

ENERGY TRANSFER PARTNERS

Transwestern Pipeline Company

December 19, 2013

Mr. Glenn von Gonten Environmental Bureau New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Mr. Dave Cobrain New Mexico Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6313

RECEIVED

DEC 20 2013

NMED Hazardous Waste Bureau

RE: Investigation Report Transwestern Compressor Station No. 9 Transwestern Pipeline Company, LLC Roswell, Chavez County, New Mexico NMOCD Case #GW-052/EPA ID NO. NMD986676955

Dear Messrs. von Gonten and Cobrain:

On March 13, 2013, the New Mexico Environment Department (NMED) issued a Stipulated Order (SO) to Transwestern Pipeline Company, LLC (Transwestern) that governs corrective action activities conducted within the Project Area at Transwestern's Compressor Station No. 9 (or Roswell Compressor Station). In addition, the SO indicates that the New Mexico Oil Conservation District (NMOCD) will continue to be the lead agency for the project with the NMED providing additional review.

In accordance with the terms of the Order, please find attached for your review and approval an *Investigation Report* documenting implementation of the investigation activities described in the March 2013 Amended Investigation Work Plan and Groundwater Monitoring Plan (IWP). The IWP was reviewed by the NMED and the NMOCD; approval for its implementation was received from the NMOCD on July 1, 2013.

If you have any questions or comments regarding this document, please do not hesitate to contact me at 210.870.2725 (office) or 281.740.0494 (cell).

Sincerely,

Sell Richard A Spell

Waste, Water, & Remediation Manager Transwestern Pipeline, LLC

Attachment: Investigation Report

Xc: Larry Campbell Laurie King Tim Gum Transwestern (electronic via email) US EPA Region 6 NMOCD Artesia District Office (w/o attachment)

711 Louisiana, Suite 900, Houston, Texas 77002 281-714-2027

INVESTIGATION REPORT TRANSWESTERN COMPRESSOR STATION NO. 9 (ROSWELL COMPRESSOR STATION) 6381 NORTH MAIN STREET ROSWELL, CHAVES COUNTY, NEW MEXICO EPA ID NO. NMD986676955

PREPARED FOR:

TRANSWESTERN PIPELINE COMPANY, LLC 711 LOUISIANA, SUITE 900 HOUSTON, TX 77002

PREPARED BY:

EARTHCON CONSULTANTS, INC. 14405 WALTERS ROAD, SUITE 700 HOUSTON, TEXAS 77014 281.240.5200

EarthCon Project No. 02.20120037.00

December 19, 2013

EarthCon Consultants, Inc. 14405 Walters Road, Suite 700 Houston, TX 77014 Phone: 281-240-5200 Fax: 281-201-3510 Toll-Free: 866-450-2169 www.earthcon.com Investigation Report Transwestern Compressor Station No. 9 (Roswell Compressor Station) 6381 North Main Street Roswell, Chaves County, New Mexico EPA ID No. NMD986676955

Prepared For:

Transwestern Pipeline Company, LLC 711 Louisiana, Suite 900 Houston, TX 77002

December 19, 2013

EarthCon Project No. 02.20120037.00

EarthCon Consultants, Inc. is submitting to Transwestern Pipeline Company, LLC (Transwestern) this *Investigation Report* for the Roswell Compressor Station in Chaves County, New Mexico. This report has been prepared for the exclusive use of and reliance by Transwestern, and may not be relied upon by any other person or entity without the express written authorization of EarthCon.

Any reliance, use, or re-use of this document (or the opinions, findings, conclusions, or recommendations if any represented herein), by parties other than those expressly authorized by EarthCon is at the sole risk of those parties. This report was prepared by or performed under the direction of the EarthCon Professionals listed below and approved by Transwestern.

Signed:

Gabrietalan

Gabriela Floreslovo Senior Project Engineer EarthCon Consultants, Inc.

J.D. Haines, LPG (Indiana) Principal Geologist EarthCon Consultants, Inc.

Richard A Spell Waste, Water, & Remediation Manager Transwestern Pipeline, LLC

Investigation Report Roswell Compressor Station Roswell, New Mexico

Table of Contents

EXEC 1.0 2.0 2.1	CUTIVE SUMMARY INTRODUCTION BACKGROUND Site Description	1 2
2.2	Surface Conditions	3
2.3	Subsurface Conditions	4
2.4	Remedial History	6
3.0 3.1	IMPLEMENTATION OF FIELD ACTIVITIES Scope of Activities	
3.2	Application Processing	9
3.3	Soil Boring and Sampling	9
3.4	Monitoring Well Construction and Groundwater Sampling	10
3.5	New Monitoring Well Survey	11
3.6	Well P&A Activities	11
3.7	Management of Investigation-Derived Waste	12
4.0 4.1	FIELD INVESTIGATION AND DATA EVALUATION FINDINGS Soil and Groundwater Conditions	
4.2	Regulatory Criteria	13
4.3	Soil Data Evaluation	14
4.4	Groundwater Data Evaluation	14
4.5	Waste Characterization Data Evaluation	14
6.0	REFERENCES	17

TABLES

Table 3-1	Monitoring Well Installation Details
Table 3-2	Groundwater Quality Parameters
Table 4-1	Groundwater Elevations
Table 4-2	Summary of Soil Analytical Results
Table 4-3	Summary of Groundwater Analytical Results

FIGURES

Figure 1-1	Site Location Map
Figure 1-2	Site Features
Figure 4-1	Groundwater Surface Elevations in the Uppermost Aquifer
Figure 4-2	Distribution of Dissolved Benzene in the Uppermost Aquifer
Figure 4-3	Distribution of Dissolved 1,1-DCE in the Uppermost Aquifer

APPENDICES

Appendix A	Copies of March 2013 IWP Figures
Appendix B	Well Installation Logs, OSE-Well Record and Log forms, and OSE-Plugging
	Record forms
Appendix C	Analytical Data Packages

EXECUTIVE SUMMARY

This document is an *Investigation Report* prepared by EarthCon Consultants, Inc. (EarthCon) on behalf of Transwestern Pipeline Company, LLC (Transwestern) for the Transwestern Compressor Station No. 9 (also known as the Roswell Compressor Station) property located at 6381 North Main Street in Roswell, New Mexico. On March 13, 2013, the New Mexico Environment Department (NMED) issued a Stipulated Order (SO) that governs activities conducted within the Project Area. Therefore, this *Investigation Report* was developed to comply with *Section IX – Reporting Requirements* of the SO.

This *Investigation Report* documents implementation of the investigation activities described in the March 2013 *Amended Investigation Work Plan and Groundwater Monitoring Plan (IWP)*. The *IWP* was reviewed by New Mexico Environment Department (NMED) and the New Mexico Oil Conservation Division (NMOCD); approval for its implementation was received from the NMOCD July 1, 2013.

The purpose of the additional investigations proposed in the *IWP* were to delineate the northern extent of the 1,1-Dichloroethene (1,1-DCE) groundwater plume identified in the Project Area, via installation and sampling of four new monitoring wells; plug and abandon (P&A) several monitoring wells that were no longer exhibiting detectable concentrations of the constituents-of-concern (COCs), as well as multiphase extraction (MPE) wells outside of the current groundwater plume. Permits for the proposed well installations and P&A activities were obtained from the State of New Mexico's Office of the State Engineer (OSE) prior to implementation.

Field activities were implemented between August 6 and August 16, 2013. Samples from subsurface soil near the water table and groundwater samples were collected from the new soil boring/monitoring wells installed and analyzed for volatile organic compounds by EPA Method 8260. Analytical results for the soil samples confirmed the absence of a residual soil source in the area investigated, and analytical results for the groundwater samples indicate that 1,1-DCE was delineated in the northern portion of the project area.

1.0 INTRODUCTION

This document is an *Investigation Report* prepared by EarthCon Consultants, Inc. (EarthCon) on behalf of Transwestern Pipeline Company, LLC (Transwestern) for the Roswell Compressor Station, Station No. 9, located at 6381 North Main Street in Roswell, New Mexico (see **Figure 1-1**, Site Location Map). For the purposes of this *Investigation Report*, the term "Facility" will be used to denote the entire compressor station and "Project Area" will be used to refer to the northeastern corner of the compressor station and the adjacent land leased from the State of New Mexico Trust.

On March 13, 2013, the New Mexico Environment Department (NMED) issued a Stipulated Order (SO) that governs activities conducted within the Project Area. This *Investigation Report* documents implementation of the investigation activities described in the March 2013 *Amended Investigation Work Plan and Groundwater Monitoring Plan (IWP)*. This *Investigation Report* was developed to comply with the IWP Section IX – Reporting Requirements of the SO. The *IWP* was submitted for review to the NMED and NMOCD; approval for its implementation was received from the NMOCD July 1, 2013; NMED reviewed the document and responded on July 3, 2013 indicating that they would not provide comments. The purpose of the additional investigations proposed in the *IWP* were to delineate the northern extent of the groundwater plume identified in the Project Area, via installation and sampling of four new monitoring wells; plug and abandon (P&A) several monitoring wells that were no longer exhibiting detectable concentrations of the constituents-of-concern (COCs), as well as multiphase extraction (MPE) wells outside of the current groundwater plume. The Project Team for Transwestern implementing the activities described in the *IWP* consists of EarthCon in the capacity of project management and reporting, with Cypress Engineering Services, Inc. (CES) conducting field services.

This *Investigation Report* is divided into six major sections. **Section 1** (this section) contains introductory information; **Section 2** contains background information for the project; **Section 3** contains a description of the investigation activities conducted within the Project Area; **Section 4** describes the findings of the field investigation and data evaluation process; **Section 5** provides a summary of findings and conclusions; and **Section 6** contains references cited in the text of this report. Tables, figures, and appendices follow the text of the report.

2.0 BACKGROUND

2.1 Site Description

The Facility is an active natural gas compression station located approximately 8 miles north of the city center of Roswell, New Mexico along the eastern side of U.S. Highway 285. The Facility is situated on approximately 77 acres of land in Sections 21 and 28 (T9S R24E), Chaves County, New Mexico (see **Figure 1-1**). The Facility is privately owned by Transwestern, while the remainder of Sections 21 and Section 28 are State Trust Land (Glenn, 1993). The Facility is specifically located in the SW¼ of the SW¼ of Section 21 (less West ±47.98 feet) and in the NW¼ of the NW¼ of Section 28 (less West ±47.98 feet) of Township 9S and Range 24E.

Site access is via U.S. Highway 285, and the entire Facility is secured by a chain-link fence with locked gates.

The Project Area encompasses a portion of the northwest corner of the Facility, and extends offsite to the northeast and east of the Facility to a 40-acre easement leased from the New Mexico State Land Office (SLO) State Trust Land for remediation and monitoring purposes (see **Figure 1-2**). A majority of the off-site wells are located within a fenced perimeter. The following is pertinent information regarding the Facility (DBS&A, 1997):

Facility name	Transwestern Compressor Station No. 9 (aka Roswell Compressor Station)
Facility address	Transwestern Pipeline Company, LLC 6381 North Main Street P.O. Box 1717 Roswell, New Mexico 88202-1717
Telephone number	(575) 625-8022
EPA I.D. number	NMD986676955
County and state	Chaves County, New Mexico
Facility legal description	SW1/4 of the SW1/4 of Section 21, T9S R24E, NW1/4 of the NW1/4 of Section 28, T9S R24E
Latitude/Longitude of former Pits	Pit 1: N33°30'54" / W104°30'55" Pit 2: N33°30'55" / W104°30'55"
Facility elevation	Approximately 3610 feet above sea level

The Facility is located along the Transwestern natural gas pipeline that extends from Texas to the Arizona/California border. The compressor station services two 30-inch Mainlines and two 24-inch Lateral pipelines. The primary function of the compressor station is to boost the pressure of the natural gas stream by means of compressors powered by natural gas-fueled internal combustion engines. Additionally, the Facility conducts gas transmission line maintenance operations that generate waste hydrocarbons, including condensate, pigging and other wastes, which were historically discharged to the former Pits (DBS&A, 1994). Wastes generated by current pipeline maintenance activities are temporarily stored on aboveground storage tanks at the Facility for off-site recycling or final disposal, based on BTU content.

The Facility also includes a building that houses the district offices for Transwestern's New Mexico operations, along with an engine room, ancillary equipment, pig launcher and pigging waste handling facilities, and other ancillary buildings, including a warehouse and a repair shop (see building outlines in **Figure 1-2**).

Office buildings and other structures are mainly located in the western and central portions of the property. Remediation system equipment, recovery wells, and monitoring wells are located either on the northeast portion of the Facility and within its fence, or offsite within a fenced area on land leased from the New Mexico State Land Office.

2.2 Surface Conditions

The Facility is located approximately 7 miles west of the Pecos River within the Pecos Valley drainage basin. The entire area west of the Pecos River is generally referred to as the West Pecos Slope (Kelley, 1971), which rises westward from elevations of about 3,300 feet mean sea level (MSL) at the Pecos River to over 10,000 feet MSL in the Capitan Mountains some 50 miles to the west. Local topography is generally of low relief.

The mean annual precipitation as measured at the Roswell Municipal Airport for a 23-year period was 9.82 inches (DBS&A, 1997). The majority of the precipitation occurs in July and August during frequent summer thunderstorms (DBS&A, 1997). Tributary surface streams drain west to east toward the Pecos River; however, the drainage near the Project Area are commonly dry, and only flow on an intermittent basis. The depths of the remaining impacts to soil and groundwater and the lack of consistent surface water indicate that the release from the former Pits is unlikely to have impacted surface water.

2.3 Subsurface Conditions

The Facility lies within the northernmost portion of the Roswell hydrologic basin. The basin is structurally controlled by eastward-dipping carbonate and evaporates sequences of Permian age which were uplifted during the Tertiary period during the development of the Sacramento and Guadalupe Mountains along the western margin of the basin (Kelley, 1971). Eastward flowing tributaries originating in the western highlands have deposited Quaternary alluvium over the Permian age rocks west of the Pecos River.

Because the average dip of the Permian rocks is greater than the slope of the land surface, progressively younger units are encountered eastward toward the Pecos River. Several prominent northeast trending ridges and hills interrupt the gently sloping plains near the Facility. These structures are narrow fault zones referred to as the Border Hills, Six-Mile Hill, and the Y-O faulted anticlines.

The stratigraphic units of importance with regard to water resources are, in ascending order, the San Andres Formation (Permian), the Artesia Group (Permian), and the undifferentiated Quaternary valley fill alluvium. Figure 3-1 of the *IWP* in **Appendix A** shows the generalized stratigraphy in the vicinity of the Facility. Groundwater is produced from both a shallow water-table aquifer (alluvium) and a deeper artesian aquifer that includes the two bedrock units (Welder, 1983). The deep bedrock aquifer is commonly known as the Roswell artesian aquifer. According to the Office of the State Engineer (OSE), approximately 400,000 acre-feet of water are pumped annually from the two aquifers of the Roswell hydrologic basin (DBS&A, 1992). The two aquifers are separated by a semiconfining layer, but are connected where the carbonate aquifer rises structurally to meet the shallow aquifer. Both aquifers are recharged along surface exposures on the slopes to the west and are believed to discharge to the Pecos River at the eastern margin of the basin.

The Quaternary valley fill in the Roswell area was deposited by shifting streams flowing from the west toward the Pecos River. The valley fill consists of poorly to moderately consolidated deposits of gravel, sand, and clay which mantle the underlying Permian rocks. The thickness of alluvial sediments varies considerably from one locality to another because of the irregular bedrock erosional surface upon which the alluvium was deposited. In some areas the alluvial fill is moderately well cemented (DBS&A, 1997).

The thickness of the shallow alluvial aquifer is shown on Figure 3-5 of the *IWP* in **Appendix A** for the northern portion of the Roswell Basin. Lyford (1973) developed the thickness (isopach) map after examination of drill cuttings from 225 wells penetrating the valley fill. Lyford's map indicates

December 2013

that the alluvium near the Facility is generally less than 50 feet thick. In other areas, however, the thickness can exceed 250 feet thick where the alluvium fills depressions in the underlying bedrock surface. OSE well records from 1992 indicate that the alluvium near the Facility is approximately 70 feet thick (DBS&A, 1992).

The alluvial sediments underlying the Facility, as observed in borings drilled during several investigations, consist predominantly of interbedded cobbles, gravel, sand, silt, and clay to depths of approximately 70 feet bgs (DBS&A, 1997). The finer-grained zones form lenticular beds which appear to be discontinuous across the Facility. Some of the alluvial deposits are firmly cemented in some places. These lithologic descriptions are consistent with Lyford's descriptions of the valley fill (DBS&A, 1997). Generalized hydrogeologic cross sections of the sediments underlying the former Pits are depicted on Figure 3-2 of the *IWP* in **Appendix A**; Cross Section A - A' is constructed along an east-west line and Cross Section B - B' is constructed along a north-south line (see Figures 3-3 and 3-4 of the *IWP*, respectively, in **Appendix A**).

The hydrogeology underlying the Facility is as follows:

- From ground surface to depths of approximately 30 to 35 feet bgs, brown gravelly sands and clays are present. Perched water has occasionally been encountered within the bottom few feet of this interval (DBS&A, 1997).
- At depths of approximately 35 to 60 feet bgs, light brown to reddish-colored interbedded silts, sands, and clays are encountered. The fine-grained clay lenses serve as perching layers for the downward moving fluids and likely represent interfingering deposits of limited lateral extent (DBS&A, 1997).
- At depths of approximately 60 to 70 feet bgs, saturated silty sands and sands are present. This zone is referred to as the uppermost aquifer (DBS&A, 1997).
- At approximately 70 feet bgs, red plastic clay is present. This unit probably represents the transition from the Quaternary alluvium to the Permian-age bedrock of the Artesia Group (DBS&A, 1997).
- At approximately 92 feet bgs, the upper boundary of the San Andres Formation is indicated by OSE well records for wells near the Facility (DBS&A, 1997); however the top of a waterbearing zone on the Project Area has been encountered at depths of 122 to 152 feet bgs and appears to be within the Artesia Group.

• Based on MW-23D, drilled to a depth of 194 feet bgs, the water-bearing limestone unit of the San Andres Formation is not encountered until 175 feet bgs on the Project Area.

The principal water-bearing zones of sands and gravels are separated by less permeable lenses of silt and clay. According to Welder (1983), one to five water-bearing zones exist within the valley fill, and in many areas the alluvium is hydraulically connected to the upper bedrock units of the Artesia Group. The perimeter of the shallow alluvial aquifer is generally bounded by a margin of less permeable alluvium. Shallow groundwater conditions in the alluvium at the Project Area are shown on the groundwater surface elevation map of the Uppermost Aquifer, as measured on November 3, 2013 (see **Figure 4-1**).

Poor water quality is encountered in the shallow alluvial aquifer from slightly south of the Facility northward and is due to the presence of gypsum beds of the Fourmile Draw member at the base of the alluvium. Because of the poor water quality and the low yields, most wells completed in the shallow alluvium are used primarily as livestock water supplies. In general, the chloride content of water in the shallow aquifer increases from west to east and ranges from 20 milligrams per liter (mg/L) to 3700 mg/L (Welder, 1983). The presence of gypsum beds results in objectionably high calcium and sulfate concentrations in the shallow alluvial aquifer in the vicinity of the Facility and northward (DBS&A, 1997). Sulfate concentrations are typically in the range of 2,000 to 3,000 mg/L, which is approximately equal to the equilibrium saturation concentration for groundwater in direct contact with gypsum (CaSO₄ \cdot 2H₂0). Thus, background sulfate concentrations in this area are four to five times above the NMWQCC groundwater standard for sulfate of 600 mg/L (DBS&A, 1997). The poor water quality in the alluvium is consistent with the high total dissolved solids (TDS) concentrations reported for groundwater from the on-site monitoring wells (DBS&A, 1997).

2.4 Remedial History

Following removal of waste from the former Pits and backfilling with clean soil in 2001, design and installation of a soil and groundwater remediation system was initiated.

The remediation system was installed in two phases: First, a soil vapor extraction (SVE) system was installed in 2002 / 2003 consisting of nine SVE wells, 37 Multi-Phase Extraction (MPE) wells, associated conveyance piping, and two Baker Furnace thermal oxidizer units. The SVE system was started-up on March 10, 2003. Installation of a second phase of the remediation system was completed in December 2003 with the installation of 15 pneumatic recovery pumps, water treatment equipment, and a permitted irrigation system for the disposal of treated groundwater. A

Discharge Permit Modification (GW-052) was issued on June 16, 2003 for the discharge of treated groundwater through the irrigation system. In late 2003 / 2004, a 90-barrel aboveground storage tank was introduced into the system to act as a surge tank, and installed between the recovery wells and the oil/water separator. The surge tank provides two benefits: 1) provides for gravity separation of recovered liquids into two phases, a hydrocarbon phase and a water phase, and 2) allows more control of the flow rate into the other components of the treatment train. The treatment train was initially comprised of an oil/water separator, an air stripper, and an irrigation water tank; however, due to clogging issues, the oil/water separator was later removed from the treatment train. In addition, two granulated activated carbon (GAC) units were installed in series between the air stripper and the irrigation water tank to provide additional treatment of recovered groundwater prior to discharge. Free-phase hydrocarbons separated in the surge tank are sent off-site to a permitted facility for recycling or disposal, based on BTU content.

The modified recovery, treatment, and disposal/irrigation system was finally started-up on April 15, 2004, with groundwater recovery occurring from spring to fall, and has operated continuously since, with the exception of brief shutdowns for repairs and maintenance.

3.0 IMPLEMENTATION OF FIELD ACTIVITIES

Field activities were implemented between August 6 and August 16, 2013. Drilling and monitoring/recovery well installation, as well as well P&A activities we conducted under the supervision of a New Mexico-licensed driller from Talon LPE of Amarillo, TX (under contract to Transwestern). Well drilling/installation and P&A oversight, well logging and environmental sampling were provided by Clay Barnhill, P.G. (New Mexico) of CMB Environmental & Geological Services, Inc. of Roswell, NM, under subcontract to Cypress Engineering Services, Inc. of Houston, TX (a Transwestern environmental consultant).

The activities described below were conducted per the methodologies described in the March 2013 *IWP*, and under a site-specific *Health and Safety Plan (HSP)* for the project.

Ms. Catherine Goetz with the State of New Mexico's Office of the State Engineer (OSE), was also present on Wednesday August 7, 2013 to observe the field activities.

3.1 Scope of Activities

In accordance with the March 2013 *IWP*, the following activities were implemented:

- Processing of applications for new monitoring well installations and well plugging activities with the State of New Mexico's Office of the State Engineer;
- Conducting One-Call Notifications;
- Installation of four, 70-foot deep soil borings, and conversion to monitoring wells, north of MW-26 for the purpose of delineating 1,1-DCE in that direction (for location see Figure 2-2 of the *IWP* in Appendix A);
- Collection of soil samples from the capillary fringe for analysis of volatile organic compounds (VOCs);
- Collection of groundwater samples from the monitoring wells for analysis of VOCs;
- P&A of nine shallow monitoring wells, two deep monitoring wells and six multi-phase extraction (MPE) wells in the Project Area that either no longer exhibit COCs above the remedial objectives, or are no longer within the area of groundwater impacted by COCs (see former location in Figure 2-2 of the *IWP* in Appendix A);

- Collection of samples from soil cuttings generated during monitor well installation and P&A activities for waste characterization; and,
- Survey of new well locations.

3.2 Application Processing

In accordance with State of New Mexico regulations, an "application for permit to drill a well with no consumptive use of water" for the proposed installation of monitoring wells MW-39 through MW-42 was submitted on July 15, 2013 to the OSE; the application was approved on July 30, 2013.

Similarly, "well plugging plans of operation" for the proposed plugging of six MPE wells and 11 monitoring wells (see list in **Section 3.6**) were submitted on July 15, 2013 to the Office of the State Engineer; the plans were approved on July 22, 2013.

3.3 Soil Boring and Sampling

Soil borings for the installation of the proposed monitoring wells were advanced using a REICHdrill T-650 W air rotary drilling rig; the borings were 6 inches in diameter and advanced to total depths ranging from 70 to 78 feet below ground surface (ft bgs; see **Table 3-1**). The soil borings were generally installed at the proposed locations, with the exception of the boring for monitoring well MW-42. The original location (re-named SB-42A) was found to be dry, thus a second boring was advanced 50 ft to the west. The new location and the plan for P&A the original location were approved in the field by Ms. Goetz of the OSE. Location SB-42A/MW-42A was plugged using bentonite in the bottom of the borehole from 60 – 70 ft bgs, soil cuttings in the interval between 20 -60 ft bgs, and cement from surface to 20 ft bgs.

During the installation of the soil boring for monitoring well MW-40, an 8-inch diameter 10-feet long PCV pipe was used to control caving due to the presence of fine, loose sands. In addition, approximately 40 gallons of potable water were added during drilling through the unsaturated zone to allow for the recovery of soil cuttings from the 20 to 30 ft bgs depth interval. Potable water was obtained from the City of Roswell public water supply, as available at Mr. Barnhill's residence. The locations were direct-bored from surface to 50 ft bgs; starting at this depth, 2-ft long split-spoons were used to collect soil cores every 5 ft.

The soil material was field-screened with a calibrated, hand-held photo-ionization detector (PID) to assess the presence of volatile organic compounds (via head-space vapor method), and was visually inspected and classified by the field geologist; this information is presented in the well construction logs included in **Appendix B**. The drilling equipment was decontaminated before drilling the first location, and before starting each subsequent location. The split-spoons were decontaminated between each discrete sampling interval.

One soil sample was collected from the soil-water interface at each water-bearing location; the depth for sample collection was selected based on field observations of saturation during drilling. The soil material was collected from the split-spoon using clean disposable scoops, and transferred into clean, laboratory-provided containers. These soil samples were labeled, packed for shipping, placed in an ice-filled chest, and shipped under chain-of-custody documentation to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico for analysis of volatile organic compounds via EPA method SW846-8260B. Analytical results are discussed below in **Section 4.3**.

3.4 Monitoring Well Construction and Groundwater Sampling

The water-bearing soil borings were converted into monitoring wells after cleaning out the holes with the drilling rig. The monitoring wells were constructed using 2-inch diameter, schedule 40, flush-threaded PVC riser pipe and 0.010-inch machine-slotted PVC screen (typically 20 ft); centralizers were typically placed at 20 and 45 ft bgs (20 and 50 ft bgs for MW-42) to help maintain the wells' vertical alignment. A 12-20 silica sand filter pack was placed around the screened interval and was extended up to 3 ft above the screen; a 2 to 3 ft-thick layer of hydrated bentonite was placed on top of the sand, and a bentonite grout was used to fill the annulus space up to 2 ft bgs. The top two feet were filled with neat cement to serve as surface seal. Flush-mounted surface completions consisted of a three-by-three-feet, four-inch thick concrete pad and utility vault; the pad was sloped to allow surface drainage to flow away from the center of the pad. The vault is provided with a bolted lid and the casing was provided with a cap. **Table 3-1** summarizes well construction details.

After allowing for the well materials to cure, the monitoring wells were developed using a 1.8" in diameter, ES-120 submersible pump placed near the bottom of the well; development continued until water quality parameters had stabilized. Purged volumes and final water quality parameters are provided in **Table 3-2**.

Following development, groundwater was sampled using 1.8-in diameter, clean disposable bailers; groundwater was poured into clean, HCI-preserved, laboratory-provided containers. The groundwater samples collected from each new monitoring well were labeled, packed for shipping, placed in an ice-filled chest, and shipped under chain-of-custody documentation to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico for analysis of volatile organic compounds via EPA method SW846-8260B. Analytical results are discussed below in **Section 4.4**.

Well installation logs and associated OSE's "well record and log" forms are presented in Appendix B.

3.5 New Monitoring Well Survey

Following monitoring well installation, the surface coordinates, the top of each new monitoring well casing, and the ground surface at each new monitoring well location were surveyed by a registered New Mexico professional land surveyor, with respect to the State Plane Coordinate System (NMSA 1978 47-1-49-56 (Repl. Pamp. 1993)). Horizontal positions were measured to the nearest 0.1 ft, and vertical elevations were measured to the nearest 0.01 ft. Surveyed locations are shown in **Figures 4-1**, **4-2** and **4-3**, and top-of-casing (TOC) elevations for the new monitoring wells were used in **Table 4-1** to estimate groundwater elevations.

3.6 Well P&A Activities

Field activities included P&A of nine shallow monitoring wells (MW-5, MW-6, MW-8, MW-9, MW-18, MW-19, MW-31, MW-36 and MW-38) and two deep monitoring wells (MW-23D and MW-25D) that, based on a plume stability evaluation conducted in 2012, were found no longer necessary for continued monitoring or remediation activities. These wells include unimpacted, uppermost aquifer monitoring wells beyond the limit of the defined benzene groundwater plume, two deep (unimpacted) bedrock wells, and several MPE wells. The shallow monitoring wells have been documented to exhibit COC concentration below the cleanup levels for a number of sampling events. Similarly, the six MPE wells (MPE-1 through MPE-6) located in Circuit A of the recovery system were P&A, as these wells did not exhibit PSH and soil vapor concentrations have decreased to levels typically addressed via natural attenuation. These six MPE wells are now outside the historic groundwater plume due to plume shrinkage within the Project Area.

P&A and certification was conducted in accordance with New Mexico's *Rules and Regulations Governing Well Driller Licensing; Construction, Repair and Plugging of Wells [19.27.4 NMAC].* As discussed in **Section 3.2** above, the P&A plans were approved by the OSE on July 22, 2013.

The wells targeted for P&A were located and the surface completions removed, including concrete pads; in the case of the MPE wells, the irrigation vaults were removed and cleaned out for re-use. The shallow monitoring wells and MPEs were P&A by pulling the casing to the extent possible, overdrilling and backfilling the borehole with a cement/bentonite grout. The deep wells, which were installed with steel casing, were grouted in place and cut-off at the surface.

As discussed above in **Section 3.3**, the location originally proposed for MW-40 was found dry and the borehole was P&A based on the approval of the representative of the OSE that was present at the time observing the field activities.

OSE's plugging record forms are presented in Appendix B.

3.7 Management of Investigation-Derived Waste

In accordance with the IWP, investigation-derived wastes were disposed as follows:

- Soil Cuttings from new monitoring well installation:
 - Cuttings from the 0 to 50 ft bgs depth interval were spread on the ground surface around the boring locations; and,
 - Cuttings from the 50 ft bgs to total drilling depth were drummed, sampled for characterization, and later spread on site based on characterization data and discrete soil samples (see Sections 4.3 and 4.5) indicating that target COCs were not detected.
- Development water from new monitoring well installation and equipment decontamination water was collected in drums and transferred to the recovery system's surge tank for processing via the air stripper and discharge through the irrigation system.
- Well casing and concrete pads removed during P&A activities were sent as nonhazardous materials to the Roswell municipal landfill for disposal.
- Soil cuttings generated during P&A activities were spread around the former well locations.
- Disposable sampling materials (including gloves, rags, etc.) were bagged for disposal along with Facility trash.

4.0 FIELD INVESTIGATION AND DATA EVALUATION FINDINGS

4.1 Soil and Groundwater Conditions

As described in the well construction logs included in **Appendix B**, soils consist of the typical interbedded layers of gravel, sand, silt, and clay observed at other areas previously investigated. A noted exception was the 50 to 60 feet depth interval at the original location for monitoring well MW-42 where a higher proportion of clays was encountered, resulting in a dry location. PID readings were relatively low (0.1 to 0.2 ppm) across the soil columns at these new locations; this finding is in line with the historical absence of industrial operations in the area investigated.

Depth to water measurements collected on August 16, 2013 in preparation for well development indicate that groundwater was found at depths ranging from 51.64 feet below top of casing (TOC; at MW-39) to 56.57 feet TOC (at MW-41). These values are in line with recent gauging data from neighboring monitoring well MW-26 (51.95 feet TOC in January 2013 and 51.70 feet TOC in April 2013). A summary of groundwater elevations is presented in **Table 4-1** and an updated groundwater potentiometric map for the project area including the new monitoring wells is presented in **Figure 4-1**.

4.2 Regulatory Criteria

Analytical data from the soil, groundwater, and waste characterization samples collected from the newly-installed monitoring wells and P&A locations were evaluated per the regulatory criteria identified below; analytical data packages are presented in **Appendix C**.

In accordance with Section VI. of the March 2013 SO for the site, soil and groundwater cleanup criteria were identified as follows:

- Soil Clean Up Levels were identified for the target COCs using the February 2012 NMED Risk Assessment Guidance for Site Investigation and Remediation; if a COC was not included in that guidance, the EPA Region 6 Screening Levels were used.
- Groundwater Clean Up Levels were identified for the target COCs using the New Mexico Water Quality Control Commission's standards and the EPA Maximum Contaminant Levels (MCLs); where standards exist in both regulations, the lower of the two was used.
 If neither a WQCC standard nor an MCL has been established for a COC, then the cleanup level should was identified as the screening level for tap water in Table A-1 of the

February 2012 NMED Risk Assessment Guidance for Site Investigation and Remediation, or the EPA Region 6 Screening Levels for tap water.

The RCRA maximum concentration levels established in 40 CFR §261.24 were used to assess the Toxicity Characteristic Leaching Procedure (TCLP) results from waste characterization samples collected for decision-making regarding disposal.

4.3 Soil Data Evaluation

Analytical results for the soil samples collected from the five soil borings at or near the water table indicate that VOCs were not detected above the laboratory reporting limits, which were below the corresponding soil clean up levels. The use of residential soil screening levels provides for the most conservative evaluation of the results.

These results confirm the absence of a residual source in soils at or near the water table in the area investigated. Analytical results and soil clean up levels are summarized in **Table 4-2**; analytical data packages are presented in **Appendix C**.

4.4 Groundwater Data Evaluation

Analytical results for the groundwater samples collected from the four newly-installed monitoring wells indicate that VOCs were detected in the samples collected from MW-39 and MW-41. Benzene, 1,1-Dichloroetahane (1,1-DCA), and 1,1-Dichloroethene (1,1-DCE) were detected above the laboratory's reporting limits in the sample from MW-39, and only the 1,1-DCE concentration of 19 μ g/L is above the NMWQCC standard of 0.005 mg/L (or 5 μ g/L). 1,1-DCE was detected in the sample from MW-41; however, the 1,1-DCE concentration of 1.1 μ g/L is below the NMWQCC standard. The reporting limits for the VOCs reported as not detected are generally below the corresponding cleanup levels. Analytical results and groundwater clean up levels are summarized in **Table 4-3**; analytical data packages are presented in **Appendix C**. **Figures 4-2** and **4-3** depict the current Benzene and 1,1-DCE plumes.

Analytical results for the groundwater samples collected from MW-40, MW-41 and MW-42 indicate that delineation of 1,1-DCE north of MW-26 was achieved.

4.5 Waste Characterization Data Evaluation

A composite sample of soil cuttings generated during installation of the soil borings was analyzed via the Toxic Characteristic Leaching Procedure (TCLP) for the VOCs regulated under 40 CFR

December 2013

§261.24. The analytical data package included in **Appendix C** indicates that results were reported as not detected above the laboratory reporting limits, which are lower than the corresponding maximum concentration levels.

5.0 SUMMARY AND CONCLUSIONS

This report documents the installation and sampling of four new monitoring wells; as well as plug and abandonment (P&A) of several monitoring wells that were no longer exhibiting detectable concentrations of the constituents-of-concern (COCs) and multiphase extraction (MPE) wells outside of the current groundwater plume. Based on the results of this work, the following summary and conclusions have been reached:

- Implementation of the field activities described in the March 2013 IWP was conducted between August 6 and August 16, 2013;
- Four new monitoring wells (MW-39 through MW-42) were installed after receiving permit approval for the proposed well locations from the OSE on July 30, 2013; the revised location for MW-42 and the plugging plans for the original location were field-approved by the OSE representative that was present at the time;
- Nine shallow monitoring wells, two deep monitoring wells and six multi-phase extraction (MPE) wells were P&A in accordance with New Mexico regulations, after receiving approval from OSE for the respective plugging plans on July 22, 2013;
- Soil samples were collected from the five soil borings at the soil-water interface, and analyzed for VOCs via EPA method 8260. Analytical results indicate that these constituents were not detected above the laboratory reporting limits, which were below the corresponding soil clean up levels. <u>Therefore, these results confirm the absence of a</u> <u>residual source of contamination in soil at or near the water table in the area investigated</u>.
- Following development, groundwater samples were collected from the four newlyinstalled monitoring wells and analyzed for VOCs via EPA method 8260. Analytical results for the samples from MW-40 and MW-42 were reported a not-detected above the laboratory reporting limits, which were below the corresponding groundwater clean up levels. Benzene, 1,1-DCA, and 1,1-DCE were detected in the sample from MW-39, and 1,1-DCE was also detected in the sample from MW-41; however, only the 1,1-DCE concentration reported for MW-39 is above the NMWQCC standard of 5 µg/L;
- Analytical results for the groundwater samples collected from MW-40, MW-41 and MW-42 indicate that delineation of 1,1-DCE north of MW-26 was achieved.

