                                                                                                                                                                | 1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1017J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>2.52                                                                                                         |                            |                            | 2.50                                                         | 101                                                                     |                                      |                  |                              |
| н <u>.</u>                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                        |                            | 4                          |                                                              | Aurora                                                                  | East Bethan<br>, CO 8001<br>751-1780 |                  |                              |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



10.00

## CORE LABORATORIES

| JOB NUMBER:                                                                                                                                                                                                                                                | 943230                                                                                                                                                                                      | CUSTOME                                                                                                                                                                                               | g - Ye feld Willer                                                                                                                                              |                            |                   | 1                                                                       |                                                                             | 222000000           |                  | <u>, 2240 - 24 10 81</u> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|------------------|--------------------------|
|                                                                                                                                                                                                                                                            | ANA                                                                                                                                                                                         |                                                                                                                                                                                                       |                                                                                                                                                                 | DUPL                       | ICATES            | REFERENC                                                                | E STANDARDS                                                                 |                     | MATRIX SPIKE     | ES                       |
| ANALYSIS<br>TYPE                                                                                                                                                                                                                                           | ANALYSIS<br>SUB-TYPE                                                                                                                                                                        | ANALYSIS<br>I.D.                                                                                                                                                                                      | ANALYZED<br>VALUE (A)                                                                                                                                           | DUPLICATE<br>VALUE (B)     | RPD or<br>( A-B ) | TRUE<br>VALUE                                                           | PERCENT<br>RECOVERY                                                         | ORIGINAL<br>VALUE   | SP I KE<br>ADDED | PERCENT                  |
|                                                                                                                                                                                                                                                            | eryllium, To<br>IMIT/DF: 0.0                                                                                                                                                                | tal (Be)<br>05 UNITS:mg/L                                                                                                                                                                             |                                                                                                                                                                 | DATE/TIME A<br>METHOD REFE |                   | 30/94 13:24<br>) (2)                                                    |                                                                             |                     |                  | UMBER:3175               |
| TANDARD                                                                                                                                                                                                                                                    | ICV                                                                                                                                                                                         | 1122D                                                                                                                                                                                                 | 2.10                                                                                                                                                            |                            |                   | 2.00                                                                    | 105                                                                         |                     |                  |                          |
| TANDARD                                                                                                                                                                                                                                                    | CCV                                                                                                                                                                                         | 1017J                                                                                                                                                                                                 | 2.60                                                                                                                                                            |                            |                   | 2.50                                                                    | 104                                                                         |                     |                  |                          |
| TANDARD                                                                                                                                                                                                                                                    | ISB                                                                                                                                                                                         | 1123J                                                                                                                                                                                                 | 0.481                                                                                                                                                           |                            |                   | 0.500                                                                   | 96                                                                          |                     |                  |                          |
| TANDARD                                                                                                                                                                                                                                                    | CCV                                                                                                                                                                                         | 1017J                                                                                                                                                                                                 | 2.53                                                                                                                                                            |                            |                   | 2.50                                                                    | 101                                                                         |                     |                  |                          |
| TANDARD                                                                                                                                                                                                                                                    | CCV                                                                                                                                                                                         | 1017J                                                                                                                                                                                                 | 2.51                                                                                                                                                            |                            |                   | 2.50                                                                    | 100                                                                         |                     |                  |                          |
| TANDARD                                                                                                                                                                                                                                                    | CCV                                                                                                                                                                                         | 1017J                                                                                                                                                                                                 | 2.52                                                                                                                                                            |                            |                   | 2.50                                                                    | 101                                                                         |                     |                  |                          |
| TANDARD                                                                                                                                                                                                                                                    | ISB                                                                                                                                                                                         | 1123J                                                                                                                                                                                                 | 0.481                                                                                                                                                           |                            |                   | 0.500                                                                   | 96                                                                          | 1                   |                  |                          |
| TANDARD                                                                                                                                                                                                                                                    | ccv                                                                                                                                                                                         | 1017J                                                                                                                                                                                                 | 2.57                                                                                                                                                            |                            |                   | 2.50                                                                    | 103                                                                         |                     |                  |                          |
|                                                                                                                                                                                                                                                            |                                                                                                                                                                                             |                                                                                                                                                                                                       | 1.05                                                                                                                                                            |                            |                   | 1.00                                                                    | 105                                                                         |                     |                  |                          |
| STANDARD                                                                                                                                                                                                                                                   | LCS                                                                                                                                                                                         | 1222G                                                                                                                                                                                                 |                                                                                                                                                                 | 1                          |                   |                                                                         |                                                                             |                     |                  |                          |
| STANDARD                                                                                                                                                                                                                                                   | LCS                                                                                                                                                                                         | 1222G                                                                                                                                                                                                 | 1.04                                                                                                                                                            |                            |                   | 1.00                                                                    | 104                                                                         | 0.005               | 1 00             | 05                       |
| PIKE                                                                                                                                                                                                                                                       | MS                                                                                                                                                                                          | 943176-002                                                                                                                                                                                            | 0.946                                                                                                                                                           |                            |                   |                                                                         |                                                                             | <0.005              | 1.00             | 95                       |
| PIKE                                                                                                                                                                                                                                                       | MS                                                                                                                                                                                          | 943227-001                                                                                                                                                                                            | 0.949                                                                                                                                                           |                            |                   |                                                                         |                                                                             | <0.005              | 1.00             | 95                       |
| JUPLICATE                                                                                                                                                                                                                                                  | MD                                                                                                                                                                                          | 943176-001                                                                                                                                                                                            | <0.005                                                                                                                                                          | <0.005                     | NC                |                                                                         |                                                                             |                     |                  |                          |
| DUPLICATE                                                                                                                                                                                                                                                  | MD                                                                                                                                                                                          | 943212-006                                                                                                                                                                                            | <0.005                                                                                                                                                          | <0.005                     | NC                |                                                                         |                                                                             |                     |                  |                          |
| BLANK<br><sup>©</sup> LANK<br>LANK<br>BLANK                                                                                                                                                                                                                | ICB<br>CCB<br>MB<br>MB                                                                                                                                                                      | 1212J<br>1212J<br>1229<br>1229                                                                                                                                                                        | <0.1<br><0.1<br><0.1<br><0.1                                                                                                                                    |                            |                   |                                                                         |                                                                             |                     |                  |                          |
| °LANK<br>LANK<br>BLANK<br>BLANK<br>≩LANK<br>LANK<br>GLANK                                                                                                                                                                                                  | CCB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB                                                                                                                                                | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J                                                                                                                           | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   | 100                                                                     |                                                                             |                     |                  |                          |
| °LANK<br>LANK<br>BLANK<br>BLANK<br>≩LANK<br>LANK<br>GLANK<br>STANDARD                                                                                                                                                                                      | CCB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC                                                                                                                                  | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K                                                                                                                  | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   | 100<br>100                                                              | 101<br>100                                                                  |                     |                  |                          |
| °LANK<br>LANK<br>ØLANK<br>BLANK<br>¥LANK<br>LANK<br>JLANK<br>BLANK<br>STANDARD<br>°TANDARD                                                                                                                                                                 | CCB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV                                                                                                                           | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K                                                                                                         | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   |                                                                         |                                                                             |                     |                  |                          |
| °LANK<br>LANK<br>ØLANK<br>BLANK<br>■LANK<br>LANK<br>JLANK<br>BLANK<br>STANDARD<br>TANDARD                                                                                                                                                                  | CCB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>CCV<br>CCV                                                                                                                    | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K                                                                                                | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   | 100                                                                     | 100                                                                         |                     |                  |                          |
| °LANK<br>LANK<br>ØLANK<br>BLANK<br>≩LANK<br>LANK<br>JLANK<br>BLANK<br>STANDARD<br>TANDARD<br>∛TANDARD                                                                                                                                                      | CCB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>CCV<br>CCV<br>CC                                                                                                              | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K                                                                                                | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   | 100<br>100<br>100                                                       | 100<br>102<br>105                                                           |                     |                  |                          |
| °LANK<br>LANK<br>SLANK<br>SLANK<br>RLANK<br>LANK<br>LANK<br>STANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD                                                                                                                                         | CCB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>CCV<br>CCV<br>CC                                                                                                              | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K                                                                              | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   | 100<br>100<br>100<br>100                                                | 100<br>102<br>105<br>98                                                     |                     |                  |                          |
| °LANK<br>LANK<br>SLANK<br>SLANK<br>ALANK<br>LANK<br>LANK<br>STANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD                                                                                                                                        | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CC                                                                                                        | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0426G<br>0913K<br>0913K                                                                     | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   | 100<br>100<br>100<br>100<br>500                                         | 100<br>102<br>105<br>98<br>96                                               |                     |                  |                          |
| °LANK<br>LANK<br>SLANK<br>SLANK<br>≩LANK<br>LANK<br>LANK<br>STANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD                                                                                                                | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>CCV<br>CCV<br>CCV<br>CC                                                                                                        | 1212J<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>09260<br>0913K                                                           | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   | 100<br>100<br>100<br>500<br>100                                         | 100<br>102<br>105<br>98<br>96<br>103                                        |                     |                  |                          |
| °LANK<br>LANK<br>ØLANK<br>ØLANK<br>¥LANK<br>LANK<br>JLANK<br>BLANK<br>STANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>ANDARD<br>TANDARD                                                                                                         | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISB                                                                           | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>09260<br>0913K<br>1123J                                                   | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   | 100<br>100<br>100<br>500<br>100<br>500                                  | 100<br>102<br>105<br>98<br>96<br>103<br>91                                  |                     |                  |                          |
| °LANK<br>LANK<br>SLANK<br>SLANK<br>LANK<br>LANK<br>LANK<br>STANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD                                                                                          | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA                                                                    | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>09260                                                                              | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>0.1<br>101<br>100<br>102<br>105<br>97.6<br>478<br>103<br>456<br>483                                     |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500                           | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97                            |                     |                  |                          |
| LANK<br>LANK<br>SLANK<br>SLANK<br>LANK<br>LANK<br>LANK<br>SLANK<br>STANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD                                                                       | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB                                               | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J                                          | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>0.1<br>101<br>100<br>102<br>105<br>97.6<br>478<br>103<br>456<br>483<br>460                              |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500             | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>97                      |                     |                  |                          |
| LANK<br>LANK<br>SLANK<br>SLANK<br>LANK<br>LANK<br>LANK<br>SLANK<br>STANDARD<br>TANDARD<br>STANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD                                                                        | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>CCV                                        | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K                                 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>101<br>100<br>102<br>105<br>97.6<br>478<br>103<br>456<br>483<br>460<br>102                              |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>500      | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>97<br>92<br>102         |                     |                  |                          |
| LANK<br>LANK<br>SLANK<br>SLANK<br>LANK<br>LANK<br>LANK<br>LANK<br>SLANK<br>STANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>TANDARD                                                       | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>ISB<br>ISA                                               | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S                                 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>101<br>100<br>102<br>105<br>97.6<br>478<br>103<br>456<br>483<br>460<br>102<br>109                       |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109        |                     |                  |                          |
| LANK<br>LANK<br>SLANK<br>SLANK<br>LANK<br>LANK<br>LANK<br>SLANK<br>STANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD                                                                     | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>CCV                                        | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>1101S               | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>101<br>100<br>102<br>105<br>97.6<br>478<br>103<br>456<br>483<br>460<br>102<br>109<br>106                |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>500      | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>97<br>92<br>102         |                     |                  |                          |
| LANK<br>LANK<br>SLANK<br>SLANK<br>LANK<br>LANK<br>LANK<br>LANK<br>SLANK<br>STANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>TANDARD                                                       | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISA<br>ISB<br>ISA<br>ISB<br>CCV<br>LCS                                        | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S                                 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109        | 75.0                | 50.0             | 100                      |
| LANK<br>LANK<br>SLANK<br>SLANK<br>LANK<br>LANK<br>SLANK<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD                                                   | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISA<br>ISB<br>ISA<br>ISB<br>ISA<br>ISB<br>CCV<br>LCS<br>LCS                          | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>1101S               | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>101<br>100<br>102<br>105<br>97.6<br>478<br>103<br>456<br>483<br>460<br>102<br>109<br>106                |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109        | <b>75.0</b><br>11.4 | 50.0<br>50.0     | 100<br>104               |
| LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>ISA<br>ISB<br>SCV<br>LCS<br>LCS<br>MS      | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>1101S<br>943176-002 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                                    | 74.7                       | 3                 | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109        |                     |                  |                          |
| LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>ISA<br>ISB<br>CCV<br>LCS<br>LCS<br>MS<br>MS              | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>943176-002<br>943176-001     | <pre>&lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1</pre>                                                                                      |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109        |                     |                  |                          |
| LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK                                                                                                                                                                                               | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>ISA<br>ISB<br>SB<br>CCV<br>LCS<br>LCS<br>MS<br>MS | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>943176-002<br>943227-001     | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>101<br>100<br>102<br>105<br>97.6<br>478<br>103<br>456<br>483<br>460<br>102<br>109<br>106<br>125<br>63.4 | 74.7<br><0.1               | 3<br>0.1          | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109        |                     |                  |                          |
| LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK                                                                                                                                                                                               | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>ISA<br>ISB<br>CCV<br>LCS<br>LCS<br>MS<br>MS              | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>943176-002<br>943176-001     | <pre>&lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1</pre>                                                                                      |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109        |                     |                  |                          |
| LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>ISA<br>ISB<br>CCV<br>LCS<br>LCS<br>MS<br>MS              | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>943176-002<br>943176-001     | <pre>&lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1</pre>                                                                                      |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109        |                     |                  |                          |
| LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK                                                                                                                                                                                               | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>ISA<br>ISB<br>CCV<br>LCS<br>LCS<br>MS<br>MS              | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>943176-002<br>943176-001     | <pre>&lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1</pre>                                                                                      |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109        |                     |                  |                          |
| LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK<br>LANK                                                                                                                                                                                               | CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ISA<br>CCV<br>ISB<br>ISA<br>ISB<br>ISA<br>ISB<br>CCV<br>LCS<br>LCS<br>MS<br>MS              | 1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>943176-002<br>943176-001     | <pre>&lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1 &lt;0.1</pre>                                                                                      |                            |                   | 100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500<br>100<br>1 | 100<br>102<br>105<br>98<br>96<br>103<br>91<br>97<br>92<br>102<br>109<br>106 | East Bethan         | 50.0             |                          |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions explessed represent the best jubgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or

cher mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| JOB NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 943236                                                                                                                                                                                                                                       | CUSTOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R: DANIEL                                                                                                                                                                                                                          | B. STEPHENS            | & ASSOCIATE                          | S                                                            | ATTN: JEF                                                         | F FORBES          |                  |                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|-------------------|------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANA                                                                                                                                                                                                                                          | LYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    | DUPL                   | ICATES                               | REFERENC                                                     | E STANDARDS                                                       |                   | MATRIX SPIK      | ES                           |
| ANALYSIS<br>TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANALYSIS<br>SUB-TYPE                                                                                                                                                                                                                         | ANALYSIS<br>I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANALYZED<br>VALUE (A)                                                                                                                                                                                                              | DUPLICATE<br>VALUE (B) | RPD or<br>( A-B )                    | TRUE<br>VALUE                                                | PERCENT                                                           | ORIGINAL<br>VALUE | SP I KE<br>ADDED | PERCENT<br>RECOVERY          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | admium, Tota<br>IMIT/DF: 0.0                                                                                                                                                                                                                 | l (Cd)<br>05 UNITS:mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    | DATE/TIME A            |                                      | 30/94 10:28<br>) (2)                                         |                                                                   |                   |                  | NUMBER:3175<br>ECHNICIAN:W   |
| BLANK<br>3LANK<br>3LANK<br>BLANK<br>BLANK<br>3LANK<br>3LANK<br>3LANK<br>3LANK<br>3LANK<br>3LANK<br>3LANK<br>STANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3TANDARD<br>3T | ICB<br>CCB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>ICV<br>CCV<br>ISB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CC                                                                           | 1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1017J<br>1122D<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1022G<br>1222G<br>943227-001<br>943212-006<br>943176-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>0.971<br>1.94<br>0.990<br>0.852<br>0.990<br>0.958<br>1.03<br>0.905<br>1.04<br>0.997<br>0.895<br><0.005<br><0.005<br><0.005               | <0.005<br><0.005       | NC                                   | 1.00<br>2.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 97<br>97<br>99<br>85<br>99<br>96<br>103<br>90<br>104<br>99<br>100 | <0.005            | 1.00             | 90                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | obalt, Total<br>IMIT/DF: 0.0<br>ICB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCB<br>CCC<br>CCB<br>CCC<br>CCC<br>ICV<br>CCV<br>ISB<br>CCV<br>CCV<br>ISB<br>CCV<br>CCV<br>ISB<br>CCV<br>CCV<br>ISB<br>CCV<br>ICS | (Co)<br>3 UNITS:mg/L<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1017J<br>1122D<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J | <pre>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>2.45<br/>2.04<br/>2.50<br/>0.45<br/>2.48<br/>2.45<br/>2.58<br/>0.45<br/>2.50<br/>1.02</pre> | DATE/TIME A            | a shekara a fara a shi ka shi a fara |                                                              | 98<br>102<br>100<br>90<br>99<br>98<br>103<br>90<br>100<br>102     |                   |                  | NUMBER: 3175<br>ECHNICIAN: W |
| NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                  |                        |                                      |                                                              | 10703<br>Aurora                                                   | East Bethany      |                  |                              |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed reprecent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, in probabilities of any original control of the productivity.

ather mineral, property well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shail not be reproduced except in its entirety, without the written approval of Core Laboratories.



| JOB NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 943236                                                                                                                                                     | CUSTOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R: DANIEL                                                                                                                                                                                               | B. STEPHENS                   | & ASSOCIATES              | <b>)</b>                                                                     | ATTN: JEF                                                           | FFORBES                   |                          |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|--------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANA                                                                                                                                                        | LYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         | DUPL                          | ICATES                    | REFERENC                                                                     | E STANDARDS                                                         |                           | MATRIX SPIK              | S                         |
| ANALYSIS<br>TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANALYSIS<br>SUB-TYPE                                                                                                                                       | ANALYSIS<br>I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANALYZED<br>VALUE (A)                                                                                                                                                                                   | DUPLICATE<br>VALUE (B)        | RPD or<br>( A-B )         | TRUE<br>VALUE                                                                | PERCENT<br>RECOVERY                                                 | ORIGINAL<br>VALUE         | SPIKE<br>ADDED           | PERCENT                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | obalt, Total<br>IMIT/DF: 0.0                                                                                                                               | (Co)<br>3 UNITS:mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                         | DATE/TIME A<br>METHOD REFE    | 6 GAR - 2011 GAR 2011 BAR |                                                                              |                                                                     |                           |                          | WMBER:3175                |
| STANDARD<br>SPIKE<br>SPIKE<br>DUPLICATE<br>DUPLICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LCS<br>MS<br>MS<br>MD<br>MD                                                                                                                                | 12226<br>943176-002<br>943227-001<br>943212-006<br>943176-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.03<br>0.89<br>0.90<br><0.03<br><0.03                                                                                                                                                                  | <0.03<br><0.03                | NC                        | 1.00                                                                         | 103                                                                 | <0.03<br><0.03            | 1.00<br>1.00             | 89<br>90                  |
| ARAMETER:C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hromium, Tot<br>IMIT/DF: 0.0                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                         | DATE/TIME A<br>METHOD REFE    |                           |                                                                              |                                                                     |                           |                          | UMBER:3175                |
| BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STA | ICB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>ICV<br>CCV<br>ISB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CC | 1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1017J<br>1123J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1022G<br>943176-002<br>943227-001<br>943212-006 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br>2.46<br>2.05<br>2.51<br>0.45<br>2.46<br>2.44<br>2.56<br>0.45<br>2.48<br>1.04<br>1.04<br>0.88<br>1.00<br><0.01<br><0.01 | <0.01<br><0.01<br>DATE/TIME A | NC<br>NC                  | 2.50<br>2.00<br>2.50<br>0.50<br>2.50<br>2.50<br>0.50<br>2.50<br>1.00<br>1.00 | 98<br>102<br>100<br>90<br>98<br>98<br>102<br>90<br>99<br>104<br>104 | 0.01<br>0.09              | 1.00<br>1.00<br>QC BATCH | 87<br>91<br>NUMBER : 3175 |
| REPORTING L<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IMIT/DF: 0.C<br>ICB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB                                                                           | 11 UNITS:mg/L<br>1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                           | METHOD REFE                   | RENCE :601                | J (2)                                                                        |                                                                     |                           |                          | ECHNICIAN:                |
| 141 5 <u>. 191 5</u> . <u>19</u> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | u                                                                                                                                                                                                       | 1                             | 1                         |                                                                              |                                                                     | East Bethan<br>, CO 80014 |                          | 1                         |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oill gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatspever. This report shall not be reproduced except in its entrety, without the written approval of Core Laboratories



| JOB NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 943236                                                                                                                                                                                                    | CUSTOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R: DANIEL                                                                                                                                                                                                                                                                                                                                                         | B. STEPHENS                | & ASSOCIATES      |                                                                                  | ATTN: JEF                                                                            | FFORBES              |                  |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------|------------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANA                                                                                                                                                                                                       | LYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                   | DUPL                       | ICATES            | REFERENC                                                                         | E STANDARDS                                                                          |                      | MATRIX SPIK      | ES                           |
| ANALYSIS<br>TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANALYSIS<br>SUB-TYPE                                                                                                                                                                                      | ANALYSIS<br>I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANALYZED<br>VALUE (A)                                                                                                                                                                                                                                                                                                                                             | DUPLICATE<br>VALUE (B)     | RPD or<br>( A-B ) | TRUE<br>VALUE                                                                    | PERCENT<br>RECOVERY                                                                  | OR I GI NAL<br>VALUE | SP I KE<br>ADDED | PERCENT<br>RECOVERY          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | opper, Total<br>IMIT/DF: 0.0                                                                                                                                                                              | (Cu)<br>1 UNITS:mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                   | DATE/TIME A<br>METHOD REFE |                   | A 10000 A 10000 A 1000                                                           |                                                                                      |                      |                  | NUMBER:31751<br>ECHNICIAN:WO |
| STANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>ATANDARD<br>TANDARD<br>TANDARD<br>STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCV<br>ICV<br>CCV<br>ISB<br>CCV<br>CCV<br>CCV<br>CCV<br>ISB<br>CCV                                                                                                                                        | 1017J<br>1122D<br>1017J<br>1123J<br>1017J<br>1017J<br>1017J<br>1017J<br>1123J<br>1017J                                                                                                                                                                                                                                                                                                                                                                                                          | 2.62<br>2.08<br>2.58<br>0.50<br>2.61<br>2.58<br>2.64<br>0.49<br>2.62                                                                                                                                                                                                                                                                                              |                            |                   | 2.50<br>2.00<br>2.50<br>0.50<br>2.50<br>2.50<br>2.50<br>0.50<br>2.50             | 105<br>104<br>103<br>100<br>104<br>103<br>106<br>98<br>105                           |                      |                  |                              |
| STANDARD<br>TANDARD<br>PIKE<br>SPIKE<br>DUPLICATE<br>PUPLICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LCS<br>LCS<br>MS<br>MS<br>MD<br>MD                                                                                                                                                                        | 1222G<br>1222G<br>943176-002<br>943227-001<br>943176-001<br>943212-006                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.06<br>1.07<br>0.99<br>1.03<br>0.03<br><0.01                                                                                                                                                                                                                                                                                                                     | 0.03<br><0.01              | 0.00<br>NC        | 1.00                                                                             | 106<br>107                                                                           | 0.03<br>0.09         | 1.00<br>1.00     | 96<br>94                     |
| LANK<br>LANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>LANK<br>BLANK<br>LANK<br>BLANK<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STAN | ICB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>CCV<br>CCV<br>CCV<br>ICV<br>CCV<br>ICV<br>CCV<br>ISA<br>ISB<br>ISA<br>ISB<br>ISA<br>ISB<br>CCV<br>LCS<br>LCS<br>LCS<br>MS<br>MD<br>MD | IS         UNITS:mg/L           1212J         1212J           1229         1229           1212J         1212J           1017J         1017J           1017J         1017J           1017J         1123J           09260         1017J           1222G         1222G           943176-001         943212-006 | <pre>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;0.03<br/>&lt;1.90<br/>5.00<br/>214<br/>5.15<br/>205<br/>211<br/>202<br/>5.10<br/>1.00<br/>0.96<br/>2.56<br/>3.49<br/>0.63<br/>0.03</pre> | 0.60<br>0.04               | 5<br>0.01         | 5.00<br>5.00<br>5.00<br>2.00<br>5.00<br>200<br>200<br>200<br>200<br>1.00<br>1.00 | 100<br>99<br>102<br>95<br>100<br>107<br>103<br>102<br>106<br>101<br>102<br>100<br>96 | 0.78<br>1.72         | 2.00<br>2.00     | 89<br>89                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                   |                            |                   |                                                                                  |                                                                                      |                      |                  |                              |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil gas, coll or other mineral, property well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entriety, without the written approval of Core Laboratories.



| JOB NUMBER:                                                                                                                                                                                                                                                                                                                                                                         | 943236                                                                                                | CUSTOME                                                                                                                                                                                                                                                                                                                     | R: DANIEL                                                                                                                                               | B. STEPHENS                | & ASSOCIATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATTN: JEF                                                                     | F FORBES          |                |                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|----------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                     | ANA                                                                                                   | LYSIS                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                | DUPL                       | ICATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REFEREN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CE STANDARDS                                                                  |                   | MATRIX SPIK    | ES                           |
| ANALYSIS<br>TYPE                                                                                                                                                                                                                                                                                                                                                                    | ANALYSIS<br>SUB-TYPE                                                                                  | ANALYSIS<br>I.D.                                                                                                                                                                                                                                                                                                            | ANALYZED<br>VALUE (A)                                                                                                                                   | DUPLICATE<br>VALUE (B)     | RPD or<br>( A-B )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRUE<br>VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERCENT<br>RECOVERY                                                           | ORIGINAL<br>VALUE | SPIKE<br>ADDED | PERCENT<br>RECOVERY          |
|                                                                                                                                                                                                                                                                                                                                                                                     | agnesium, To<br>IMIT/DF: 0.1                                                                          |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         | DATE/TIME A<br>METHOD REFE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50/94 13:24<br>) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |                   |                | NUMBER:31752<br>ECHNICIAN:WO |
| BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD | ICB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCC<br>CCV<br>CCV<br>CCV<br>CCV<br>CC           | 1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>09260<br>0913K<br>1123J<br>09260<br>1123J<br>09260<br>1123J<br>09260<br>1123J<br>0913K<br>1101S<br>1101S<br>1101S<br>1101S<br>1101S<br>1101S<br>943176-002<br>943227-001<br>943212-006 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1                                                                                            | 21.0<br><0.1               | 3<br>NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100<br>100<br>100<br>100<br>500<br>100<br>500<br>500<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101<br>101<br>105<br>97<br>100<br>103<br>96<br>100<br>96<br>103<br>108<br>105 | 19.9<br>3.1       | 50.0<br>50.0   | 99<br>103                    |
| PARAMETER:M<br>REPORTING L<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD                                                                                                                                                                                     | INT/DF: 0.0<br>INT/DF: 0.0<br>ICB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB | tal (Mn)<br>1 UNITS:mg/L<br>1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1017J<br>1122D<br>1017J<br>1017J<br>1017J<br>1017J                                                                                                                  | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br>5.08<br>2.08<br>5.18<br>0.45<br>5.07<br>5.04<br>5.25 | DATE/TIME A                | M. 1997 April 1997 | * a. New York (1997) A second rest of the second | 102<br>104<br>104<br>90<br>101<br>101<br>105                                  |                   |                | NUMBER:3175<br>ECHNICIAN:W   |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10703<br>Aurora                                                               | East Bethany      |                |                              |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas local or

other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| JOB NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                               | 943236                                                                                                                                                                                                           | CUSTOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R: DANIEL                                                                  | B. STEPHENS                     | & ASSOCIATES                | s                                                                                | ATTN: JEF                                                                        | F FORBES                 |                     |                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------|-----------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------|---------------------|--------------------------------|
| -                                                                                                                                                                                                                                                                                                                                                                                                                                        | ANA                                                                                                                                                                                                              | LYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            | DUPL                            | ICATES                      | REFEREN                                                                          | CE STANDARDS                                                                     |                          | MATRIX SPIK         | ES                             |
| ANALYSIS<br>TYPE                                                                                                                                                                                                                                                                                                                                                                                                                         | ANALYSIS<br>SUB-TYPE                                                                                                                                                                                             | ANALYSIS<br>I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ANALYZED<br>VALUE (A)                                                      | DUPLICATE<br>VALUE (B)          | RPD or<br>( A-B )           | TRUE<br>VALUE                                                                    | PERCENT<br>RECOVERY                                                              | ORIGINAL<br>VALUE        | SPIKE<br>ADDED      | PERCENT<br>RECOVERY            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | langanese, To                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            | DATE/TIME A<br>METHOD REFE      |                             | 50/94 13:24                                                                      |                                                                                  |                          |                     | NUMBER:317523<br>ECHNICIAN:WGL |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | IMI1/UF: 0.0                                                                                                                                                                                                     | 1 UNITS:mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | METHOD REFE                     | T TOUL                      | , ( <u>2</u> )                                                                   |                                                                                  |                          | <u> </u>            | ECHNICIAN WGL                  |
| STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>SPIKE<br>SPIKE<br>UPLICATE<br>JUPLICATE                                                                                                                                                                                                                                                                                                                                                  | ISB<br>CCV<br>LCS<br>LCS<br>MS<br>MS<br>MD<br>MD                                                                                                                                                                 | 1123J<br>1017J<br>1222G<br>943176-002<br>943227-001<br>943176-001<br>943212-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.45<br>5.10<br>1.06<br>1.05<br>0.96<br>0.96<br>0.05<br><0.01              | 0.05<br><0.01                   | 0.00<br>NC                  | 0.50<br>5.00<br>1.00<br>1.00                                                     | 90<br>102<br>106<br>105                                                          | 0.05<br>0.02             | 1.00<br>1.00        | 91<br>94                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sodium, Total<br>IMIT/DF: 1.0                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            | - 565 A. 1. 77 B. 665 666 666 6 | NALYZED:12/3<br>RENCE :6010 | 30/94 10:44<br>) (2)                                                             |                                                                                  |                          |                     | NUMBER:317525<br>ECHNICIAN:WGL |
| SLANK<br>BLANK<br>BLANK<br>JLANK<br>JLANK<br>BLANK<br>BLANK<br>SLANK<br>SLANK<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD | I CB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>I SA<br>I SB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>I SA<br>I SB<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CCV<br>CC | 1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>0913K<br>09260<br>1123J<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>1123J<br>0913K<br>09260<br>11015<br>943176-002<br>943176-002 | <pre>&lt;1.0 &lt;1.0 &lt;1.0 &lt;1.0 &lt;1.0 &lt;1.0 &lt;1.0 &lt;1.0</pre> | 23.9                            | 1                           | 50.0<br>500<br>500<br>50.0<br>50.0<br>50.0<br>50.0<br>500<br>50.0<br>50.0<br>100 | 95<br>111<br>105<br>90<br>95<br>98<br>96<br>112<br>107<br>93<br>97<br>113<br>109 | 44.1<br>23.0<br>23.0     | 50.0<br>5.0<br>50.0 | 110<br>136<br>101              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nickel, Total<br>IMIT/DF: 0.0                                                                                                                                                                                    | (Ni)<br>)4 UNITS:mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                 | NALYZED: 12/                | 30/94 13:24<br>0 (2)                                                             |                                                                                  |                          |                     | NUMBER:317526<br>ECHNICIAN:WGL |
| LANK<br>LANK<br>BLANK<br>BLANK                                                                                                                                                                                                                                                                                                                                                                                                           | I CB<br>CCB<br>MB<br>MB                                                                                                                                                                                          | 1212J<br>1212J<br>1229<br>1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <0.04<br><0.04<br><0.04<br><0.04<br><0.04                                  |                                 |                             |                                                                                  |                                                                                  |                          |                     |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | 1                               | 1                           |                                                                                  | 1<br>10703<br>Aurora                                                             | East Bethan<br>, CO 8001 |                     | 1                              |

\*\*e analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or imolied, as to the productivity, proper operations, or orfolitableness of any oil, gas coar or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| A                                                                                                                                                                                                                                                  | : 943236                                                                                                                        | CUSTOME                                                                                                                                                                                         | R: DANIEL                                                                                                                                                  | B. STEPHENS            | & ASSOCIATES          |                                                                                      | ATTN: JEF                                                            | FFORBES               |                  |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|------------------|------------|
|                                                                                                                                                                                                                                                    | ANA                                                                                                                             | LYSIS                                                                                                                                                                                           |                                                                                                                                                            | DUPL                   | ICATES                | REFERENC                                                                             | E STANDARDS                                                          |                       | MATRIX SPIK      | S          |
| ÁNALYSIS<br>TYPE                                                                                                                                                                                                                                   | ANALYSIS<br>SUB-TYPE                                                                                                            | ANALYSIS<br>I.D.                                                                                                                                                                                | ANALYZED<br>VALUE (A)                                                                                                                                      | DUPLICATE<br>VALUE (B) | RPD or<br>(   A-B   ) | TRUE<br>VALUE                                                                        | PERCENT                                                              | OR I G I NAL<br>VALUE | SP I KE<br>ADDED | PERCENT    |
|                                                                                                                                                                                                                                                    | Nickel, Total<br>LIMIT/DF: 0.0                                                                                                  | (Ni)<br>04 UNITS:mg/L                                                                                                                                                                           |                                                                                                                                                            | DATE/TIME A            |                       |                                                                                      |                                                                      |                       |                  | UMBER:317  |
| BLANK<br>ANK<br>LANK<br>BLANK<br>ANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD<br>TANDARD                        | CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>ICV<br>CCV<br>ISB<br>CCV<br>CCV<br>ISB<br>CCV<br>CCV<br>ISB<br>CCV<br>LCS<br>LCS<br>MS<br>MD | 1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1017J<br>1122D<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1123J<br>1017J<br>1222G<br>1222G<br>943227-001<br>943176-001<br>943212-006 | <0.04<br><0.04<br><0.04<br><0.04<br><0.04<br>2.47<br>1.99<br>2.53<br>0.85<br>2.44<br>2.44<br>2.50<br>0.85<br>2.54<br>1.01<br>1.02<br>0.87<br>0.13<br><0.04 | 0.13<br><0.04          | 0.00<br>NC            | 2.50<br>2.00<br>2.50<br>1.00<br>2.50<br>2.50<br>2.50<br>1.00<br>2.50<br>1.00<br>1.00 | 99<br>100<br>101<br>85<br>98<br>98<br>100<br>85<br>102<br>101<br>102 | <0.04                 | 1.00             | 87         |
| REPORTING<br>LANK<br>LANK<br>LANK<br>BLANK                                                                                                                                                                                                         | Lead, Total (<br>LIMIT/DF: 0.0<br>ICB<br>CCB<br>MB<br>MB<br>CCB<br>CCB<br>CCB                                                   | 05 UNITS:mg/L<br>1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J                                                                                                             | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05                                                                              | METHOD REFE            |                       | 30/94 10:28<br>0 (2)                                                                 |                                                                      |                       | QC BATCH         | ECHNICIAN: |
| BLANK<br>LANK<br>LANK<br>SLANK<br>SLANK<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>DIFLICATE | CCB<br>CCB<br>CCV<br>ICV<br>CCV<br>ISB<br>CCV<br>CCV<br>CCV<br>ISB<br>CCV<br>LCS<br>LCS<br>MS<br>MD                             | 1212J<br>1212J<br>1017J<br>1122D<br>1017J<br>1123J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1123J<br>1017J<br>1222G<br>1222G<br>943176-002<br>943227-001<br>943212-006                   | <0.05<br>0.98<br>1.90<br>0.82<br>1.00<br>0.97<br>1.05<br>0.88<br>1.04<br>0.98<br>1.00<br>0.86<br>0.94<br><0.05                                             | <0.05                  | NC                    | 1.00<br>2.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                         | 98<br>95<br>99<br>82<br>100<br>97<br>105<br>88<br>104<br>98<br>100   | <0.05<br><0.05        | 1.00<br>1.00     | 86<br>94   |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, in profitableness of any oil, gas, coal or other mineral, property, will or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| JOB NUMBER:      | 943236                       | CUSTOME             | R: DANIEL                       | B. STEPHENS                       | & ASSOCIATES                |               | ATTN: JEF           | F FORBES          |                  |                              |
|------------------|------------------------------|---------------------|---------------------------------|-----------------------------------|-----------------------------|---------------|---------------------|-------------------|------------------|------------------------------|
| <u> </u>         | ANA                          | LYSIS               | <u>1991 - Carlo Carlos - An</u> | DUPL                              | ICATES                      | REFERENC      | CE STANDARDS        |                   | MATRIX SPIK      | ES                           |
| ANALYSIS<br>TYPE | ANALYSIS<br>SUB-TYPE         | ANALYSIS<br>I.D.    | ANALYZED<br>VALUE (A)           | DUPLICATE<br>VALUE (B)            | RPD or<br>(  A-B   )        | TRUE<br>VALUE | PERCENT<br>RECOVERY | ORIGINAL<br>VALUE | SP I KE<br>ADDED | PERCENT<br>RECOVERY          |
|                  | ead, Total (<br>IMIT/DF: 0.0 | Pb)<br>5 UNITS:mg/L |                                 |                                   | NALYZED:12/3<br>RENCE :6010 |               |                     |                   |                  | NUMBER:31752<br>ECHNICIAN:WG |
| DUPLICATE        | MD                           | 943176-001          | <0.05                           | <0.05                             | NC                          |               |                     |                   |                  |                              |
|                  | ntimony, Tot<br>IMIT/DF: 0.1 |                     |                                 |                                   | NALYZED:12/3<br>RENCE :6010 |               |                     |                   |                  | NUMBER:31752<br>ECHNICIAN:WG |
| BLANK            | ICB                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| <b>3LANK</b>     | CCB                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | MB                           | 1229                | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | MB                           | 1229                | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | ССВ                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | ССВ                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | CCB                          | 1212J               | <0.1                            |                                   |                             | 1             |                     |                   |                  |                              |
| BLANK            | CCB                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | CCB                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| STANDARD         | CCV                          | 1017J               | 2.5                             |                                   |                             | 2.5           | 100                 |                   |                  |                              |
| STANDARD         | ICV                          | 1122D               | 2.0                             |                                   |                             | 2.0           | 100                 |                   |                  |                              |
| STANDARD         | CCV                          | 1017J               | 2.5                             |                                   |                             | 2.5           | 100                 | 1                 |                  |                              |
| STANDARD         | ISB                          | 1123J               | 1.0                             |                                   |                             | 1.0           | 100                 |                   |                  |                              |
| STANDARD         | CCV                          | 1017J               | 2.5                             |                                   |                             | 2.5           | 100                 |                   |                  |                              |
|                  | CCV                          | 1017J               | 2.4                             |                                   | 1                           | 2.5           | 96                  |                   |                  |                              |
| STANDARD         | CCV                          | 1017J               | 2.5                             |                                   |                             | 2.5           | 100                 |                   |                  |                              |
| STANDARD         |                              |                     | n                               |                                   |                             | 1.0           | 100                 |                   |                  |                              |
| STANDARD         | ISB                          | 1123J               | 1.0                             |                                   |                             | 2.5           | 104                 |                   |                  |                              |
| STANDARD         | CCV                          | 1017J               | 2.6                             |                                   |                             |               | 104                 |                   |                  |                              |
| STANDARD         | LCS                          | 1222G               | 1.0                             |                                   |                             | 1.0           |                     |                   |                  |                              |
| STANDARD         | LCS                          | 1222G               | 1.0                             |                                   |                             | 1.0           | 100                 | -0.1              | 1.0              | 100                          |
| SPIKE            | MS                           | 943176-002          | 1.0                             |                                   |                             |               |                     | <0.1              | 1.0              |                              |
| SPIKE            | MS                           | 943227-001          | 1.0                             |                                   |                             |               |                     | <0.1              | 1.0              | 100                          |
| DUPLICATE        | MD                           | 943176-001          | <0.1                            | <0.1                              | NC                          |               |                     |                   | 1                |                              |
| DUPLICATE        | MD                           | 943212-006          | <0.1                            | <0.1                              | NC                          |               |                     |                   |                  |                              |
|                  | elenium, Tot<br>IMIT/DF: 0.1 |                     | -                               | e and a count of beaution work. A | NALYZED:12/                 |               |                     |                   |                  | NUMBER:31752<br>ECHNICIAN:WO |
| BLANK            | ICB                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| JLANK            | CCB                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | MB                           | 1229                | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | MB                           | 1229                | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | CCB                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | ССВ                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | ССВ                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| BLANK            | ССВ                          | 1212J               | <0.1                            |                                   |                             |               |                     | 1                 |                  |                              |
| BLANK            | CCB                          | 1212J               | <0.1                            |                                   |                             |               |                     |                   |                  |                              |
| STANDARD         | ccv                          | 1017J               | 2.4                             |                                   |                             | 2.5           | 96                  |                   |                  |                              |
| STANDARD         | ICV                          | 1122D               | 2.0                             |                                   |                             | 2.0           | 100                 |                   |                  |                              |
| STANDARD         | ccv                          | 1017J               | 2.4                             |                                   |                             | 2.5           | 96                  |                   |                  |                              |
| STANDARD         | ISB                          | 1123J               | 1.0                             |                                   |                             | 1.0           | 100                 |                   |                  |                              |
|                  |                              |                     |                                 |                                   |                             |               |                     |                   |                  |                              |
|                  |                              | 1                   | 1                               | 1                                 |                             |               | 10707               | East Bethan       |                  |                              |
|                  |                              |                     |                                 |                                   |                             |               | Aurora              |                   | ·                |                              |
|                  |                              |                     |                                 |                                   |                             |               |                     | 751-1780          | -                |                              |

The analyses, opinions or interpretations, contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirely, without the written approval of Core Laboratories.



| JOB NUMBER:                                                                                                                                                       | <u>ens Albert - Les Les</u>                                                                   | CUSTOME                                                                                                                                                              | R: DANIEL                                                                                                               | B. STEPHENS            |                                   |                                                                                      | <u></u>                                                                  | FORBES            |                  |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------|------------------|----------------------------|
|                                                                                                                                                                   | ANA                                                                                           | LYSIS                                                                                                                                                                |                                                                                                                         | DUPL                   | ICATES                            | REFERENC                                                                             | E STANDARDS                                                              |                   | MATRIX SPIKE     | S                          |
| ANALYSIS<br>TYPE                                                                                                                                                  | ANALYSIS<br>SUB-TYPE                                                                          | ANALYSIS<br>I.D.                                                                                                                                                     | ANALYZED<br>VALUE (A)                                                                                                   | DUPLICATE<br>VALUE (B) | RPD or<br>( A-B )                 | TRUE<br>VALUE                                                                        | PERCENT<br>RECOVERY                                                      | ORIGINAL<br>VALUE | SP I KE<br>ADDED | PERCENT<br>RECOVERY        |
| ARAMETER:S                                                                                                                                                        | elenium, Tot<br>IMIT/DF: 0.1                                                                  | al (Se)<br>UNITS:mg/L                                                                                                                                                |                                                                                                                         |                        | NALYZED:12/3<br>RENCE :6010       |                                                                                      |                                                                          |                   |                  | UMBER:31752<br>CHNICIAN:WG |
| STANDARD                                                                                                                                                          | ccv                                                                                           | 1017J                                                                                                                                                                | 2.7                                                                                                                     |                        |                                   | 2.5                                                                                  | 108                                                                      |                   |                  |                            |
| TANDARD                                                                                                                                                           | CCV                                                                                           | 1017J                                                                                                                                                                | 2.4                                                                                                                     |                        |                                   | 2.5                                                                                  | 96                                                                       |                   |                  |                            |
| TANDARD                                                                                                                                                           | CCV                                                                                           | 1017J                                                                                                                                                                | 2.7                                                                                                                     |                        |                                   | 2.5                                                                                  | 108                                                                      |                   |                  |                            |
| STANDARD                                                                                                                                                          | ISB                                                                                           | 1123J                                                                                                                                                                | 1.1                                                                                                                     |                        |                                   | 1.0                                                                                  | 110                                                                      |                   |                  |                            |
| STANDARD                                                                                                                                                          | CCV                                                                                           | 1017J                                                                                                                                                                | 2.7                                                                                                                     |                        |                                   | 2.5                                                                                  | 108                                                                      |                   |                  |                            |
| TANDARD                                                                                                                                                           | LCS                                                                                           | 1222G                                                                                                                                                                | 0.9                                                                                                                     |                        |                                   | 1.0                                                                                  | 90                                                                       |                   |                  |                            |
| TANDARD                                                                                                                                                           | LCS                                                                                           | 1222G                                                                                                                                                                | 0.9                                                                                                                     |                        |                                   | 1.0                                                                                  | 90                                                                       | .0.1              | 1.0              | 00                         |
| »PIKE                                                                                                                                                             | MS                                                                                            | 943176-002                                                                                                                                                           | 0.9                                                                                                                     | ļ                      |                                   |                                                                                      |                                                                          | <0.1              | 1.0              | 90                         |
| SPIKE                                                                                                                                                             | MS                                                                                            | 943227-001                                                                                                                                                           | 1.0                                                                                                                     | -0.1                   |                                   |                                                                                      |                                                                          | <0.1              | 1.0              | 100                        |
| UPLICATE                                                                                                                                                          | MD<br>MD                                                                                      | 943176-001<br>943212-006                                                                                                                                             | <0.1<br><0.1                                                                                                            | <0.1<br><0.1           | NC<br>NC                          |                                                                                      |                                                                          |                   |                  |                            |
| BLANK<br>PLANK<br>TANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>TANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>TANDARD<br>SPIKE<br>SPIKE<br><sup>™</sup> UPLICATE | CCB<br>CCV<br>ICV<br>CCV<br>ISB<br>CCV<br>CCV<br>CCV<br>ISB<br>CCV<br>LCS<br>LCS<br>LCS<br>MS | 1212J<br>1212J<br>1017J<br>0426G<br>1017J<br>1123J<br>1017J<br>1017J<br>1017J<br>1017J<br>1123J<br>1017J<br>1101S<br>1101S<br>943176-002<br>943227-001<br>943176-001 | <0.05<br><0.05<br>2.58<br>1.01<br>2.63<br>0.98<br>2.62<br>2.56<br>2.71<br>1.00<br>2.73<br>0.51<br>0.95<br>1.00<br><0.05 | <0.05                  | NC                                | 2.50<br>1.00<br>2.50<br>2.50<br>2.50<br>2.50<br>2.50<br>1.00<br>2.50<br>0.50<br>0.50 | 103<br>101<br>105<br>98<br>105<br>102<br>108<br>100<br>109<br>102<br>102 | <0.05<br><0.05    | 1.00<br>1.00     | 95<br>100                  |
| UPLICATE                                                                                                                                                          | MD<br>MD<br>hallium, Tot<br>IMIT/DF: 0.1<br>ICB<br>CCB                                        | 943212-006<br>at (Tl)                                                                                                                                                | <0.05                                                                                                                   | <0.05<br>DATE/TIME A   | NC<br>NALYZED:12/3<br>RENCE :6010 |                                                                                      |                                                                          |                   |                  | IUMBER:3175<br>CHNICIAN:W  |
| BLANK                                                                                                                                                             | MB                                                                                            | 1229                                                                                                                                                                 | <0.1                                                                                                                    |                        |                                   |                                                                                      | 10703                                                                    | East Bethany      | v Drive          |                            |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Fore Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or prohlableness of any oil, gas, coal or

other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatspever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories



|                                       | 943236                                    | CUSTOME                                       | R: DANIEL             | B. STEPHENS                        | & ASSOCIATE                       |                      | ATTN: JEF                                           | F FURBES          |                  |                            |  |
|---------------------------------------|-------------------------------------------|-----------------------------------------------|-----------------------|------------------------------------|-----------------------------------|----------------------|-----------------------------------------------------|-------------------|------------------|----------------------------|--|
| 9                                     | ANA                                       | LYSIS                                         |                       | DUPL                               | ICATES                            | REFERENCE STANDARDS  |                                                     |                   | MATRIX SPIKES    |                            |  |
| ANALYSIS<br>TYPE                      | ANALYSIS<br>SUB-TYPE                      | ANALYSIS<br>I.D.                              | ANALYZED<br>VALUE (A) | DUPLICATE<br>VALUE (B)             | RPD or<br>(   A-B   )             | TRUE<br>VALUE        | PERCENT<br>RECOVERY                                 | ORIGINAL<br>VALUE | SP I KE<br>ADDED | PERCENT                    |  |
|                                       | hallium, Tot<br>IMIT/DF: 0.1              |                                               |                       | DATE/TIME A<br>METHOD REFE         |                                   | 30/94 13:24<br>) (2) |                                                     |                   |                  | NUMBER:3175<br>ECHNICIAN:W |  |
| BLANK                                 | мв                                        | 1229                                          | <0.1                  |                                    |                                   | T                    |                                                     | 1                 |                  |                            |  |
| LANK                                  | ССВ                                       | 1212J                                         | <0.1                  |                                    |                                   |                      |                                                     |                   |                  |                            |  |
| LANK                                  | ССВ                                       | 1212J                                         | <0.1                  |                                    |                                   |                      |                                                     |                   |                  |                            |  |
| BLANK                                 | ССВ                                       | 1212J                                         | <0.1                  |                                    |                                   |                      |                                                     |                   |                  |                            |  |
| BLANK                                 | CCB                                       | 1212J                                         | <0.1                  |                                    |                                   |                      |                                                     |                   |                  |                            |  |
| BLANK                                 | CCB                                       | 1212J                                         | <0.1                  |                                    |                                   |                      |                                                     |                   |                  |                            |  |
| TANDARD                               | CCV                                       | 1017J                                         | 1.0                   |                                    |                                   | 1.0                  | 100                                                 |                   |                  |                            |  |
| TANDARD                               | ICV                                       | 1122D                                         | 1.9                   |                                    |                                   | 2.0                  | 95                                                  |                   |                  |                            |  |
| STANDARD                              | CCV                                       | 1017J                                         | 1.0                   |                                    |                                   | 1.0                  | 100                                                 |                   |                  |                            |  |
| STANDARD                              | ISB                                       | 1123J                                         | 0.8                   |                                    |                                   | 1.0                  | 80                                                  |                   |                  |                            |  |
| TANDARD                               | CCV                                       | 1017J                                         | 1.0                   |                                    |                                   | 1.0                  | 100                                                 |                   |                  |                            |  |
| TANDARD                               | CCV                                       | 1017J                                         | 0.9                   |                                    |                                   | 1.0                  | 90                                                  |                   |                  |                            |  |
| STANDARD                              | CCV                                       | 1017J                                         | 1.0                   |                                    |                                   | 1.0                  | 100                                                 |                   |                  |                            |  |
| STANDARD                              | ISB                                       | 1123J                                         | 0.8                   |                                    |                                   | 1.0                  | 80                                                  |                   |                  |                            |  |
| STANDARD                              | CCV                                       | 1017J                                         | 1.0                   |                                    |                                   | 1.0                  | 100                                                 | 1                 |                  |                            |  |
| TANDARD                               | LCS                                       | 1222G                                         | 0.9                   |                                    |                                   | 1.0                  | 90                                                  |                   |                  |                            |  |
| TANDARD                               | LCS                                       | 1222G                                         | 0.9                   |                                    |                                   | 1.0                  | 90                                                  | -0.1              | 1.0              | 90                         |  |
| SPIKE                                 | MS<br>MD                                  | 943176-002<br>943176-001                      | 0.9<br><0.1           | <0.1                               | NC                                |                      |                                                     | <0.1              | 1.0              | 90                         |  |
| DUPLICATE                             | imu                                       |                                               |                       |                                    |                                   |                      |                                                     |                   |                  |                            |  |
| UPLICATE                              | MD<br>anadium, Tot<br>IMIT/DF: 0.0<br>ICB | 943212-006<br>al (V)<br>5 UNITS:mg/L<br>1212J | <0.1                  | <0.1<br>DATE/TIME A<br>METHOD REFE | anta de la companya de la Tarres. |                      |                                                     |                   |                  | NUMBER:3175<br>ECHNICIAN:V |  |
| UPLICATE<br>ARAMETER:V<br>REPORTING L | MD<br>anadium, Tot<br>IMIT/DF: 0.0        | 943212-006<br>al (V)<br>5 UNITS:mg/L          | <0.1                  | <0.1<br>DATE/TIME A                | NC                                |                      | 97<br>100<br>99<br>92<br>96<br>96<br>98<br>92<br>99 |                   |                  |                            |  |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, ccal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written acoroval of Core Laboratories.



