CONTACT-HANDLED
TRANSURANIC WASTE ACCEPTANCE CRITERIA
FOR
THE WASTE ISOLATION PILOT PLANT

Revision 0

Effective Date: TBD

U.S. Department of Energy
Carlsbad Field Office
This document has been submitted as required to:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
(615) 576-8401

Additional information about this document may be obtained by calling 1-800-336-9477. Copies may be obtained by contacting the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22101.
CONTACT-HANDLED
TRANSURANIC WASTE ACCEPTANCE CRITERIA
FOR
THE WASTE ISOLATION PILOT PLANT

Revision 0

Effective Date: TBD

Approved by: ____________________________ Date: TBD
Original Signature on File
Carlsbad Field Office Manager

Concurred by: ____________________________ Date: TBD
Original Signature on File
Assistant Manager, Office of National TRU Waste Programs

Prepared by: ____________________________ Date: TBD
Original Signature on File
Carlsbad Field Office Waste Characterization Manager
TABLE OF CONTENTS

CHANGE HISTORY

vii

INDEX OF CURRENT REVISION/CHANGE NUMBER BY PAGE

ix

LIST OF ACRONYMS AND ABBREVIATIONS

x

1.0 INTRODUCTION

1 - 1

2.0 RESPONSIBILITIES

2 - 1

2.1 DOE Headquarters

2 - 1

2.2 DOE Carlsbad Field Office

2 - 1

2.3 DOE Field Elements

2 - 2

2.4 TRU Waste Sites

2 - 2

3.0 WIPP WASTE ACCEPTANCE REQUIREMENTS AND CRITERIA

3 - 1

3.1 Summary of WIPP Authorization Basis

3 - 1

3.1.1 DOE Operations and Safety Requirements for WIPP

3 - 2

3.1.2 NRC Transportation Safety Requirements for the TRUPACT-II

3 - 2

3.1.3 NMED Hazardous Waste Facility Permit Requirements

3 - 2

3.1.4 EPA Compliance Certification Decision Requirements

3 - 3

3.1.5 Land Withdrawal Act Requirements

3 - 3

3.2 Container Properties

3 - 4

3.2.1 Description

3 - 4

3.2.2 Weight Limits and Center of Gravity

3 - 5

3.2.3 Assembly Configurations

3 - 6

3.2.4 Removable Surface Contamination

3 - 7

3.2.5 Identification/Labeling

3 - 7

3.2.6 Dunnage

3 - 7

3.2.7 Filter Vents

3 - 8

3.3 Radiological Properties

3 - 8

3.3.1 Radionuclide Composition

3 - 9

3.3.2 239Pu Fissile Gram Equivalent

3 - 9

3.3.3 TRU Alpha Activity Concentration

3 - 10

3.3.4 239Pu Equivalent Activity

3 - 10

3.3.5 Radiation Dose Rate

3 - 12

3.3.6 Decay Heat

3 - 12

3.4 Physical Properties

3 - 12

3.4.1 Residual Liquids

3 - 12
3.4.2 Sealed Containers 3 - 12

3.5 Chemical Properties .. 3 - 13
3.5.1 Pyrophoric Materials 3 - 13
3.5.2 Hazardous Waste 3 - 13
3.5.3 Chemical Compatibility 3 - 13
3.5.4 Explosives, Corrosives, and Compressed Gases 3 - 13
3.5.5 Headspace Gas Concentrations 3 - 14
3.5.6 Polychlorinated Biphenyl Concentration 3 - 14

3.6 Data Package Contents 3 - 14
3.6.1 Characterization and Certification Data 3 - 14
3.6.2 Shipping Data .. 3 - 14

4.0 QUALITY ASSURANCE REQUIREMENTS 4 - 1
4.1 Waste Characterization Quality Assurance Requirements 4 - 1
4.2 Waste Certification Quality Assurance Requirements 4 - 1
4.3 Waste Transportation Quality Assurance Requirements 4 - 2