6.0 **REFERENCES**

Daniel B. Stephens & Associates, Inc. (DBS&A), December 1992. Task 1 Summary Report, Data Acquisition and Review, Roswell Basin.

Daniel B. Stephens & Associates, Inc., May 1994. Closure Plan for Roswell Compressor Station Surface Impoundments.

Daniel B. Stephens & Associates, Inc., January 1997. Corrective Action Plan for Roswell Compressor Station No. 9 Surface Impoundment.

EarthCon Consultants, Inc., March 2013. Investigation Work Plan and Groundwater Monitoring Plan. Roswell Compressor Station.

Glenn, Pleas, 1993. Letter from Pleas Glenn (New Mexico Office of the Commissioner of Public Lands) to Larry Campbell (Transwestern) regarding land ownership status, dated July 7, 1993.

Kelley, Vincent, 1971. Geology of the Pecos Country, Southeastern New Mexico. New Mexico Bureau of Mines & Mineral Resources, Memoir 24.

Lyford, Forest P., September 1973. Valley Fill in the Roswell-Artesia Area, New Mexico, U.S. Geological Survey Open-File Report 73-163.

Welder, G.E., 1983. Geohydrologic Framework of the Roswell Ground Water Basin, Chaves and Eddy Counties, New Mexico, New Mexico State Engineer Technical Report 42.

TABLES

TABLE 3-1 MONITORING WELL INSTALLATION DETAILS **ROSWELL COMPRESSOR STATION** ROSWELL, CHAVES COUNTY, NEW MEXICO

Well ID	Date Drilled	Total Depth (ft gbs)	Riser Placement (ft bgs)	Centralizer Placement (ft bgs)	Screen Placement (ft bgs)	Cement Bentonite Grout Placement (ft bgs)	Bentonite Seal Placement (ft bgs)	Sand Pack Filter Placement (ft bgs)
MW-39	08/06/13	70	0 - 50	20 and 45	50 - 70	0.5 to 45	45 to 48	48 to 71
MW-40	08/05/13	70	0 - 50	20 and 45	50 - 70	0.5 to 45	45 to 48	48 to 71
MW-41	08/05/13	70	0 - 50	20 and 45	50 - 70	0.5 to 45	45 to 48	48 to 70
MW-42	08/06/13	75	0 - 55	20 and 50	55 to 75	0.5 to 48	48 to 51	51 to 75

ft bgs: feet below ground surface Casing Material: Polyvinyl Chloride (PVC) 2 inch diameter schedule 40; 0.010 inch slotted screen

Sand Pack Material: 12/20 sand

Bentonite Seal Material: 3/8 inch pellets

TABLE 3-2 GROUNDWATER QUALITY PARAMETERS ROSWELL COMPRESSOR STATION ROSWELL, CHAVES COUNTY, NEW MEXICO

Well ID	Date	Development Volume (gal)	Dissolved Oxygen (mg/L)	рН (S.U.)	Temperature (°C)	Electrical Conductivity (ms/cm)
MW-39	08/16/13	55	7.37	6.14	19.71	3,871
MW-40	08/16/13	55	7.22	6.24	20.41	3,496
MW-41	08/16/13	55	7.05	5.95	20.16	3,682
MW-42	08/16/13	55	6.43	5.72	19.45	3,806

TABLE 4-1 GROUNDWATER SURFACE ELEVATIONS IN THE UPPERMOST AQUIFER ROSWELL COMPRESSOR STATION ROSWELL, CHAVES COUNTY, NEW MEXICO

Well ID	Gauging Date	Top of Casing Elevation (ft MSL)	Depth to Water (ft TOC)	Groundwater Surface Elevation (ft MSL)
MW-39	08/16/13	3597.38	51.64	3545.74
10100-39	11/03/13	5597.50	51.08	3546.30
MW-40	08/16/13	3596.48	54.25	3542.23
10100-40	11/03/13	5590.40	54.21	3542.27
MW-41	08/16/13	3601.73	56.57	3545.16
10100-41	11/03/13	5001.75	56.63	3545.10
MW-42	08/16/13	3595.21	56.42	3538.79
	11/03/13	5595.21	56.28	3538.93

ft TOC: feet below Top of Casing

ft MSL: feet above mean sea level

TOC elevation based on survey by PR Patton & Associates dated 10/01/13

TABLE 4-2 SUMMARY OF SOIL ANALYTICAL RESULTS ROSWELL COMPRESSOR STATION ROSWELL, CHAVES COUNTY, NEW MEXICO

	NMED *	EPA Region 6	Client Sample ID	MW-39 55'-57'	MW-40 60'-62'	MW-41 55'-57'	MW-42A 55-57	MW-42B 55'-57'
	Residential Soil	Resident Soil	Lab ID	1308625-001	1308625-002	1308625-003	1308626-003	1308625-004
Analyte	Screening Level	Screening Level	Collection Date	8/6/2013	8/5/2013	8/6/2013	8/6/2013	8/6/2013
	(mg/Kg)	(mg/kg)	Units	Result	Result	Result	Result	Result
Benzene	1.54E+01		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Toluene	5.27E+03		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Ethylbenzene	6.84E+01		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Methyl tert-butyl ether (MTBE)	9.01E+02		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,2,4-Trimethylbenzene		6.20E+00	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,3,5-Trimethylbenzene		7.80E+01	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,2-Dichloroethane (EDC)	7.89E+00		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,2-Dibromoethane (EDB)	5.88E-01		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Naphthalene	4.30E+01		mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
1-Methylnaphthalene		1.60E+02	mg/Kg	< 0.19	< 0.19	< 0.19	< 0.19	< 0.19
2-Methylnaphthalene		2.30E+01	mg/Kg	< 0.19	< 0.19	< 0.19	< 0.19	< 0.19
Acetone	6.66E+04		mg/Kg	< 0.73	< 0.72	< 0.71	< 0.71	< 0.71
Bromobenzene		3.00E+01	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Bromodichloromethane	5.41E+00		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Bromoform		6.20E+02	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Bromomethane	1.65E+01		mg/Kg	< 0.15	< 0.14	< 0.14	< 0.14	< 0.14
2-Butanone	3.71E+04		mg/Kg	< 0.49	< 0.48	< 0.47	< 0.48	< 0.47
Carbon disulfide	1.53E+03		mg/Kg	< 0.49	< 0.48	< 0.47	< 0.48	< 0.47
Carbon tetrachloride	1.08E+01		mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
Chlorobenzene	3.76E+02		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Chloroethane		1.50E+03	mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
Chloroform	5.86E+00		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Chloromethane		1.20E+01	mg/Kg	< 0.15	< 0.14	< 0.14	< 0.14	< 0.14
2-Chlorotoluene	1.56E+03		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
4-Chlorotoluene		1.60E+02	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
cis-1,2-DCE	1.56E+02		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
cis-1,3-Dichloropropene	N/A	N/A	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,2-Dibromo-3-chloropropane	1.86E+00		mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
Dibromochloromethane	1.21E+01		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Dibromomethane (Methylene bromide)	5.16E+01		mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
1,2-Dichlorobenzene	2.31E+03		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,3-Dichlorobenzene	N/A	N/A	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,4-Dichlorobenzene	3.17E+01		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Dichlorodifluoromethane	1.68E+02		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,1-Dichloroethane	6.45E+01		mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
1,1-Dichloroethene (1,1-Dichloroethylene)	4.49E+02		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,2-Dichloropropane	1.52E+01		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,3-Dichloropropane		1.60E+02	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
2,2-Dichloropropane	N/A	N/A	mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
1,1-Dichloropropene	N/A	N/A	mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
Hexachlorobutadiene (<i>Hexachloro-1,3-butadiene</i>)	6.11E+01		mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
2-Hexanone		2.10E+01	mg/Kg	< 0.49	< 0.48	< 0.047	< 0.48	< 0.47
Isopropylbenzene (Cumene)	2.43E+03		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047

TABLE 4-2 SUMMARY OF SOIL ANALYTICAL RESULTS ROSWELL COMPRESSOR STATION ROSWELL, CHAVES COUNTY, NEW MEXICO

	NMED *	EPA Region 6	Client Sample ID	MW-39 55'-57'	MW-40 60'-62'	MW-41 55'-57'	MW-42A 55-57	MW-42B 55'-57'
	Residential Soil	Resident Soil	Lab ID	1308625-001	1308625-002	1308625-003	1308626-003	1308625-004
Analyte	Screening Level	Screening Level	Collection Date	8/6/2013	8/5/2013	8/6/2013	8/6/2013	8/6/2013
	(mg/Kg)	(mg/kg)	Units	Result	Result	Result	Result	Result
4-Isopropyltoluene	N/A	N/A	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
4-Methyl-2-pentanone		5.30E+02	mg/Kg	< 0.49	< 0.48	< 0.47	< 0.48	< 0.47
Methylene chloride	4.09E+02		mg/Kg	< 0.15	< 0.14	< 0.14	< 0.14	< 0.14
n-Butylbenzene		3.90E+02	mg/Kg	< 0.15	< 0.14	< 0.14	< 0.14	< 0.14
n-Propylbenzene (Propylbenzene)		3.40E+02	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
sec-Butylbenzene		7.80E+02	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Styrene	7.28E+03		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
tert-Butylbenzene		7.80E+02	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,1,1,2-Tetrachloroethane	2.91E+01		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,1,2,2-Tetrachloroethane	8.02E+00		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Tetrachloroethene (Tetrachloroethylene)	7.02E+00		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
trans-1,2-DCE (trans-1,2-Dichloroethylene)	2.70E+02		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
trans-1,3-Dichloropropene	N/A	N/A	mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,2,3-Trichlorobenzene	N/A	N/A	mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
1,2,4-Trichlorobenzene	7.30E+01		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,1,1-Trichloroethane	1.56E+04		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,1,2-Trichloroethane	2.81E+00		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Trichloroethene (Trichloroethylene)	8.77E+00		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Trichlorofluoromethane	1.41E+03		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
1,2,3-Trichloropropane	4.97E-02		mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095
Vinyl chloride	7.28E-01		mg/Kg	< 0.049	< 0.048	< 0.047	< 0.048	< 0.047
Xylenes	8.14E+02		mg/Kg	< 0.097	< 0.096	< 0.095	< 0.095	< 0.095

Analyte synonym provided in *italics*

NMED *: February 2012 New Mexico Environmental Department Risk Assessment Guidance for Site Investigation and Remediation

EPA: United States Environmental Protection Agency

<: Indicates analyte was not detected above the shown laboratory reporting limit

N/A: not available

TABLE 4-3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS ROSWELL COMPRESSOR STATION ROSWELL, CHAVES COUNTY, NEW MEXICO

	NMWQCC	EPA Drinking	NMED **	EPA Region 6	Client Sample ID	MW-39	MW-40	MW-41	MW-42	Trip Blank
Analyte	Standard	Water MCL	Tapwater	Tapwater	Lab ID	1308818-001	1308818-002	1308818-003	1308818-004	1308818-005
	(ug/L)	(ug/L)	Screening Level	Screening Level	Collection Date	8/16/2013	8/16/2013	8/16/2013	8/16/2013	
	(9,)	(9, -)	(ug/L)	(ug/L)	Units	Result	Result	Result	Result	Result
Benzene	1.00E+01	5.00E+00			ug/L	2.8	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	7.50E+02	1.00E+03			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	7.50E+02	7.00E+02			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl tert-butyl ether (MTBE)			1.25E+02		ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene				1.50E+00	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene				8.70E+00	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane (EDC)	1.00E+01	5.00E+00			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane (EDB)	1.00E-01	5.00E-02			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene			1.43E+00		ug/L	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1-Methylnaphthalene				9.70E-01	ug/L	< 4	< 4	< 4	< 4	< 4
2-Methylnaphthalene				2.70E+00	ug/L	< 4	< 4	< 4	< 4	< 4
Acetone			2.18E+04		ug/L	< 10	< 10	< 10	< 10	< 10
Bromobenzene				5.40E+00	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane *		8.00E+01			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromoform *		8.00E+01			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane		0.002.00	8.66E+00		ug/L	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2-Butanone			7.06E+03		ug/L	< 10	< 10	< 10	< 10	< 10
Carbon disulfide			1.04E+03		ug/L	< 10	< 10	< 10	< 10	< 10
Carbon tetrachloride	1.00E+01	5.00E+00	1.042100		ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	1.002101	1.00E+02			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane (<i>Ethyl chloride</i>)		1.002102		2.10E+03	ug/L	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Chloroform *	1.00E+02	8.00E+01		2.102100	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	1.002102	0.002101	1.88E+02		ug/L	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2-Chlorotoluene (o-Chlorotoluene)			7.30E+02		ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene (<i>p</i> -Chlorotoluene)			7.302+02	1.90E+01	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,2-DCE		7.00E+01		1.302+01	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,3-Dichloropropene	N/A	N/A	N/A	N/A	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane		2.00E-01	IN/A	11/7	ug/L	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane *		8.00E+01			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane (<i>Methylene bromide</i>)		0.00E+01	8.16E+00		ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene		6.00E+02	0.102+00			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	N/A	N/A	N/A	N/A	ug/L			< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	IN/A	7.50E+01	IN/A	IN/A	ug/L	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0
Dichlorodifluoromethane		7.50E+01	2.03E+02		ug/L			< 1.0		< 1.0
	2.50E+01		2.03E+02		ug/L	< 1.0	< 1.0		< 1.0	
1,1-Dichloroethane					ug/L	2.0	< 1.0	< 1.0 1.1	< 1.0	< 1.0
1,1-Dichloroethene (<i>1,1-Dichloroethylene</i>)	5.00E+00	7.00E+00			ug/L	19	< 1.0		< 1.0	< 1.0
1,2-Dichloropropane		5.00E+00		2.005.04	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	N1/A	N1/A	N1/A	2.90E+01	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	N/A	N/A	N/A	N/A	ug/L	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,1-Dichloropropene	N/A	N/A	N/A	N/A	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene (<i>Hexachloro-1,3-butadiene</i>)			8.62E+00	0.405.00	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Hexanone			0.000.000	3.40E+00	ug/L	< 10	< 10	< 10	< 10	< 10
Isopropylbenzene (Cumene)			6.79E+02		ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	N/A	N/A	N/A	N/A	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Methyl-2-pentanone				1.00E+02	ug/L	< 10	< 10	< 10	< 10	< 10
Methylene chloride	1.00E+02	5.00E+00			ug/L	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0

TABLE 4-3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS ROSWELL COMPRESSOR STATION ROSWELL, CHAVES COUNTY, NEW MEXICO

			NMED **	EPA Region 6	Client Sample ID	MW-39	MW-40	MW-41	MW-42	Trip Blank
Analyta	NMWQCC	EPA Drinking Water MCL	Tapwater	Tapwater	Lab ID	1308818-001	1308818-002	1308818-003	1308818-004	1308818-005
Analyte	Standard (ug/L)		Screening Level	Screening Level	Collection Date	8/16/2013	8/16/2013	8/16/2013	8/16/2013	
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Units	Result	Result	Result	Result	Result
n-Butylbenzene				7.80E+01	ug/L	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
n-Propylbenzene (Propylbenzene)				5.30E+01	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene				1.60E+02	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene		1.00E+02			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene				5.10E+01	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane			5.24E+00		ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	1.00E+01				ug/L	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Tetrachloroethene (Tetrachloroethylene)	2.00E+01	5.00E+00			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE (trans-1,2-Dichloroethylene)	5.00E+00	1.00E+02			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,3-Dichloropropene	N/A	N/A	N/A	N/A	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene				5.20E-01	ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene		7.00E+01			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	6.00E+01	2.00E+02			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	1.00E+01	5.00E+00			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (Trichloroethylene)	1.00E+02	5.00E+00			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane			1.29E+03		ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane			7.18E-03		ug/L	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Vinyl chloride	1.00E+00	2.00E+00			ug/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes	6.20E+02	1.00E+04			ug/L	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5

Analyte synonym provided in *italics*

Red font identifies the lowest of the NMWQCC Standard or EPA MCL when both are available.

NMWQCC: New Mexico Water Quality Control Commission

EPA: United States Environmental Protection Agency

MCL: Maximum Contaminant Level

NMED **: February 2012 New Mexico Environmental Department Risk Assessment Guidance for Site Investigation and Remediation

* EPA MCL: The individual trihalomethanes (bromodichloromethane; bromoform; dibromochloromethane, chloroform) all have the MCL of 80 µg/L listed in the RSL table. However, 80 µg/L is the MCL for Total Trihalomethanes. < Indicates analyte was not detected above the shown laboratory reporting limit

Bold font and light blue highlighting indicates concentration is above the applicable standard.

N/A: not available

FIGURES

INVESTIGATION REPORT TRANSWESTERN PIPELINE COMPANY, L.P. ROSWELL, CHAVES COUNTY, NEW MEXICO

SITE LOCATION MAP

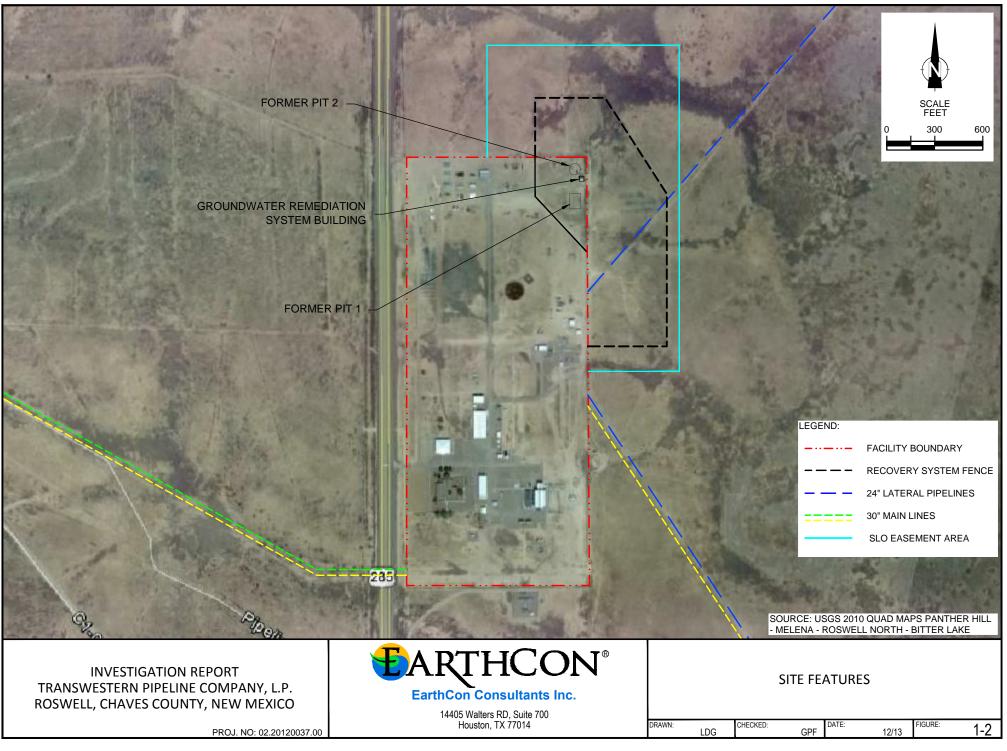
GPF

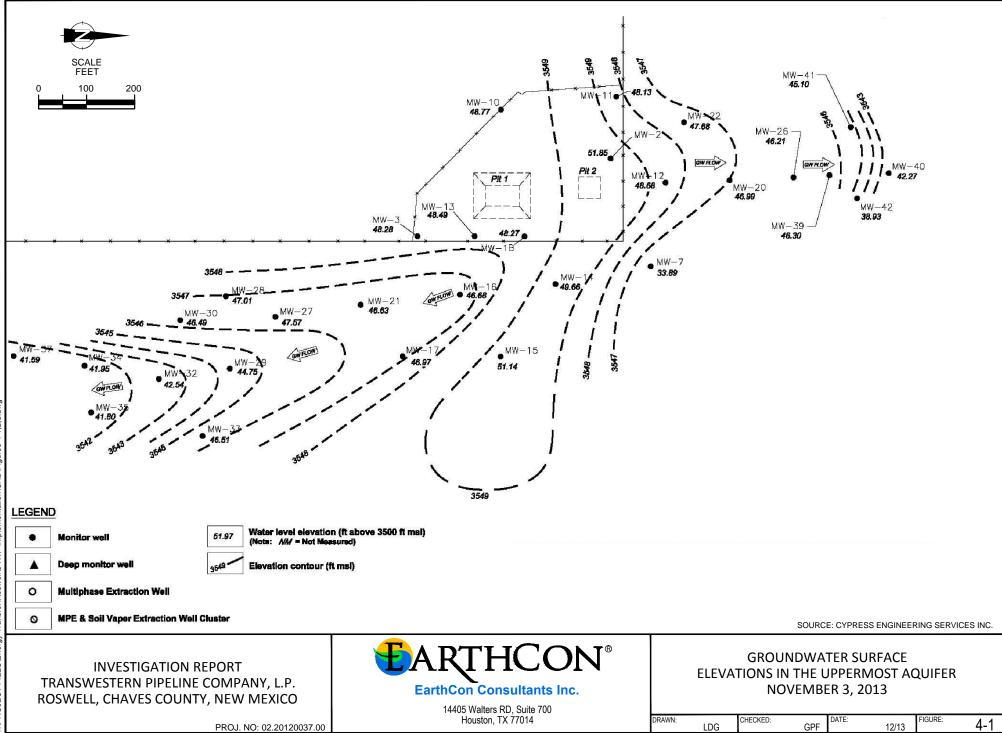
CHECKED:

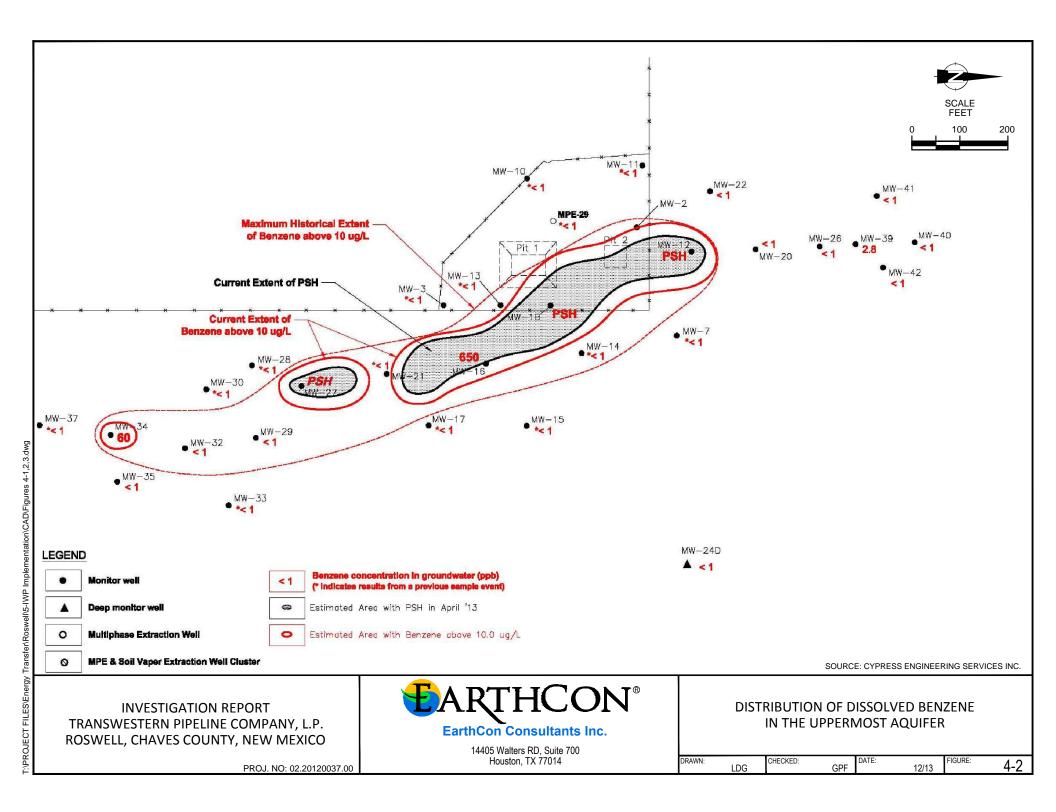
LDG

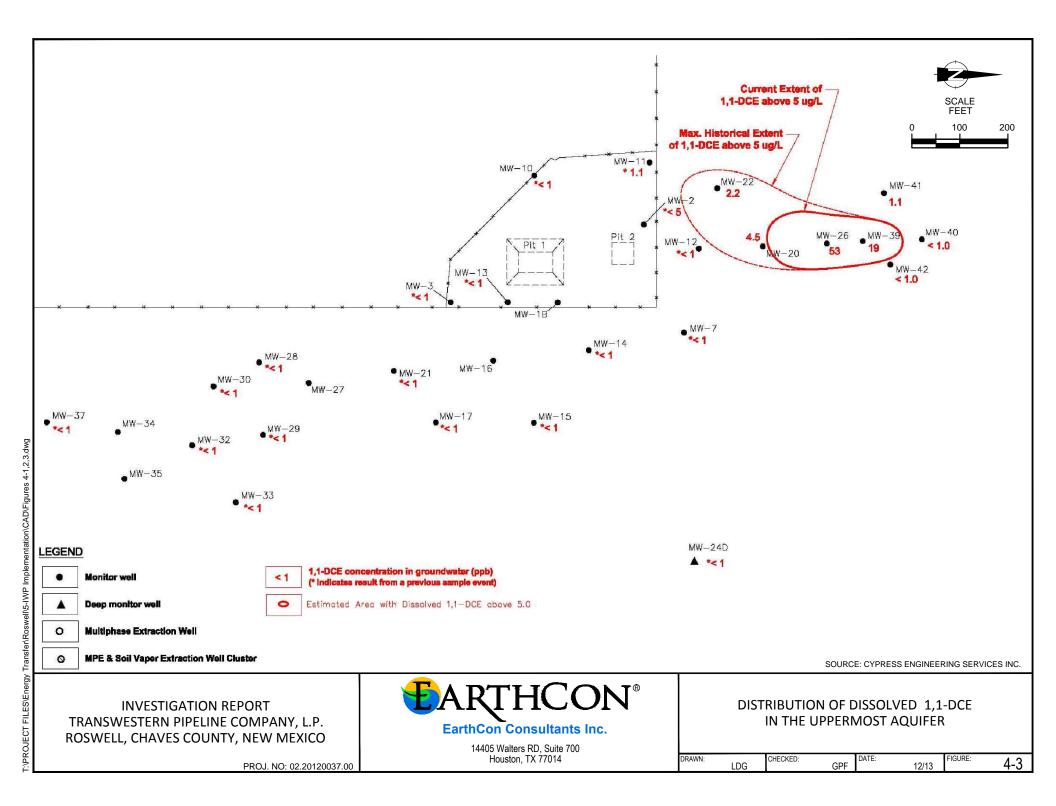
DATE:

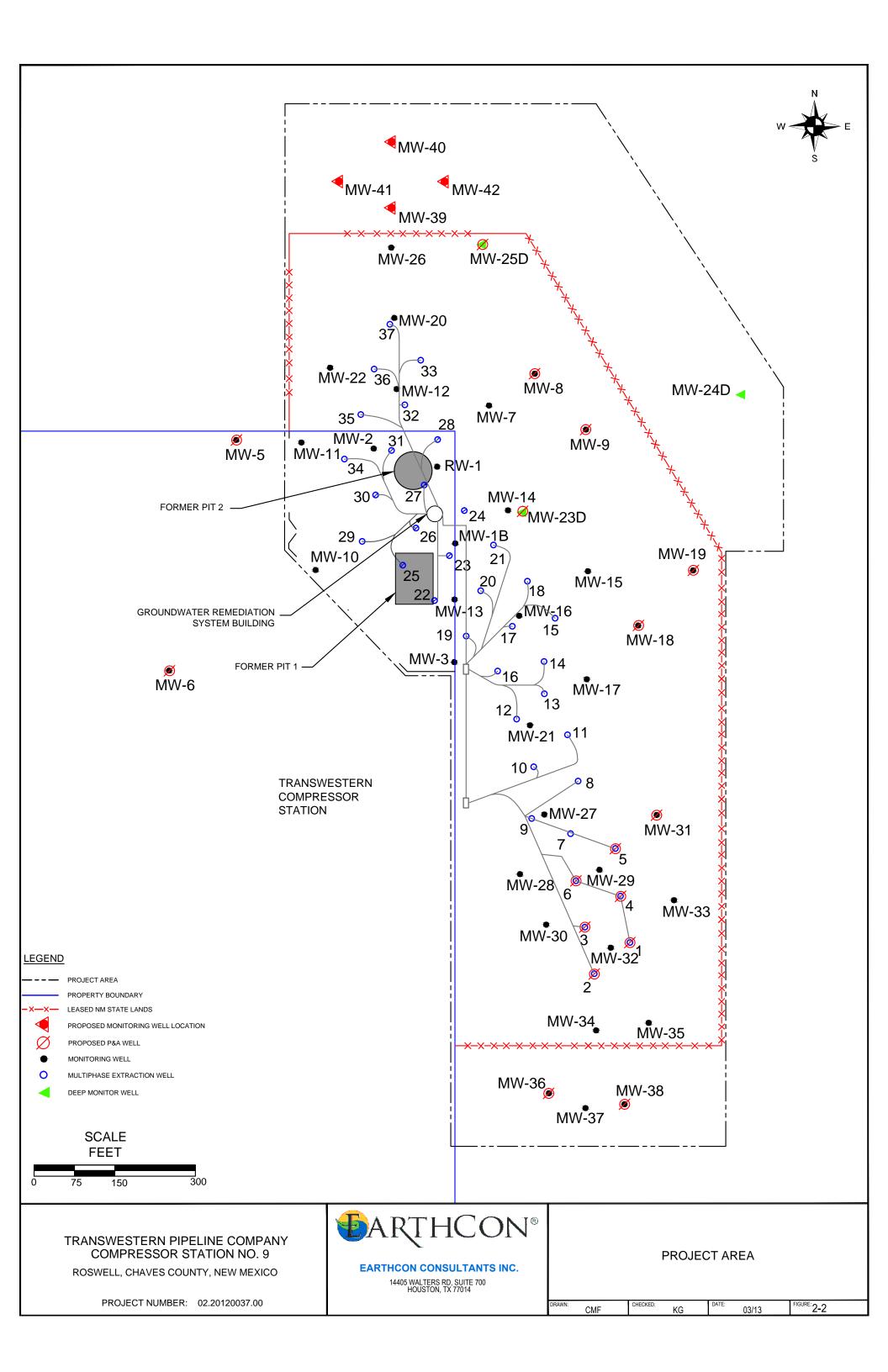
FIGURE:

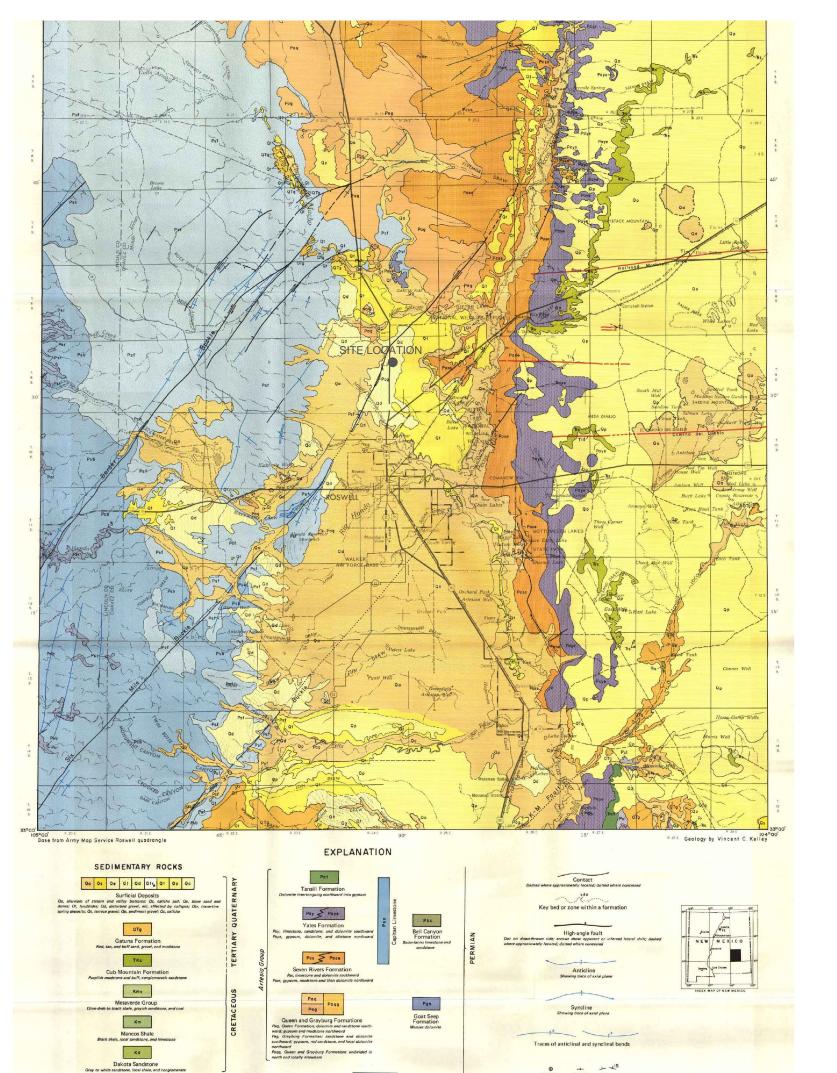

12/13


1-1

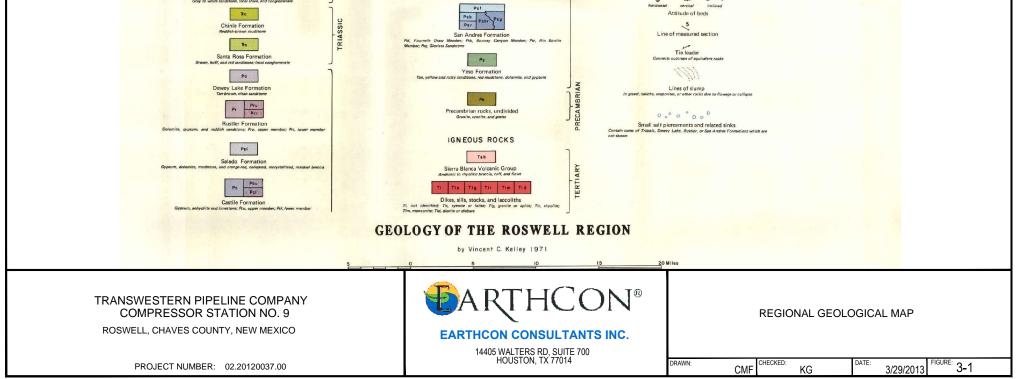

DRAWN:

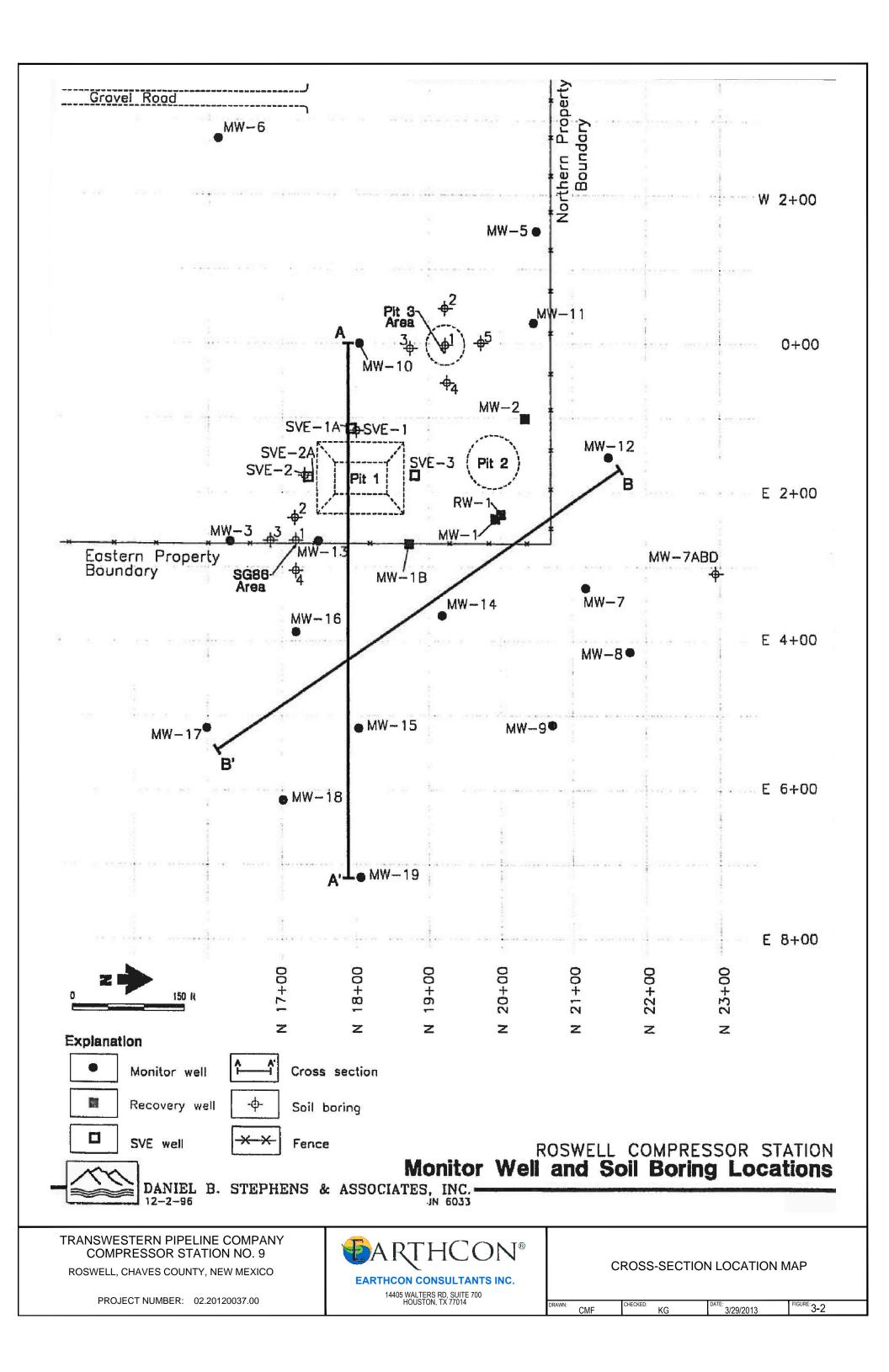

PROJ. NO: 02.20120037.00

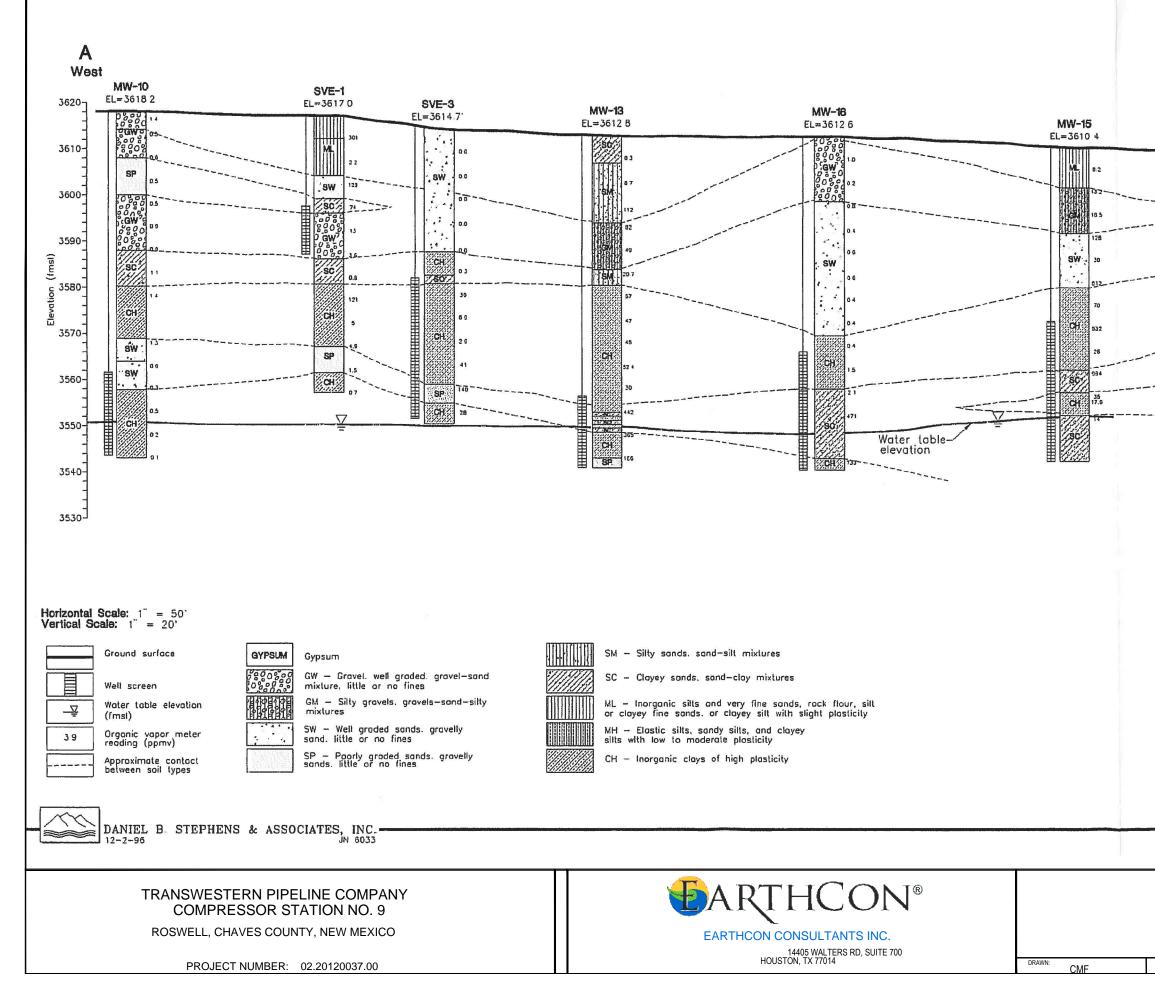


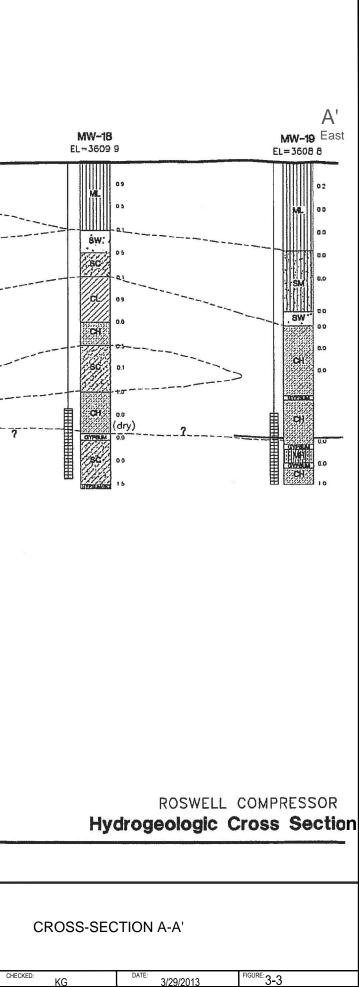


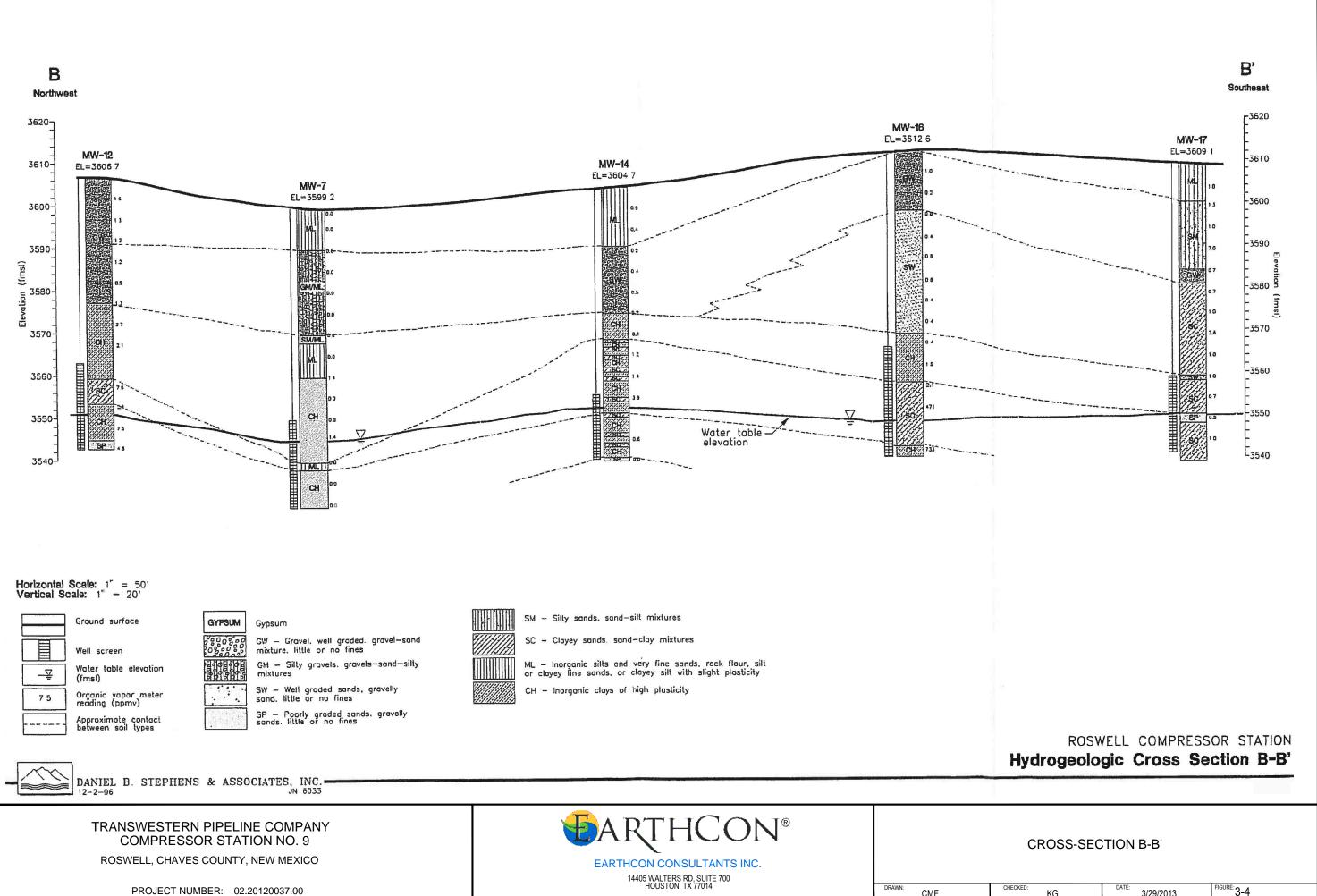
APPENDICES

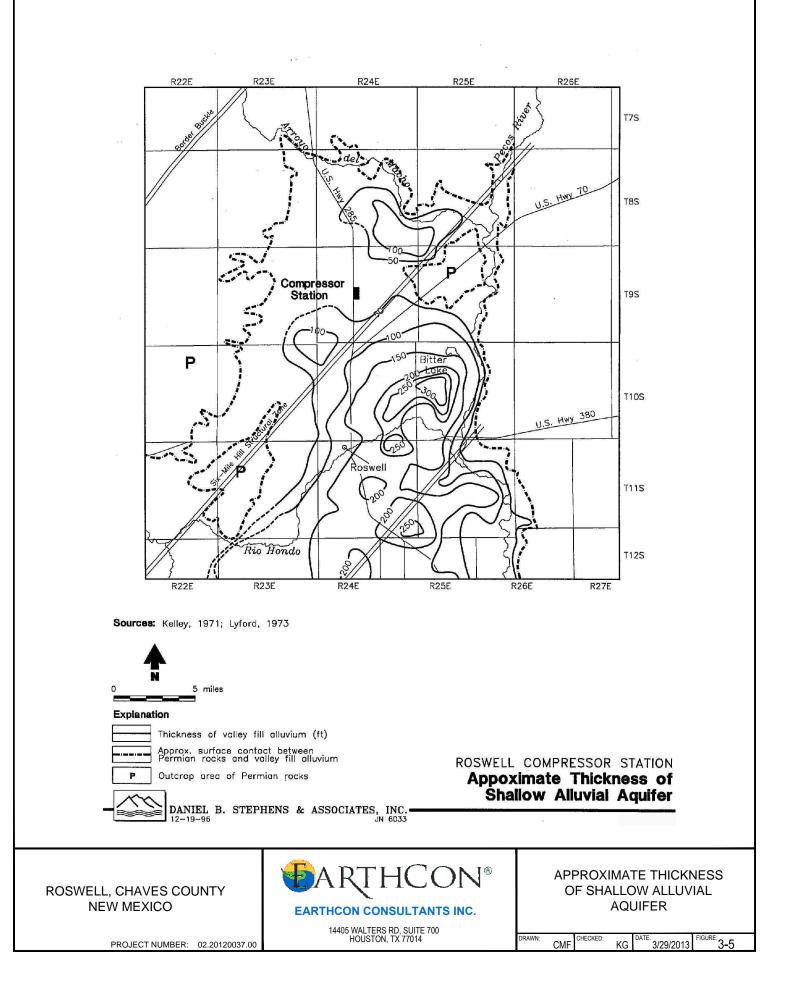

Back to TOC


Appendix A Copies of March 2013 IWP Figures






⊕ + ↓ √¹⁵ harizantal vertical inclined Attitude of beds



CMF

Back to TOC

Appendix B Well Installation Logs, OSE-Well Record and Log forms, and OSE-Plugging Record forms

	TWP New 6381	Roswo Monito North	gineering Services ell Station # 9 or Well Installation Main Street M 88201		BC	REHO	BOREHO		
	PROJECT	INFOR	MATION		, C	RILLIN	G INFORMATI	ON	
PROJEC	27.5	Nev	v Monitor Well P Roswell Station 9		LING CO	esc.	Talon LP Jose Sala	E	
JOB NO.		02.	2012.0037.00	RIG	TYPE:		ReichDril	ReichDrill T650 WDII	
OGGE	D BY:	СМ	Barnhill, PG	MET	HOD OF				
ROJEC	T MANAGER:		orge Robinson, PE	SAM		ETHOD			
	DRILLED:	Last inter	06/13		MER WT			sh with Rig	
<u></u>	Water level du			vel in comp	1.1.1.1.1.1.1.1		Directifu	Shartug	
0.00		ang ann				PID VOC	RODING	MELL	
EPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE	Rec. / ft.	PID VOC PPM	BORING COMPLETION	WELL DESCRIPTION	
5 10 15		SM GM	SM: Fill: Tan, Sand, Silt, 5 Y/R 8/3. No odor or staining. GM: 5 YR 8/2, Gravel, silty gravel, gravel, sand, silt mixture. No odor or staining.	0'-10' 10'-20'	Drill Cuttings Drill Cuttings	0.2 0.3			
20 25 30			SC: 5 YR 4/8-5/8 Brown to reddish brown clayey sand. No	20'-30'	Drill Cuttings	0.2		- CEMENT BENTONITE GROUT:0.5'-45' Estimated = 59.03 gallors Actual = 6	
35		SC	odor or staining.	30'-40'	Drill Cuttings	0.2		gallons 2" PVC RISER / CASING 0'-50'	
40 -			SC: 2.5 YR 4/8 Damp Red to brown clayey sand. No Odor or	40'-50'	Drill Cuttings	0.2		STAINLESS STEE CENTRALIZERS (20' & 45' 3/8 " BENTONITE	
₩-		SC	Staining. Wet at 53' BGS during drilling.	50'-52'	2.0'	0.1		SEAL: 45'-48' Estimated =0.72	
55-			Measured depth ot water from TOC 51.64"	55'-57'	2.0'	0.1		Bags Actual = 3 Bags	
60			08/16/13	60'-62'	2.0'	0.0		SAND PACK: 12/2 Sand Filter Pack 4	
65				<u>65'-67'</u>	2.0'	0.0		71' Estimated = 9 Bags Actual = 19 Bags	
70 -		8					T	SCREEN: 0.010 S Screen 50'-70'	
								SAND PACK: Belo Well	
NOTES	Ambient Air	Tempe	rature 95 F					Page 1 of 1	

	TWP New 6381	Roswo Monito North	gineering Services ell Station # 9 or Well Installation Main Street M 88201		BC	OREHO	BOREH		
	PROJECT	INFOR	MATION		E	RILLIN	G INFORMAT	ION	
JOB NO. LOGGEI PROJEC		Nev TW 02.1 CM Geo	w Monitor Well P Roswell Station 9 2012.0037.00 Barnhill, PG orge Robinson, PE 05/13	DRIL RIG MET SAM	LING CO LER: TYPE: HOD OF PLING M MER WT		Jose Sa ReichDr NG: Air Rota S: 2' Split 3	Talon LPE Jose Salas ReichDrill T650 WDII Air Rotary 6 1/4" 2' Split Spoon Direct Push with Rig	
S S	Water level du	uring drilli	ng 🕿 Waterlev	vel in comp	leted wel	0			
DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE	Rec. / ft.	PID VOC PPM	BORING COMPLETION	WELL DESCRIPTION	
0 5 10 15		GM	GM: Tan, Sand, Silt,, Silty Gravel 5 Y/R 8/3. No odor or staining.	0'-10' 10'-20'	Drill Cuttings Drill Cuttings	0.8			
20 25 30		SM	SM: 5 YR 8/3, Tan Sand, silt mixture. Added 40 gallons of water to help with drilling. No odor or staining.	20'-30'	Drill Cuttings			CEMENT BENTONITE GROUT.0.5'-45' Estimated = 59.03 Gallons Actual = 65 Gallons	
35 - 40 -		SC	SC: 5 YR 4/8-5/8 Brown to reddish brown clayey sand. No	30'-40'	Drill Cuttings Drill	0.5		2" PVC RISER / CASING 0'-50' STAINLESS STEE CENTRALIZERS @	
45		SW	odor or staining.	40'-50'	Cuttings	0.2		20' & 45'	
50 - 50 - 50 - 50 - 1		SC CH	SW: 5 Y/R 5/8 Sugar Like Sand. Med Gr. Well Sorted. No odor or staining	50'-52' 55'-57'	2.0' 2.0'	0.9 0.8		SEAL: 45'-48' Estimated = 0.72 Bags Actual = 2 Bags	
60		SC	SC: Clayey Sand 2.5YR 5/6 No odor or staining	60'-62' 65' <mark>-</mark> 67'	2.0' 2.0'	0.3 0.2		SAND PACK: 12/20 Sand Filter Pack 48 71' Estimated 9 Bags Actual = 18 Bags	
70 -		-	CH: Brown 2.5 YR 5/6 Fat Clay w/ Gypsum to 1"	70'-72'	0	n/a	T	SCREEN: 0.010 Sid Screen 50'-70'	
			SC: Red 2 YR 4/8 Clayey Sand, H2O @ 62? No odor or staining. Saturated at 65' BGS, Capillary Fringe 55'-57' BGS					SAND PACK: Below Well	
NOTES	Ambient Air	Tempe	erature 98 F					Page 1 of 1	

	TWP New 6381	Roswo Monito North	gineering Services ell Station # 9 or Well Installation Main Street M 88201		BC	OREHO	BOREHO	LE LOG
	PROJECT	INFOR	MATION		Ē	RILLIN	G INFORMATI	ON
JOB NO	CATION:	TW 02.:	v Monitor Well P Roswell Station 9 2012.0037.00	DRIL RIG	LING CO LER: TYPE:			as II T650 WDII
	d by: CT MANAGER: DRILLED:	Geo	Barnhill, PG orge Robinson, PE 05/13	SAM	HOD OF PLING M MER WT	S: 2' Split S	ary 6 1/4" Spoon Push with Rig	
<u></u>	Water level du			vel in comp	leted wel	li		
DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE	Rec. / ft.	PID VOC PPM	BORING COMPLETION	WELL DESCRIPTION
0 5		GM	GM: Tan, Sand, Silt,, Silty Gravel 5 Y/R 8/3. No odor or staining.	<mark>0'-10'</mark>	Drill Cuttings	0.2		
10		GP	GP: 5 YR 8/3,Gravel, poorly graded, mixed with Tan Sand, silt mixture. No odor or	10'-20'	Drill Cuttings	0.1		
25-		SP	SP: 5 YR 4/8-5/8 Light Brown 5YP 5/8 Sugar Like Sand with Silt fines. No odor or	20'-30'	Drill Cuttings Drill	0.2		Cement Bentonite Grout: 0.5'-45' Estimated Grout = 64 gallons. Actual Grout = 65 gallons
35 40 45 50		sc	staining. SC: Reddish Brown 2.5YR 5/8 Clayey Sand, Med to fine grain sand. No odor or staining. Wet at 56	30'-40' 40'-50' 50'-52'	Cuttings Drill Cuttings 1.3			 2" PVC Riser / Casing 0'-50' Stainless Steel Centalizers @ 20' 8 45' 3/8 " Bentonite Sea 45'-48' Est. = 0.82 bags. Actual = 2 bags
₩3		GC	BGS Depth to water 08/16/13@ 56.57 TOC	55'-57'	1.0'	1.8		
60 65 70		SC	GC: Reddish Brown 2.5 YR 5/8 Clayey pea sized gravel @ 56.7 1BGS Capillary Fringe?	60'-62' 65'-67' 70'-72'	2.0' 1.0' 0	1.4 0.5 n/a		 Sand Pack: 12/20 Sand filter Pack 48' 70' Est.= 9 bags, Actual =16 bags Screen: 0.010 Slot Screen 50'-70'
75 J			SC: Reddish Brown 2.5 YR 5/8 Clayey sand					Sand Pack: Below Well
NOTES	Ambient Air	Tempe	rature 73 F					Page 1 of 1

	TWP New 6381	Roswo Monito North	gineering Services ell Station # 9 or Well Installation Main Street M 88201		BC	OREHO	BOREHO	
	PROJECT	INFOR	MATION	T	[RILLIN	G INFORMATI	ON
PROJEC SITE LO JOB NO.	CATION:	тw	v Monitor Well P Roswell Station 9 2012.0037.00	DRIL DRIL RIG	E as I T650 WDII			
	D BY: T MANAGER: DRILLED:	Geo	Barnhill, PG orge Robinson, PE	MET	S: 2' Split S	ary 6 1/4" Spoon		
)6/13		MER WT		Direct Pu	ish with Rig
X	Water level du	unng anni	ng 🕿 Waterle	vel in comp	leted wel			
DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE	Rec. / ft.	PID VOC PPM	BORING COMPLETION	WELL DESCRIPTION
0 5-		GM	GM: Tan, Sand, Silt,, Silty Gravel 2.5 Y/R 8/4. No odor or staining.	0'-10'	Drill Cuttings	0.2		
15 - 20 - 25 -		SM	SM: 2.5 YR 8/3, Small pea sized gravel Gravel, Tan Sand, silt mixture. No odor or staining.	10'-20' 20'-30'	Drill Cuttings Drill	0.2		- CEMENT
30				30'-40'	Cuttings Drill Cuttings			BENTONITE GROUT:0.5'-48' Estimated = 62.96 Gallons Actual = 68 Gallons
40 - 45 -		SC	SC: 2.5 YR 4/6 Light Brown Sand with Silt fines. No odor or staining.	40'-50'	Drill Cuttings			2" PVC RISER / CASING 0'-55' STAINLESS STEE CENTRALIZERS @ 20' & 50'
50 -		СН	CH: Fat Clay, Brown, 2.5 YR 4/6 No odor or	50'-52'	2.0'	0.3		~ 3/8 " BENTONITE SEAL: 48'-51'
₩-		-	Stain	55'-57'	2.0'	0.2		Estimated = 0.72 Bags Actual = 2 Bags
65 -		SC	SC: Reddish Brown 2.5YR 4/6 Clayey Sand, Med to fine grain sand. No odor or	60'-62' 65'-67'	2.0'	0.6		Bags - SAND PACK: 12/2 Sand Filter Pack 5
70 - 75 -			staining. Wet at 60' BGS Depth to water 08/16/13@ 56.42 TOC	70'-72'	0	n/a		75' Estimated = 9 Bags Actual = 13 Bags SCREEN: 0.010 SI Screen 55'-75'
80	20		<u> </u>	1	1			` SAND PACK. Belo Well
NOTES:	Ambient Air	Tempe	rature 99 F					Page 1 of 1

	TWP New 6381	Rosw Monite North	gineering Services ell Station # 9 or Well Installation Main Street M 88201		BC		BOREHO		
	PROJECT	INFOR	MATION		C	RILLIN	IG INFORMATI	ON	
ROJEC	DT:	Nev	w Monitor Well	DRIL	LING CC) .:	Talon LP	Talon LPE	
SITE LO	CATION:	тw	P Roswell Station 9	DRIL	LER:		Jose Sal	as	
OB NO.		02	2012.0037.00	RIG	TYPE:		ReichDri	II T650 WDII	
OGGE	D BY:		Barnhill, PG	MET	HOD OF	DRILLI		otary 6 1/4"	
ROJEC			orge Robinson, PE						
	DRILLED:)6/13		MER WT			ish with Rig	
<u></u>	Water level d	uring drilli	ng 🕿 Waterle	vel in comp	leted well	1			
DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE	Rec. / ft.	PID VOC PPM	BORING COMPLETION	WELL DESCRIPTION	
9 5		GM	GM: Light Brown, Sand, Silt,, Silty Gravel.2 5 YR 6/6. No	<mark>0'-10'</mark>	Drill Cuttings	0.1			
10		SC	SC: 2.5 YR 6/1, Tan Clayey Sand, silt	10'-20'	Drill Cuttings	0.2		 CEMENT 0.5'-20' BGS Estimated = 28.74 gallons Actual = 30 gallons 	
20		SC	mixture. No odor or staining. GC: 5 YR 7/4 Clayey	20'-30'	Drill Cuttings	0.2			
30	0 0 0 0 0 0 0 0 0 0	GP	Gravel, Gravel, Sand, Clay mixture. No odor or staining.	30'-40'	Drill Cuttings	0.2			
40	0 0 0 0 0 0 0 7 7 7 7 7		GP: 5 YR 8/4 Brown, poorly sorted, gravels, gravel,sand, clay mixture. No odor or	40'-50'	Drill Cuttings	0.2		- BACKFILL 20'-60' BGS	
50 -	<u>/././././</u> .	30	staining	50'-52'	20'	0.6			
55		СН	SC: Red 2 YR 4/8 Clayey Sand, No odor or staining. No Water.	55'-57'	2.0'	0.5			
65	<u>,,,,,,</u>		CH: Brown 2.5 YR 5/6 Fat Clay. No Water.	60'-62' 65'-67'	2.0'	0.7 0.8		- HYDRATED BENTONITE 60'-70	
70 - 75 -		3	SC: 2.5 YR 4/6 Brown Clayey Sand, sand clay mixture, with gypsum to 1", No Water, Odor, or Staining.	70'-72'	0	n/a		Estimated = 2.79 bags Actual = 3 Bags	

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD NU	MBER (WELL	NUMBER)				OSE FILE NUM	MBER(S)		
LION	WELL OWNI	FRNAM	F(S)					PHONE (OPTI	ONAL)		
DCA1	WEEL OWN		L(3)					THORE (OF TH	JAAL)		
GENERAL AND WELL LOCATION	WELL OWNI	ER MAII	LING A	ADDRESS				CITY		STATE	ZIP
WE											
AND	WELL			DEGREES	S MINUTES	SECONE		* ACCURACY	REQUIRED: ONE TENT	TH OF A SECOND	
RAL	LOCATIO (FROM GP	- H	LATI				N		QUIRED: WGS 84		
ENE	DESCRIPTION	N RELATI		GITUDE	T ADDRESS AND COMMO	N LANDMARKS - PLS		OWNSHJIP, RANG	E) WHERE AVAILABLE		
1. G											
	LICENSE NU	MBER		NAME OF LICENSED	DRILLER				NAME OF WELL DRI	ILLING COMPANY	
	DRILLING S	TARTEE)	DRILLING ENDED	DEPTH OF COMPLETE	D WELL (FT)	BORE HOI	LE DEPTH (FT)	DEPTH WATER FIRS	ST ENCOUNTERED (FT)	1
Z	COMPLETED	O WELL	IS: (ARTESIAN	O DRY HOLE O	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN COMPLETED WE	ELL (FT)
ATIC	DRILLING F	LUID:	(AIR	O mud	ADDITIVES – SPI	ECIFY:				
DRM	DRILLING M	IETHOD	: (ROTARY	O HAMMER O	O OTHE	R – SPECIFY:				
INFO	DEPTH (feet bgl) BORE HOLE CASING MATERIAL AND/OR GRADE							SING	CASING	CASING WALL	SLOT
CASING INFORMATION	FROM TO DIAM (inches) ORADE (include each casing string, and note sections of screen) CONNECTION TYPE					INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches)			
ઝ											
DRILLING											
DRIL											
5.]											
	DEPTH	(feet bg	gl)	BORE HOLE	LIST ANN	JULAR SEAL M	ATERIAL A	ND	AMOUNT	METHO	
ANNULAR MATERIAL	FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY							RVAL	(cubic feet)	PLACEN	MENT
ATEI											
R M											
ULA											
NN											
3.											
	OSE INTER	NAL U	JSE			POD NUMBER			0 WELL RECORD a	& LOG (Version 06/0	08/2012)
	ATION							I		PAGE	1 OF 2

	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUN INCLUDE WATER-BEARING CAVITIES OR FRAC (attach supplemental sheets to fully describe a	TURE ZONES	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING
					,		ZONES (gpm)
						O Y O N	
						OY ON	
						OY ON	
						O Y O N	
						OY ON	
T						O Y O N	
WEI						O Y O N	
OF						OY ON	
00						$O^{Y} O^{N}$	
ICL						$O^{Y} O^{N}$	
.0G						$\bigcirc Y \bigcirc N$	
EOI						$\bigcirc Y \bigcirc N$	
4. HYDROGEOLOGIC LOG OF WELL						O Y O N	
IUDI						O Y O N	
4. H						$O^{Y} O^{N}$	
						O Y O N	
						O Y O N	
						O Y O N	
						O Y O N	
						$O^{Y} O^{N}$	
						$O^{Y} O^{N}$	
	METHOD I			OF WATER-BEARING STRATA: O PUMP	TO	TAL ESTIMATED	
				<u> </u>		ELL YIELD (gpm):	
	○ AIR LIF		BAILER O	OTHER – SPECIFY:			
NO	WELL TES			ACH A COPY OF DATA COLLECTED DURING WELL T ME, AND A TABLE SHOWING DISCHARGE AND DRAW			
TEST; RIG SUPERVISIO	MISCELLA	NEOUS INI	FORMATION:				
PER							
INS :							
RIG							
EST;	PRINT NAM	(E(S) OF D	RILL RIG SUPER	VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF	EWELL CONSTRI	UCTION OTHER TH	IAN LICENSEE
5. TI		IL(5) 01 D	KILL KIU SULLA	visor(s) man rovideb onsite sorervision of	WELL CONSTRU		IAN EICENSEL.
	THE UNDE	RSIGNED I	HEREBY CERTIF	IES THAT, TO THE BEST OF HIS OR HER KNOWLEDG	E AND BELIEF. 1	THE FOREGOING IS	S A TRUE AND
RE	CORRECT I	RECORD O	F THE ABOVE D	ESCRIBED HOLE AND THAT HE OR SHE WILL FILE T 0 DAYS AFTER COMPLETION OF WELL DRILLING:			
6. SIGNATURE	AND THE I		LDER WITTIN 2	DATS AFTER COMPLETION OF WEEL DRILLING.			
GN							
6. SI							
		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE NAME		DATE	
FOI	R OSE INTER	NAL USE			WR-20 WELL R	ECORD & LOG (Ve	rsion 06/08/2012)
	E NUMBER			POD NUMBER	TRN NUMBER	`	, ,

LOCATION

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD NU	MBER (WELL	NUMBER)				OSE FILE NUM	MBER(S)		
LION	WELL OWNI	FRNAM	F(S)					PHONE (OPTI	ONAL)		
DCA1	WEEL OWN		L(3)					THORE (OF TH	JAAL)		
GENERAL AND WELL LOCATION	WELL OWNI	ER MAII	LING A	ADDRESS				CITY		STATE	ZIP
WE											
AND	WELL			DEGREES	S MINUTES	SECONE		* ACCURACY	REQUIRED: ONE TENT	TH OF A SECOND	
RAL	LOCATIO (FROM GP	- H	LATI				N		QUIRED: WGS 84		
ENE	DESCRIPTION	N RELATI		GITUDE	T ADDRESS AND COMMO	N LANDMARKS - PLS		OWNSHJIP, RANG	E) WHERE AVAILABLE		
1. G											
	LICENSE NU	MBER		NAME OF LICENSED	DRILLER				NAME OF WELL DRI	ILLING COMPANY	
	DRILLING S	TARTEE)	DRILLING ENDED	DEPTH OF COMPLETE	D WELL (FT)	BORE HOI	LE DEPTH (FT)	DEPTH WATER FIRS	ST ENCOUNTERED (FT)	1
Z	COMPLETED	O WELL	IS: (ARTESIAN	O DRY HOLE O	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN COMPLETED WE	ELL (FT)
ATIC	DRILLING F	LUID:	(AIR	O mud	ADDITIVES – SPI	ECIFY:				
DRM	DRILLING M	IETHOD	: (ROTARY	O HAMMER O	O OTHE	R – SPECIFY:				
INFO	DEPTH (feet bgl) BORE HOLE CASING MATERIAL AND/OR GRADE							SING	CASING	CASING WALL	SLOT
CASING INFORMATION	FROM TO DIAM (inches) ORADE (include each casing string, and note sections of screen) CONNECTION TYPE					INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches)			
ઝ											
DRILLING											
DRIL											
5.]											
	DEPTH	(feet bg	gl)	BORE HOLE	LIST ANN	JULAR SEAL M	ATERIAL A	ND	AMOUNT	METHO	
ANNULAR MATERIAL	FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY							RVAL	(cubic feet)	PLACEN	MENT
ATEI											
R M											
ULA											
NN											
3.											
	OSE INTER	NAL U	JSE			POD NUMBER			0 WELL RECORD a	& LOG (Version 06/0	08/2012)
	ATION							I		PAGE	1 OF 2