| JOB NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 943236                                                                                                                                                    | CUSTOME                                                                                                                                                                                                                      | R: DANIEL                                                                                                                                                                                                       | B. STEPHENS                                                                                                    | & ASSOCIATES                |                                                                              | ATTN: JEF                                                               | FORBES                     |                  |                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------|------------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANA                                                                                                                                                       | LYSIS                                                                                                                                                                                                                        |                                                                                                                                                                                                                 | DUPL                                                                                                           | ICATES                      | REFERENCE STANDARDS                                                          |                                                                         | MATRIX SPIKES              |                  |                               |
| ANALYSIS<br>TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANALYSIS<br>SUB-TYPE                                                                                                                                      | ANALYSIS<br>I.D.                                                                                                                                                                                                             | ANALYZED<br>VALUE (A)                                                                                                                                                                                           | DUPLICATE<br>VALUE (B)                                                                                         | RPD or<br>( A-B )           | TRUE<br>VALUE                                                                | PERCENT<br>RECOVERY                                                     | OR I GI NAL<br>VALUE       | SP I KE<br>ADDED | PERCENT<br>RECOVERY           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anadium, Tot<br>IMIT/DF: 0.0                                                                                                                              | al (V)<br>5 UNITS:mg/L                                                                                                                                                                                                       |                                                                                                                                                                                                                 | a da barra da barra da da sera | NALYZED:12/3<br>RENCE :6010 |                                                                              |                                                                         |                            |                  | IUMBER:31753<br>CHNICIAN:WGI  |
| DUPLICATE<br>DUPLICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MD<br>MD                                                                                                                                                  | 943176-001<br>943212-006                                                                                                                                                                                                     | <0.05<br><0.05                                                                                                                                                                                                  | <0.05<br><0.05                                                                                                 | NC<br>NC                    |                                                                              |                                                                         |                            |                  |                               |
| <pre>#ARAMETER:2 REPORTING L</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inc, Total (<br>IMIT/DF: 0.0                                                                                                                              | Zn)<br>1 UNITS:mg/L                                                                                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                                | NALYZED:12/3<br>RENCE :6010 |                                                                              |                                                                         |                            |                  | IUMBER: 31753<br>CHNICIAN: WG |
| JLANK<br>JLANK<br>JLANK<br>BLANK<br>BLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANK<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD<br>JLANDARD | ICB<br>CCB<br>MB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCB<br>CCV<br>ICV<br>CCV<br>ISB<br>CCV<br>CCV<br>CCV<br>ISB<br>CCV<br>CCV<br>LCS<br>LCS<br>MS<br>MD<br>MD | 1212J<br>1212J<br>1229<br>1229<br>1212J<br>1212J<br>1212J<br>1212J<br>1212J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1017J<br>1022G<br>1222G<br>943176-002<br>94327-001<br>943176-001<br>943212-006 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br>2.55<br>2.06<br>2.62<br>0.99<br>2.52<br>2.52<br>2.57<br>0.99<br>2.54<br>1.06<br>1.05<br>0.97<br>0.95<br>0.05<br><0.01 | 0.05<br><0.01                                                                                                  | 0.00<br>NC                  | 2.50<br>2.00<br>2.50<br>1.00<br>2.50<br>2.50<br>2.50<br>1.00<br>1.00<br>1.00 | 102<br>103<br>105<br>99<br>101<br>101<br>103<br>99<br>102<br>106<br>105 | 0.06<br>0.03               | 1.00<br>1.00     | 91<br>92                      |
| REPORTING L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IMIT/DF: 0.0                                                                                                                                              | rite (as N) [<br>5 UNITS:mg/L                                                                                                                                                                                                | (as N)                                                                                                                                                                                                          |                                                                                                                | NALYZED:01/0<br>RENCE :353. |                                                                              | 1                                                                       |                            |                  | UMBER:31778<br>CHNICIAN:DM    |
| JLANK<br>BLANK<br>BLANK<br>STANDARD<br>JTANDARD<br>STANDARD<br>SPIKE<br>SPIKE<br>JUPLICATE<br>JUPLICATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICB<br>CCB<br>ICV/LCS<br>CCV<br>CCV<br>MS<br>MS<br>MD<br>MD                                                                                               | 950103<br>950103<br>950103<br>G941014A<br>S3.00<br>943207-2<br>943157-7<br>943207-2<br>943157-7                                                                                                                              | <0.05<br><0.05<br><0.05<br>2.83<br>2.79<br>3.35<br>3.59<br>2.30<br>2.67                                                                                                                                         | 2.36<br>2.83                                                                                                   | 3 6                         | 1.00<br>3.00<br>3.00                                                         | 96<br>94<br>93                                                          | 2.30<br>2.67               | 1.00<br>1.00     | 105<br>92                     |
| , <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                         | I                                                                                                                                                                                                                            | H                                                                                                                                                                                                               | 1                                                                                                              | I                           | ű                                                                            | 10703 1<br>Aurora                                                       | East Bethany<br>, CO 80014 |                  | I                             |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, nowever, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| JOB NUMBER:                                                                                                  | 943236                                                                         | CUSTOME                                                                                                  | R: DANIEL                                                                     | B. STEPHENS                | & ASSOCIATE               | S                                       | ATTN: JEF              | F FORBES          |                  |                              |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|---------------------------|-----------------------------------------|------------------------|-------------------|------------------|------------------------------|
|                                                                                                              | ANAL                                                                           | YSIS                                                                                                     |                                                                               | DUPL                       | ICATES                    | REFEREN                                 | CE STANDARDS           |                   | MATRIX SPIK      | ŒS                           |
| ANALYSIS<br>TYPE                                                                                             | ANALYSIS<br>SUB-TYPE                                                           | ANALYSIS<br>I.D.                                                                                         | ANALYZED<br>VALUE (A)                                                         | DUPLICATE<br>VALUE (B)     | RPD or<br>( A-B )         | TRUE<br>VALUE                           | PERCENT<br>RECOVERY    | ORIGINAL<br>VALUE | SP I KE<br>ADDED | PERCENT<br>RECOVERY          |
|                                                                                                              | otassium, Tot<br>IMIT/DF: 0.1                                                  |                                                                                                          |                                                                               | DATE/TIME A<br>METHOD REFE |                           | 04/95 14:40<br>0 (2)                    |                        |                   |                  | NUMBER:31785<br>ECHNICIAN:BF |
| BLANK<br>BLANK<br>BLANK<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD<br>SPIKE<br>DUPLICATE<br>PARAMETER:S | ICB<br>CCB<br>CCB<br>MB<br>ICV<br>CCV<br>CCV<br>CCV<br>CCV<br>LCS<br>PDS<br>MD | 01045<br>01045<br>01045<br>1229<br>1021N<br>1027C<br>1027C<br>\$1101<br>943236-002<br>943236-003         | <0.1<br><0.1<br><0.1<br><0.1<br>2.0<br>4.6<br>4.6<br>2.0<br>4.2<br>4.2<br>4.0 |                            |                           | 2.0<br>5.0<br>5.0<br>2.0<br>04/95 09:00 | 100<br>92<br>92<br>100 | 1.7               |                  | 100<br>NUMBER : 3178         |
| REPORTING L                                                                                                  | IMIT/DF: 10                                                                    | UNITS:mg/L                                                                                               | •                                                                             | METHOD REFE                | RENCE :375                | .2 (1)                                  |                        |                   | 1                | ECHNICIAN:D                  |
| BLANK<br>BLANK<br>STANDARD<br>STANDARD<br>SPIKE<br>DUPLICATE                                                 | ICB<br>CCB<br>ICV/LCS<br>CCV<br>MS<br>MD                                       | 950104<br>950104<br>G940415A<br>S200<br>940416-121<br>940416-121                                         | <10<br><10<br>153<br>197<br>73<br>24                                          | 25                         | 1                         | 150<br>200                              | 102<br>98              | 24                | 50               | 98                           |
|                                                                                                              | Chloride (Unfi<br>IMIT/DF: 0.5                                                 | ilt.)<br>UNITS:mg/1                                                                                      |                                                                               |                            | NALYZED:01/<br>RENCE :325 | 05/95 09:00<br>.2 (1)                   |                        |                   |                  | NUMBER:3179                  |
| BLANK<br>BLANK<br>BLANK<br>STANDARD<br>STANDARD<br>STANDARD<br>SPIKE<br>SPIKE<br>DUPLICATE<br>DUPLICATE      | ICB<br>CCB<br>CCB<br>ICV/LCS<br>CCV<br>CCV<br>MS<br>MS<br>MD<br>MD             | 950105<br>950105<br>950105<br>G950105B<br>S120<br>S120<br>943157-18<br>943157-6<br>943157-6<br>943157-18 | <0.5<br><0.5<br>52.5<br>123<br>123<br>150<br>151<br>107<br>106                | 107<br>107                 | 0                         | 50.0<br>120<br>120                      | 105<br>102<br>102      | 106<br>107        | 50.0<br>50.0     | 88<br>88                     |
|                                                                                                              | Cyanide, Total<br>IMIT/DF: 0.02                                                |                                                                                                          | •                                                                             | DATE/TIME A<br>METHOD REFE | NALYZED:01/<br>RENCE :335 | 04/95 16:45<br>.2 (1)                   |                        |                   |                  | NUMBER:3180                  |
|                                                                                                              | I CB<br>MB<br>CCB                                                              | S0<br>950104<br>S0<br>S0<br>G941114B                                                                     | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br>0.25<br>0.46                     |                            |                           | 0.25<br>0.50<br>0.30                    | 100<br>92<br>97        |                   |                  |                              |
| BLANK<br>BLANK<br>BLANK<br>STANDARD<br>STANDARD<br>STANDARD<br>STANDARD                                      | CCB<br>ICV/LCS<br>DIST. CHK.<br>CCV<br>CCV                                     | G941123B<br>S0.30<br>S0.30                                                                               | 0.48<br>0.29<br>0.29                                                          |                            |                           | 0.30                                    | 97                     |                   |                  |                              |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the writen approval of Core Laboratories.



|                            |                              |                            |                       |                            | 01/09/95                  |                       |                     |                                      |                  |                              |
|----------------------------|------------------------------|----------------------------|-----------------------|----------------------------|---------------------------|-----------------------|---------------------|--------------------------------------|------------------|------------------------------|
| JOB NUMBER:                | 943236                       | CUSTOM                     | ER: DANIEL            | B. STEPHENS                | & ASSOCIATE               | s                     | ATTN: JEF           | FFORBES                              |                  |                              |
|                            | ANA                          | LYSIS                      |                       | DUPL                       | ICATES                    | REFERE                | NCE STANDARDS       |                                      | MATRIX SPIK      | ES                           |
| ANALYSIS<br>TYPE           | ANALYSIS<br>SUB-TYPE         | ANALYSIS<br>I.D.           | ANALYZED<br>VALUE (A) | DUPLICATE<br>VALUE (B)     | RPD or<br>( A-B )         | TRUE<br>VALUE         | PERCENT<br>RECOVERY | ORIGINAL<br>VALUE                    | SP I KE<br>ADDED | PERCENT<br>RECOVERY          |
| PARAMETER:C<br>REPORTING L | yanide, Tota<br>IMIT/DF: 0.0 | l (Unfilt.)<br>2 UNITS:mg/ | L                     | DATE/TIME A<br>METHOD REFE | NALYZED:01/<br>RENCE :335 | 04/95 16:45<br>.2 (1) | 5                   |                                      |                  | NUMBER:31803<br>ECHNICIAN:RJ |
| SPIKE<br>DUPLICATE         | MS<br>MD                     | 943236-2<br>943227-1       | 0.23<br><0.02         | <0.02                      | NC                        |                       |                     | <0.02                                | 0.25             | 92                           |
|                            |                              |                            |                       |                            |                           |                       |                     |                                      |                  |                              |
|                            |                              |                            |                       |                            |                           |                       |                     |                                      |                  |                              |
|                            |                              |                            |                       |                            |                           |                       | Aurora              | East Bethan<br>, CO 8001<br>751-1780 | y Drive          |                              |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or imolied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.



| OB NUMBER: 943236 C      | USTOMER: DANIEL B. | STEPHENS & ASSOC     | TATES           | ATTN: JEFF F                        | ORBES                               |                  |
|--------------------------|--------------------|----------------------|-----------------|-------------------------------------|-------------------------------------|------------------|
| NA SPIKED ANALYSIS-WATER | DATE ANALYZED      | : 01/03/95 TIME      | ANALYZED: 11:11 | METHOD: 8270 (                      | 2)                                  | QC NUMBER:317901 |
|                          |                    | BLAN                 | K S             |                                     |                                     |                  |
| EST DESCRIPTION          | ANALY SUB-TYPE     | ANALYSIS I.D.        | DILUTION FACTOR | ANALYZED VALUE                      | DETECTION LIMI                      | T UNITS OF MEASU |
| ime Analyzed             | SB<br>SBD          | 1918<br>2016         | 1               | 0                                   | 0                                   |                  |
| ate Extracted            | SB<br>SBD          | 12/28/94<br>12/28/94 | 1               | 0                                   | 0                                   |                  |
|                          |                    |                      |                 |                                     |                                     |                  |
|                          |                    |                      |                 |                                     |                                     |                  |
|                          |                    |                      |                 |                                     |                                     |                  |
|                          |                    |                      |                 |                                     |                                     |                  |
|                          |                    |                      |                 |                                     |                                     |                  |
|                          |                    |                      |                 |                                     |                                     |                  |
| ·                        |                    |                      |                 |                                     |                                     |                  |
|                          |                    |                      |                 |                                     |                                     |                  |
|                          |                    |                      |                 | 10703 Eas<br>Aurora, C<br>(303) 751 | t Bethany Drive<br>0 80014<br>-1780 | 2                |
|                          |                    | PAC                  | GE:34           |                                     |                                     |                  |



QUALITY CONTROL REPORT 01/09/95

#### JOB NUMBER: 943236 CUSTOMER: DANIEL B. STEPHENS & ASSOCIATES ATTN: JEFF FORBES

BNA SPIKED ANALYSIS-WATER

I

DATE ANALYZED: 01/03/95 TIME ANALYZED: 11:11 METHOD: 8270 (2)

QC NUMBER:317901

| TEST<br>DESCRIPTION              | ANALYSIS<br>SUB-TYPE | ANALYSIS<br>I. D.    | DILUTION<br>FACTOR | ANALYZED<br>VALUE | TRUE<br>VALUE | PERCENT<br>RECOVERY | DETECTION<br>LIMITS | UNITS OF<br>MEASURE |
|----------------------------------|----------------------|----------------------|--------------------|-------------------|---------------|---------------------|---------------------|---------------------|
| Phenol                           | SB                   | B940331A             | 1                  | 110               | 143           | 77                  | 10                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 100               | 143           | 70                  | 10                  | ug/L                |
| 2-Chlorophenol                   | SB                   | B940331A             | 1                  | 110               | 143           | 77                  | 10                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 92                | 143           | 64                  | 10                  | ug/L                |
| 1,4-Dichlorobenzene              | SB                   | B940331A             | 1                  | 90                | 143           | 63                  | 10                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 76                | 143           | 53                  | 10                  | ug/L                |
| N-Nitrosodi-n-propylamine        | SB                   | B940331A             | 1                  | 103               | 143           | 72                  | 10                  | ug/L                |
|                                  | SBD                  | 8940331A             | 1                  | 100               | 143           | 70                  | 10                  | ug/L                |
| 1,2,4-Trichlorobenzene           | SB                   | B940331A             | 1                  | 98                | 143           | 69                  | 10                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 87                | 143           | 61                  | 10                  | ug/L                |
| 4-Chloro-3-methylphenol          | SB                   | B940331A             |                    | 141               | 143           | 99                  | 10                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 136               | 143           | 95                  | 10                  | ug/L                |
| Acenaphthene                     | SB                   | B940331A             | 1                  | 124               | 143           | 87                  | 10                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 122               | 143           | 85                  | 10                  | ug/L                |
| 4-Nitrophenol                    | SB                   | B940331A             | 1                  | 81                | 143           | 57                  | 50                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 65                | 143           | 45                  | 50                  | ug/L                |
| 2,4-Dinitrotoluene               | SB                   | B940331A             | 1                  | 132               | 143           | 92                  | 10                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 131<br>94         | 143           | 92                  | 10<br>50            | ug/L                |
| Pentachlorophenol                | SB                   | B940331A             | 1                  |                   | 143           | 66<br>43            | 50                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 61                | 143           | 87                  | 10                  | ug/L                |
| Pyrene                           | SB                   | B940331A             | 1                  | 124               | 143           | 85                  | 10                  | ug/L                |
|                                  | SBD                  | B940331A             | 1                  | 122               | 143           |                     | 0                   | ug/L<br>35-114% Lim |
| Nitrobenzene-d5 (Surrogate)      | SB                   | B940331A             | 1                  | 101               | 100           | 101<br>92           | 0                   | 35-114% Lim         |
|                                  | SBD                  | B940331A             | 1                  | 92<br>94          | 100<br>100    | 92<br>94            | 0                   | 43-116% Lim         |
| 2-Fluorobiphenyl (Surrogate)     | SB                   | B940331A             |                    | 94                | 100           | 94                  | 0                   | 43-116% Lim         |
|                                  | SBD                  | B940331A             | 1                  | 92                | 100           | 92                  | 0                   | 33-141% Lim         |
| 4-Terphenyl-d14 (Surrogate)      | SB                   | B940331A             | 1 -                |                   | 100           | 94                  |                     | 33-141% Lim         |
|                                  | SBD                  | B940331A<br>B940331A | 1                  | 92<br>89          | 100           | 89                  | 0                   | 10-94% Limi         |
| Phenol-d6 (Surrogate)            | SB                   |                      | 1                  | 79                | 100           | 79                  |                     | 10-94% Limit        |
| 2 Elugraphenel (Currente)        | SBD<br>SB            | B940331A<br>B940331A |                    | 82                | 100           | 82                  | Ö                   | 21-100% Lim         |
| 2-Fluorophenol (Surrogate)       | SBD                  | B940331A             | 1                  | 62                | 100           | 62                  | 0                   | 21-100% Lim         |
|                                  |                      | B940331A             |                    | 86                | 100           | 86                  | 0                   | 10-123% Lim         |
| 2,4,6-Tribromophenol (Surrogate) | SB<br>SBD            | B940331A             | 1                  | 61                | 100           | 61                  | 0                   | 10-123% Lim         |
|                                  | 560                  | B940331A             |                    |                   | 100           |                     | U                   | 10 123% 2111        |
|                                  |                      | 1                    |                    |                   |               |                     |                     |                     |
|                                  |                      |                      | 1                  |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   |               |                     |                     |                     |
|                                  |                      |                      |                    |                   | 10            | 703 East Beth       | any Drive           |                     |
|                                  |                      |                      |                    |                   |               |                     | 014                 |                     |
|                                  |                      |                      |                    |                   |               | 03) 751-1780        |                     |                     |

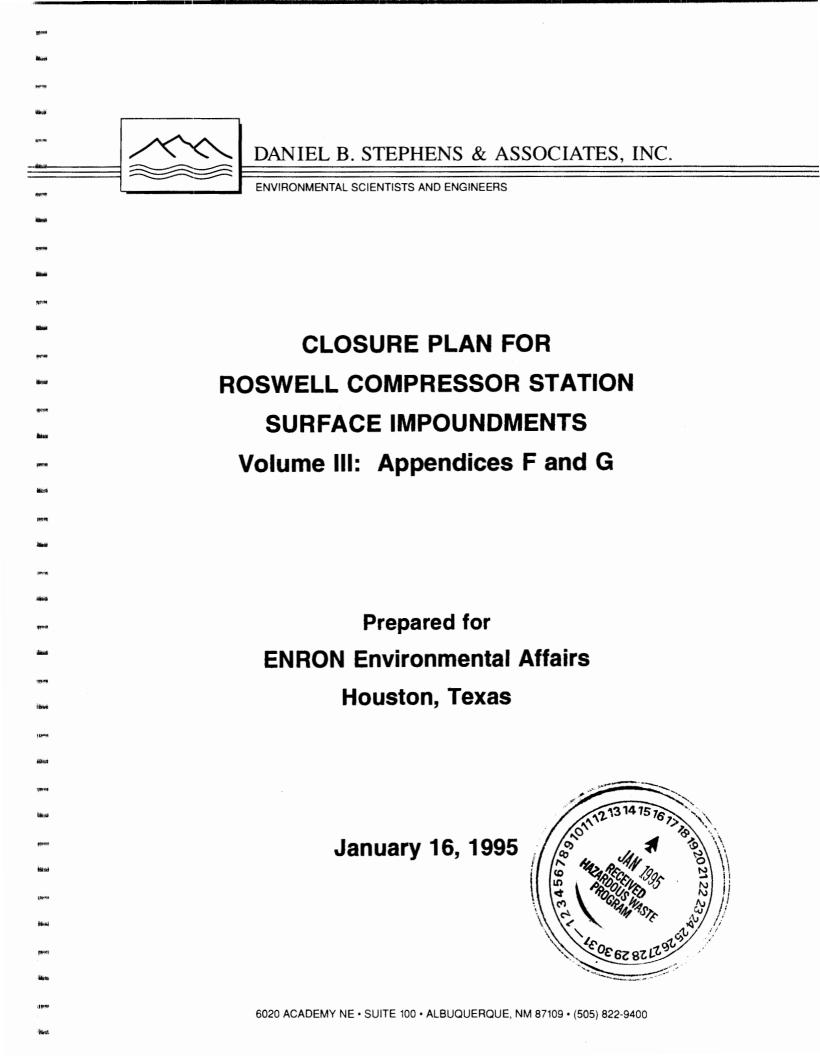
The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and contidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories, nowever, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, procer operations, or profitableness of any 04, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirely, without the written approval of Core Laboratories



| OB NUMBER: 943236 CUS         | OMER: DANIEL B. | STEPHENS & ASSOC | IATES           | ATTN: JEFF F           | ORBES           |                 |
|-------------------------------|-----------------|------------------|-----------------|------------------------|-----------------|-----------------|
| OLATILE SPIKED ANALYSIS-WATER | DATE ANALYZED   | : 12/30/94 TIME  | ANALYZED: 12:50 | METHOD: 8240 (         | 2) Q            | C NUMBER:318093 |
|                               |                 | BLAN             | K S             |                        |                 |                 |
| EST DESCRIPTION               | ANALY SUB-TYPE  | ANALYSIS I.D.    | DILUTION FACTOR | ANALYZED VALUE         | DETECTION LIMIT | UNITS OF MEASUR |
| îme Analyzed                  | SB<br>SBD       | 2012<br>2048     | 1               | 0                      | 0               |                 |
|                               |                 |                  |                 |                        |                 |                 |
|                               |                 |                  |                 |                        |                 |                 |
|                               |                 |                  |                 |                        |                 |                 |
|                               |                 |                  |                 |                        |                 |                 |
|                               |                 |                  |                 |                        |                 |                 |
|                               |                 |                  |                 |                        |                 |                 |
|                               |                 |                  |                 |                        |                 |                 |
|                               |                 |                  |                 |                        |                 |                 |
|                               |                 |                  |                 | 10703 536              | t Bethany Drive |                 |
|                               |                 |                  |                 | Aurora, C<br>(303) 751 | :0 80014        |                 |
|                               |                 | PAG              | GE:36           |                        |                 |                 |

other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories




| JOB NUMBER: 943236 CUST         | OMER: DANIE          | L B. STEPHEN         | S & ASSOCIAT       | ES                | ATTN:         | JEFF FORBES                |           |                              |
|---------------------------------|----------------------|----------------------|--------------------|-------------------|---------------|----------------------------|-----------|------------------------------|
| VOLATILE SPIKED ANALYSIS-WATER  | DATE ANA             | LYZED: 12/30         | /94 TIME AN        | ALYZED: 12:5      | 0 METHOD:     | 8240 (2)                   | QC        | NUMBER:318093                |
|                                 |                      | REFERE               | N C E S            | TANDAR            | DS            |                            |           |                              |
| TEST<br>DESCRIPTION             | ANALYSIS<br>SUB-TYPE | ANALYSIS<br>I. D.    | DILUTION<br>FACTOR | ANALYZED<br>VALUE | TRUE<br>VALUE | PERCENT                    | DETECTION | UNITS OF<br>MEASURE          |
| 1,1-Dichloroethene              | SB                   | V941230M<br>V941230M | 1                  | 52<br>48          | 50<br>50      | 104<br>96                  | 5         | ug/L                         |
| richloroethene                  | SBD<br>SB            | V941230M             | 1                  | 47                | 50            | 94                         | 5         | ug/L<br>ug/L                 |
| enzene                          | SBD                  | V941230M<br>V941230M | 1                  | 46<br>50          | 50<br>50      | 92<br>100                  | 5         | ug/L<br>ug/L                 |
| oluene                          | SBD<br>SB            | V941230M<br>V941230M | 1                  | 48<br>52          | 50<br>50      | 96<br>104                  | 1         | ug/L<br>ug/L                 |
|                                 | SBD                  | V941230M             | 1                  | 50                | 50            | 100                        | 5         | ug/L                         |
| hlorobenzene                    | SB<br>SBD            | V941230M<br>V941230M |                    | 52<br>50          | 50<br>50      | 104                        | 5         | ug/L<br>ug/L                 |
| ibromofluoromethane (Surrogate) | SB<br>SBD            | V941230M<br>V941230M | 1                  | 110<br>110        | 100<br>100    | 110<br>110                 | 0         | 86-118% Limi<br>86-118% Limi |
| oluene-d8 (Surrogate)           | SB                   | V941230M             | 1                  | 104               | 100           | 104                        | 0         | 88-110% Limi                 |
| -Bromofluorobenzene (Surrogate) | SBD<br>SB            | V941230M<br>V941230M |                    | 104<br>102        | 100<br>100    | 104                        | 0         | 88-110% Limi<br>86-115% Limi |
|                                 | SBD                  | V941230M             | 1                  | 102               | 100           | 102                        | 0         | 86-115% Limit                |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 |                      |                      |                    |                   |               |                            |           |                              |
|                                 | 1                    | I                    | 1                  | 1                 | 107           | 03 East Betha              |           | I                            |
|                                 |                      |                      |                    |                   | Aur           | ora, CO 800<br>3) 751-1780 |           |                              |
|                                 |                      |                      |                    |                   | (30           |                            |           |                              |

sent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatspever. This report shall not be reproduced except in its entirety, without the written approach of Core Laboratories.



|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QUALITY CO                                                                    | NTROL FO                                                                                                     | OTER                                                                                                                                                                                                                                                    |                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | METHOD                                                                        | REFERENCE                                                                                                    | S                                                                                                                                                                                                                                                       |                                           |
| (1)  | EPA 600/4-79-020, Methods For Chemic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | al Analysis Of V                                                              | Veter And Wa                                                                                                 | istes, March 1983                                                                                                                                                                                                                                       |                                           |
| (2)  | EPA SW-846, Test Methods For Evalueti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng Solid Waste,                                                               | Third Edition,                                                                                               | November 1986                                                                                                                                                                                                                                           |                                           |
| (3)  | Standard Methods For The Examination (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of Water And W                                                                | estewater, 17                                                                                                | 7th Edition, 1989                                                                                                                                                                                                                                       |                                           |
| (4)  | EPA 600/4-80-032, Prescribed Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s For Measurem                                                                | nent Of Radio                                                                                                | activity in Drinking Water, August 1                                                                                                                                                                                                                    | 980                                       |
| (5)  | EPA 600/8-78-017, Microbiological Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ods For Monitor                                                               | ing The Envir                                                                                                | onment, December 1978                                                                                                                                                                                                                                   |                                           |
| (6)  | Federal Register, July 1, 1990 (40 CFR F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'art 136)                                                                     |                                                                                                              |                                                                                                                                                                                                                                                         |                                           |
| (7)  | EPA 600/4-88-039, Methods For The De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | termination Of C                                                              | Organics Com                                                                                                 | pounds in Drinking Water, Decembe                                                                                                                                                                                                                       | er 1988                                   |
| (8)  | U.S.G.S. Methods For The Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Of Inorgenic Su                                                               | ubstances in V                                                                                               | Nater And Fluvial Sediments, Book                                                                                                                                                                                                                       | 5, Chapter A1, 1985                       |
| (9)  | Federal Register, Friday, June 7, 1991, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40 CFR Parts 14                                                               | 1 and 142)                                                                                                   |                                                                                                                                                                                                                                                         |                                           |
| (10) | Standard Methods For The Examination (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of Water And W                                                                | astewater, 16                                                                                                | oth Edition, 1985                                                                                                                                                                                                                                       |                                           |
| 11)  | ASTM, Section 11 Water And Environme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ntai Technology                                                               | , Volume 11.                                                                                                 | 01 Water (1), 1991                                                                                                                                                                                                                                      |                                           |
| 12)  | Methods Of Soil Analysis, American Soci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ety Of Agronom                                                                | iy, Agronomy                                                                                                 | No. 9, 1965                                                                                                                                                                                                                                             |                                           |
| 13)  | EPA SW-846, Test Methods For Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ng Solid Waste,                                                               | Third Edition,                                                                                               | Revision 1, November 1990                                                                                                                                                                                                                               |                                           |
| 14)  | ASTM, Section 5, Petroleum Products, Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ubricants, and F                                                              | ossil Fuels, Vo                                                                                              | olume 05.05, Gaseous Fuels, Coal a                                                                                                                                                                                                                      | and Coke                                  |
| (15) | EPA 600/2-78-054, Field and Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Methods Applic                                                                | able To Overt                                                                                                | burdens and Mine Soils, March 197                                                                                                                                                                                                                       | 8                                         |
| 16)  | ASTM, Part 19, Soils and Rock; Building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stones, 1981                                                                  |                                                                                                              |                                                                                                                                                                                                                                                         |                                           |
|      | NC == Not Calculable Due To Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |                                                                                                              | for percent moisture) unless otherv<br>tion Limit.                                                                                                                                                                                                      |                                           |
|      | Blank QC Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               | Spike (                                                                                                      | OC Sample Identification                                                                                                                                                                                                                                |                                           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |                                                                                                              |                                                                                                                                                                                                                                                         |                                           |
|      | MB Method Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               | MS                                                                                                           | Method (Matrix) Spike                                                                                                                                                                                                                                   |                                           |
|      | ICB Initial Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               | MSD                                                                                                          | Method (Matrix) Spike Duplicate                                                                                                                                                                                                                         | ,                                         |
|      | ICB Initial Calibration Blank<br>CCB Continuing Calibration Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               | MSD<br>PDS                                                                                                   | Method (Matrix) Spike Duplicate<br>Post Digestion Spike                                                                                                                                                                                                 |                                           |
|      | ICB Initial Calibration Blank<br>CCB Continuing Calibration Blank<br>Reference Standard QC Sample Identifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>tion</u>                                                                   | MSD<br>PDS<br>SB                                                                                             | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank                                                                                                                                                                                 |                                           |
|      | ICB Initial Calibration Blank<br>CCB Continuing Calibration Blank<br>Reference Standard QC Sample Identifica<br>LCS Laboratory Control Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>tion</u>                                                                   | MSD<br>PDS<br>SB<br>SBD                                                                                      | Method (Matnx) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate                                                                                                                                                        |                                           |
|      | ICB       Initial Calibration Blank         CCB       Continuing Calibration Blank         Reference Standard QC Sample Identifica         LCS       Laboratory Control Standard         RS       Reference Standard                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               | MSD<br>PDS<br>S <b>B</b><br>S <b>BD</b><br><u>Duplica</u>                                                    | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br>ate QC Sample Identification                                                                                                                       |                                           |
|      | ICBInitial Calibration BlankCCBContinuing Calibration BlankReference Standard QC Sample IdentificaLCSLaboratory Control StandardRSReference StandardICVInitial Calibration Verification Star                                                                                                                                                                                                                                                                                                                                                                                                                      | ndard                                                                         | MSD<br>PDS<br>SB<br>SBD<br>Duplica<br>MD                                                                     | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br>ate QC Sample Identification<br>Method (Matrix) Duplicate                                                                                          |                                           |
|      | ICBInitial Calibration BlankCCBContinuing Calibration BlankReference Standard QC Sample IdentificaLCSLaboratory Control StandardRSReference StandardICVInitial Calibration Verification StarCCVContinuing Calibration Verification                                                                                                                                                                                                                                                                                                                                                                                | ndard<br>n Standard                                                           | MSD<br>PDS<br>SB<br>SBD<br>Duplice<br>MD<br>ED                                                               | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br>ate QC Sample Identification<br>Method (Matrix) Duplicate<br>Extraction Duplicate                                                                  |                                           |
|      | ICBInitial Calibration BlankCCBContinuing Calibration BlankReference Standard QC Sample IdentificaLCSLaboratory Control StandardRSReference StandardICVInitial Calibration Verification StarCCVContinuing Calibration VerificationISA/ISBICP Interference Check Sample                                                                                                                                                                                                                                                                                                                                            | ndard<br>Standard<br>es                                                       | MSD<br>PDS<br>SB<br>SBD<br>Duplice<br>MD<br>ED<br>ED                                                         | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br>ate QC Sample Identification<br>Method (Matrix) Duplicate<br>Extraction Duplicate<br>Digestion Duplicate                                           |                                           |
|      | ICBInitial Calibration BlankCCBContinuing Calibration BlankReference Standard QC Sample IdentificaLCSLaboratory Control StandardRSReference StandardICVInitial Calibration Verification StarCCVContinuing Calibration Verification                                                                                                                                                                                                                                                                                                                                                                                | ndard<br>Standard<br>es                                                       | MSD<br>PDS<br>SB<br>SBD<br>Duplice<br>MD<br>ED<br>ED                                                         | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br>ate QC Sample Identification<br>Method (Matrix) Duplicate<br>Extraction Duplicate<br>Digestion Duplicate                                           |                                           |
|      | ICBInitial Calibration BlankCCBContinuing Calibration BlankReference Standard QC Sample IdentificaLCSLaboratory Control StandardRSReference StandardICVInitial Calibration Verification StarCCVContinuing Calibration VerificationISA/ISBICP Interference Check SampleAnalyses performed by a subcontract lab"Technician" using the following codes:                                                                                                                                                                                                                                                              | ndard<br>n Standard<br>es<br>oratory are indic                                | MSD<br>PDS<br>SB<br>SBD<br>Duplica<br>MD<br>ED<br>DD<br>atted on the a                                       | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br><u>ate QC Sample Identification</u><br>Method (Matrix) Duplicate<br>Extraction Duplicate<br>Digestion Duplicate                                    | orts u <b>nder</b>                        |
|      | ICB       Initial Calibration Blank         CCB       Continuing Calibration Blank         Reference Standard QC Sample Identifica         LCS       Laboratory Control Standard         RS       Reference Standard         ICV       Initial Calibration Verification Star         CCV       Continuing Calibration Verification         ISA/ISB       ICP Interference Check Sample         Analyses performed by a subcontract lab       "Technician" using the following codes:         Subcontract Laboratory       Subcontract Laboratory                                                                  | ndard<br>n Standard<br>es<br>oratory are indic<br><u>Code</u>                 | MSD<br>PDS<br>SB<br>SBD<br>Duplice<br>MD<br>ED<br>DD<br>ated on the a<br><u>Subcor</u>                       | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br>ate QC Sample Identification<br>Method (Matrix) Duplicate<br>Extraction Duplicate<br>Digestion Duplicate<br>analytical and/or quality control repo | orts u <b>nder</b><br><u>Code</u>         |
|      | ICB       Initial Calibration Blank         CCB       Continuing Calibration Blank         Reference Standard QC Sample Identifica         LCS       Laboratory Control Standard         RS       Reference Standard         ICV       Initial Calibration Verification Star         ICV       Initial Calibration Verification Star         ICV       Continuing Calibration Verification         ISA/ISB       ICP Interference Check Sample         Analyses performed by a subcontract lab       "Technician" using the following codes:         Subcontract Laboratory       Core Laboratories - Anaheim, CA | ndard<br>n Standard<br>es<br>oratory are indic<br><u>Code</u><br>• AN         | MSD<br>PDS<br>SB<br>SBD<br>Duplice<br>MD<br>ED<br>DD<br>ated on the a<br><u>Subcor</u><br>Core La            | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br>ate QC Sample Identification<br>Method (Matrix) Duplicate<br>Extraction Duplicate<br>Digestion Duplicate<br>unalytical and/or quality control repo | orts under<br><u>Code</u><br>• LC         |
|      | ICBInitial Calibration BlankCCBContinuing Calibration BlankReference Standard QC Sample IdentificaLCSLaboratory Control StandardRSReference StandardICVInitial Calibration Verification StarCCVContinuing Calibration VerificationISA/ISBICP Interference Check SampleAnalyses performed by a subcontract lab"Technician" using the following codes:Subcontract LaboratoryCore Laboratories - Anaheim, CACore Laboratories - Casper, WY                                                                                                                                                                           | ndard<br>n Standard<br>es<br>oratory are indic<br><u>Code</u><br>• AN<br>• CA | MSD<br>PDS<br>SB<br>SBD<br>Duplica<br>MD<br>ED<br>DD<br>ated on the a<br><u>Subcor</u><br>Core La<br>Core La | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br>ate QC Sample Identification<br>Method (Matrix) Duplicate<br>Extraction Duplicate<br>Digestion Duplicate<br>unalytical and/or quality control repo | orts under<br><u>Code</u><br>• LC<br>• LB |
|      | ICB       Initial Calibration Blank         CCB       Continuing Calibration Blank         Reference Standard QC Sample Identifica         LCS       Laboratory Control Standard         RS       Reference Standard         ICV       Initial Calibration Verification Star         ICV       Initial Calibration Verification Star         ICV       Continuing Calibration Verification         ISA/ISB       ICP Interference Check Sample         Analyses performed by a subcontract lab       "Technician" using the following codes:         Subcontract Laboratory       Core Laboratories - Anaheim, CA | ndard<br>n Standard<br>es<br>oratory are indic<br><u>Code</u><br>• AN         | MSD<br>PDS<br>SB<br>SBD<br>Duplica<br>MD<br>ED<br>DD<br>ated on the a<br><u>Subcor</u><br>Core La<br>Core La | Method (Matrix) Spike Duplicate<br>Post Digestion Spike<br>Spiked Blank<br>Spiked Blank Duplicate<br>ate QC Sample Identification<br>Method (Matrix) Duplicate<br>Extraction Duplicate<br>Digestion Duplicate<br>unalytical and/or quality control repo | orts under<br><u>Code</u><br>• LC         |

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or principal expressed represent the best judgment of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other mineral, property well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced except in its entirety, without the written approval of Core Laboratories.





ENVIRONMENTAL SCIENTISTS AND ENGINEERS

### CLOSURE PLAN FOR ROSWELL COMPRESSOR STATION SURFACE IMPOUNDMENTS Volume III: Appendices F and G

### TABLE OF CONTENTS

### Appendix

- F DBS&A Standard Operating Procedures
  - Section 13.3.1, Drilling Operations
  - Section 13.3.2, Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses
  - Section 13.4, Well Design, Installation, and Abandonment
  - Section 13.4.1, Monitor Well Design and Installation
  - Section 13.4.3, Well Development
  - Section 13.4.4, Well and Boring Abandonment
  - Section 13.5, Water Sampling
  - Section 13.5.1, Preparation for Water Sampling
  - Section 13.5.2, Decontamination of Field Equipment
  - Section 13.5.3, Measurement of Field Parameters
  - Section 13.5.4, Collection of Ground-Water Samples
  - Section 13.5.5, Collection of Surface Water Samples
  - Section 13.5.6, Sample Preservation
  - Section 13.5.7, Sample Filtration
  - Section 13.5.8, Quality Assurance/Quality Control (QA/QC)
  - Section 13.6.1, Ground-Water Level Measurement
  - Section 13.6.2, Slug Testing
- G Boring Logs and Drilling Logs
  - Boring Logs, On-Site Monitor Wells and Recovery Wells
  - Drilling Logs, Off-Site Wells

# **APPENDIX F**

# DBS&A STANDARD OPERATING PROCEDURES

. Maria

Section 13.3.1

# **Drilling Operations**

. Alexandre

. Béne ja

15 km

Served.

21:26

- 5- 799 5 6- 799

 $-2\pi d$ 

2.7

3.3

12.98

- 29



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/03/93 • Supercedes n/a • Page 1 of 17

#### 1. PURPOSE

The following provides standard operating guidelines (SOGs) for drilling programs.

#### 2. SCOPE

The SOGs included in this section are applicable to all DBS&A employees and its contractors and subcontractors for the conduct of all drilling activities described in this section. The scope of the guidelines described in this section includes the following topics:

- Drilling Methods
- Drilling Fluids
- Drilling Equipment
- Procedures to Follow During Drilling Programs

Standards for drilling methods and fluids are described in ASTM D 5092-90 ("Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers"). Refer to Driscoll (1986), EPA (September 1986) or Aller et al. (1989) for more detailed guidelines about the above subjects as they relate to the drilling of monitor and extraction wells and borings. Site-specific work plans or sampling plans should identify any special needs or circumstances beyond those described in this SOG.

#### 3. GUIDELINES

#### 3.1 Drilling Methods (ASTM D 5092-90)

The drilling method required to create a stable, open, vertical borehole for drilling a borehole or installation of a monitor or extraction well shall be selected according to the site geology, the site hydrology, and the intended use of the data. Tables 13.3.1-1 and 13.3.1-2 list common drilling methods and will aid in the selection of an appropriate drilling method. Table 13.3.1-1 lists the advantages and disadvantages of the different types of drilling methods. Table 13.3.1-2 assesses the performance of different drilling methods in various types of geologic formations.

#### 3.2 Drilling Fluids (ASTM D 5092-90)

Whenever feasible, drilling procedures should be used that do not require the introduction of water or drilling fluids into the borehole and that optimize cuttings control at ground surface. Where the use of drilling fluids is unavoidable, the selected fluid should have as little impact as possible on the water samples for the constituents of interest. In addition, care should be taken to remove as much drilling fluid as possible from the well and the aquifer during the well development process (see Section 13.4.3). If an air compressor is used, it should be equipped with an oil air filter or oil trap.

Water-based drilling fluids are preferred if drilling fluids are needed for the drilling of monitor and extraction wells and borings. Water-based drilling fluids have the least influence on the ground-

1116



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/03/93 · Supercedes n/a · Page 2 of 17

water quality in the area of drilling. However, potential problems created by the use of waterbased drilling fluids need to be kept in mind. These problems include: (1) fluid infiltration/flushing of the intended monitoring zone; (2) well development difficulties (particularly where an artificial filter pack has been installed); (3) chemical, biological and physical reactivity of the drilling fluid with indigenous fluids in the ground; and (4) introduction of halomethanes into the ground water.

#### 3.2.1 Drilling Fluid Properties

The drilling subcontractor is responsible for checking and adjusting the properties (weight and viscosity) of the drilling fluid. The proper weight of the drilling fluid is needed to maintain stability of the borehole, and the proper viscosity controls the ability of the drilling fluid to remove cuttings from the borehole. However, the DBS&A Technical Representative should always make sure that the drilling contractor periodically checks the properties of the drilling fluid.

One simple and common way to measure the viscosity of the drilling fluid is a Marsh Funnel. With the use of a Marsh Funnel, a known volume of drilling fluid is allowed to drain from a special funnel into a cup; the flow time is recorded and calibrated against the time required for an equal volume of water to drain from the funnel [approx. 26 seconds @  $70^{\circ}$  F (21.1° C)].

Table 13.3.1-3 describes typical additive concentrations, resulting viscosities, and required uphole velocities for major types of drilling fluids used in various aquifer materials. Table 13.3.1-4 charts drilling fluid weight adjustments with barite or water.