5.0 REFERENCES ... 5 - 1

APPENDIX A Radioassay Requirements for Contact-Handled Transuranic Waste ... A - 1

APPENDIX B 239Pu Equivalent Activity B - 1

APPENDIX C Glossary ... C - 1

LIST OF FIGURES

Figure 1.0 Regulatory Basis of CH-TRU Waste Acceptance Criteria 1 - 3

LIST OF TABLES

Table 3.2.2 Weight Limits .. 3 - 5
Table 3.2.3 Payload Container Assembly Configurations 3 - 6
Table 3.3.2 239Pu FGE Limits .. 3 - 10
Table 3.3.4 PE-Ci Limits .. 3 - 11
Table A-2.2 Number of Waste Containers Requiring Confirmatory Testing A - 4
Table A-3 Data Quality Objectives for Radioassay A - 5
Table A-4.2 Range of Applicability A - 8
DOE/WIPP-3122, Revision 0, Effective Date: TBD

DOE/WIPP-3122, Revision 0, of the Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant supersedes DOE/WIPP-069, Revision 7, of the Waste Acceptance Criteria for the Waste Isolation Pilot Plant. Major changes to this document are as follows:

- The title of the document has been changed to distinguish that the waste acceptance criteria contained herein are specific to contact-handled transuranic waste.

- The document number has been changed due to the change in the document title.

- The waste acceptance criteria have been modified, as appropriate, to reflect the requirements in Revision 19 of the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC). Revision 19 of the TRAMPAC has been published as a separate document that is incorporated by reference in Revision 19 of the TRUPACT-II SAR.

- The waste acceptance criteria have been modified, as necessary, to align with approved modifications to the WIPP Hazardous Waste Facility Permit.

- The summary of CH-TRU Waste Acceptance Criteria and Compliance Methods contained in Table 3.1 has been removed. Except for radioassay which is addressed in appendix A, the methods for demonstrating compliance with the waste acceptance criteria are available from either of two authorization basis documents - the TRAMPAC as referenced by the TRUPACT-11 Safety Analysis Report and the Waste Analysis Plan contained in the WIPP Hazardous Waste Facility Permit.

- The format in Section 3.2 through Section 3.7 has been simplified. Verbatim traceability of waste acceptance criteria to WIPP authorization basis documents has been deleted. Waste acceptance criteria consist of a consolidation of the most restrictive transportation and disposal requirements.

- Section 3.6 titled Gas Generation has been deleted, and its contents have been moved to other sections of the document. The contents of section 3.6.1 have been incorporated into section 3.2.1; the contents of section 3.6.2 have been moved to section 3.3.6; the contents of sections 3.6.3 and 3.6.4 have been merged with section 3.5.5; and the contents of section 3.6.5 have been integrated into section 3.2.6.
• Numerous editorial changes were made throughout the document.

• Appendix A has been completely rewritten. The scope of this change was warranted by the need to simplify, clarify, and streamline the content of Appendix A. Included in these changes was the deletion of table A-1 that listed the quality assurance objectives for four ranges of activity. The requirement to perform replicate assays was replaced with more stringent performance checks of the system's calibration. Methodologies for qualifying existing data were identified. The requirement for sites to confirm isotopic ratios obtained from acceptable knowledge was clarified. In addition, the reporting requirement for total measurement uncertainty has been changed from a 95% confidence interval to a 68% confidence interval (i.e., one standard deviation).