	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUN INCLUDE WATER-BEARING CAVITIES OR FRAC (attach supplemental sheets to fully describe a	TURE ZONES	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING
					,		ZONES (gpm)
						O Y O N	
						OY ON	
						OY ON	
						O Y O N	
						OY ON	
T						O Y O N	
WEI						$\bigcirc Y \bigcirc N$	
OF						OY ON	
00						$O^{Y} O^{N}$	
ICL						$O^{Y} O^{N}$	
.0G						$\bigcirc Y \bigcirc N$	
EOI						$\bigcirc Y \bigcirc N$	
4. HYDROGEOLOGIC LOG OF WELL						O Y O N	
IUDI						O Y O N	
4. H						$O^{Y} O^{N}$	
						O Y O N	
						O Y O N	
						O Y O N	
						O Y O N	
						$O^{Y} O^{N}$	
						$O^{Y} O^{N}$	
	METHOD I			OF WATER-BEARING STRATA: O PUMP	TO	TAL ESTIMATED	
				<u> </u>		ELL YIELD (gpm):	
	○ AIR LIF		BAILER O	OTHER – SPECIFY:			
NO	WELL TES			ACH A COPY OF DATA COLLECTED DURING WELL T ME, AND A TABLE SHOWING DISCHARGE AND DRAV			
TEST; RIG SUPERVISIO	MISCELLA	NEOUS INI	FORMATION:				
PER							
INS :							
RIG							
EST;	PRINT NAM	(E(S) OF D	RILL RIG SUPER	VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF	EWELL CONSTRI	UCTION OTHER TH	IAN LICENSEE
5. TI		IL(5) 01 D	KILL KIU SULLA	visor(s) man novibeb onshe sorervision of	WELL CONSTRU		IAN EICENSEL.
	THE UNDE	RSIGNED I	HEREBY CERTIF	IES THAT, TO THE BEST OF HIS OR HER KNOWLEDG	E AND BELIEF. 1	THE FOREGOING IS	S A TRUE AND
RE	CORRECT I	RECORD O	F THE ABOVE D	ESCRIBED HOLE AND THAT HE OR SHE WILL FILE T 0 DAYS AFTER COMPLETION OF WELL DRILLING:			
6. SIGNATURE	AND THE I		LDER WITTIN 2	DATS AFTER COMPLETION OF WEEL DRILLING.			
GN							
6. SI							
		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE NAME		DATE	
FOI	R OSE INTER	NAL USE			WR-20 WELL R	ECORD & LOG (Ve	rsion 06/08/2012)
	E NUMBER			POD NUMBER	TRN NUMBER	`	, ,

LOCATION

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD NU	MBER (WELL	NUMBER)				OSE FILE NUM	MBER(S)		
LION	WELL OWNI	FRNAM	F(S)					PHONE (OPTI	ONAL)		
DCA1	WEEL OWN		L(3)					THORE (OF TH	JAAL)		
GENERAL AND WELL LOCATION	WELL OWNI	ER MAII	LING A	ADDRESS				CITY		STATE	ZIP
WE											
AND	WELL			DEGREES	S MINUTES	SECONE		* ACCURACY	REQUIRED: ONE TENT	TH OF A SECOND	
RAL	LOCATIO (FROM GP	- H	LATI				N		QUIRED: WGS 84		
ENE	DESCRIPTION	N RELATI		GITUDE	T ADDRESS AND COMMO	N LANDMARKS - PLS		OWNSHJIP, RANG	E) WHERE AVAILABLE		
1. G											
	LICENSE NU	MBER		NAME OF LICENSED	DRILLER				NAME OF WELL DRI	ILLING COMPANY	
	DRILLING S	TARTEE)	DRILLING ENDED	DEPTH OF COMPLETE	D WELL (FT)	BORE HOI	LE DEPTH (FT)	DEPTH WATER FIRS	ST ENCOUNTERED (FT)	1
Z	COMPLETED	O WELL	IS: (ARTESIAN	O DRY HOLE O	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN COMPLETED WE	ELL (FT)
ATIC	DRILLING F	LUID:	(AIR	O mud	ADDITIVES – SPI	ECIFY:				
DRM	DRILLING M	IETHOD	: (ROTARY	O HAMMER O	O OTHE	R – SPECIFY:				
INFO	DEPTH (feet bgl) BORE HOLE CASING MATERIAL AND/OR GRADE							SING	CASING	CASING WALL	SLOT
CASING INFORMATION	FROM TO DIAM (inches) ORADE (include each casing string, and note sections of screen) CONNECTION TYPE					INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches)			
ઝ											
DRILLING											
DRIL											
5.]											
	DEPTH	(feet bg	gl)	BORE HOLE	LIST ANN	JULAR SEAL M	ATERIAL A	ND	AMOUNT	METHO	
ANNULAR MATERIAL	FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY							RVAL	(cubic feet)	PLACEN	MENT
ATEI											
R M											
ULA											
NN											
3.											
	OSE INTER	NAL U	JSE			POD NUMBER			0 WELL RECORD a	& LOG (Version 06/0	08/2012)
	ATION							I		PAGE	1 OF 2

	DEPTH (1 FROM	feet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUN INCLUDE WATER-BEARING CAVITIES OR FRAC (attach supplemental sheets to fully describe a	TURE ZONES	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING
					,		ZONES (gpm)
						O Y O N	
						OY ON	
						OY ON	
						O Y O N	
						OY ON	
T						O Y O N	
WEI						$\bigcirc Y \bigcirc N$	
OF						OY ON	
00						$O^{Y} O^{N}$	
ICL						$O^{Y} O^{N}$	
.0G						$\bigcirc Y \bigcirc N$	
EOI						\bigcirc Y \bigcirc N	
4. HYDROGEOLOGIC LOG OF WELL						O Y O N	
IUDI						O Y O N	
4. H						$O^{Y} O^{N}$	
						O Y O N	
						O Y O N	
						O Y O N	
						O Y O N	
						$O^{Y} O^{N}$	
						$O^{Y} O^{N}$	
	METHOD I			OF WATER-BEARING STRATA: O PUMP		TAL ESTIMATED	
				<u> </u>		ELL YIELD (gpm):	
	○ AIR LIF		BAILER O	OTHER – SPECIFY:			
NO	WELL TES			ACH A COPY OF DATA COLLECTED DURING WELL T ME, AND A TABLE SHOWING DISCHARGE AND DRAW			
TEST; RIG SUPERVISIO	MISCELLA	NEOUS INI	FORMATION:				
PER							
INS :							
RIG							
EST;	PRINT NAM	(E(S) OF D	RILL RIG SUPER	VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF	EWELL CONSTRI	UCTION OTHER TH	IAN LICENSEE
5. TI		IL(5) 01 D	KILL KIU SULLA	visor(s) man rovideb onsite sorervision of	WELL CONSTRU		IAN LICENSEL.
	THE UNDE	RSIGNED I	HEREBY CERTIF	IES THAT, TO THE BEST OF HIS OR HER KNOWLEDG	E AND BELIEF. 1	THE FOREGOING IS	S A TRUE AND
RE	CORRECT I	RECORD O	F THE ABOVE D	ESCRIBED HOLE AND THAT HE OR SHE WILL FILE T 0 DAYS AFTER COMPLETION OF WELL DRILLING:			
6. SIGNATURE	AND THE I		LDER WITTIN 2	DATS AFTER COMPLETION OF WEEL DRILLING.			
GN							
6. SI							
		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE NAME		DATE	
FOI	R OSE INTER	NAL USE			WR-20 WELL R	ECORD & LOG (Ve	rsion 06/08/2012)
	E NUMBER			POD NUMBER	TRN NUMBER	`	, ,

LOCATION

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD NU	MBER (WELL	NUMBER)				OSE FILE NUM	MBER(S)		
LION	WELL OWNI	FRNAM	F(S)					PHONE (OPTI	ONAL)		
DCA1	WEEL OWN		L(3)					THORE (OF TH	JAAL)		
GENERAL AND WELL LOCATION	WELL OWNI	ER MAII	LING A	ADDRESS				CITY		STATE	ZIP
WE											
AND	WELL			DEGREES	S MINUTES	SECONE		* ACCURACY	REQUIRED: ONE TENT	TH OF A SECOND	
RAL	LOCATIO (FROM GP	- H	LATI				N		QUIRED: WGS 84		
ENE	DESCRIPTION	N RELATI		GITUDE	T ADDRESS AND COMMO	N LANDMARKS - PLS		OWNSHJIP, RANG	E) WHERE AVAILABLE		
1. G											
	LICENSE NU	MBER		NAME OF LICENSED	DRILLER				NAME OF WELL DRI	ILLING COMPANY	
	DRILLING S	TARTEE)	DRILLING ENDED	DEPTH OF COMPLETE	D WELL (FT)	BORE HOI	LE DEPTH (FT)	DEPTH WATER FIRS	ST ENCOUNTERED (FT)	1
Z	COMPLETED	O WELL	IS: (ARTESIAN	O DRY HOLE O	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN COMPLETED WE	ELL (FT)
ATIC	DRILLING F	LUID:	(AIR	O mud	ADDITIVES – SPI	ECIFY:				
DRM	DRILLING M	IETHOD	: (ROTARY	O HAMMER O	O OTHE	R – SPECIFY:				
INFO	DEPTH (feet bgl) BORE HOLE CASING MATERIAL AND/OR GRADE							SING	CASING	CASING WALL	SLOT
CASING INFORMATION	FROM TO DIAM (inches) ORADE (include each casing string, and note sections of screen) CONNECTION TYPE					INSIDE DIAM. (inches)	THICKNESS (inches)	SIZE (inches)			
ઝ											
DRILLING											
DRIL											
5.]											
	DEPTH	(feet bg	gl)	BORE HOLE	LIST ANN	JULAR SEAL M	ATERIAL A	ND	AMOUNT	METHO	
ANNULAR MATERIAL	FROM TO DIAM. (inches) GRAVEL PACK SIZE-RANGE BY							RVAL	(cubic feet)	PLACEN	MENT
ATEI											
R M											
ULA											
NN											
3.											
	OSE INTER	NAL U	JSE			POD NUMBER			0 WELL RECORD a	& LOG (Version 06/0	08/2012)
	ATION							I		PAGE	1 OF 2

	DEPTH (1 FROM	DEPTH (feet bgl) THICKNESS FROM TO (feet)		COLOR AND TYPE OF MATERIAL ENCOUN INCLUDE WATER-BEARING CAVITIES OR FRAC (attach supplemental sheets to fully describe a	TURE ZONES	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING	
					,		ZONES (gpm)	
						O Y O N		
						OY ON		
						OY ON		
						O Y O N		
						OY ON		
T						O Y O N		
WEI						$\bigcirc Y \bigcirc N$		
OF						OY ON		
00						$O^{Y} O^{N}$		
ICL						$O^{Y} O^{N}$		
.0G						$\bigcirc Y \bigcirc N$		
EOI						$\bigcirc Y \bigcirc N$		
4. HYDROGEOLOGIC LOG OF WELL						O Y O N		
IUDI						O Y O N		
4. F						$O^{Y} O^{N}$		
						O Y O N		
						O Y O N		
						O Y O N		
						O Y O N		
						$O^{Y} O^{N}$		
						$O^{Y} O^{N}$		
	METHOD I			OF WATER-BEARING STRATA: O PUMP		TAL ESTIMATED		
				<u> </u>		ELL YIELD (gpm):		
	○ AIR LIF		BAILER O	OTHER – SPECIFY:				
NO	WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHORS START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.							
TEST; RIG SUPERVISIO	MISCELLANEOUS INFORMATION:							
PER								
INS :								
RIG								
EST;								
5. TI	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:							
	THE UNDE	RSIGNED I	HEREBY CERTIF	IES THAT, TO THE BEST OF HIS OR HER KNOWLEDG	E AND BELIEF. 1	THE FOREGOING IS	S A TRUE AND	
RE	CORRECT I	RECORD O	F THE ABOVE D	ESCRIBED HOLE AND THAT HE OR SHE WILL FILE T 0 DAYS AFTER COMPLETION OF WELL DRILLING:				
6. SIGNATURE	AND THE I		LDER WITTIN 2	DATS AFTER COMPLETION OF WEEL DRILLING.				
GN								
6. SI								
		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE NAME		DATE		
FOI	R OSE INTER	NAL USE			WR-20 WELL R	ECORD & LOG (Ve	rsion 06/08/2012)	
	E NUMBER			POD NUMBER	TRN NUMBER	`	, ,	

LOCATION

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	Engineer Well Number: MW-5
Well	owner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Maili	ing address:6381 North Main Street
	Roswell State: NM Zip code: 88201
<u>II. V</u>	WELL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well:Talon/LPE
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began:08/05/2013 Date well plugging concluded:08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,9.2secLongitude:104deg,30min,10sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:70 ft below ground level (bgl), by the following manner:Open Reel Measuring Tape
7)	Static water level measured at initiation of plugging: ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer: 07/29/2013
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):
. <u> </u>	

Depth (ft bgl) 0	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
10 — 20 — 30 — 40 — 50 —					
60 — 70 —	Bentonite	103.30	103.30	Tremie	Open Hole
-					
-					
_					
_					
-		MULTIPLY			
III. SIGN	ATURE:	cubic feet x 7.4 cubic yards x 201.9	1805 = gallons		

For each interval plugged, describe within the following columns:

Ш

Shane Currie _____, say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

State	e Engineer Well Number: MW-6
	I owner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Mail	ing address:6381 North Main Street
	Roswell State: NM Zip code: 88201
<u>II. V</u>	WELL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well:Talon/LPE
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began:08/05/2013 Date well plugging concluded:08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,8.5secLongitude:104deg,30min,0.3sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:70ft below ground level (bgl), by the following manner:Open Reel Measuring Tape
7)	Static water level measured at initiation of plugging: ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer: <u>07/29/2013</u>
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

Depth (ft bgl) 0	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
10 — 20 — 30 — 40 — 50 —					
60 — 70 —	Bentonite	103.30	103.30	Tremie	Open Hole
-					
-					
_					
_					
-		MULTIPLY			
III. SIGN	ATURE:	cubic feet x 7.4 cubic yards x 201.9	1805 = gallons		

For each interval plugged, describe within the following columns:

Ш

Shane Currie _____, say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	Engineer Well Number: MW-8
Well	owner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Mail	ing address:6381 North Main Street
	Roswell State: NM Zip code: 88201
<u>II. V</u>	WELL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well:
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began:08/05/2013 Date well plugging concluded:08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,9.5secLongitude:104deg,30min,8.9sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:70 ft below ground level (bgl), by the following manner:Open Reel Measuring Tape
7)	Static water level measured at initiation of plugging: ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer: 07/29/2013
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

Depth (ft bgl) 0	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
10 — 20 — 30 — 40 — 50 —					
60 — 70 —	Bentonite	103.30	103.30	Tremie	Open Hole
-					
-					
_					
_					
-		MULTIPLY			
III. SIGN	ATURE:	cubic feet x 7.4 cubic yards x 201.9	1805 = gallons		

For each interval plugged, describe within the following columns:

Ш

Shane Currie _____, say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	Engineer Well Number: MW-9
Well	owner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Mail	ing address:6381 North Main Street
	Roswell State: NM Zip code: 88201
<u>II. V</u>	WELL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well:
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began:08/05/2013 Date well plugging concluded:08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,9.3secLongitude:104deg,30min,8.7sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:79 ft below ground level (bgl), by the following manner:Open Reel Measuring Tape
7)	Static water level measured at initiation of plugging: ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer: 07/29/2013
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

Depth (ft bgl) 0	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
10 — 20 — 30 — 40 —					
60 — 70 — 80 —	Bentonite	116.58	116.58	Tremie	Open Hole
-					
-					
-					
III. SIGN	ATURE:	MULTIPLY F cubic feet x 7.4 cubic yards x 201.9	3Y AND OBTAIN 1805 = gallons 37 = gallons		

For each interval plugged, describe within the following columns:

Ш

Shane Currie _____, say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	Engineer Well Number: MW-18
	owner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Mail	ing address:6381 North Main Street
City:	Roswell State: NM Zip code: 88201
<u>II. V</u>	VELL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well:
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began:08/05/2013 Date well plugging concluded:08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,8.7secLongitude:104deg,30min,8.4sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:70 ft below ground level (bgl), by the following manner:Open Reel Measuring Tape
7)	Static water level measured at initiation of plugging: ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer: <u>07/29/2013</u>
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

Depth (ft bgl) 0	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
10 — 20 — 30 — 40 — 50 —					
70	Bentonite	103.30	103.30	Tremie	Open Hole
 III. SIGN	ATURE:	MULTIPLY f cubic feet x 7.4 cubic yards x 201.9	BY AND OBTAIN 1805 = gallons 37 = gallons		

For each interval plugged, describe within the following columns:

Ш

Shane Currie _____, say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	Engineer Well Number: MW-19
Well	Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Mail	g address:6381 North Main Street
	Roswell NM Zip code: 88201
<u>II. V</u>	ELL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well:
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began: 08/05/2013 Date well plugging concluded: 08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,8.8secLongitude:104deg,30min,8.3sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:70 ft below ground level (bgl), by the following manner:Open Reel Measuring Tape
7)	Static water level measured at initiation of plugging:ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer: _07/29/2013
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

Depth (ft bgl) 0	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
10 — 20 — 30 — 40 — 50 —					
70	Bentonite	103.30	103.30	Tremie	Open Hole
 III. SIGN	ATURE:	MULTIPLY f cubic feet x 7.4 cubic yards x 201.9	BY AND OBTAIN 1805 = gallons 37 = gallons		

For each interval plugged, describe within the following columns:

Ш

Shane Currie _____, say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	e Engineer Well Number: MW-31				
	I owner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022				
Mail	ing address:6381 North Main Street				
	Roswell State: NM Zip code: 88201				
<u>II. V</u>	WELL PLUGGING INFORMATION:				
1)	Name of well drilling company that plugged well:				
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014				
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):				
4)	Date well plugging began: 08/05/2013 Date well plugging concluded: 08/15/2013				
5)	GPS Well Location:Latitude:33deg,30min,8.2secLongitude:104deg,30min,8.1sec, WGS 84				
6)	Depth of well confirmed at initiation of plugging as:70 ft below ground level (bgl), by the following manner:Open Reel Measuring Tape				
7)	Static water level measured at initiation of plugging:ft bgl				
8)	Date well plugging plan of operations was approved by the State Engineer: 07/29/2013				
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):				

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

Depth (ft bgl) 0	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	<u>Theoretical Volume</u> of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
10 — 20 — 30 — 40 — 50 — 60 — 70 —	Bentonite	103.30	103.30	Tremie	Open Hole
 III. SIGN	ATURE:	MULTIPLY fe cubic feet x 7.4 cubic yards x 201.9	3Y AND OBTAIN 1805 = gallons 97 = gallons		

For each interval plugged, describe within the following columns:

Ш

Shane Currie _____, say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

Date

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENERAL / WELL OWNERSHIP:

	Engineer Well Number:MW-36
	owner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Maili	ng address:6381 North Main Street
	Roswell State: NM Zip code: 88201
<u>II. V</u>	ELL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well: <u>Talon/LPE</u>
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began:08/05/2013 Date well plugging concluded:08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,7.2secLongitude:104deg,30min,8.8sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:68ft below ground level (bgl), by the following manner:Open Reel Measuring Tape
7)	Static water level measured at initiation of plugging:ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer:07/29/2013
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

Depth (ft bgl) 0	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)		
10 — 20 — 30 — 40 — 50 — 60 — 70 —	Bentonite	100.34	100.34	Tremie	Open Hole		
-		MULTIPLY E cubic feet x 7.4	BY AND OBTAIN 1805 = gallons				
III. SIGN	ATURE:	cubic yards x 201.9	97 = gallons 97 = gallons				

For each interval plugged, describe within the following columns:

III

Shane Currie , say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

Date

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENERAL / WELL OWNERSHIP:

State En	ngineer Well Number: MW-38
Well ov	vner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Mailing	address:6381 North Main Street
City: <u> </u>	
<u>II. WF</u>	CLL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well:
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began: 08/05/2013 Date well plugging concluded: 08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,7.2secLongitude:104deg,30min,8.5sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:75ft below ground level (bgl), by the following manner:Open Reel Measuring Tape
7)	Static water level measured at initiation of plugging: ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer: 07/29/2013
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	<u>Theoretical Volume</u> of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
10	Bentonite	110.67	110.67	Tremie	Open Hole
	ATURE:	MULTIPLY E cubic feet x 7.4 cubic yards x 201.9	3Y AND OBTAIN 1805 = gallons 97 = gallons		

For each interval plugged, describe within the following columns:

III

Shane Currie , say that I am familiar with the rules of the Office of the State I, Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

Date

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENERAL / WELL OWNERSHIP:

	Engineer Well Number: MW-23
	owner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Maili	ing address:6381 North Main Street
	Roswell State: NM Zip code: 88201
<u>II. V</u>	VELL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well:
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began: 08/05/2013 Date well plugging concluded: 08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,9.5secLongitude:104deg,30min,9.1sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:187ft below ground level (bgl), by the following manner:Open Reel Measuring Tapeft below ground level (bgl),
7)	Static water level measured at initiation of plugging: ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer: <u>07/29/2013</u>
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

Depth (ft bgl) 0	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
10 -					
20 —					
30 🗕					
40 —					
50 —					
60 —					
70 —					
80 —					
90 🗕					
100 —					
110					
120					
130 —					
140 —					
150 —— 160 —					
170 - 180 -					
190 <u>–</u>	Bentonite	122.64	122.64	Tremie	Open Hole
130					
_					
_					
_					
		cubic feet x 7.4	BY AND OBTAIN 1805 = gallons		
III. SIGN	ATURE:	cubic yards x 201.9	97 = gallons		

For each interval plugged, describe within the following columns:

III. SIGNATURE:

I, <u>Shane Currie</u>, say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

Date

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENERAL / WELL OWNERSHIP:

	Engineer Well Number: MW-25
Well	owner: Transwestern Pipeline Company, LLC Phone No.: (575) 625-8022
Maili	ing address:6381 North Main Street
	Roswell State: NM Zip code: 88201
<u>II. V</u>	VELL PLUGGING INFORMATION:
1)	Name of well drilling company that plugged well: <u>Talon/LPE</u>
2)	New Mexico Well Driller License No.: 1575 Expiration Date: 07/31/2014
3)	Well plugging activities were supervised by the following well driller(s)/rig supervisor(s):
4)	Date well plugging began:08/05/2013 Date well plugging concluded:08/15/2013
5)	GPS Well Location:Latitude:33deg,30min,9.8secLongitude:104deg,30min,9.2sec, WGS 84
6)	Depth of well confirmed at initiation of plugging as:149ft below ground level (bgl), by the following manner:Open Reel Measuring Tape
7)	Static water level measured at initiation of plugging: ft bgl
8)	Date well plugging plan of operations was approved by the State Engineer: <u>07/29/2013</u>
9)	Were all plugging activities consistent with an approved plugging plan? <u>Yes</u> If not, please describe differences between the approved plugging plan and the well as it was plugged (attach additional pages as needed):

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	<u>Theoretical Volume</u> of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
$\begin{array}{c} \underline{100} \\ 0 \\ (ft \ bgl) \\ 0 \\ 10 \\ 20 \\ 0 \\ 30 \\ 40 \\ - \\ 30 \\ - \\ 50 \\ - \\ 50 \\ - \\ 50 \\ - \\ 0 \\ - \\ 100 \\ - \\ 100 \\ - \\ 110 \\ - \\ 120 \\ - \\ 130 \\ - \\ 130 \\ - \\ 150 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	(include any additives used) Bentonite	(gallons)	(gallons) 97.72	(tremie pipe,	("casing perforated first", "open
	ATURE:	MULTIPLY E cubic feet x 7.4 cubic yards x 201.9	3Y AND OBTAIN 1805 = gallons 97 = gallons		

For each interval plugged, describe within the following columns:

III. SIGNATURE:

Shane Currie I, _____, say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

Date

Back to TOC

Appendix C Analytical Data Packages

Investigation Report Roswell Compressor Station Roswell, New Mexico

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

August 22, 2013

George Robinson Cypress Engineering 7171 Highway 6 North Suite 102 Houston, TX 770952422 TEL: (281) 797-3420 FAX (281) 859-1881

RE: TWP Roswell Station 9

OrderNo.: 1308818

Dear George Robinson:

Hall Environmental Analysis Laboratory received 5 sample(s) on 8/20/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Date Reported: 8/22/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering **Project: TWP Roswell Station 9**

1308818-001

Lab ID:

Client Sample ID: MW-39 Collection Date: 8/16/2013 5:10:00 PM

Received Date: 8/20/2013 10:00:00 AM

nalyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: cadg
Benzene	2.8	1.0	µg/L	1	8/21/2013 3:34:07 PM	R1279
Toluene	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R1279
Ethylbenzene	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R1279
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R1279
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R1279
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R1279
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R127
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R1279
Naphthalene	ND	2.0	µg/L	1	8/21/2013 3:34:07 PM	R127
1-Methylnaphthalene	ND	4.0	µg/L	1	8/21/2013 3:34:07 PM	R1279
2-Methylnaphthalene	ND	4.0	µg/L	1	8/21/2013 3:34:07 PM	R1279
Acetone	ND	10	µg/L	1	8/21/2013 3:34:07 PM	R127
Bromobenzene	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R127
Bromodichloromethane	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R127
Bromoform	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R127
Bromomethane	ND	3.0	μg/L	1	8/21/2013 3:34:07 PM	R127
2-Butanone	ND	10	µg/L	1	8/21/2013 3:34:07 PM	R127
Carbon disulfide	ND	10	μg/L	1	8/21/2013 3:34:07 PM	R127
Carbon Tetrachloride	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
Chlorobenzene	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R127
Chloroethane	ND	2.0	μg/L	1	8/21/2013 3:34:07 PM	R127
Chloroform	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
Chloromethane	ND	3.0	μg/L	1	8/21/2013 3:34:07 PM	R127
2-Chlorotoluene	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
4-Chlorotoluene	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
cis-1,2-DCE	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/21/2013 3:34:07 PM	R127
Dibromochloromethane	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
Dibromomethane	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
1,1-Dichloroethane	2.0	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
1,1-Dichloroethene	19	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
1,2-Dichloropropane	ND	1.0	μg/L	1	8/21/2013 3:34:07 PM	R127
1,3-Dichloropropane	ND	1.0	µg/L	1	8/21/2013 3:34:07 PM	R127
2,2-Dichloropropane	ND	2.0	µg/L	1	8/21/2013 3:34:07 PM	R127

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers: * Value exceeds Maximum Contaminant Level.

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
 - Page 1 of 13 Р Sample pH greater than 2 for VOA and TOC only.
 - Reporting Detection Limit RL

Date Reported: 8/22/2013

R12794

R12794

R12794

R12794

R12794

R12794

R12794

R12794

CLIENT: Cypress Engineering **Client Sample ID: MW-39 Project: TWP Roswell Station 9** Collection Date: 8/16/2013 5:10:00 PM Lab ID: 1308818-001 Matrix: AQUEOUS Received Date: 8/20/2013 10:00:00 AM Result **RL** Oual Units **DF** Date Analyzed Batch Analyses EPA METHOD 8260B: VOLATILES Analyst: cadg 8/21/2013 3:34:07 PM 1,1-Dichloropropene ND 1.0 µg/L R12794 1 Hexachlorobutadiene ND 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794 ND 10 R12794 2-Hexanone µg/L 1 8/21/2013 3:34:07 PM ND R12794 Isopropylbenzene 1.0 µg/L 1 8/21/2013 3:34:07 PM 4-Isopropyltoluene ND 1.0 µg/L R12794 1 8/21/2013 3:34:07 PM 4-Methyl-2-pentanone ND 10 µg/L 1 8/21/2013 3:34:07 PM R12794 Methylene Chloride ND 3.0 µg/L 1 8/21/2013 3:34:07 PM R12794 n-Butylbenzene ND 3.0 µg/L 8/21/2013 3:34:07 PM R12794 1 n-Propylbenzene ND 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794 sec-Butylbenzene ND 1.0 R12794 µg/L 1 8/21/2013 3:34:07 PM Styrene ND 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794 tert-Butylbenzene ND 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794 1,1,1,2-Tetrachloroethane ND 1.0 µg/L R12794 1 8/21/2013 3:34:07 PM ND 2.0 1,1,2,2-Tetrachloroethane µg/L 1 8/21/2013 3:34:07 PM R12794 Tetrachloroethene (PCE) ND 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794 trans-1,2-DCE ND 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794 trans-1,3-Dichloropropene ND 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794 ND 1,2,3-Trichlorobenzene 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794 1,2,4-Trichlorobenzene ND 1.0 8/21/2013 3:34:07 PM R12794 µg/L 1 1,1,1-Trichloroethane ND 1.0 µg/L 8/21/2013 3:34:07 PM R12794 1 ND 1,1,2-Trichloroethane 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794 Trichloroethene (TCE) ND 1.0 µg/L 1 8/21/2013 3:34:07 PM R12794

1.0

2.0

1.0

1.5

70-130

70-130

70-130

70-130

µg/L

µg/L

µg/L

µg/L

%REC

%REC

%REC

%REC

1

1

1

1

1

1

1

1

8/21/2013 3:34:07 PM

ND

ND

ND

ND

95.9

103

111

96.1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyt
	Е	Value above quantitation range	Н	Holdin
	J	Analyte detected below quantitation limits	ND	Not De

O RSD is greater than RSDlimit

Trichlorofluoromethane

1,2,3-Trichloropropane

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Vinyl chloride

Xylenes, Total

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 2 of 13
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/22/2013

CLIENT:	Cypress Engineering
Project:	TWP Roswell Station 9

1308818-002

Lab ID:

Client Sample ID: MW-40 Collection Date: 8/16/2013 4:00:00 PM

Received Date: 8/20/2013 10:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: cadg
Benzene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Toluene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Ethylbenzene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Naphthalene	ND	2.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1-Methylnaphthalene	ND	4.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
2-Methylnaphthalene	ND	4.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Acetone	ND	10	µg/L	1	8/21/2013 4:03:02 PM	R1279
Bromobenzene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Bromodichloromethane	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Bromoform	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Bromomethane	ND	3.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
2-Butanone	ND	10	µg/L	1	8/21/2013 4:03:02 PM	R1279
Carbon disulfide	ND	10	µg/L	1	8/21/2013 4:03:02 PM	R1279
Carbon Tetrachloride	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Chlorobenzene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Chloroethane	ND	2.0	μg/L	1	8/21/2013 4:03:02 PM	R1279
Chloroform	ND	1.0	μg/L	1	8/21/2013 4:03:02 PM	R1279
Chloromethane	ND	3.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
2-Chlorotoluene	ND	1.0	μg/L	1	8/21/2013 4:03:02 PM	R1279
4-Chlorotoluene	ND	1.0	μg/L	1	8/21/2013 4:03:02 PM	R1279
cis-1,2-DCE	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Dibromochloromethane	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Dibromomethane	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1,2-Dichlorobenzene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1,3-Dichlorobenzene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1,4-Dichlorobenzene	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
Dichlorodifluoromethane	ND	1.0	µg/L	1	8/21/2013 4:03:02 PM	R1279
1,1-Dichloroethane	ND	1.0	μg/L	1	8/21/2013 4:03:02 PM	R1279
1,1-Dichloroethene	ND	1.0	μg/L	1	8/21/2013 4:03:02 PM	R1279
1,2-Dichloropropane	ND	1.0	μg/L	1	8/21/2013 4:03:02 PM	R1279
1,3-Dichloropropane	ND	1.0	μg/L	1	8/21/2013 4:03:02 PM	R1279
2,2-Dichloropropane	ND	2.0	μg/L	1	8/21/2013 4:03:02 PM	R1279

Matrix: AQUEOUS

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
 - Page 3 of 13 Р Sample pH greater than 2 for VOA and TOC only.
 - Reporting Detection Limit RL

Date Reported: 8/22/2013

CLIENT: Cypress Engineering		(mple ID: MW-40	
Project: TWP Roswell Station 9				on Date: 8/16/2013 4:00:00 PM	
Lab ID: 1308818-002	Matrix:	AQUEOUS	Receiv	ed Date: 8/20/2013 10:00:00 AM	
Analyses	Result	RL Qual	Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analyst:	cadg
1,1-Dichloropropene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
Hexachlorobutadiene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
2-Hexanone	ND	10	µg/L	1 8/21/2013 4:03:02 PM	R12794
Isopropylbenzene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
4-Isopropyltoluene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
4-Methyl-2-pentanone	ND	10	µg/L	1 8/21/2013 4:03:02 PM	R12794
Methylene Chloride	ND	3.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
n-Butylbenzene	ND	3.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
n-Propylbenzene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
sec-Butylbenzene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
Styrene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
tert-Butylbenzene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
Tetrachloroethene (PCE)	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
trans-1,2-DCE	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
trans-1,3-Dichloropropene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
1,1,1-Trichloroethane	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
1,1,2-Trichloroethane	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
Trichloroethene (TCE)	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
Trichlorofluoromethane	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
1,2,3-Trichloropropane	ND	2.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
Vinyl chloride	ND	1.0	µg/L	1 8/21/2013 4:03:02 PM	R12794
Xylenes, Total	ND	1.5	µg/L	1 8/21/2013 4:03:02 PM	R12794
Surr: 1,2-Dichloroethane-d4	95.1	70-130	%REC	1 8/21/2013 4:03:02 PM	R12794

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

70-130

70-130

70-130

%REC

%REC

%REC

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associa
	Е	Value above quantitation range	Н	Holding times for preparation
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for V

102

112

98.1

R RPD outside accepted recovery limits

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

- Spike Recovery outside accepted recovery limits S
- iated Method Blank

1

1

1

8/21/2013 4:03:02 PM R12794

8/21/2013 4:03:02 PM R12794

8/21/2013 4:03:02 PM R12794

- or analysis exceeded
- g Limit Page 4 of 13
- Sample pH greater than 2 for VOA and TOC only. Р
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/22/2013

CLIENT:	Cypress Engineering
Project:	TWP Roswell Station 9

1308818-003

Lab ID:

Client Sample ID: MW-41 Collection Date: 8/16/2013 5:00:00 PM

Received Date: 8/20/2013 10:00:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	cadg
Benzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Toluene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Ethylbenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Naphthalene	ND	2.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1-Methylnaphthalene	ND	4.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
2-Methylnaphthalene	ND	4.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Acetone	ND	10	µg/L	1	8/21/2013 5:29:37 PM	R12794
Bromobenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Bromodichloromethane	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Bromoform	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Bromomethane	ND	3.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
2-Butanone	ND	10	µg/L	1	8/21/2013 5:29:37 PM	R12794
Carbon disulfide	ND	10	µg/L	1	8/21/2013 5:29:37 PM	R12794
Carbon Tetrachloride	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Chlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Chloroethane	ND	2.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Chloroform	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Chloromethane	ND	3.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
2-Chlorotoluene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
4-Chlorotoluene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
cis-1,2-DCE	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Dibromochloromethane	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Dibromomethane	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,2-Dichlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,3-Dichlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,4-Dichlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Dichlorodifluoromethane	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,1-Dichloroethane	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,1-Dichloroethene	1.1	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,2-Dichloropropane	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,3-Dichloropropane	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
2,2-Dichloropropane	ND	2.0	µg/L	1	8/21/2013 5:29:37 PM	R12794

Matrix: AQUEOUS

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
 - Page 5 of 13 Р Sample pH greater than 2 for VOA and TOC only.
 - Reporting Detection Limit RL

Date Reported: 8/22/2013

CLIENT: Cypress EngineeringProject:TWP Roswell Station 9Lab ID:1308818-003	Matrix: A	AQUEOUS		Date: 8/	W-41 16/2013 5:00:00 PM 20/2013 10:00:00 AM	
Analyses	Result	RL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: cadg
1,1-Dichloropropene	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
Hexachlorobutadiene	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
2-Hexanone	ND	10	μg/L	1	8/21/2013 5:29:37 PM	R12794
Isopropylbenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
4-Isopropyltoluene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
4-Methyl-2-pentanone	ND	10	µg/L	1	8/21/2013 5:29:37 PM	R12794
Methylene Chloride	ND	3.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
n-Butylbenzene	ND	3.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
n-Propylbenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
sec-Butylbenzene	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
Styrene	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
tert-Butylbenzene	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
trans-1,2-DCE	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
Trichlorofluoromethane	ND	1.0	μg/L	1	8/21/2013 5:29:37 PM	R12794
1,2,3-Trichloropropane	ND	2.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Vinyl chloride	ND	1.0	µg/L	1	8/21/2013 5:29:37 PM	R12794
Xylenes, Total	ND	1.5	µg/L	1	8/21/2013 5:29:37 PM	R12794
Surr: 1,2-Dichloroethane-d4	95.1	70-130	%REC	1	8/21/2013 5:29:37 PM	R12794
Surr: 4-Bromofluorobenzene	99.9	70-130	%REC	1	8/21/2013 5:29:37 PM	R12794
Surr: Dibromofluoromethane	110	70-130	%REC	1	8/21/2013 5:29:37 PM	R12794
Surr: Toluene-d8	98.5	70-130	%REC	1	8/21/2013 5:29:37 PM	R12794

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte dete
	Е	Value above quantitation range	Н	Holding time
	J	Analyte detected below quantitation limits	ND	Not Detected
	0	RSD is greater than RSDlimit	Р	Sample pH g

RPD outside accepted recovery limits R

- Spike Recovery outside accepted recovery limits S
- tected in the associated Method Blank
- nes for preparation or analysis exceeded
- ed at the Reporting Limit ed at the Reporting Limit Page 6 of 13 greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Date Reported: 8/22/2013

Hall Environmental Analysis Laboratory, Inc.