### 3.2.2 Guidelines for Solving Specific Drilling Fluid Problems (Driscoll, 1986)

The drilling subcontractor is responsible for any drilling fluid problems. However, the DBS&A Technical Representative and Field Representative should be aware of and recognize the problems that may arise. Below are some guidelines for solving specific drilling fluid problems which may be helpful to the DBS&A Technical Representative:

PROBLEM: Inadequate cuttings have been removed from the borehole.

### RECOMMENDED ACTION:

- 1. Clays and polymeric solids in potable water
  - a. Increase uphole velocity of the drilling fluid.
  - b. Increase viscosity of the drilling fluid by adding more colloidal material.
  - c. Increase density of the drilling fluid by adding weighting material (Tables 13.3.1-3 and 13.3.1-4).
  - d. Reduce penetration rate to limit cuttings load.
- 2. Air

1.400

- and de

1.105

- a. Increase uphole velocity of fluid system by adding air or water.
- b. Add surfactant to produce foam or to increase concentration of surfactant.
- c. Decrease air injection rate if air is breaking through the foam mix and preventing formation of stable foam.



isind

#### DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/03/93 • Supercedes n/a • Page 3 of 17

d. Decrease water content of the foam system.

*PROBLEM:* The rate at which cuttings will drop out is too low because the inadvertent addition of native clays during drilling has produced excessive viscosity in the drilling fluid.

#### RECOMMENDED ACTION:

- 1. Add potable water to dilute the drilling fluid (Table 13.3.1-4).
- 2. Add commercial thinner to reduce the attractive forces between clay colloids.
- 3. If using clay additives, convert to a polymeric system.
- 4. Separate the solids from a clay-additive system with a shale shaker or shale shakers and desanders connected in series. A shale shaker or desander may be unnecessary when a polymeric system is being used.
- 5. Redesign or clean the pit system to increase rate of cuttings settlement.

**PROBLEM:** Gel strength becomes too great because of strong flocculation, high concentration of solids, or contamination from evaporite deposits or cement. (Excessive gel-strength problems do not occur with polymeric colloids.)

#### RECOMMENDED ACTION:

- 1. Add potable water to dilute the drilling fluid.
- 2. Add polyphosphate or commercial thinner to reduce electrical charges between clay colloids.
- 3. Use desander or shale shaker to remove solids from a clay-additive system.
- 4. Lower the pH.

*PROBLEM:* Excessive fluid loss into the formation causes thick filter cakes that can produce tight places in the hole, development problems, formation (clay) sloughing, and misinterpretation of electric or gamma-ray logs.

#### RECOMMENDED ACTION:

- 1. Increase viscosity by adding bentonite or polymeric colloids to any water-based system.
- 2. Add commercial viscosifiers such as CMC or HEC.
- 3. Reduce density of the drilling fluid.
- 4. Prevent drastic changes in downhole pressures and maintain downhole pressures at a minimum. Suggestions include (Bariod):
  - a. Raise and lower the drill string slowly.
  - b. Drill through any tight section; do not spud.
  - c. Begin rotation of the drill pipe, and then start the pump at a low rate and gradually increase the rate.
  - d. Operate the pump at the lowest rate that will assure adequate cooling of the bit and removal of cuttings from the bit face.

- 74 - 78



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/03/93 • Supercedes n/a • Page 4 of 17

e. Prevent balling at the bit; do not drill soft formations so fast that the annulus becomes overloaded and pressure builds up.

*PROBLEM:* Lost circulation in permeable formations, faulted and jointed rock, solution cavities in dolomite and limestone, or fractures created by excessive borehole pressures in semiconsolidated or well consolidated rock can all create problems.

#### **RECOMMENDED ACTION:**

- 1. Reduce the density of the drilling fluid system.
- 2. Switch from a clay-additive drilling fluid system to an air-foam fluid, or add surfactant to a dry-air system.
- 3. Gel natural polymeric fluids at the point of fluid loss.
- 4. Use commercial sealing materials.
- 5. Drill remainder of the hole with a cable tool rig.
- 6. Case off, then resume rotary drilling.
- 7. Fill the borehole with clean sand to the point above lost circulation. Let the material stand in borehole overnight. Resume drilling, using low pump pressure.

**PROBLEM:** Confined pressures in the formation can contribute to a problem.

### RECOMMENDED ACTION:

- 1. Increase density by adding heavy mineral additives such as barite to drilling fluid systems made with clay additives (Table 13.3.1-4). To suspend barite, the minimum Marsh funnel viscosity must equal four times the final (desired) drilling fluid weight (in lb/gal).
- 2. Increase density by adding a salt solution to polymeric drilling fluid systems.

*PROBLEM:* Hydration (swelling and dispersion), pore pressures, and overburden pressure can cause shale sloughing.

#### **RECOMMENDED ACTION:**

- 1. Use polymeric additive to isolate water from shale.
- 2. Maintain constant fluid pressures in the borehole.
- 3. Minimize uphole velocities.
- 4. Avoid pressure surges caused by raising or lowering drill rods rapidly.
- 5. Add 3 to 4 percent potassium chloride (KCI) to water-based systems.
- 6. Raise the pH of the drilling fluid to stiffen the clay.

*PROBLEM:* Contaminants are present. Contaminants usually consist of cement, soluble salts, and gases (hydrogen sulfide and carbon dioxide). Cement in the hole can cause polymeric drilling fluids to break down, thereby increasing fluid losses. Salts may cause drilling fluids with

essia

what's



3.34

#### DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/03/93 • Supercedes n/a • Page 5 of 17

clay additives to separate into liquid and solid fractions. Gases in water may affect the physical condition of the drilling fluid.

#### RECOMMENDED ACTION:

- 1. For cement problems:
  - a. Maintain the pH for natural polymeric drilling fluids at 7 or lower.
  - b. Add commercial chemicals such as sodium acid pyrophosphate to drilling fluids with clay additives to restore original viscosity.
- 2. For salt problems:
  - a. Change the clay additive from montmorillonite to attapulgite.
  - b. Change to a natural polymeric drilling fluid additive.
- 3. For gas problems:
  - a. Add a corrosion inhibitor.

**PROBLEM:** Drilling at air temperatures significantly below freezing, causing freeze-up of the recirculation system.

#### **RECOMMENDED ACTION:**

1. Add sodium chloride (NaCl) or calcium chloride (CaCl<sub>2</sub>) to a natural polymeric drilling fluid. Salt must not be added to a drilling fluid made with bentonite.

#### 3.3 Drilling Equipment

DBS&A Form Nos. 116 6/93 and 117 6/93, attached to this SOG, are checklists used for the preparation of drilling programs. These two checklists should be used as communication guides between DBS&A and the drilling subcontractor. They should be completed and checked prior to the field stage of the drilling program by both DBS&A and the drilling subcontractor. Form No. 116 6/93 summarizes important phone contacts, length of job, type of rig, underground utility survey, geologic material, sampling, disposal of cuttings, wells and soil borings, grouting, and health and safety issues. Form No. 117 6/93 identifies the drilling equipment and support vehicles that are needed for the drilling program.

#### 3.4 Guidelines to Follow During Drilling Activities

- 1. A drilling method should be selected that will cause minimal disturbance to the subsurface materials and will not contaminate the subsurface and ground water (40 CFR 265.91(c)).
- 2. The drilling contractor is responsible for decontaminating the drilling equipment before it is transported onto the project site (ASTM D 5088-90).
- 3. A decontamination procedure should be followed before use and between borehole locations to prevent cross contamination of wells where contamination has been detected

-414

-840



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/03/93 • Supercedes n/a • Page 6 of 17

or is suspected from the site characterization work that precedes the drilling activities (ASTM D 5088-90).

- 4. The drilling contractor shall be responsible for securing any and all boring or well drilling permits required by state or local authorities and for complying with any and all state or local regulations with regard to the submission of well logs, samples, etc.
- 5. The drilling contractor shall be responsible for complying with any and all (to include placement) regulations with regard to drilling safety and underground utility detection.
- 6. Air systems shall not be used for drilling, well installation, well development, or sampling without prior approval by the Project Manager. When used, air systems shall include an air line oil filter, frequently replaced, to remove essentially all oil residue from the air compressor. The use of any air system shall be fully described in the drillers log to include equipment description, manufacturer(s), model(s), air pressures used, frequency of oil filter change and evaluation of air line filtering.
- 7. When air is used as the drilling fluid, shrouds, canopies, bluooey lines, or directional pipes should be used to contain and direct the drill cuttings away from the drill crew.
- 8. Any water that is used during the drilling and installation of a well should be of a known chemical source and verified not to alter or impact the chemistry of the ground water of the operation of the well.
- 9. When using commercially available mud or additives for the drilling fluid, DBS&A Technical Representatives and Field Representative should make sure that the mud or additives to not alter or affect the chemistry of the ground water or the operation of the well.
- 10. During rotary drilling, the use of portable recirculation tanks is required. No dug sumps (lined or unlined) are allowed without prior approval by the Project Manager.
- 11. No dyes, tracers, or other substances shall be used or otherwise introduced into borings, wells, lysimeters, grout, backfill, ground water, or surface water unless specifically approved by the Technical Project Manager.
- 12. For wells over 100-feet deep, plumbness and alignment should be checked at preselected intervals during the drilling of the boreholes by the driller and verified by the DBS&A Field Representative.
- 13. Any contaminated materials (soil and/or water) should be collected and disposed of in an approved waste disposal container or facility.
- 14. Soil descriptions, collection of samples, field monitoring, and other pertinent information shall be recorded on the Boring Log Form during drilling operations. The Boring Log

3230\SECTION 13\13-3-1

.....



in st

-----

19-**3**8

-240.00

inne Stati

100

an A

2-18

All all a

evite

法词

### DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

### Guideline Drilling Operations SECTION 13.3.1

Effective 06/01/93 · Supersedes n/a · Page 8 of 17

#### Table 13.3.1-1 Drilling Methods for Monitor Wells

| Туре                 | Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hollow-stem<br>auger | <ul> <li>No drilling fluid is used, eliminating contamination by drilling fluid additives</li> <li>Formation waters can be sampled during drilling by using a screened auger or advancing a well point ahead of the augers</li> <li>Formation samples taken by split-spoon or core-barrel methods are highly accurate</li> <li>Natural gamma-ray logging can be done inside the augers</li> <li>Hole caving can be overcome by setting the screen and casing before the augers are removed</li> <li>Fast</li> <li>Rigs are highly mobile and can reach most drilling sites</li> <li>Usually less expensive than rotary or cable tool drilling</li> </ul> | <ul> <li>Can be used only in unconsolidated materials</li> <li>Limited to depths of 100 to 150 ft (30.5 to 45.7 m)</li> <li>Possible problems in controlling heaving sands</li> <li>May not be able to run a complete suite of geophysical logs</li> </ul>                                                                                                                                                                                                                                                                                                                                                |
| Direct rotary        | <ul> <li>Can be used in both unconsolidated and consolidated formations</li> <li>Capable of drilling to any depth</li> <li>Core samples can be collected</li> <li>A complete suite of geophysical logs can be obtained in the open hole</li> <li>Casing is not required during drilling</li> <li>Many options for well construction</li> <li>Fast</li> <li>Smaller rigs can reach most drilling sites</li> <li>Relatively inexpensive</li> </ul>                                                                                                                                                                                                         | <ul> <li>Drilling fluid is required and contaminants are circulated with the fluid</li> <li>Drilling fluid mixes with the formation water and invades the formation and is sometimes difficult to remove</li> <li>Bentonitic fluids may absorb metals and may interfere with other parameters</li> <li>Organic fluids may interfere with bacterial analyses and/or organic-related parameters</li> <li>During drilling, no information can be obtained on the location of the water table and only limited information on water-producing zones</li> <li>Formation samples may not be accurate</li> </ul> |

-445



6 i 44

2-05

لعقدهما

### DANIEL B. STEPHENS & ASSOCIATES, INC.

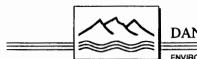
ENVIRONMENTAL SCIENTISTS AND ENGINEERS

#### Guideline Drilling Operations SECTION 13.3.1

Effective 05/12/93 • Supersedes n/a • Page 9 of 17

#### Table 13.3.1-1 Drilling Methods for Monitor Wells (continued)

| Туре       | Advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air rotary | <ul> <li>No water-based drilling fluid is used,<br/>eliminating contaminantion by additives</li> <li>Can be used in both unconsolidated and<br/>consolidated formations</li> <li>Capable of drilling to any depth</li> <li>Formation sampling is excellent in hard, dry<br/>formations</li> <li>Formation water blown out of the hole makes<br/>it possible to determine when the first water-<br/>bearing zone is encountered</li> <li>Field analysis of water blown from the hole<br/>can provide information regarding changes for<br/>some basic water-quality parameters such as<br/>chlorides</li> </ul>                                                                                                                                                       | <ul> <li>Casing is required to keep the hole open<br/>when drilling in soft, caving formations below<br/>the water table</li> <li>When more than one water-bearing zone is<br/>encountered and hydrostatic pressures are<br/>different, flow between zones occurs during<br/>the time drilling is being completed and befor<br/>the borehole can be cased and grounted<br/>properly</li> <li>Relatively more expensive than other<br/>methods</li> <li>May not be economical for small jobs</li> </ul> |
| Cable Tool | <ul> <li>Fast</li> <li>Only small amounts of drilling fluid are<br/>required (generally water with no additives)</li> <li>Can be used in both unconsolidated and<br/>consolidated formations; well suited for<br/>extremely permeable formations</li> <li>Can drill to depths required for most<br/>monitoring wells</li> <li>Highly representative formation samples can<br/>be obtained by an experienced driller</li> <li>Changes in water level can be observed</li> <li>Relative permeabilities for different zones can<br/>be determined by skilled drillers</li> <li>A good seal between casing and formation is<br/>virtually assured if flush-jointed casing is used</li> <li>Rigs can reach most drilling sites</li> <li>Relatively inexpensive</li> </ul> | <ul> <li>Minimum casing size is 4 in (102 mm)</li> <li>Steel casing must be used</li> <li>Cannot run a complete suite of geophysical logs</li> <li>Usually a screen must be set before a water sample can be taken</li> <li>Slow</li> </ul>                                                                                                                                                                                                                                                            |


(After Driscoll, 1987)

. Line

illi

\*\*\*

ine)



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/01/93 · Supersedes n/a · Page 10 of 17

#### Table 13.3.1-2 Relative Performance of Different Drilling Methods in Various Types of Geologic Formations

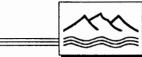
| Type of<br>Formation                                   | Cable<br>Tool | Direct<br>Rotary<br>(with fluids) | Direct<br>Rotary<br>(with air) | Direct Rotary<br>(Down-the-<br>hole air<br>hammer) | Direct Rotary<br>(Drill-through<br>casing<br>hammer) | Reverse<br>Rotary<br>(with fluids) | Reverse<br>Rotary<br>(Dual Wall) | Hydraulic<br>Percussion | Jetting | Driven | Auger |
|--------------------------------------------------------|---------------|-----------------------------------|--------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------|----------------------------------|-------------------------|---------|--------|-------|
| Dune sand                                              | 2             | 5                                 | NR                             | NR                                                 | 6                                                    | 5*                                 | 6                                | 5                       | 5       | 3      | 1     |
| Loose sand<br>and gravel                               | 2             | 5                                 | NR                             | NR                                                 | 6                                                    | 5*                                 | 6                                | 5                       | 5       | 3      | 1     |
| Quicksand                                              | 2             | 5                                 | NR                             | NR                                                 | 6                                                    | 5*                                 | 6                                | 5                       | 5       | NR     | 1     |
| Loose boulders<br>in alluvial fans<br>or glacial drift | 3-2           | 2-1                               | NR                             | NR                                                 | 5                                                    | 2-1                                | 4                                | 1                       | 1       | NR     | 1     |
| Clay and silt                                          | 3             | 5                                 | NR                             | NR                                                 | 5                                                    | 5                                  | 5                                | 3                       | 3       | NR     | 3     |
| Firm shale                                             | 5             | 5                                 | NR                             | NR                                                 | 5                                                    | 5                                  | 5                                | 3                       | NR      | NR     | 2     |
| Sticky shale                                           | 3             | 5                                 | NR                             | NR                                                 | 5                                                    | 3                                  | 5                                | 3                       | NR      | NR     | 2     |
| Brittle shale                                          | 5             | 5                                 | NR                             | NR                                                 | 5                                                    | 5                                  | 5                                | 3                       | NR      | NR     | NA    |
| Sandstone-<br>poorly<br>cemented                       | 3             | 4                                 | NR                             | NR                                                 | NA                                                   | 4                                  | 5                                | 4                       | NR      | NR     | NA    |

\*Assuming sufficient hydrostatic pressure is available to contain active sand (under high confining pressures)

NR = Not recommended

NA = Not applicable

Rate of Penetration:


1 Impossible 4 Medium

2 Difficult 5 Rapid

3 Slow 6 Very rapid

(After Driscoll, 1987)

3230\SECTION 13\13-3-1



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/01/93 • Supersedes n/a • Page 11 of 17

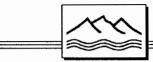
#### Table 13.3.1-2 Relative Performance of Different Drilling Methods in Various Types of Geologic Formations (continued)

| Type of<br>Formation                           | Cable<br>Tool | Direct<br>Rotary<br>(with fluids) | Direct<br>Rotary<br>(with air) | Direct Rotary<br>(Down-the-<br>hole air<br>hammer) | Direct Rotary<br>(Drill-through<br>casing<br>hammer) | Reverse<br>Rotary<br>(with fluids) | Reverse<br>Rotary<br>(Dual Wall) | Hydraulic<br>Percussion | Jetting | Driven | Auger |
|------------------------------------------------|---------------|-----------------------------------|--------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------|----------------------------------|-------------------------|---------|--------|-------|
| Sandstone-well<br>cemented                     | 3             | 3                                 | 5                              | NR                                                 | NA                                                   | 3                                  | 5                                | 3                       | NR      | NR     | NA    |
| Chert nodules                                  | 5             | 3                                 | 3                              | NR                                                 | NA                                                   | 3                                  | 3                                | 5                       | NR      | NR     | NA    |
| Limestone                                      | 5             | 5                                 | 5                              | 6                                                  | NA                                                   | 5                                  | 5                                | 5                       | NR      | NR     | NA    |
| Limestone with<br>chert nodules                | 5             | 3                                 | 5                              | 6                                                  | NA                                                   | 3                                  | 3                                | 5                       | NR      | NR     | NA    |
| Limestone with<br>small cracks or<br>fractures | 5             | 3                                 | 5                              | 6                                                  | NA                                                   | 2                                  | 5                                | 5                       | NR      | NR     | NA    |
| Limestone,<br>cavernous                        | 5             | 3-1                               | 2                              | 5                                                  | NA                                                   | 1                                  | 5                                | 1                       | NR      | NR     | NA    |
| Dolomite                                       | 5             | 5                                 | 5                              | 6                                                  | NA                                                   | 5                                  | 5                                | 5                       | NR      | NR     | NA    |

\*Assuming sufficient hydrostatic pressure is available to contain active sand (under high confining pressures)

NR = Not recommended

NA = Not applicable


Rate of Penetration:

1 Impossible 4 Medium

2 Difficult 5 Rapid

3 Slow 6 Very rapid

(After Driscoll, 1987)



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/01/93 • Supersedes n/a • Page 12 of 17

#### Table 13.3.1-2 Relative Performance of Different Drilling Methods in Various Types of Geologic Formations (continued)

| Type of<br>Formation                                       | Cable<br>Tool | Direct<br>Rotary<br>(with fluids) | Direct<br>Rotary<br>(with air) | Direct Rotary<br>(Down-the-<br>hole air<br>hammer) | Direct Rotary<br>(Drill-through<br>casing<br>hammer) | Reverse<br>Rotary<br>(with fluids) | Reverse<br>Rotary<br>(Dual Wall) | Hydraulic<br>Percussion | Jetting | Driven | Auger |
|------------------------------------------------------------|---------------|-----------------------------------|--------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------|----------------------------------|-------------------------|---------|--------|-------|
| Basalts, thin<br>layers in<br>sedimentary<br>rocks         | 5             | 3                                 | 5                              | 6                                                  | NA                                                   | 3                                  | 5                                | 5                       | NR      | NR     | NA    |
| Basalts-thick<br>layers                                    | 3             | 3                                 | 4                              | 5                                                  | NA                                                   | 3                                  | 4                                | 3                       | NR      | NR     | NA    |
| Basalts-highly<br>fractured (lost<br>circulation<br>zones) | 3             | 1                                 | 3                              | 3                                                  | NA                                                   | 1                                  | 4                                | 1                       | NR      | NR     | NA    |
| Metamorphic<br>rocks                                       | 3             | 3                                 | 4                              | 5                                                  | NA                                                   | 3                                  | 4                                | 3                       | NR      | NR     | NA    |
| Granite                                                    | 3             | 3                                 | 5                              | 5                                                  | NA                                                   | 3                                  | 4                                | 3                       | NR      | NR     | NA    |

\*Assuming sufficient hydrostatic pressure is available to contain active sand (under high confining pressures)

NR = Not recommended

NA = Not applicable

Rate of Penetration:

- 1 Impossible 4 Medium
- 2 Difficult 5 Rapid
- 3 Slow 6 Very rapid

(After Driscoll, 1987)



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/01/93 · Supersedes n/a · Page 13 of 17

# Table 13.3.1-3 Typical Additive Concentrations, Resulting Viscosities, and Required Uphole Velocities for Major Types of Drilling Fluids Used in Various Aquifer Materials

| Base<br>Fluid | Additive/Concentration         | Marsh<br>Funnel<br>Viscosity<br>(seconds) | Annular<br>Uphole<br>Velocity<br>(ft/min) | Observations                                                                                                                                          |
|---------------|--------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water         | None                           | 26 ± 0.5                                  | 100 - 120                                 | For normal drilling (sand, silt, and clay)                                                                                                            |
| Water         | Clay (High-Grade Bentonite)    |                                           |                                           | Increases viscosity (lifting capacity)<br>of water significantly                                                                                      |
|               | 15-25 lb/100 gal               | 35 - 55                                   | 80 - 120                                  | For normal drilling conditions (sand silt, and clay)                                                                                                  |
|               | 25-40 lb/100 gal               | 55 - 70                                   | 80 - 120                                  | For gravel and other coarse-<br>grained, poorly consolidated<br>formations                                                                            |
|               | 35-45 lb/100 gal               | 65 - 75                                   | 80 - 120                                  | For excessive fluid losses                                                                                                                            |
| Water         | Polymer (Natural)              |                                           |                                           | Increases viscosity (lifting capacity)<br>of water significantly                                                                                      |
|               | 4.0 lb/100 gal                 | 35 - 55                                   | 80 - 120                                  | For normal drilling conditions (sand silt, and clay)                                                                                                  |
|               | 6.1 lb/100 gal                 | 65 - 75                                   | 80 - 120                                  | For gravel and other coarse-<br>grained, poorly consolidated<br>formations                                                                            |
|               | 6.5 lb/100 gal                 | 75 - 85                                   | 80 - 120                                  | For excessive fluid losses                                                                                                                            |
|               |                                |                                           |                                           | Cuttings should be removed from<br>the annulus before the pump is<br>shut down, because polymeric<br>drilling fluids have very little gel<br>strength |
| Air           | None                           | N/A                                       | 3,000-5,000                               | Fast drilling and adequate cleaning<br>of medium to fine cuttings, but may<br>be dust problems at the surface                                         |
|               |                                |                                           | 4,500-6,000                               | This range of annular uphole<br>velocities is required for the dual-<br>wall method of drilling                                                       |
| Air           | Water (Air Mist)<br>0.25-2 gpm | N/A                                       | 3,000-5,000                               | Controls dust at the surface and is<br>suitable for formations that have<br>limited entry of water                                                    |

e sitesé

ada da serie da ser

100

tiné

 $V_{1}^{i}$ 

-



104

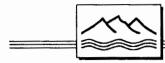
 $\pi n q$ 

### DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Drilling Operations SECTION 13.3.1

Effective 06/01/93 • Supersedes n/a • Page 14 of 17


# Table 13.3.1-3 Typical Additive Concentrations, Resulting Viscosities, and Required Uphole Velocities for Major Types of Drilling Fluids Used in Various Aquifer Materials (continued)

| Base<br>Fluid | Additive/<br>Concentration                                                                                | Marsh<br>Funnel<br>Viscosity<br>(seconds) | Annular<br>Uphole<br>Velocity<br>(ft/min) | Observations                                                                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Air           | Surfactant/Water (Air-Foam)                                                                               | N/A                                       | 50-1,000                                  | Extends the lifting capacity of the<br>compressor                                                                                                       |
|               | 1-2 qt/100 gal<br>(0.25-0.5% surfactant)                                                                  |                                           |                                           | For light drilling; small water inflow;<br>also for sticky clay, wet sand, fine<br>gravel, hard rock; few drilling<br>problems                          |
|               | 2-3 qt/100 gal<br>(0.5-0.75% surfactant)                                                                  |                                           |                                           | For average drilling conditions;<br>larger diameter, deeper holes; large<br>cuttings; increasing volumes of<br>water inflow; excellent hole<br>cleaning |
|               | 3-4 qt/100 gal<br>(0.75-1% surfactant)                                                                    |                                           |                                           | For difficult drilling; deep, large-<br>diameter holes; large, heavy<br>cuttings; sticky and incompetent<br>formations; large water inflows             |
|               |                                                                                                           |                                           |                                           | Injection rates of surfactant/water<br>mixture:<br>Unconsolidated<br>formations 3-10 gpm<br>Fractured rock 3-7 gpm<br>Solid rock 3-5 gpm                |
| Air           | Surfactant/Colloids/Water<br>(Stiff Foam)                                                                 | N/A                                       | 50-100                                    | Greatly extends lifting capacity of the compressor                                                                                                      |
|               | 3-5 qt/100 gal<br>(0.75-1% surfactant)<br>plus<br>3-6 lb polymer/100 gal or<br>30-50 lb bentonite/100 gal |                                           |                                           | For difficult drilling; deep, large-<br>diameter holes; large, heavy<br>cuttings; sticky and incompetent<br>formations; large water inflows             |
|               | 4-8 qt/100 gal<br>(1-2% surfactant)<br>plus<br>3-6 lb polymer/100 gal or<br>30-50 lb bentonite/100 gal    |                                           |                                           | For extremely difficult drilling; large,<br>deep holes; lost dirculation;<br>incompentent formations; excessive<br>water inflows                        |

(Compiled by Driscoll, 1984)

3230\SECTION 13\13-3-1

i finidaje



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

#### Guideline Drilling Operations SECTION 13.3.1

Effective 06/01/93 • Supersedes n/a • Page 15 of 17

| Initial drilling fluid |     | Desired drilling fluid weight, lb/gal |      |      |      |      |      |      |      |     |      |      |  |
|------------------------|-----|---------------------------------------|------|------|------|------|------|------|------|-----|------|------|--|
| weight, Ib/gal         | 9.5 | 10.0                                  | 10.5 | 11.0 | 11.5 | 12.0 | 12.5 | 13.0 | 13.5 | 1.0 | 14.5 | 15.0 |  |
| 9.0                    | 69  | 140                                   | 214  | 293  | 371  | 457  | 545  | 638  | 733  | 833 | 940  | 1050 |  |
| 9.5                    |     | 69                                    | 143  | 219  | 298  | 381  | 467  | 557  | 650  | 750 | 855  | 964  |  |
| 10.0                   | 43  |                                       | 71   | 145  | 221  | 305  | 390  | 479  | 569  | 667 | 769  | 876  |  |
| 10.5                   | 85  | 30                                    |      | 74   | 148  | 229  | 312  | 398  | 488  | 583 | 683  | 788  |  |
| 11.0                   | 128 | 60                                    | 23   |      | 74   | 152  | 233  | 319  | 407  | 500 | 598  | 700  |  |
| 11.5                   | 171 | 90                                    | 46   | 19   |      | 76   | 157  | 240  | 326  | 417 | 512  | 614  |  |
| 12.0                   | 214 | 120                                   | 69   | 37   | 16   |      | 79   | 160  | 245  | 333 | 426  | 526  |  |
| 12.5                   | 256 | 150                                   | 92   | 56   | 32   | 14   |      | 81   | 162  | 250 | 343  | 438  |  |
| 13.0                   | 299 | 180                                   | 115  | 75   | 48   | 27   | 12   |      | 81   | 167 | 257  | 350  |  |
| 13.5                   | 342 | 210                                   | 138  | 94   | 63   | 41   | 24   | 11   |      | 83  | 171  | 264  |  |
| 14.0                   | 385 | 240                                   | 161  | 112  | 78   | 54   | 36   | 21   | 10   |     | 86   | 176  |  |
| 14.5                   | 427 | 270                                   | 185  | 131  | 95   | 68   | 48   | 32   | 19   | 9   |      | 88   |  |
| 15.0                   | 470 | 300                                   | 208  | 150  | 110  | 82   | 60   | 43   | 29   | 18  | 8    |      |  |

#### Table 13.3.1-4 Drilling Fluid Weight Adjustment with Barite or Water

The lower left half of this table shows the number of gallons of water which must be added to 100 gal of drilling fluid to produce desired weight reductions. To use this portion of the table, locate the initial drilling fluid weight in the vertical column at the left, then locate the desired drilling fluid weight in the upper horizontal row. The number of gal of water to be added per 100 gal of drilling fluid is read directly across from the initial weight and directly below the desired weight. For example, to reduce an 11 lb/gal drilling fluid to a 9.5 lb/gal drilling fluid, 128 gal of water must be added for every 100 gal of drilling fluid in the system.

The upper right half of this table shows the number of pounds of barite which must be added to 100 gal of drilling fluid to produce desired weight increases. To use this portion of the table, locate the initial drilling fluid weight in the vertical column to the left, then locate the desired drilling fluid weight in the upper horizontal row. The number of pounds of barite to be added per 100 gal of drilling fluid is read directly across from the initial weight and directly below the desired weight. For example, to raise a 9 lb/gal drilling fluid to 10 lb/gal, 140 lb of barite must be added per 100 gal of drilling fluid in the system.

(After Petroleum Extension Service, 1969)



d and

# DANIEL B. STEPHENS & ASSOCIATES, INC.

# **Drilling Information Checklist**

| Project No                       |                                                             | DBS&A Project Manage        | 9r                                    |                                       |
|----------------------------------|-------------------------------------------------------------|-----------------------------|---------------------------------------|---------------------------------------|
| DBS&A Technical Rep              | resentative                                                 | DBS&                        | A Field Representative(s              | )                                     |
| Drilling Company                 |                                                             |                             |                                       |                                       |
| Drilling Company Conta           | ict                                                         |                             | Phone No                              |                                       |
| Date and Time for Work           | to Begin                                                    | ·                           | · · · · · · · · · · · · · · · · · · · |                                       |
| Estimated Work Days to           | Complete Job                                                |                             | Access Agreen                         | nents                                 |
| Drilling Rig                     | Driller                                                     | r and Assistant(s)          |                                       | <del></del>                           |
| Hollow Stem Auger                | Air/Mud Rotary                                              | Cable Tool 🛛 Dual-Tu        | Ibe Air Percussion                    | Coring Rig                            |
| Blu-Stake (NM call 1-80          | 0-321-2537 for most utilit                                  | ties) Contacted By          |                                       |                                       |
| One Week Authorizatio            | n No                                                        |                             | Date                                  |                                       |
| Underdetection Service           | s (Private Co.)                                             |                             |                                       |                                       |
| Client Contact                   |                                                             |                             | Phone No                              |                                       |
| Job Site                         |                                                             |                             | Phone No                              |                                       |
| Location                         |                                                             |                             |                                       |                                       |
| Surface 🛛 Asphalt                | Concrete Dirt                                               | 🗆 In Roadway                |                                       |                                       |
| Geologic Material                | an a                    |                             |                                       |                                       |
| Sampling Device 🔲 S              | Splitspoon 🛛 Thin-wall                                      | ed Tube 🛛 140 lb. H         | ammer (SPT) 🛛 Corin                   | g                                     |
| Sampling Length                  | 12" 🗆 18" 🗆 24"                                             | With Rings 🔲 3"             | □ 6"                                  |                                       |
|                                  |                                                             | -                           |                                       |                                       |
|                                  |                                                             |                             |                                       |                                       |
|                                  | Drummed      Leave                                          |                             |                                       |                                       |
| Contain Decontaminatio           | on Water                                                    | <b>*</b>                    | ·····                                 | <b>1</b>                              |
| Hole Diameter                    | No. of Borings                                              | Total Footage               | Maximum Depth                         |                                       |
|                                  |                                                             |                             |                                       | · · · · · · · · · · · · · · · · · · · |
|                                  |                                                             |                             |                                       |                                       |
|                                  |                                                             |                             |                                       |                                       |
| Well Diameter                    | No. of Wells                                                | Total Footage               | Depth to Water                        | Screen Length/Slot Siz                |
|                                  |                                                             |                             |                                       |                                       |
|                                  |                                                             |                             |                                       |                                       |
| Grouting DPlace Be               | entonite Seal                                               | ut to Surface               | Lf:II                                 |                                       |
| -                                |                                                             |                             |                                       |                                       |
|                                  | to by Drilling Co                                           |                             |                                       | Grout                                 |
| Poured from                      | , ,                                                         |                             | _ Cement Truck Delivers               |                                       |
|                                  | n Surface Through Drill P                                   | ?ipə                        | Cement Truck Delivers                 |                                       |
| Pumped Ti                        | n Surface Through Drill P<br>nrough Tremie Pipe             | ?ipə                        | Cement Truck Delivers                 |                                       |
| Pumped Ti<br>Water On-site D Y   | n Surface Through Drill P<br>nrough Tremie Pipe<br>es □No E | Pipe<br>Electricity □ Yes □ | Cement Truck Delivers                 |                                       |
| Pumped Ti<br>Water On-site   □ Y | n Surface Through Drill P<br>nrough Tremie Pipe             | Pipe<br>Electricity □ Yes □ | Cement Truck Delivers                 |                                       |

| 27 <b>4</b> 2  | $\sim$ |
|----------------|--------|
| lek A <u>n</u> |        |

Sec. a

100

12.65

1 Marriel

848

DANIEL B. STEPHENS & ASSOCIATES, INC.

| Project No DBS&A Project Manager         |                       |
|------------------------------------------|-----------------------|
| DBS&A Technical Representative DBS&A Fie | eld Representative(s) |
| Drilling Company                         |                       |
| Drilling Company Contact                 | Phone No              |

Date and Time for Work to Begin

| Material                                                                 | Size | Quantity | Equipment Supplier* |
|--------------------------------------------------------------------------|------|----------|---------------------|
| Drill Bit                                                                |      |          |                     |
| Rotary Drilling Pipe                                                     |      |          |                     |
| Hollow Stem Auger (O.D. x I.D: 10"x6.25"<br>or 8"x4.25" + Total Footage) |      |          |                     |
| Dual-Tube Pipe (O.D. / I.D)                                              |      |          |                     |
| Water Tank                                                               |      |          |                     |
| Steam Cleaner                                                            |      |          |                     |
| Decontamination Trailer to<br>Contain Water from Steam Cleaning          |      |          |                     |
| Drums                                                                    |      |          |                     |
| Tank to Mix Grout                                                        |      |          |                     |
| Tremie Pipe                                                              |      |          |                     |
| Grout Pump                                                               |      |          |                     |
| Wooden Plugs (Flowing Sand)                                              |      |          |                     |
| Welder                                                                   |      |          |                     |
| Concrete Saw (Other Subcontractor)                                       |      |          |                     |
| Development Rig (Bailers, Surge Block, Pump)                             |      |          |                     |
| Plastic Sheeting                                                         |      |          |                     |
| Sampler (Length and Type)                                                |      |          |                     |
| Core Catchers                                                            |      |          |                     |
| Rings - Brass                                                            |      |          |                     |
| Rings - Stainless Steel                                                  |      |          |                     |
| Endcaps                                                                  |      |          |                     |
| Teflon Liners                                                            |      |          |                     |
| Tagline (Length and Type)                                                |      |          |                     |

# Section 13.3.2

Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses SECTION 13.3.2

Effective 06/01/93 · Supersedes n/a · Page 1 of 14

### 1. PURPOSE

The following SOP describes the appropriate procedures for the logging, sampling, handling, and shipping of soil during soil boring investigations. Sampling methodologies and shipping requirements are provided for collection of geotechnical, physical, and chemical soil samples.

# 2. SCOPE

10.00

469

6.08

- 196

sid

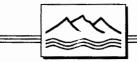
This procedure is applicable to all DBS&A employees and subcontractors who are engaged in soil boring activities. It provides the minimum logging requirements, sampling protocols, and shipping requirements for soil boring investigations. The appropriate form for logging soil is included in this SOP as Attachment 1, Soil Boring Log (DBS&A Form No. 080). A soils classification chart is included as Attachment 2. Tables 13.3.2-1 and 13.3.2-2 provide handling and transport, and volume requirements for soil physical analysis samples, respectively.

# 3. PROCEDURES

# 3.1 Soils Logging

Soil descriptions and other pertinent information will be recorded on the Soil Boring Log form during boring operations. The Soil Boring Form contains a header for recording the boring specifics and a log for describing and classifying soil and tracking soil sampling. Soils will be identified and described in accordance with ASTM D 2488, Standard Practice for Description and Identification of Soil (Visual-Manual Practice). Table 13.3.2-3 provides a list of equipment that may be required for soils logging, sampling, handling, and shipping.

# 3.1.1 Completing the Header


Most of the header is self-explanatory. On the first page of the log, it is important to complete the entire header. If subsequent forms are necessary, complete the page number, the site, the client, the person logging the soil, the boring number, and the date. On the first page, sketch a location map for the boring, referencing it to known features or landmarks. When specifying the drilling method and drill rig, note the diameter of the drill bit or augers.

# 3.1.2 Completing the Boring Log

*PID/FID* - record head space measurements made with the PID/FID in this column in the appropriate depth interval from which the sample was collected.

*Blow Counts* - if driving a split-barrel sampling device with a hammer, record the number of hammer "blows" per 6 inches of penetration. Ensure that the driller marks the 6 inch intervals on the drill stem prior to hammering the split-barrel.

OM\SECTION 13\13-3-2



a series

and.

a pi

lade

175.94

1.44

. 159

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 • Supersedes n/a • Page 2 of 14

Sampling Device - specify the sampling device (i.e., split-barrel, split-barrel with brass or stainless steel rings, Shelby tube); specify the inside diameter of the sampling device.

Sample Interval - specify the sampling interval (starting and finishing) by placing an "X" across the appropriate depth interval in this column.

Sample Recovery - state, in tenths of feet, the amount of sample which is recovered.

- Sample Number record the designated sample number in this column.
- Depth (Feet) complete this column in 5-foot intervals to keep a running tally of the depth of the borehole.

USCS Symbol - provide the USCS symbol for the soil be described; draw a solid contact line at the appropriate depth to signify changes in soil type.

Soil Description - describe the soil in the format listed on the boring log; for non-cohesive soils, estimate the grain distribution, gradation, and grain shape; for cohesive soils, note the plasticity and clay consistency; if possible, a soil classification and geotechnical gauge and a color chart should be used to aid in describing soil.

### 3.2 Soil Sampling

Soil samples will typically be collected for geotechnical, physical, or chemical analysis. Geotechnical samples will be collected with a split-barrel sampler lined with brass rings or in the case of cohesive soils to be analyzed for compressive strength, a thin-walled tube sampler. Chemical samples will be collected with an unlined split-barrel sampler or a ring-lined split-barrel sampler. Regardless of which sampling device is employed, care should be taken to minimize slough in the borehole. Slow withdrawal of the drill bit prior to sampling will minimize slough. When drilling below the water table, ensure that the water level in the borehole (or within driven casing) is maintained at or above the water table elevation.

#### 3.2.1 Geotechnical/Physical Properties Samples

Geotechnical and/or physical properties samples will be collected with either a ring-lined split-barrel sampler or a thin-walled Shelby tube. If possible, use a ring-lined sampler for physical properties analysis. For triaxial and unconfined compression tests, either a ring-lined sampler or a thin-walled tube sampler may be employed. For cohesive soils, the thin-walled tube sampler should be used for obtaining the least disturbed samples. In non-cohesive soils, a ring-lined sampler is required because of poor sample recovery experienced with a thin-walled sampler.

# 3.2.1.1 Ring-lined Split-Barrel Sampler (ASTM D 3350)

1. Assemble the sampler with the specified rings. For physical properties analysis, the typical ring is 3 inches in length and constructed of brass. Ring requirements will be specified in the Field Sampling Plan (FSP).

3230\SECTION 13\13-3-2

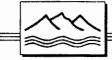


ENVIRONMENTAL SCIENTISTS AND ENGINEERS

#### Procedure Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses SECTION 13.3.2

Effective 06/01/93 • Supersedes n/a • Page 3 of 14

- 2. Attach the sampler to the drill stem and carefully lower it to the bottom of the borehole.
- 3. Hydraulically push the sampler into the soil in a rapid, continuous manner to a length not to exceed that of the sampler. In dense, non-cohesive soils, the sampler may have to be driven. If so, record the blow counts.
- 4. Carefully disassemble the sampler to minimize soil disturbance. Trim the individual rings flush with a clean knife, and place plastic caps over the ring ends. Use the soil in one of the rings for field classification. Secure the caps with tape and label the ring, including the vertical orientation.
- 5. The samples can be shipped in a dry cooler. If the possibility exists the samples will be handled roughly, pack them with shipping material in the cooler.
- 3.2.1.2 Thin-Walled Tube Sampler (ASTM D 1587)
- 1. Attach the sampling tube to the drill stem and carefully lower to the bottom of the borehole.
- Rapidly and continuously hydraulically push the Shelby tube a distance of 5 to 10 times the tube diameter in non-cohesive soils and 10 to 15 times the diameter in cohesive soils. In dense, non-cohesive soils it is permissible to drive the sampler. Record the blow counts. It is permissible to "twist" the drill stem to shear the sample bottom prior to retrieval.
- 3. Carefully withdraw the sampler from the formation to minimize disturbance.
- 4. The sample can be shipped either unextruded or after extrusion at the site.


*Unextruded* - Measure the length of the sample in the tube. Remove any slough from the top of the tube. Remove at least 1 inch of soil from the bottom of the tube for field classification. Seal the top and bottom of the tube with plastic caps and secure with tape.

*Extruded* - Following extrusion, select a 12- to 15-inch segment of the sample which appears least disturbed. Carefully cut the ends with a clean knife, and immediately wrap the sample in cellophane wrap, then aluminum foil. Place the sample in a plastic tube, and cap the ends. Describe the soil with the remainder of the sample. Describe the prepared interval to the extent practicable. *DO NOT* cut or disturb the interval to be submitted to the laboratory.

5. The samples can be shipped in a similar manner as described in 3.2.1.1(5) above.

#### 3.2.2 Soil Chemistry Samples

Soil chemistry samples can be collected with either the split-barrel sampler or with the ring-lined split-barrel sampler. The primary difference in the two methods is the preparation of the samples. In the case of samples obtained from the split-barrel, the soil must be transferred to soil containers (typically glass jars). In the case of the ring-lined sampler, the rings will be either stainless steel or brass which are capped with



n kak

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses SECTION 13.3.2

Effective 06/01/93 • Supersedes n/a • Page 4 of 14

Teflon-lined caps. The rings are labeled, secured with toluene-free tape, and submitted directly for analysis. Exact sample methods, volumes, containers, preservation, and chain of custody procedures will be outlined in the FSP. In general, for soil matrix samples, EPA SW-846 (EPA, 1986) methods will be specified. Both the split barrel sampler and the ring-lined sampler are hydraulically pushed or driven in the same manner described in 3.2.1.1(2-3) above.

### 3.2.2.1 Split-Barrel Samples (ASTM D 1586)

- 1. Upon retrieval of the sample, carefully open the split-barrel. Trim the sample with a decontaminated, sharp stainless-steel knife. Note the general soil type.
- 2. As quickly as possible, collect samples for volatile organic and semi-volatile organic analysis. Be sure that headspace is minimized in the volatile organic analysis samples. Collect field duplicates and specify that the laboratory perform matrix spike/matrix spike duplicates from the same interval as the sample. Place the samples in certified clean glass jars with Teflon-lined caps.
- Collect samples for other required analyses. If the FSP specifies mixing the split barrel sample prior to filling additional sample containers, do so in a stainless-steel mixing bowl. Sample volumes and containers will be specified in the FSP.
- Label the samples in accordance with the FSP. At a minimum, this will include: (1) the sample number;
   (2) boring number and interval (if different from the sample number); (3) time and date; and (4) required analysis. If chain of custody seals are required, secure them across the container lid.
- 5. Place the sample containers in "ziplock" bags and place on ice. Prior to shipment, the sample containers must be wrapped in bubble-pack, or other suitable packing material.
- 6. Fully describe the soil sample.
- 7. Log the sample information in the field log book for later transfer to the Chain-of-Custody Form (DBS&A Form No. 095), which is included as Attachment 3 in this SOP.
- 3.2.2.2 Ring-Lined Split-Barrel Samples (ASTM D 3350)
- 1. Upon retrieval of the sampler, carefully open the split-barrel. Trim the ends of the rings with a clean stainless-steel knife. Cap the rings with Teflon-lined caps and seal with toluene-free tape.
- 2. Using one or more of the rings (if possible), and soil trimmed from the ring ends, describe and log the soil.
- 3. Follow the steps described in 3.2.2.1(5-7) above. Packing material is optional for the ring samples.

12:13

richte



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses SECTION 13.3.2

Effective 06/01/93 • Supersedes n/a • Page 5 of 14

# 3.3 Sample Shipment

und is

36.64

1000

Proper shipment of samples is critical for ensuring that reliable analytical results are obtained. In the case of geotechnical or physical properties analysis samples, this involves protecting the samples against excessive impacts which may disturb the samples. For soil chemical analyses, it is important to protect the samples from breakage if they were collected in glass jars. In addition, most chemical methods call for the samples being maintained at a constant 4°C.

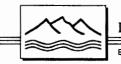
### 3.3.1 Geotechnical and Physical Properties Samples

Shipping requirements for geotechnical and physical properties samples are listed in Table 13.3.2-2. In general, samples should be shipped in a dry cooler. If the cooler is not being hand-carried to the laboratory (i.e., shipped by overnight carrier) the samples should be protected with packing material to prevent sample disturbance. Plastic bubble-wrap, shredded paper, foam "peanuts", and vermiculite provide adequate sample protection when properly used. It is important to provide packing materials between all samples, such that samples do not come in contact. When shipping samples, it important to enclose a chain-of-custody form in the cooler as specified in the FSP.

### 3.3.2 Soil Chemistry Samples

Soil chemistry samples collected in glass containers must be protected from breakage. Individually wrapping the sample containers in plastic bubble-wrap provides excellent protection. After wrapping the samples in bubble-wrap, they should be placed in sealed "zip-lock" bags. Brass or stainless-steel ring samples need only be placed in sealed "zip-lock" bags. If the FSP calls for chain-of-custody seals to be placed on individual samples, place them across the jar lid or plastic ring cap. Chain-of-custody forms should be filled out in accordance with the FSP, placed in a "ziplock" bag, and taped to the inside of the cooler lid. It is important to use an ample volume of ice in order to maintain the required temperature of 4°C. Chain of custody seals will be placed across the front and back of the cooler lid such that they will be broken in the event of tampering. The cooler lid should be firmly taped shut with several layers of shipping tape encircling the ends of the cooler. Finally, for chemical analyses, *always* ship the samples by overnight carrier.

# 4.0 REFERENCES


ASTM D 1586-84 Standard Method for Penetration Test and Split-Barrel Sampling of Soils

ASTM D 1587-83 Standard Practice for Thin-Walled Tube Sampling of Soils

ASTM D 2488-90 Practice for Description and Identification of Soils (Visual-Manual)

ASTM D 3350-84 Standard Practice for Ring-Lined Barrel Sampling of Soils

U.S. EPA, 1986, Test Methods for Evaluation of Solid Wastes, SW-846, 3rd Ed.