• Electronic links to the WIPP authorization basis documents have been provided.
<table>
<thead>
<tr>
<th>PAGE NUMBER</th>
<th>REVISION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>All pages</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEA</td>
<td>Atomic Energy Act</td>
</tr>
<tr>
<td>AK</td>
<td>acceptable knowledge</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>CBFO</td>
<td>Carlsbad Field Office</td>
</tr>
<tr>
<td>CCA</td>
<td>Compliance Certification Application</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CH</td>
<td>contact-handled</td>
</tr>
<tr>
<td>CH-WAC</td>
<td>contact-handled waste acceptance criteria</td>
</tr>
<tr>
<td>Ci</td>
<td>curie</td>
</tr>
<tr>
<td>CPR</td>
<td>cellulose, plastic, and rubber</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DOT</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>FGE</td>
<td>fissile gram equivalent</td>
</tr>
<tr>
<td>LCS</td>
<td>laboratory control sample</td>
</tr>
<tr>
<td>LWA</td>
<td>Land Withdrawal Act</td>
</tr>
<tr>
<td>MDC</td>
<td>minimum detectable concentration</td>
</tr>
<tr>
<td>MS</td>
<td>matrix spike</td>
</tr>
<tr>
<td>MSD</td>
<td>matrix spike duplicate</td>
</tr>
<tr>
<td>nCi/g</td>
<td>nanocuries per gram</td>
</tr>
<tr>
<td>NDA</td>
<td>nondestructive assay</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NMED</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>NRC</td>
<td>U.S. Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PDP</td>
<td>performance demonstration program</td>
</tr>
<tr>
<td>PE-Ci</td>
<td>plutonium-239 equivalent curies</td>
</tr>
<tr>
<td>QA</td>
<td>quality assurance</td>
</tr>
<tr>
<td>QAO</td>
<td>quality assurance objective</td>
</tr>
<tr>
<td>QAPD</td>
<td>Quality Assurance Program Document</td>
</tr>
<tr>
<td>QAPjP</td>
<td>quality assurance project plan</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term or Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>RC</td>
<td>radiochemistry</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>RH</td>
<td>remote-handled (waste)</td>
</tr>
<tr>
<td>%R</td>
<td>percent recovery</td>
</tr>
<tr>
<td>RPD</td>
<td>relative percent difference</td>
</tr>
<tr>
<td>RSD</td>
<td>relative standard deviation</td>
</tr>
<tr>
<td>SAR</td>
<td>Safety Analysis Report</td>
</tr>
<tr>
<td>SWB</td>
<td>standard waste box</td>
</tr>
<tr>
<td>TDOP</td>
<td>ten-drum overpack</td>
</tr>
<tr>
<td>TMU</td>
<td>total measurement uncertainty</td>
</tr>
<tr>
<td>TRAMPAC</td>
<td>TRUPACT-II Authorized Methods for Payload Control</td>
</tr>
<tr>
<td>TRU</td>
<td>transuranic</td>
</tr>
<tr>
<td>TRUCON</td>
<td>TRUPACT-II content (codes)</td>
</tr>
<tr>
<td>TRUPACT-II</td>
<td>Transuranic Package Transporter-Model II</td>
</tr>
<tr>
<td>TSDF</td>
<td>Treatment, Storage, and Disposal Facility</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>WAC</td>
<td>Waste Acceptance Criteria</td>
</tr>
<tr>
<td>WAP</td>
<td>Waste Analysis Plan</td>
</tr>
<tr>
<td>WCL</td>
<td>Waste Component Limits</td>
</tr>
<tr>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
<tr>
<td>WSPF</td>
<td>Waste Stream Profile Form</td>
</tr>
<tr>
<td>WWIS</td>
<td>WIPP Waste Information System</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.

The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S. Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA; reference 2). Included in this document are the requirements and associated criteria imposed by these acts and the Resource Conservation and Recovery Act (RCRA, reference 27), as amended, on the TRU waste destined for disposal at WIPP.