Matrix: AQUEOUS

CLIENT: Cypress Engineering **Project: TWP Roswell Station 9**

1308818-004

Lab ID:

Client Sample ID: MW-42 Collection Date: 8/16/2013 4:20:00 PM

Received Date: 8/20/2013 10:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: cadg
Benzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Toluene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Ethylbenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Naphthalene	ND	2.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1-Methylnaphthalene	ND	4.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
2-Methylnaphthalene	ND	4.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Acetone	ND	10	µg/L	1	8/21/2013 5:58:25 PM	R1279
Bromobenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Bromodichloromethane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Bromoform	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Bromomethane	ND	3.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
2-Butanone	ND	10	µg/L	1	8/21/2013 5:58:25 PM	R1279
Carbon disulfide	ND	10	µg/L	1	8/21/2013 5:58:25 PM	R1279
Carbon Tetrachloride	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Chlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Chloroethane	ND	2.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Chloroform	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Chloromethane	ND	3.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
2-Chlorotoluene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
4-Chlorotoluene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
cis-1,2-DCE	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Dibromochloromethane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Dibromomethane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,2-Dichlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,3-Dichlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,4-Dichlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
Dichlorodifluoromethane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,1-Dichloroethane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,1-Dichloroethene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,2-Dichloropropane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
1,3-Dichloropropane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R1279
2,2-Dichloropropane	ND	2.0	µg/L	1	8/21/2013 5:58:25 PM	R1279

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
 - Page 7 of 13 Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Date Reported: 8/22/2013

CLIENT: Cypress Engineering Project: TWP Roswell Station 9 Lab ID: 1308818-004	Client Sample ID: MW-42Collection Date: 8/16/2013 4:20:00 PMMatrix: AQUEOUSReceived Date: 8/20/2013 10:00:00 AM							
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch		
EPA METHOD 8260B: VOLATILES					Analyst	: cadg		
1,1-Dichloropropene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
Hexachlorobutadiene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
2-Hexanone	ND	10	µg/L	1	8/21/2013 5:58:25 PM	R12794		
Isopropylbenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
4-Isopropyltoluene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
4-Methyl-2-pentanone	ND	10	µg/L	1	8/21/2013 5:58:25 PM	R12794		
Methylene Chloride	ND	3.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
n-Butylbenzene	ND	3.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
n-Propylbenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
sec-Butylbenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
Styrene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
tert-Butylbenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
trans-1,2-DCE	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
1,1,1-Trichloroethane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
1,1,2-Trichloroethane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
Trichloroethene (TCE)	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
Trichlorofluoromethane	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
1,2,3-Trichloropropane	ND	2.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
Vinyl chloride	ND	1.0	µg/L	1	8/21/2013 5:58:25 PM	R12794		
Xylenes, Total	ND	1.5	μg/L	1	8/21/2013 5:58:25 PM	R12794		
Surr: 1,2-Dichloroethane-d4	96.9	70-130	%REC	1	8/21/2013 5:58:25 PM	R12794		
Surr: 4-Bromofluorobenzene	107	70-130	%REC	1	8/21/2013 5:58:25 PM	R12794		
Surr: Dibromofluoromethane	115	70-130	%REC	1	8/21/2013 5:58:25 PM	R12794		
Surr: Toluene-d8	96.6	70-130	%REC	1	8/21/2013 5:58:25 PM	R12794		

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qu	alifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected
		Е	Value above quantitation range	Н	Holding times for
		J	Analyte detected below quantitation limits	ND	Not Detected at t
		0	RSD is greater than RSDlimit	Р	Sample pH great
		ъ		DI	D C D C

R RPD outside accepted recovery limits

- Spike Recovery outside accepted recovery limits S
- ed in the associated Method Blank
- for preparation or analysis exceeded
- the Reporting Limit t the Reporting Limit Page 8 of 13 ater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

CLIENT: Cypress Engineering Client Sample ID: Trip Blank **TWP Roswell Station 9 Collection Date:** Lab ID: 1308818-005 Matrix: AQUEOUS Received Date: 8/20/2013 10:00:00 AM Result **RL** Oual Units **DF** Date Analyzed Batch Analyses EPA METHOD 8260B: VOLATILES Analyst: cadg 8/21/2013 6:27:11 PM Benzene ND 1.0 µg/L R12794 1 Toluene ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 ND 1.0 R12794 Ethylbenzene µg/L 1 8/21/2013 6:27:11 PM Methyl tert-butyl ether (MTBE) ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 ND 1,2,4-Trimethylbenzene 1.0 µg/L R12794 1 8/21/2013 6:27:11 PM 1,3,5-Trimethylbenzene ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 1,2-Dichloroethane (EDC) ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 Naphthalene ND 2.0 µg/L 1 8/21/2013 6:27:11 PM R12794 1-Methylnaphthalene ND 4.0 µg/L 1 8/21/2013 6:27:11 PM R12794 2-Methylnaphthalene ND 4.0 µg/L 1 8/21/2013 6:27:11 PM R12794 Acetone ND 10 µg/L 1 8/21/2013 6:27:11 PM R12794 Bromobenzene ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 ND 1.0 Bromodichloromethane µg/L 1 8/21/2013 6:27:11 PM R12794 Bromoform ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 Bromomethane ND 3.0 µg/L 1 8/21/2013 6:27:11 PM R12794 2-Butanone ND 10 µg/L 1 8/21/2013 6:27:11 PM R12794 ND Carbon disulfide 10 µg/L 1 8/21/2013 6:27:11 PM R12794 Carbon Tetrachloride ND 1.0 8/21/2013 6:27:11 PM R12794 µg/L 1 Chlorobenzene ND 1.0 µg/L 8/21/2013 6:27:11 PM R12794 1 Chloroethane ND 2.0 µg/L 1 8/21/2013 6:27:11 PM R12794 Chloroform ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 ND 3.0 R12794 Chloromethane µg/L 1 8/21/2013 6:27:11 PM ND 1.0 2-Chlorotoluene µg/L 1 8/21/2013 6:27:11 PM R12794 ND 4-Chlorotoluene 1.0 8/21/2013 6:27:11 PM R12794 µg/L 1 cis-1.2-DCE ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 cis-1,3-Dichloropropene ND R12794 1.0 µg/L 1 8/21/2013 6:27:11 PM 1,2-Dibromo-3-chloropropane ND 2.0 µg/L 8/21/2013 6:27:11 PM R12794 1 Dibromochloromethane ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 Dibromomethane ND 1.0 8/21/2013 6:27:11 PM R12794 µg/L 1 1,2-Dichlorobenzene ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794 1.3-Dichlorobenzene ND 1.0 µg/L 8/21/2013 6:27:11 PM R12794 1 1,4-Dichlorobenzene ND 1.0 µg/L 1 8/21/2013 6:27:11 PM R12794

Hall Environmental Analysis Laboratory, Inc.

Project:

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

1.0

1.0

1.0

1.0

1.0

2.0

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

ND

ND

ND

ND

ND

ND

- **Qualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range

Dichlorodifluoromethane

1,1-Dichloroethane

1,1-Dichloroethene

1.2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

1

1

1

1

1

1

Page 9 of 13 Sample pH greater than 2 for VOA and TOC only. Р

8/21/2013 6:27:11 PM

R12794

R12794

R12794

R12794

R12794

R12794

RL Reporting Detection Limit

CLIENT: Cypress Engineering Project: TWP Roswell Station 9	Client Sample ID: Trip Blank Collection Date:								
Lab ID: 1308818-005	Matrix:	AQUEOUS	Received 1	Date: 8/2	20/2013 10:00:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch			
EPA METHOD 8260B: VOLATILES					Analyst	: cadg			
1,1-Dichloropropene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Hexachlorobutadiene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
2-Hexanone	ND	10	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Isopropylbenzene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
4-Isopropyltoluene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
4-Methyl-2-pentanone	ND	10	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Methylene Chloride	ND	3.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
n-Butylbenzene	ND	3.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
n-Propylbenzene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
sec-Butylbenzene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Styrene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
tert-Butylbenzene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
trans-1,2-DCE	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
1,1,1-Trichloroethane	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
1,1,2-Trichloroethane	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Trichloroethene (TCE)	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Trichlorofluoromethane	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
1,2,3-Trichloropropane	ND	2.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Vinyl chloride	ND	1.0	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Xylenes, Total	ND	1.5	µg/L	1	8/21/2013 6:27:11 PM	R12794			
Surr: 1,2-Dichloroethane-d4	95.4	70-130	%REC	1	8/21/2013 6:27:11 PM	R12794			
Surr: 4-Bromofluorobenzene	99.5	70-130	%REC	1	8/21/2013 6:27:11 PM	R12794			
Surr: Dibromofluoromethane	111	70-130	%REC	1	8/21/2013 6:27:11 PM	R12794			
Surr: Toluene-d8	99.1	70-130	%REC	1	8/21/2013 6:27:11 PM	R12794			

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 10 of 13
 - Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

WO#: **1308818** 22-Aug-13

Sample ID 5mL rb	SampT	ype: MBLK	Tes	tCode: EP	A Method	8260B: VOL	ATILES		
Client ID: PBW		n ID: R12794	1	RunNo: 12794					
Prep Date:		ate: 8/21/2013		SeqNo: 36		Units: µg/L			
Analyte	Result	PQL SPK va	lue SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0							
Toluene	ND	1.0							
Ethylbenzene	ND	1.0							
Methyl tert-butyl ether (MTBE)	ND	1.0							
1,2,4-Trimethylbenzene	ND	1.0							
1,3,5-Trimethylbenzene	ND	1.0							
1,2-Dichloroethane (EDC)	ND	1.0							
1,2-Dibromoethane (EDB)	ND	1.0							
Naphthalene	ND	2.0							
1-Methylnaphthalene	ND	4.0							
2-Methylnaphthalene	ND	4.0							
Acetone	ND	10							
Bromobenzene	ND	1.0							
Bromodichloromethane	ND	1.0							
Bromoform	ND	1.0							
Bromomethane	ND	3.0							
2-Butanone	ND	10							
Carbon disulfide	ND	10							
Carbon Tetrachloride	ND	1.0							
Chlorobenzene	ND	1.0							
Chloroethane	ND	2.0							
Chloroform	ND	1.0							
Chloromethane	ND	3.0							
2-Chlorotoluene	ND	1.0							
4-Chlorotoluene	ND	1.0							
cis-1,2-DCE	ND	1.0							
cis-1,3-Dichloropropene	ND	1.0							
1,2-Dibromo-3-chloropropane	ND	2.0							
Dibromochloromethane	ND	1.0							
Dibromomethane	ND	1.0							
1,2-Dichlorobenzene	ND	1.0							
1,3-Dichlorobenzene	ND	1.0							
1,4-Dichlorobenzene	ND	1.0							
Dichlorodifluoromethane	ND	1.0							
1,1-Dichloroethane	ND	1.0							
1,1-Dichloroethene	ND	1.0							
1,2-Dichloropropane	ND	1.0							
1,3-Dichloropropane	ND	1.0							
2,2-Dichloropropane	ND	2.0							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 11 of 13

U

Cypress Engineering

TWP Roswell Station 9

WO#: 1308818 3

22-Aug-13

Sample ID 5mL rb	SampT	ype: M	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES				
Client ID: PBW	Batch	n ID: R1	2794	F	RunNo: 1	2794						
Prep Date:	Analysis D	ate: 8/	21/2013	S	SeqNo: 364665			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
1,1-Dichloropropene	ND	1.0										
Hexachlorobutadiene	ND	1.0										
2-Hexanone	ND	10										
Isopropylbenzene	ND	1.0										
4-Isopropyltoluene	ND	1.0										
4-Methyl-2-pentanone	ND	10										
Methylene Chloride	ND	3.0										
n-Butylbenzene	ND	3.0										
n-Propylbenzene	ND	1.0										
sec-Butylbenzene	ND	1.0										
Styrene	ND	1.0										
tert-Butylbenzene	ND	1.0										
1,1,1,2-Tetrachloroethane	ND	1.0										
1,1,2,2-Tetrachloroethane	ND	2.0										
Tetrachloroethene (PCE)	ND	1.0										
trans-1,2-DCE	ND	1.0										
trans-1,3-Dichloropropene	ND	1.0										
1,2,3-Trichlorobenzene	ND	1.0										
1,2,4-Trichlorobenzene	ND	1.0										
1,1,1-Trichloroethane	ND	1.0										
1,1,2-Trichloroethane	ND	1.0										
Trichloroethene (TCE)	ND	1.0										
Trichlorofluoromethane	ND	1.0										
1,2,3-Trichloropropane	ND	2.0										
Vinyl chloride	ND	1.0										
Xylenes, Total	ND	1.5										
Surr: 1,2-Dichloroethane-d4	9.7		10.00		96.6	70	130					
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130					
Surr: Dibromofluoromethane	11		10.00		109	70	130					
Surr: Toluene-d8	10		10.00		100	70	130					
Sample ID 100ng lcs1	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES				
Client ID: LCSW	Batch	2794	RunNo: 12794									
Prep Date:	Analysis D	ate: 8/	21/2013	S	SeqNo: 3	64667	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	20	1.0	20.00	0	99.3	70	130					
Toluene	19	1.0	20.00	0	93.5	82.2	124					
Chlorobenzene	18	1.0	20.00	0	88.2	70	130					

Qualifiers:

Client:

Project:

- Value exceeds Maximum Contaminant Level. *
- Value above quantitation range Е
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Page 12 of 13

WO#: **1308818**

22-Aug-13

	s Engineerin oswell Stati	-								
Sample ID 100ng lcs1	Samp	Гуре: LC	S	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batc	h ID: R1	2794	F	RunNo: 1	2794				
Prep Date:	Analysis [Date: 8/	21/2013	S	SeqNo: 3	64667	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
I,1-Dichloroethene	24	1.0	20.00	0	121	83.5	155			
Trichloroethene (TCE)	18	1.0	20.00	0	91.6	70	130			
Surr: 1,2-Dichloroethane-d4	9.8		10.00		98.2	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130			
Surr: Dibromofluoromethane	11		10.00		110	70	130			
Surr: Toluene-d8	9.7		10.00		97.3	70	130			
Sample ID 1308818-002a m	is Samp1	Гуре: М\$	6	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: MW-40	•	h ID: R1			RunNo: 1					
Prep Date:	Analysis E	Date: 8/	21/2013	S	SeqNo: 3	64675	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	101	67.9	137			
oluene	19	1.0	20.00	0	96.8	77	127			
Chlorobenzene	18	1.0	20.00	0	92.2	70	130			
,1-Dichloroethene	24	1.0	20.00	0	118	66.5	131			
richloroethene (TCE)	18	1.0	20.00	0	92.5	66.3	134			
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.7	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.9	70	130			
Surr: Dibromofluoromethane	11		10.00		109	70	130			
Surr: Toluene-d8	9.9		10.00		99.4	70	130			
Sample ID 1308818-002a m	isd SampT	Гуре: М	SD	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: MW-40	Batc	h ID: R1	2794	F	RunNo: 1	2794				
Prep Date:	Analysis E	Date: 8/	21/2013	S	SeqNo: 3	64676	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.0	67.9	137	4.65	20	
oluene	18	1.0	20.00	0	92.2	77	127	4.83	20	
Chlorobenzene	17	1.0	20.00	0	86.6	70	130	6.26	20	
,1-Dichloroethene	23	1.0	20.00	0	113	66.5	131	4.55	20	
richloroethene (TCE)	18	1.0	20.00	0	89.4	66.3	134	3.37	20	
Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.3	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.5		10.00		95.2	70	130	0	0	
Surr: Dibromofluoromethane	11		10.00		106	70	130	0	0	
Surr: Toluene-d8	9.6		10.00		96.2	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 13 of 13

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquergue, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

11. Were any sample containers received broken? Yes No ✓ 12. Does paperwork match bottle labels? Yes ✓ No ✓ 12. Does paperwork match bottle labels? Yes ✓ No ✓ 13. Are matrices correctly identified on Chain of Custody? Yes ✓ No ✓ 14. Is it clear what analyses were requested? Yes ✓ No ✓ 15. Were all holding times able to be met? Yes ✓ No ✓ (If no, notify customer for authorization.) Yes ✓ No ✓ Special Handling (if applicable) If If Date ✓ 16. Was client notified:						
Reviewed By:				18/20/13	a: <u>MG-</u> 0	Received by/date
Reviewed By:		ame Im	M	8/20/2013 10:00:00	Anne Thorne	Logged By:
Reviewed By: D D D D Chain of Custody 1. Custody seals intact on sample bottles? Yes No No 2. Is Chain of Custody complete? Yes Ves No No 3. How was the sample delivered? UPS UPS Log In 4. Was an attempt made to cool the samples? Yes No 5. Were all samples received at a temperature of >0° C to 6.0°C Yes No 6. Sample(s) in proper container(s)? Yes Vo 7. Sufficient samples volume for indicated test(s)? Yes No 8. Are samples (except VOA and ONG) properly preserved? Yes No 9. Was preservative added to bottles? Yes No 10. VOA vials have zero headspace? Yes No 11. Were any sample containers received broken? Yes No 12. Does paperwork match bottle labels? Yes No 14. Is it clear what analyses w		anne Ann		8/20/2013	Anne Thorne	Completed By:
Chain of Custody 1. Custody seals intact on sample bottles? Yes No 2. Is Chain of Custody complete? Yes No 3. How was the sample delivered? UPS Log In				08/20/13	IO	Reviewed By:
1. Outcody control of current of control of current of cu				1 1	<u>tody</u>	Chain of Cust
2. is black of order of output: 1 3. How was the sample delivered? UPS Log In 4. Was an attempt made to cool the samples? Yes No 5. Were all samples received at a temperature of >0° C to 6.0°C Yes No 6. Sample(s) in proper container(s)? Yes Vo 7. Sufficient sample volume for indicated test(s)? Yes No 8. Are samples (except VOA and ONG) properly preserved? Yes No 9. Was preservative added to bottles? Yes No 10. VOA vials have zero headspace? Yes No 11. Were any sample containers received broken? Yes No 12. Does paperwork match bottle labels? Yes No	Not Present 🗹	No 🗌	Yes	les?	Is intact on sample bottle	1. Custody seal
Log In 4. Was an attempt made to cool the samples? Yes No 5. Were all samples received at a temperature of >0° C to 6.0°C Yes No 6. Sample(s) in proper container(s)? Yes No 7. Sufficient sample volume for indicated test(s)? Yes No 8. Are samples (except VOA and ONG) properly preserved? Yes No 9. Was preservative added to bottles? Yes No 10. VOA vials have zero headspace? Yes No 11. Were any sample containers received broken? Yes No 12. Does paperwork match bottle labels? Yes No If 12. Does paperwork match bottle labels? Yes No If 14. Is it clear what analyses were requested? Yes No If 15. Were all holding times able to be met? Yes No If 16. Was client notified of all discrepancies with this order? Yes No If Person Notified:	Not Present	No 🗌	Yes 🗹		Sustody complete?	2. Is Chain of C
4. Was an attempt made to cool the samples? Yes ✓ No 5. Were all samples received at a temperature of >0° C to 6.0°C Yes ✓ No 6. Sample(s) in proper container(s)? Yes ✓ No □ 7. Sufficient sample volume for indicated test(s)? Yes ✓ No □ 8. Are samples (except VOA and ONG) properly preserved? Yes ✓ No □ 9. Was preservative added to bottles? Yes ✓ No □ 10. VOA vials have zero headspace? Yes ✓ No □ 11. Were any sample containers received broken? Yes ✓ No □ 12. Does paperwork match bottle labels? Yes ✓ No □ (Note discrepancies on chain of custody) 13. Are matrices correctly identified on Chain of Custody? Yes ✓ No □ 14. Is it clear what analyses were requested? Yes ✓ No □ □ 5. Were all holding times able to be met? Yes ✓ No □ □ 15. Were all holding times able to be met? Yes No □ □ □			<u>UPS</u>		sample delivered?	3. How was the
5. Were all samples received at a temperature of >0° C to 6.0° C Yes No 6. Sample(s) in proper container(s)? Yes No 7. Sufficient sample volume for indicated test(s)? Yes No 7. Sufficient sample volume for indicated test(s)? Yes No 8. Are samples (except VOA and ONG) properly preserved? Yes No 9. Was preservative added to bottles? Yes No 10. VOA vials have zero headspace? Yes No 11. Were any sample containers received broken? Yes No 12. Does paperwork match bottle labels? Yes No If 12. Does paperwork match bottle labels? Yes No If 13. Are matrices correctly identified on Chain of Custody? Yes No If 14. Is it clear what analyses were requested? Yes No If 15. Were all holding times able to be met? Yes No If 16. Was client notified of all discrepancies with this order? Yes No If 17. Were all holding times able to be met? Yes No If 18. Was client notified of all discrepancies with this order? Yes No						<u>Log In</u>
6. Sample(s) in proper container(s)? Yes No 7. Sufficient sample volume for indicated test(s)? Yes No 8. Are samples (except VOA and ONG) properly preserved? Yes No 9. Was preservative added to bottles? Yes No 10. VOA vials have zero headspace? Yes No 11. Were any sample containers received broken? Yes No 12. Does paperwork match bottle labels? Yes No (Note discrepancies on chain of custody) Yes No 13. Are matrices correctly identified on Chain of Custody? Yes No 14. Is it clear what analyses were requested? Yes No 15. Were all holding times able to be met? Yes No (If no, notify customer for authorization.) Special Handling (if applicable) 16. Was client notified of all discrepancies with this order? Yes No Person Notified: Date		No 🗀	Yes 🗹	amples?	mpt made to cool the sa	4. Was an atte
7. Sufficient sample volume for indicated test(s)? Yes No 8. Are samples (except VOA and ONG) properly preserved? Yes No 9. Was preservative added to bottles? Yes No 10. VOA vials have zero headspace? Yes No 11. Were any sample containers received broken? Yes No 12. Does paperwork match bottle labels? Yes No If 12. Does paperwork match bottle labels? Yes No If 13. Are matrices correctly identified on Chain of Custody? Yes No If 14. Is it clear what analyses were requested? Yes No If 15. Were all holding times able to be met? Yes No If 16. Was client notified of all discrepancies with this order? Yes No If Person Notified:	NA 🗔	No 🗌	Yes 🗹	perature of >0° C to 6.0°C	nples received at a temp	5. Were all san
8. Are samples (except VOA and ONG) properly preserved? Yes No 9. Was preservative added to bottles? Yes No 10. VOA vials have zero headspace? Yes No No 11. Were any sample containers received broken? Yes No M 12. Does paperwork match bottle labels? Yes Yes No If 12. Does paperwork match bottle labels? Yes No If 13. Are matrices correctly identified on Chain of Custody? Yes No If 14. Is it clear what analyses were requested? Yes No If 15. Were all holding times able to be met? Yes No If If no, notify customer for authorization.) Special Handling (if applicable) If 16. Was client notified: Date Image: Image: Person Notified: Date Image: Image: Image: By Whom: Via: eMail Phone Fax		No 🗌	Yes 🔽		n proper container(s)?	6. Sample(s) ir
9. Was preservative added to bottles? Yes No ✓ 10. VOA vials have zero headspace? Yes ✓ No ✓ 11. Were any sample containers received broken? Yes ✓ No ✓ 12. Does paperwork match bottle labels? Yes ✓ No ✓ (Note discrepancies on chain of custody) Yes ✓ No ✓ 13. Are matrices correctly identified on Chain of Custody? Yes ✓ No ✓ 14. Is it clear what analyses were requested? Yes ✓ No ✓ 15. Were all holding times able to be met? Yes ✓ No ✓ (If no, notify customer for authorization.) ✓ ✓ ✓ ✓ Special Handling (if applicable) ✓ ✓ ✓ ✓ ✓ 16. Was client notified of all discrepancies with this order? Yes No ✓ ✓ Øy Whom: ✓ ✓ ✓ ✓ ✓ ✓ By Whom: ✓ ✓ ✓ ✓ ✓ ✓ ✓ Regarding: ✓ ✓ ✓		No 🗌	Yes 🗹	ed test(s)?	mple volume for indicate	7. Sufficient sa
10. VOA vials have zero headspace? Yes No No No 11. Were any sample containers received broken? Yes No ✓ 12. Does paperwork match bottle labels? Yes Vo ✓ (Note discrepancies on chain of custody) Yes ✓ No ✓ 13. Are matrices correctly identified on Chain of Custody? Yes ✓ No ✓ 14. Is it clear what analyses were requested? Yes ✓ No ✓ 15. Were all holding times able to be met? Yes ✓ No ✓ (If no, notify customer for authorization.) Special Handling (if applicable) 16. Was client notified of all discrepancies with this order? Yes No ✓ By Whom:	_		Yes 🗹	i) properly preserved?	(except VOA and ONG	8. Are samples
11. Were any sample containers received broken? Yes No ✓ 12. Does paperwork match bottle labels? Yes ✓ No ✓ 12. Does paperwork match bottle labels? Yes ✓ No ✓ 13. Are matrices correctly identified on Chain of Custody? Yes ✓ No ✓ 14. Is it clear what analyses were requested? Yes ✓ No ✓ 15. Were all holding times able to be met? Yes ✓ No ✓ (If no, notify customer for authorization.) ✓ ✓ ✓ No ✓ Special Handling (if applicable) ✓ ✓ No ✓ 16. Was client notified of all discrepancies with this order? Yes No ✓ Øreson Notified:	NA	No 🗹	Yes 🗌		vative added to bottles?	9. Was preserv
12. Does paperwork match bottle labels? Yes ✓ No If 12. Does paperwork match bottle labels? Yes ✓ No If 13. Are matrices correctly identified on Chain of Custody? Yes ✓ No If 14. Is it clear what analyses were requested? Yes ✓ No If 15. Were all holding times able to be met? Yes ✓ No If 15. Were all holding times able to be met? Yes ✓ No If 16. Was client notified of all discrepancies with this order? Yes No If Person Notified:	No VOA Vials	No 🗔	Yes 🗹		ave zero headspace?	10.VOA vials ha
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody) Yes No If 13. Are matrices correctly identified on Chain of Custody? Yes No I 14. Is it clear what analyses were requested? Yes No I 15. Were all holding times able to be met? (If no, notify customer for authorization.) Yes No I Special Handling (if applicable) I I I I I 16. Was client notified of all discrepancies with this order? Yes No I Person Notified: Date I I By Whom: Via: eMail Phone Fax Regarding: I I I I I	# of preserved	No 🗹 🛛	Yes 🗆	ed broken?	ample containers receive	11. Were any sa
No Image: Second s	bottles checked					
13. Are matrices correctly identified on Chain of Custody? Yes ♥ No 14. Is it clear what analyses were requested? Yes ♥ No 15. Were all holding times able to be met? Yes ♥ No (If no, notify customer for authorization.) Yes ♥ No Special Handling (if applicable) 16. Was client notified of all discrepancies with this order? Yes No Person Notified: Date	for pH: (<2 or >12 unless no	No 🗔	Yes 🗹			
14. is it clear what analyses were requested? Yes ♥ No 15. Were all holding times able to be met? (If no, notify customer for authorization.) Yes ♥ No Special Handling (if applicable) Yes No	Adjusted?	No 🗆	Yes 🗹		-	
15. Were all holding times able to be met? (If no, notify customer for authorization.) Yes No Special Handling (if applicable) 16. Was client notified of all discrepancies with this order? Yes No 16. Was client notified: Date		No 🗆				
16. Was client notified of all discrepancies with this order? Yes No Person Notified: Date By Whom: Via: eMail Phone Fax Regarding:	Checked by:	No 🗌	Yes 🔽	et?	ding times able to be me	15. Were all hole
16. Was client notified of all discrepancies with this order? Yes No Person Notified: Date)	lling (if applicable)	Snecial Hand
Person Notified: Date By Whom: Via: eMail Phone Fax Regarding:	NA 🗹	No 🗀	Yes	_		
By Whom: Via: eMail Phone Fax Regarding:						
Regarding:	In Person	Phone 🗍 Fax	·		1	
				via.	2	-
					Instructions:	· · ·
17. Additional remarks:	ł			<u> </u>		

Yes

1

			70+ 9 4901 Hawkins NE - Albuquerque, NM 87109	100 12	Analysis Request	() () () () () () () () () ()	1, MF 1, MF 1, MF	(Ga (Ga SIIN)	808 5520 (1) D 5 5 2 1) D 5 5 2 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P C C C C C C C C C C C C C C C C C C C	BE 0	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								ne Remarks: ANY ONESTION. 10-20 George . Robin	Francescore scientified to Hall Environmental may be submatriced to other accordited laboratories. This serves as notice of this nestivity. Any sub-contracted data will be clearly notated on the analytical report
I urn-Around 1 me:	The Standard 🗆 Rush	. `	1 WH Kasuell Statio	Project # New Mon for Juc // 6-W Min.	02. 2012 0037.00	Project Manager:	George Lobins un, PE	Soulting	`.:	On Ice. 👘 🔂 Yes. 👘 🗆 No	Sample Temperature. 7, 5	Container Preservative HEAL No. Type and # Type	3×40ml 1/2 1 13 (x 8 10)	i Hec	is that	is the		ZXUN HOL - a		 Received by: Date 1 Tir M. L. L. M. D. Date 1 Tir Received by: J. L. Date	tranted to other secondition laboratories. This serves as re
Chain-of-Custody Record	Chent: CUPRESS FUCINCEVINI Seviles, The	Conson, OE	Mailing Address: Luzu la North Surfe 102	25 77045	261. 797.	ax#: acorac + Planson C	QAIQC Package: Cypurse/mc. U.S	Z Standard		NELAP Other	EDD (Type)	Date Time Matrix Sample Request ID	alula 17:10 Hr.O MW- 39 3	1600 Ha mw-40	1700 H5 0 m W- 4/	16:22 420 m. 42		Rep Blank		Date: Time: Refinquished by: S/14/BV500 ///////////////////////////////////	If nennessant samulas submitted fo Hall Environmental may be suberon

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

August 20, 2013

George Robinson Cypress Engineering 7171 Highway 6 North Suite 102 Houston, TX 770952422 TEL: (281) 797-3420 FAX (281) 859-1881

RE: TWP Roswell Station 9

OrderNo.: 1308625

Dear George Robinson:

Hall Environmental Analysis Laboratory received 4 sample(s) on 8/14/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

TWP Roswell Station 9

Project:

Client Sample ID: MW-39 55'-57' Collection Date: 8/6/2013 5:30:00 PM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308625-001	Matrix: S	SOIL	Received	Date: 8/1	4/2013 9:45:00 AM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JMP
Benzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Toluene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Ethylbenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Methyl tert-butyl ether (MTBE)	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,2,4-Trimethylbenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,3,5-Trimethylbenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,2-Dichloroethane (EDC)	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,2-Dibromoethane (EDB)	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Naphthalene	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1-Methylnaphthalene	ND	0.19	mg/Kg	1	8/17/2013 2:04:37 AM	8879
2-Methylnaphthalene	ND	0.19	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Acetone	ND	0.73	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Bromobenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Bromodichloromethane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Bromoform	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Bromomethane	ND	0.15	mg/Kg	1	8/17/2013 2:04:37 AM	8879
2-Butanone	ND	0.49	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Carbon disulfide	ND	0.49	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Carbon tetrachloride	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Chlorobenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Chloroethane	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Chloroform	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Chloromethane	ND	0.15	mg/Kg	1	8/17/2013 2:04:37 AM	8879
2-Chlorotoluene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
4-Chlorotoluene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
cis-1,2-DCE	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
cis-1,3-Dichloropropene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,2-Dibromo-3-chloropropane	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Dibromochloromethane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Dibromomethane	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,2-Dichlorobenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,3-Dichlorobenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,4-Dichlorobenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Dichlorodifluoromethane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,1-Dichloroethane	ND	0.045	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,1-Dichloroethene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,2-Dichloropropane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,3-Dichloropropane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
2,2-Dichloropropane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
 - Page 1 of 12 Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Client Sample ID: MW-39 55'-57' Collection Date: 8/6/2013 5:30:00 PM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308625-001	Matrix:	SOIL	Received	Date: 8/1	14/2013 9:45:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JMP
1,1-Dichloropropene	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Hexachlorobutadiene	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
2-Hexanone	ND	0.49	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Isopropylbenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
4-Isopropyltoluene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
4-Methyl-2-pentanone	ND	0.49	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Methylene chloride	ND	0.15	mg/Kg	1	8/17/2013 2:04:37 AM	8879
n-Butylbenzene	ND	0.15	mg/Kg	1	8/17/2013 2:04:37 AM	8879
n-Propylbenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
sec-Butylbenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Styrene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
tert-Butylbenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,1,1,2-Tetrachloroethane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,1,2,2-Tetrachloroethane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Tetrachloroethene (PCE)	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
trans-1,2-DCE	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
trans-1,3-Dichloropropene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,2,3-Trichlorobenzene	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,2,4-Trichlorobenzene	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,1,1-Trichloroethane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,1,2-Trichloroethane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Trichloroethene (TCE)	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Trichlorofluoromethane	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
1,2,3-Trichloropropane	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Vinyl chloride	ND	0.049	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Xylenes, Total	ND	0.097	mg/Kg	1	8/17/2013 2:04:37 AM	8879
Surr: 1,2-Dichloroethane-d4	90.7	70-130	%REC	1	8/17/2013 2:04:37 AM	8879
Surr: 4-Bromofluorobenzene	90.2	70-130	%REC	1	8/17/2013 2:04:37 AM	8879
Surr: Dibromofluoromethane	99.3	70-130	%REC	1	8/17/2013 2:04:37 AM	8879
Surr: Toluene-d8	98.5	70-130	%REC	1	8/17/2013 2:04:37 AM	8879

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte dete
	Е	Value above quantitation range	Н	Holding time
	J	Analyte detected below quantitation limits	ND	Not Detected
	0	RSD is greater than RSDlimit	Р	Sample pH §

- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 2 of 12
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

1308625-002

TWP Roswell Station 9

Project:

Lab ID:

Client Sample ID: MW-40 60'-62' Collection Date: 8/5/2013 5:55:00 PM Received Date: 8/14/2013 9:45:00 AM

Lad ID: 1508025-002	Matrix: 3	SOIL	Receiveu	Date: 0/1	4/2015 9.45.00 AM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JMP
Benzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Toluene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Ethylbenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Methyl tert-butyl ether (MTBE)	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,2,4-Trimethylbenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,3,5-Trimethylbenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,2-Dichloroethane (EDC)	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,2-Dibromoethane (EDB)	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Naphthalene	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1-Methylnaphthalene	ND	0.19	mg/Kg	1	8/17/2013 3:29:20 AM	8879
2-Methylnaphthalene	ND	0.19	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Acetone	ND	0.72	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Bromobenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Bromodichloromethane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Bromoform	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Bromomethane	ND	0.14	mg/Kg	1	8/17/2013 3:29:20 AM	8879
2-Butanone	ND	0.48	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Carbon disulfide	ND	0.48	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Carbon tetrachloride	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Chlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Chloroethane	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Chloroform	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Chloromethane	ND	0.14	mg/Kg	1	8/17/2013 3:29:20 AM	8879
2-Chlorotoluene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
4-Chlorotoluene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
cis-1,2-DCE	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
cis-1,3-Dichloropropene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,2-Dibromo-3-chloropropane	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Dibromochloromethane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Dibromomethane	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,2-Dichlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,3-Dichlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,4-Dichlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Dichlorodifluoromethane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1.1-Dichloroethane	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,1-Dichloroethene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,2-Dichloropropane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,3-Dichloropropane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
2,2-Dichloropropane	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879