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses SECTION 13.3.2

Effective 06/01/93 · Supersedes n/a · Page 6 of 14

#### 5.0 ATTACHMENTS

- 1. Boring Log (DBS&A Form No. 080 3/92)
- 2. Unified Soil Classification System Chart (DBS&A Form No. 049)
  - Table 13.3.2-1, Soil Physical Sample Handling and Transport
  - Table 13.3.2-2, Soil Physical Sample Volume Requirements
  - Table 13.3.2-3, Soil Sampling Field Equipment List
- 3. Chain-of-Custody Form (DBS&A Form No. 95)

Prepared by: Approved by: Daniel B. Stephens

Reviewed by: Quality Assurance Manager Reviewed by: stems perations Manager



1.05

Ξ

naid

(terriff

-35 J.M

1960

法法律

动物

# DANIEL B. STEPHENS & ASSOCIATES, INC.

# Boring Log

Page\_\_\_of\_\_\_

| Site               |                                         |                    |                    |                    |                 |                    |                 |  | Location Map                                                                             |
|--------------------|-----------------------------------------|--------------------|--------------------|--------------------|-----------------|--------------------|-----------------|--|------------------------------------------------------------------------------------------|
| Logged             | by                                      |                    |                    |                    |                 | Client/Project #   |                 |  |                                                                                          |
| Boring             | Number                                  |                    |                    |                    |                 | Drilling Co.       |                 |  |                                                                                          |
| Drilling           | Method                                  |                    |                    |                    |                 | Drill Rig          |                 |  |                                                                                          |
| Date St            | arted                                   |                    |                    |                    |                 | Date Comp          | leted           |  |                                                                                          |
| PID/FID<br>Reading | Blow<br>Counts                          | Sampling<br>Device | Sample<br>Recovery | Sample<br>Interval | Sample<br>Numbe | e USCS<br>r Symbol | Depth<br>(feet) |  | l Description/Remarks<br>, sorting, roundness, plasticity, consistency, moisture content |
|                    |                                         |                    |                    |                    |                 |                    |                 |  | · · · · · · · · · · · · · · · · · · ·                                                    |
|                    |                                         |                    | •••••              |                    |                 | ••                 | -               |  |                                                                                          |
|                    | • • • • • • • • • • • • • • • •         |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    | •••••                                   |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    | • • • • • • • • • • • • •               |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    | _               |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    |                 |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    | -               |  |                                                                                          |
| ••••••             | • • • • • • • • • • • •                 |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    | • • • • • • • • • • • • •               |                    |                    |                    | <b>.</b>        |                    |                 |  |                                                                                          |
| ••••••             |                                         |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    | <b>.</b>        |                    | -               |  |                                                                                          |
|                    | • • • • • • • • • • • •                 |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    | <b>.</b>        |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    | _               |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    | • • • • • • • • • • • • • • • • • • • • |                    |                    |                    |                 |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    | <b>.</b>        |                    | -               |  |                                                                                          |
|                    |                                         |                    |                    |                    |                 |                    |                 |  |                                                                                          |

DBS&A Form No. 080 3/92

نيونن.

# **USCS GROUP SYMBOLS**

| MA                                                                          | JOR DIVISIONS                                                                               |                                          | GRAPH<br>SYMBOL | LETTER<br>SYMBOL | TYPICAL DESCRIPTIONS                                                                                                      |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|-----------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                             |                                                                                             | Clean Gravels                            | ° ° ° °         | GW               | Well-graded gravels, gravel-sand mixtures. Little or no fines.                                                            |
|                                                                             | Gravel and<br>Gravelly Soils<br>More than 50%                                               | (little or no<br>fines <5%)              | 0.0             | GP               | Poorly-graded gravels. Gravel-sand mixtures. Little or no fines.                                                          |
|                                                                             | of Course<br>Fraction<br>Retained on<br>No. 4 Sieve                                         | Gravels<br>with Fines                    | 0.0°            | GM               | Silty gravels. Gravel-sand-silt mixtures.                                                                                 |
| Course Grained<br>Soils                                                     |                                                                                             | (appreciable<br>amount<br>of fines >15%) |                 | GC               | Clayey gravels. Gravel-sand-clay<br>mixtures.                                                                             |
| More than 50% of<br>Material is Larger<br>than Silt (No. 200<br>Sieve Size) |                                                                                             | Clean Sand                               |                 | SW               | Well-graded sands. Gravelly sands.<br>Little or no fines.                                                                 |
|                                                                             | Sand and<br>Sandy Soils<br>More than 50%<br>of Course<br>Fraction<br>Passing No. 4<br>Sieve | (little or no<br>fines <5%)              |                 | SP               | Poorly-graded sands. Gravelly sands.<br>Little or no fines.                                                               |
|                                                                             |                                                                                             | Sands with<br>Fines                      |                 | SM               | Silty sands. Sand-silt mixtures.                                                                                          |
|                                                                             |                                                                                             | (appreciable<br>amount of fines<br>>15%) |                 | SC               | Clayey sands. Sand-clay mixtures.                                                                                         |
|                                                                             |                                                                                             | <b></b>                                  |                 | ML               | Inorganic silts and very fine sands. Rock<br>flour. Silty or clayey fine sands or clayey<br>silts with slight plasticity. |
|                                                                             | Silts<br>and<br>Clays                                                                       | Liquid Limit<br>Less than 50             |                 | CL               | Inorganic clays of low to medium<br>plasticity. Gravelly clays. Sandy clays,<br>silty clays, lean clays.                  |
| Fine Grained Soils<br>More than 50% of                                      |                                                                                             |                                          |                 | OL               | Organic silts and organic silty clays or low plasticity.                                                                  |
| Material is Smaller<br>than Silt (No. 200<br>Sieve Size)                    |                                                                                             |                                          |                 | мн               | Inorganic silts. Micaceous or<br>diatomaceous fine sand or silty soils.                                                   |
|                                                                             | Silts<br>and<br>Clays                                                                       | Liquid Limit<br>Greater than<br>50       |                 | СН               | Inorganic clays of high plasticity. Fat clays.                                                                            |
|                                                                             |                                                                                             |                                          |                 | он               | Organic clays of medium to high<br>plasticity, Organic silts.                                                             |
|                                                                             | Highly Organic                                                                              |                                          |                 | PT               | Peat, humus, swamp soils with high<br>organic content.                                                                    |

DBS&A Form No. 049 4/91

,

14.08

2.4

- 444

949**8** 1-11-6 156

- 5434**40** 

Sec.

-143.4

vrst Svist

1.88

wit

17495

-26

86.68

/108



Ξ

10.55

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses SECTION 13.3.2

Effective 06/01/93 • Supersedes n/a • Page 9 of 14

#### TABLE 13.3.2-1. SOIL PHYSICAL ANALYSIS SAMPLE REQUIREMENTS AND TRANSPORT

| PHYSICAL PROPERTY TEST   | SAMPLE REQUIREMENT                                                                                                                     | SHIPPING REQUIREMENT             |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Soil Moisture            | 2.5" O.D. x 3" long ring or in<br>double plastic bag with air<br>removed                                                               | Dry cooler                       |
| Hydraulic Conductivity   | 2.5" O.D. x 3" sealed ring                                                                                                             | Dry cooler                       |
| Moisture Retention (Ψ-Θ) | 2.5" O.D. x 3" sealed ring                                                                                                             | Dry cooler with packing material |
| Air Permeability         | 2.5" O.D. x 3" sealed ring                                                                                                             | Dry cooler with packing material |
| Bulk Density             | 2.5" O.D. x 3" sealed or waxed ring                                                                                                    | Dry cooler with packing material |
| Porosity                 | 2.5" O.D. x 3" sealed ring                                                                                                             | Dry cooler with packing material |
| Specific Gravity         | 2.5" O.D. x 3" sealed ring or<br>plastic bag for bulk sample                                                                           | Dry cooler                       |
| Particle Size            | 2.5" O.D. x 3" sealed ring;<br>plastic bag for gravelly soil                                                                           | Dry cooler                       |
| Atterberg Limits         | 2.5" O.D. x 3" sealed ring or<br>plastic bag                                                                                           | Dry cooler preferred             |
| Proctor Tests            | 5 gallon plastic bucket or large<br>plastic bags                                                                                       | No shipping requirements         |
| Compression Tests        | Unextruded in thin-walled tube;<br>extruded wrapped in cellophane<br>wrap and placed in plastic tube;<br>or 2.5" O.D. x 6" sealed ring | Dry cooler with packing material |

3230\SECTION 13\13-3-2

# TABLE 13.3.2-2. SOIL PHYSICAL SAMPLE VOLUME HEQUINEMENTS

|             | [                                   |                                     |                                               |                                                 |                                | PRI                                     | MARY TEST           | r requeste               | D                               |                     |                              |                     |                                 |
|-------------|-------------------------------------|-------------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------------------|-----------------------------------------|---------------------|--------------------------|---------------------------------|---------------------|------------------------------|---------------------|---------------------------------|
|             |                                     | Moisture<br>Content<br>(volumetric) | Hydraulic<br>Conductivity<br>K <sub>sat</sub> | Hydraulic<br>Conductivity<br>K <sub>unsat</sub> | Moisture<br>Retention<br>Ψ - Θ | Air<br>Permeability<br>K <sub>air</sub> | Bulk<br>Density     | Porosity<br>(Calculated) | Porosity<br>(Air<br>Pycnometer) | Particle<br>Density | Particle<br>Size<br>Analysis | Atterberg<br>Limits | Compaction<br>(Proctor)<br>Test |
|             | Moisture<br>Content<br>(Volumetric) |                                     | Same<br>Sample                                | (3) Same<br>Sample                              | Same<br>Sample                 | Same<br>Sample                          | Same<br>Sample      | Same<br>Sample           | Same<br>Sample                  | (1) Same<br>Sample  | (1) Same<br>Sample           | Extra<br>Sample     | Extra<br>Sample                 |
|             | Hydraulic<br>Conductivity           | Same<br>Sample                      |                                               | (3) Same<br>Sample                              | Same<br>Sample                 | Same<br>Sample                          | Same<br>Sample      | Same<br>Sample           | Same<br>Sample                  | (1) Same<br>Sample  | (1) Same<br>Sample           | Extra<br>Sample     | Extra<br>Sample                 |
|             | Hydraulic<br>Conductivity           | (3) Same<br>Sample                  | Same<br>Sample                                |                                                 | Same<br>Sample                 | Same<br>Sample                          | Same<br>Sample      | Same<br>Sample           | Same<br>Sample                  | (1) Same<br>Sample  | (1) Same<br>Sample           | Extra<br>Sample     | Extra<br>Sample                 |
| TESTS       | Moisture<br>Retention               | Same<br>Sample                      | Same<br>Sample                                | (3) Same<br>Sample                              |                                | Same<br>Sample                          | Same<br>Sample      | Same<br>Sample           | Same<br>Sample                  | (1) Same<br>Sample  | (1) Same<br>Sample           | Extra<br>Sample     | Extra<br>Sample                 |
| ADDITIONAL  | Air<br>Permeability                 | Same<br>Sample                      | Same<br>Sample                                | (4) Same<br>Sample                              | Same<br>Sample                 |                                         | Same<br>Sample      | Same<br>Sample           | Same<br>Sample                  | (1) Same<br>Sample  | (1) Same<br>Sample           | Extra<br>Sample     | Extra<br>Sample                 |
| FOR ADD     | Bulk Density                        | Same<br>Sample                      | Same<br>Sample                                | (4) Same<br>Sample                              | Same<br>Sample                 | Same<br>Sample                          |                     | (5) Same<br>Sample       | Same<br>Sample                  | (1) Same<br>Sample  | (1) Same<br>Sample           | Extra<br>Sample     | Extra<br>Sample                 |
|             | Porosity<br>(Calculated)            | Same<br>Sample                      | Same<br>Sample                                | (4) Same<br>Sample                              | Same<br>Sample                 | Same<br>Sample                          | Same<br>Sample      |                          | Same<br>Sample                  | (1) Same<br>Sample  | (1) Same<br>Sample           | Extra<br>Sample     | Extra<br>Sample                 |
| EQUIREMENTS | Porosity<br>(Air)                   | Same<br>Sample                      | Same<br>Sample                                | (4) Same<br>Sample                              | Same<br>Sample                 | Same<br>Sample                          | Same<br>Sample      | Same<br>Sample           |                                 | (1) Same<br>Sample  | (1) Same<br>Sample           | Extra<br>Sample     | Extra<br>Sample                 |
| SAMPLE R    | Particle<br>Density                 | Same<br>Sample                      | Same<br>Sample                                | Same<br>Sample                                  | Same<br>Sample                 | Same<br>Sample                          | Same<br>Sample      | (6) Same<br>Sample       | Same<br>Sample                  |                     | Same<br>Sample               | Same<br>Sample      | Extra<br>Sample                 |
| SAN         | Particle<br>Size Analysis           | (2) Extra<br>Sample                 | (2) Extra<br>Sample                           | (2) Extra<br>Sample                             | (2) Extra<br>Sample            | (2) Extra<br>Sample                     | (2) Extra<br>Sample | (2) Extra<br>Sample      | (2) Extra<br>Sample             | (2) Extra<br>Sample |                              | Extra<br>Sample     | Extra<br>Sample                 |
|             | Atterberg<br>Limits                 | Extra<br>Sample                     | Extra<br>Sample                               | Extra<br>Sample                                 | Extra<br>Sample                | Extra<br>Sample                         | Extra<br>Sample     | Extra<br>Sample          | Extra<br>Sample                 | Same<br>Sample      | Extra<br>Sample              |                     | Extra<br>Sample                 |
|             | Compaction<br>(Proctor)             | Extra<br>Sample                     | Extra<br>Sample                               | Extra<br>Sample                                 | Extra<br>Sample                | Extra<br>Sample                         | Extra<br>Sample     | Extra<br>Sample          | Extra<br>Sample                 | Extra<br>Sample     | Extra<br>Sample              | Extra<br>Sample     |                                 |

È,

(1) Same sample may be run for this additional test provided sample is in a sample ring and meets the sample size requirements for the additional test.

۰.

- (2) Same sample may be used if sample meets sample size requirements for additional test (is there sufficient sample; usually only fine-grained samples will meet this requirement).
- (3) Required for all unsaturated hydraulic conductivity calculations except column imbibition method.
- (4) Same sample may be used except for column imbibition test.
- (5) Additional test required to perform calculations of primary test.
- (6) Additional test preferred for best results of primary test.



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

GINEERS Procedure Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses 12 of 14 SECTION 13.3.2

Effective 06/01/93 · Supersedes n/a · Page 12 of 14

#### TABLE 13.3.2-3. SOIL SAMPLING FIELD EQUIPMENT LIST

|    | ITEM                               | DESCRIPTION                                                                                                                                                                                                                                                       |
|----|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Soil Kit                           | Geologic hammer<br>Electrical and solvent-free tape<br>Flagging tape<br>Assorted sharpies<br>Munsel Soil Color Chart<br>Grain size chart<br>USCS Soil Classification Guide<br>Carpenter's rule (6 feet marked in tenths)<br>Spatulas<br>Dilute Hydrochloride acid |
| 2. | Boring Log forms<br>and clip board |                                                                                                                                                                                                                                                                   |
| 3. | Field book                         |                                                                                                                                                                                                                                                                   |
| 4. | Meters:                            | Photoionization Detector<br>MX25 explosivity meter<br>Water level meter<br>Flame Ionization Detector or methane meter<br>Geiger-Mueller radiation meter                                                                                                           |
| 5. | Tagline:                           | Fiberglass with weight taped OR<br>Steel tape with steel weight and no tape to attach<br>weight                                                                                                                                                                   |
| 6. | 300-foot fiberglass<br>tape        |                                                                                                                                                                                                                                                                   |
| 7. | Latex gloves (2 or<br>more boxes)  |                                                                                                                                                                                                                                                                   |
| 8. | Health and Safety<br>kits:         | Earplugs<br>Hard hat<br>Steel-toed boots<br>Safety glasses<br>Tyvek, Respirator                                                                                                                                                                                   |
| 9. | Coolers:                           | One for food only<br>3 or more for samples                                                                                                                                                                                                                        |

OM\SECTION.13\13-3-2



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

ENGINEERS Procedure Soils Logging, Sampling, Handling, and Shipping for Geotechnical and Chemical Analyses Ige 13 of 14 SECTION 13.3.2

Effective 06/01/93 · Supersedes n/a · Page 13 of 14

# TABLE 13.3.2-3. SOILS SAMPLING FIELD EQUIPMENT LIST (CONTINUED)

|     | ITEM                       | DESCRIPTION                                                                                                                                                                                                                                                                          |
|-----|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10. | Decontamination:           | 3 plastic tubs<br>Plastic brushes<br>Liquinox<br>Distilled water, 10-15 gallons minimum<br>Paper towels<br>Garbage bags (large/small)                                                                                                                                                |
| 11. | Soil sample<br>containers: | Brass rings (for soil physical properties)<br>Stainless steel rings (for organic chem analyses)<br>Teflon liners (for organic chem analyses)<br>Plastic endcaps<br>Sealing tape and/or purifier wax<br>Glass jars (4 or 8 oz for chemical analyses)<br>Quart and gallon ziplock bags |

OM\SECTION.13\13-3-2

| To:         |              |                     | _ |                     |               |
|-------------|--------------|---------------------|---|---------------------|---------------|
|             |              |                     |   |                     | Project No    |
|             |              |                     |   |                     |               |
|             |              |                     |   | ·                   |               |
| Purpose     | of Shipment  |                     |   |                     | - <u> </u>    |
| Possible    | Contaminants |                     |   |                     |               |
| ltem<br>No. | Sample No.   | Analysis to be Done |   | Sample<br>Container | Comments      |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     |               |
|             | 1107         |                     |   |                     |               |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     | ·····         |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     |               |
|             |              |                     |   |                     |               |
| Date Red    | ceived       | by                  |   | Company R           | epresentative |

DBS&A Form No. 095 5/92

-1×38

1 days

-199

# Section 13.4

# Well Design, Installation, and Abandonment

Store B

ini ini.

944.e

Weter .

14.10

5.8-53

14.46

193 193

neral

11/2/19g

-12-9**1** 

12-48



Effective 01/12/94 · Supersedes n/a · Page 1 of 1

Well Design, Installation, and Abandonment SECTION 13.4

#### 1. PURPOSE

This section provides standard operating procedures (SOPs) and standard operating guidelines (SOGs) for the design, installation, and abandonment of wells.

#### 2. SCOPE

秘密

The SOPs and SOGs included in this section are applicable to all DBS&A employees, and its contractors and subcontractors, for the conduct of all activities listed in this section. All SOPs and SOGs described in this section are proprietary in nature and shall not be copied or reproduced, or distributed to any person or organization not employed by DBS&A, without the expressed written approval of the Systems Operations Manager or President of DBS&A. The scope of the procedures described in this section include the following:

- 13.4.1 Monitor Well Design and Installation
- 13.4.2 Extraction Well Design and Installation
- 13.4.3 Well Development
- 13.4.4 Well and Boring Abandonment
- 13.4.5 Well Grouting

#### 3. PROCEDURES

These SOPs and SOGs shall be reviewed and updated at least once annually by the Systems Operations Manager (SOM), or person(s) designated by the SOM. Revisions and additions to these SOPs and SOGs shall be made as needed to assure consistency with industry standards and the collection of high quality data in the field. Requests for revisions shall be made on Form No. 127 in accordance with the procedure described in Section 0.2 of the DBS&A Operations Manual. Form No. 043 of Section 2.2 shall be used in requesting, authorizing, and documenting any SOP/SOG, or part of any SOP/SOG, copied or distributed for uses described in Section 13.4 of the Operations Manual. All or parts of the SOPs/SOGs described in this section may be reproduced and used in DBS&A reports, proposals, and work plans with the verbal consent of either the SOM or President of DBS&A. The SOM shall be responsible for filing and maintaining requests made on Form Nos. 127 and 043.

Prepared by:

Approved

Turing M. Com

Daniel B. Stephen

Quality Assurance Manager Reviewed by: Reviewed by: perations Manager

1.14.55

# Section 13.4.1

# Monitor Well Design and Installation

A.c. 1. 16

 $\frac{1}{2}$ 

848.455

 $i \partial_{ij} d$ 

÷26

, rse) at

216.88<sup>4</sup> 216.88<sup>4</sup>

1000

i.go

2000 2000 2000

inter inter

i zuris

i de va

298° -16

sheren Hitrag

14) 14)

10.44

idense Nillense



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 05/12/93 · Supercedes n/a · Page 1 of 14

#### 1. PURPOSE

This section provides standard operating guidelines (SOGs) for monitor well design and installation.

# 2. SCOPE

\*\*\*\*

汤油

19698

The SOGs included in this section are applicable to all DBS&A employees, and its contractors and subcontractors, for the conduct of all activities listed in this section. This procedure is applicable to all DBS&A employees and subcontractors who are engaged in monitor well design and installation activities. Tables 13.4.1-1 and 13.4.1-2 will aid in the selection of casing, screen and riser materials and bentonite or cement grouting materials. Figures 13.4.1-1 and 13.4.1-2 are respectively diagrams for typical shallow zone (single-cased) and deep zone (multi-cased) wells used at DBS&A. Attachment 1 to this SOG is a material supply list (Form No. 118, 6/93) and should be used in the preparation of monitor well design and installation activities. Also, a well completion record (Form No. 048) included as Attachment 2, which will be used to record well design and installation information in the field. The scope of the procedures described in this section include the following:

- Initial Site Characterization
- Monitor Well Design
- Monitor Well Installation

Standards for monitor well design and installation are described in ASTM D 5092-90 ("Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers"). Also, DBS&A technical representatives are required to follow all applicable state regulations pertaining to monitor well design and installation. Refer to Driscoll (1986), EPA (September 1986) or Aller et. al. (1989) for more detailed guidelines about the above subjects as they relate to the design and installation of monitor wells.

# 3. GUIDELINES

# 3.1 Initial Site Characterization (ASTM D 5092-90)

A conceptual hydrogeologic model that identifies potential flow paths and the target monitoring zone(s) should be developed prior to monitor well design and installation. The following steps for initial site characterization are recommended:

- 1. Conduct an initial visit to identify and locate aquifers and zones with the greatest potential to contain and transmit ground water and contaminants from the project area and study exposed soil and rocks within or near the project area for soil color and textural changes, landslides, faults, seeps, and springs.
- 2. Collect and review literature from previous investigations of the project area (i.e. topographic maps, aerial imagery, site ownership and utilization records, geologic and hydrogeologic maps



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 05/12/93 • Supercedes n/a • Page 2 of 14

and reports, mineral resource surveys, water well logs, and personal information from local well drillers).

3. Develop a preliminary conceptual model of the project area using the information gathered during the initial site visit and literature search. Target specific aquifers and/or ground-water zones for additional characterization based on the known hydrogeology and potential contaminant characteristics (e.g., screen across water table for LNAPLs; include a sump for DNAPLs).

# 3.2 Monitor Well Materials and Design (ASTM D 5092-90)

The following materials and design are for typical shallow zone (single-cased) and deep zone (multicased) wells. Figure 13.4.1-1 is a diagram showing a typical design for a shallow zone (single-cased) well used at DBS&A. Figure 13.4.1-2 is a diagram showing a typical design for a deep zone (multicased) well used at DBS&A. Attachment 1 to this SOG is a material supply list (Form No. 118) for monitor well installation and should be completed and checked prior to the field stage of the drilling program by both DBS&A and the drilling subcontractor. Attachment 1 to this SOG should be used in conjunction with the "Drilling Information Checklist" and the "Drilling Equipment and Support Vehicles Checklist" (Form Nos. 116 and 117, Section 13.3.1 of the Operations Manual).

### 3.2.1 Water

1000

ોસર્સ

1993

Water used in the drilling process, to prepare grout mixtures and to decontaminate the well screen, riser, and annular sealant injection equipment, should be obtained from a source of known chemistry or should be characterized. The chemical analysis should confirm that the added water does not contain constituents that could compromise the integrity of the well installation or that may be potential contaminants.

# 3.2.2 Filter Pack

- 1. The grain-size distribution curve for the filter pack is selected by multiplying the 70% retained size of the finest formation sample by 3 or 4. Typically 10/20 silica sand is usually appropriate for the filter pack.
- 2. Do not select too fine a filter pack because this will reduce the yield of the well, causing longer sampling times.
- 3. Uniformity coefficients for filter pack materials should range from 1 to 3.
- 4. All filter pack material should be purchased from reputable suppliers who have properly cleaned and bagged the material.
- 5. To prevent downward migration of the bentonite or cement into the screen, the filter pack is extended at least 2 to 15 feet above the top of the screen.

3230\SECTION 13\13-4-1



1.44

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIEN (ISTS AND ENGINEERS

# Guideline Monitor Well Design and Installation SECTION 13.4.1

Effective 05/12/93 • Supercedes n/a • Page 3 of 14

6. The filter pack should not extend into an overlying water-bearing formation because this could permit downward vertical seepage in the pack and either dilute or add to the contamination of the water being monitored.

### 3.2.3 Well Screen

- 1. The well screen should be new, machine-slotted or continuous wrapped wire-wound, and composed of materials that are inert to the subsurface water being tested. Table 13.4.1-1 lists the advantages and disadvantages of several common screen materials.
- 2. The well screen material should be certified by the manufacturer as clean.
- 3. If not certified by the manufacturer as clean, the well screen should be steam cleaned or highpressure water cleaned (if appropriate for the selected well screen materials) with water from a source of known chemistry immediately prior to installation.
- 4. The screen should be plugged at the bottom with the same material as the well screen.
- 5. The minimum nominal internal diameter of the well screen should be chosen based on the criteria that it will permit effective development and rapid sample recovery. In most instances, a minimal diameter of 2 inches (50 mm) is needed to allow for the introduction and withdrawal of sampling devices.
- 6. The slot size of the well screen should retain filter pack or natural formation along with permitting efficient development of the wells.

# 3.2.4 Riser

1.86

- 1. The riser should be new and composed of materials that are inert to the subsurface water being tested. Table 13.4.1-1 lists the advantages and disadvantages of riser materials.
- 2. The riser material should be certified by the manufacturer as clean.
- 3. If not certified by the manufacturer as clean, each section of the riser should be steam cleaned or high-pressure water cleaned (if appropriate for the selected material) using water from a source of known chemistry immediately prior to installation.
- 4. The minimal nominal internal diameter of the riser should be chosen based on the criteria that it will permit effective development and rapid sample recovery. In most instances, a minimum of 2 inches (50 mm) is needed to accommodate sampling devices.
- 5. Threaded joints are recommended. Alternatively, O-rings composed of materials that would not affect the subsurface water being sampled may be selected for use on flush joint threads.



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 05/12/93 · Supercedes n/a · Page 4 of 14

#### 3.2.5 Casing

din a

1948

- The casing material should be new and composed of materials that are inert to the subsurface water being tested. Table 13.4.1-1 lists the advantages and disadvantages of casing materials. The exterior casing (temporary or permanent multi-cased wells) is generally constructed of steel although other appropriate materials may be used.
- 2. Where conditions warrant, the use of permanent casing installed to prevent communication between water-bearing zones is encouraged.
- 3. The casing material should be certified by the manufacturer as clean.
- 4. If not certified by the manufacturer as clean, the casing material should be steam cleaned or highpressure water cleaned (if appropriate for the selected material) using water from a source of known chemistry immediately prior to installation.
- 5. The material type and minimum wall thickness of the casing should be adequate to withstand forces of installation.
- 6. All casing that is to remain as a permanent part of the installation (that is, multi-cased wells) should be new and cleaned of interior and exterior protective coatings.
- 7. The minimal nominal internal diameter of the riser should be chosen based on the criteria that it will permit effective development and rapid sample recovery. In most instances, a minimum of 2 inches (50 mm) is needed to accommodate sampling devices.
- 8. The diameter of the casing for filter packed wells should be selected so that a minimum annular space of 2 inches (50 mm) is maintained between the inside diameter of the casing and the outside diameter of the riser. In addition, the diameter of the casings in multi-cased wells should be selected so that a minimum annular space of 2 inches is maintained between the casing and the borehole (that is, a 2-inch diameter screen will require first setting a 6-inch (152-mm) diameter casing in a 10-inch (254-mm) diameter boring).
- 9. The ends of each casing section should be either flush-threaded or bevelled for welding.

#### 3.2.6 Annular Sealants

The materials used to seal the annulus may be prepared as a slurry or used unmixed in a dry pellet, granular, or chip form. Sealants should be selected to be compatible with ambient geologic, hydrogeologic, and climatic conditions and any man-induced conditions anticipated to occur during the life of the well. Table 13.4.1-2 lists the advantages and disadvantages of using bentonite or cement as grouting material for monitor wells. The following guidelines for the bentonite seal and grout backfill should be considered:

3230\SECTION 13\13-4-1

349

14:00

43.68



18 M

1000

434

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

# Guideline Monitor Well Design and Installation SECTION 13.4.1

Effective 05/12/93 · Supercedes n/a · Page 5 of 14

- 1. A bentonite seal of at least 2 feet is placed above the filter pack. Bentonite should be powdered, granular, pelletized, or chipped sodium montmorillonite furnished in sacks or buckets from a commercial source and free of impurities which adversely impact the water quality in the well. The diameter of pellets or chips selected for monitoring well construction should be less than one fifth the width of the annular space into which they are placed to reduce the potential for bridging.
- 2. The grout backfill that is placed above the bentonite seal is ordinarily a liquid slurry consisting of either a bentonite (powder or granules, or both) base and water or a Portland cement base and water. A mixture of bentonite and Portland cement can be used for the grout backfill. Refer to ASTM D 5092-90 for standards in mixing and placing the grout backfill.

# 3.2.7 Annular Seal Equipment

Prior to use, the equipment used to inject the annular seals and filter pack should be steam cleaned or high-pressure water cleaned (if appropriate for the selected material) using water from a known chemical source. This procedure is performed to prevent the introduction of materials that may ultimately alter the water sample quality.

# 3.3 Monitor Well Installation (ASTM D 5092-90)

A well completion diagram (DBS&A Form No. 048, Attachment 2) should be completed as an on-going process during the installation of the monitor well. General steps for monitor well installation are as follows:

- 1. A stable borehole must be constructed prior to installing the monitor well casing, screen and riser (refer to Section 13.3.1 of the Operations Manual for drilling guidelines).
- 2. The well casing, screen, riser, and bottom plug materials should either be certified by the manufacturer as clean or cleaned with a steam cleaner or high-pressure water combined with a low-sudsing soap or detergent.
- 3. Working components of the drilling rig (drill pipe, subs, collars, belly, and all parts of the rig chasis near the borehole) should be cleaned as described in step no. 2.
- 4. All plastic screens and casing should be joined by threads and couplings or flush threads to prevent contamination from solvent glues.
- 5. The well screen and riser assembly can be lowered to the predetermined level and held into position by a ballast or hydraulic arms on the drilling rig. The assembly must be installed straight with the appropriate centralizers to allow for the introduction and withdrawal of sampling devices.
- 6. The riser should extend above grade and be capped temporarily to deter entrance of foreign materials during completion operations.

3230\SECTION 13\13-4-1

<u>अल</u>्ल



in the state

19136

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 05/12/93 · Supercedes n/a · Page 6 of 14

Guideline Monitor Well Design and Installation SECTION 13.4.1

- 7. The volume of filter pack (gravel and/or silica sand) required to fill the annular space between the well screen and borehole should be estimated, measured during installation, and recorded on the well completion diagram during installation.
- 8. The filter pack is placed in the annulus from the bottom of the borehole up to 2 to 5 feet above the well screen.
- 9. If used, the temporary casing or hollow stem auger is withdrawn, usually in stipulated increments. Care should be taken to minimize lifting the riser with the withdrawal of the temporary casing/augers. To limit borehole collapse, the temporary casing or hollow stem auger is usually withdrawn until the lower most point on the temporary casing or hollow stem auger is at least 2 feet, but no more than 5 feet, above the filter pack for unconsolidated materials or at least 5 feet, but no more than 10 feet, for consolidated materials.
- 10. A bentonite pellet or a slurry seal is placed in the annulus between the borehole and the riser pipe on top of the filter pack. To be effective, the bentonite seal should extend above the filter pack a minimum of 2 feet, depending on local conditions.
- 11. Sufficient time should be allowed for the bentonite pellet seal to hydrate or the slurry annular seal to expand prior to grouting the remaining annulus. The volume and elevation of the bentonite seal material should be measured and recorded on the well completion diagram.
- 12. The volume and location of grout used to backfill the remaining annular space is recorded on the well completion diagram. An ample volume of grout should be premixed on site to compensate for unexpected losses.
- 13. Grout is introduced in one continuous operation until full strength grout flows out at the ground surface without evidence of drill cuttings or fluid.
- 14. The riser or casing or both should not be disturbed until the grout sets and cures for the amount of time necessary to prevent a break in the seal between the grout and riser, or grout and casing, or both.
- 15. Specific grouting procedures for single- and multi-cased wells are included in ASTM D 5092-90.
- 16. Well protection refers specifically to installations made at the ground surface to deter unauthorized entry to the monitor well and to prevent surface water from entering the annulus. Typically a concrete pad, protective shroud with a lock, and vented cap are placed on monitor wells constructed for DBS&A projects.
- 17. In areas where there is a high probability of damaging the well (high traffic, heavy equipment, poor visibility), it may be necessary to enhance the normal protection of the monitor well through the use of posts, markers, signs, etc.

3230\SECTION 13\13-4-1



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 05/12/93 • Supercedes n/a • Page 7 of 14

Guideline Monitor Well Design and Installation SECTION 13.4.1

- 18. Once the monitor well installation is complete, the well should be developed according to standards outlined in Section 13.4.3 of the Operations Manual.
- 19. The drilling subcontractor is required to file a well record with the State Engineer within 10 days after completion of the well.

#### 4. ATTACHMENTS

- Table 13.4.1-1
- Table 13.4.1.2
- Figure 13.4.1-1
- Figure 13.4.1.2
- 1. Monitor Well Installation Supply List (DBS&A Form No. 118, 6/93)
- 2. Well Completion Record (DBS&A Form No. 048)

#### 5. REFERENCES

- Aller, L., T.W. Bennett, G. Hackett, R.J. Petty, J.H. Lehr, H. Sedoris, D.M. Nielson, and J.E. Denne. 1989. Handbook of Suggested Practices for the Design and Installation of Ground-Water Monitoring Well Design and Installation. National Well Water Association. Dublin, OH. 398 p.
  - Arizona Department of Water Resources. Undated. Well Construction and Licensing of Well Drillers, Handbook.
- ASTM. 1990. Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aguifers. Standard D 5092-90. Philadelphia, PA.
- Driscoll, F.G. 1986. Groundwater and Wells. Johnson Division. St. Paul, MN. 1089 p.
- EPA. 1986. RCRA Ground-Water Monitoring Technical Enforcement Guidance Document. U.S. EPA. Washington, D.C. September. 208 p. and 3 Appendices.

a si da

18:25

Prepared by: <u>Atalyn K. ala</u>

Approved by:

Daniel B. Stephens

Reviewed by: uality Assurance Manager ystems Operations Manager Reviewed by:

3230\SECTION 13\13-4-1



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

# Guideline Monitor Well Design and Installation SECTION 13.4.1

Effective 05/12/93 · Supercedes n/a · Page 8 of 14

#### Table 13.4.1-1 Well Casing, Screen, and Riser Materials

| Туре                         | Advantages                                                                                                                                                                                                                                                                                                                                                   | Disadvantages                                                                                                                                                                                                                                                                                                                    |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stainless steel              | <ul> <li>Least absorption of halogenated and aromatic hydrocarbons</li> <li>High strength at a great range of temperatures</li> <li>Excellent resistance to corrosion and oxidation</li> <li>Readily available in all diameters and slot sizes</li> </ul>                                                                                                    | <ul> <li>Heavier than plastics</li> <li>May corrode and leach some<br/>chromium in highly acidic waters</li> <li>May act as a catalyst in some organic<br/>reactions</li> <li>Screens are higher priced than plastic<br/>screens</li> </ul>                                                                                      |
| PVC (Polyvinyl-<br>chloride) | <ul> <li>Lightweight</li> <li>Excellent chemical resistance to weak<br/>alkalies, alcohols, aliphatic hydrocarbons,<br/>and oils</li> <li>Good chemical resistance to strong<br/>mineral acids, concentrated oxidizing<br/>acids, and strong alkalies</li> <li>Readily available</li> <li>Low priced compared to a stainless steel<br/>and Teflon</li> </ul> | <ul> <li>Weaker, less rigid, and more<br/>temperature sensitive than metallic<br/>materials</li> <li>May adsorb some constituents from<br/>ground water</li> <li>May react with and leach some<br/>constituents from ground water</li> <li>Poor chemical resistance to ketones,<br/>esters, and aromatic hydrocarbons</li> </ul> |
| Teflon                       | <ul> <li>Good resistance to attack by most chemicals</li> <li>Lightweight</li> <li>High impact strength</li> </ul>                                                                                                                                                                                                                                           | <ul> <li>Screen slot openings may decrease in size over time</li> <li>Tensile strength and wear resistance low compared to other engineering plastics</li> <li>Expensive relative to other plastics and stainless steel</li> </ul>                                                                                               |
| Mild steel                   | <ul> <li>Strong, rigid; temperature sensitivity not a problem</li> <li>Readily available</li> <li>Low priced relative to stainless steel and Teflon</li> </ul>                                                                                                                                                                                               | <ul> <li>Heavier than plastics</li> <li>May react with and leach some constituents into ground water</li> <li>Not as chemically resistant as stainless steel</li> </ul>                                                                                                                                                          |

3230\SECTION 13\13-4-1

-celia ideicas

NA 8

aisti



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

# Guideline Monitor Well Design and Installation SECTION 13.4.1

Effective 05/12/93 • Supercedes n/a • Page 9 of 14

#### Table 13.4.1-1 Well Casing, Screen, and Riser Materials (Continued)

| Туре          | Advantages                                                                                                                                                                                                                                                                                                                                                        | Disadvantages                                                                                                                                                                                                                                          |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Polypropylene | <ul> <li>Lightweight</li> <li>Excellent chemical resistance to mineral acids</li> <li>Good to excellent chemical resistance to alkalies, alcohols, ketones, and esters</li> <li>Fair chemical resistance to concentrated oxidizing acids, aliphatic hydrocarbons, and aromatic hydrocarbons</li> <li>Low priced compared to stainless steel and Teflon</li> </ul> | <ul> <li>Weaker, less rigid, and more temperature sensitive than metallic materials</li> <li>May react with and leach some constituents into ground water</li> <li>Poor machinabilityit cannot be slotted because it melts rather than cuts</li> </ul> |
| Kynar         | <ul> <li>Greater strength and water resistance<br/>than Teflon</li> <li>Resistant to most chemicals and solvents</li> <li>Lower priced than Teflon</li> </ul>                                                                                                                                                                                                     | <ul> <li>Not readily available</li> <li>Poor chemical resistance to ketones, acetone</li> </ul>                                                                                                                                                        |

(After Driscoll, 1986)

 $\{ k_{i}^{(i)} \}_{i=1}^{N}$ 



- 199 1 - 199

di dati

100

شعذت

(\$1998) - State

1.4

in the second

n i faith

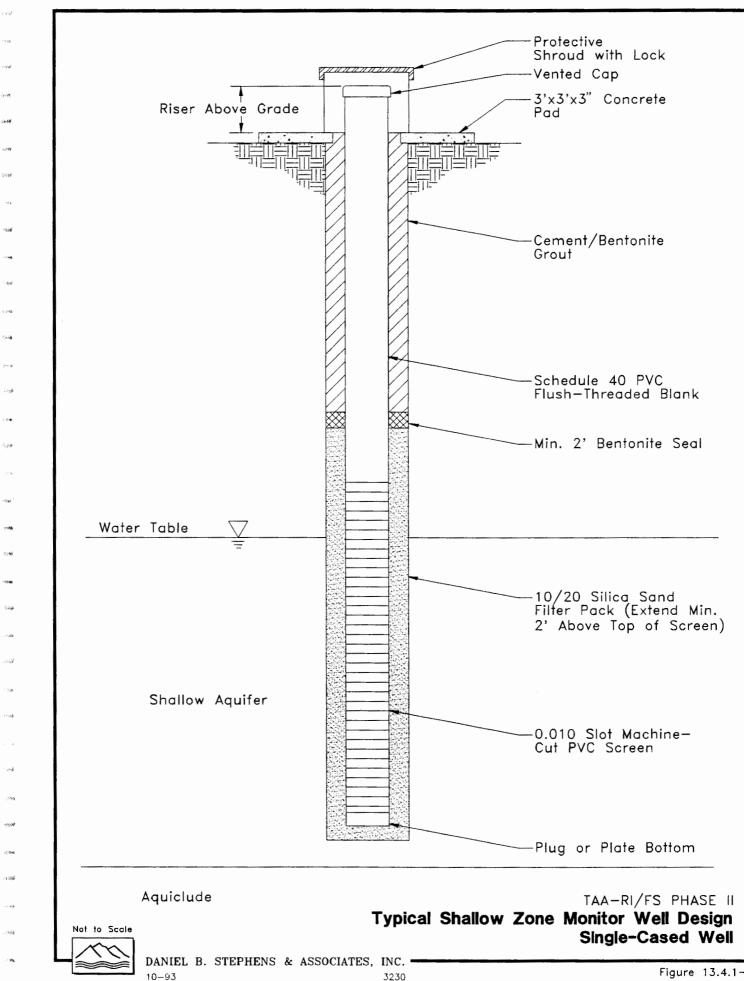
N/A-TE

DANIEL B. STEPHENS & ASSOCIATES, INC.

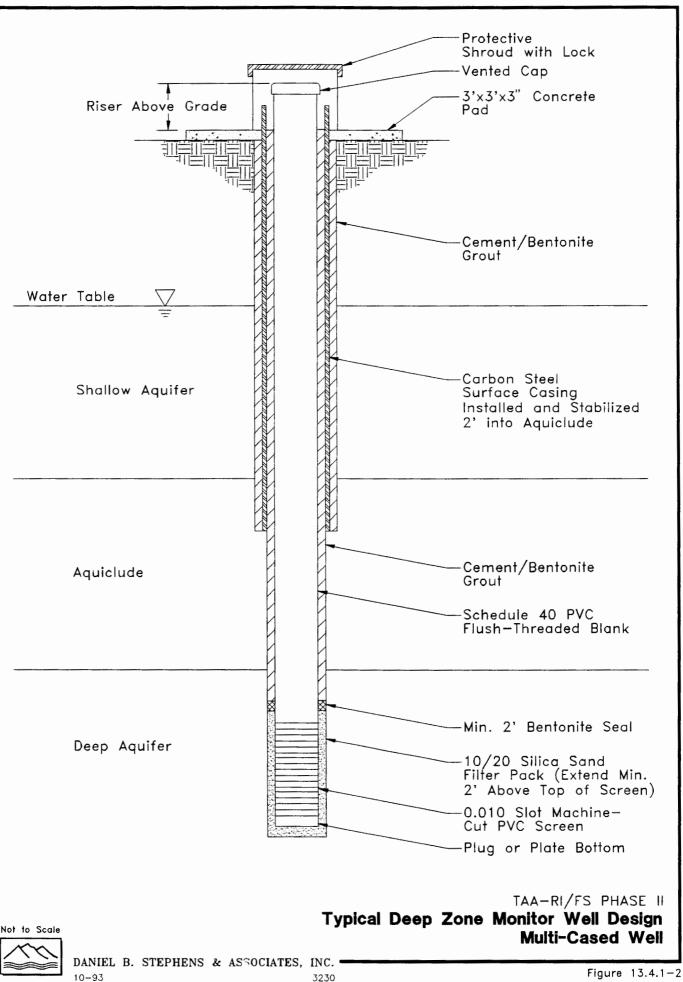
ENVIRONMENTAL SCIENTISTS AND ENGINEERS

#### Guideline Monitor Well Design and Installation SECTION 13.4.1

Effective 05/12/93 · Supercedes n/a · Page 10 of 14


| Туре      | Advantages                                                                                                                                                                                                             | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bentonite | <ul> <li>Readily available</li> <li>Inexpensive</li> </ul>                                                                                                                                                             | <ul> <li>May produce chemical interference with water-quality analysis</li> <li>May not provide a complete seal because:         <ul> <li>There is a limit (14 percent) to the amount of solids that can be pumped in a slurry. Thus, there are few solids in the seal; should wait for liquid to bleed off so solids will settle</li> <li>During installation, bentonite pellets may hydrate before reaching proper depth, thereby sticking to formation or casing and causing bridging</li> <li>Cannot determine how effectively material has been placed</li> <li>Cannot assure complete bond to casing</li> </ul> </li> </ul> |
| Cement    | <ul> <li>Readily available</li> <li>Inexpensive</li> <li>Can use sand/or gravel filter</li> <li>Possible to determine how well the cement<br/>has been placed by temperature logs or<br/>acoustic bond logs</li> </ul> | <ul> <li>May cause chemical interferences with water-<br/>quality analysis</li> <li>Requires mixer, pump, and tremie line;<br/>generally more cleanup than with bentonite</li> <li>Shrinks when it sets; complete bond to<br/>formation and casing not assured</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |

#### Table 13.4.1-2. Grouting Materials for Monitoring Wells


(After Driscoll, 1986)

3230\SECTION 13\13-4-1

19/4 (14)安



e da da A 140 114.0 (64) 2006 1.50 es stà a inte



| Monitor | Well | Insta | alla | tion |
|---------|------|-------|------|------|
|         |      | Supp  | oly  | List |

| er o de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sim$ |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sim$ |   |
| in in in the second sec |        | F |

- 200

DANIEL B. STEPHENS & ASSOCIATES, INC.

| Pr | roject No DBS&A Pro           | roject Manager                |  |
|----|-------------------------------|-------------------------------|--|
| DI | BS&A Technical Representative | DBS&A Field Representative(s) |  |
| Di | rilling Company               |                               |  |
| Di | rilling Company Contact       | Phone No                      |  |

Date and Time for Work to Begin \_

| Material                                                                | Size | Quantity | Equipment Supplier* |
|-------------------------------------------------------------------------|------|----------|---------------------|
| Sand                                                                    |      |          | <u></u>             |
| Sand                                                                    |      |          |                     |
| Pea Gravel                                                              |      |          |                     |
| Bentonite Powder                                                        |      |          |                     |
| Bentonite Pellets                                                       |      |          |                     |
| Bentonite Chips (Ca-montmorill. Slow,<br>NA-montmorill. Fast Hydration) |      |          |                     |
| PVC (Flush-Threaded Schedule 40)                                        |      |          |                     |
| PVC (Flush-Threaded Schedule 40)                                        |      |          |                     |
| PVC (Flush-Threaded Schedule 40)                                        |      |          |                     |
| PCV Screen Schedule 40 with Slot                                        |      |          |                     |
| PCV Screen Schedule 40 with Slot                                        |      |          |                     |
| PCV Screen Schedule 40 with Slot                                        |      |          |                     |
| Stainless Steel Channel Pack                                            |      |          |                     |
| Steel Conductor Casing                                                  |      |          |                     |
| Slip Caps                                                               |      |          |                     |
| Slip Caps                                                               |      |          |                     |
| Threaded Endcaps                                                        |      |          |                     |
| Threaded Endcaps                                                        |      |          |                     |
| Locking Caps                                                            |      |          | <u> </u>            |
| Concrete                                                                |      |          |                     |
| Portland Cement                                                         |      |          |                     |
| Locking Well Vault                                                      |      |          |                     |

DBS&A Form No. 118 6/93

-

|                      |                                                  | Project No.                                                                   |
|----------------------|--------------------------------------------------|-------------------------------------------------------------------------------|
|                      |                                                  | Date Installed                                                                |
|                      |                                                  |                                                                               |
|                      |                                                  | Driller<br>Well Casing Type<br>Height Above<br>Ground (feet)<br>Backfill Type |
| otal<br>epth<br>eet) | Seal Length<br>(feet)                            | Backfull Length (feet)                                                        |
|                      | Filter Pack Type<br>Filter Pack<br>Length (feet) | Open or Slotted<br>Length (feet)                                              |
| ¥                    | ¥                                                |                                                                               |
| omments              |                                                  |                                                                               |
|                      |                                                  |                                                                               |

#### DBS&A Form No. 048 4/92

# Section 13.4.3

# Well Development

....