The DOE TRU waste sites must certify CH-TRU waste payload containers to the contact-handled waste acceptance criteria (CH-WAC) identified in this document. As shown in figure 1.0, the flow-down of applicable requirements to the CH-WAC is traceable to several higher-tier documents, including the WIPP operational safety requirements derived from the WIPP Safety Analysis Report (SAR; reference 4), the transportation requirements for CH-TRU wastes derived from the Transuranic Package Transporter-Model II (TRUPACT-II) Certificate of Compliance (reference 5), the WIPP LWA (reference 2), the WIPP Hazardous Waste Facility Permit (reference 6), and the U.S. Environmental Protection Agency (EPA) Compliance Certification Decision (reference 7). The solid arrows shown in figure 1.0 represent the flow-down of all applicable payload container-based requirements. The two dotted arrows shown in figure 1.0 represent the flow-down of summary level requirements only; i.e., the sites must reference the regulatory source documents from the U.S. Nuclear Regulatory Commission (NRC) and the New Mexico Environment Department (NMED) for a comprehensive and detailed listing of the requirements.

This CH-WAC does not address the subject of waste characterization relating to a determination of whether the waste is hazardous; rather, the sites are referred to the Waste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit for details of the sampling and analysis protocols to be used in determining compliance with the required physical and chemical properties of the waste. Requirements and associated criteria pertaining to a determination of the radiological properties of the waste, however, are addressed in appendix A of this document. The collective information obtained from waste characterization records and acceptable knowledge (AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPP waste acceptance criteria listed herein.

Section 2.0 of this document identifies the responsible organizations and associated activities for ensuring that the CH-TRU waste is managed in a manner that protects...
human health and safety and the environment. Section 3.0 identifies the authorization basis of the requirements and lists the associated waste acceptance criteria relating to the physical, chemical, and radiological attributes of the waste as well as the properties of the applicable containers themselves.

Section 4.0 summarizes the quality assurance (QA) requirements relating to waste characterization, certification, and transportation. TRU waste sites must develop and implement a QA program that meets all applicable requirements of the Carlsbad Field Office (CBFO) Quality Assurance Program Document (QAPD; reference 8). Characterization of CH-TRU waste must be in accordance with the performance requirements of the WIPP WAP and implemented in accordance with a site-specific quality assurance project plan (QAPjP). Certification of payload containers for shipment in the TRUPACT-II shall be performed under a CBFO approved QA program that provides confidence for both the shipper and the receiver that the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC; reference 9) requirements have been met.

The appendices provide supplemental information relating to radioassay (appendix A) and radiotoxic inhalation hazard analyses (appendix B). A glossary is provided in appendix C.

The CH-WAC is a controlled document. The most current version of the CH-WAC (including any Interim Changes) is available for downloading from the CBFO Web Page at http://www.wipp.carlsbad.nm.us/library/wac/chwac.pdf. This Internet link is provided for informational purposes only and may change.
Figure 1.0 Regulatory Basis of CH-TRU Waste Acceptance Criteria

Note 1: The TRAMPAC and the WIPP Hazardous Waste Facility Permit provide detailed requirements. This CH-WAC only provides an overview of these requirements.

Note 2: All work performed by the site for the CBFO must be performed under an approved QA program.
2.0 RESPONSIBILITIES

This section identifies the responsibilities of organizations that develop and approve the WIPP CH-WAC and of those that oversee the implementation of the requirements defined herein. The responsibilities of the organizations to which these requirements apply are also identified in this section.

2.1 DOE Headquarters

The Assistant Secretary for Environmental Management (EM-1) provides policy and guidance for DOE environmental management sites, facilities, and operations.

2.2 DOE Carlsbad Field Office

The CBFO is responsible for the day-to-day management and direction of strategic planning and related activities associated with the characterization, certification, transportation, and disposal of defense TRU waste. The CBFO holds the applicable permits, certifications, and records of decision necessary for the operation and closure of the WIPP facility.