Matrix: SOIL

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
 - Page 3 of 12 Р Sample pH greater than 2 for VOA and TOC only.
 - Reporting Detection Limit RL

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Client Sample ID: MW-40 60'-62' Collection Date: 8/5/2013 5:55:00 PM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308625-002	Matrix:	SOIL	Received	Date: 8/1	14/2013 9:45:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JMP
1,1-Dichloropropene	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Hexachlorobutadiene	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
2-Hexanone	ND	0.48	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Isopropylbenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
4-Isopropyltoluene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
4-Methyl-2-pentanone	ND	0.48	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Methylene chloride	ND	0.14	mg/Kg	1	8/17/2013 3:29:20 AM	8879
n-Butylbenzene	ND	0.14	mg/Kg	1	8/17/2013 3:29:20 AM	8879
n-Propylbenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
sec-Butylbenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Styrene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
tert-Butylbenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,1,1,2-Tetrachloroethane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,1,2,2-Tetrachloroethane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Tetrachloroethene (PCE)	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
trans-1,2-DCE	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
trans-1,3-Dichloropropene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,2,3-Trichlorobenzene	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,2,4-Trichlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,1,1-Trichloroethane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,1,2-Trichloroethane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Trichloroethene (TCE)	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Trichlorofluoromethane	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
1,2,3-Trichloropropane	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Vinyl chloride	ND	0.048	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Xylenes, Total	ND	0.096	mg/Kg	1	8/17/2013 3:29:20 AM	8879
Surr: 1,2-Dichloroethane-d4	91.4	70-130	%REC	1	8/17/2013 3:29:20 AM	8879
Surr: 4-Bromofluorobenzene	88.3	70-130	%REC	1	8/17/2013 3:29:20 AM	8879
Surr: Dibromofluoromethane	98.0	70-130	%REC	1	8/17/2013 3:29:20 AM	8879
Surr: Toluene-d8	98.3	70-130	%REC	1	8/17/2013 3:29:20 AM	8879

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В
	Е	Value above quantitation range	Н
	J	Analyte detected below quantitation limits	N
	0	RSD is greater than RSDlimit	Р
	R	RPD outside accepted recovery limits	R

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 4 of 12
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

TWP Roswell Station 9

Project:

Client Sample ID: MW-41 55'-57' Collection Date: 8/6/2013 8:25:00 AM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308625-003	Matrix: S	SOIL	Received	Date: 8/1	4/2013 9:45:00 AM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JMP
Benzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Toluene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Ethylbenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Methyl tert-butyl ether (MTBE)	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,2,4-Trimethylbenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,3,5-Trimethylbenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,2-Dichloroethane (EDC)	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,2-Dibromoethane (EDB)	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Naphthalene	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1-Methylnaphthalene	ND	0.19	mg/Kg	1	8/17/2013 3:57:09 AM	8879
2-Methylnaphthalene	ND	0.19	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Acetone	ND	0.71	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Bromobenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Bromodichloromethane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Bromoform	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Bromomethane	ND	0.14	mg/Kg	1	8/17/2013 3:57:09 AM	8879
2-Butanone	ND	0.47	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Carbon disulfide	ND	0.47	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Carbon tetrachloride	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Chlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Chloroethane	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Chloroform	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Chloromethane	ND	0.14	mg/Kg	1	8/17/2013 3:57:09 AM	8879
2-Chlorotoluene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
4-Chlorotoluene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
cis-1,2-DCE	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
cis-1,3-Dichloropropene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,2-Dibromo-3-chloropropane	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Dibromochloromethane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Dibromomethane	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,2-Dichlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,3-Dichlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,4-Dichlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
Dichlorodifluoromethane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,1-Dichloroethane	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,1-Dichloroethene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,2-Dichloropropane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
1,3-Dichloropropane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879
2,2-Dichloropropane	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879

- Qualifiers: * Value exceeds Maximum Contaminant Level.
 - E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 5 of 12
 - P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project:

TWP Roswell Station 9

Client Sample ID: MW-41 55'-57' Collection Date: 8/6/2013 8:25:00 AM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308625-003	Matrix:	Received	Received Date: 8/14/2013 9:45:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES					Analyst	: JMP	
1,1-Dichloropropene	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Hexachlorobutadiene	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
2-Hexanone	ND	0.47	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Isopropylbenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
4-Isopropyltoluene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
4-Methyl-2-pentanone	ND	0.47	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Methylene chloride	ND	0.14	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
n-Butylbenzene	ND	0.14	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
n-Propylbenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
sec-Butylbenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Styrene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
tert-Butylbenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
1,1,1,2-Tetrachloroethane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
1,1,2,2-Tetrachloroethane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Tetrachloroethene (PCE)	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
trans-1,2-DCE	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
trans-1,3-Dichloropropene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
1,2,3-Trichlorobenzene	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
1,2,4-Trichlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
1,1,1-Trichloroethane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
1,1,2-Trichloroethane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Trichloroethene (TCE)	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Trichlorofluoromethane	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
1,2,3-Trichloropropane	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Vinyl chloride	ND	0.047	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Xylenes, Total	ND	0.095	mg/Kg	1	8/17/2013 3:57:09 AM	8879	
Surr: 1,2-Dichloroethane-d4	90.1	70-130	%REC	1	8/17/2013 3:57:09 AM	8879	
Surr: 4-Bromofluorobenzene	88.7	70-130	%REC	1	8/17/2013 3:57:09 AM	8879	
Surr: Dibromofluoromethane	97.7	70-130	%REC	1	8/17/2013 3:57:09 AM	8879	
Surr: Toluene-d8	97.7	70-130	%REC	1	8/17/2013 3:57:09 AM	8879	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte
	Е	Value above quantitation range	Н	Holding
	J	Analyte detected below quantitation limits	ND	Not Det
	0	RSD is greater than RSDlimit	Р	Sample
	R	RPD outside accepted recovery limits	RL	Reportin

Spike Recovery outside accepted recovery limits

S

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 6 of 12
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

TWP Roswell Station 9

Project:

Client Sample ID: MW-42B 55'-57' Collection Date: 8/6/2013 2:35:00 PM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308625-004	Matrix: S	Received Date: 8/14/2013 9:45:00 AM					
Analyses	Result RL Qual		Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES		Analys					
Benzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Toluene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Ethylbenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Methyl tert-butyl ether (MTBE)	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,2,4-Trimethylbenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,3,5-Trimethylbenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,2-Dichloroethane (EDC)	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,2-Dibromoethane (EDB)	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Naphthalene	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1-Methylnaphthalene	ND	0.19	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
2-Methylnaphthalene	ND	0.19	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Acetone	ND	0.71	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Bromobenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Bromodichloromethane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Bromoform	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Bromomethane	ND	0.14	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
2-Butanone	ND	0.47	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Carbon disulfide	ND	0.47	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Carbon tetrachloride	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Chlorobenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Chloroethane	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Chloroform	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Chloromethane	ND	0.14	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
2-Chlorotoluene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
4-Chlorotoluene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
cis-1,2-DCE	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
cis-1,3-Dichloropropene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,2-Dibromo-3-chloropropane	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Dibromochloromethane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Dibromomethane	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,2-Dichlorobenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,3-Dichlorobenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,4-Dichlorobenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Dichlorodifluoromethane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,1-Dichloroethane	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,1-Dichloroethene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,2-Dichloropropane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,3-Dichloropropane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
2,2-Dichloropropane	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 7 of 12 Р Sample pH greater than 2 for VOA and TOC only.
 - Reporting Detection Limit RL

Page 8 of 12

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

TWP Roswell Station 9

Project:

Client Sample ID: MW-42B 55'-57' Collection Date: 8/6/2013 2:35:00 PM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308625-004	Matrix:	Received	Received Date: 8/14/2013 9:45:00 AM				
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES					Analyst: JMP		
1,1-Dichloropropene	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Hexachlorobutadiene	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
2-Hexanone	ND	0.47	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Isopropylbenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
4-Isopropyltoluene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
4-Methyl-2-pentanone	ND	0.47	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Methylene chloride	ND	0.14	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
n-Butylbenzene	ND	0.14	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
n-Propylbenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
sec-Butylbenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Styrene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
tert-Butylbenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,1,1,2-Tetrachloroethane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,1,2,2-Tetrachloroethane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Tetrachloroethene (PCE)	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
trans-1,2-DCE	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
trans-1,3-Dichloropropene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,2,3-Trichlorobenzene	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,2,4-Trichlorobenzene	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,1,1-Trichloroethane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,1,2-Trichloroethane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Trichloroethene (TCE)	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Trichlorofluoromethane	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
1,2,3-Trichloropropane	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Vinyl chloride	ND	0.047	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Xylenes, Total	ND	0.095	mg/Kg	1	8/19/2013 4:42:14 PM	8879	
Surr: 1,2-Dichloroethane-d4	91.4	70-130	%REC	1	8/19/2013 4:42:14 PM	8879	
Surr: 4-Bromofluorobenzene	93.9	70-130	%REC	1	8/19/2013 4:42:14 PM	8879	
Surr: Dibromofluoromethane	94.9	70-130	%REC	1	8/19/2013 4:42:14 PM	8879	
Surr: Toluene-d8	99.0	70-130	%REC	1	8/19/2013 4:42:14 PM	8879	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
Z	Е	Value above quantitation range	H	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 8
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

WO#:	1308625
	20-Aug-13

Qual

RPDLimit

Sample ID mb-8879	Samp	Гуре: МЕ	BLK	TestCode: EPA Method 8260B: VOLATILES				
Client ID: PBS	Batc	h ID: 88	79	R	RunNo: 1	2689		
Prep Date: 8/15/2013	Analysis [Date: 8/	17/2013	S	Units: mg/k	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD
Benzene	ND	0.050						
Toluene	ND	0.050						
Ethylbenzene	ND	0.050						
Methyl tert-butyl ether (MTBE)	ND	0.050						
1,2,4-Trimethylbenzene	ND	0.050						
1,3,5-Trimethylbenzene	ND	0.050						
1,2-Dichloroethane (EDC)	ND	0.050						
1,2-Dibromoethane (EDB)	ND	0.050						
Naphthalene	ND	0.10						
1-Methylnaphthalene	ND	0.20						
2-Methylnaphthalene	ND	0.20						
Acetone	ND	0.75						
Bromobenzene	ND	0.050						
Bromodichloromethane	ND	0.050						
Bromoform	ND	0.050						
Bromomethane	ND	0.15						
2-Butanone	ND	0.50						
Carbon disulfide	ND	0.50						
Carbon tetrachloride	ND	0.10						
Chlorobenzene	ND	0.050						
Chloroethane	ND	0.10						
Chloroform	ND	0.050						
Chloromethane	ND	0.15						
2-Chlorotoluene	ND	0.050						
4-Chlorotoluene	ND	0.050						
cis-1,2-DCE	ND	0.050						
cis-1,3-Dichloropropene	ND	0.050						
1,2-Dibromo-3-chloropropane	ND	0.10						
Dibromochloromethane	ND	0.050						
Dibromomethane	ND	0.10						
1,2-Dichlorobenzene	ND	0.050						
1,3-Dichlorobenzene	ND	0.050						
1,4-Dichlorobenzene	ND	0.050						
Dichlorodifluoromethane	ND	0.050						
1,1-Dichloroethane	ND	0.10						
1,1-Dichloroethene	ND	0.050						
1,2-Dichloropropane	ND	0.050						
1,3-Dichloropropane	ND	0.050						
2,2-Dichloropropane	ND	0.10						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	1308625
	20-Aug-13

Client: Cypress	Engineerin	g								
Project: TWP Re	oswell Stati	on 9								
Sample ID mb-8879	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: VOLA	TILES		
Client ID: PBS		n ID: 88		F	RunNo: 1					
Prep Date: 8/15/2013	Analysis D				SeqNo: 3		g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND ND	0.050								
1,1,2-Trichloroethane Trichloroethene (TCE)	ND	0.050 0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.050								
Vinyl chloride	ND	0.10								
Xylenes, Total	ND	0.000								
Surr: 1,2-Dichloroethane-d4	0.45	0.10	0.5000		90.0	70	130			
Surr: 4-Bromofluorobenzene	0.43		0.5000		88.3	70 70	130			
Surr: Dibromofluoromethane	0.44		0.5000		96.8	70	130			
Surr: Toluene-d8	0.49		0.5000		98.3	70	130			
Sample ID Ics-8879	SamoT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOLA	TILES		
Client ID: LCSS		h ID: 88			RunNo: 1					
Prep Date: 8/15/2013	Analysis D				SeqNo: 3		Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.94	0.050	1.000	0	93.8	70	130			
Toluene										
	0.89	0.050	1.000	0	89.5	69.9	139			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 10 of 12

WO#: **1308625**

20-Aug-13

	79 17/2013 SPK value 1.000 1.000 0.5000 0.5000 0.5000 0.5000	R	Code: EF anNo: 12 %REC 104 87.3 94.6 85.9 99.3 101	2689 51358 LowLimit 69.3 70 70 70 70 70	8260B: VOL/ Units: mg/K HighLimit 131 130 130 130	-	RPDLimit	Qual				
Date: 8 / PQL 0.050 0.050	P17/2013 SPK value 1.000 1.000 0.5000 0.5000 0.5000 0.5000	SPK Ref Val	with the seq No: 30 with the seq No: 30 with the seq of	LowLimit 69.3 70 70 70 70 70	HighLimit 131 130 130 130	-	RPDLimit	Qual				
PQL 0.050 0.050	SPK value 1.000 0.5000 0.5000 0.5000 0.5000	SPK Ref Val 0	%REC 104 87.3 94.6 85.9 99.3	LowLimit 69.3 70 70 70 70 70	HighLimit 131 130 130 130	-	RPDLimit	Qual				
0.050 0.050 DType: M	1.000 1.000 0.5000 0.5000 0.5000 0.5000	0	104 87.3 94.6 85.9 99.3	69.3 70 70 70 70	131 130 130 130	%RPD	RPDLimit	Qual				
0.050 • • Type: M	1.000 0.5000 0.5000 0.5000 0.5000		87.3 94.6 85.9 99.3	70 70 70 70	130 130 130							
оТуре: М	0.5000 0.5000 0.5000 0.5000	0	94.6 85.9 99.3	70 70 70	130 130							
	0.5000 0.5000 0.5000		85.9 99.3	70 70	130							
	0.5000 0.5000		99.3	70								
	0.5000											
			101		130							
	•			70	130							
	Sample ID 1308625-001ams SampType: MS TestCode: EPA Method 8260B: VOLATILES											
Client ID: MW-39 55'-57' Batch ID: 8879 RunNo: 12689 Prep Date: 8/15/2013 Analysis Date: 8/17/2013 SeqNo: 361360 Units: mg/Kg												
Date: 8/	17/2013	S	eqNo: 3	61360	Units: mg/K	(g						
PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
0.048	0.9671	0.003901	84.4	65.1	127							
0.048	0.9671	0	81.8	54.2	148							
0.048	0.9671	0	74.9	66.8	129							
0.048	0.9671	0.009086	92.5	44.1	148							
0.048	0.9671	0.009018	78.6	63.2	122							
	0.4836		95.6	70	130							
	0.4836		87.2	70	130							
	0.4836		102	70	130							
	0.4836		97.4	70	130							
Туре: М	SD	Test	tCode: EF	PA Method	8260B: VOLA	ATILES						
ch ID: 88	79	R	unNo: 12	2689								
Date: 8/	17/2013	S	eqNo: 3	61361	Units: mg/K	íg						
PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
0.048	0.9671	0.003901	79.5	65.1	127	6.03	20					
0.048	0.9671	0	76.8	54.2	148	6.23	20					
0.048	0.9671	0	73.5	66.8	129	1.87	20					
0.048	0.9671	0.009086	83.3	44.1	148	10.4	20					
0.048	0.9671	0.009018	73.3	63.2	122	6.89	20					
	0.4836		90.6	70	130	0	0					
	0.4836		84.5	70	130	0	0					
	0.4836		96.1	70	130	0	0					
	0.4836		95.8	70	130	0	0					
	Date: 8/ PQL 0.048 0.048 0.048 0.048 0.048 0.048 Date: 8/ PQL 0.048 0.048 0.048 0.048	PQL SPK value PQL 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671 0.048 0.9671	PQL SPK value SPK Ref Val PQL SPK value SPK Ref Val 0.048 0.9671 0.003901 0.048 0.9671 0.009086 0.048 0.9671 0.009018 0.048 0.9671 0.009018 0.048 0.9671 0.009018 0.048 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.4836 0.9671 0.003901 0.048 0.9671 0.003901 0.048 0.9671 0.003901 0.048 0.9671 0.003901 0.048 0.9671 0.003901 0.048 0.9671 0.009018 0.048 0.9671 0.009018 0.048 0.9671 0.009018 0.048 0.9671 0.009018 0.4836 0.4836	PQL SPK value SPK Ref Val $%$ REC 0.048 0.9671 0.003901 84.4 0.048 0.9671 0 81.8 0.048 0.9671 0 81.8 0.048 0.9671 0 92.5 0.048 0.9671 0.009086 92.5 0.048 0.9671 0.009018 78.6 0.048 0.9671 0.009018 78.6 0.048 0.9671 0.009018 78.6 0.048 0.9671 0.009018 78.6 0.4836 0.9671 0.009018 78.6 0.4836 0.4836 95.6 6 0.4836 0.4836 95.6 0.4836 0.4836 95.6 0.4836 0.4836 97.4 Date: SPK value SPK Ref Val $%$ REC 0.048 0.9671 0.03901 79.5 0.048 0.9671 0.003901 73.5 0.048 0.9671 0.009018 83.3 0.048 0.9671 0.009018 73.3 <	Pate PQL SPK value SPK Ref Val $^{\circ}$ REC $LowLimit$ 0.048 0.9671 0.003901 84.4 65.1 0.048 0.9671 0 81.8 54.2 0.048 0.9671 0.009086 92.5 44.1 0.048 0.9671 0.009018 78.6 63.2 0.048 0.9671 0.009018 78.6 63.2 0.048 0.9671 0.009018 78.6 63.2 0.048 0.9671 0.009018 78.6 63.2 0.048 0.9671 0.009018 78.6 63.2 0.4836 0.009018 78.6 70 0.4836 0.0148 70 70 0.4836 0.4836 87.2 70 0.4836 0.4836 97.4 70 ottp: N N 70 70 ottp: N N 70 70 ottp: N N 70 70 ottp: N N N 70 <	Date: $8/17/2013$ SeqN:: 361 Units: mg/k PQL SPK value SPK Ref Val $\%$ REC LowLimit HighLimit 0.048 0.9671 0.003901 84.4 65.1 127 0.048 0.9671 0 81.8 54.2 148 0.048 0.9671 0 74.9 66.8 129 0.048 0.9671 0.009086 92.5 44.1 148 0.048 0.9671 0.009018 78.6 63.2 122 0.4836 0.9671 0.009018 78.6 63.2 122 0.4836 95.6 70 130 0.4836 102 70 130 0.4836 102 70 130 0.4836 102 70 130 other F_{17} F_{13} F_{13} F_{13} other F_{17} F_{13} F_{13} F_{13} other F_{13} F_{13} F_{13} F_{13} other F_{17}	Date: $8/1/2$ O13 SPK Ref Val δ REC LowLinit HighLinit δ RPD PQL SPK value SPK Ref Val δ AREC LowLinit HighLinit δ RPD 0.048 0.9671 0.003901 84.4 65.1 127 0.048 0.9671 0 81.8 54.2 148 0.048 0.9671 0.009086 92.5 44.1 148 0.048 0.9671 0.009018 78.6 63.2 122 0.048 0.9671 0.009018 78.6 63.2 122 0.048 0.9671 0.009018 78.6 63.2 122 0.4836 95.6 70 130 148 0.4836 97.4 70 130 143 ot.4836 94.6 54.2 148 6.23 <	Date:8/17/2013Seven:3/21300Units:mg/KMRPDRPDLimitPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimit0.0480.96710.00390184.465.11271271270.0480.9671081.854.214481481480.0480.96710.00908692.544.114481440.0480.96710.00901878.663.212221410.0480.96710.00901878.663.212221410.48361027013001411481440.48361027013001411481440.748361027013001411411410.7181.483677.470013001411410.0480.96710.0030179.565.11276.03200.0480.96710.0030179.565.11276.03200.0480.96710.0030179.565.11276.03200.0480.96710.0030179.565.11276.03200.0480.96710.0030179.565.11276.03200.0480.96710.0030173.566.81291.87200.0480.96710.00301873.363.21226.89200.0480				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 11 of 12

I uge II o

WO#:	130	8625
	a a 4	10

• •	Engineerin oswell Statio	-									
Sample ID mb-8906	Tes	TestCode: EPA Method 8260B: VOLATILES									
Client ID: PBS	Batch	n ID: 89	06	R	RunNo: 12707						
Prep Date: 8/16/2013	Analysis D	ate: 8/	/19/2013	S	SeqNo: 3	62460	Units: %RE	с			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 1,2-Dichloroethane-d4	0.45		0.5000		90.0	70	130				
Surr: 4-Bromofluorobenzene	0.45		0.5000		90.4	70	130				
Surr: Dibromofluoromethane	0.47		0.5000		94.2	70	130				
Surr: Toluene-d8	0.52		0.5000		103	70	130				
Sample ID Ics-8906	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL/	ATILES			
Client ID: LCSS	Batch	n ID: 89	06	R							
Prep Date: 8/16/2013	Analysis D	ate: 8/	/19/2013	S	SeqNo: 3	62462	Units: %RE	с			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 1,2-Dichloroethane-d4	0.46		0.5000		91.9	70	130				
Surr: 4-Bromofluorobenzene	0.48		0.5000		95.4	70	130				
Surr: Dibromofluoromethane	0.46		0.5000		92.8	70	130				
Surr: Toluene-d8	0.50		0.5000		99.7	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 12 of 12

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: CYP	Work Order Number:	1308625		RcptNo: 1	
Received by/date:	08/14/13				
Logged By: Lindsay Mangin	8/14/2013 9:45:00 AM		timber fillen		
Completed By: Lindsay Mangin	8/1 5/20 1 _/ 3 7:33:06 AM		Annahi Hen		
Reviewed By:	inc. L. Elin		000		
Chain of Custody					
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗆	Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🗹		Not Present	
3. How was the sample delivered?		000			
<u>Log In</u>					
4. Was an attempt made to cool the samp	les?	Yes 🗹	No 🗌		
5. Were all samples received at a tempera	ture of >0° C to 6.0°C	Yes 🗹	No 🗌		
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated te	est(s)?	Yes 🗹	No 🗌		
8. Are samples (except VOA and ONG) pro	operly preserved?	Yes 🗹	No 🗌		
9. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗆	
10.VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA Vials 🗹	
11. Were any sample containers received b	roken?	Yes 🗌	No 🗹 🏾	# of preserved	
				bottles checked	
12.Does paperwork match bottle labels?	A	Yes 🗹	No 🗆	for pH: (<2 or	>12 unless noted)
(Note discrepancies on chain of custody 13. Are matrices correctly identified on Chai		Yes 🔽	No 🗆	Adjusted?	
14. Is it clear what analyses were requested		Yes 🗹	No 🗆		
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by:	
Special Handling (if applicable)					
16. Was client notified of all discrepancies v	vith this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified:	Date:				
By Whom:	Via:	eMail	Phone 🗌 Fax	In Person	
Regarding:					
Client Instructions:	oon and a second s	1			
17. Additional remarks:				· · · · · · · · · · · · · · · · ·	-
18. Cooler Information					
Cooler No Temp ºC Condition	Seal Intact Seal No	Seal Date	Signed By		
1 3.6 Good	Yes				

									(N	orl	<u>لا</u>	Air Bubbles	2%	•		\rightarrow									
	LABORATORY																	 							
Ē	23																				_		0 0		eport.
	ίŚ		6																				246		/tical n
	ËÖ	, , _	871(107						(∀(<u></u> ^	ime2) 0728								_			olers nssr		e analy
	Š	LOD.	ΣN	505-345-4107	est							00200707000		\sim		\langle		 _		 \rightarrow					d on th
ē	-	Ū Ū	due,	05-3/	Request	ę	s,80	2 P(808	/ S		8081 Pestic			$ \rightarrow $	\sim				 			four love	Ô	notate
ENVTDONMENTAI	ANALYSIS	www.hallenvironmental.com	Albuquerque, NM 87109	Fax 5(sis R							D, F) snoinA								 			451	42	clearly
	i S	envir	Albu	ш	Analysis							ACRA 8 Me						 					9.9	ŝ	vill be o
-	╏┛	hall	ı Ш	75	Ar		(S	WIS	6 OZ	Z8 ·	10 ()f£8) s'HA9						 •					20	61	data v
	ŻŻ		ns N	5-39					(1	70¢	g po	EDB (Metho											de /	1,7	tracted
		l.	awki	505-345-3975					(1	.8L	b b	odteM) H9T											62	2 <i>6</i> ,	ub-cont
			4901 Hawkins NE	Tel. 50		(סצ	IW /	oя	<i>ا</i> ۵	оя	อ)	83108 H9T												1	Any su
			49	Ţ								BTEX + MT											Remarks		ibility.
			<u> </u>	1		()	205	3) s'	BM.	<u> </u> +	38	BTEX + MT											Rei		This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
			١	Lel				1			and a second												Ŕ		e of thi
		0		14/51			(\$	1			2 V	 ~	N	M	Ľf	-								s notic
		1	401	7	8			Ŋ	d'			HEAL No	$ \vartheta $	8	R	S							<u> </u>	Ŋ	erves a
			4	NA I	N		1'h	25400	1	No	5		1	Ň	7	-								- Са	This se
	ų		Ñ,	20	003		16145 84.	ing hi	16:			e e	$\overline{\mathbf{x}}$		- 		•			 -			02		ories.
	🗆 Rush		vcl	114	1		Ŷ,	Ì,	arnh	ales a		servativ Type	10			/							,		aborato
ne:			20		6		\mathcal{K}^{0}	à	24	З, es	rature	reservative Type	NON	[\uparrow	•					4			dited Is
Turn-Around Time:	p	я: ,	1W/ X 05 WC/ 2 14	Project #: New Man	10% , 201	Project Manager:	1		6	On Ice: 🥂 🖓	mpel									 					r accre
Vroun	A Standard	Project Name:		## ;#	0	t Ma	20076	STALY	er.C		Sample Tempe	Container Type and #	12 407 A									$\left(\right)$			k6 othe
rm-∕	¥ St		14	rojec		ojec	01	ίŋ	Sampler	ň loé	ampl	Cont				Ŷ						`	Received by:	ace ve	acted
Ē		6	,						Ő	0	S				~	21								ž	lbcontr
σ	Fac		102	١				Level 4 (Full Validation)			,	I D	55 67	62	55'-57	56'57							Ø		y be si
LO LO	Seprilles	Z	576.	550		6		alida				sent	di	60'-62	, jo	22							JY.		ital ma
Sec	144		0		e	abinson	4	2 [I]				Rec			Ŋ										onmer
Ч Ч	N	.201	Ma	1	3420	2111	X	14 (F				ple	19	- 412	14	42							L X		ll Envir
po	541	10	6 North	2622	'' ``	Ĩ	140	Leve				Sample Request ID	mw-39	0H-MW	MW-41	MW-428						/	JM.		f to Ha
ust))	$ \mathcal{K} $	0	R L	162	ý	X			er I					W	M				 	Y	\mathcal{T}	Hed by		bmitteo
Õ	1110	20	h du	Ľ	N	Secres 6	Cypries Inc. 45					Matrix	SUL	SOIL	SUL	5010						$\overline{)}$	Belinguished by		oles su
Chain-of-Custody Record	11	George Allinson,	138: 12 h h	20,	261.	Ö	2								18					-				<u>}</u>	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories.
ain	5) Ø	Idres		•	ax#:	kage	р	ion		ype)	Time	1730	:55	0825	1435							Time: 12.10	j.	cessar
Сh	ر الأ	A 77N.	Ŭ Ŭ Ŭ	115	e#:	PorF	с Рас	anda	∋ditat	D NELAP				317		3 1								=	lf ne
	CHERT: CHERT: MENNES		Mailing Address:	1,	Phone #:	email or Fax#:	QA/QC Package:	Standard	Accreditation	Ī	🗆 EDD (Type)	Date	8/00/13	8/02/13 17:55	S/04/13	8/01/3							Date: //3//3	Dale.	
	•	•	•	• •		_ \ J	r i	2.41	•		•	•	. 00.	· •9	100	- IO		-	-	 •			- <u>~</u>	•	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

August 26, 2013

George Robinson Cypress Engineering 7171 Highway 6 North Suite 102 Houston, TX 770952422 TEL: (281) 797-3420 FAX (281) 859-1881

RE: TWP Roswell Station 9

OrderNo.: 1308626

Dear George Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 8/14/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

1308626-001

TWP Roswell Station 9

Project:

Lab ID:

Client Sample ID: MPE-38 65'-67' Collection Date: 8/8/2013 8:10:00 AM Received Date: 8/14/2013 9:45:00 AM

Lab ID. 1908020-001			Receiveu	Acceived Date: 0/14/2015 9:45:00 Aw					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch			
EPA METHOD 7471: MERCURY					Analyst	: IDC			
Mercury	ND	0.033	mg/kg	1	8/20/2013 1:22:19 PM	8939			
EPA METHOD 6010B: SOIL METALS					Analyst	JLF			
Arsenic	ND	2.5	mg/Kg	1	8/21/2013 3:42:11 PM	8910			
Barium	62	0.20	mg/Kg	2	8/21/2013 3:45:19 PM	8910			
Cadmium	ND	0.10	mg/Kg	1	8/21/2013 3:42:11 PM	8910			
Chromium	3.9	0.30	mg/Kg	1	8/21/2013 3:42:11 PM	8910			
Lead	1.7	0.25	mg/Kg	1	8/21/2013 3:42:11 PM	8910			
Selenium	ND	2.5	mg/Kg	1	8/21/2013 3:42:11 PM	8910			
Silver	ND	0.25	mg/Kg	1	8/21/2013 3:42:11 PM	8910			
EPA METHOD 8260B: VOLATILES					Analyst	: JMP			
Benzene	11	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Toluene	45	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Ethylbenzene	8.9	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Methyl tert-butyl ether (MTBE)	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
1,2,4-Trimethylbenzene	9.5	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
1,3,5-Trimethylbenzene	6.1	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
1,2-Dichloroethane (EDC)	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
1,2-Dibromoethane (EDB)	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Naphthalene	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
1-Methylnaphthalene	ND	9.5	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
2-Methylnaphthalene	ND	9.5	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Acetone	ND	36	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Bromobenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Bromodichloromethane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Bromoform	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Bromomethane	ND	7.1	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
2-Butanone	ND	24	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Carbon disulfide	ND	24	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Carbon tetrachloride	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Chlorobenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Chloroethane	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Chloroform	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
Chloromethane	ND	7.1	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
2-Chlorotoluene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
4-Chlorotoluene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
cis-1,2-DCE	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
cis-1,3-Dichloropropene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879			
1,2-Dibromo-3-chloropropane	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879			

Matrix: SOIL

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
 - Page 1 of 13 Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

TWP Roswell Station 9

Project:

Client Sample ID: MPE-38 65'-67' Collection Date: 8/8/2013 8:10:00 AM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308626-001	Matrix:	SOIL	Received	Date: 8/1	4/2013 9:45:00 AM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JMP
Dibromochloromethane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Dibromomethane	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,2-Dichlorobenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,3-Dichlorobenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,4-Dichlorobenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Dichlorodifluoromethane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,1-Dichloroethane	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,1-Dichloroethene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,2-Dichloropropane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,3-Dichloropropane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
2,2-Dichloropropane	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,1-Dichloropropene	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Hexachlorobutadiene	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879
2-Hexanone	ND	24	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Isopropylbenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
4-Isopropyltoluene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
4-Methyl-2-pentanone	ND	24	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Methylene chloride	ND	7.1	mg/Kg	50	8/17/2013 5:21:30 AM	8879
n-Butylbenzene	ND	7.1	mg/Kg	50	8/17/2013 5:21:30 AM	8879
n-Propylbenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
sec-Butylbenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Styrene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
tert-Butylbenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,1,1,2-Tetrachloroethane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,1,2,2-Tetrachloroethane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Tetrachloroethene (PCE)	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
trans-1,2-DCE	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
trans-1,3-Dichloropropene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,2,3-Trichlorobenzene	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,2,4-Trichlorobenzene	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,1,1-Trichloroethane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1.1.2-Trichloroethane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Trichloroethene (TCE)	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Trichlorofluoromethane	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
1,2,3-Trichloropropane	ND	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Vinyl chloride	ND	2.4	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Xylenes, Total	64	4.8	mg/Kg	50	8/17/2013 5:21:30 AM	8879
Surr: 1,2-Dichloroethane-d4	97.2	70-130	%REC	50	8/17/2013 5:21:30 AM	8879
Surr: 4-Bromofluorobenzene	86.1	70-130	%REC	50	8/17/2013 5:21:30 AM	8879

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 2 of 13 Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

CLIENT: Cypress Engineering			Client Sampl	e ID: MPE-38 65'-67'
Project: TWP Roswell Station 9			Collection I	Date: 8/8/2013 8:10:00 AM
Lab ID: 1308626-001	Matrix:	SOIL	Received I	Date: 8/14/2013 9:45:00 AM
Analyses	Result	RL Qu	al Units	DF Date Analyzed Bat
EPA METHOD 8260B: VOLATILES				Analyst: JMI
Surr: Dibromofluoromethane	98.2	70-130	%REC	50 8/17/2013 5:21:30 AM 887
Surr: Toluene-d8	89.6	70-130	%REC	50 8/17/2013 5:21:30 AM 887

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analy
	Е	Value above quantitation range	Н	Holdi
	J	Analyte detected below quantitation limits	ND	Not E
	0	RSD is greater than RSDlimit	Р	Samp
	R	RPD outside accepted recovery limits	RL	Repo

S Spike Recovery outside accepted recovery limits

- lyte detected in the associated Method Blank
- ling times for preparation or analysis exceeded
- Detected at the Reporting Limit
- Detected at the Reporting Limit Page 3 of 13 ple pH greater than 2 for VOA and TOC only.
- orting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

1308626-002

TWP Roswell Station 9

Project:

Lab ID:

Client Sample ID: MPE-40 60'-62' Collection Date: 8/8/2013 4:55:00 PM Received Date: 8/14/2013 9:45:00 AM

Lab ID. 1908020-002			Receiveu	Received Date: 8/14/2015 9:45:00 AM				
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch		
EPA METHOD 7471: MERCURY					Analyst	IDC		
Mercury	ND	0.033	mg/kg	1	8/20/2013 1:27:39 PM	8939		
EPA METHOD 6010B: SOIL METALS					Analyst	JLF		
Arsenic	ND	5.0	mg/Kg	2	8/21/2013 4:00:30 PM	8910		
Barium	71	0.20	mg/Kg	2	8/21/2013 4:00:30 PM	8910		
Cadmium	ND	0.20	mg/Kg	2	8/21/2013 4:00:30 PM	8910		
Chromium	6.9	0.60	mg/Kg	2	8/21/2013 4:00:30 PM	8910		
Lead	2.9	0.50	mg/Kg	2	8/21/2013 4:00:30 PM	8910		
Selenium	ND	5.0	mg/Kg	2	8/21/2013 4:00:30 PM	8910		
Silver	ND	0.50	mg/Kg	2	8/21/2013 4:00:30 PM	8910		
EPA METHOD 8260B: VOLATILES					Analyst	JMP		
Benzene	1.1	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Toluene	30	4.7	mg/Kg	100	8/19/2013 4:13:54 PM	8879		
Ethylbenzene	3.9	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Methyl tert-butyl ether (MTBE)	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
1,2,4-Trimethylbenzene	8.0	4.7	mg/Kg	100	8/19/2013 4:13:54 PM	8879		
1,3,5-Trimethylbenzene	3.5	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
1,2-Dichloroethane (EDC)	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
1,2-Dibromoethane (EDB)	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Naphthalene	0.36	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
1-Methylnaphthalene	0.56	0.19	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
2-Methylnaphthalene	0.97	0.19	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Acetone	ND	0.71	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Bromobenzene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Bromodichloromethane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Bromoform	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Bromomethane	ND	0.14	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
2-Butanone	ND	0.47	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Carbon disulfide	ND	0.47	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Carbon tetrachloride	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Chlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Chloroethane	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Chloroform	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
Chloromethane	ND	0.14	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
2-Chlorotoluene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
4-Chlorotoluene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
cis-1,2-DCE	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
cis-1,3-Dichloropropene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879		
1,2-Dibromo-3-chloropropane	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879		