4.19

.18

1.1

1.04

1 - 14

4.46

1120

terre holos

2-148

Reiss



Guideline Well Development SECTION 13.4.3

Effective 06/01/93 • Supersedes n/a • Page 1 of 6

### 1. PURPOSE

This section provides standard operating guidelines (SOGs) for well development.

## 2. SCOPE

This procedure is applicable to all DBS&A employees and subcontractors who are engaged in well development activities. Table 13.4.3-1 summarizes disadvantages and advantages for different well development methods. The scope of the procedures described in this section includes the following:

- Development Methods
- Duration of Well Development
- Well Recovery Test

Standards for well development are described in ASTM D 5092-90 ("Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers"). Refer to Driscoll (1986), EPA (September 1986) or Aller et al. (1989) for more detailed guidelines about well development.

### 3. GUIDELINES

1.44

198

Proper well development serves to 1) remove some finer grained material from the well screen and filter pack that may otherwise interfere with water quality analyses, 2) restore the ground-water properties disturbed during the drilling process, and 3) improve the hydraulic characteristics of the filter pack and hydraulic communication between the well and the hydrologic unit adjacent to the screened interval.

### 3.1 Development Methods (ASTM D 5092-90)

Methods of development most often used include mechanical surging and bailing or pumping, over-pumping, air-lift pumping, and well jetting. An important factor in any method is that the development work be started slowly and gently and be increased in vigor as the well is developed. most methods of well development require the application of sufficient energy to disturb the filter pack, thereby freeing the fines and allowing them to be drawn into the well. The coarser fractions then settle around and stabilize the screen. The well development method chosen should be documented in the field notebook. Table 13.4.3-1 summarizes the opinions of several references on well development methods and can be helpful in selecting an approximate method for development wells screened in varying hydrologic units.

## 3.1.1 Mechanical Surging

In this method, water is forced to flow into an out of the well screen by operating a plunger (or surge bock) or bailer up and down in the riser. A pump or bailer should then be used to remove the dislodged sediments following surging.

3230\SECTION.13\13-4-3



12.94

10.44

326

183

i na

inté

1.66

DANIEL B. STEPHENS & ASSOCIATES, INC.

OPERATIONS MANUAL

Guideline Well Development SECTION 13.4.3

Effective 06/01/93 · Supersedes n/a · Page 2 of 6

# 3.1.2 Over Pumping and Backwashing

The easiest, least expensive and most commonly employed technique of well deelopment is some form of pumping. With over pumping, the well is pumped at a rate considerably higher than it would be during normal operation. The fine-grain materials would be dislodged from the filter pack and surrounding strata influenced by the higher pumping rate. This method is usually conducted in conjunction with mechanical surging.

In the case where there is no backflow prevention valve installed, the pump can be alternately started and stopped. This is called backwashing. This starting and stopping allows the column of water that is intially picked up by the pump to be alternately dropped and raised up in a surging action. Each time the water column falls back into the well, an outward surge of water flows into the formation. This surge tends to loosen the bridging of the fine particles into and out of the well.

# 3.1.3 Air Lift Pumping

In this method, an air lift pump is operated by cycling the air pressure on and off for short periods of time. This operation will provide a surging action that will dislodge fine-grained particles. Applying a steady, low pressure will remove the fines that have been drawn into the well by the surging action. Efforts should be made (that is, through the use of a foot valve) to avoid pumping air into the filter pack and adjacent hydrologic unit because the air may lodge there and inhibit future sampling efforts and may alter ambient water chemistry. Furthermore, application of high air pressures should be avoided to prevent damage to small diameter PVC risers, screens, and filter packs.

# 3.1.4 Well Jetting

Another method of development involves jetting the well screen area with water while simultaneously air-lift pumping the well. However, the water added during this development procedure will alter the natural, ambient water quality and may be difficult to remove. Therefore, the water added should be obtained from a source with known chemistry. Water from the monitor well being developed may also be used if the suspended sediments are first removed.

# 3.2 Duration of Well Development (ASTM D 5092-90)

Well development should begin no sooner than 48 hours after the monitor well is completely installed and prior to water sampling. Development should be continued until representative water, free of the drilling fluids, cuttings, or other materials introduced during well construction is obtained. Representative water is assumed to have been obtained when pH, temperature, and specific conductivity readings stabilize and the water is visually clear of suspended solids. The minumum duration of well development will vary according to the method used to develop the well. The duration of well development and the pH, temperature, and specific conductivity readings should be recorded in the field notebook.



OPERATIONS MANUAL

Guideline Well Development SECTION 13.4.3

Effective 06/01/93 · Supersedes n/a · Page 3 of 6

# 3.3 Well Recovery Test (ASTM D 5092-90)

A well recovery test can be performed immediately after and in conjunction with well development. The well recovery test not only provides an indication of well performnce but it may also provide data for determining the transmissivity of the screened hydrologic unit. Estimates of the hydraulic conductivity of the unit can then be determined. Readings should be taken at intervals suggested in Table 13.4.3-2 until the well has recovered to 90 percent of its static water level and recorded in the field notebook. Section 13.6 of the DBS&A Operations Manual describes methods for aquifer hydraulic testing specifically for establishing aquifer hydraulic parameters in greater detail.

| TIME SINCE STARTING TEST    | TIME INTERVAL |
|-----------------------------|---------------|
| 0 to 15 min                 | 1 min         |
| 15 to 50 min                | 5 min         |
| 50 to 100 min               | 10 min        |
| 100 to 300 min (5 hours)    | 30 min        |
| 300 to 1,440 min (24 hours) | 60 min        |

# Table 13.4.3-2 Suggested Recording Intervals for Well Recovery Tests

## 4. ATTACHMENTS

• Table 13.4.3-1

## 5. REFERENCES

- Aller, L., T.W. Bennett, G. Hackett, R.J. Petty, J.H. Lehr, H. Sedoris, D.M. Nielson, and J.E. Denne. 1989. Handbook of Suggested Practices for the Design and Installation of Ground-Water Monitoring Well Design and Installation. National Well Water Association. Dublin, OH. 398 p.
- ASTM. 1990. Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers. Standard D 5092-90. Philadelphia, PA.

Driscoll, F.G. 1986. Groundwater and Wells. Johnson Division. St. Paul, MN. 1089 p.

EPA. 1986. RCRA Ground-Water Monitoring Technical Enforcement Guidance Document. U.S. EPA. Washington, D.C. September. 208 p. and 3 Appendices.



**OPERATIONS MANUAL** 

Guideline Well Development SECTION 13.4.3

Effective 06/01/93 · Supersedes n/a · Page 4 of 6

Prepared by:

Approved by:

3230\SECTION.13\13-4-3

2.36

1 atalige K. Ala

el B. Stephens Dar

Reviewed by Quality Assurance Manager Reviewed by: vstems Operations Manager



ENVIRONMENTAL SCIENTISTS AND ENGINEERS


#### Effective 05/26/93 • Supersedes n/a • Page 5 of 6

|                                                               |                                                                                                                                                                             |                                                                                 | Mechanical Surging                                                                                                                                    |                                                                                                                               |                                                                                                                                                  |                                     |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Reference                                                     | Over-pumping                                                                                                                                                                | Backwashing                                                                     | Surge Block                                                                                                                                           | Bailer                                                                                                                        | Well Jetting                                                                                                                                     | Air-lift Pumping                    |
| Gass (1986)                                                   | Works best in clean<br>coarse formations<br>and some consoli-<br>dated rock; problems<br>of water disposal and<br>bridging                                                  | Breaks up bridging,<br>low cost & simple;<br>preferentially<br>develops         | Can be effective;<br>size made for ≥ 2"<br>well; preferential<br>development where<br>screen >5'; surge<br>inside screen                              |                                                                                                                               | Consolidated and<br>unconsolidated<br>application; opens<br>fractures, develops<br>discrete zones; dis-<br>advantage is external<br>water needed | Replaces air<br>surging; filter air |
| United States<br>Environmental<br>Protection Agency<br>(1986) | Effective develop-<br>ment requires flow<br>reversal or surges to<br>avoid bridges                                                                                          | Indirectly indicates<br>method applicable;<br>formation water<br>should be used | Applicable; formation<br>water should be<br>used; in low-yield<br>formation, outside<br>water source can be<br>used if analyzed to<br>evaluate impact | Applicable                                                                                                                    |                                                                                                                                                  | Air should not be<br>used           |
| Barcelona et al.**<br>(1983)                                  | Productive wells;<br>surging by alternating<br>pumping and allow-<br>ing to equilibrate;<br>hard to create<br>sufficient entrance<br>velocities; often used<br>with airlift |                                                                                 | Productive wells; use<br>care to avoid casing<br>and screen damage                                                                                    | Productive wells;<br>more common than<br>surge blocks but not<br>as effective                                                 |                                                                                                                                                  |                                     |
| Scalf et al. (1981)                                           |                                                                                                                                                                             | Suitable; periodic<br>removal of lines                                          | Suitable; common<br>with cable-tool; not<br>easily used on other<br>rigs                                                                              | Suitable; use suffi-<br>ciently heavy bailer;<br>advantage of<br>removing fines; may<br>be custom made for<br>small diameters |                                                                                                                                                  | Suitable                            |

#### Table 13.4.3-1. Summary of Well Development Methods

Guideline

Well Development SECTION 13.4.3



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

# Guideline Well Development SECTION 13.4.3

Effective 05/26/93 · Supersedes n/a · Page 6 of 6

|                                                                                       |                                                                                                                                                                                                                                                                                           |                                                                                            | Mechanical Surging                                                                                                                                                                          |        |                                                                                                                                                                                                                                                                                                                                          |                                                                         |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Reference                                                                             | Over-pumping                                                                                                                                                                                                                                                                              | Backwashing                                                                                | Surge Block                                                                                                                                                                                 | Bailer | Well Jetting                                                                                                                                                                                                                                                                                                                             | Air-lift Pumping                                                        |
| National Council of<br>the Paper Industry<br>for Air and Stream<br>Improvement (1981) | Applicable; drawback<br>of flow in one direc-<br>tion; smaller wells<br>hard to pump if water<br>level below suction                                                                                                                                                                      |                                                                                            | Applicable; caution<br>against collapse of<br>intake or plugging<br>screen with clay                                                                                                        |        | Methods introducing fo<br>be avoided (i.e., compr<br>jets)                                                                                                                                                                                                                                                                               |                                                                         |
| Everett (1980)                                                                        | Development opera-<br>tion must cause flow<br>reversal to avoid<br>bridging; can<br>alternate pump off<br>and on                                                                                                                                                                          |                                                                                            | Suitable; periodic<br>bailing to remove<br>fines                                                                                                                                            |        | High velocity jets of<br>water generally most<br>effective; discrete<br>zones of develop-<br>ment                                                                                                                                                                                                                                        |                                                                         |
| Keely and Boateng<br>(1987 a and b)                                                   | Probably most desir-<br>able when surged;<br>second series of<br>evacuation/recovery<br>cycles is recom-<br>mended after resting<br>the well for 24 hours;<br>settlement and<br>loosening of fines<br>occurs after the first<br>development attempt;<br>not as vigorous as<br>backwashing | Vigorous surging<br>action may not be<br>desirable due to<br>disturbance of gravel<br>pack | Method quite effec-<br>tive in loosening fines<br>but may be inadvis-<br>able in that filter pack<br>and fluids may be<br>displaced to degree<br>that damages value<br>as a filtering media |        | Popular but less<br>desirable; method<br>different from water<br>wells; water dis-<br>placed by short<br>downward bursts of<br>high pressure injec-<br>tion; important not to<br>jet air or water<br>across screen<br>because fines driven<br>into screen cause<br>irreversible blockage;<br>may substantially<br>displace native fluids | Air can become<br>entrained behind<br>screen and reduce<br>permeability |

#### Table 13.4.3-1. Summary of Well Development Methods (Continued)

\* Schalia and Landick (1986) report on special 2' valved block

\*\* For low hydraulic conductivity wells, flush water up annulus prior to sealing; afterwards pump (Compiled by Aller et al, 1989)

# Section 13.4.4

1:0

31.54

10.1

 $_{2}(\cdot )$ 

# Well and Boring Abandonment

.



**OPERATIONS MANUAL** 

Guideline Well and Boring Abandonment SECTION 13.4.4

Effective 06/01/93 • Supersedes n/a • Page 1 of 3

### 1. PURPOSE

This section provides standard operating guidelines (SOGs) for well and boring abandonment.

### 2. SCOPE

This procedure is applicable to all DBS&A employees and subcontractors who are engaged in well and boring abandonment activities. The scope of the procedures described in this section includes the following:

- · Need for Sealing Wells and Restoration of Geological Conditions
- Sealing Requirements
- Records of Abandonment Procedures

Abandonment activities conducted by DBS&A personnel will follow all applicable state regulations pertaining to well and boring abandonment.

### 3. GUIDELINES

Abandoned wells need to be sealed carefully to prevent pollution of the ground water source, eliminate any physical hazard, conserve aquifer yield, maintain confined head conditions, and prevent poor-quality water of one aquifer from entering another. The purpose of sealing an abandoned well is to prevent any further disturbance to the pre-existing hydrogeologic conditions that exist within the subsurface. The plug should prevent vertical movement within the borehole and confine the water to the original zone of occurrence. Driscoll (1986), EPA (September 1986) or Aller et al. (1989) provide more detailed procedures and guidelines for abandonment of wells. The following subsections outline general procedures and guidelines for abandonment of test holes, partially completed wells, and completed wells.

## 3.1 Need for Sealing Wells and Restoration of Geological Conditions

Abandoned test holes, including test wells, uncompleted wells, and completed wells shall be sealed for the following reasons:

- 1. Eliminate physical hazard.
- 2. Prevent contamination of ground water.
- 3. Conserve yield and hydrostatic head of aquifers.
- 4. Prevent intermingling of desirable and undesirable waters.

The guiding principle to be followed by the contractor in the sealing of abandoned wells is the restoration, as far as feasible, of the controlling geological conditions that existed before the well was drilled or constructed.



OPERATIONS MANUAL

Effective 06/01/93 • Supersedes n/a • Page 2 of 3

### 3.2 Sealing Requirements

Sealing requirements are as follows:

- 1. A well shall be measured for depth before it is sealed to ensure freedom from obstructions that may interfere with effective sealing operations.
- 2. Removal of liner pipe from some wells may be necessary to ensure placement of an effective seal.
- 3. If the liner pipe cannot be readily removed, it shall be perforated to ensure the proper sealing required.
- 4. Concrete, cement grout, or neat cement shall be used as primary sealing materials and shall be placed from the bottom upward by methods that will avoid segregation or dilution of material.

### 3.3 Records of Abandonment Procedures

Complete, accurate information shall be recorded in the field notebook of the entire abandonment procedure to provide detailed records for possible future reference and to demonstrate to the government state or local agency that the hole was properly sealed. Particularly, the following should be recorded accurately:

- 1. The depth of each layer of all sealing and backfilling materials shall be recorded.
- 2. The quantity of sealing materials used shall be recorded. Measurements of static water levels and depths shall be recorded.
- 3. Any changes in the well made during the plugging, such as perforating casing, shall be recorded in detail.

The owner or well permit holder should notify the appropriate state or local agency of the abandonment.

### 4. REFERENCES

- Aller, L., T.W. Bennett, G. Hackett, R.J. Petty, J.H. Lehr, H. Sedoris, D.M. Nielson, and J.E. Denne. 1989. Handbook of Suggested Practices for the Design and Installation of Ground-Water Monitoring Well Design and Installation. National Well Water Association. Dublin, OH. 398 p.
- ASTM. 1990. Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers. Standard D 5092-90. Philadelphia, PA.

Driscoll, F.G. 1986. Groundwater and Wells. Johnson Division. St. Paul, MN. 1089 p.

3230\SECTION.13\13-4-4

11/200



**OPERATIONS MANUAL** 

Guideline Well and Boring Abandonment SECTION 13.4.4

Effective 06/01/93 · Supersedes n/a · Page 3 of 3

Matalipe &. ala Prepared by: 4

Approved by:

Daniel B. Stephens

Reviewed by: m Quality Assurance Manager Reviewed by: m Systems Operations Manager

# Section 13.5

# Water Sampling

11.12

- 2.13

12.19

90.95 . . . . . .

10.64

ien.

- 花樹

17454

148

Ser.

100.0

erie de



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Water Sampling SECTION 13.5

#### Effective 01/12/94 · Supersedes 06/01/93 · Page 1 of 2

#### 1. PURPOSE

The purpose of this standard operating procedure (SOP) is to present guidelines and procedures for collection, preservation, and shipment of water samples for laboratory chemical analysis. This SOP also outlines procedures for measurement of field water quality parameters during sample collection activities.

### 2. SCOPE

فكغد

14

1546

104

17.5%

1.10

10.4

The SOPs included in this section are applicable to all DBS&A employees, and its contractors and subcontractors, for the conduct of all activities listed in this section. All SOPs described in this section are proprietary in nature and shall not be copied or reproduced, or distributed to any person or organization not employed by DBS&A, without the expressed written approval of the Systems Operations Manager (SOM) or President of DBS&A. The scope of the procedure described in this section includes the following:

- 13.5.1 Preparation for Water Sampling
- 13.5.2 Decontamination of Field Equipment
- 13.5.3 Measurement of Field Parameters
- 13.5.4 Collection of Ground-Water Samples
- 13.5.5 Collection of Surface Water Samples
- 13.5.6 Sample Preservation
- 13.5.7 Sample Filtration
- 13.5.8 Quality Assurance/Quality Control (QA/QC) Samples

This SOP includes guidelines for preparation for water sampling, collection of surface- and ground-water samples, sample preservation, chain of custody procedures, and quality assurance/quality control procedures. This SOP is applicable to the collection of surface- and ground-water samples to be analyzed for organic, inorganic and radionuclide constituents and for measurement of field parameters including temperature, conductivity, pH, alkalinity, oxidation/reduction potential (Eh), and dissolved oxygen.

## 3. PROCEDURES

These SOPs shall be reviewed and updated at least once annually by the Systems Operations Manager (SOM), or person(s) designated by the SOM. Revisions and additions to these SOPs shall be made as needed to assure consistency with industry standards and the collection of high quality data in the field. Requests for revisions shall be made on Form No. 127 in accordance with the procedure described in Section 0.2 of the DBS&A Operations Manual. The Proprietary Copy Request and Authorization Form (DBS&A Form No. 043) shall be used in requesting, authorizing, and documenting any SOP, or part of any SOP, copied or distributed for uses described in Section 13.5 of the Operations Manual. All or parts of the SOPs described in this section may be reproduced and used in DBS&A reports, proposals, and work plans with the verbal consent of either the SOM or President of DBS&A. The SOM shall be responsible for filing and maintaining requests made on Form Nos. 127 and 043.

3230\SECTION 13\13-5

-3448



- 4,446

8-33

144

e se la

小说我

# DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Water Sampling SECTION 13.5

Effective 01/12/94 · Supersedes 06/01/93 · Page 2 of 2

M. E Prepared by: Approved by: Daniel B. Stephens

| Reviewed by: M. C.         |
|----------------------------|
| Quality Assurance Manager  |
| Reviewed by: M. C          |
| Systems Operations Manager |
|                            |

3230\SECTION 13\13-5

# Section 13.5.1

5 - 8

-----

in a

2159

to est

15,8

1.12

16.13

1644

iterat 20-41

16-3

posed.

# Preparation for Water Sampling



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 · Supersedes n/a · Page 1 of 2

### 1. PURPOSE

The following SOP defines activities to be completed prior to each sampling event. A checklist/summary of water sampling preparation activities is included as Attachment 1 to this SOP.

# 2. SCOPE

10.00

si di

ាតផ

18.000

144

This procedure is applicable to all DBS&A employees and its contractors and subcontractors when preparing to sample water.

## 3. PROCEDURES

### 3.1 DBS&A Warehouse

Prior to any water sampling event, the water sampler shall requisition all necessary equipment and supplies by completing a DBS&A Field Equipment and Materials Load-Up Sheet (see Section 13.1.1 of the DBS&A Operations Manual) and giving it to the warehouse manager. The load-up sheet should be provided to the warehouse manager as much in advance as is possible, so that equipment and supply requisitions can be made.

All equipment to be used, with the exception of rental equipment, shall be calibrated and tested in the DBS&A warehouse by the warehouse manager prior to being sent to the field per the guidance prescribed in Section 13.1.1 of the DBS&A Operations Manual. Meter calibration shall be conducted in accordance with standard manufacturer recommended procedures using clean, fresh reagents. The warehouse manager shall ensure that all equipment is clean and in working order prior to leaving the DBS&A warehouse.

## 3.2 Analytical Laboratory

Prior to a water sampling event, the number and type of samples to be collected (field and quality assurance samples) shall be determined by the Project Manager (PM) or designated project Technical Representative (TR). The PM or project TR shall order appropriate sample containers (Section 13.1.1) from the analytical laboratory and shall inform the analytical laboratory of the expected arrival date of the samples, the analytes to be determined for each sample, and the required turnaround time. It is the water sampler's (Field Representative; FR) responsibility to confirm that all sample bottles have been received and are loaded for sampling. The duties and responsibilities of TRs and FRs are described in Section 13.2 of the DBS&A Operations Manual.

## 3.3 Site-Specific Instructions

The first time that a site is sampled, or the first time that any new location is sampled, the designated sample identification number shall be determined by the PM or TR prior to field sampling.

Prior to each water sampling event, the PM or TR shall compile a list of samples (including quality assurance samples) to be collected. The order in which the samples should be collected shall also be listed. In general, locations with the lowest concentrations of select analytes shall be sampled before wells with higher



9.4**1** 

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Preparation for Water Sampling SECTION 13.5.1

concentrations, so the potential for cross-contamination can be minimized. The PM or TR will also list any special procedures that are unique to the site or to the sampling event.

Before each sampling round, the PM or TR shall make all access arrangements with the client and/or property owners. The FR(s) will confirm that access arrangements have been made and should determine if additional on-site access procedures are required.

Prior to leaving for the field, FR(s) shall assemble and be familiar with materials that describe the general conditions of the site, the hydrogeology, well completion information, and objectives of the sampling program. The project health and safety plan shall also be consulted before initiation of the field program.

Soame Hilden Prepared by: \_

Effective 06/01/93 · Supersedes n/a · Page 2 of 2

Approved by: Daniel B. Stephens

Reviewed by Suality Assurance Manager Reviewed by vstems Operations Manager

3230\SECTION 13\13-5-1

# Section 13.5.2

# Decontamination of Field Equipment

. 2

. 12.26

10000

6.6

14

- (7)

19

-144

n-à

ricent

1.10



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 • Supersedes n/a • Page 1 of 2

### 1. PURPOSE

The following SOP defines activities required to decontaminate water sampling equipment in order to prevent cross-contamination of samples from different sampling locations.

### 2. SCOPE

This procedure is applicable to all DBS&A employees and its contractors and subcontractors involved in water sampling activities.

### 3. PROCEDURES

All non-disposable field equipment that may potentially come in contact with any water sample shall be decontaminated in order to minimize the potential for cross-contamination between sampling locations. Thorough decontamination of all sampling equipment shall be conducted in the warehouse before each sampling event. In addition, the FR shall decontaminate all equipment in the field as required to prevent cross-contamination of water samples (see Section 13.1.1 of the DBS&A Operations Manual). The procedures described in this section are specifically for field decontamination of sampling equipment.

For wells or surface waters to be sampled for inorganics and/or metals, or for locations outside of the area of known contamination, the following procedures shall be used:

- Wash the equipment in a solution of non-phosphate detergent (Liquinox) and distilled/deionized water. All surfaces that may come in direct contact with the samples shall be washed. Use a clean Nalgene tub to contain the wash solution and a scrub brush to mechanically remove loose particles. Wear clean latex or plastic gloves during all washing and rinsing operations.
- 2. Rinse twice with distilled/deionized water.
- 3. Dry the equipment before use, to the extent practical.

If the sample is collected from a highly contaminated area or is to be analyzed for organics, follow steps 1 and 2, then rinse once more with organic-free water obtained from the laboratory or other supplier. Contain all wash solutions for proper disposal.

### 4. REFERENCES

-

1400

 American Petroleum Institute. 1987. Manual of Sampling and Analytical Methods for Petroleum Hydrocarbons in Groundwater and Soil. API Publication No. 4449. American Petroleum Institute, Washington. DBS&A #3600/API.

| <br>////<br>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |  |
|-----------------------------------------------|--|
|                                               |  |

350

-

法法律

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Decontamination of Field Equipment SECTION 13.5.2

Effective 06/01/93 · Supersedes n/a · Page 2 of 2

Joanne Silter M. Chel Prepared by: Approved by:

Daniel B. Stephens

Reviewed by: Quality Assurance Manager Reviewed by: perations Manager Systems Ç

# Section 13.5.3

. . .

s sig

1.5%

с с. 1979

eir**a**t

93¥

실려

# Measurement of Field Parameters



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 · Supersedes n/a · Page 3 of 7

 $\pm$  5% of the nominal SpC value for that particular KCI solution at that temperature. Record the observed value and the nominal value (from label on bottle) in the field logbook.

### 3.2 pH

This section describes the procedure for determining the pH of a water sample using the Orion Model 250A pH/mV meter with automatic temperature compensation. Calibration of the meter is performed at least daily using two buffer solutions that bracket the sample pH. A temperature sensor is included on the pH probe to make the minor correction from the sample temperature to 25°C. For information on manual temperature correction, refer to meter instruction manual. The Orion 250A can also be used in millivolt mode with a variety of ion selective electrodes (refer to ISE SOPs).

The following equipment is needed to measure pH in the field:

- Orion Model 250A pH meter
- Buffer solutions (pH 4.01, 7.00, 10.00)
- Spare 9-volt battery
- Beaker for water sample
- · Deionized water in squirt bottle

The following procedure shall be used to measure pH in the field:

- 1. Plug the pH probe and thermistor (ATC) into the appropriate jacks of the meter.
- 2. Insert battery (if necessary), and press the power button to turn on the meter.
- 3. If the meter is not already in pH mode as indicated by the caret at the bottom of the display, press the mode button to select pH mode.
- 4. Rinse the probe with deionized water to remove any dried KCI salts, and slide the silicone rubber sleeve down to expose the electrolyte fill hole. Leave the hole uncovered during measurement, but do not allow the hole to be submerged in the sample.
- 5. Remove the plastic end cap on the probe, rinse the tip of the probe in deionized water, and insert the probe in the pH 7.0 buffer.
- 6. Press "2nd," then "Cal" to put the meter in calibration mode. The word "calibrate" should appear on the display, and the designation "P1" indicates that the meter is ready for the first buffer calibration.
- 7. Stir the probe gently in the pH 7.0 buffer solution. When the reading has stabilized, the meter will beep and the word "ready" will appear. Press "yes" to accept the reading and set the pH 7.0 calibration. "P2" will be displayed, indicating that the meter is ready for the second buffer solution.



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 · Supersedes n/a · Page 4 of 7

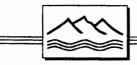
- 8. Rinse the probe with deionized water, and insert it in the pH 4.0 buffer. (If the pH of the water sample is anticipated to be >7, then substitute the pH 10.0 buffer.)
- 9. When the meter indicates "ready," press "measure" to accept the pH 4.0 calibration. The slope of the calibration curve will be displayed briefly. Record the slope in the field logbook. The slope value should be within the range of 90 to 110. If not, repeat the calibration procedure. The meter will automatically exit the calibration mode, and the word "measure" will be displayed.
- 10. Rinse the probe and insert it into the water sample to be measured. Stir gently while waiting for the word "ready" to appear. Record the pH value in the field logbook.
- 11. If more measurements are to be made, rinse the probe and store temporarily in a beaker of deionized water. If finished for the day, turn the meter off, rinse the probe, disconnect the plugs, and store the probe with a few milliliters of the KCI electrode storage solution inside the black plastic end cap.

## 3.3 Alkalinity

2.498

12.50

s a stabili


This section describes the procedures for determining the total alkalinity in near-neutral pH, high-alkalinity water samples (most ground waters) using the Hach Test Kit. For information on the procedure for low-alkalinity samples or high pH samples (pH>8), refer to the Hach instruction sheet.

The following equipment is needed to determine total alkalinity in the field:

Hach Alkalinity Test Kit

The following procedure shall be used to determine total alkalinity in the field:

- 1. Fill the small plastic test tube with the water to be tested.
- 2. Pour the contents of the test tube into the square glass bottle.
- 3. Add the contents of one foil packet containing the *Bromcresol Green/Methyl Red* color indicator. The water will turn a dark green.
- 4. Carefully begin adding the standard sulfuric acid titrant dropwise using the eye dropper, counting the number of drops added and swirling to mix the solution. Keep the eye dropper nearly vertical to maintain a constant drop volume.
- 5. When the solution begins to change from green to red, slow down. The titration is complete when the solution is a bright pink color.
- 6. Record the total number of drops added. Multiply the number of drops by 20 to obtain the total alkalinity, reported as mg/L of CaCO<sub>3</sub>.



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 • Supersedes n/a • Page 5 of 7

### 3.4 Oxidation-Reduction Potential (Eh)

This section describes the procedure for determining oxidation reduction potential of water in the field using an electrode.

The following equipment is needed to measure Eh in the field:

- Yellow Oxidation-Reduction Potential (ORP) Electrode
- Orion Model 250A pH/mV meter or YSI Model 3500 flow-thru cell meter
- Standard Zobell solution

The following procedure should be used to measure Eh in the field:

- 1. Plug the BNC connector into an Orion 250A pH/mV meter (or YSI 3500 meter).
- 2. Turn on the meter. If using the Orion 250A, use *MODE* key to set meter to "mV" mode (**not** *rel mV*). If using the YSI 3500, turn the black knob to "mV".
- 3. Check probe operation by immersing it in a disposable beaker with Zobell Solution. The reading should be  $\pm$  10 mV of that listed on the table with the Zobell Solution at the temperature of the solution (e.g., 231 mV at 25° C).
- 4. Rinse the probe and immerse it in the ground-water sample. Following stabilization, record the mV value, along with a  $\pm$  estimate to indicate the stability of the meter. Also record the sample temperature.

### 3.5 Dissolved Oxygen (DO)

This section describes the procedure for determining the dissolved oxygen (DO) concentration using the YSI Model 57 DO meter. The meter is calibrated using the air calibration procedure, with corrections for ambient temperature and altitude/barometric pressure. Refer to the instruction manual for details of meter operation and replacement of the probe membrane.

The following equipment is needed to measure dissolved oxygen in the field:

- YSI Model 57 Dissolved Oxygen Meter
- Beaker for water sample
- Deionized water in squirt bottle
- Means of determining the approximate altitude of the site (topo map, altimeter, etc.)

The following procedure shall be used to measure dissolved oxygen in the field:

1. Turn the meter on approximately 15 minutes before measuring samples to allow the probe to polarize. The probe shall be kept in the clear plastic cover. Add a few drops of deionized water



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 • Supersedes n/a • Page 6 of 7

to the small sponge inside the cover to maintain 100% relative humidity around the tip of the probe during storage.

- 2. Set the salinity knob to "fresh" for normal ground waters, or adjust to the appropriate salinity if brackish or saline waters are to be measured (as determined by specific conductance or previous laboratory analysis).
- 3. Set the zero on the meter by turning the switch to ZERO and adjusting the zero potentiometer until the needle falls on zero.
- 4. Set the red line on the meter by turning the switch to *RED LINE* and adjusting the appropriate potentiometer.
- 5. With the probe still in its cover, set the switch to *TEMPERATURE* and note the ambient air temperature displayed on the meter.
- 6. Determine the maximum (sea level) dissolved oxygen concentration (mg/L) possible for that temperature by referring to the table on the back of the DO meter (also in the instruction manual). Note this value in the field logbook.
- 7. Determine the approximate altitude of the site, and find the appropriate altitude correction factor on the table on the back of the meter (also in the instruction manual).
- 8. Multiply the saturated DO concentration determined in Step 5 by the altitude correction factor determined in Step 6. Note the value in the field logbook. This is the corrected saturated DO concentration (corrected for both temperature and altitude). Calibration should be periodically checked during the day as the temperature changes, and adjusted if necessary.
- 9. Switch the meter to the appropriate measurement scale for the corrected DO concentration determined in Step 7 (e.g., 0-10 mg/L scale), and use the *CALIBRATE* knob to air calibrate the meter by adjusting until the needle falls on the value determined in step 8. The meter is now ready to measure water samples.
- 10. Rinse the probe with deionized water, and insert it in the water sample and stir gently. Set the switch to *TEMPERATURE*, and record the reading in the field logbook.
- 11. Set the switch to the appropriate DO scale (e.g., 0-5 mg/L) to keep the needle on scale, and stir gently until a stable reading is obtained. It is important to be stirring the sample when the actual reading is taken. Record the value in the field logbook.
- 12. The probe may be stored temporarily in deionized water between measurements. When finished for the day, rinse the probe, and store with the dampened sponge in the plastic cap.

1.34



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure **Measurement of Field Parameters** SECTION 13.5.3

Effective 06/01/93 • Supersedes n/a • Page 7 of 7

Prepared by: <u>Jeffrey Forles</u> Approved by: <u>Jamip B. Steelin</u> Daniel B. Stephens

| Reviewed by: From M. Com   |
|----------------------------|
| Quality Assurance Manager  |
| Reviewed by: Ann 3. Com    |
| Systems Operations Manager |

3230\SECTION 13\13-5-3

# Section 13.5.4

Collection of Ground-Water Samples

r sa Phươ

. %

.....

int a

1.19

2014

No.70

1. Wind

unnia

dora

25.5 48

1 mag

 $E_{1/2}d$ 

pir n4

1417

41728

14,2-14

ni a zw

20.04

 $y_{n,n} \in \mathfrak{g}$ 



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 · Supersedes n/a · Page 1 of 6

### 1. PURPOSE

The following SOP defines activities to be completed for the collection of ground-water samples.

### 2. SCOPE

This procedure is applicable to all DBS&A employees, its contractors and subcontractors, when collecting ground-water samples.

### 3. PROCEDURES

### 3.1 Wellhead Preparation

Prior to ground-water sample collection, the following wellhead protection activities shall be conducted:

- 1. Inspect the area around the well for wellhead integrity, cleanliness, and signs of possible contamination.
- 2. Spread a clean plastic sheet over the ground around the wellhead, where required.
- 3. Remove the cap on the wellhead. Note any obvious odors within the wellbore in the field logbook.
- 4. If possible, measure the static water level (see Section 13.6.1 of the DBS&A Operations Manual) prior to initiation of water sampling. Clean the steel tape or electrical sounder used for water level measurement after each use, as described in Section 13.5.2 of the Operations Manual, to avoid cross contamination.
- 5. If floating product (e.g., gasoline) is suspected at the site, conduct the following procedures:
  - Use a bailer to extract a sample from the surface of the water within the well, if possible.
  - After an initial visual inspection, slowly pour the fluid from the bailer into a small tub or container in order to check for a sheen or any other sign of free product. Note any obvious odors in the field logbook.
  - If free product is detected, use the bailer to remove as much free product as is possible from the wellbore. Lower the bailer into the water slowly in order to prevent mixing and volatilization. Contain all recovered product for proper disposal and note the quantity of product removed in the field logbook.
  - If the site has not been previously sampled, a sample of the free product may be desired. Consequently, place some of the product in an unpreserved 40-mL glass VOA vial, and store it away from the other samples. Confirm sample analysis with the project manager.



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 · Supersedes n/a · Page 2 of 6

• After any free product has been removed from the wellbore, spread a fresh plastic sheet around the wellhead, and clean all contaminated equipment, or segregate it from the other equipment.

### 3.2 Well Purging

The purpose of purging the well prior to sampling is to remove stagnant water from the well bore so that a representative ground-water sample can be collected. The method of purging can have a pronounced effect on the quality of the ground-water sample. For example, rapid purging may increase sample turbidity and is, therefore, not recommended.

In general, positive displacement (bladder) pumps are preferred for most sampling situations. However, depending on the hydraulic conductivity of the aquifer to be sampled and the project objectives, wells may either be equipped with dedicated pumps or may need to be purged with bailers. Consequently, purging techniques may vary depending on the aquifer conditions, the presence or absence of a dedicated pump, and the proposed sample analytes.

The optimum amount of water to be purged from each well also varies between sites. According to Barcelona et al., 1985, pg. 47, "The number of well volumes to be pumped from a monitoring well prior to the collection of a water sample must be tailored to the hydraulic properties of the geologic materials being monitored, the well construction parameters, the desired pumping rate, and the sampling methodology to be employed."

Site-specific purging procedures shall be prepared for each site. The following purging procedure can be used as a general guideline:

1. Calculate the volume of water standing in the casing by using the formula:

 $V = \pi r^2 L$ 

where

r = the radius of the casing (remember to convert inches to feet)

- L = the length of the water column (total depth of well minus the static water level)
- 2. Purge the well at a rate equal to or greater than the sampling rate.
- 3. Measure applicable field parameters (see Section 13.5.3 of the Operations Manual) at the pump outlet at a minimum after each 0.5 casing volume is pumped. Purging is generally considered complete when the above parameters are approximately stable over at least one casing volume. Wherever possible, purge a minimum of three (3) casing volumes from each well.
- 4. In low permeability formations, it may not be possible to purge three casing volumes before the well goes dry. When the formation permeability is too low to allow for continuous purging, remove all of the standing water in the well by pumping or bailing. As soon as the well has recharged sufficiently, collect a sample so as to minimize volatilization in the wellbore.

10/16

a d



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 · Supersedes n/a · Page 3 of 6

- 5. Contain all fluid from obviously contaminated or potentially contaminated wells for later disposal. Anomalous values for the above field parameters, odor, visible sheen, or the presence of free product may be taken as signs of contamination. Results of previous water sampling events will be consulted when available.
- 6. Take careful notes in order to document all purging procedures. The notes shall include: date, time, name(s) of sampler(s), weather, purge rate, purge method, field parameters (at each time measured, with corresponding purge volume), visual observations, odor, and any other relevant information.

The following guidelines as outlined in pertinent references on water sampling can be used when developing site-specific purging procedures:

- Pg. 103 of the EPA RCRA Technical Enforcement Guidance Document (TEGD) states, "in low yield formations, water should be purged so that it is removed from the bottom of the well." (NWWA, 1986).
- Pg. 103 of the TEGD also states "Whenever a well is purged to dryness, a sample for field parameters should be collected as soon as the well has recovered sufficiently. A second measurement of field parameters should be made immediately after sampling. Do not pump a well to dryness if it causes formation water to cascade down the well." (Ibid).
- The inlet line of the sampling pump or the submersible pump should be placed near the bottom of the screen section, and pump approximately one well volume of water at the well's recovery rate, and then collect the sample from the discharge line (EPA 1977, pg. 211).
- According to Wehrmann (1984), "For high yielding monitoring wells which cannot be pumped to dryness, bailing without pre-pumping the well is not recommended; there is no absolute safeguard against contaminating the sample with stagnant water." The following procedures should be used:

Place the inlet line of the sampling pump just below the surface of the well water, and pump three to five volumes of water at a rate equal to the well's recovery rate. This provides reasonable assurance that all stagnant water has been evacuated and that the sample will be representative of the groundwater body at that time.

- Wehrmann (1984) further states, "The rate at which wells are purged should be kept to a minimum. Purging rates should be lower than development rates so that well damage does not occur. Pumping at very low rates in effect, isolates the column of stagnant water in the well bore and negates the need for its removal, if the pump intake is placed at the top of, or in, the well screen. This approach can be very useful when disposal of purge water is a problem."
- If a well completed in a highly permeable formation is being purged, it may be useful to periodically move the intake of the purge pump during purging so that stagnant water does not remain in the well bore while fresh water comes in at only one level (Scalf et al., 1981, pg. 44).

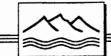
.75



1.24

\*\*\*

DANIEL B. STEPHENS & ASSOCIATES, INC.


ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 · Supersedes n/a · Page 4 of 6

#### 3.3 Ground Water Sample Collection

The following procedure shall be used to collect ground-water samples:

- 1. If the well is not equipped with a sampling pump, use only teflon or stainless steel bailers for sampling. In order to minimize agitation and volatilization, bailers shall be equipped with bottom emptying devices when VOA samples are collected.
- Whenever possible, collect ground-water samples first from wells that have the lowest potential concentrations of analytes of interest, and last from the wells with the highest suspected concentrations (i.e., clean → dirty). The specific sampling order will be detailed in the site-specific sampling plan.
- 3. Pumps equipped with Teflon tubing or disposable teflon bailers are generally recommended for collection of samples to be analyzed for volatile organics.
- 4. Select the appropriate sample container and preservative as described in Section 13.5.6.
- 5. After the well has been purged, collect water samples as soon as possible in order to reduce the possibility of volatilization within the wellbore. If a pump has been used for purging, lower the pump rate so that the sampling rate is lower than the purge rate. If volatile organic samples are to be collected, set the pump at the lowest possible setting. If possible, the sampling rate should be less than 100 ml per minute, or the minimum setting on the pump.
- 6. Collect samples in decreasing order of volatility, i.e. collect samples to be analyzed for volatile organic compounds (VOCs) first, followed by semi-volatile organic compounds, PCBs and pesticides, and inorganics. The preferred order of sampling according to the TEGD is VOCs, SVOCs, purgeable organic halogens (POX), total organic halogens (TOX), total organic carbon (TOC), extractable organics, total metals, dissolved metals, phenols, cyanide, sulfate and chloride, turbidity, nitrate and ammonia, and radionuclides.
- 7. Do not allow the outlet of the sampling pump discharge tubing to come into direct contact with the sample vial or the water within the vial.
- 8. Make sure that no air is entrapped in the sample vials to be analyzed for volatile organics. Take the sample by holding the vial at an angle so that aeration is minimized. Avoid touching the lip of the vial or the Teflon liner. If the sample cannot be transferred directly to the vial, (i.e. high production well) use a clean stainless steel cup to pour the water into the vial. Direct the water stream against the inside surface of the vial. Allow a convex meniscus to form across the mouth of the filled vial. Carefully cap the vial, then invert and tap the vial to insure that no entrapped air is present. If entrapped air is present, recollect the sample.
- 9. If filtering of any samples is required by the site specific sampling plan, use the filtering procedure described in Section 13.5.7.



фø.

1.150

1.50

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 • Supersedes n/a • Page 5 of 6

- 10. Preserve the sample as indicated in Section 13.5.6. Whenever possible, use pre-preserved containers supplied by the analytical laboratory rather than adding preservatives in the field.
- 11. Measure field parameters as described in Section 13.5.3. Temperature, electrical conductivity, and pH generally will be measured at all locations. Alkalinity, dissolved oxygen, and Eh will be measured only as required by the site specific sampling plan.
- 12. If the sample is to be collected from a domestic well or location other than a monitoring well, it may be necessary to clean the sampling port prior to sample collection (e.g., an outside hose bib or an inside water facet). Flush the faucet/line by allowing it to run for a minimum of five minutes.
- 13. Collect samples from domestic wells downstream of water softeners or chlorinators or in-home filters that modify water quality. However, if the objective of the domestic sampling is to evaluate the ground water prior to treatment, the samples may be taken upstream of such devices.
- 14. Record all pertinent information in the field notebook. Data to be recorded include the date and time of sample collection, climatic conditions at the time of sampling, well sampling sequence, types of sample containers used, sample identification numbers, field parameter data, name(s) of collector(s), deviations from established sampling protocol (e.g., equipment malfunctions), purpose of sampling (e.g., surveillance, compliance), and collection of guality control samples.

## 4. REFERENCES

- Barcelona, Michael J., James P. Gibb, John A. Helfrich and Edward E. Garske. 1985. Practical Guide for Ground-Water Sampling. Prepared in cooperation with RSKERL, Ada, Oklahoma. SWS Contract Report 374. DBS&A #560/BAR/1985.
- EPA. 1977. Procedures Manual for Ground Water Monitoring at Solid Waste Disposal Facilities, Manual SW-611. DBS&A 560/EPA.
- NWWA. 1986. RCRA Ground Water Monitoring Technical Enforcement Guidance Document (TEGD). DBS&A #700/NWWA/1986.
- Scalf, Marion R., James F. McNabb, William J. Dunlap, Roger L. Cosby, and John S. Fryberger. 1981. Manual of Ground-Water Quality Sampling Procedures. Robert S. Kerr Environmental Research Lab, ORD, U.S. EPA, Ada Oklahoma. NWWA/EPA Series. DBS&A #1220/SCA/1991.
- Wehrmann, H. Allen. 1984. An Investigation of a Volatile Organic Chemical Plume in Northern Winnebago County, Illinois. SWS Contract Report 346. ENR Document No. 84/09. Illinois Department of Energy and Natural Resources, State Water Survey Division, Champaign, IL. DBS&A #940/WEH/1984.

r avada

wat



1.8

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Collection of Ground-Water Samples SECTION 13.5.4

Effective 06/01/93 · Supersedes n/a · Page 6 of 6

Joanne Hilder Daniel B. Stephun Prepared by: Approved by:

| Reviewed by: Them M. Com   |
|----------------------------|
| Quality Assurance Manager  |
| Reviewed by: Ann R. Com    |
| Systems Operations Manager |
|                            |

3230\SECTION 13\13-5-4

- 1554

104

Section 13.5.5

Collection of Surface Water Samples

-5.25\$

-sheet

∎3:0-11



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 05/07/93 · Supersedes n/a · Page 1 of 2

### 1. PURPOSE

The following SOP defines activities to be completed for the collection of surface water samples.

### 2. SCOPE

This procedure is applicable to all DBS&A employees and its contractors and subcontractors when collecting surface water samples.

### 3. PROCEDURES

A site-specific water sampling plan shall be prepared to define surface water sampling locations and procedures that are unique to each site. The following general procedure shall be followed for collection of surface water samples:

- 1. Select the water sampling location. Collect spring samples as close to the source as possible. Do not collect spring or stream samples from stagnant pools; collect these samples from free running locations if possible. The selection of the optimum sampling locations should be based on the objectives of the site-specific sampling plan.
- 2. Whenever possible, make a discharge measurement at the time of water sampling. If it is not possible to gauge the surface water discharge (see Section 13.9 of the DBS&A Operations Manual), make an estimate, and describe the procedure used to estimate the discharge in the field logbook.
- 3. Collect surface water samples as "grab" samples unless a depth integrated sampler or other procedure is required in the site specific sampling plan.
- 4. If the surface water is frozen, ice samples should not be taken in lieu of water samples.
- 5. Select the appropriate container as described in Section 13.5.6 of the Operations Manual.
- 6. For non-volatile analytes, dip a clean unpreserved container directly into the surface water, and partially fill the container. Swirl and rinse the container, and then discard the water.
- 7. Rinse the container two more times.
- 8. Fill the container with surface water.
- 9. Collect samples in decreasing order of volatility, i.e. collect samples to be analyzed for volatile organic compounds (VOCs) first, followed by semi-volatile organic compounds (SVOC), PCBs and pesticides, and inorganics. The preferred order of sampling according to the TEGD is VOCs, SVOCs, purgeable organic halogens (POX), total organic halogens (TOX), total organic carbon (TOC), extractable organics, total metals, dissolved metals, phenols, cyanide, sulfate and chloride, turbidity, nitrate and ammonia, and radionuclides.