The CBFO assists the sites in resolving issues about the management of TRU waste as requested. The CBFO provides policy and oversight direction for TRU waste program activities related to site certification of waste for disposal at WIPP. The CBFO is also responsible for the following:

- Ensuring that the sites prepare implementation documentation and programs to meet the requirements and criteria in the CH-WAC
- Overseeing activities associated with the
 - characterization and certification of CH-TRU waste
 - proper use of approved transportation packaging
 - receipt, management, and disposal of CH-TRU waste in WIPP
- Providing a fleet of NRC-approved Type B transportation packagings for shipment of CH-TRU waste from the sites to WIPP
- Ensuring that CH-TRU waste accepted for management and disposal at WIPP complies with the WIPP Hazardous Waste Facility Permit, applicable laws, and regulations as described in this CH-WAC
- Reviewing and approving proposed revisions to the CH-WAC to ensure that environmental impacts associated with any revision are bounded by existing WIPP National Environmental Policy Act documentation including the Final Environmental Impact Statement (reference 28), Supplemental Environmental
Impact Statement I (reference 29), and the Supplemental Environmental Impact Statement II (reference 30)

- Reviewing and approving the site’s waste certification plan, TRAMPAC, and QAPjP
- Performing site certification audits
- Granting transportation and disposal certification authority to sites

2.3 DOE Field Elements

Each DOE Field Element is responsible for overseeing the management of the site TRU waste program in compliance with established CBFO requirements, policies, and guidelines, and for providing liaison between the CBFO and the management and operating contractors.

2.4 TRU Waste Sites

Each participating site is responsible for developing and implementing site-specific TRU waste program documents (plans) that address applicable requirements and criteria pertaining to packaging, characterization, certification, and shipping of defense TRU waste to WIPP for disposal. Each participating site shall prepare a Waste Certification Plan and associated QA Plan, a site TRAMPAC, and a QAPjP. Methods of compliance with each requirement and associated criterion to be implemented at the site shall be described or specifically referenced and shall include procedural and administrative controls consistent with the CBFO QAPD (reference 8). TRU waste sites are required to submit these program documents to the CBFO for review and approval prior to their implementation. Sites will certify that each CH-TRU waste payload container meets the waste acceptance criteria contained in section 3.
3.0 WIPP WASTE ACCEPTANCE REQUIREMENTS AND CRITERIA

The requirements and associated criteria for acceptance of defense TRU waste at WIPP for disposal are identified in this CH-WAC. The acceptance criteria of this CH-WAC describe the controlling (i.e., the most restrictive) requirements to be used by the sites in preparing their waste for transportation to and disposal at the WIPP. In some instances the acceptance criteria and regulatory requirements are synonymous. The CH-WAC requirements are derived from several source documents: the WIPP Safety Analysis Report (reference 4), the TRUPACT-II Certificate of Compliance (reference 5), the WIPP LWA (reference 2), the WIPP Hazardous Waste Facility Permit (reference 6), and the Compliance Certification Decision (reference 7). Definitions of terms used in this CH-WAC are included in appendix C.

3.1 Summary of WIPP Authorization Basis

The purpose of section 3.0 is to present the requirements and associated criteria that must be met for CH-TRU waste to be transported to, managed at, and disposed of in the WIPP. The requirements and associated criteria are organized under five major headings: Container Properties, Radiological Properties, Physical Properties, Chemical Properties, and Data Package Contents. Only CH-TRU waste from a properly characterized and approved waste stream may be certified as meeting the requirements and associated criteria contained in this CH-WAC. Any waste payload container from a waste stream that has not been preceded by an appropriate certified Waste Stream Profile Form (WSPF) is not acceptable for disposal at WIPP (reference 6, module II, section II.C.3.k).

Site-specific plans and procedures shall contain details of the processes, controls, techniques, tests, and other actions to be applied to each TRU payload container, waste stream, and shipment. Methods of compliance with each requirement shall be described and the specific procedure cited. These methods of compliance shall include procedural controls, administrative controls, and waste generation process controls. The QA requirements applicable to waste characterization, certification, and transportation are addressed in various sections of this CH-WAC and are briefly summarized in section 4.0. The data resulting from the implementation of the plans and procedures will form the basis for verifying that CH-TRU waste to be sent to WIPP is certified to meet the CH-WAC by the responsible site certifying official(s).