Matrix: SOIL

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
 - Page 4 of 13 Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

TWP Roswell Station 9

Project:

Client Sample ID: MPE-40 60'-62' Collection Date: 8/8/2013 4:55:00 PM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308626-002	Matrix:	SOIL	Received	Received Date: 8/14/2013 9:45:00 AM					
Analyses	Result	RL Qua	al Units	DF	Date Analyzed	Batch			
EPA METHOD 8260B: VOLATILES					Analyst: JMP				
Dibromochloromethane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Dibromomethane	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,2-Dichlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,3-Dichlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,4-Dichlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Dichlorodifluoromethane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,1-Dichloroethane	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,1-Dichloroethene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,2-Dichloropropane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,3-Dichloropropane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
2,2-Dichloropropane	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,1-Dichloropropene	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Hexachlorobutadiene	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
2-Hexanone	ND	0.47	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Isopropylbenzene	0.69	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
4-Isopropyltoluene	0.28	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
4-Methyl-2-pentanone	ND	0.47	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Methylene chloride	ND	0.14	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
n-Butylbenzene	0.46	0.14	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
n-Propylbenzene	1.1	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
sec-Butylbenzene	0.31	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Styrene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
tert-Butylbenzene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,1,1,2-Tetrachloroethane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,1,2,2-Tetrachloroethane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Tetrachloroethene (PCE)	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
trans-1,2-DCE	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
trans-1,3-Dichloropropene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,2,3-Trichlorobenzene	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,2,4-Trichlorobenzene	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,1,1-Trichloroethane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,1,2-Trichloroethane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Trichloroethene (TCE)	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Trichlorofluoromethane	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
1,2,3-Trichloropropane	ND	0.095	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Vinyl chloride	ND	0.047	mg/Kg	1	8/17/2013 4:24:57 AM	8879			
Xylenes, Total	45	9.5	mg/Kg	100	8/19/2013 4:13:54 PM	8879			
Surr: 1,2-Dichloroethane-d4	58.9	70-130 S		1	8/17/2013 4:24:57 AM	8879			
Surr: 4-Bromofluorobenzene	105	70-130	%REC	1	8/17/2013 4:24:57 AM	8879			

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 5 of 13 Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

CLIENT: Cypress Engineering			Cl	ient Sampl	e ID: M	PE-40 60'-62'			
Project: TWP Roswell Station 9	Collection Date: 8/8/2013 4:55:00 PM								
Lab ID: 1308626-002	Matrix: SOIL Received Date: 8/14/2					4/2013 9:45:00 AM			
Analyses	Result	RL	Oual	Units	DF	Date Analyzed	Batch		
1 Hury 505	ittouit		~	-					
EPA METHOD 8260B: VOLATILES	ittosuit		2			· ·	st: JMP		
U	69.9	70-130	S	%REC	1	· ·			

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analy
	Е	Value above quantitation range	Η	Holdi
	J	Analyte detected below quantitation limits	ND	Not D
	0	RSD is greater than RSDlimit	Р	Sampl
	R	RPD outside accepted recovery limits	RL	Repor

S Spike Recovery outside accepted recovery limits

- lyte detected in the associated Method Blank
- ling times for preparation or analysis exceeded
- Detected at the Reporting Limit
- Detected at the Reporting Limit Page 6 of 13 ple pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

1308626-003

TWP Roswell Station 9

Project:

Lab ID:

Client Sample ID: MW-42A 55-57 Collection Date: 8/6/2013 10:45:00 AM Received Date: 8/14/2013 9:45:00 AM

Lab ID. 1308020-003		JOIL	Received Date: 8/14/2015 9.45.00 Alvi					
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch		
EPA METHOD 8260B: VOLATILES				Analyst: JN				
Benzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Toluene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Ethylbenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Methyl tert-butyl ether (MTBE)	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,2,4-Trimethylbenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,3,5-Trimethylbenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,2-Dichloroethane (EDC)	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,2-Dibromoethane (EDB)	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Naphthalene	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1-Methylnaphthalene	ND	0.19	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
2-Methylnaphthalene	ND	0.19	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Acetone	ND	0.71	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Bromobenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Bromodichloromethane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Bromoform	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Bromomethane	ND	0.14	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
2-Butanone	ND	0.48	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Carbon disulfide	ND	0.48	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Carbon tetrachloride	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Chlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Chloroethane	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Chloroform	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Chloromethane	ND	0.14	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
2-Chlorotoluene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
4-Chlorotoluene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
cis-1,2-DCE	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
cis-1,3-Dichloropropene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,2-Dibromo-3-chloropropane	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Dibromochloromethane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Dibromomethane	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,2-Dichlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,3-Dichlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,4-Dichlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
Dichlorodifluoromethane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,1-Dichloroethane	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,1-Dichloroethene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,2-Dichloropropane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
1,3-Dichloropropane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879		
2,2-Dichloropropane	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879		

Matrix: SOIL

- **Oualifiers:** * Value exceeds Maximum Contaminant Level.
 - Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - 0 RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
 - Page 7 of 13 Р Sample pH greater than 2 for VOA and TOC only.
 - Reporting Detection Limit RL

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Client Sample ID: MW-42A 55-57 Collection Date: 8/6/2013 10:45:00 AM Received Date: 8/14/2013 9:45:00 AM

Lab ID: 1308626-003	Matrix:	SOIL	Received	Received Date: 8/14/2013 9:45:00 AM					
Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch			
EPA METHOD 8260B: VOLATILES					Analyst	: JMP			
1,1-Dichloropropene	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Hexachlorobutadiene	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
2-Hexanone	ND	0.48	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Isopropylbenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
4-Isopropyltoluene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
4-Methyl-2-pentanone	ND	0.48	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Methylene chloride	ND	0.14	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
n-Butylbenzene	ND	0.14	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
n-Propylbenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
sec-Butylbenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Styrene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
tert-Butylbenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
1,1,1,2-Tetrachloroethane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
1,1,2,2-Tetrachloroethane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Tetrachloroethene (PCE)	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
trans-1,2-DCE	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
trans-1,3-Dichloropropene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
1,2,3-Trichlorobenzene	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
1,2,4-Trichlorobenzene	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
1,1,1-Trichloroethane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
1,1,2-Trichloroethane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Trichloroethene (TCE)	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Trichlorofluoromethane	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
1,2,3-Trichloropropane	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Vinyl chloride	ND	0.048	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Xylenes, Total	ND	0.095	mg/Kg	1	8/17/2013 4:53:17 AM	8879			
Surr: 1,2-Dichloroethane-d4	93.2	70-130	%REC	1	8/17/2013 4:53:17 AM	8879			
Surr: 4-Bromofluorobenzene	86.8	70-130	%REC	1	8/17/2013 4:53:17 AM	8879			
Surr: Dibromofluoromethane	101	70-130	%REC	1	8/17/2013 4:53:17 AM	8879			
Surr: Toluene-d8	95.0	70-130	%REC	1	8/17/2013 4:53:17 AM	8879			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte
	Е	Value above quantitation range	Н	Holding
	J	Analyte detected below quantitation limits	ND	Not Det
	0	RSD is greater than RSDlimit	Р	Sample
	R	RPD outside accepted recovery limits	RL	Reportin

Spike Recovery outside accepted recovery limits

S

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 8 of 13
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

NO#:	1308626
	26 Aug 13

W 26-Aug-13

Sample ID mb-8879	Samp	Гуре: М	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBS	Batc	h ID: 88	379	F	RunNo: 1	2689				
Prep Date: 8/15/2013	Analysis [Date: 8	/17/2013	S	SeqNo: 3	61357	Units: mg/k	۲g		
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	- %RPD	RPDLimit	Qual
Benzene	ND	0.050		or rentility and	/01120	LOWLINK	r ngin±irint	Jord D		Quai
Foluene	ND	0.050								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
I,2-Dichloroethane (EDC)	ND	0.050								
I,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.10								
I-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.10								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
I,2-Dibromo-3-chloropropane	ND	0.000								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.030								
I,2-Dichlorobenzene	ND	0.050								
I,3-Dichlorobenzene	ND	0.050								
I,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
I,1-Dichloroethane										
	ND	0.10								
I,1-Dichloroethene	ND	0.050								
I,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	1308626
	26-Aug-13

	Engineerin oswell Stati	-								
Sample ID mb-8879	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 8260B: VOLATILES					
Client ID: PBS	Batcl	n ID: 88	79	F	RunNo: 1	2689				
Prep Date: 8/15/2013	Analysis D	0ate: 8/	17/2013	5	SeqNo: 3	61357	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND ND	0.10 0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.45	0.10	0.5000		90.0	70	130			
Surr: 4-Bromofluorobenzene	0.44		0.5000		88.3	70	130			
Surr: Dibromofluoromethane	0.48		0.5000		96.8	70	130			
Surr: Toluene-d8	0.49		0.5000		98.3	70	130			
Sample ID Ics-8879	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOLA	TILES		
Client ID: LCSS		n ID: 88			RunNo: 1					
Prep Date: 8/15/2013	Analysis D	0ate: 8/	17/2013	S	SeqNo: 3	61358	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.94	0.050	1.000	0	93.8	70	130			
Toluene	0.89	0.050	1.000	0	89.5	69.9	139			
Chlorobenzene	0.84	0.050	1.000	0	84.2	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 10 of 13

WO#: **1308626** 26-Aug-13

Client:Cypress EngineeringProject:TWP Roswell Station 9

Sample ID Ics-8879	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSS	Batch	h ID: 88	79	F	RunNo: 1	2689				
Prep Date: 8/15/2013	Analysis D	Date: 8/	17/2013	S	SeqNo: 3	61358	Units: mg/k	ίg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	1.0	0.050	1.000	0	104	69.3	131			
Trichloroethene (TCE)	0.87	0.050	1.000	0	87.3	70	130			
Surr: 1,2-Dichloroethane-d4	0.47		0.5000		94.6	70	130			
Surr: 4-Bromofluorobenzene	0.43		0.5000		85.9	70	130			
Surr: Dibromofluoromethane	0.50		0.5000		99.3	70	130			
Surr: Toluene-d8	0.50		0.5000		101	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 11 of 13

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	1308626
	26-Aug-13

Client:		Engineering	-								
Project:	I WP K05	swell Statio	511 9								
Sample ID	MB-8939	SampT	ype: M	BLK	Tes	tCode: EF	PA Method	7471: Mercu	ry		
Client ID:	PBS	Batch	n ID: 89	39	F	RunNo: 12	2748				
Prep Date:	8/20/2013	Analysis D	ate: 8	/20/2013	S	eqNo: 36	63107	Units: mg/k	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND	0.033								
Sample ID	LCS-8939	SampT	ype: LC	s	Tes	tCode: EF	PA Method	7471: Mercu	ry		
Client ID:	LCSS	Batch	n ID: 89	39	F	unNo: 12	2748				
Prep Date:	8/20/2013	Analysis D	ate: 8	/20/2013	S	SeqNo: 36	63108	Units: mg/k	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.16	0.033	0.1667	0	93.5	80	120			
Sample ID	1308626-001AMS	SampT	ype: m	S	Tes	tCode: EF	PA Method	7471: Mercu	ry		
Client ID:	MPE-38 65'-67'	Batch	n ID: 89	39	F	RunNo: 12	2748				
Prep Date:	8/20/2013	Analysis D	ate: 8	/20/2013	S	SeqNo: 36	63110	Units: mg/k	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.16	0.033	0.1657	0.004432	92.6	75	125			
Sample ID	1308626-001AMS	SampT	ype: m	sd	Tes	tCode: EF	PA Method	7471: Mercu	ry		
Campic ID		•									
Client ID:	MPE-38 65'-67'		n ID: 89	39	F	RunNo: 12	2748				
•	MPE-38 65'-67'					tunNo: 1 2 SeqNo: 36		Units: mg/k	g		
Client ID:	MPE-38 65'-67'	Batch		/20/2013		SeqNo: 36		Units: mg/k HighLimit	g %RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 12 of 13

WO#: **1308626**

Client: Project:		ss Engineerin Roswell Statio	-								
Sample ID	MB-8910	SampT	ype: ME	BLK	Test	tCode: El	PA Method	6010B: Soil I	Vetals		
Client ID:	PBS	Batch	n ID: 89	10	R	RunNo: 1	2731				
Prep Date:	8/19/2013	Analysis D	ate: 8/	19/2013	S	SeqNo: 3	62428	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	2.5								
Barium		ND	0.10								
Cadmium		ND	0.10								
Chromium		ND	0.30								
ead		ND	0.25								
Selenium		ND	2.5								
Silver		ND	0.25								
Silver Sample ID	LCS-8910		0.25 ype: LC	S	Test	tCode: El	PA Method	6010B: Soil I	Vetals		
Sample ID	LCS-8910 LCSS	SampT				tCode: El		6010B: Soil I	Vetals		
Sample ID		SampT	ÿpe: LC n ID: 89	10	R		2731	6010B: Soil I Units: mg/K			
Sample ID Client ID:	LCSS	SampT Batch	ÿpe: LC n ID: 89	10 19/2013	R	RunNo: 1 :	2731			RPDLimit	Qual
Sample ID Client ID: Prep Date:	LCSS	SampT Batch Analysis D	ype: LC 1 ID: 89 Date: 8/	10 19/2013	R	tunNo: 1 SeqNo: 3	2731 62429	Units: mg/K	g	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte	LCSS	SampT Batch Analysis D Result	Type: LC n ID: 89 Date: 8/ PQL	10 19/2013 SPK value	R S SPK Ref Val	RunNo: 1; SeqNo: 3 %REC	2731 62429 LowLimit	Units: mg/K HighLimit	g	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Arsenic	LCSS	SampT Batch Analysis D Result 25	⁷ ype: LC n ID: 89 Date: 8/ PQL 2.5	10 19/2013 SPK value 25.00	R S SPK Ref Val 0	RunNo: 1 SeqNo: 3 <u>%REC</u> 100	2731 62429 LowLimit 80	Units: mg/K HighLimit 120	g	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Arsenic Barium	LCSS	SampT Batch Analysis D Result 25 25	ype: LC n ID: 89 pate: 8/ PQL 2.5 0.10	10 19/2013 SPK value 25.00 25.00	R S SPK Ref Val 0 0	RunNo: 1 SeqNo: 3 <u>%REC</u> 100 99.8	2731 62429 LowLimit 80 80	Units: mg/K HighLimit 120 120	g	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Arsenic Barium Cadmium	LCSS	SampT Batch Analysis D Result 25 25 25 25	^T ype: LC n ID: 89 Date: 8/ PQL 2.5 0.10 0.10	10 19/2013 SPK value 25.00 25.00 25.00	R S SPK Ref Val 0 0 0	RunNo: 1: SeqNo: 3 <u>%REC</u> 100 99.8 100	2731 62429 LowLimit 80 80 80	Units: mg/K HighLimit 120 120 120	g	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Arsenic Barium Cadmium Chromium	LCSS	SampT Batch Analysis D Result 25 25 25 25 25 25	ype: LC D ID: 89 Date: 8/ PQL 2.5 0.10 0.10 0.30	10 19/2013 SPK value 25.00 25.00 25.00 25.00	R SPK Ref Val 0 0 0 0	RunNo: 1: SeqNo: 3 <u>%REC</u> 100 99.8 100 99.5	2731 62429 LowLimit 80 80 80 80 80	Units: mg/K HighLimit 120 120 120 120	g	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 13 of 13

LABORATORY

4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: CYP Work C	Order Number: 1308626		RcptNo:	1
Received by/date:	#13			
Logged By: Lindsay Mangin 8/14/2013	3 9:45:00 AM	Annalis Heargo		
Completed By: Lingsay Mangin 8/15/2013	3 7:37:23 AM	Annalis Hope		
Reviewed By: 08/1	5/13			
Chain of Custody				,
1. Custody seals intact on sample bottles?	Yes	No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?	Yes 🔽	No 🗌	Not Present	
3 How was the sample delivered?	UPS			
Log In				
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌		
5. Were all samples received at a temperature of >0° C	to 6.0°C Yes 🗹	No 🗌		
6. Sample(s) in proper container(s)?	Yes 🖌	Νο		
7. Sufficient sample volume for indicated test(s)?	Yes 🔽	No 🗆		
8. Are samples (except VOA and ONG) properly preserve	ed? Yes 🗹	No 🗌		
9. Was preservative added to bottles?	Yes 🗌	No 🔽	NA 🗌	
10.VOA vials have zero headspace?	Yes 🗌	No 🗔	No VOA Vials 🗹	
11. Were any sample containers received broken?	Yes	No 🗹 🏾	# of preserved	
12. Does paperwork match bottle labels?	Yes 🔽	No 🗆	bottles checked for pH:	
(Note discrepancies on chain of custody)			(<2 or Adjusted?	>12 unless noted)
13. Are matrices correctly identified on Chain of Custody?		No		
 14. Is it clear what analyses were requested? 15. Were all holding times able to be met? (If no, notify customer for authorization.) 	Yes ✔ Yes ✔		Checked by:	
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date:			
By Whom:	Via: 🗌 eMail 🗌	Phone 🗌 Fax	In Person	
Regarding:	· · · · · · · · · · · ·	· · · · ·		
Client Instructions:	· · · · · · · · · · · · · · · · · · ·			
17. Additional remarks:				

18.	<u>Cooler Inform</u>	ation						
	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By	
	1	3.6	Good	Yes				

		.								UN	<u></u>	<u> </u>	פייאייש	٦i∆	ž	R.	1	<u> </u>			ļ	I	l		I	J			1
	A	Ř											<u> </u>			-		<u> </u>											
	Ę	P P								<u> </u>					_	<u>.</u>	<u> </u>			<u> </u>	<u> </u>								۲.
	Ш	\$,	60							_		<u>_</u>		\dashv		<u> </u>	┣—		\vdash	1		<u> </u>	<u> </u>	<u> </u>	⊥_			in rep
	Σ	Ö	- 10	871	107) A -11	ne2) 07		4		-		-	4	_	<u> </u>	_	<u> </u>				9	analytic
	Ō		l.con	Σ Σ	454 4			-				-	DAX 109		┽			+	-	╂		<u> </u>	·	-	_	_	12	2	n the
	ĽĽ		ienta	idue;	505-345-4107			- BDc	1 28	308	/ Se		iteaq 18		<u> </u>	×	łŻ	╄—			<u> </u>	-	-	_	_		Neuse	0 1	tated 0
	ENVIRONMENTAI	S	ronm		Fax 5	2 (-			(F) enoi		+			├	-	╞	-	<u> </u>	╀─	╄	-			194	arly no
	Ξ	ANALYSIS LABORATORY			Analweie	, in the second s				_			N 8 APC		\mathbf{x}	$\overline{\boldsymbol{X}}$					┼─	┣	╄	├		╉─	Finis	1611504 0 281.797.	pe cle
		A B	V.nai		0/0	((SM	IS (570		Contraction of the local division of the loc	68) s'H	- 1/								<u> </u>		-		<u> </u>	12	N N	ata will
	HALL	2	4901 Hawkins NE		1 61. 202-342-38/5				l	(1.4	205	рог	itəM) 80	<u>13</u>										┼──	┠—	-	Quel	Х J	cted d
			dune F	Lawr	<u>è</u>					(1.8	314	pol	IteM) H	<u>ат</u> [T						-	-					410	249	contra
			н 201		сі. О			_	_				9108 Ha											<u> </u>	-		1 -1	Je la	-dus tr
			40	Ύ⊢			_						LEX + N	1												<u> </u>	Remarks:	C V	ted laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
							(12	08)	s'Bl	NT V	+ =	IATI	N + X∃1	8													Rem		lidisso
			(V)											0													7	$\overline{1}$	f this p
			4						N				ş, Ş		2	A	\mathbb{N}										Time		otice o
			1º		0		7	۰.	18				HEAL NO.		ן ו	ğ	8										⊢ v) [⊨]	is as n
		'	SI		Ň		N. N	:01					, ≖ v S			۱ ۱			ľ										serve
		ll I			05		house	4	in his)	<u>2</u>	<u>-</u>	-	$- \mid$		\square									14	+ +-	s. This
	🗆 Rush		421		マ		4	250	2		N)	/ative e	5		Ž	Ň		Í								No.	X	ratorie
ime:		1	KOSWEII		10		Ŕ	10	6/2	Yoc		2	eservative Type	None		NONC	NIAC										,	1	ed labo
d Ti	P	lie.	N		. 2012 0037.03	lade	STaly Bu	X	0		Samole Temperature		<u> </u>		\vdash			_+	_					_				þ	credite
Arour	anda	Nar	A A		Ś	t Mar	2	10			Ter		ainer and #	495	12		6										} ₩		ther ac
I urn-Around Ti	Astandard	Project Name:	1	Project #:	-	oject	N.	George	Sampler	On lee		La Constantino	Container Type and #	- Xン シナ	13		14									(Received by	Received b	
Ξ_				<u>à</u> _	<u> </u>	<u> </u> <u></u>	т <u></u>	0	Sa Sa	Ō	Sa Sa			<u> </u>	<u>م</u> ر	*Ø: 		_									Rec	Rece	Dutract
7	N	6		12				tion)					≙	N		707	55-57												subco
LO LO	110	575	5	20				Level 4 (Full Validation)					Sample Request ID	65-67	12/12	001	5										d'		may be
Cec	12	0	77095	664		9		ull <					Sequ		5												N, A		rental
× ×	10	K	N	612	3420	110	45	4 (F					ole F	20			424										NUS.		Nironn
0 Q	111	No		Robinson	34	tel inter	20.	evel				-	amp		20						1							-	Hail Er
ISI	621	way lo North,	Te has		797.	100	SH. Jul Ssindho			_			S	M2E-39	8	111	-MW								R	\sum	ed by:	léd by:	ted to
5	511	34	N.	1	79	20.	j.			Other			trix		_	-		-				╈		╈		Q		uis//ed	submit
Ģ	Enternes Ervice Inc.	5 6		George	~	Jen.	Ŭ.						Matrix	Sail	5011	N V	2017											Relinquis	mples.
ain	7	4164	Address	3	28	¥.	age:		Ę		pe)_		Time		1655						-	╞	+	+			Q	<u>µ</u>	ary, sa
unain-or-Custody Record	-4101255	1	Ŭ V V	TTW:	-	r Fa	Pack	Idarc	litatio	ЧÞ	CTyl		F	08			11/4/5										12:10	Time:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredit
		11	Mailing	4	Phone #:	email or Fax#: Genyc	QA/QC Package:	Z Standard	Accreditation		🗆 EDD (Type)		Date	18/08/13 0610	schoeliz		06/06/13			1						\neg	3	· · · · · ·	L L
ĺ	0	¥. *	≥ ľ	•	ב	Ø)	ð	P	Ă				Ч	18/0	sela		08/1		1								121 march	Date:	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

September 04, 2013

George Robinson Cypress Engineering 7171 Highway 6 North Suite 102 Houston, TX 770952422 TEL: (281) 797-3420 FAX (281) 859-1881

RE: TWP Roswell Station 9

OrderNo.: 1308C34

Dear George Robinson:

Hall Environmental Analysis Laboratory received 7 sample(s) on 8/28/2013 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1308C34 Date Reported: 9/4/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Client Sample ID: Comp Soil MW-39 - MW-42 S c Collection Date: 8/27/2013 10:40:00 AM

Lab ID: 1308C34-001	Matrix: S	SOIL	Received 1	Date: 8/2	8/2013 10:00:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: TCLP COMPO	DUNDS				Analyst	: JMP
Benzene	ND	0.50	ppm	10	8/29/2013 6:13:23 PM	9096
1,2-Dichloroethane (EDC)	ND	0.50	ppm	10	8/29/2013 6:13:23 PM	9096
2-Butanone	ND	200	ppm	10	8/29/2013 6:13:23 PM	9096
Carbon tetrachloride	ND	0.50	ppm	10	8/29/2013 6:13:23 PM	9096
Chlorobenzene	ND	100	ppm	10	8/29/2013 6:13:23 PM	9096
Chloroform	ND	6.0	ppm	10	8/29/2013 6:13:23 PM	9096
1,4-Dichlorobenzene	ND	7.5	ppm	10	8/29/2013 6:13:23 PM	9096
1,1-Dichloroethene	ND	0.70	ppm	10	8/29/2013 6:13:23 PM	9096
Tetrachloroethene (PCE)	ND	0.70	ppm	10	8/29/2013 6:13:23 PM	9096
Trichloroethene (TCE)	ND	0.50	ppm	10	8/29/2013 6:13:23 PM	9096
Vinyl chloride	ND	0.20	ppm	10	8/29/2013 6:13:23 PM	9096
Surr: 1,2-Dichloroethane-d4	90.6	70-130	%REC	10	8/29/2013 6:13:23 PM	9096
Surr: 4-Bromofluorobenzene	94.0	70-130	%REC	10	8/29/2013 6:13:23 PM	9096
Surr: Dibromofluoromethane	94.9	70-130	%REC	10	8/29/2013 6:13:23 PM	9096
Surr: Toluene-d8	93.0	70-130	%REC	10	8/29/2013 6:13:23 PM	9096

Qualifiers: *	Value exceeds Maximum Contaminant Level.
---------------	--

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- Page 1 of 12 Р Sample pH greater than 2 for VOA and TOC only.
- Reporting Detection Limit RL

Analytical Report Lab Order 1308C34

Date Reported: 9/4/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Client Sample ID: MPE-39 Composite 50'-75' BGS Collection Date: 8/27/2013 9:45:00 AM

Lab ID: 1308C34-002	Matrix: S	SOIL		Received I	Date: 8/2	8/2013 10:00:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE	ORGANICS					Analyst	BCN
Diesel Range Organics (DRO)	15	9.9		mg/Kg	1	8/30/2013 1:10:41 PM	9101
Surr: DNOP	86.9	63-147		%REC	1	8/30/2013 1:10:41 PM	9101
EPA METHOD 8015D: GASOLINE RAI	NGE					Analyst	: NSB
Gasoline Range Organics (GRO)	320	50		mg/Kg	10	8/30/2013 11:27:18 AM	9096
Surr: BFB	145	80-120	S	%REC	10	8/30/2013 11:27:18 AM	9096
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.50		mg/Kg	10	8/30/2013 11:27:18 AM	9096
Toluene	ND	0.50		mg/Kg	10	8/30/2013 11:27:18 AM	9096
Ethylbenzene	ND	0.50		mg/Kg	10	8/30/2013 11:27:18 AM	9096
Xylenes, Total	2.6	1.0		mg/Kg	10	8/30/2013 11:27:18 AM	9096
Surr: 4-Bromofluorobenzene	102	80-120		%REC	10	8/30/2013 11:27:18 AM	9096
EPA METHOD 8260B: TCLP COMPOL	INDS					Analyst	: JMP
Benzene	ND	0.50		ppm	10	8/29/2013 11:00:11 PM	9096
1,2-Dichloroethane (EDC)	ND	0.50		ppm	10	8/29/2013 11:00:11 PM	9096
2-Butanone	ND	200		ppm	10	8/29/2013 11:00:11 PM	9096
Carbon tetrachloride	ND	0.50		ppm	10	8/29/2013 11:00:11 PM	9096
Chlorobenzene	ND	100		ppm	10	8/29/2013 11:00:11 PM	9096
Chloroform	ND	6.0		ppm	10	8/29/2013 11:00:11 PM	9096
1,4-Dichlorobenzene	ND	7.5		ppm	10	8/29/2013 11:00:11 PM	9096
1,1-Dichloroethene	ND	0.70		ppm	10	8/29/2013 11:00:11 PM	9096
Tetrachloroethene (PCE)	ND	0.70		ppm	10	8/29/2013 11:00:11 PM	9096
Trichloroethene (TCE)	ND	0.50		ppm	10	8/29/2013 11:00:11 PM	9096
Vinyl chloride	ND	0.20		ppm	10	8/29/2013 11:00:11 PM	9096
Surr: 1,2-Dichloroethane-d4	95.6	70-130		%REC	10	8/29/2013 11:00:11 PM	9096
Surr: 4-Bromofluorobenzene	92.5	70-130		%REC	10	8/29/2013 11:00:11 PM	9096
Surr: Dibromofluoromethane	94.8	70-130		%REC	10	8/29/2013 11:00:11 PM	9096
Surr: Toluene-d8	93.8	70-130		%REC	10	8/29/2013 11:00:11 PM	9096

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank	
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded	
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 2 of 12	
	0	RSD is greater than RSDlimit	Р	Not Detected at the Reporting Limit Page 2 of 12 Sample pH greater than 2 for VOA and TOC only.	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	

Spike Recovery outside accepted recovery limits

S

Analytical Report Lab Order 1308C34 Date Reported: 9/4/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Client Sample ID: MPE-38 Composite 50'-75' BGS Collection Date: 8/27/2013 9:30:00 AM Paperived Date: 8/28/2013 10:00:00 AM

Lab ID: 1308C34-003	Matrix: SOIL			Received Date: 8/28/2013 10:00:00 AM				
Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 8015D: DIESEL RANG	E ORGANICS					Analyst	BCN	
Diesel Range Organics (DRO)	ND	10		mg/Kg	1	8/30/2013 1:41:47 PM	9101	
Surr: DNOP	88.8	63-147		%REC	1	8/30/2013 1:41:47 PM	9101	
EPA METHOD 8015D: GASOLINE RA	NGE					Analyst	RAA	
Gasoline Range Organics (GRO)	16	5.0		mg/Kg	1	9/3/2013 1:50:29 PM	9096	
Surr: BFB	147	80-120	S	%REC	1	9/3/2013 1:50:29 PM	9096	
EPA METHOD 8021B: VOLATILES						Analyst	RAA	
Benzene	ND	0.050		mg/Kg	1	9/3/2013 1:50:29 PM	9096	
Toluene	ND	0.050		mg/Kg	1	9/3/2013 1:50:29 PM	9096	
Ethylbenzene	ND	0.050		mg/Kg	1	9/3/2013 1:50:29 PM	9096	
Xylenes, Total	ND	0.10		mg/Kg	1	9/3/2013 1:50:29 PM	9096	
Surr: 4-Bromofluorobenzene	106	80-120		%REC	1	9/3/2013 1:50:29 PM	9096	
EPA METHOD 8260B: TCLP COMPOU	JNDS					Analyst	JMP	
Benzene	ND	0.50		ppm	10	8/29/2013 10:31:29 PM	9096	
1,2-Dichloroethane (EDC)	ND	0.50		ppm	10	8/29/2013 10:31:29 PM	9096	
2-Butanone	ND	200		ppm	10	8/29/2013 10:31:29 PM	9096	
Carbon tetrachloride	ND	0.50		ppm	10	8/29/2013 10:31:29 PM	9096	
Chlorobenzene	ND	100		ppm	10	8/29/2013 10:31:29 PM	9096	
Chloroform	ND	6.0		ppm	10	8/29/2013 10:31:29 PM	9096	
1,4-Dichlorobenzene	ND	7.5		ppm	10	8/29/2013 10:31:29 PM	9096	
1,1-Dichloroethene	ND	0.70		ppm	10	8/29/2013 10:31:29 PM	9096	
Tetrachloroethene (PCE)	ND	0.70		ppm	10	8/29/2013 10:31:29 PM	9096	
Trichloroethene (TCE)	ND	0.50		ppm	10	8/29/2013 10:31:29 PM	9096	
Vinyl chloride	ND	0.20		ppm	10	8/29/2013 10:31:29 PM	9096	
Surr: 1,2-Dichloroethane-d4	92.4	70-130		%REC	10	8/29/2013 10:31:29 PM	9096	
Surr: 4-Bromofluorobenzene	94.2	70-130		%REC	10	8/29/2013 10:31:29 PM	9096	
Surr: Dibromofluoromethane	94.7	70-130		%REC	10	8/29/2013 10:31:29 PM	9096	
Surr: Toluene-d8	94.0	70-130		%REC	10	8/29/2013 10:31:29 PM	9096	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 3 of 12
	O RSD is greater than RSDlimit P S		Sample pH greater than 2 for VOA and TOC only.	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

Analytical Report Lab Order 1308C34 Date Reported: 9/4/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Client Sample ID: MPE 40 Composite 01-50' BGS Collection Date: 8/27/2013 9:00:00 AM

EPA METHOD 8015D: DIESEL RANGE ORGANICS Diesel Range Organics (DRO) 15000 990 mg/Kg 100 9/ Surr: DNOP 0 63-147 S %REC 100 9/ EPA METHOD 8015D: GASOLINE RANGE 0 63-147 S %REC 100 9/ Gasoline Range Organics (GRO) 190 100 mg/Kg 20 8/ Surr: BFB 152 80-120 S %REC 20 8/ EPA METHOD 8021B: VOLATILES Benzene ND 0.50 mg/Kg 20 8/ Kulter ND 1.0 mg/Kg 20 8/		
Diesel Range Organics (DRO) 15000 990 mg/Kg 100 9/ Surr: DNOP 0 63-147 S %REC 100 9/ EPA METHOD 8015D: GASOLINE RANGE U	nte Analyzed	Batch
Surr: DNOP 0 63-147 S %REC 100 9/ EPA METHOD 8015D: GASOLINE RANGE gasoline Range Organics (GRO) 190 100 mg/Kg 20 8/ Gasoline Range Organics (GRO) 190 100 mg/Kg 20 8/ Surr: BFB 152 80-120 S %REC 20 8/ EPA METHOD 8021B: VOLATILES Benzene ND 0.50 mg/Kg 20 8/ Toluene ND 1.0 mg/Kg 20 8/ Ethylbenzene 1.3 1.0 mg/Kg 20 8/ Xylenes, Total 4.3 2.0 mg/Kg 20 8/	Analyst:	JME
EPA METHOD 8015D: GASOLINE RANGE 190 100 mg/Kg 20 8/ Gasoline Range Organics (GRO) 190 100 mg/Kg 20 8/ Surr: BFB 152 80-120 S %REC 20 8/ EPA METHOD 8021B: VOLATILES Benzene ND 0.50 mg/Kg 20 8/ Toluene ND 1.0 mg/Kg 20 8/ Ethylbenzene 1.3 1.0 mg/Kg 20 8/ Xylenes, Total 4.3 2.0 mg/Kg 20 8/	3/2013 12:44:39 PM	9101
Gasoline Range Organics (GRO) 190 100 mg/Kg 20 8/ Surr: BFB 152 80-120 S %REC 20 8/ EPA METHOD 8021B: VOLATILES Enzene ND 0.50 mg/Kg 20 8/ Toluene ND 1.0 mg/Kg 20 8/ Ethylbenzene 1.3 1.0 mg/Kg 20 8/ Xylenes, Total 4.3 2.0 mg/Kg 20 8/	3/2013 12:44:39 PM	9101
Surr: BFB 152 80-120 S %REC 20 8/ EPA METHOD 8021B: VOLATILES ND 0.50 mg/Kg 20 8/ Benzene ND 0.50 mg/Kg 20 8/ Toluene ND 1.0 mg/Kg 20 8/ Ethylbenzene 1.3 1.0 mg/Kg 20 8/ Xylenes, Total 4.3 2.0 mg/Kg 20 8/	Analyst:	NSB
EPA METHOD 8021B: VOLATILES Benzene ND 0.50 mg/Kg 20 8/ Toluene ND 1.0 mg/Kg 20 8/ Ethylbenzene 1.3 1.0 mg/Kg 20 8/ Xylenes, Total 4.3 2.0 mg/Kg 20 8/	30/2013 4:42:38 PM	9096
Benzene ND 0.50 mg/Kg 20 8/ Toluene ND 1.0 mg/Kg 20 8/ Ethylbenzene 1.3 1.0 mg/Kg 20 8/ Xylenes, Total 4.3 2.0 mg/Kg 20 8/	30/2013 4:42:38 PM	9096
Toluene ND 1.0 mg/Kg 20 8/ Ethylbenzene 1.3 1.0 mg/Kg 20 8/ Xylenes, Total 4.3 2.0 mg/Kg 20 8/	Analyst:	NSB
Ethylbenzene 1.3 1.0 mg/Kg 20 8/ Xylenes, Total 4.3 2.0 mg/Kg 20 8/	30/2013 4:42:38 PM	9096
Xylenes, Total 4.3 2.0 mg/Kg 20 8/	30/2013 4:42:38 PM	9096
	30/2013 4:42:38 PM	9096
	30/2013 4:42:38 PM	9096
Surr: 4-Bromofluorobenzene 106 80-120 %REC 20 8/	30/2013 4:42:38 PM	9096
EPA METHOD 8260B: TCLP COMPOUNDS	Analyst:	JMP
Benzene ND 0.50 ppm 10 8/	29/2013 11:56:51 PM	9096
1,2-Dichloroethane (EDC) ND 0.50 ppm 10 8/	29/2013 11:56:51 PM	9096
2-Butanone ND 200 ppm 10 8/	29/2013 11:56:51 PM	9096
Carbon tetrachloride ND 0.50 ppm 10 8/	29/2013 11:56:51 PM	9096
Chlorobenzene ND 100 ppm 10 8/	29/2013 11:56:51 PM	9096
Chloroform ND 6.0 ppm 10 8/	29/2013 11:56:51 PM	9096
1,4-Dichlorobenzene ND 7.5 ppm 10 8/	29/2013 11:56:51 PM	9096
1,1-Dichloroethene ND 0.70 ppm 10 8/	29/2013 11:56:51 PM	9096
Tetrachloroethene (PCE) ND 0.70 ppm 10 8/	29/2013 11:56:51 PM	9096
Trichloroethene (TCE) ND 0.50 ppm 10 8/	29/2013 11:56:51 PM	9096
Vinyl chloride ND 0.20 ppm 10 8/	29/2013 11:56:51 PM	9096
Surr: 1,2-Dichloroethane-d4 92.1 70-130 %REC 10 8/	29/2013 11:56:51 PM	9096
Surr: 4-Bromofluorobenzene 117 70-130 %REC 10 8/	29/2013 11:56:51 PM	9096
Surr: Dibromofluoromethane 95.4 70-130 %REC 10 8/	29/2013 11:56:51 PM	9096
Surr: Toluene-d8 91.3 70-130 %REC 10 8/		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 4 of 12
	0	RSD is greater than RSDlimit	than RSDlimit P Sample pH greater than 2 for VOA and	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