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

### Procedure Collection of Surface Water Samples SECTION 13.5.5

Effective 05/07/93 • Supersedes n/a • Page 2 of 2

- 10. Make sure that no air is entrapped in the sample vials to be analyzed for volatile organics. Take the sample by holding the vial at an angle so that aeration is minimized. Avoid touching the lip of the vial or the Teflon liner. If the sample cannot be collected directly from the water source, use a clean stainless steel cup. Direct the water stream against the inside surface of the vial. Allow a convex meniscus to form across the mouth of the filled vial. Carefully cap the vial, then invert and tap the vial to insure that no entrapped air is present. If entrapped air is present, recollect the sample.
- 11. If filtering of any samples is required by the site specific sampling plan, use the filtering procedure described in Section 13.5.7 of the Operations Manual.
- 12. Either add preservatives directly to the container as described in Section 13.5.6 of the Operations Manual, or transfer the sample to a pre-preserved container. If transferring the sample between containers, pour the water slowly from the glass bottle or cubitainer to the sample container.
- 13. Fill a clean beaker or other appropriate container with surface water for field parameter measurement as discussed in Section 13.5.3 of the Operations Manual. Temperature, electrical conductivity, and pH generally will be measured at all locations. Alkalinity, dissolved oxygen, and Eh will be measured only as required by the site-specific sampling plan.
- 14. Carefully document the surface water sampling location. Photographs of the sampling location should be taken from several locations if possible. Describe each photograph along with the photo number in the log book (e.g., photo #5-Upstream (south) view of location # SPG-014, taken from the west bank). Also include the time, date, and the name of the photographer in the log book, and transfer this information to the back of photograph when it is received. In addition, provide a detailed written description of the sample location in the log book.
- 15. Record all pertinent information in the field notebook. Data to be recorded include the date and time of collection, climatic conditions at the time of sampling, well sampling sequence, types of sample containers used, sample identification numbers, field parameter data, name(s) of collector(s), deviations from established sampling protocol (e.g., equipment malfunctions), purpose of sampling (e.g., surveillance, compliance), and collection of quality control samples. Also note any obvious stress to vegetation, which may be a result of contamination.

Prepared by:

forme & Kith

Reviewed by:

Reviewed by:

Quality Assurance Manager

Operations Manager

vstems

Approved by

Section 13.5.6

**Sample Preservation** 

 $\frac{1}{2} = \frac{1}{2}$ 

ene til

'a 📽

is and

. de vita

122709

1.53

5.23

60%

tasa

. Sch

1244



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Sample Preservation SECTION 13.5.6

Effective 06/01/93 • Supersedes n/a • Page 1 of 6

### 1. PURPOSE

The following SOP defines activities to be completed to properly preserve a water sample for shipment to an analytical laboratory for analysis.

# 2. SCOPE

900

062

This procedure is applicable to all DBS&A employees and its contractors and subcontractors when preserving water samples in the field.

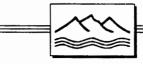
# 3. PROCEDURES

Table 13.5.6-1 of this SOP lists recommended containers, preservatives, and holding times for individual analytes or analytical methods. The suggestions for sample storage and preservation presented are intended to serve as general guidelines. The analytical laboratories shall be consulted for the proper preservation and storage procedure for the analytical methods that will be used (e.g., this guideline recommends preservation of volatile organic samples with hydrochloric acid (HCI), but some laboratories require preservation with mercuric chloride).

Samples for volatile organics analysis (EPA 602, 624 or 8020) shall be collected in pre-cooled, pre-acidified, certified-clean 40 ml borosilicate vials with teflon septum caps supplied by the analytical laboratory. Samples to be analyzed for other constituents should be collected in appropriate containers as listed in Attachment 1 to this SOP.

# **4 ATTACHMENTS**

• Table 13.5.6-1, Container/Preservative Reference Chart (5 sheets)


Prepared by:

loanne Hiltm

Approved by:

Daniel B. Stephens

Reviewed by Quality Assurance Manager Reviewed by: stems Operations Manager



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Sample Preservation SECTION 13.5.6

Effective 06/01/93 · Supersedes n/a · Page 2 of 6

| Analysis                                                                                      | Container                                      | Preservative<br>(Chill to 40°C)                                    | Container  | Hoiding Time<br>(From Sampili | ng Date)                |
|-----------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|------------|-------------------------------|-------------------------|
|                                                                                               | Water                                          | Water                                                              | Soil       | Water                         | Soll                    |
| Alkalinity                                                                                    | 4 oz. Plastic                                  | Unpreserved                                                        | N/A        | 14 days                       | N/A                     |
| Ammonia (NH3)                                                                                 | 4 oz. Plastic                                  | .25 ml H₂SO₄ <sup>A</sup>                                          | 4 oz. jar  | 28 days                       | 28 days                 |
| BOD                                                                                           | 16 oz. Plastic <sup>8</sup>                    | Unpreserved                                                        | N/A        | 48 hr.                        | N/A                     |
| Boron                                                                                         | 4 oz. Plastic                                  | Unpreserved                                                        | 4 oz. jar  | 28 days                       | 28 days                 |
| Bromide                                                                                       | 16 oz. Plastic                                 | Unpreserved                                                        | 8 oz. jar  | 28 days                       | 28 days                 |
| Chloride                                                                                      | 4 oz. Plastic                                  | Unpreserved                                                        | 8 oz. jar  | 28 days                       | 28 days                 |
| COD                                                                                           | 4 oz. Plastic                                  | .25 ml H₂SO₄ <sup>A</sup>                                          | 4 oz. jar  | 28 days                       | 28 days                 |
| Color                                                                                         | 4 oz. Plastic                                  | Unpreserved                                                        | N/A        | 48 hr.                        | N/A                     |
| Cyanide<br>(total and/<br>or amenable)                                                        | 4 oz. Plastic                                  | 2 ml 1.5N NaOH <sup>B</sup>                                        | 4 oz. jar  | 14 days                       | No<br>Specified<br>Time |
| Electrical Conductivity                                                                       | 4 oz. Plastic                                  | Unpreserved                                                        | 4 oz. jar  | 28 days                       | 28 days                 |
| Flashpoint                                                                                    | 8 oz. Amber Glass<br>w/Septum <sup>8</sup>     | Unpreserved                                                        | 8 oz. jar  | 28 days                       | 28 days                 |
| Fluoride                                                                                      | 4 oz. Plastic                                  | Unpreserved                                                        | 4 oz. jar  | 28 days                       | 28 days                 |
| Formaldehyde                                                                                  | 1 L Glass                                      | 1% Methanol                                                        | 4 oz. jar  | 28 days-Pres.<br>7 days-Unp.  | 28 days                 |
| General Minerals <ul> <li>General Minerals</li> <li>NO<sub>3</sub></li> <li>Metals</li> </ul> | 1 L Plastic<br>4 oz. Plastic<br>16 oz. Plastic | Unpreserved<br>.25 ml H₂SO₄ <sup>A</sup><br>1 ml HNO₃ <sup>A</sup> | 16 oz. jar | 28 days                       | 28 days                 |
| Gross Alpha/Beta                                                                              | 1 L Plastic                                    | 2 ml HNO <sub>3</sub> <sup>A</sup>                                 | 4 oz. jar  | 6 mo.                         | 6 mo.                   |
| Hardness                                                                                      | 4 oz. Plastic                                  | Unpreserved                                                        | N/A        | 28 days                       | N/A                     |
| Hexavalent Chromium<br>(CR <sup>+6</sup> )                                                    | 16 oz. Plastic                                 | Unpreserved                                                        | 4 oz. jar  | 24 hr.                        | 28 days                 |

TABLE 13.5.6-1. CONTAINER/PRESERVATIVE REFERENCE CHART General/Inorganic Chemistry

A - Typical volume needed to bring the pH to <2

B - Headspace free

C - Typical volume needed to bring the pH to >12

D - Typical volume needed to bring the pH to >9

3230\SECTION 13\13-5-6

1.194



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Sample Preservation SECTION 13.5.6

Effective 06/01/93 · Supersedes n/a · Page 3 of 6

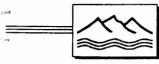
#### TABLE 13.5.6-1. CONTAINER/PRESERVATIVE REFERENCE CHART (CONTINUED) General/Inorganic Chemistry

:116/08

.83

| Analysis                                                                                           | Container                                                         | Preservative<br>(Chill to 40°C)                                                  | Container                | Holding Time<br>(From Samplii        | N28 days28 days28 days28 days28 daysN/A28 days28 days14 days28 days28 days28 days28 days28 days28 days28 days |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                    | Water                                                             | Water                                                                            | Soll                     | Water                                | Soll                                                                                                          |  |  |  |
| lodide                                                                                             | 4 oz. Plastic                                                     | Unpreserved                                                                      | 4 oz. jar                | 24 hr.                               | 28 days                                                                                                       |  |  |  |
| Nitrate/Nitrite<br>(NO <sub>3</sub> /NO <sub>2</sub> )<br>• NO <sub>3</sub>                        | 4 oz. Plastic<br>4 oz. Plastic                                    | .25 ml H₂SO₄ <sup>A</sup><br>Unpreserved                                         | 4 oz. jar<br>4 oz. jar   | 28 days<br>48 hr.                    | 28 days<br>28 days                                                                                            |  |  |  |
| Odor                                                                                               | 4 oz. Glass                                                       | Unpreserved                                                                      | N/A                      | 48 hr.                               | N/A                                                                                                           |  |  |  |
| Oil & Grease                                                                                       | 1 L Glass                                                         | 2 ml H <sub>2</sub> SO <sub>4</sub> <sup>A</sup>                                 | 4 oz. jar                | 28 days                              | 28 days                                                                                                       |  |  |  |
| 418.1<br>(TPH by IR)                                                                               | 1 L Glass                                                         | 2 ml H₂SO₄ <sup>A</sup>                                                          | 4 oz. jar                | 28 days                              | 28 days                                                                                                       |  |  |  |
| рН                                                                                                 | 4 oz. Plastic                                                     | Unpreserved                                                                      | 4 oz. jar                | immediately                          | 14 days                                                                                                       |  |  |  |
| Phenolics                                                                                          | 4 oz. Amber Glass                                                 | .25 ml H₂SO₄ <sup>A</sup>                                                        | 4 oz. jar                | 28 days                              | 28 days                                                                                                       |  |  |  |
| Phosphorus <ul> <li>Total (P)</li> </ul>                                                           | 4 oz./8 oz. Plastic                                               | 8 oz. Plastic .25 ml/.5 ml H <sub>2</sub> SO <sub>4</sub> <sup>A</sup> 4 oz. jar |                          | 28 days                              | 28 days                                                                                                       |  |  |  |
| Phosphorus<br>• Ortho (PO₄)                                                                        | 4 oz./8 oz. Plastic<br>(Filtered)                                 | Unpreserved                                                                      | 4 oz. jar                | 48 hr.                               | 28 days                                                                                                       |  |  |  |
| Silica                                                                                             | 4 oz. Plastic                                                     | Unpreserved                                                                      | 4 oz. jar                | 28 days                              | 28 days                                                                                                       |  |  |  |
| Solids (Residue)<br>• Total dissolved<br>• Total suspended<br>• Total settleable<br>• Total solids | 16 oz. Plastic<br>16 oz. Plastic<br>1 L Plastic<br>16 oz. Plastic | Unpreserved<br>Unpreserved<br>Unpreserved<br>Unpreserved                         | N/A<br>N/A<br>N/A<br>N/A | 7 days<br>7 days<br>48 hr.<br>7 days | N/A<br>N/A<br>N/A<br>N/A                                                                                      |  |  |  |
| Specific Gravity                                                                                   | 4 oz. Plastic                                                     | Unpreserved                                                                      | 4 oz. jar                | 28 days                              | 28 days                                                                                                       |  |  |  |
| Sulfate                                                                                            | 4 oz. Plastic                                                     | Unpreserved                                                                      | 4 oz. jar                | 28 days                              | 28 days                                                                                                       |  |  |  |
| Sulfide                                                                                            | 4 oz. Plastic                                                     | 6 drops-2N Zn acetate N/A & 8 drops 6N NaOH <sup>D</sup>                         |                          | 7 days                               | N/A                                                                                                           |  |  |  |
| Sulfite                                                                                            | 4 oz. Plastic                                                     | 1 ml EDTA                                                                        | N/A                      | 28 days-Pres.<br>6 hrUnp.            | N/A                                                                                                           |  |  |  |

A - Typical volume needed to bring the pH to <2 B - Headspace free


C - Typical volume needed to bring the pH to >12

D - Typical volume needed to bring the pH to >9

3230\SECTION 13\13-5-6

- 27.68

- <u>5</u>:4224



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Sample Preservation SECTION 13.5.6

Effective 06/01/93 · Supersedes n/a · Page 4 of 6

#### TABLE 13.5.6-1. CONTAINER/PRESERVATIVE REFERENCE CHART (CONTINUED) General/Inorganic Chemistry

4188

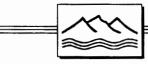
مغدا

168

法自输

ा तन्त्र इन्द्रार्थ

-e N


| Analysis                      | Container                                    | Preservative<br>(Chill to 40°C)          | Container |         | olding Time<br>From Sampling Date) |  |  |
|-------------------------------|----------------------------------------------|------------------------------------------|-----------|---------|------------------------------------|--|--|
|                               | Water                                        | Water                                    |           |         | Soll                               |  |  |
| Surfactants (MBAS)            | 1 L Plastic                                  | Unpreserved                              | N/A       | 48 hr.  | N/A                                |  |  |
| Total Coliform                | 8 oz. Glass or<br>Polypropylene (Sterilized) | propylene (Sterilized)                   |           | 6-8 hr. | N/A                                |  |  |
| TKN<br>(Kjeldahl Nitrogen)    | 4 oz. Plastic                                |                                          |           | 28 days | 28 days                            |  |  |
| Total Organic<br>Carbon (TOC) | 4 oz. Amber Glass<br>w/Septum <sup>8</sup>   | .25 ml H₂SO₄ <sup>A</sup>                | 4 oz. jar | 28 days | 28 days                            |  |  |
| Total Organic<br>Halide (TOX) | 8 oz. Amber Glass<br>w/Septum <sup>8</sup>   | 8 oz. Amber Glass .5 ml $H_2SO_4^A$ 4 oz |           | 7 days  | No<br>Specified<br>Time            |  |  |
| Total Radium                  | 1 L Plastic                                  | 2 ml HNO <sub>3</sub> <sup>A,C</sup>     | 4 oz. jar | 6 mo.   | 6 mo.                              |  |  |
| Turbidity                     | 4 oz. Plastic                                | Unpreserved                              | N/A       | 48 hr.  | N/A                                |  |  |

A - Typical volume needed to bring the pH to <2 B - Headspace free

C - Typical volume needed to bring the pH to >12

D - Typical volume needed to bring the pH to >9

3230\SECTION 13\13-5-6



Ξ

. terp

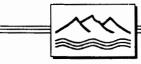
#### DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Sample Preservation SECTION 13.5.6

Effective 06/01/93 · Supersedes n/a · Page 5 of 6

#### TABLE 13.5.6-1. CONTAINER/PRESERVATIVE REFERENCE CHART (CONTINUED) Organic Chemistry


| Analysis                                                     | Container<br>(Glass- and Teflon-<br>lined caps only)                                               | <b>Preservative</b><br>(Chill to 40°C)                                                                       | Container<br>(Glass- and<br>Tefion-lined<br>caps only -<br>Chill to<br>40°C) | Hoiding Time<br>(From sampling date)                                                                                    |                                                                                                                                |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                              | Water                                                                                              | Water                                                                                                        | Soil                                                                         | Water                                                                                                                   | Soll                                                                                                                           |
| 8010/8020<br>• 8010<br>• 8020<br>• BTXE                      | 3X VOA <sup>A</sup><br>3X VOA <sup>A</sup><br>3X VOA <sup>A</sup><br>3X VOA <sup>A</sup>           | 3 drops HCl <sup>B</sup><br>3 drops HCl <sup>B</sup><br>3 drops HCl <sup>B</sup><br>3 drops HCl <sup>B</sup> | 4 oz. jar<br>4 oz. jar<br>4 oz. jar<br>4 oz. jar                             | 14 days-Pres., 7 days-Unp.<br>14 days<br>14 days-Pres., 7 days-Unp.<br>14 days-Pres., 7 days-Unp.                       | 14 days until Analysis<br>14 days until Analysis<br>14 days until Analysis<br>14 days until Analysis<br>14 days until Analysis |
| Modified 8015<br>(TPH)<br>• Gasoline Range<br>• Diesel Range | 4 oz. Amber Glass<br>w/Septum <sup>A</sup><br>2X VOA<br>4 oz. Amber Glass<br>w/Septum <sup>A</sup> | .25 ml HCl <sup>8</sup><br>3 drops HCl <sup>8</sup><br>.25 ml HCl <sup>8</sup>                               | 4 oz. jar<br>4 oz. jar<br>4 oz. jar                                          | 14 days until Analysis<br>14 days until Analysis<br>14 days until Extraction<br>40 days after Extraction until Analysis | 14 days until Analysis<br>14 days until Analysis<br>14 days until Extraction<br>40 days after Extraction until Analysis        |
| 8240                                                         | 2X VOA                                                                                             | 3 drops HCi <sup>B</sup>                                                                                     | 4 oz. jar                                                                    | 14 days-Pres., 7 days-Unp.                                                                                              | 14 days until Analysis                                                                                                         |
| EDB                                                          | 1 L Glass                                                                                          | Unp.                                                                                                         | 8 oz. jar                                                                    | 28 days until Analysis                                                                                                  | 28 days until Analysis                                                                                                         |
| 8040                                                         | 1 L Glass                                                                                          | Unp.                                                                                                         | 4 oz. jar                                                                    | 7 days until Extraction<br>40 days after Extraction until Analysis                                                      | 14 days until Extraction<br>40 days after Extraction until Analysis                                                            |
| 8080                                                         | 2 x 1 L Glass                                                                                      | Unp.                                                                                                         | 4 oz. jar                                                                    | 7 days until Extraction<br>40 days after Extraction until Analysis                                                      | 14 days until Extraction<br>40 days after Extraction until Analysis                                                            |
| 8100/8310                                                    | 1 L Amber Glass                                                                                    | Unp.                                                                                                         | 4 oz. jar                                                                    | 7 days until Extraction<br>40 days after Extraction until Analysis                                                      | 14 days until Extraction<br>40 days after Extraction until Analysis                                                            |
| 8140                                                         | 1 L Glass                                                                                          | Unp.                                                                                                         | 4 oz. jar                                                                    | 7 days until Extraction<br>40 days after Extraction until Analysis                                                      | 14 days until Extraction<br>40 days after Extraction until Analysis                                                            |
| 8150                                                         | 1 L Glass                                                                                          | Unp.                                                                                                         | 4 oz. jar                                                                    | 7 days until Extraction<br>40 days after Extraction until Analysis                                                      | 14 days until Extraction<br>40 days after Extraction until Analysis                                                            |
| Modified 619                                                 | 1 L Glass                                                                                          | Unp.                                                                                                         | 4 oz. jar                                                                    | 7 days until Extraction<br>40 days after Extraction until Analysis                                                      | 14 days until Extraction<br>40 days after Extraction until Analysis                                                            |
| 8270                                                         | 2 x 1 L Glass                                                                                      | Unp.                                                                                                         | 4 oz. jar                                                                    | 7 days until Extraction<br>40 days after Extraction until Analysis                                                      | 14 days until Extraction<br>40 days after Extraction until Analysis                                                            |
| Modified 632                                                 | 1 L Glass                                                                                          | Unp.                                                                                                         | 4 oz. jar                                                                    | 7 days until Extraction<br>40 days after Extraction until Analysis                                                      | 14 days until Extraction<br>40 days after Extraction until Analysis                                                            |
| TCLP<br>• Volatiles<br>(zero headspace<br>extraction)        | N/A                                                                                                | N/A                                                                                                          | 4 oz. jar                                                                    | N/A                                                                                                                     | 14 days until Extraction<br>14 days after Extraction until Analysis                                                            |
| Non-Volatiles                                                | N/A                                                                                                | N/A                                                                                                          | 16 oz. jar                                                                   | N/A                                                                                                                     | 14 days until TCLP Leaching                                                                                                    |

A - Headspace free

B - Typical amount to bring the pH to <2

3230\SECTION 13\13-5-6

. Geogra



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Sample Preservation SECTION 13.5.6

Effective 06/01/93 · Supersedes n/a · Page 6 of 6

#### TABLE 13.5.6-1. CONTAINER/PRESERVATIVE REFERENCE CHART (CONTINUED) Metals

| Analysis                                                  | Container                                                   | Preservative                       | Holding Time<br>(From Sampling Date)               |  |
|-----------------------------------------------------------|-------------------------------------------------------------|------------------------------------|----------------------------------------------------|--|
| WATER                                                     |                                                             |                                    |                                                    |  |
| Metals (1 or more metals)                                 |                                                             |                                    |                                                    |  |
| • Total                                                   | 16 oz. Plastic                                              | I-ml HNO <sub>3</sub> <sup>A</sup> | 6 mo. (28 days-Hg)                                 |  |
| <ul> <li>Dissolved</li> <li>Filtered in Field</li> </ul>  | 16 oz. Plastic                                              | l-ml HNO₃ <sup>A</sup>             | 6 mo. (28 days-Hg)                                 |  |
| Not Filtered                                              | 16 oz. Plastic<br>(Specify "To be lab filtered")            | Unpreserved                        | 6 mo. (28 days-Hg)                                 |  |
| Organic Lead                                              | 8 oz. Amber Glass (Glass Only)<br>w/Septum (Headspace Free) | Unpreserved<br>Chill to 4°C        | 14 days until Analysis<br>(laboratory recommended) |  |
| <ul> <li>Hexavalent Chromium (Cr<sup>+6</sup>)</li> </ul> | 16 oz. Plastic                                              | Unpreserved                        | 24 hr.                                             |  |
| SOIL                                                      |                                                             |                                    |                                                    |  |
| Metals (1 or more metals)                                 |                                                             |                                    |                                                    |  |
| • Total                                                   | 4 oz. jar                                                   |                                    | 6 mo.                                              |  |
| Soluble                                                   |                                                             |                                    |                                                    |  |
| EP Toxicity                                               | 8 oz. jar                                                   |                                    | 6 mo.                                              |  |
| • WET                                                     | 8 oz. jar                                                   |                                    | 6 mo.                                              |  |
| TCLP (see also Organic<br>Chemistry)                      | 8 oz. jar                                                   |                                    | 6 mo.                                              |  |
| <ul> <li>Hexavalent Chromium (Cr<sup>+6</sup>)</li> </ul> | 4 oz. jar                                                   |                                    | 28 days                                            |  |
| Organic Lead                                              | 4 oz. jar                                                   | Chill to 4°C                       | 14 days until Analysis<br>(laboratory recommended) |  |

A - Typical amount to bring the pH to <2.

3230\SECTION 13\13-5-6

1084

ા તાલ

(itri

# Section 13.5.7

# **Sample Filtration**

,

. .

ations

and

. y 24 de 54

19-54

228-2)

14.14

n can Pro de

હેલ સ

17-0-98

2 - 40

nti-ut

ishe si

1-2-1-5

152.4

ාරාන්



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Sample Filtration SECTION 13.5.7

Effective 06/01/93 · Supersedes n/a · Page 1 of 2

#### 1. PURPOSE

100

र) वं

The following SOP defines activities to be completed to properly filter water samples in preparation for analysis by an analytical laboratory.

# 2. SCOPE

This procedure is applicable to all DBS&A employees and its contractors and subcontractors when filtering water samples.

# 3. PROCEDURES

Recent research indicates that if samples are obtained correctly, field filtration for metals may not be necessary (Puls and Powell, 1992). However, filtration of samples to be analyzed for dissolved metals may be required in some cases. If filtration is required, it shall be outlined in the site specific sampling plan.

If filtration is required, filter the samples in the field if possible. If field filtering is not possible, preserve the sample by chilling to 4°C (i.e. do not add acid), and immediately ship the sample via overnight delivery to the laboratory. Indicate on the chain of custody that laboratory filtration and preservation are required.

Vacuum filtration of ground water samples is not recommended (Barcelona et al., 1985, pg. 65). Samples to be analyzed for TOC, VOCs or other organic compounds should not be filtered. Filtration may be performed on samples collected for analysis of dissolved metals, however.

The following procedure shall be followed to filter samples in the field with the GeoPump:

- 1. Connect the GeoPump to an automobile cigarette lighter or outlet if electricity is available.
- 2. Replace the tubing for the GeoPump at the beginning of each sampling round. If the samples are collected in any order other than most contaminated to least contaminated, or if very high levels of contamination are suspected or observed, then replace the tubing between each sample or as necessary.
- 3. If the tubing is not replaced between each sample, flush the lines with Liquinox followed by at least three flushes with distilled water.
- 4. Collect an unfiltered water sample as discussed in Sections 13.5.4 and 13.5.5 of the DBS&A Operations Manual.
- 5. Place the intake line in the unfiltered sample.
- 6. Pump at least a few hundred milliliters of the sample through the GeoPump prior to sample collection in order to flush the line. Set the GeoPump at the lowest rate possible in order to minimize aeration. Dispose of this water appropriately.



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Sample Filtration SECTION 13.5.7

Effective 06/01/93 • Supersedes n/a • Page 2 of 2

7. Place a disposable 45 micron filter on the output line. Direct the output stream below the filter into the pre-acidified sample container, as outlined in Section 13.5.6 of the DBS&A Operations Manual

#### 4. REFERENCES

- Barcelona, Michael J., James P. Gibb, John A. Helfrich and Edward E. Garske. 1985. Practical Guide for Ground-Water Sampling. Prepared in cooperation with RSKERL, Ada, Oklahoma. SWS Contract Report 374. DBS&A #560/BAR/1985.
- Puls, Robert W. and Robert M. Powell, R.S. Kerr Environmental Research Laboratory (RSKERL). 1992. Acquisition of Representative Ground Water Quality Samples for Metals. Ground Water Monitoring Review, Summer 1992.

Prepared by:

Joamedi Hin. Drs. Hal

Approved by:

12.003

Daniel B. Stephens

Reviewed by: vality Assurance Manager Reviewed by: vstems Ø perations Manager

3230\SECTION 13\13-5-7

# Section 13.5.8

# Quality Assurance/ Quality Control (QA/QC)

10-4

iserias

ડે દ્વા જે

s) ere

ines

1.2.2.0

34-474

\$\$2H3



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Effective 06/01/93 · Supersedes n/a · Page 1 of 4

#### 1. PURPOSE

The following SOP defines activities to be completed to assure quality assurance and quality control for water samples collected in the field.

### 2. SCOPE

This procedure is applicable to all DBS&A employees and its contractors and subcontractors when collecting water samples in the field.

#### 3. PROCEDURES

QA/QC samples include split samples, duplicates, blind duplicates, blind check standards, trip blanks, and equipment blanks. The specific QA/QC samples that will be collected during each sampling event shall be designated in the site sampling plan.

#### 3.1 General QA/QC Guidelines

The following general guidelines shall be followed for collection of QA/QC samples:

- Include a trip blank with each cooler that contains samples to be analyzed for volatile organic compounds (VOCs). Ideally, trip blanks will be prepared at the lab in advance and will be shipped with the sample bottle order. If trip blanks are prepared in the DBS&A warehouse or in the field, prepare well away from any areas of known or suspected contamination. Prepare the trip blanks by filling a pre-acidified 40-ml VOA vials with organic-free water.
- 2. Collect an equipment (rinsate) blank from any non-disposable equipment that comes in contact with the water to be sampled, such as non-dedicated pumps or bailers or field filtration devices. Collect the equipment blank by running or pouring deionized water through any portion of the device that normally comes in contact with the water sample or presents a potential for cross-contamination, including hoses, valves, etc. Equipment blanks generally are not required for disposable equipment which is certified clean by the manufacturer (e.g., disposable teflon bailers). The exact number and type of equipment blanks to be collected will be determined on a site-specific basis. Describe the process used to collect the equipment blank in the field log book (see Section 13.2.6 of the DBS&A Operations Manual).
- 3. Replicate samples consist of two aliquots of the same sample analyzed independently. Replicate samples are used to evaluate laboratory precision.
- 4. A duplicate consists of two separate samples from the same source, analyzed independently. Duplicates are used to evaluate laboratory precision, heterogeneity of the material, and precision of field sampling techniques.
- 5. Split samples are replicate samples divided into two portions, sent to different laboratories, and analyzed for the same parameters.



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Quality Assurance/Quality Control (QA/QC) SECTION 13.5.8

- Effective 06/01/93 Supersedes n/a Page 2 of 4
  - 6. In some cases, blind check standards may be submitted to the analytical laboratory. These may be obtained commercially or prepared in advance in the DBS&A laboratory. Alternatively, a duplicate sample may be spiked in the field with a known quantity of the analyte(s) of concern.

# 3.2 Well Security

13.64

All monitor wells shall be securely locked following the completion of sampling.

### 3.3 Chain-of-Custody Procedures

Chain-of-custody (COC) documents shall be kept for all samples collected by DBS&A. The COC program includes proper labeling of the samples to prevent misidentification. The following general guidelines for sample handling and custody procedures will be followed:

- 1. As few people as possible should handle the samples.
- 2. Samples must be within a locked/secure area at all times when not within view of DBS&A personnel.
- 3. Use the COC form provided by the analytical laboratory that will be performing the analyses. A representative form is included as Attachment 1 to this SOP (DBS&A Form No. 095).
- 4. The FR is responsible for the custody of the samples until they are transferred to the analytical laboratory or until custody is transferred to another designated individual. If the sample is transferred to another DBS&A employee, both people should sign and date the "relinquished" and "received" sections of the form, respectively.
- 5. Include the following information on the COC form:
  - The date and time of sample collection
  - The exact identification of the sample
  - The type of sample (e.g., water, soil, fuel)
  - Any preservatives used
  - · The number of containers for each sample
  - The job number and name
  - · Whether or not the sample was filtered
  - The analytical methods to be used (e.g., EPA 8240)



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

### Procedure Quality Assurance/Quality Control (QA/QC) SECTION 13.5.8

Effective 06/01/93 • Supersedes n/a • Page 3 of 4

- 6. Have a second member of the water sampling team check the chain of custody document to ensure that all data is correct and exactly matches the information on the sample bottle labels. Place the appropriate copies of the COC form(s) in a sealed plastic bag taped to the inside lid of the cooler containing the samples. If more than one cooler is being shipped, each cooler should have a separate COC form listing all samples in that cooler.
- 7. Whenever the sample leaves control of the sampling team (e.g., when shipped by common carrier) place a COC seal on the shipping container or individual sample bottles. Sign and date the COC seal. The purpose to the seal is to ensure that the samples have not been tampered with prior to receipt at the lab.
- 8. If samples are shipped to arrive on Friday afternoon, weekends, or holidays, special arrangements need to be made with the analytical laboratory to ensure that someone will be available for sample receipt, and that the holding times will be met.

# 4. ATTACHMENTS

1. Chain-of-Custody Form (DBS&A Form No. 095)

Prepared by:

Daniel Klow

Approved by:

Reviewed by: Juality Assurance Manager Reviewed by ystems Operations Manager

a in in an

|             |                          |                     | Date                                  | _ Project No |
|-------------|--------------------------|---------------------|---------------------------------------|--------------|
|             |                          |                     | Client                                |              |
|             |                          |                     | Relinquished by                       |              |
| Sent by:    | G Fed Ex                 | DHL Other           |                                       |              |
| Purpose     | of Shipment              |                     | · · · · · · · · · · · · · · · · · · · |              |
| Possible    | Contaminants             |                     |                                       |              |
| ltem<br>No. | Sample No.               | Analysis to be Done | Sample<br>Container                   | Comments     |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          | 18 Part             |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
|             |                          |                     |                                       |              |
| Date Red    | ceived                   | by                  | Company Represe                       | Intative     |
| Received    | the above articles in go | ood condition       |                                       |              |
|             | s noted                  |                     |                                       |              |

# Section 13.6.1

# Ground-Water Level Measurement

0.00

 $b \in \mathcal{A}$ 

e 63

int**sid** 

 $(h^{-1})^{2}$ 

1.00

14:00

最小が

1799

12.29

铝树

法加盟

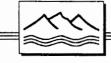
**Tristil** 

- Genty

(in of

(And

0,004


s wight

i kant

in an

t a str

法由



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Ground-Water Level Measurement SECTION 13.6.1

Effective 06/01/93 • Supersedes n/a • Page 1 of 5

#### 1. PURPOSE

The purpose of this procedure is to provide DBS&A personnel with the information necessary to collect accurate water-level data from ground-water wells. Water level measurements provide the fundamental data needed to determine aquifer characteristics; therefore, it is crucial that the appropriate methods are used to meet the data requirements of an aquifer investigation.

# 2. SCOPE

(circula)

3.46

1995

4.040

The following procedures are applicable to all DBS&A employees and subcontractors engaged in the measurement of ground-water levels in wells. Several methods are available for determining the depth to water (DTW); this SOP briefly describes methods used to measure water levels manually, and automatically with the help of data recorders. This information is intended to help DBS&A personnel determine the appropriate equipment to collect water levels for background trend analysis and aquifer tests.

### 3. PROCEDURES

Immediately following well construction (see Section 13.4.1 of the DBS&A Operations Manual), a measuring point shall be clearly labeled "MP" with a permanent marker at the top of the casing. The designated MP shall be located at a point which is unlikely to change in elevation during the life of the well. This will prevent repeated surveys to determine the reference elevation of the measuring point. If the MP does change, it shall be clearly re-marked and referenced to the original elevation or a new survey will be necessary. Water levels will be measured in accordance with ASTM D 4750, Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well).

The water level measurement (depth to water; DTW) shall be recorded on the Water Level Measurement Form included as Attachment 1 to this SOP (DBS&A Form No. 120). In addition, the following information shall be recorded on the form: the person making the measurement, the measuring device, the surveyed point from which the measurement is made, the time of day (military time), the date, the wellhead condition, and any measuring point (MP) changes.

Ground-water level data may also be recorded in the field log and on other applicable DBS&A forms including but not limited to those used for water sampling and drilling/soils logging.

The following subsections will describe the most commonly used techniques for obtaining water-level data in the field.

#### 3.1 Steel Tape

Graduated steel tapes provide accurate measurements to within approximately 0.01 foot of the actual DTW for depths of 100 feet or less. The rigidity of the tape allows it to hang straight in the well. Steel tapes should generally not be used when many measurements must be made in rapid succession, such as during an aquifer test. Measurements with a steel tape are relatively time consuming.



Hack

1.100

104 104

3 controls

-076

498

1000

i i ma

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

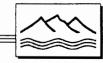
Procedure Ground-Water Level Measurement SECTION 13.6.1

Effective 06/01/93 • Supersedes n/a • Page 2 of 5

When using a steel tape the lower 2 to 3 feet is wiped dry and coated with carpenters chalk or water finding paste before being lowered down the well. The tape is then lowered into the well to the estimated DTW. The tape should be held on a foot marker at the well-head measuring or reference point (MP). After removing the tape, the wetted end is read and subtracted from the previous reading; the difference is the actual DTW. If tape graduations are greater than 0.1 foot apart, a separate engineering tape or scale shall be used to accurately determine the wetted end measurement.

The steel tape should not stretch more than 0.05% under normal use and should not cause more than an 0.05-foot perceived rise in water level during measurement. If more than a 0.05-foot rise in water level occurs during measurement, a correction shall be made for the displacement. Steel tapes shall be calibrated against a surveyor's reference tape annually by the DBS&A Environmental Equipment Coordinator. Information from these calibrations shall be kept on hand at the DBS&A equipment supply facility.

The main disadvantage of the steel tape method is that the approximate depth to water must be known prior to the measurement. In addition, interferences such as cascading water, smearing, and/or evaporation may compromise the accuracy of the wetted-end measurement. However, steel tapes are relatively inexpensive and generally more durable than electrical instruments for measuring water levels.


# 3.2 Electrical Sounders

Electrical sounders operate by completing a circuit when the probe contacts the water level. Upon completion of the circuit a light, buzzer, or ammeter needle indicates that the probe is in contact with the water table. The probe is connected to a graduated tape, usually made from plastic and fiberglass. Batteries supply the necessary current through electrical wires contained in the graduated tape. Measurements are commonly made to within 0.01 foot with electrical sounders.

Electrical sounders are the most commonly used ground-water level measuring device on DBS&A projects. The major advantage of electrical sounders is that many measurements can be made rapidly and accurately without removing the probe from the well. Field personnel should position themselves near the MP so the DTW can be read at eye level. A second check reading should be taken before withdrawing the electric tape from the well. Most DBS&A sounders are marked every 0.02 foot.

The length of the electric line shall be calibrated annually with an engineers tape by the DBS&A Environmental Equipment Coordinator. Information from these calibrations shall be kept on hand at the DBS&A equipment supply facility.

Potential disadvantages of the electrical sounder devices include: the expense of an accurate sounder; inaccurate measurements that may be made due to stretching or kinking of the tape; electrical shorts that may be caused by broken or corroded wires; false readings due to cascading water; snagging of the sounder tip on pump columns and cables; or incomplete circuits due to low concentrations of total dissolved solids in the water.



iació

DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Ground-Water Level Measurement SECTION 13.6.1

Effective 06/01/93 · Supersedes n/a · Page 3 of 5

### 3.3 Automated Water Level Measurements

To determine background water level trends, the most economic approach is to set up a continuous data recorder capable of making many measurements automatically. Driscoll (1986) discusses the application and installation of such systems in detail. The most common recorders produce a graphical chart or store the data electronically for future retrieval. Continuous water level records are quite useful for determining daily and seasonal fluctuations resulting from recharge and discharge periods, evapotranspiration and tidal stress, and during aquifer tests when there are not enough field personnel to collect all the necessary data. The following paragraphs briefly review equipment used with continuous recorders to measure water levels.

Automated pressure transducers are useful for collecting large quantities of water-level data rapidly during labor intensive aquifer tests. DBS&A owns an electronic data logging system consisting of a Campbell Scientific 21X data logger and DRUK pressure transducers which can be calibrated to output feet of water above the transducer. Refer to Section 13.6.4 of the Operations Manual for detailed information on using the system. The system can be programmed to collect data on arithmetic and logarithmic time scales. Measurements are accurate to approximately 0.01 foot providing there is no turbulence in the well.

Airline bubblers are commonly used by the U.S. Geological Survey for measuring stream stage and water levels in wells over periods of several years. Airline bubblers usually operate on nitrogen gas. The device works on the principal that the gas pressure required to push all the water out of the submerged portion of the tube equals the water pressure of a column of water equal to that height. Measurements are accurate to within 0.01 foot.

Float sensors can also be used to determine long term variation in background water levels. Float sensors consist of a tape or cable passing over a pulley with a float attached to one end and a counterweight attached to the other. The float follows the rise and fall of the water level. A graphic or electronic recorder is attached to the calibrated pulley to store the water level data. Float sensors work best in large diameter wells (4 inches or greater). The greatest disadvantage of this method is the potential for the float to stick on the side of the casing or jump the pulley resulting in a "stair stepping" record or no record at all. Measurements are accurate to 0.1 foot or greater depending on the precision of the recorder and pulley calibration.

# 4. ATTACHMENTS

1. Water Level Measurements (DBS&A Form No. 120)

# 5. REFERENCES

ASTM. 1990. Standard Practice for Design and Installation of Ground Water Monitoring Wells in Aquifers. Standard D 5092-90. Philadelphia, PA.

Driscoll, F.G. 1986. Groundwater and Wells. Johnson Division. St. Paul, MN. 1089 p.

OM\SECTION 13\13-6-1

| ~~~       |   |
|-----------|---|
| $\approx$ | = |

1.89

hat

### DANIEL B. STEPHENS & ASSOCIATES, INC.

ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Procedure Ground-Water Level Measurement SECTION 13.6.1

Effective 06/01/93 · Supersedes n/a · Page 4 of 5

Prepared by: Bob Marky Approved by: Daniel B. Stephens

Reviewed by: Quality Assurance Manager Reviewed by Operations Manager Systems

-

| oject Name        |                               |                                           | Measureme                                | nt Date                                            |  |  |  |  |  |  |  |
|-------------------|-------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|--|
| oject Number      |                               | Field Staff                               |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
| easuring Points a | nd Datum Used                 |                                           |                                          |                                                    |  |  |  |  |  |  |  |
| Observations      |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   | Elevation of Depth Below Wate |                                           |                                          |                                                    |  |  |  |  |  |  |  |
| Well<br>Number    | Time                          | Measuring Point<br>(feet, mean sea level) | Depth Below<br>Measuring Point<br>(feet) | Water Level<br>Elevation<br>(feet, mean sea level) |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           | · · · · · · · · · · · · · · · · · · ·    |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           | ····                                     |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           | · · · · · · · · · · · · · · · · · · ·    |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           | · · · · · · · · · · · · · · · · · · ·    |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |
|                   |                               |                                           |                                          |                                                    |  |  |  |  |  |  |  |

Signature \_

- 86

# Section 13.6.2

1000

e e

-15-24

- - 4 - 16- 28

51.4

6x-9

1.00

. • • •

1.4

0.08

: in W

2.00 58

rtspi

n.: 38

1,054

1114

24 B

a1.0₩

# Slug Testing



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Slug Testing SECTION 13.6.2

Effective 01/18/94 · Supersedes n/a · Page 1 of 4

### 1. PURPOSE

The following SOP describes procedures for performing various types of aquifer slug tests in the field.

# 2. SCOPE

فأطريق

1684

10 ja

1-14

1016

The procedures listed below are applicable to all DBS&A employees, its contractors and subcontractors, for performing aquifer slug tests. The procedures for obtaining the necessary data in the field are described herein; the procedures for analyzing the data to calculate aquifer hydraulic properties are described in Section 14 of the DBS&A Operations Manual.

# 3. PROCEDURES

The procedures described below for performing slug tests are applicable to all aquifer types. Where a variation in methodology occurs with a particular aquifer type, it will be noted. These procedures are in accordance with ASTM D 4044-91, Standard Test Method (Field Procedure) for Instantaneous Change in Head (Slug Tests) for Determining Hydraulic Properties of Aquifers. Additional references which may be helpful in planning and performing slug tests are Groundwater and Wells (Driscoll, 1986), and Analysis and Evaluation of Pumping Test Data (Kruseman and de Ridder, 1992).

# 3.1 Slug Testing

The slug test method involves creating a sudden change in head in a well and measuring the resulting water level response. Head changes are induced by suddenly removing or adding a known quantity of water in the well. This can be accomplished by removing a bailer full of water from the water column, placing a mechanical slug into the water column, or increasing/decreasing the air pressure in the well casing. From these measurements, the aquifer's transmissivity or hydraulic conductivity can be determined. Various analytical techniques allow for the estimation of coefficient of storage but should be considered less reliable than the estimate of transmissivity.

Slug tests are an inexpensive and rapid method of obtaining estimates of aquifer properties. No pumping is required in the slug test and no piezometers are required to be monitored. The main limitation of this test is that this method is only capable of determining the characteristics of a small volume of aquifer material surrounding the well. This material may have been disturbed during well drilling and construction and, as a result, may have a large impact on the results of the test. Additionally, only slug withdrawal test methods should be used for unconfined aquifers.

# 3.1.1 Required Preliminary Hydrogeologic Information

All available information pertinent to the slug test should be reviewed prior to the start of the test. This information will aid in preparing design specifications for the test. This information includes aquifer properties, such as aquifer type (confined, unconfined, etc.), aquifer thickness, aquifer boundaries, and any previous estimates of hydraulic properties, if available. Information on well construction details are also



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Slug Testing SECTION 13.6.2

Effective 01/18/94 • Supersedes n/a • Page 2 of 4

needed prior to the test. This includes geologic logs, well construction logs, screen interval and size, sand pack interval and size, borehole diameter, and casing diameter.

#### 3.1.2 Water Level Measurements

Water levels should be measured immediately prior to the test, and throughout the test until water levels in the test well reach approximately 95% of the pre-test level. Water level response during the slug test will be measured as described in Section 13.6.1 of the DBS&A Operations Manual. Because water levels are dropping fast immediately after slug emplacement, measurements should be taken at brief intervals during this time. As recovery continues, the intervals can be gradually lengthened. Readings collected during the slug test should be recorded on Form No. 124, Slug Test Measurements.

#### 3.1.3 Slug Test by Water Withdrawal

Water can be rapidly removed from a test well with the use of a bailer. In this method, a bailer of known volume is lowered below the water level in the test well. After it has been determined that the water level in the control well has recovered to within 95% of static, the bailer is rapidly removed from the water column. Water level recovery within the well is then measured and recorded until the water level has recovered to 95% of the background level. The bailer should be of sufficient size to ensure a proper water level response during removal from the water column.

A submersible pump can also be used to rapidly withdraw water from the test well. The pump will need to remove a sufficient volume of water from the test well in a matter of seconds. Care should be taken to ensure that water does not backflow into the well when the pump is shut off.

#### 3.1.4 Slug Test by Mechanical Slug Injection

A mechanical slug constructed of nonporous material with a density greater than water can be rapidly lowered into the water column of the test well creating a nearly instantaneous rise in water level. The resulting water level recovery is then measured and recorded in the test well until the water level reaches approximately 95% of the background level.

#### 3.1.5 Slug Test by Air Injection

Slug withdrawal can be simulated by injecting air into a well which has an airtight cap. This is accomplished with the use of an air pressure pump and regulator. In this method, the well is pressurized by the injection of air into the airtight test well. The injection of air into the well causes the water level in the test well to drop. Once the water level has stabilized, the pressure is released creating a sudden change in head. Water level recovery will need to be measured with the use of a pressure transducer connected to a data logger. This method requires that the test well be screened in the saturated portion of the aquifer.

93.0

1.66



ENVIRONMENTAL SCIENTISTS AND ENGINEERS

Guideline Slug Testing SECTION 13.6.2

Effective 01/18/94 · Supersedes n/a · Page 3 of 4

#### 3.1.6 Slug Test by Vacuum Withdrawal

The injection of a slug can be simulated by applying a vacuum to an airtight test well. This method requires the use of a vacuum pump and regulator. In this method, a steady vacuum is applied to the test well which creates a rise in water level. After the water level in the test well has stabilized, the vacuum is released which creates a sudden change in head. The water level recovery is then measured with the use of a pressure transducer connected to a data logger. This method requires that the test well be screened entirely in the saturated portion of the aquifer.

#### 4. ATTACHMENTS

1. Slug Test Measurements (DBS&A Form No. 124)

# 5. REFERENCES

Driscoll, F.G. 1986. Groundwater and Wells, Second Edition. Johnson Filtration Systems, Inc., St. Paul, Minnesota.

Kruseman, G.P. and N.A. de Ridder. 1992. Analysis and Evaluation of Pumping Test Data, Second Edition. International Institute of Land Reclamation and Improvement.

Toll 9. Prepared by: ~

Approved by: \_

Quality Assurance Manager Reviewed by m. Commence Manager Reviewed by

| DANIEL B. STEP             | PHENS & ASSOCIATES, INC.               | Slug Test Measuremen  |
|----------------------------|----------------------------------------|-----------------------|
| Project Name               |                                        | Test Date             |
| Project Number             | Field Staff                            |                       |
| Well Number and Datum Used |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
| Observations               | Depth Below                            | Change in             |
| Time                       | Measuring Point<br>(feet)              | Water Level<br>(feet) |
|                            |                                        |                       |
|                            |                                        |                       |
|                            | - ung- www.tacht                       |                       |
|                            |                                        |                       |
|                            | · · · · · · · · · · · · · · · · · · ·  |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            | ······································ |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |
|                            |                                        |                       |

Signature \_

计图象

1140

∺≓¥

# **APPENDIX G**

# BORING LOGS AND DRILLING LOGS

8.003

ês.

epona Gintà

str: : 6

26-1

untere Linking

GAN

10000

151.53

22-34

抽屉

Berry.

520 CC

250 M

y kening Salama

> ALCON TRANS

> -

4909 1968

\$8Mind

(fores)

# Boring Logs On-Site Monitor Wells and Recovery Wells

:- .s

.



BORING/WELL NUMBER MW-1

SHEET 1 OF 1

PROJECT Transwestern Pipeline Company

LOCATION Roswell, New Mexico

PROJECT NUMBER 6250

COORDINATES

in ie

hev<del>àr</del>

in de

. The self

i.c.s

-n a

....

сş

S. Same

| SURFA             | CE ELEVATION                                                                                                                                                                                           | DATUM                                                                                                                                                                                                                                                                   |        | LOG           | GED BY                          | L. Basili    | כ                                                 |                                              |                      | DAT      | E DRILLED                  | 7/21/92 |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|---------------------------------|--------------|---------------------------------------------------|----------------------------------------------|----------------------|----------|----------------------------|---------|
| NO                |                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                         | ۲      |               | SAMF                            | PLE INF      |                                                   | TION                                         |                      |          | WELL<br>CONSTRU            |         |
| ELEVATION<br>FEET |                                                                                                                                                                                                        | SOIL<br>CRIPTION                                                                                                                                                                                                                                                        | STRATA | Depth<br>Feet | Sample<br>Type                  | Sample<br>ID | /<br>Inches                                       | Penetr-<br>o <u>mete</u> r<br>Blow<br>Counts | PID/<br>FID<br>(ppm) | <i></i>  | DETAIL &<br>REMARKS        |         |
|                   | CLAY - red, sandy,<br>less than 1/4-inch,<br>6 inches, most like<br>sewer odor<br>CLAY - red, sandy<br>moist, hole slough<br>sanitary sewer odo<br>CLAY - brick red to<br>occasionally hard, s<br>base | LS prior to sampling<br>firm, occasional gravel<br>saturated red sand in top<br>saturated red sand in top<br>ly hole slough, sanitary<br>to silty, moderately firm,<br>at top is saturated,<br>r<br>brownish, firm to<br>silty to sandy, gypsum at<br>rd gypsum nodules |        |               | SPT<br>SPT<br>SPT<br>SPT<br>SPT |              | 18/18<br>18/18<br>18/18<br>18/0<br>12/12<br>12 12 |                                              |                      |          | T.O.C. Elev.               |         |
| DRILLI<br>DRILLE  | NG CONTRACTOR:                                                                                                                                                                                         | SH & B<br>Ed Adams                                                                                                                                                                                                                                                      | ,      | WELL S        | CREEN/I                         | NTERVA       | L:                                                |                                              | 0.                   | 010 slot | edule 40 P\<br>/28-68 ft B | LS      |
|                   | R:<br>NG METHOD:                                                                                                                                                                                       | Ed Adams<br>Hollow Stem Auger                                                                                                                                                                                                                                           | 1      | FILTER        | PACK-IN                         | TERVAL       | QUANT                                             | TTY:                                         |                      |          | BLS/22 sa                  | CKS     |
|                   | NG EQUIPMENT:                                                                                                                                                                                          | CME-55                                                                                                                                                                                                                                                                  |        | WELL S        | EAL-INT                         | ERVAL/C      | UANTI                                             | ΓY:                                          | 24                   | .4-25.2  | ft BLS                     |         |

|                   | HALLIBURTON NUS<br>Environmental Corporation                                                             | n        | PRO.   | JECT                | Transwe  | estern F       | ipeline (      | Compar  | ıy    |                                     |
|-------------------|----------------------------------------------------------------------------------------------------------|----------|--------|---------------------|----------|----------------|----------------|---------|-------|-------------------------------------|
|                   |                                                                                                          |          | LOC    | ATION I             | Roswell  | Compr          | essor St       | ation N | lo. 9 |                                     |
| COORI             | DINATES                                                                                                  |          | PRO.   | JECT NU             | MBER     | 5T72           |                |         |       |                                     |
| SURFA             | CE ELEVATION 95.2 DATUM GRA                                                                              | DE       | LOGO   | GED BY              | S. Richa | rd             |                |         | DA    | TE DRILLED 4/2                      |
| z                 |                                                                                                          |          |        | SAMP                | LE INF   | ORMA           | TION           |         |       | WELL                                |
| elevation<br>Feet | SOIL                                                                                                     | STRATA   |        |                     |          | Inches         | Penetr-        | PID/    |       | CONSTRUCT                           |
| N E               | DESCRIPTION                                                                                              | STR      | Depth  |                     |          | Adv.           | ometer         | FID     |       | DETAIL &<br>REMARKS                 |
| Ē                 | GROUND SURFACE                                                                                           |          | Feet   | Туре                | ID       | Inches<br>Rec. | Blow<br>Counts | (ppm)   |       | T.O.C. Elev. 95.                    |
|                   | Silts and Clays with Gravel                                                                              |          |        |                     |          |                |                |         |       | 1.0.0. Liov. 00.                    |
| 90                | Hitting rock - No recovery<br>Hitting rock - No recovery. Will try sampling<br>with split spoon sampler. | • •      | - 5 -  | ≖ SPT               |          | 3 / 0          | 50             |         |       |                                     |
| 80                | Hit large rock<br>Silts and Clays with Gravels                                                           | +.<br>+. | - 15 - | SPT                 |          | 3 / 0          | 50             |         |       |                                     |
| •75               | Sits and Clays with Graveis                                                                              | +        | - 20 - | SPT                 |          | 6 / 2          | 50             |         |       |                                     |
|                   |                                                                                                          | Ť        |        | ≊ SPT               |          | 2 ' 0          | 50             |         |       |                                     |
| -70               |                                                                                                          | +        | - 25 - | SPT<br>SPT          |          | 2 1 0          |                |         |       |                                     |
| ·65               | Very Silty<br>Silts and Clays, little gravel                                                             | •        | - 30 - | ≖ SPT               |          | 2 / 1          |                | 0<br>40 |       |                                     |
|                   | SILT - brown, organic odor                                                                               |          |        | SPT                 |          | 24/24          | 9<br>14        | >1000   |       |                                     |
|                   | Black gravel and coarse sand                                                                             |          |        | Ĥ                   |          | <u> </u>       | 21<br>36       |         |       |                                     |
|                   |                                                                                                          | 1.17     | 1      | Ň                   |          |                | 9              |         |       | 3                                   |
| DRILLI            | NG CONTRACTOR: Layne Environmental                                                                       |          |        | ER, TYP             |          |                | OF CASIN       |         | PVC   | lat EE' to CE'                      |
| DRILLE            | R: Russ Deike                                                                                            |          |        | CREEN/II<br>PACK-IN |          |                | TTY:           |         |       | lot, 55' to 65'<br>ica sand, 53' to |
|                   | NG METHOD: Hollow Stem Auger                                                                             |          |        |                     |          |                |                |         |       |                                     |

|                                                                                                                                                                                                                                                                                                                                      | FON NUS<br>Corporation |  | PROJ<br>LOCA  | ECT                                                                | Roswell                                          | ostern P<br>Compre                                                                              | 1W-1B<br>Pipeline (<br>essor St                                                                                                                                                                                            | -                                                                                         | ıy | EET 2 OF 2                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|---------------|--------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------|
| SURFACE ELEVATION 95.2                                                                                                                                                                                                                                                                                                               |                        |  |               |                                                                    | PROJECT NUMBER 5T72<br>LOGGED BY S. Richard DATE |                                                                                                 |                                                                                                                                                                                                                            |                                                                                           |    |                                                                                                                              |
| SOIL<br>DESCRIPTIC                                                                                                                                                                                                                                                                                                                   |                        |  | Depth<br>Feet |                                                                    | PLE INF<br>Sample<br>ID                          | ORMA                                                                                            | Penetr-<br>ometer<br>Blow<br>Counts                                                                                                                                                                                        | PID/<br>FID<br>(ppm)                                                                      |    | WELL<br>CONSTRUCTION<br>DETAIL &<br>REMARKS                                                                                  |
| CLAY - organic odor<br>No odor<br>No odor<br>Interbedded Sands and Clays<br>CLAY - stiff<br>CLAY - stiff<br>CLAY - stiff<br>CLAY - stiff<br>CLAY - stiff<br>CLAY - stiff<br>SAND - organic odor<br>CLAY<br>SAND with PSH<br>SAND with PSH<br>SIS<br>Fine sand - wet<br>6 inches of black sand<br>CLAY<br>Total depth = 65.5 feet BLS |                        |  | 40            | SPT<br>SPT<br>SPT<br>SPT<br>SPT<br>SPT<br>SPT<br>SPT<br>SPT<br>SPT |                                                  | 24/24<br>24/24<br>24/24<br>24/24<br>24/24<br>24/24<br>24/24<br>24/24<br>24/18<br>24/18<br>24/18 | 13<br>23<br>27<br>13<br>18<br>25<br>37<br>10<br>21<br>35<br>37<br>10<br>21<br>35<br>71<br>19<br>27<br>57<br>11<br>9<br>12<br>31<br>8<br>9<br>18<br>97<br>6<br>12<br>27<br>57<br>11<br>9<br>12<br>31<br>41<br>11<br>8<br>33 | >1000<br>50<br>50<br>>1000<br>>1000<br>>1000<br>>1000<br>>1000<br>>1000<br>>1000<br>>1000 |    | ¥<br>Water level at 58.8<br>feet BLS at 0900 f<br>on 4/23/93<br>₩<br>Water level at 62.1<br>feet BLS at 1700 f<br>on 4/22/93 |

. . 25 1985**8** 

11.12

- 1.74 小水桥

·• :s-++ j-is**e**r

55.09 1.04

<u>छ।</u> ४७ ·9 8,0



BORING/WELL NUMBER MW-2

SHEET 1 OF 2

PROJECT Transwestern Pipeline Company

LOCATION Roswell Compressor Station No. 9

COORDINATES

17 1 9 48

1777 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19

SURFACE ELEVATION 97.0 DATUM GRADE

LOGGED BY S. Richard

PROJECT NUMBER 5772

DATE DRILLED 4/21/93

| z                   |                                                                       | 4              | SAMPLE INFORMATION                                      |                |              |                               |                                    |             | WELL             |                                                              |  |  |
|---------------------|-----------------------------------------------------------------------|----------------|---------------------------------------------------------|----------------|--------------|-------------------------------|------------------------------------|-------------|------------------|--------------------------------------------------------------|--|--|
| ELEVATION<br>FEET   | SOIL<br>DESCRIPTION                                                   | STRATA         | Depth<br>Feet                                           | Sample<br>Type | Sample<br>ID | Inches<br>Adv.<br>/<br>Inches | Penetr-<br>o <u>mete</u> r<br>Blow | PID/<br>FID |                  | CONSTRUCTION<br>DETAIL &<br>REMARKS                          |  |  |
|                     | GROUND SURFACE<br>Silt and Clay with Gravel and Pebble                | s PN           |                                                         |                |              | Rec.                          | Counts                             | (ppm)       |                  | T.O.C. Elev. 96.98                                           |  |  |
| -95                 |                                                                       |                |                                                         |                |              |                               |                                    |             |                  |                                                              |  |  |
| -90                 |                                                                       |                | - 5 -                                                   | SPT            |              | 18/18                         | 37<br>34<br>29                     | 1           |                  |                                                              |  |  |
|                     |                                                                       |                | - 10 -                                                  | SPT            |              | 6 / 3                         | 50                                 | 2           |                  |                                                              |  |  |
| -85                 |                                                                       | 4749 8 749 8 7 | - 15 -                                                  | SPT            |              | 6 / 0                         | 50                                 | 2           |                  |                                                              |  |  |
| -80                 | More Gravel                                                           | Zel (          | - 20 -                                                  | SPT            |              | 6 / 2                         | 50                                 | 1           |                  |                                                              |  |  |
| -75                 | 3-inch dark brown sandy clay layer,<br>well sorted and medium grained | sand is        | - 25 -                                                  | Z SPT          |              | 4 / 2                         | 50                                 | 2           |                  |                                                              |  |  |
|                     | Small layer (1 foot) of black coarse<br>organic odor<br>CLAY          | gravel,        | - 30 -                                                  | SPT            |              | 18/15                         | 14<br>14<br>14                     | > 1 0 0 0   |                  |                                                              |  |  |
| -65                 |                                                                       |                |                                                         | SPT            |              | 18/18                         | 5<br>9<br>10                       | 700         |                  |                                                              |  |  |
| DRILLI              | NG CONTRACTOR: Layne Environr                                         |                |                                                         | TER, TYP       |              |                               | OF CASI                            |             | " PVC<br>020" si | ot PVC 55' to 65'                                            |  |  |
| DRILLER: Russ Deike |                                                                       |                | WELL SCREEN/INTERVAL:<br>FILTER PACK-INTERVAL/QUANTITY: |                |              |                               |                                    |             |                  | 0.020" slot PVC, 55' to 65'<br>10/20 silica sand, 53' to 65' |  |  |
|                     | NG METHOD: Hollow Stem A                                              | luger          | WELL SEAL-INTERVAL/QUANTITY: 5                          |                |              |                               |                                    |             |                  | ', bentonite pellets                                         |  |  |
| DRILLI              | NG EQUIPMENT: Failing F-10                                            |                |                                                         |                | ·            |                               |                                    |             |                  |                                                              |  |  |



DATUM GRADE

SURFACE ELEVATION 97.0

BORING/WELL NUMBER MW-2

SHEET 2 OF 2

PROJECT Transwestern Pipeline Company

LOCATION Roswell Compressor Station No. 9

COORDINATES

0.178

 $z \Rightarrow d$ 

**...** 

 $i \tau^i$ 

PROJECT NUMBER 5772 LOGGED BY S. Richard

DATE DRILLED 4/21/93

|                   |                                                              |             |               |                    |              |                         |                                    |                      |                      | DATE DRILLED 4/21/93                  |  |  |
|-------------------|--------------------------------------------------------------|-------------|---------------|--------------------|--------------|-------------------------|------------------------------------|----------------------|----------------------|---------------------------------------|--|--|
| TION              | SOIL                                                         |             |               | SAMPLE INFORMATION |              |                         |                                    |                      | WELL<br>CONSTRUCTION |                                       |  |  |
| ELEVATION<br>FEET | DESCRIPTION                                                  | STRATA      | Depth<br>Feet | Sample<br>Type     | Sample<br>ID | Adv.                    | Penetr-<br>o <u>mete</u> r<br>Blow | PID/<br>FID<br>(ppm) |                      | DETAIL &<br>REMARKS                   |  |  |
|                   | CONTINUED FROM PREVIOUS PAGE                                 | <i>1111</i> |               | M SPT              |              | Inches<br>Rec.<br>18/18 | Counts<br>5                        | 50                   |                      | · · · · · · · · · · · · · · · · · · · |  |  |
| -<br>-60          |                                                              |             |               | SPT                |              | 18/18                   | 9<br>10<br>5                       | 45                   |                      |                                       |  |  |
| -                 |                                                              |             |               |                    |              |                         | 4                                  |                      |                      |                                       |  |  |
| -<br>-            |                                                              |             | - 40 -        | SPT                |              | 18/18                   | 4<br>4<br>3                        | 20                   |                      |                                       |  |  |
| -55               | CLAY with Silt and Gravel layers                             |             |               |                    |              |                         |                                    |                      |                      |                                       |  |  |
| -                 | CLAY with Gravel layers                                      |             | - 45 -        | SPT                |              | 18/18                   | 4<br>5<br>6                        | 1                    |                      |                                       |  |  |
| -50               |                                                              |             |               | SPT                |              | 18/14                   | 3<br>5<br>6                        | 2                    |                      |                                       |  |  |
| [                 | Clay only                                                    |             | - 50 -        | SPT                |              | 18/18                   | 10<br>12<br>21                     | 2                    |                      |                                       |  |  |
| -45               | Clay                                                         |             |               | Я ВРТ              |              | 18/18                   | 2<br>3<br>6                        | 3                    |                      |                                       |  |  |
|                   | Clay - hard                                                  |             | - 55 -        | SPT                |              | 18/18                   | 4<br>7<br>10                       |                      |                      |                                       |  |  |
|                   | SAND - fine grained, well sorted, with clay,<br>organic odor |             |               | SPT                |              | 13/ 3                   | 4<br>6<br>14                       | > 1 0 0 0            |                      |                                       |  |  |
| -                 |                                                              |             | - 60 -        | SPT                |              | 18/17                   | 7<br>17<br>50                      | > 1 0 0 0            |                      |                                       |  |  |
|                   |                                                              |             |               | AUGER              |              | 42/0                    |                                    |                      |                      |                                       |  |  |
|                   | Total depth = 65.0 feet BLS                                  |             |               |                    |              |                         |                                    |                      |                      |                                       |  |  |
|                   |                                                              |             |               |                    |              |                         |                                    |                      |                      |                                       |  |  |
|                   |                                                              |             |               |                    |              |                         |                                    |                      |                      |                                       |  |  |
|                   |                                                              |             |               |                    |              |                         |                                    |                      |                      |                                       |  |  |
|                   |                                                              |             |               |                    |              |                         |                                    |                      |                      | ·                                     |  |  |

| HALLIBURTON NU<br>Environmental Corporation |                                                       |      | BORI<br>PROJ<br>LOCA | EET 1 OF 2 |                     |                |                      |              |                      |                                          |  |
|---------------------------------------------|-------------------------------------------------------|------|----------------------|------------|---------------------|----------------|----------------------|--------------|----------------------|------------------------------------------|--|
| COOR                                        | DINATES                                               |      | PRO.                 | IECT NU    | MBER                | 5T72           |                      |              |                      |                                          |  |
| SURFA                                       | ACE ELEVATION 100.1 DATUM GRA                         | DE   | LOG                  | GED BY     | S. Richa            | rd             |                      |              | DA                   | TE DRILLED 4/26                          |  |
| NO                                          | SOIL<br>DESCRIPTION                                   |      | SAMPLE INFORMATION   |            |                     |                |                      |              | WELL<br>CONSTRUCTION |                                          |  |
| VATI<br>EET                                 |                                                       |      | Depth                | Sample     | Sample Adv.         |                | Penetic PID.         |              |                      |                                          |  |
| ELEVATION<br>FEET                           | DESCRIPTION                                           | ST   | Feet                 | Туре       | D                   | Inches         | Blow                 | FID<br>(ppm) | REMARKS              |                                          |  |
|                                             | GROUND SURFACE<br>Silt and Clay with Gravel           | -100 |                      |            | <u> </u>            | Rec.           | Counts               |              |                      | T.O.C. Elev. 100.                        |  |
| -95                                         | Silt and Clay with Gravel                             | •    | - 5 -                | SH         |                     | 6 / 4          |                      |              |                      |                                          |  |
| -90                                         | Silt and Clay with Gravel                             | •.   | - 10 -               | SH         |                     | 6 / 3          |                      |              |                      |                                          |  |
| -85                                         | Silt and Clay with Gravel                             | •    | - 15 -               | SH         |                     | 6 / 4          |                      |              |                      |                                          |  |
| -80                                         | Silt and Clay with Gravel                             | •    | - 20 -               | SH         |                     | 6 / 4          |                      |              |                      |                                          |  |
| 75                                          | Sand, Clay, Gravei                                    |      | - 25 -               |            |                     |                |                      |              |                      |                                          |  |
| - 70<br>- 70<br>-                           | Gravel<br>Gravel, no recovery<br>CLAY - stiff, moist  |      | 30 -                 | SPT        |                     | 5 / 4<br>24/24 | 13<br>14<br>15<br>16 |              |                      |                                          |  |
|                                             | NG CONTRACTOR: Layne Environmental'<br>ER: Russ Deike |      |                      | CREEN/I    | E & INTE<br>NTERVAL | <b>_</b> :     |                      | 0            | .020" s              | lot PVC, 60' to 70<br>ica sand, 58' to 7 |  |

----- t.v.

2000 a



BORING/WELL NUMBER MW-3 SHEET 2 OF 2 PROJECT Transwestern Pipeline Company

COORDINATES

ELEVATION FEET

-60

-55

LOCATION Roswell Compressor Station No. 9

PROJECT NUMBER 5T72 DATUM GRADE SURFACE ELEVATION 100.1 LOGGED BY S. Richard DATE DRILLED 4/26/93 SAMPLE INFORMATION WELL STRATA CONSTRUCTION SOIL Inches Penetr-PID/ Adv. **DETAIL &** Depth Sample Sample DESCRIPTION ometer FID REMARKS Blow Feet ID Туре Inches (ppm) Counts CONTINUED FROM PREVIOUS PAGE Rec SPT 24/24 8 X 10 12 SPT 24/24 6 9 CLAY - stiff, moist 18 20 40 45 -CORE 60/60 9 Sandy Silt - brown, fine sand 60/50 50 CORE 2-inch fine sand and gravel layer .M = MLS 55 CORE 60/48 CLAY - stiff, stringer of silt

-50 -45 60/48 60 CORE 40 Silty Sand Layers of Clay 65 CORE 60/36 -35 Water level 65.75 feet BLS at 1109 hrs on 4/27/93 Wet Sand 60/60 70 CORE -30 CLAY - stiff SAND Total depth = 72.5 feet BLS

a-aré Yant deal 4.90 84R\$ - 63 1, 194 . Sind

| e<br>e            | 4                 | A HALLIBURTON NUS                            |             | BORI                                      | NG/WEL      |                       | R N            | IW-5                    |              | s                   | HEET 1 OF 2            |  |
|-------------------|-------------------|----------------------------------------------|-------------|-------------------------------------------|-------------|-----------------------|----------------|-------------------------|--------------|---------------------|------------------------|--|
| ĕ                 | Ţ.                | HALLIBURTON NUS<br>Environmental Corporation | ĩ           | PRO                                       |             |                       |                | ripeline C              | ompar        |                     |                        |  |
|                   |                   |                                              |             | LOCATION Roswell Compressor Station No. 9 |             |                       |                |                         |              |                     |                        |  |
| ~                 | COOR              | DINATES                                      |             | PROJECT NUMBER 5T72                       |             |                       |                |                         |              |                     |                        |  |
| ۵                 |                   |                                              |             |                                           |             |                       |                |                         |              |                     |                        |  |
| ┝                 | SURFA             | CE ELEVATION 98.0 DATUM GRA                  | LOGU        |                                           |             |                       |                |                         |              | ATE DRILLED 4/28/93 |                        |  |
|                   | NO                |                                              | ∢           |                                           | SAMF        | PLE INF               | ORM            | ATION                   |              |                     | WELL                   |  |
| ĸ                 | ELEVATION<br>FEET | SOIL                                         | STRATA      |                                           | <b>.</b> .  | Sample Adv. Penetr- P |                | PID/                    | CONSTRUCTION |                     |                        |  |
|                   |                   | DESCRIPTION                                  | STR         |                                           | Sample<br>– |                       | /              | o <u>mete</u> r<br>Blow | FID          |                     | REMARKS                |  |
|                   | Ξ                 | GROUND SURFACE                               |             | Feet                                      | Туре        | ID                    | Inches<br>Rec. | Counts                  | (ppm)        |                     | 🗞 T.O.C. Elev. 97.98   |  |
|                   |                   |                                              |             |                                           |             |                       | 1.00.          |                         |              |                     |                        |  |
|                   | `                 |                                              |             |                                           |             |                       |                |                         |              |                     |                        |  |
| ſ                 |                   |                                              |             |                                           |             |                       |                |                         |              |                     |                        |  |
| ſ                 | -95               |                                              |             |                                           |             |                       |                |                         |              |                     |                        |  |
| ſ                 |                   | Sand, Clay, Gravel                           |             |                                           |             |                       |                |                         |              |                     |                        |  |
|                   |                   |                                              |             | - 5 -                                     | N SPT       |                       | 24/20          | 22<br>40                |              |                     |                        |  |
| ۰ŀ                |                   |                                              |             |                                           | Δ           |                       | - /            | 18<br>19                |              |                     |                        |  |
| , †               |                   |                                              |             |                                           |             |                       |                | 13                      |              |                     |                        |  |
| Ì                 | -90               |                                              |             |                                           |             |                       |                |                         |              |                     |                        |  |
| *  -              |                   |                                              |             |                                           |             |                       |                |                         |              |                     |                        |  |
| .                 |                   | Sand, Clay, Gravel                           |             | - 10 -                                    | SPT         |                       | 24/18          | 24<br>14                |              |                     |                        |  |
| ŀ                 | · [               |                                              |             |                                           |             |                       | 24/10          | 19                      |              |                     |                        |  |
| -                 |                   |                                              |             |                                           |             |                       |                | 22                      |              |                     |                        |  |
| .                 | -85               |                                              |             | + +                                       |             |                       |                |                         |              |                     |                        |  |
| ┢                 |                   |                                              |             |                                           |             |                       |                |                         |              |                     |                        |  |
| "                 |                   |                                              |             | - 15 -                                    | M           |                       | . /            | 11<br>37                |              |                     |                        |  |
|                   |                   | GRAVEL - moist                               |             | -                                         | SPT         |                       | 24/20          | 41                      |              |                     |                        |  |
| -                 |                   |                                              |             |                                           |             |                       |                | 27                      |              |                     |                        |  |
| *                 | -80               |                                              | •           | -                                         |             |                       |                |                         |              |                     |                        |  |
| *                 |                   |                                              |             |                                           |             |                       |                | •                       |              |                     |                        |  |
| .  -              |                   | CLAY                                         |             | - 20 -                                    | 🛛 ѕрт       |                       | 24/20          | 8<br>11                 |              |                     |                        |  |
| -  -              |                   | CLAY with gravel                             |             |                                           | $\cap$      |                       | /              | 27<br>23                |              |                     |                        |  |
| -                 |                   |                                              |             |                                           | SPT         |                       | 24/24          | 16                      |              |                     |                        |  |
| "                 | -75               |                                              |             |                                           | Щ           |                       | -7-            | 8<br>10                 |              |                     |                        |  |
|                   |                   |                                              |             |                                           |             |                       |                | 16                      |              |                     |                        |  |
|                   |                   | CLAY with gravel and pebbles, stiff          |             | - 25 -                                    |             |                       |                |                         |              |                     |                        |  |
| 5 <b>1</b>        |                   | Detelar                                      |             |                                           |             |                       | 1              |                         |              |                     |                        |  |
|                   |                   | Pebbles                                      |             |                                           | CORE        |                       | 60/56          |                         |              |                     |                        |  |
| **                | -70               | CLAY - stiff                                 |             |                                           |             |                       | /              |                         |              |                     |                        |  |
| 493 L             |                   | SILT                                         | IIII        |                                           |             |                       |                |                         |              |                     |                        |  |
|                   |                   | SILTY CLAY                                   |             | 20                                        |             |                       |                |                         |              |                     |                        |  |
| 27-39             |                   | CLAY<br>SILTY SAND - light brown             |             | - 30 -                                    |             |                       | ,              |                         |              |                     |                        |  |
| **                |                   | SILLI SAND - IIGIL DIOWN                     |             | [ ]                                       | CORE        |                       | 60/30          |                         |              |                     |                        |  |
| Γ                 |                   |                                              |             |                                           |             |                       | /              |                         |              |                     |                        |  |
|                   | -65               |                                              |             | [                                         |             |                       |                |                         |              |                     |                        |  |
| -                 |                   |                                              |             | - T                                       | Π           |                       | 1              |                         |              |                     |                        |  |
|                   |                   | NG CONTRACTOR: Layne Environmental           | لاحددی<br>۲ |                                           | ER TYP      |                       | RVAL 0         | OF CASIN                | G: 2"        | PVC                 | NNX                    |  |
| ः व               |                   |                                              |             |                                           |             |                       |                | - CASIN                 |              |                     | slot, 60' to 70'       |  |
| 198               | DRILLE            | R: Russ Deike                                |             |                                           |             | TERVAL/               |                | ITY:                    |              |                     | ilica sand, 58' to 75' |  |
|                   | DRILLI            | NG METHOD: Hollow Stem Auger                 |             |                                           |             |                       |                |                         |              |                     | <b>.</b>               |  |
|                   | יייואמ            | NG EQUIPMENT: Failing F-10                   | v           | WELL S                                    | EAL-INT     | ERVAL/Q               | UANTI          | Y:                      | 55           | o' to 5             | i8', bentonite pellets |  |
| . ± + 67 <b>4</b> | UNILLI            | a comment. Taming (-) O                      |             |                                           |             |                       |                |                         |              |                     | ·····                  |  |

|                   | HALLIBURTON NUS<br>Environmental Corporation                                                                           |       |                     | TION I         | Rosweil      | Compr                       | Pipeline (<br>ressor St                     |                                                                                             | •     |                     |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------|-------|---------------------|----------------|--------------|-----------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|-------|---------------------|--|
|                   |                                                                                                                        | -     | PROJECT NUMBER 5T72 |                |              |                             |                                             |                                                                                             |       |                     |  |
| SURF              | ACE ELEVATION 98.0 DATUM GRADE                                                                                         | Ē     | LOGG                | ED BY          | S. Richa     | rd                          |                                             |                                                                                             | DA    | ATE DRILLED 4/28    |  |
| ELEVATION<br>FEET | SOIL                                                                                                                   | NTA   |                     | SAMF           | PLE INF      | ORM                         |                                             |                                                                                             |       | WELL<br>CONSTRUCTIO |  |
| ELEV              | CONTINUED FROM PREVIOUS PAGE                                                                                           | 5 a 1 | epth<br>Feet        | Sample<br>Type | Sample<br>ID | Adv.<br>/<br>Inches<br>Rec. | Penetr-<br>o <u>meter</u><br>Blow<br>Counts | PID/<br>FID<br>(ppm)                                                                        |       | DETAIL &<br>REMARKS |  |
|                   | SILTY SAND - light brown, fine grained<br>CLAY - brown, stiff<br>SILTY SAND - light brown with gravel<br>Silt and Clay | : : - |                     | CORE           |              | 60 /30                      |                                             |                                                                                             |       |                     |  |
| ·60               | SAND<br>SAND - tan                                                                                                     |       | 1                   |                |              | /                           |                                             |                                                                                             |       |                     |  |
| 55                | SILTY CLAY - brown, moist<br>CLAY - moist<br>SILT - slightly sandy<br>SANDY SILT<br>Interbedded Silt, Clay             |       | 40 -                | CORE           |              | 60/42                       |                                             |                                                                                             |       |                     |  |
|                   | SILTY SAND - fine grained                                                                                              |       | 45 -                | CORE           |              | 60/24                       |                                             |                                                                                             |       |                     |  |
| 50                | SAND - fine grained                                                                                                    |       | -<br>-<br>50 -      |                |              | /                           |                                             |                                                                                             |       |                     |  |
| 45                | CLAY<br>SILTY CLAY                                                                                                     |       | -                   | CORE           |              | 50/30                       |                                             |                                                                                             |       |                     |  |
|                   | SILTY CLAY<br>SILTY SAND<br>SAND - well sorted with gravel                                                             |       | 55 -<br>-           | CORE           | W.           | 36/24                       |                                             |                                                                                             |       |                     |  |
| 10                |                                                                                                                        |       | 50 -                | SPT            | e            | 5 / 5                       | 50/5"                                       |                                                                                             |       |                     |  |
| 5                 |                                                                                                                        |       |                     |                |              |                             |                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |       |                     |  |
|                   | Wet SAND - wet                                                                                                         | · 6   | 5 -X                | SPT            | 2            | 4/12                        | 7<br>11<br>33<br>33                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |       | 꼬<br>Water level    |  |
| o                 |                                                                                                                        |       |                     | UGER           | 4            | 8/ 0                        |                                             | •<br>•<br>•<br>•                                                                            |       |                     |  |
| -                 | Total depth = 70 feet BLS                                                                                              | 7     | o -4                |                |              |                             |                                             |                                                                                             | ::=:: |                     |  |

•

----- $>e^{-\frac{1}{2}}$ 

> 1.4889

-----

(in calif

1 1940 (5 1 ende

7 

> 218.AQA - 20

> 19-94

 $\sim c \eta$  $t_{\rm d} p_{\rm B}$ 

~--58 : = 4,4

12.9

6.545

~ 9

. ----**x** ssing

, with à139

24×24 89.9**4**9

11111

d < 2k

(c. 54) strike ----

लेल्<del>स</del>

. . . . enia

# DANIEL B. STEPHENS & ASSOCIATES, INC.

Boring Log

# Page / of 3

| Logged             |                |                  | SADEV              |                    |                  | Client/Proje |                 | A115.2                                                                                                                                                                                                            |
|--------------------|----------------|------------------|--------------------|--------------------|------------------|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Number         |                  |                    | the                |                  | Drilling Co. | Δ               | - 300                                                                                                                                                                                                             |
|                    |                | 110              |                    | - //               |                  |              | 1000            | ENV. DRILLING Free Hours of                                                                                                                                                                                       |
| Drilling           |                |                  | 8/4                |                    | ·                | Drill Rig    | CHE             | -75 Xra                                                                                                                                                                                                           |
| Date St            | tarted         | <u>"/30/9</u>    | 4 09               | 45                 | □                | Date Comp    | pleted          | 12/1/94 NOT TO                                                                                                                                                                                                    |
| PID/FID<br>Reading | Blow<br>Counts |                  | Sample<br>Recovery | Sample<br>Interval | Sample<br>Number |              | Depth<br>(feet) | Soil Description/Remarks<br>Soil type, color, texture, grain size, sorting, roundness, plasticity, consistency, moisture co                                                                                       |
|                    |                | Split-           |                    |                    |                  |              |                 |                                                                                                                                                                                                                   |
|                    |                | Spoon<br>with br | ass ske            | eres               |                  |              | 2.              |                                                                                                                                                                                                                   |
|                    |                |                  |                    |                    |                  |              | 4               | 4-55 : Sandy Gravel (Gw) : V. Pake brown (10x R.                                                                                                                                                                  |
| 0.4                | 12/22/22       | 4                | 15/1.5             |                    | 4                |              |                 | 4-5,5 : <u>Sandy Gravel (Gw</u> ) : V. Pale brown /10xR<br>v. fine-to v. crse grained wy fragments of limestone ,<br>granite up to 1"; loose ; dry ; no odor.                                                     |
|                    |                |                  |                    |                    |                  |              | 6.              | - X                                                                                                                                                                                                               |
|                    |                |                  |                    |                    |                  |              | 8.              |                                                                                                                                                                                                                   |
| 0.0                | 42/50          |                  | 10 %               | 1111               | ,<br>            | Ew           | 10-             | 9-10.5 : Jandy Gravel (GW) : Mostly limestone from<br>of little sard, little sitt, & trace clay : Hadrix A<br>H. reddish brown (542 614) & fragments are grayis<br>brown (2.5 × 5/2); loose; dry; no odor.        |
|                    |                |                  |                    | m                  |                  |              |                 | H. reddish brown (5 YR 6/4) & fragments are grayic                                                                                                                                                                |
| •••••              |                |                  |                    |                    | +                |              | 12 .            | Orown (2.5.4.5/2).j. 10030.j. dry.j. NO. 0407                                                                                                                                                                     |
|                    | 181            |                  | 9%                 | 1111               |                  | Ęω           | 14              | 14-15.5: Sandy Grand (Gw): as above.                                                                                                                                                                              |
| 0.0                | 43/50          |                  | 9/4=               | <u>      </u>      |                  |              | 16.             | ,                                                                                                                                                                                                                 |
|                    |                |                  |                    |                    |                  |              |                 |                                                                                                                                                                                                                   |
|                    | 34/            |                  |                    |                    |                  |              | 18.             |                                                                                                                                                                                                                   |
| 0.0                | 150            |                  | 9/u-               |                    |                  | Eω           | 20 -            | 19-205: Jandy Gravel (600): as above                                                                                                                                                                              |
|                    | l              | 1                |                    | <b></b>            | <b>.</b>         |              | 22 .            |                                                                                                                                                                                                                   |
|                    |                |                  |                    |                    |                  |              |                 |                                                                                                                                                                                                                   |
| _                  | 50             |                  | 24                 |                    |                  | GW           | 24              | 24-25.5: Jandy Gravel (Gw) : as above .                                                                                                                                                                           |
|                    |                |                  |                    | 11111              | <b>!</b>         |              | 26              | U. poor recovery ; V. rocky & V. hard.                                                                                                                                                                            |
|                    |                |                  |                    |                    |                  |              | 30              |                                                                                                                                                                                                                   |
|                    |                |                  |                    |                    | 1                |              | 28 .            | 20-20 5 - Jandy Fravel (GW), as above.                                                                                                                                                                            |
| <u></u>            | 50             |                  |                    | 1/////             |                  | <i>G</i> w   | 30-             | 29-30.5: Jandy Gravel (GW): as above.<br>Driller indicates formation change at 31!                                                                                                                                |
|                    | l              |                  |                    |                    | <u> </u>         |              | 32.             | Driller indicates formation change at 31.                                                                                                                                                                         |
|                    |                |                  |                    |                    |                  |              |                 |                                                                                                                                                                                                                   |
| ·····              |                |                  | 15/18-             | 1111               |                  | 5P/cL        | 34              | 34.35.5: Jand (SA): light red (IDA 6/B); v.fil<br>fine-grained; mostly send as tr. sill; med. consis,<br>categoous; dry.<br>35.5: CLAY (CL): reddish broash (2.5 YR 5/4); me<br>plasticity; stiff; damp; no odor. |
| 0.0                | 125/26         |                  | //8                |                    | 1                | 14           | 36              | catations; dry.                                                                                                                                                                                                   |
|                    |                |                  |                    |                    |                  |              |                 | plasticity; stiff; damp; no odor.                                                                                                                                                                                 |
|                    |                |                  | +                  |                    | •••••            |              | 38              | •                                                                                                                                                                                                                 |

# DANIEL B. STEPHENS & ASSOCIATES, INC.

# Boring Log

Page\_2\_of\_3\_

|   | Site                |                   | 2010-              | Rosi               | VELL               |                     |              | ·····           | <u></u>                                                       |                                                                                                                   |
|---|---------------------|-------------------|--------------------|--------------------|--------------------|---------------------|--------------|-----------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|   | Logge               | <sup>d by</sup> B | CAS                | ADEV               | مدر                |                     | Client/Proje | ect#            | 4115.2                                                        |                                                                                                                   |
|   | Boring              | Number            | HU                 | 5-6                |                    | 1                   | Drilling Co. | Aoo.            | 2                                                             |                                                                                                                   |
|   | Drilling            | Method            | HSA                |                    |                    |                     | Drill Rig    | CHE             | -75                                                           |                                                                                                                   |
|   | Date S              | tarted            | 11/30/             | 94                 |                    | (                   | Date Comp    | leted           | 12/1/94                                                       |                                                                                                                   |
|   | PID/FID<br>Reading  | Blow<br>Counts    | Sampling<br>Device | Sample<br>Recovery | Sample<br>Interval | Sample<br>Number    |              | Depth<br>(feet) |                                                               | I Description/Remarks<br>, sorting, roundness, plasticity, consistency, moisture content                          |
|   | 0.2                 | 8-20-25           | 35                 | 15/18.             | [[]]]              |                     | 5P/CH        |                 | 39-41: Sand (SP), 1                                           | red (2.5 YR 5/6) to reddish ylloo (5 YR 7/8)<br>4, calcareous, Interbedded u/ Clay                                |
|   |                     | 0.000             | <b>*78</b> 5       | /18*               |                    | •••••               |              | 42              |                                                               | +), reddish brown (548 5/4), damp.<br>v. stiff                                                                    |
|   |                     | 8-36-50           | SS/85              | 15"/               | 7////              | • • • • • • • • •   | \$/c4        | 44              | 44-455: Sand (34                                              | ); red to redish yllw, v. fine-fine<br>cement. Intersected with day                                               |
|   | 0.0                 |                   | ,                  | /15*               |                    |                     | 14           | 46              | und sondy clay [<br>V.stift.                                  | CH), reddish brown; damp, V. Alast                                                                                |
|   |                     |                   |                    |                    |                    |                     |              | 48              |                                                               |                                                                                                                   |
| 8 | <u>.0. ø</u>        | 50                | <u></u>            | 4"/4 "             |                    |                     | લુહ્ય        | 50-             | 49-49-5: Sandy Gr.<br>U. fine - coarse grain                  | avel (GW): Dinkish white (I.5 XR B/2<br>; tr. clay, some sand, some grand;<br>15. (granities); calc. cement; dry. |
|   |                     |                   |                    |                    |                    | ••••••              |              | 52              | * cuttings becoming                                           | damp@ 53'                                                                                                         |
|   |                     | 9/ 1              |                    |                    | 1111               | ••••••              | SA/SC        | 54              |                                                               |                                                                                                                   |
| • | 0.0                 | 9/25/25           | 7 <b>8</b> 5       | 2/18-              | <u>'////</u>       |                     | /SC          | 56              | (5XR 7/8) - to pink<br>within grained sand<br>sands are damp. | and Silly Sand/Sc): reddish ylks.<br>(7.5 YR 8/3). Some Plastic fines in<br>ds - U. few time in fine sand.        |
|   |                     |                   |                    |                    |                    | •••••••             |              | 58              | ~                                                             |                                                                                                                   |
|   | .0. <b>.</b> Q.     | 412f.15.          | <u>55/85</u>       | 207/8"             | /////              |                     |              | 60-             | 59-60.5 : Clayy Jon<br>Some clay, mostly 3                    | the<br>At (MH) - Addish yellows (SYRG/G<br>Wilt and V. Aine sand; damp to moist<br>f                              |
|   | • • • • • • • • • • |                   | •••••              |                    |                    |                     | •            | 62              | Very Alastic; Stit                                            | Γ                                                                                                                 |
| , |                     | 10/2-1            | -7/85              | 201/18             | []]]]              |                     | Cul          | 64<br>×         | 64-65.5; Jitty Cl                                             | ay (CH) and clayey / sisty sand (si                                                                               |
| 0 | 0.0                 | 73                |                    | /18                |                    | •••••               | Gr.SC.       | 66              | Sorted, V. Fine to 1<br>Moist to wat at                       | elay is u. plastic; sands are u. poarly<br>coarse (some small pebbles).<br>65.5'.                                 |
|   | ••••••              | •••••             | ••••••             | 20"/               |                    |                     |              | 68 -            | •                                                             |                                                                                                                   |
| 5 | .00.                | \$/11/20          |                    | /18-               | ////               | ••••••              | CH/<br>/SC   | 70 -            | 69-70.5: Silly c.<br>Saturated, cap. 1                        | lay (CH.) And clayey sand                                                                                         |
|   | ••••••              |                   | •••••              |                    |                    |                     |              | 72              | ••••••                                                        |                                                                                                                   |
| 5 | 0.0                 | 8/5/16            |                    | 18/<br>/18         | [[]]]              | •••••               | SC/CH        | 74              | 74-25.5: Clayey 50<br>Sand V. Dlastic                         | nd & silly clay - u fine grained<br>fines; damp-moist, but not<br>areas appear more calcareous.                   |
|   |                     | •••••             |                    |                    |                    | • • • • • • • • • • |              | 76              | wet. Pale yllw.                                               | areas appear more calcareous.                                                                                     |
|   |                     |                   |                    |                    |                    | • • • • • • • • • • |              | 78 ·            | •                                                             |                                                                                                                   |
|   |                     |                   |                    |                    | 7/11.              |                     |              |                 |                                                               |                                                                                                                   |

No brass slaves used after



Ξ

' field

200

# DANIEL B. STEPHENS & ASSOCIATES, INC.

# **Boring Log**

# Page 3 of 3

| Site               | <u> </u>                | SWE                | <u>c (</u>         | Eve                     | <u>, (u</u>      |                |                 | Location Map                                                                                                                                                     |
|--------------------|-------------------------|--------------------|--------------------|-------------------------|------------------|----------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logged             | Lu<br>1 by B.           | CAS                | ADEV               | ALL                     | c                | Client/Proje   | oct #           | 4115.2                                                                                                                                                           |
|                    | Number                  | Ни                 |                    |                         | C                | Drilling Co.   | Poor            |                                                                                                                                                                  |
| Drilling           | Method                  | HSA                |                    |                         | 0                | Drill Rig      | CHE             | -75                                                                                                                                                              |
| Date S             | tarted /                | 1-30-9             | 4                  |                         | 0                | Date Comp      | leted /         | 2/1/94                                                                                                                                                           |
| PID/FID<br>Reading | Blow<br>Counts          | Sampling<br>Device | Sample<br>Recovery | Sample<br>Interval      | Sample<br>Number | USCS<br>Symbol | Depth<br>(feet) | Soil Description/Remarks<br>Soil type, color, texture, grain size, sorting, roundness, plasticity, consistency, moisture contr                                   |
| 0.0                | 17/12/18                | <u> </u>           | 20"/18"            |                         |                  | ALC I          | 8z -            | 19-60.5 : Sandy gravel & gravelly sand red brow.<br>as above; damp to saturated; sands are v. fine<br>to fine grained with few day, but fines are<br>v. plastic. |
|                    |                         |                    |                    |                         |                  |                | 84 -            | · phone.                                                                                                                                                         |
| •••••              |                         |                    |                    |                         |                  |                | 86 -            |                                                                                                                                                                  |
|                    |                         |                    |                    |                         |                  |                | -               | TDD = 79' (sampled to 80.5)                                                                                                                                      |
|                    |                         |                    |                    |                         |                  |                | _               | -                                                                                                                                                                |
|                    |                         |                    |                    |                         |                  |                | _               |                                                                                                                                                                  |
|                    |                         |                    |                    |                         |                  |                |                 | Surface                                                                                                                                                          |
|                    |                         |                    |                    |                         |                  |                | -               |                                                                                                                                                                  |
|                    | • • • • • • • • • • • • | •••••              |                    |                         |                  |                | -               |                                                                                                                                                                  |
|                    |                         |                    | •••••              | • • • • • • • • • • • • |                  |                | -               |                                                                                                                                                                  |
|                    |                         |                    |                    |                         |                  |                |                 |                                                                                                                                                                  |
|                    |                         |                    |                    |                         |                  |                | -               | postland camest as 5%<br>bustoasing grout<br>(54.5' to sur face).                                                                                                |
|                    |                         |                    |                    | • • • • • • • • • •     |                  |                | -               |                                                                                                                                                                  |
|                    |                         |                    |                    |                         |                  |                | -               |                                                                                                                                                                  |
|                    |                         |                    |                    |                         |                  |                | _               | top at bustonite pathet seed (3                                                                                                                                  |
|                    |                         |                    |                    |                         |                  |                | -               | top of 12/20 sites 12<br>Sand fille (57.1)                                                                                                                       |
|                    |                         |                    |                    |                         |                  |                | -               | bentwite chip<br>backfill/seal                                                                                                                                   |
|                    |                         |                    |                    |                         |                  |                | -               | beatinite chip<br>beat fill/seal TDD=79'                                                                                                                         |