Analytical Report Lab Order 1308C34

Date Reported: 9/4/2013

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Client Sample ID: MPE-40 Composite 50-75' BGS Collection Date: 8/27/2013 10:10:00 AM

Lab ID: 1308C34-005	Matrix: S	SOIL		Received I	Date: 8/2	8/2013 10:00:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGI	E ORGANICS					Analyst:	BCN
Diesel Range Organics (DRO)	ND	10		mg/Kg	1	8/30/2013 3:15:33 PM	9101
Surr: DNOP	96.6	63-147		%REC	1	8/30/2013 3:15:33 PM	9101
EPA METHOD 8015D: GASOLINE RA	NGE					Analyst:	RAA
Gasoline Range Organics (GRO)	150	25		mg/Kg	5	9/3/2013 3:45:14 PM	9096
Surr: BFB	152	80-120	S	%REC	5	9/3/2013 3:45:14 PM	9096
EPA METHOD 8021B: VOLATILES						Analyst:	RAA
Benzene	ND	0.25		mg/Kg	5	9/3/2013 3:45:14 PM	9096
Toluene	ND	0.25		mg/Kg	5	9/3/2013 3:45:14 PM	9096
Ethylbenzene	ND	0.25		mg/Kg	5	9/3/2013 3:45:14 PM	9096
Xylenes, Total	0.82	0.50		mg/Kg	5	9/3/2013 3:45:14 PM	9096
Surr: 4-Bromofluorobenzene	108	80-120		%REC	5	9/3/2013 3:45:14 PM	9096
EPA METHOD 8260B: TCLP COMPOU	JNDS					Analyst:	JMP
Benzene	ND	0.50		ppm	10	8/30/2013 12:53:32 AM	9096
1,2-Dichloroethane (EDC)	ND	0.50		ppm	10	8/30/2013 12:53:32 AM	9096
2-Butanone	ND	200		ppm	10	8/30/2013 12:53:32 AM	9096
Carbon tetrachloride	ND	0.50		ppm	10	8/30/2013 12:53:32 AM	9096
Chlorobenzene	ND	100		ppm	10	8/30/2013 12:53:32 AM	9096
Chloroform	ND	6.0		ppm	10	8/30/2013 12:53:32 AM	9096
1,4-Dichlorobenzene	ND	7.5		ppm	10	8/30/2013 12:53:32 AM	9096
1,1-Dichloroethene	ND	0.70		ppm	10	8/30/2013 12:53:32 AM	9096
Tetrachloroethene (PCE)	ND	0.70		ppm	10	8/30/2013 12:53:32 AM	9096
Trichloroethene (TCE)	ND	0.50		ppm	10	8/30/2013 12:53:32 AM	9096
Vinyl chloride	ND	0.20		ppm	10	8/30/2013 12:53:32 AM	9096
Surr: 1,2-Dichloroethane-d4	93.5	70-130		%REC	10	8/30/2013 12:53:32 AM	9096
Surr: 4-Bromofluorobenzene	87.9	70-130		%REC	10	8/30/2013 12:53:32 AM	9096
Surr: Dibromofluoromethane	96.7	70-130		%REC	10	8/30/2013 12:53:32 AM	9096
Surr: Toluene-d8	94.3	70-130		%REC	10	8/30/2013 12:53:32 AM	9096

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 5 of 12
	0	RSD is greater than RSDlimit	Р	Not Detected at the Reporting Limit Page 5 of 12 Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

Spike Recovery outside accepted recovery limits

S

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Analytical Report Lab Order 1308C34 Date Reported: 9/4/2013

Client Sample ID: MPE-41 Composite 50'-75' BGS Collection Date: 8/27/2013 9:25:00 AM

Lab ID: 1308C34-006	Matrix: SOIL			Received Date: 8/28/2013 10:00:00 AM				
Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 8015D: DIESEL RANG	E ORGANICS					Analyst	BCN	
Diesel Range Organics (DRO)	80	10		mg/Kg	1	8/30/2013 3:46:44 PM	9101	
Surr: DNOP	94.9	63-147		%REC	1	8/30/2013 3:46:44 PM	9101	
EPA METHOD 8015D: GASOLINE RA	NGE					Analyst	: NSB	
Gasoline Range Organics (GRO)	15	5.0		mg/Kg	1	8/30/2013 6:08:42 PM	9096	
Surr: BFB	163	80-120	S	%REC	1	8/30/2013 6:08:42 PM	9096	
EPA METHOD 8021B: VOLATILES						Analyst	NSB	
Benzene	ND	0.050		mg/Kg	1	8/30/2013 6:08:42 PM	9096	
Toluene	ND	0.050		mg/Kg	1	8/30/2013 6:08:42 PM	9096	
Ethylbenzene	ND	0.050		mg/Kg	1	8/30/2013 6:08:42 PM	9096	
Xylenes, Total	ND	0.10		mg/Kg	1	8/30/2013 6:08:42 PM	9096	
Surr: 4-Bromofluorobenzene	105	80-120		%REC	1	8/30/2013 6:08:42 PM	9096	
EPA METHOD 8260B: TCLP COMPO	UNDS					Analyst	: JMP	
Benzene	ND	0.50		ppm	10	8/29/2013 8:07:02 PM	9096	
1,2-Dichloroethane (EDC)	ND	0.50		ppm	10	8/29/2013 8:07:02 PM	9096	
2-Butanone	ND	200		ppm	10	8/29/2013 8:07:02 PM	9096	
Carbon tetrachloride	ND	0.50		ppm	10	8/29/2013 8:07:02 PM	9096	
Chlorobenzene	ND	100		ppm	10	8/29/2013 8:07:02 PM	9096	
Chloroform	ND	6.0		ppm	10	8/29/2013 8:07:02 PM	9096	
1,4-Dichlorobenzene	ND	7.5		ppm	10	8/29/2013 8:07:02 PM	9096	
1,1-Dichloroethene	ND	0.70		ppm	10	8/29/2013 8:07:02 PM	9096	
Tetrachloroethene (PCE)	ND	0.70		ppm	10	8/29/2013 8:07:02 PM	9096	
Trichloroethene (TCE)	ND	0.50		ppm	10	8/29/2013 8:07:02 PM	9096	
Vinyl chloride	ND	0.20		ppm	10	8/29/2013 8:07:02 PM	9096	
Surr: 1,2-Dichloroethane-d4	90.5	70-130		%REC	10	8/29/2013 8:07:02 PM	9096	
Surr: 4-Bromofluorobenzene	90.5	70-130		%REC	10	8/29/2013 8:07:02 PM	9096	
Surr: Dibromofluoromethane	94.5	70-130		%REC	10	8/29/2013 8:07:02 PM	9096	
Surr: Toluene-d8	92.1	70-130		%REC	10	8/29/2013 8:07:02 PM	9096	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 6 of 12
	O RSD is greater than RSDlimit P Sample pH gre		Not Detected at the Reporting Limit Page 6 of 12 Sample pH greater than 2 for VOA and TOC only.	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit

Spike Recovery outside accepted recovery limits

S

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Cypress Engineering

Project: TWP Roswell Station 9

Analytical Report Lab Order 1308C34 Date Reported: 9/4/2013

Client Sample ID: MPE Wells 38, 39, 40, 41 Comp Collection Date: 8/27/2013 9:15:00 AM Received Date: 8/28/2013 10:00:00 AM

Lab ID: 1308C34-007	Matrix: S	Received 1	Received Date: 8/28/2013 10:00:00 AM				
Analyses	Result	RL Qı	ıal Units	DF	Date Analyzed	Batch	
EPA METHOD 8015D: DIESEL RANG	E ORGANICS				Analyst	BCN	
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	8/30/2013 4:18:06 PM	9101	
Surr: DNOP	66.3	63-147	%REC	1	8/30/2013 4:18:06 PM	9101	
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/30/2013 6:37:25 PM	9096	
Surr: BFB	94.1	80-120	%REC	1	8/30/2013 6:37:25 PM	9096	
EPA METHOD 8021B: VOLATILES					Analyst	: NSB	
Benzene	ND	0.050	mg/Kg	1	8/30/2013 6:37:25 PM	9096	
Toluene	ND	0.050	mg/Kg	1	8/30/2013 6:37:25 PM	9096	
Ethylbenzene	ND	0.050	mg/Kg	1	8/30/2013 6:37:25 PM	9096	
Xylenes, Total	ND	0.10	mg/Kg	1	8/30/2013 6:37:25 PM	9096	
Surr: 4-Bromofluorobenzene	103	80-120	%REC	1	8/30/2013 6:37:25 PM	9096	
EPA METHOD 8260B: TCLP COMPO	UNDS				Analyst	: JMP	
Benzene	ND	0.50	ppm	10	8/29/2013 8:35:25 PM	9096	
1,2-Dichloroethane (EDC)	ND	0.50	ppm	10	8/29/2013 8:35:25 PM	9096	
2-Butanone	ND	200	ppm	10	8/29/2013 8:35:25 PM	9096	
Carbon tetrachloride	ND	0.50	ppm	10	8/29/2013 8:35:25 PM	9096	
Chlorobenzene	ND	100	ppm	10	8/29/2013 8:35:25 PM	9096	
Chloroform	ND	6.0	ppm	10	8/29/2013 8:35:25 PM	9096	
1,4-Dichlorobenzene	ND	7.5	ppm	10	8/29/2013 8:35:25 PM	9096	
1,1-Dichloroethene	ND	0.70	ppm	10	8/29/2013 8:35:25 PM	9096	
Tetrachloroethene (PCE)	ND	0.70	ppm	10	8/29/2013 8:35:25 PM	9096	
Trichloroethene (TCE)	ND	0.50	ppm	10	8/29/2013 8:35:25 PM	9096	
Vinyl chloride	ND	0.20	ppm	10	8/29/2013 8:35:25 PM	9096	
Surr: 1,2-Dichloroethane-d4	91.0	70-130	%REC	10	8/29/2013 8:35:25 PM	9096	
Surr: 4-Bromofluorobenzene	95.6	70-130	%REC	10	8/29/2013 8:35:25 PM	9096	
Surr: Dibromofluoromethane	95.7	70-130	%REC	10	8/29/2013 8:35:25 PM	9096	
Surr: Toluene-d8	94.8	70-130	%REC	10	8/29/2013 8:35:25 PM	9096	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit Page 7 of 12
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2 for VOA and TOC only.
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	Spike Recovery outside accepted recovery limits		

WO#:	13080	34

04-Sep-13

Client: Project:	• •	ngineering well Station	9								
Sample ID	MB-9101	SampType	: MB	LK	Test	Code: EF	PA Method	8015D: Diese	el Range C	Organics	
Client ID:	PBS	Batch ID	: 910	01	RunNo: 12963						
Prep Date:	8/29/2013	Analysis Date	: 8/2	29/2013	/2013 SeqNo: 370092				íg		
Analyte		Result P	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range	Organics (DRO)	ND	10								
Surr: DNOP		7.9		10.00		78.5	63	147			
Sample ID	LCS-9101	SampType	e: LCS	s	Test	Code: EF	PA Method	8015D: Diese	el Range C	Organics	
Client ID:											
Prep Date:	8/29/2013	Analysis Date	: 8/2	29/2013	S	eqNo: 37	70093	Units: mg/K	(g		
Analyte		Result P	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range	Organics (DRO)	59	10	50.00	0	119	77.1	128			
Surr: DNOP		4.1		5.000		82.1	63	147			
Sample ID										Organics	
	ID 1308C34-002AMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Organics										
Client ID:	1308C34-002AMSE MPE-39 Composite	1 51				unNo: 12					
Client ID: Prep Date:	MPE-39 Composite	1 21	: 910	1	R		2997	Units: mg/K	ζg		
	MPE-39 Composite	e Batch ID Analysis Date	: 910 : 8/3)1 30/2013	R	unNo: 12	2997	Units: mg/K HighLimit	(g %RPD	RPDLimit	Qual
Prep Date: Analyte	MPE-39 Composite	e Batch ID Analysis Date	: 910 : 8/3)1 30/2013	R	unNo: 12 eqNo: 37	2997 70991	•	•	RPDLimit 20	Qual
Prep Date: Analyte	MPE-39 Composite 8/29/2013 Organics (DRO)	e Batch ID Analysis Date Result P	: 910 : 8/3 PQL	9 1 3 0/2013 SPK value	R S SPK Ref Val	unNo: 12 eqNo: 37 %REC	2997 70991 LowLimit	HighLimit	%RPD	-	Qual
Prep Date: Analyte Diesel Range Surr: DNOP	MPE-39 Composite 8/29/2013 Organics (DRO)	e Batch ID Analysis Date Result P 54	: 910 : 8/3 PQL 10	01 30/2013 SPK value 49.75 4.975	R S SPK Ref Val 15.25	unNo: 12 reqNo: 37 %REC 77.1 91.0	2997 70991 LowLimit 61.3 63	HighLimit 138	%RPD 7.90 0	20 0	Qual
Prep Date: Analyte Diesel Range Surr: DNOP	MPE-39 Composite 8/29/2013 Organics (DRO)	e Batch ID Analysis Date Result P 54 4.5 SampType	: 910 : 8/3 PQL 10 e: MS	90/2013 SPK value 49.75 4.975	R S SPK Ref Val 15.25 Test	unNo: 12 reqNo: 37 %REC 77.1 91.0	2997 70991 LowLimit 61.3 63 PA Method	HighLimit 138 147	%RPD 7.90 0	20 0	Qual
Prep Date: Analyte Diesel Range Surr: DNOP Sample ID Client ID:	MPE-39 Composite 8/29/2013 Organics (DRO) 1308C34-002AMS MPE-39 Composite	e Batch ID Analysis Date Result P 54 4.5 SampType	: 910 : 8/3 PQL 10 : MS : 910	01 30/2013 SPK value 49.75 4.975	R S SPK Ref Val 15.25 Test R	wnNo: 12 weqNo: 37 %REC 77.1 91.0 Code: EF	2997 70991 61.3 63 PA Method 2997	HighLimit 138 147	%RPD 7.90 0	20 0	Qual
Prep Date: Analyte Diesel Range Surr: DNOP Sample ID Client ID:	MPE-39 Composite 8/29/2013 Organics (DRO) 1308C34-002AMS MPE-39 Composite	e Batch ID Analysis Date Result P 54 4.5 SampType e Batch ID Analysis Date	2 910 2 8/3 2 QL 10 2 MS 2 910 2 8/3	91 30/2013 SPK value 49.75 4.975 4.975 91 30/2013	R S SPK Ref Val 15.25 Test R	aqNo: 12 aqNo: 37 %REC 77.1 91.0 Code: EF anNo: 12 aqNo: 37	2997 70991 61.3 63 PA Method 2997	HighLimit 138 147 8015D: Diese	%RPD 7.90 0	20 0	Qual
Prep Date: Analyte Diesel Range Surr: DNOP Sample ID Client ID: Prep Date: Analyte	MPE-39 Composite 8/29/2013 Drganics (DRO) 1308C34-002AMS MPE-39 Composite 8/29/2013 Drganics (DRO)	e Batch ID Analysis Date Result P 54 4.5 SampType e Batch ID Analysis Date	2 910 2 8/3 2 QL 10 2 MS 2 910 2 8/3	91 30/2013 SPK value 49.75 4.975 4.975 91 30/2013	R S SPK Ref Val 15.25 Test R S	aqNo: 12 aqNo: 37 %REC 77.1 91.0 Code: EF anNo: 12 aqNo: 37	2997 70991 LowLimit 61.3 63 PA Method 2997 70995	HighLimit 138 147 8015D: Diese Units: mg/K	%RPD 7.90 0 el Range C	20 0 Drganics	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

WO#:	1308C34
	04-Sep-13

Client: Project:	• •	Engineering swell Station	0											
Sample ID		SampTyp			Tos	tCodo: El	PA Mothod	8015D: Gase	lino Pana	•				
Client ID:		Batch II			TestCode: EPA Method 8015D: Gasoline Range RunNo: 12996									
Prep Date:		30/2013	-	SeqNo: 3		Units: mg/k	(a							
	0/20/2010	-						-	-		Qual			
Analyte Gasoline Ran	ge Organics (GRO)	Result ND	PQL 5.0	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Surr: BFB	<u> </u>	860		1000		85.6	80	120						
Sample ID	LCS-9096	SampTyp	e: LC	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e				
Client ID:	LCSS	Batch II			R	RunNo: 1 :	2996		Ū					
Prep Date:	8/28/2013	Analysis Dat	e: 8/	30/2013	S	SeqNo: 3	71540	Units: mg/k	٢g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
,	ge Organics (GRO)	27	5.0	25.00	0	107	74.5	126						
Surr: BFB		1000		1000		102	80	120						
Sample ID	MB-9117	SampTyp	e: ME	BLK	Tes	tCode: El	PA Method	8015D: Gasc	line Rang	e				
Client ID:	PBS	Batch II	D: 91	17	RunNo: 13041									
Prep Date:	8/30/2013	Analysis Dat	e: 9/	3/2013	S	SeqNo: 3	72358	Units: %REC						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Surr: BFB		920		1000		91.9	80	120						
Sample ID	LCS-9117	SampTyp	e: LC	S	Tes	tCode: El	PA Method	8015D: Gasc	line Rang	e				
Client ID:	LCSS	Batch II	D: 91 ′	17	R	RunNo: 1	3041							
Prep Date:	8/30/2013	Analysis Dat	e: 9/	3/2013	S	SeqNo: 3	72359	Units: %RE	nits: %REC					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Surr: BFB		1000		1000		100	80	120						
Sample ID	1308C34-003AMS	SampTyp	e: MS	5	Tes	tCode: El	PA Method	8015D: Gasc	line Rang	e				
Client ID:	MPE-38 Composi	te Batch II	D: 909	96	R	RunNo: 1	3041							
Prep Date:	8/28/2013	Analysis Dat	e: 9/	3/2013	S	SeqNo: 3	72364	Units: mg/k	٢g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
	ge Organics (GRO)	37	5.0	24.98	15.88	84.0	76	156						
Surr: BFB		1500		999.0		151	80	120			S			
Sample ID	1308C34-003AMS	D SampTyp	e: MS	D	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е				
Client ID:	MPE-38 Composi	te Batch II	D: 909	96	F	RunNo: 1	3041							
Prep Date:	8/28/2013	Analysis Dat	e: 9/	3/2013	S	SeqNo: 3	72365	Units: mg/k	٢g					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
	ge Organics (GRO)	38	5.0	24.98	15.88	88.7	76	156	3.09	17.7				
Surr: BFB		1600		999.0		158	80	120	0	0	S			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 9 of 12

Hall Environmon	tal Analysis I ah	orotory	Inc				WOII.	1500054
Hall Environmen	-	oratory,	1110.					04-Sep-13
•••	s Engineering							
Project: TWP R	Coswell Station 9							
Sample ID MB-9096	SampType: MBLK		TestCode: E	PA Method	8021B: Volat	iles		
Client ID: PBS	Batch ID: 9096		RunNo: 1	2996				
Prep Date: 8/28/2013	Analysis Date: 8/30/20	13	SeqNo: 3	371602	Units: mg/K			
Analyte	Result PQL SPM	value SPK F	Ref Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND 0.050							
Toluene	ND 0.050							
Ethylbenzene	ND 0.050							
Xylenes, Total	ND 0.10							
Surr: 4-Bromofluorobenzene	0.94	1.000	93.6	80	120			
Sample ID LCS-9096	SampType: LCS		TestCode: E	PA Method	8021B: Volat	iles		
Client ID: LCSS	Batch ID: 9096		RunNo: 1	2996				
Prep Date: 8/28/2013	Analysis Date: 8/30/20	13	SeqNo: 3	Units: mg/K				
Analyte	Result PQL SPH	value SPK F	Ref Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.98 0.050	1.000	0 98.1	80	120			
Toluene	0.98 0.050	1.000	0 98.2	80	120			
Ethylbenzene	0.99 0.050	1.000	0 98.7	80	120			
Xylenes, Total	3.0 0.10	3.000	0 99.5	80	120			
Surr: 4-Bromofluorobenzene	1.0	1.000	103	80	120			
Sample ID MB-9117	SampType: MBLK		TestCode: E	PA Method	8021B: Volat	iles		
Client ID: PBS	Batch ID: 9117		RunNo: 1	3041				
Prep Date: 8/30/2013	Analysis Date: 9/3/201	3	SeqNo: 3	372398	Units: %REC	C		
Analyte	Result PQL SPM	value SPK F	Ref Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	1.0	1.000	103	80	120			
Sample ID LCS-9117	SampType: LCS		TestCode: E	PA Method	8021B: Volat	iles		
Client ID: LCSS	Batch ID: 9117		RunNo: 1	3041				
Prep Date: 8/30/2013	Analysis Date: 9/3/201	3	SeqNo: 3	372399	Units: %REC	C		
Analyte	Result PQL SP	value SPK F	Ref Val %REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	1.0	1.000	102	80	120			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

QC SUMMARY REPORT

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 10 of 12

WO#: 1308C34

04-Sep-13

	s Engineerin oswell Stati	-											
Sample ID mb-9096	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8260B: TCLP	Compou	nds				
Client ID: PBS	Batcl	h ID: 90	96	F	RunNo: 1	2983							
Prep Date: 8/28/2013	Analysis D				SeqNo: 3		Units: ppm						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	ND	0.050											
1,2-Dichloroethane (EDC)	ND	0.050											
2-Butanone	ND	20											
Carbon tetrachloride	ND	0.050											
Chlorobenzene	ND	10											
Chloroform	ND	0.60											
1,4-Dichlorobenzene	ND	0.75											
1,1-Dichloroethene	ND	0.070											
Tetrachloroethene (PCE)	ND	0.070											
Trichloroethene (TCE)	ND	0.050											
Vinyl chloride	ND	0.020											
Surr: 1,2-Dichloroethane-d4	0.45		0.5000		90.6	70	130						
Surr: 4-Bromofluorobenzene	0.45		0.5000		90.5	70	130						
Surr: Dibromofluoromethane	0.48		0.5000		95.1	70	130						
Surr: Toluene-d8	0.49		0.5000		98.2	70	130						
Sample ID LCS-9096	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: TCLP	Compou	nds				
Client ID: LCSS	Batcl	h ID: 90	96	F	RunNo: 1	2983							
Prep Date: 8/28/2013	Analysis D	Date: 8/	29/2013	S	SeqNo: 3	70514	Units: ppm						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	1.0	0.050	1.000	0	104	70	130						
Chlorobenzene	0.98	0.50	1.000	0	97.8	70	130						
1,1-Dichloroethene	1.3	0.070	1.000	0	133	69.3	131			S			
Trichloroethene (TCE)	1.0	0.050	1.000	0	101	70	130						
Surr: 1,2-Dichloroethane-d4	0.47		0.5000		94.0	70	130						
Surr: 4-Bromofluorobenzene	0.45		0.5000		90.5	70	130						
Surr: Dibromofluoromethane	0.48		0.5000		96.7	70	130						
Surr: Toluene-d8	0.49		0.5000		97.7	70	130						
Sample ID 1308c34-001ams	s SampT	уре: МS	6	Tes	tCode: E	PA Method	8260B: TCLP	Compou	nds				
Client ID: Comp Soil MW	-39 - Batcl	h ID: 90	96	F	RunNo: 1	2983							
Prep Date: 8/28/2013	Analysis E	Date: 8/	29/2013	5	SeqNo: 3	70516	Units: ppm						
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	1.1	0.50	1.000	0	109	65.1	127						
Chlorobenzene	0.88	0.10	1.000	0	88.0	66.8	129						
1,1-Dichloroethene	1.3	0.70	1.000	0.1019	120	44.1	148						
Trichloroethene (TCE)	1.1	0.50	1.000	0.1053	102	63.2	122						
Surr: 1,2-Dichloroethane-d4	4.7		5.000		94.4	70	130						

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 11 of 12

WO#:	1308C34

04-Sep-13

Client: Cypress	Engineering	g									
Project: TWP Ro	TWP Roswell Station 9										
Sample ID 1308c34-001ams	1308c34-001ams SampType: MS TestCode: EPA Method 8260B: TCLP Compounds										
Client ID: Comp Soil MW-3	MW-39 - Batch ID: 9096 RunNo: 12983										
Prep Date: 8/28/2013	Analysis D	ate: 8/ 2	29/2013	S	eqNo: 3	70516	Units: ppm				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 4-Bromofluorobenzene	4.5		5.000		90.8	70	130				
Surr: Dibromofluoromethane	4.9		5.000		97.2	70	130				
Surr: Toluene-d8	4.6		5.000		92.9	70	130				
Sample ID 1308c34-001amsd SampType: MSD TestCode: EPA Method 8260B: TCLP Compounds											
Client ID: Comp Soil MW-3	39 - Batch	1D: 909									
Client ID: Comp Soil MW-3 Prep Date: 8/28/2013	39 - Batch Analysis D		96	R		2983	Units: ppm	•••••			
			96 29/2013	R	unNo: 1	2983		%RPD	RPDLimit	Qual	
Prep Date: 8/28/2013	Analysis D	ate: 8/2	96 29/2013	R	unNo: 12 eqNo: 3	2983 70517	Units: ppm	·		Qual	
Prep Date: 8/28/2013 Analyte Benzene	Analysis D Result	ate: 8/ 2 PQL	96 29/2013 SPK value	R S SPK Ref Val	unNo: 1; eqNo: 3 %REC	2983 70517 LowLimit	Units: ppm HighLimit	%RPD	RPDLimit	Qual	
Prep Date: 8/28/2013 Analyte	Analysis D Result 1.1	eate: 8/2 PQL 0.50	96 29/2013 SPK value 1.000	R S SPK Ref Val 0	unNo: 12 eqNo: 3 %REC 105	2983 70517 LowLimit 65.1	Units: ppm HighLimit 127	%RPD 3.61	RPDLimit 20	Qual	
Prep Date: 8/28/2013 Analyte Benzene Chlorobenzene	Analysis D Result 1.1 0.85	PQL 0.50 0.10	29/2013 SPK value 1.000 1.000	R S SPK Ref Val 0 0	unNo: 12 eqNo: 3 %REC 105 85.1	2983 70517 LowLimit 65.1 66.8	Units: ppm HighLimit 127 129	%RPD 3.61 3.39	RPDLimit 20 20	Qual	
Prep Date: 8/28/2013 Analyte Benzene Chlorobenzene 1,1-Dichloroethene	Analysis D Result 1.1 0.85 1.2	PQL 0.50 0.10 0.70	29/2013 SPK value 1.000 1.000 1.000	R S SPK Ref Val 0 0.1019	unNo: 12 eqNo: 3 <u>%REC</u> 105 85.1 112	2983 70517 LowLimit 65.1 66.8 44.1	Units: ppm HighLimit 127 129 148	%RPD 3.61 3.39 6.21	RPDLimit 20 20 20	Qual	
Prep Date: 8/28/2013 Analyte Benzene Chlorobenzene 1,1-Dichloroethene Trichloroethene (TCE)	Analysis D Result 1.1 0.85 1.2 1.1	PQL 0.50 0.10 0.70	29/2013 SPK value 1.000 1.000 1.000 1.000 1.000	R S SPK Ref Val 0 0.1019	wnNo: 12 weqNo: 3 %REC 105 85.1 112 94.9	2983 70517 LowLimit 65.1 66.8 44.1 63.2	Units: ppm HighLimit 127 129 148 122	%RPD 3.61 3.39 6.21 6.44	RPDLimit 20 20 20 20	Qual	
Prep Date: 8/28/2013 Analyte Benzene Chlorobenzene 1,1-Dichloroethene Trichloroethene (TCE) Surr: 1,2-Dichloroethane-d4	Analysis D Result 1.1 0.85 1.2 1.1 4.6	PQL 0.50 0.10 0.70	29/2013 29/2013 SPK value 1.000 1.000 1.000 5.000	R S SPK Ref Val 0 0.1019	unNo: 12 eqNo: 3 %REC 105 85.1 112 94.9 92.3	2983 70517 LowLimit 65.1 66.8 44.1 63.2 70	Units: ppm HighLimit 127 129 148 122 130	%RPD 3.61 3.39 6.21 6.44 0	RPDLimit 20 20 20 20 0	Qual	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 12 of 12

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: CYP	Work Order Number: 1308C34		RcptNo: 1	
Received by/date:	() 8/28/1 <i>3</i> 8/28/2013 10:00:00 AM	Michelle Can	un)	
	8/28/2013 11:41:15 AM	Mührills Ga Mührills Ga	un)	
1. Custody seals intact on sample bottles?	Yes	No	Not Present 🗸	
2. Is Chain of Custody complete?	Yes 🗸	No	Not Present	
3. How was the sample delivered?	UPS			
Log In				
4. Was an attempt made to cool the samples?	Yes V	No 👘	NA	
5. Were all samples received at a temperature	of >0° C to 6.0°C Yes 🗸	No	NA	
6. Sample(s) in proper container(s)?	Yes	No		
7. Sufficient sample volume for indicated test(s	s)? Yes 🗸	No		
8. Are samples (except VOA and ONG) proper	ly preserved? Yes V	No		
9. Was preservative added to bottles?	Yes	No 🗸	NA	
10.VOA vials have zero headspace?	Yes	No	No VOA Vials 🗸	
11. Were any sample containers received broke	en? Yes	No 🗸	# of preserved bottles checked	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes	No	for pH: (<2 or >12 unless r	noted
13. Are matrices correctly identified on Chain of	Custody? Yes V	No	Adjusted?	
14. Is it clear what analyses were requested?	Yes	No		
15.Were all holding times able to be met? (If no, notify customer for authorization.)	Yes v	No	Checked by:	
Special Handling (if applicable)				
16. Was client notified of all discrepancies with	this order? Yes	No	NA	
Person Notified:	Date:			
By Whom:	Via: eMail	Phone Fax	In Person	
Regarding:				
Client Instructions:				
17. Additional remarks:				

18. Cooler Information

Cooler No	Temp °C		Seal Intact	Seal No	Seal Date	Signed By
1	4.6	Good	Yes			

	Chain-of-Custody Record				Time:															
Chent:	réss l	ENGIN	EERING SERVICES FM	Z Z Standard	🗆 Rush				7										DRI	1
ATT	Nº (Scorg	Robinson PE		Rosuell	Station 9	www.hallenvironmental.com													
Mailing	Address	16-HW	ay 6 NorTH STEIN	92				4901 Hawkins NE - Albuquerque, NM 87109												
tto	uston	, Te	xa6 77095	Project #: New Monitor + MPE Well Installe Ting 2013				Tel. 505-345-3975 Fax 505-345-4107												
Phone #			97,3420	02.20/2.0037.00				Analysis Request												
(emailor Fax#: george. robinsone				Project Mana	iger:	<u>.</u>	_ <u> </u>	only)	MRO)				04)			I				
QA/QC Package: Cypres Inc. 45-				6001	rge Robi	ISIM, PE	(8021)	രി	N N		s)		04,S	PCB's						
Standard Level 4 (Full Validation)				Slacy :	Boulting.	house, PGETP	S	(Gas	ADBO!		SIMS)		۲, ۲				Ń	9		
Accreditation			Sampler:			TMB	HT /	g :	<u> </u>			(F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8082			Voc	81208		Íź	
		□ Othe	er			🗆 No	+	+ \	QHQ QHQ	504 504	- LO	<u>s</u>	ş	es /		Q	\geq	8		z V
	(Type)_	1	· · · · · · · · · · · · · · · · · · ·	Sample Tem	perature: 4	$\boldsymbol{\mathcal{X}}$	MTBE	MTBE	A I		10	8 Metals	<u>ت</u>	ticid	(VOA)		LP			
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	EX +	±∥	H 8015B	H (Method 418.1) B (Method 504.1)	PAH's (8310 or 8270	RCRA 8 N	Anions (F	81 Pesticides	8260B (VI	8270 (Semi-VOA)	$ \mathcal{O} $	BTEX		- Rithhle
			a			308034	BT	ШТ	<u>اا</u>	EDB	A	2	Å	8081	82	82		144		
78/27/13	10:40	Soil	Composite Soil Jamp. MW-39 thru MW-42	6/ JAN	None	001					ł						Х			
			Soll Cuttings																	
18/27/13	0945	SOIL	MPE-39 Composite	2×402 6/Jer	None	-002			\times								Х	Х		
/· / · -			50'-75' B6-5																	
18/27/13	0930	SOIL	MDE-38 Composite 50'-15' B6-5	6/Jan	None	-063			X								X	X		1
18/27/13	0900	Soil	MPE 40 Composite DI-50' Bbs	24402	None	-004			X								X,	凶		\perp
18/27/13		SOIL	MPE 40 Composite 50'-75' Bt5	6/71N	None	-005	-		$\langle $			ļ					X	X		\downarrow
95/20/13	0925	Soil		6/JAN	None	-004			×_		<u> </u>	<u> </u>					X	X		
78/27/13	0915	SOIL	MPE WE'S 38, 39,40,41	27405	None	-007			\leq								\succeq	X		\bot
			Composite B'-50' B65				-			_			 	<u> </u>		 				+
			20	·····	<u> </u>	· · · · · ·			+			╂───			<u> </u>	$\left - \right $	 	┢──╋		+
Date:	Time:	Relinquist	ed by:	Received by	L	Date Time	Rer	narks:			Dur	1	110	<u>ا</u>	01		 ~ /		 ⁄	
18/20/13	1500		Mer	+++	- 07	528 31000		/	11 1	y c vin	L	201 Pole	1	- 1 . o 4	e e	# 5C	- L			
Date:	Time:	Retinguist	¢d by:	Received by:	Received by: Date Time					Remarks: ANY QUISTIINS Please Coll George Robinsone 281.797.3420										