DBS&A Form No. 080 3/92

sina Anata

| 16360 P<br>Suite 30<br>Project | ark Ten<br>0<br>: Name | <u>_</u> R                           | vs ~~    | MC                 |                        |                  | usion, Te     | 9xas 77084<br>) 492-1888 | OF BOR                                            | : 14<br>od: 5 | 5          | Sh                  | ring No<br>eet(   | of    |       |
|--------------------------------|------------------------|--------------------------------------|----------|--------------------|------------------------|------------------|---------------|--------------------------|---------------------------------------------------|---------------|------------|---------------------|-------------------|-------|-------|
| Project                        | Numt                   | 190                                  |          |                    |                        |                  |               |                          | - Driller: Couser                                 |               |            |                     |                   |       | iling |
|                                |                        | T                                    | ~        |                    |                        |                  |               |                          | Logged By: (                                      |               |            |                     |                   | Start | Fini  |
| Location                       | of Boni                | ng                                   |          |                    |                        |                  |               |                          | Water Level                                       |               |            | T                   |                   | Time  | Тіп   |
| N                              | ote:                   | 0-                                   | 30       | 611                | led                    | -10              | 54            | -110 (<br>-1301          | Time                                              |               |            |                     |                   | 145   | 69    |
|                                |                        |                                      |          | lus                |                        | ( 51             | f-e +         | ~(30)                    | Date                                              |               |            | 1                   |                   | Date  | Da    |
| Datum                          |                        |                                      |          |                    |                        |                  | Fie           | NEBON                    | Casing Depth                                      |               | Boring     | Depth               | 42.5              | Gulas | GL    |
| 9 o /                          |                        | Inches Driver<br>Inches<br>Recovered |          |                    | 2                      |                  |               | Surface Condr            |                                                   |               |            | ,                   |                   | 1     |       |
| Sample<br>No                   | ě.                     |                                      | <u>.</u> | HNU/OVA<br>Reading | te e                   | £ ¥              | _ =           |                          |                                                   |               |            |                     |                   |       |       |
| ″/• _                          | đặt                    |                                      |          | Dibe               | erot                   | Depth<br>In Feet | Soil<br>Graph |                          |                                                   |               |            |                     |                   |       |       |
| Sample                         | Ś                      | <u>ح</u> ر کے ک                      | - 0      | Ξœ                 | Pocket<br>Penetrometer |                  |               |                          |                                                   |               |            |                     |                   |       |       |
| 001                            |                        | <u>/ 5œ1</u>                         | _        |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | 1                | 4             |                          |                                                   |               | - <u>,</u> |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | 2                |               |                          |                                                   |               |            |                     |                   |       |       |
| Ì                              |                        |                                      |          |                    |                        | 2                |               |                          | , <del>, , , , , , , , , , , , , , , , , , </del> |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        | 1 1                                  |          |                    |                        | 3-               | 1             |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | 4                |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | _                |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | 5-               | 1             |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        | 3 /                                  | 6.6      | 200                |                        | 36               |               | c 1                      |                                                   |               |            |                     |                   |       |       |
|                                | •                      | R /                                  | -        | 35-                |                        |                  |               | Jend.                    | genue !                                           | 6.            | ~          |                     |                   |       |       |
|                                |                        | //                                   |          |                    |                        | 7                | 1             |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        | 1/2 1                                |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                | (                      | 2                                    |          |                    |                        | 8                |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        | 3 /                                  | 50/3     | 21000              |                        | Ĩ                | I             | Sal                      | grand, 1                                          | ) + 2 L +     |            | 6.1                 |                   |       |       |
|                                |                        | -/                                   |          | 1                  |                        |                  |               |                          |                                                   | whith (       |            |                     |                   |       |       |
|                                |                        | /                                    |          |                    |                        | 9-               | 1             |                          | 540                                               | WAIL 1        |            |                     |                   |       |       |
|                                | /                      | []]                                  |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                | /                      |                                      | - /      |                    |                        | -10-             |               |                          | ······                                            | 14            |            |                     |                   |       |       |
|                                |                        | 5/                                   | 5%       | 7,000              |                        |                  |               | Senty                    | Search and                                        | the c         | ay on      |                     | ca ms             |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          | sour to                                           | Slack         | <u> </u>   | et                  |                   |       |       |
|                                |                        | 1/51                                 |          |                    |                        | ٦'               |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               | Clay                     | 445 41.5                                          | /             | 6 6        | <b>m</b> , <b>h</b> | ever!             | sas / |       |
|                                |                        |                                      |          |                    |                        | 2                | 1             |                          |                                                   |               | <u> </u>   | el, so              |                   | 4 001 | -     |
|                                |                        |                                      | •        |                    |                        |                  |               | TD                       | 42.5                                              |               |            | pocto               | - <u>7 ka k</u> ( |       |       |
|                                |                        | _                                    |          |                    |                        | 3                | ł             |                          | 14, 3                                             |               |            | 100 11              |                   |       | _     |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | 4                | ł             |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        | ł                                    |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | 5                | 1             |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | 6                |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | 7                |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        | 8                | 1             |                          |                                                   |               |            |                     |                   |       |       |
|                                |                        |                                      |          |                    |                        |                  |               |                          |                                                   |               |            |                     |                   |       |       |
|                                | 1                      |                                      |          |                    |                        | 9                |               |                          |                                                   |               |            |                     |                   |       |       |
| 1                              |                        |                                      |          | 1 1                | . i                    | -                | 1             |                          |                                                   |               |            |                     |                   |       |       |

12.4

,~ \* ~ \*

ेल्ड

5.14

- - 136

ar -23

الإرجا

# Drilling Logs Off-Site Wells

•

 $w_{i} \in \sigma$ 

2.12%

.

| FIEL | D | ΕN | ul |  | LUG |
|------|---|----|----|--|-----|
|------|---|----|----|--|-----|

Form WR-23

# Transwestern Well TW-1 (Well # 2 on DBSEA Fig. 2-5) STATE ENGINEER OFFICE

# WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

| Sec |  |
|-----|--|

-

|          | -<br>                  | (A) Owner of well Pecos Valle    | y Artesian Conservancy Dist.                                   |
|----------|------------------------|----------------------------------|----------------------------------------------------------------|
| *        |                        | Street and Number P. O. Box      | <u>1</u> 34 <u>6</u>                                           |
|          |                        | City Roswell.                    | State New Mexico                                               |
|          |                        | Well was drilled under Permit No | RA-5540 and is located in the                                  |
|          |                        |                                  | tion                                                           |
|          | +                      | (B) Drilling Contractor. P.V.A.C | License No. WD 190                                             |
|          |                        | Street and Number Same as a      | bove                                                           |
|          |                        | City                             | State                                                          |
|          |                        | Drilling was commenced           | September 17. 19 69                                            |
| L        | Plat of 640 acres)     | Drilling was completed           | October 23, 19.69                                              |
| Elevatio | on at top of casing in | feet above sea level             | Total depth of well352 feet                                    |
| State w  | hether well is shallo  | w or artesian artesian Dept      | h to water upon completion                                     |
| Section  | 2                      | PRINCIPAL WATER-BEARING STF      | h to water upon completion<br>RATA May 2.4, 1979 U.L. 90° STAC |

| Section | 2     |         | PRINC        | IPAL WATER-BEARING STRATA              |
|---------|-------|---------|--------------|----------------------------------------|
| No.     | Depth | in Feet | Thickness in | Description of Water-Bearing Formation |
|         | From  | То      | Feet         | -                                      |
| 1       | 92    | 240     | 148          | Rough Rock                             |
| 2       | 249   | 352     | 103          | Water Rock (rough)                     |
| 3       |       |         |              |                                        |
| 4       |       |         |              |                                        |
| 5       |       |         |              |                                        |

| Section 3 | \$     |         |       | RECOR  | D OF CAS | ING        |              |    |  |
|-----------|--------|---------|-------|--------|----------|------------|--------------|----|--|
| Dia       | Pounds | Threads | Depth |        | Feet     | Type Shoe  | Perforations |    |  |
| ln.       | ft.    | in      | Top   | Bottom | Teet     | Type Suce  | From         | To |  |
| 9-5/8     | 32     |         | 0     | 240    | 240      | Halliburto | n None       |    |  |
|           |        |         |       |        |          |            |              |    |  |
|           |        |         |       |        |          |            |              |    |  |
|           |        |         |       |        |          |            |              |    |  |

Section 4

2

18.5

# RECORD OF MUDDING AND CEMENTING

| De | pth in Fe |   | Diameter<br>Hole in in. | Tons<br>Clay | No. Sacks of<br>Cement | Methods Used              |
|----|-----------|---|-------------------------|--------------|------------------------|---------------------------|
| 0  | 24        | 0 | 121/1                   | 220          | 150                    | Denton Well Cementing Co. |
|    |           |   |                         |              |                        |                           |

Section 5

## PLUGGING RECORD

| Name o   | of Plugging | Contractor         | L                 | icense No            |     |
|----------|-------------|--------------------|-------------------|----------------------|-----|
| Street a | and Number  |                    | City S            | tate                 |     |
| Tens of  | Clay used   | Tons of Roughage 1 | used Type of a    | roughage             |     |
| Pluggin  | ng method u | sed                | Date Plugged      |                      | .19 |
| Pluggin  | ng approved | b <b>y:</b>        | Cement Plugs were | e placed as follows: |     |

| Basin Supervisor               | No. | Depth<br>From | of Plug<br>To | No. of Sacks Used |
|--------------------------------|-----|---------------|---------------|-------------------|
| FOR USE OF STATE ENGINEER ONLY |     |               |               |                   |
| File No 1979. 5540 Use Pecon   | ler | L             | ocation No.   | 9.24. 28-1113     |

.113172

V

v

Section 6

# LOG OF WELL

| Depth in Feet                          |             | Thickness |                                        |                                       |
|----------------------------------------|-------------|-----------|----------------------------------------|---------------------------------------|
| From                                   | То          | in Feet   | Color                                  | Type of Material Encountered          |
| 0                                      | 8           | 8         |                                        | Soil                                  |
| 8                                      | 18          | 10        |                                        | Sand-Gravel                           |
| 18                                     | 43          | 25        |                                        | Clay                                  |
| 43                                     | 52          | 9         |                                        | Clay & Gravel                         |
| 52                                     | 68          | 16        | •                                      | Clay & Gyp Rock                       |
| <sup>.</sup> 68                        | 92          | 24        |                                        | Redbed - Gyp Rock                     |
| 92                                     | 150         | 58        | ·                                      | Rough Rock (lost circulation)         |
| 150                                    | 235         | 85        |                                        | 1 and 2 foot Drops                    |
| 235                                    | 249         | 14        |                                        | Lime (set casing 240!)                |
| 249                                    | 282         | 33        |                                        | Lime (water rock)                     |
| 282                                    | 288         | 6         |                                        | Hard Lime                             |
| 288                                    | 315         | 27        |                                        | Lime (water rock)                     |
| 315                                    | 319         | 4         |                                        | Hard Lime                             |
| 319                                    | 352         |           |                                        | Lime Rock (water rock)                |
|                                        |             |           | ·                                      |                                       |
|                                        |             |           |                                        |                                       |
|                                        |             |           |                                        |                                       |
| <u></u>                                |             |           |                                        |                                       |
|                                        |             |           |                                        |                                       |
| <u></u>                                |             |           |                                        | · .                                   |
|                                        |             |           |                                        |                                       |
|                                        |             |           |                                        | · · · · · · · · · · · · · · · · · · · |
|                                        |             |           | · ·                                    |                                       |
|                                        |             | 1         | ······································ | · · · · · · · · · · · · · · · · · · · |
| •••••••••••••••••••••••••••••••••••••• | · · · · · · |           |                                        |                                       |
|                                        | -           |           |                                        |                                       |
|                                        |             |           | · · · · · · · · · · · · · · · · · · ·  |                                       |
| <u></u>                                | -           |           |                                        |                                       |
|                                        |             |           | · · ·                                  |                                       |
|                                        |             |           |                                        |                                       |

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

· ;

Charles E. Wyche, Supt.

on DBSTA Fig. 2-5 VELL RECORD

Well # 5

وبري

1.5%

' File No.

5 1

RA-3423

INSTRUCTIONS: This form should be typewritten, and filed in the office of the State Engineer, (P.O. Box 1079) Santa Fe, New Mexico, unless the well is situated in the Roswell Artesian Basin, in which case it should be filed in the office of the Artesian Well Supervisor, Roswell, New Mexico. Section 5 should be answered only if an old artesian well has been plugged. All other sections should be answered in full in every case, regardless of whether the well drilled is shallow or artesian in character. This report must be subscribe I and sworn to before a Notary Public.

| Sec. 1                                                                                                      |                                                                               | •                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                             |                                                                               |                      | Owne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er of well                                                                                       | Oscar        | White                                                                                              |                                                                                                         |                                                                                    |                                       |
| N.W-                                                                                                        |                                                                               | N.E                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    | and                                   |
|                                                                                                             |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    | •                                                                                                       |                                                                                    |                                       |
| SW                                                                                                          |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               | - J.L                | Drilling Contractor . Oonrad Keyes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             | Plat of 640 s                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         | •                                                                                  | ······                                |
|                                                                                                             | ate Well Ac                                                                   | •                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    | ······                                |
|                                                                                                             |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    | 19                                    |
|                                                                                                             | -                                                                             | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  | •••••        |                                                                                                    |                                                                                                         | •••••                                                                              |                                       |
| Sec. 2                                                                                                      |                                                                               | ••••                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  | TER-BEAR     | ING STRAT                                                                                          | · .                                                                                                     |                                                                                    |                                       |
|                                                                                                             |                                                                               | to                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
| •                                                                                                           |                                                                               |                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |              | -                                                                                                  |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               |                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
| No. 4, from                                                                                                 |                                                                               | to                   | <b>.</b> . <b>,</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thickness                                                                                        | In feet      | <b>,</b>                                                                                           | Formation                                                                                               |                                                                                    |                                       |
| No. 5, from                                                                                                 |                                                                               | to                   | · · · · · <b>,</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thickness                                                                                        | s in feet    | • • • • • • • • • • • •                                                                            | Formation                                                                                               |                                                                                    | · · · · · · · · · · · · · · · · · · · |
| Sec. 3                                                                                                      |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RECO                                                                                             | RD OF CAS    | SING                                                                                               |                                                                                                         |                                                                                    |                                       |
| DIAMETER                                                                                                    | POUNOS                                                                        | THREADS              | NAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E OF                                                                                             | FEET OF      | TYPE OF                                                                                            | PERFO                                                                                                   | RATED                                                                              |                                       |
| IN INCHES                                                                                                   |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  | CASING       | SHOE                                                                                               | FROM                                                                                                    | то                                                                                 | PURPOSE                               |
|                                                                                                             |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               | -                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               |                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |              |                                                                                                    |                                                                                                         |                                                                                    |                                       |
| <br><br>Sec. 4                                                                                              |                                                                               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CORD OF                                                                                          | MUDDING      |                                                                                                    |                                                                                                         |                                                                                    |                                       |
|                                                                                                             |                                                                               |                      | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                |              | 1                                                                                                  |                                                                                                         |                                                                                    | TONS OF                               |
| Sec. 4<br>DIAMETE<br>HOLE IN I                                                                              | R OF                                                                          | NUMBER OF OF OF CEME | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                | MUDDING      | 1                                                                                                  | ENTING<br>SPECIFIC<br>OF N                                                                              |                                                                                    | TONS OF<br>CLAY USED                  |
| DIAMETE                                                                                                     | R OF                                                                          |                      | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                |              | 1                                                                                                  | SPECIFIC                                                                                                |                                                                                    |                                       |
| DIAMETE                                                                                                     | R OF                                                                          |                      | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                                                                                                |              | 1                                                                                                  | SPECIFIC                                                                                                |                                                                                    |                                       |
| DIAMETE                                                                                                     | R OF                                                                          |                      | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                                                                                                |              | 1                                                                                                  | SPECIFIC                                                                                                |                                                                                    |                                       |
| DIAMETE                                                                                                     | R OF                                                                          |                      | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                                                                                                |              | 1                                                                                                  | SPECIFIC                                                                                                |                                                                                    |                                       |
|                                                                                                             | R OF                                                                          |                      | RE<br>BACKS<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  | ETHODS US    | ED                                                                                                 | SPECIFIC<br>OF N                                                                                        |                                                                                    |                                       |
| DIAMETE<br>HOLE IN I                                                                                        |                                                                               | OF CEME              | RE<br>SACKS<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LUGGIN                                                                                           | ETHODS US    | ED                                                                                                 | SPECIFIC<br>OF N                                                                                        |                                                                                    | CLAY USED                             |
| Bec, 5<br>Well is loca                                                                                      | IR OF<br>INCHES                                                               | OF CEME              | RE<br>BACKS<br>NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  | ETHODS US    | ED<br>OF OLD W<br>Section                                                                          | SPECIFIC<br>OF N                                                                                        | Townshi                                                                            | CLAY USED                             |
| Bec. 5<br>Well is loca<br>Range                                                                             | IR OF<br>INCHES                                                               | OF CEMEN             | RE<br>BACKB<br>NT<br>P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M<br>                                                                                            | ETHODS US    | ED<br>OF OLD W<br>Section                                                                          | SPECIFIC<br>OF N                                                                                        | Townshi                                                                            | CLAY USED                             |
| Bec, 5<br>Well is loce<br>Range                                                                             | ated in the                                                                   | OF CEMEN             | RE<br>BACKS<br>NT<br>P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LUGGING                                                                                          | G RECORD     | ED<br>OF OLD W<br>Section                                                                          | SPECIFIC<br>OF N<br>ELL                                                                                 | Townshi                                                                            | P                                     |
| Bec. 5<br>Well is loca<br>Range<br>Street and<br>Tons of cla                                                | ated in the                                                                   | OF CEMEN             | RE<br>BACKS<br>NT<br>P<br>Lugging c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M<br>                                                                                            | G RECORD     | ED<br>OF OLD W<br>Section                                                                          | ELL                                                                                                     | Townshi                                                                            | CLAY USED                             |
| Bec, 5<br>Well is loca<br>Range<br>Street and<br>Tons of cla                                                | ated in the<br>Number                                                         | OF CEMEN             | RE<br>BACKS<br>NT<br>P<br>Lugging c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M<br>                                                                                            | G RECORD     | ED<br>OF OLD W<br>Section                                                                          | ELL                                                                                                     | Townshi                                                                            | CLAY USED                             |
| Bec, 5<br>Well is loca<br>Range<br>Street and<br>Tons of cla                                                | ated in the<br>Number<br>y used                                               | OF CEMEN             | RE<br>BACKB<br>NT<br>P<br>A<br>Jugging c<br>Jugging c<br>Jugging c<br>S:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M<br>                                                                                            | G RECORD     | ED<br>OF OLD W<br>Section<br>Office<br>plugging ap                                                 | SPECIFIC<br>OF N<br>ELL<br>                                                                             | Townshi<br>f rougha<br>Artesian                                                    | CLAY USED                             |
| Bec, 5<br>Well is loce<br>Range<br>Street and<br>Tons of cla<br>                                            | ated in the<br>Number<br>y used<br>gs were pla                                | OF CEMEN             | RE<br>BACKS<br>NT<br>P<br>Jugging c<br>Jugging c<br>s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | G RECORD<br> | ED<br>OF OLD W<br>Section<br>Office<br>plugging ap                                                 | SPECIFIC<br>OF N<br>ELL<br>Type o<br>proved by<br>s of cemen                                            | Townshi<br>f rougha<br>Artesian                                                    | CLAY USED                             |
| Bec. 5<br>Well is loca<br>Range<br>Street and<br>Tons of cla<br><br>No. 1 was p<br>No. 2 was                | ated in the<br>Number<br>y used<br>gs were pla<br>placed at .<br>placed at    | OF CEMEI             | RE<br>BACKS<br>NT<br>P<br>P<br>S<br>Jugging c<br>Jugging | M<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | G RECORD<br> | ED<br>OF OLD W<br>Section<br>Office<br>plugging ap<br>ber of sacks                                 | ELL<br>Type o<br>proved by<br>s of cement                                                               | Townshi<br>f roughai<br>f roughai<br>Artesian<br>i used<br>t used                  | p                                     |
| Bec, 5<br>Well is loca<br>Range<br>Street and<br>Tons of cla<br><br>No. 1 was p<br>No. 2 was<br>No. 3 was p | ated in the<br>sted in the<br>y used<br>gs were pla<br>placed at<br>placed at | OF CEMEN             | RE<br>BACKS<br>NT<br>P<br>augging c<br>Tons c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M<br>                                                                                            | G RECORD<br> | ED<br>OF OLD W<br>Section<br>Office<br>plugging ap<br>ber of sacks<br>ber of sacks                 | ELL<br>of m<br>ELL<br>Type o<br>proved by<br>s of cemen<br>s of cemen<br>s of cemen                     | Townshi                                                                            | p                                     |
| Bec, 5<br>Well is loca<br>Range<br>Street and<br>Tons of cla<br><br>No. 1 was p<br>No. 2 was<br>No. 3 was p | ated in the<br>Number<br>gs were pla<br>placed at<br>placed at<br>placed at   | OF CEMEI             | RE<br>BACKB<br>NT<br>P<br>A<br>Jugging c<br>Jugging c<br>S:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M<br>                                                                                            | G RECORD<br> | ED<br>OF OLD W<br>Section<br>Office<br>plugging ap<br>ber of sacks<br>ber of sacks<br>ber of sacks | ELL<br>of m<br>ELL<br>Type o<br>proved by<br>s of cements<br>of cements<br>s of cements<br>s of cements | Townshi<br>Townshi<br>f rougha<br>Artesian<br>t used<br>t used<br>t used<br>t used | CLAY USED                             |

RA-3423

9.24.20.410

| FROM (depth   <br>0 - 12                        | ) (depth in feet)           | THICKNESS IN FEE                                          |                         |
|-------------------------------------------------|-----------------------------|-----------------------------------------------------------|-------------------------|
|                                                 |                             |                                                           | CLASSIF JN OF FORMATION |
|                                                 |                             |                                                           | Śoil                    |
| 12 - 45                                         |                             | •                                                         | Red Sandy clay          |
| 45 - 85                                         |                             |                                                           | Red Sandy Clay          |
| 85 -115                                         |                             | · · · · · · · · · · · · · · · · · · ·                     | Gyp (water)             |
|                                                 |                             |                                                           |                         |
| 115 - 130                                       |                             |                                                           | Anhydrite               |
| 130 - 142                                       |                             |                                                           | Gyp & shale             |
| 142 - 165                                       |                             |                                                           | Anhydrite               |
| 165 - 175                                       |                             |                                                           | Lime                    |
| 175 - 180                                       |                             |                                                           | Shale & Lime            |
| 180 - 220                                       |                             |                                                           | Broken Lime (water)     |
| 220 - 226                                       |                             |                                                           | Clay & Shale            |
| 226 - 254                                       |                             |                                                           | Sand Lime (water)       |
| 254 - 263                                       |                             |                                                           | Yellow clay             |
|                                                 | · · ·                       |                                                           |                         |
| 263 - 285                                       |                             |                                                           | Broken Lime             |
|                                                 |                             |                                                           | Sandy Lime (water       |
| 288 - 300                                       |                             |                                                           | Broken Lime             |
| 300 - 335                                       |                             |                                                           | Sandy Lime              |
|                                                 |                             |                                                           | Broken Lime(water)      |
| 340-367 360                                     |                             |                                                           | Brakenzkizz Gray lime   |
|                                                 |                             |                                                           | Broken Lime (water)     |
| 360 - 367                                       |                             |                                                           | Broken time (water)     |
|                                                 |                             | _                                                         |                         |
| <u>    360          367                    </u> |                             |                                                           | Gray Lime               |
|                                                 | Set 156 1 9"                |                                                           | Gray Lime               |
|                                                 | Set 156 ! 9"<br>Set 170! 6" | 10 <sup>V</sup> casing<br>8 <sup>1</sup> "casing perforat | Gray Lime               |
|                                                 |                             |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |
|                                                 | Set 170' 6"                 |                                                           | Gray Lime               |

ЪĄ

Form WR-23 LILLU GR. LOG

STATE ENGINEER OFFICE

# WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed. Section 1

Section 1

|    |           |          |   | (A) Owner of well daile lonn                                   |
|----|-----------|----------|---|----------------------------------------------------------------|
|    |           |          |   | Street and Number. Clovin Star Souto                           |
|    |           |          |   | City Roguell State lieu lierico                                |
|    |           |          |   | Well was drilled under Permit NoR.A. 3123and is located in the |
|    |           |          |   | _S_E_14                                                        |
|    |           |          | 1 | (B) Drilling Contractor                                        |
|    |           |          | 1 | Street and Number. 413 East 23rd. Bt.                          |
|    |           | · ·      |   | City Rosvall State lice lice lice                              |
|    |           | •        |   | Drilling was commenced                                         |
|    |           |          |   | Drilling was completed Apr. 25 19 59                           |
| (P | lat of 64 | 0 acres) |   |                                                                |

Elevation at top of casing in feet above sea level... Artosian Depth to water upon completion..... <u>.</u> State whether well is shallow or artesian.

Section 2

#### PRINCIPAL WATER-BEARING STRATA

| No. | Depth in Feet |    | Thickness in | Description of Water-Bearing Formation       |
|-----|---------------|----|--------------|----------------------------------------------|
|     | From          | То | Feet         |                                              |
| 1   |               |    |              | Porous Linestons in Broken Stratified Leyers |
| 2   |               |    |              |                                              |
| 3   |               |    |              |                                              |
| 4   |               |    |              |                                              |
| 5   |               |    |              |                                              |

#### RECORD OF CASING Section 3 Depth Perforations Dia Pounds Threads Feet Type Shoe ſŁ. Top Bottom From To in. in e -16-120 1:0 枊 ror. σ 10 3 42 8 112 300 263 rog. 8 5/0 32 8 355 11.5 0 300 415

Section 4

#### RECORD OF MUDDING AND CEMENTING

| Depth    | in Feet | Diameter    | Tons | No. Sacks of | Methods Used |
|----------|---------|-------------|------|--------------|--------------|
| From     | To      | Hole in in. | Clay | Cement       |              |
|          |         |             |      |              |              |
|          |         |             |      | -            |              |
|          |         |             |      |              |              |
| <u> </u> |         |             |      |              |              |
|          | )       |             |      |              |              |

| Section | 5 |
|---------|---|
| Dection |   |

44

#### PLUGGING RECORD

| Name of Plugging Contractor |         | License                  | No |
|-----------------------------|---------|--------------------------|----|
| Street and Number           | City    | State                    |    |
| Tons of Clay used           | ge used |                          | e  |
| Plugging method used        |         | Date Plugged             |    |
| Plugging approved by:       |         | Cement Plugs were placed |    |

|               | Basin Supervisor    | . No | Depth<br>From | of Plug<br>To | No. of Sacks Used |
|---------------|---------------------|------|---------------|---------------|-------------------|
| FOR USE O     | STATE ENGINEER ONLY |      |               |               |                   |
| Date Received | FILED               | _    | -             |               |                   |
| Date neceived | LANY 2 3 YOUR D.    |      | -             |               |                   |
| File No. A-3/ | DEFICE              | ป    | L             | ocation No.   | 9.24.15.413       |

Section 6

# LOG OF WELL

|      |    | Thickness | Color | There of Material Transmission        |
|------|----|-----------|-------|---------------------------------------|
| From | То | in Feet   | Color | Type of Material Encountered          |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       | · · · · · · · · · · · · · · · · · · · |
|      |    |           |       |                                       |
|      |    |           |       | ·                                     |
|      |    |           |       |                                       |
|      | 1  |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    | -         |       |                                       |
|      |    |           |       |                                       |
|      |    | -         |       |                                       |
|      |    |           |       |                                       |
|      |    | -         |       |                                       |
|      |    |           |       |                                       |
|      |    | _         |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      | -  |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |
|      |    |           |       |                                       |

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor-

| •  |    | Well Driller |
|----|----|--------------|
| J. | De | Snith        |

This Wall was filled in below the easing sent 6 300 W/ broken percus Line. I Cleaned out envings & set 60 ft. of 8 5/8 perforated liner in bettem, also I set a Carrigan tapered wedge type lead seal & had leakage test run on Wall. Test proved C.K., no leakage. Installed Pump & tested Wall Water quality C.K. & quantity appr 0 G.P.M. C 70 ft. Head.

# Well #15 (?) on DBS \$ A Fig 2-5

# Form WR-ISTELD ENG. \_ LUG

1

# STATE ENGINEER OFFICE WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

# (A) Owner of well ALFNA/VA. Joe P. Holcan

|                     | Street and Number                                                                                |
|---------------------|--------------------------------------------------------------------------------------------------|
|                     | City Rowell I. M. State                                                                          |
|                     | Well was drilled under Permit No. RA 3957 and is located in the                                  |
|                     | 14 14 of Section 15 Twp. 9.5 Rge, 238 24E                                                        |
|                     | (B) Drilling Contractor Murray Drill. Co. License No. WD100<br>Street and Number Auto Route West |
|                     | Street and Number                                                                                |
|                     | City Rosvell, N. M. State                                                                        |
|                     | Drilling was commenced 7/76/19 12/15/58 19                                                       |
|                     | Drilling was completed 1/16/59 19                                                                |
| (Dist of 640 scree) | •                                                                                                |

(Plat of 640 acres)

Total depth of well 375 Elevation at top of casing in feet above sea level..... 55 · State whether well is shallow or artesian Artesian Depth to water upon completion.

| Section | 2 |       |
|---------|---|-------|
|         |   | <br>- |

# PRINCIPAL WATER-BEARING STRATA

| No.  | No Depth in Feet |     | Thickness in | Description of Water-Bearing Formation  |  |  |
|------|------------------|-----|--------------|-----------------------------------------|--|--|
| 110. | From             | То  | Feet         | 1 · · · · · · · · · · · · · · · · · · · |  |  |
| 1    | 40               | 55  | 15           | sand and water                          |  |  |
| 2    | 368              | 375 | 7            | lime and wator                          |  |  |
| 3    |                  |     |              |                                         |  |  |
| 4    |                  |     |              |                                         |  |  |
| 5    |                  |     |              |                                         |  |  |

# **RECORD OF CASING**

| Dia | Pounds | Threads | Dej    | pth    | Feet Type Shoe |            | Perforations |            |              |  |
|-----|--------|---------|--------|--------|----------------|------------|--------------|------------|--------------|--|
| in. | ft.    | In      | Тор    | Bottom | reet           | Type Shoe  | From         | То         | -            |  |
| 704 | 21+    |         | 0      | 370    | 370            | Comented   | by Denton,   | rtosia, N. | <u> </u> 14. |  |
|     |        | 45      | 1      |        | ley Ce         |            | by State     | angineer   | _            |  |
|     |        | Smaple  | a brew | d ap   | y JIM H        | hite on 10 | SECTOR.      |            | -            |  |
|     | ,      |         |        |        |                |            |              |            | -            |  |

Section 4

Section 3

RECORD OF MUDDING AND CEMENTING

| Depth<br>From | in Feet<br>To | Diameter<br>Hole in in. | Tons<br>Clay | No. Sacks of<br>Cement | Methods Used |
|---------------|---------------|-------------------------|--------------|------------------------|--------------|
|               |               |                         |              |                        |              |
|               |               |                         |              |                        |              |
|               |               |                         |              |                        |              |

# Section 5

1

# PLUGGING RECORD

| Name of Plugging Con  | tractor               | License No                          |    |
|-----------------------|-----------------------|-------------------------------------|----|
| 00 2                  |                       | State                               |    |
|                       |                       |                                     |    |
| Tons of Clay used     | Tons of Eoughage used | Type of roughage                    |    |
| Plugging method used. |                       | Date Plugged                        | 19 |
| Plugging approved by: |                       | Cement Plugs were placed as follows |    |

| Basin Supervisor               | No. | Depth    | h of Plug  | No. of Sacks Used |
|--------------------------------|-----|----------|------------|-------------------|
| FOR USE OF STATE ENGINEER ONLY |     |          |            |                   |
| Date Received                  |     |          |            |                   |
| The solution                   |     |          | 1          |                   |
| File No. PA-3957 Use D.        | 52  | <u> </u> | ocation No | 9.24.15.424       |

Section 6

# LOG OF WELL

| Depth in Feet Thickness |             | (-)        | The of Mala-1-1 The section of | -                            |           |
|-------------------------|-------------|------------|--------------------------------|------------------------------|-----------|
| From                    | То          | in Feet    | Color                          | Type of Material Encountered |           |
|                         |             |            |                                |                              | -         |
| <del></del>             | .,          |            |                                |                              | -         |
| 0                       | 40          | 40         | Red                            | Sandy Clay                   | -         |
| 40                      | 55          | 15         |                                | Sand and water               | _         |
| .55                     | 360         | 305        | Red ·                          | Sandy Clay                   | _         |
| 360                     | 368         | 8          | Gray                           | Shale                        | _         |
| 368                     | 375         | 8          |                                | Lime and water               |           |
|                         | 517         |            |                                |                              | -         |
|                         |             |            | :                              |                              | _         |
|                         |             |            |                                |                              |           |
|                         |             |            |                                | · ·                          | _         |
|                         |             |            |                                |                              | -         |
|                         | 1           |            | ·                              | -                            | -         |
|                         |             |            |                                |                              | -         |
|                         |             |            |                                |                              | -         |
|                         | ·           | x .        |                                |                              | -         |
|                         | -           |            |                                |                              | -         |
|                         | 1           | -          |                                |                              | -         |
|                         |             |            |                                |                              | -         |
|                         |             | _          |                                |                              | -         |
|                         |             |            |                                |                              | -         |
|                         | -           |            |                                |                              | -         |
|                         |             |            | ·                              |                              |           |
|                         |             | - <u> </u> |                                |                              | -         |
|                         |             |            |                                |                              | -         |
|                         |             |            |                                |                              | -         |
|                         |             |            |                                |                              |           |
|                         |             |            |                                |                              | -         |
|                         | · · · · · · |            |                                |                              | <b></b> . |
|                         |             |            |                                |                              |           |
|                         |             |            |                                |                              | -         |

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

CH Murray Well Driller

(alig

Form WR-23

# STATE ENGINEER OFFICE

Well #15-1?) on DBS # A Fig. 2-5-(record of well deepening)

# WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

| Section |  |
|---------|--|
| Dection |  |

| ection 1            | (A) Owner of well Upe P. McLean                                                                                                                                                                                                                                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Street and Number <u>C40Uis</u> <u>Star</u> <u>Route</u><br>City <u>RosuleLL</u> State <u>M. Mex.</u><br>Well was drilled under Permit No. <u>RA. 3957</u> and is located in the<br><u>Center on cast Linker</u> Section <u>15</u> Twp <u>9-5</u> Rge <u>24 E</u><br>(B) Drilling Contractor <u>V. D. Salla</u> License No. <u>RU. 0. 278</u> |
|                     | Street and Number 4/3 C: 2.3 <sup>rd</sup><br>City <u>DOSWELL</u><br>Drilling was commenced 46, 20, 1960<br>Drilling was completed May 20, 1960                                                                                                                                                                                               |
| (Plat of 640 acres) |                                                                                                                                                                                                                                                                                                                                               |

415 Elevation at top of casing in feet above sea level State whether well is shallow or artesian AREASIAN. Depth to water upon completion 47.41

Section 2

#### PRINCIPAL WATER-BEARING STRATA

| No. | Depth in Feet |     | Thickness in | Description of Water-Bearing Formation   |  |  |
|-----|---------------|-----|--------------|------------------------------------------|--|--|
| MU. | From          | To  | Feet         |                                          |  |  |
| 1   | 410           | 115 | 5-           | PLACUS Line                              |  |  |
| 2   |               |     |              |                                          |  |  |
| 3   |               |     |              |                                          |  |  |
| 4   |               |     |              | · · · · · · · · · · · · · · · · · · ·    |  |  |
| 5   |               |     |              | n na |  |  |

Section 3

# RECORD OF CASING

| section a |        |                                     |                | RECOR  |           |              |      | •. |
|-----------|--------|-------------------------------------|----------------|--------|-----------|--------------|------|----|
| Dia       | Pounds | Pounds Threads Depth Feet Type Shoe | ada Depth Read |        | True Shee | Perforations |      |    |
| in.       | ſt.    | in                                  | Top            | Bottom | reet      | Type Shoe    | From | To |
| 112       | 15-    | 2 ·                                 | Nº 1.2         | 410    | 11.2      | ACK.         | NONE |    |
|           |        |                                     |                |        |           |              |      |    |
|           |        |                                     |                |        |           |              |      |    |
|           |        |                                     |                |        |           | •            |      |    |

Section 4

### RECORD OF MUDDING AND CEMENTING

| Depth | in Feet | Diameter    | Tons  | No. Sacks of | Methods Used           |
|-------|---------|-------------|-------|--------------|------------------------|
| From  | To      | Hole in in. | Clay  | Cement       | Mellois Osci           |
| 290   | 405-    | 612         | اتی ا | 15           | Dunp Builder a provent |
|       |         |             |       |              | Phila                  |
|       |         |             |       |              |                        |
|       | ·/      |             |       |              |                        |

#### Section 5

#### PLUGGING RECORD

| Name of Plugging Contractor | ·                     | License No                     |        |
|-----------------------------|-----------------------|--------------------------------|--------|
| Street and Number           | City                  | State                          |        |
| Tons of Clay used           | Tons of Roughage used | Type of roughage               |        |
| Plugging method used        |                       | Date Plugged                   | 19     |
| Plugging approved by:       |                       | Cement Plugs were placed as fo | llows: |

#### Depth of Plug No. No. of Sacks Used Basin Supervisor From То FOR USE OF STATE RNGINGER ONLY INTE ENGINEER OFFICE Date Received 81:01MA EIJUL OG File No 84 - 3957 Location No. 9.24.15 an Use

| Sec | tio | n | 6 |
|-----|-----|---|---|
|-----|-----|---|---|

| Section 6     |         | 10                   | G OF WELL |                                                  |  |  |
|---------------|---------|----------------------|-----------|--------------------------------------------------|--|--|
| Depth<br>From | in Feet | Thickness<br>in Feet | Color     | Type of Material Encountered                     |  |  |
|               |         |                      |           |                                                  |  |  |
|               |         |                      |           |                                                  |  |  |
| 370           | 4.00    | 10                   | GRAY      | Lime POROVS Lime High<br>Salt & mineral Constant |  |  |
| 400           | 410     | 10                   | GIRAY     | Ling Schip                                       |  |  |
| 410           | 415     | 5-                   | Gany      | Solt conteret Less Mineral                       |  |  |
|               |         |                      |           |                                                  |  |  |
|               |         |                      | • •       |                                                  |  |  |
|               |         |                      |           |                                                  |  |  |
|               |         |                      |           |                                                  |  |  |
|               |         |                      |           |                                                  |  |  |
|               |         |                      |           |                                                  |  |  |
| •             |         |                      | · · ·     |                                                  |  |  |
|               |         |                      |           |                                                  |  |  |
|               |         |                      |           |                                                  |  |  |
|               |         | -                    |           |                                                  |  |  |
|               |         |                      |           |                                                  |  |  |
|               |         |                      |           |                                                  |  |  |

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

John Well Driller

This well had very Bid we tor Menty indiction to but what muchable ~ ( first tried plugging off Bad water but was unable to get sufficient seal. ~ 17 mor Augure of to 410 x conducted in dalid 5 /2 m diner Let same set. 72 he & Doubled out this & Reporced to 415 minul content when I owned and alco salt Content was Lowened Forme, 25 & From 46 1500 P.F.M.

Well # 16 on DBS&A Fig. 2-5

# Form WR-23 FIELD ENGR. LOG

# STATE ENGINEER OFFICE

# WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed. )

Section 1

| Section X                     | (A) Owner of well UC3 R Mª Clair           |                       |
|-------------------------------|--------------------------------------------|-----------------------|
|                               | Street and Number CLOVIS STAR ROUZ         | 1 e                   |
|                               | City Resulett                              | State CleviMexico     |
|                               | Well was drilled under Permit No. A. 312.C | and is located in the |
|                               | NIN 4 ASE 14 Stan 4 of Section 15          | Twp. 95. Rge. 2.4 C   |
|                               | (B) Drilling Contractor J. D. Smith        | License No. Wo. 278   |
|                               | Street and Number Route 1, Bax             | 507                   |
|                               | - City Raswell                             | State New/Mexico      |
|                               | Drilling was commenced Mov. 15             | 19.65                 |
|                               | Drilling was completed MAR 12              | 19.66                 |
| (Plat of 640 acres)           |                                            |                       |
| Elevation at top of casing in | feet above sea levelTotal depth of         | well 345              |
| State whether well is shallow | v or artesian ARTESIAN Depth to water up   | oon completion 66     |

Section 2

# PRINCIPAL WATER-BEARING STRATA

| No. | Depth in Feet         Thickness in           From         To         Feet |      |    | Description of Water-Bearing Formation |
|-----|---------------------------------------------------------------------------|------|----|----------------------------------------|
| 1   | 50                                                                        | 80   | 30 | L.Ton Conflome Rate Grovel & SANO      |
| 2   | 192                                                                       | 195  | 5  | 10030 11 11                            |
| 3   | 2.04                                                                      | 2.10 | 6  | Reasona w/water                        |
| 4   | 2.65                                                                      | 275  | 10 | CONGLOMENATE GROVEL W/No/og 130Hlevel  |
| 5   | 330                                                                       | 365  | 35 | POROUS Fissures GRAy Limestone W/water |

**RECORD OF CASING** Section 3

• •

| Dia     | Pounds | Threads | De  | pth    | Feet Type Shoe | Perforations     |       |     |
|---------|--------|---------|-----|--------|----------------|------------------|-------|-----|
| in.     | ſt.    | in      | Top | Bottom | A CCC          | reet Type Suce - | From  | То  |
| 134     | 48     | 8       | P   | 292    | 292            | Hower Gui        | . 4   |     |
| 16 0.0. | Yy in  | wichosa | 0   | 120    | 12:0           | Delles           | Non-4 |     |
| 10 34   |        | 10      | 276 | 365-   | 89             | Reg.             | 325   | 365 |
|         | ,      |         |     |        |                |                  |       |     |

| Section 4 | • | RECORD OF MUDDING AND CEMENTING |
|-----------|---|---------------------------------|
|           |   |                                 |

| Depth | in Feet | Diameter    | Tons | No. Sacks of | Methods Used                       |
|-------|---------|-------------|------|--------------|------------------------------------|
| From  | То      | Hole in in. | Clay | Cement       |                                    |
| 0     | 293     | 15-201      |      | 150 SKS NEAT | Pun 200 plusin Casin Quaser Press. |
|       | •       |             |      |              | "by Denton Oilwell Comentine (1.   |
| :     |         |             | •    |              | Artesini"                          |
|       |         |             |      |              |                                    |

| Section 5 | • | •• | PLUGGING RECORD |         |  |
|-----------|---|----|-----------------|---------|--|
|           |   |    |                 | · · · · |  |

| Name of Plugging Contractor |                      | License No       |
|-----------------------------|----------------------|------------------|
| Street and Number           | City,                | State            |
| Tons of Clay usedT          | ons of Roughage used | Type of roughage |
| Plugging method used        | Date                 | Plugged19        |

Plugging approved by:

Cement Plugs were placed as follows:

. •/

..

ł,

• •

| A dia in the Basin Supervisor     | No. | From | of Plug<br>To | No. of Sacks Used |
|-----------------------------------|-----|------|---------------|-------------------|
| Date Received :: 8 WW EZ WWW 9961 |     |      |               |                   |
| File No. RA - 3120 Use Ar         | -   | L    | ocation No.   | 9,24.15,241       |

| Depth  | in Feet  | Thickness |                 |                                          |
|--------|----------|-----------|-----------------|------------------------------------------|
| From   | То       | in Feet   | Color           | Type of Material Encountered             |
| 0_     | _10      | 10        | L.GRAY          | Tepsoil + Gypsym                         |
| 10     | 25-      | 15-       | L. Gray         | Gypsum                                   |
| 20-    | 50       | 25        | L. Tax          | CLAY & SAND                              |
| 50     | 20       | _30       | LITAN           | Conclamente Granch w/water               |
| 90     | 120      | 40        | Blue GRAY       | Blue Shala & Clay SchipiFico             |
| 120    | 172      | 52        | Rhuc GRay       | alue Shale & Gyp. Shalls                 |
| 172    | 192      | 20        | L. Pink         | HARE SAMESTONE W/CLNRhomeRAT.            |
| 192    | 195      | <u>`</u>  | L. Pina         | Lause Conchomenate W/Water               |
| 195-   | 204      | 9         | Rep.            | CLAY                                     |
| 2.04   | 210      | 6         | Rep             | SANA W/ WATER                            |
| 210    | 2.65     | 55-       | Reo             | Shale & Gyz. Shells                      |
| 265    | 2.75-    | 10        | L. Pink         | Conchemerate w/water de Eropeoting.      |
| 75-    | 286      | 11        | L. GRAV         | Shale & Defenic Line Shalls              |
| 86     | 293      | 7         | GRAY            | Limestrace                               |
| 1s     | e # 2    | 92.75     | 1311 × Ce.      | newter W/150/SKS Company )               |
| Ci., D | silleo p | Luc 20    | testes Casina   | Bailed Test BONIND. K. AFTER TOAR Erment |
| 293    | 330      | 37        | GRAY            | Lime                                     |
| 330_   | 365      | 35        | GRAY            | Fissuper Porous Limy W/WAI               |
|        |          |           |                 |                                          |
|        |          |           | • • • • • • • • |                                          |
|        |          | ÷         | • * *           |                                          |
|        | 3        |           |                 |                                          |
|        |          |           |                 |                                          |
|        |          |           |                 |                                          |
|        |          |           |                 |                                          |
|        |          |           |                 |                                          |
|        |          |           |                 |                                          |
|        |          | · ·       | · · · · · ·     |                                          |
|        |          |           |                 |                                          |
|        |          |           |                 |                                          |

the best of his know RA - 3/20The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

V. Jonitza Well Driller

Set 89 HT 10 34 PREFERENTED Linier BeLOW 276 ' Well Tested Supprision + Quanity & Quality .'

### Form WR-23

# STATE ENGINEER OFFICE WELL RECORD

# FIFI D ENGR. LOG

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

.... S

| ection 1 |            | (A) Owner of well                            | J. P. Mc Lean<br>Clovis Star Route |                        |
|----------|------------|----------------------------------------------|------------------------------------|------------------------|
|          |            | City Rosvell                                 | •                                  | State New Mexico       |
|          |            | <u>5 E. 1/4</u>                              |                                    | and is located in the  |
|          |            | (B) Drilling Contractor<br>Street and Number | J. D. Smith<br>413 East 23rd.      | License No. WD 278     |
|          | - <u> </u> | City<br>Drilling was commenced.              | Rogwell<br>Feb. 14                 | State New Mexico 19 59 |
|          |            | Drilling was completed                       | Mar 18                             | <u>19</u>              |

#### (Plat of 640 acres)

| Elevation at top of casing in feet above sea l | evelTot | al depth | of we | ell        |
|------------------------------------------------|---------|----------|-------|------------|
| State whether well is shallow or artesian      | Depth t | to water | uponi | completion |

Section 2

# PRINCIPAL WATER-BEARING STRATA

|     | Depth | in Feet | Thickness in | Description of Water-Bearing Formation            |
|-----|-------|---------|--------------|---------------------------------------------------|
| No. | From  | To      | Fcet         |                                                   |
| 1   |       |         |              | Not obtainable Due to nature of repair performed. |
| 2   |       |         |              |                                                   |
| 3   |       |         |              |                                                   |
| 4   |       |         |              |                                                   |
| 5   |       |         |              |                                                   |

| Section 3 | 3                  |    |       | RECORI | OF CAS | ING       | •            |    |  |
|-----------|--------------------|----|-------|--------|--------|-----------|--------------|----|--|
| Dia       | Dia Pounds Threads |    | Depth |        | Feet   | Type Shoe | Perforations |    |  |
| in.       | ft.                | in | Top   | Bottom | reet   | Type Shoe | From         | To |  |
| -13-3/8   |                    | 8  | 0     |        |        | Reg       | lione        |    |  |
| 10 3/4    | 32.75              | 8  | 100_  | 360    |        |           |              |    |  |
| 8 5/8     | 32                 | 8  | 245   | 365    | 120    | Ħ         | я            |    |  |
| 7         | 22                 | 8  | 170   | 360    | 210    | Π -       | at           |    |  |

Section 4

# RECORD OF MUDDING AND CEMENTING

| Depth<br>From | in Feet<br>To | Diameter<br>Hole in in. | Tons<br>Clay | No. Sacks of<br>Cement | Methods Used |
|---------------|---------------|-------------------------|--------------|------------------------|--------------|
|               |               |                         |              |                        |              |
|               |               |                         |              |                        |              |
|               |               |                         |              |                        |              |

## Section 5

#### PLUGGING RECORD

| Name of Plugging Contractor | License                  | No            |
|-----------------------------|--------------------------|---------------|
| Street and Number City      | State                    |               |
| Tons of Clay used           | Type of roughag          | ge            |
| Plugging method used        | Date Plugged             |               |
| Plugging approved by:       | Cement Plugs were placed | d as follows: |

| Basin Supervisor                                | No. | Depth<br>From | of Plug<br>To | No. of Sacks Used |
|-------------------------------------------------|-----|---------------|---------------|-------------------|
| Date Received                                   |     |               |               |                   |
| File No RA - 3/20 BOARD BUT AND STATE THE STATE |     | L             | ocation No.   | 9.24.15.424       |

Well #16 on DBS & A Fig. 2-5 (record of "salt water shutoff")

| lection 6 |         |                      | LOG   | OF WELL                                |  |  |  |  |
|-----------|---------|----------------------|-------|----------------------------------------|--|--|--|--|
| Depth     | in Feet | Thickness<br>in Feet | Color | Type of Material Encountered           |  |  |  |  |
| From      | То      | in reet              |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       | · · · · · · · · · · · · · · · · · · ·  |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
| ······    |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         | ······               |       | · · · · · · · · · · · · · · · · · · ·  |  |  |  |  |
|           |         |                      |       | ·                                      |  |  |  |  |
|           |         |                      |       | ·                                      |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
| ······    |         | _                    |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       | ······································ |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |
|           |         |                      |       |                                        |  |  |  |  |

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described well.

J. D. Smith

On this well I set & Comented 210 ft. 7 in. o.o. liner ( 380 suspended by gravel & Calseal plug w/ 25 sks. Neat Coment. Naited 72 hrs. then cleaned out hole below liner, to depth of 425 also set Carrigan Wedge type Lead seals @ 100 ft. & @ 170 ft., Well checked for leaks e via Bailer test. Test 0.K.

This was a falt water shut off.