Sites shall transmit required characterization, certification, and shipping data to WIPP using the WIPP Waste Information System (WWIS). The WWIS has electronic and edit/limit checks to ensure that the data representing the waste payload containers are in compliance with this CH-WAC. Before shipping TRU waste payload containers from a WIPP-accepted waste stream, the site shall transmit the required waste characterization, certification, and shipping data to WIPP. Sites may periodically be requested to transmit payload container radiography reports or other data to WIPP. WIPP will not accept any waste shipments for disposal if the waste payload container information has not been correctly submitted and approved for shipment by the WWIS Data Administrator. The
WWIS User's Manual (reference 11) provides the information needed by TRU waste sites to perform tasks associated with transmittal of the payload container's characterization, certification, and shipment information to WIPP.

Sites will be notified of revisions to external regulatory requirements by CBFO. Revisions of requirements in referenced documents not controlled by the DOE (but by, for example, the U.S. Environmental Protection Agency [EPA], NRC, or NMED) shall have precedence over the values specified here if they are more restrictive. These changes will be incorporated in future revisions of the CH-WAC.

3.1.1 DOE Operations and Safety Requirements for WIPP

The WIPP SAR (reference 4) addresses CH-TRU waste handling and emplacement operations. The waste accepted for emplacement in the WIPP must conform to the SAR and the associated technical safety requirements (reference 3). The SAR documents the safety analyses that develop and evaluate the adequacy of the WIPP safety bases necessary to ensure the safety of workers, the public, and the environment from the hazards posed by WIPP waste receiving, handling, and emplacement operations. The SAR establishes and evaluates the adequacy of the safety bases in response to plant normal and abnormal operations and postulated accident conditions.

3.1.2 NRC Transportation Safety Requirements for the TRUPACT-II

Acceptable methods for payload compliance are defined in the TRUPACT-II Certificate of Compliance and implemented by the TRAMPAC (reference 9). For shipments to WIPP, each site must prepare a site-specific TRAMPAC describing how it will ensure compliance with each payload parameter. This technical plan shall contain sufficient detail to allow reviewers to adequately understand and evaluate the compliance methodology for each payload parameter.

Sites shall have a packaging QA program that defines the QA activities that apply to the use of NRC-approved transportation packagings equivalent to Title 10 of the Code of Federal Regulations (10 CFR) Part 71, Subpart H.

3.1.3 NMED Hazardous Waste Facility Permit Requirements

TRU waste is classified as TRU mixed waste if it contains hazardous constituents regulated under the New Mexico Hazardous Waste Act. Only TRU mixed waste and TRU waste that have been characterized in accordance with the WIPP WAP and that meet the treatment, storage, and disposal facility (TSDF) waste acceptance criteria as presented in permit conditions II.C.3.a through II.C.3.k of the WIPP Hazardous Waste Facility Permit will be accepted at the WIPP facility for disposal in the permitted underground hazardous waste disposal unit.
Prior to disposal, each participating site shall develop and implement a QAPjP that addresses all the applicable requirements specified in the WIPP WAP. In accordance with attachment B5 of the WIPP WAP, the QAPjP will include the qualitative or quantitative criteria for making a hazardous waste determination. All sites QAPjPs will be reviewed and approved by the CBFO.

3.1.4 EPA Compliance Certification Decision Requirements

Title 40 CFR § 194.24(c) states that the DOE shall specify the limiting values for waste components to be emplaced in the repository. Appendix WCL (Waste Component Limits) of the Compliance Certification Application (CCA; reference 12) identifies the repository limits for several waste components including free water, metals, cellulose, plastic, and rubber (CPR). Although there are no limiting values associated with the radionuclide inventory of the repository, it is necessary that the activities of specific radionuclides be reported for tracking purposes.

The repository limit for free water is a maximum of 1684 m³ and is met by the residual liquid criterion specified in section 3.4.1 of this CH-WAC.

The limits for metals are a minimum of 2×10^7 kg for ferrous metals and 2×10^3 kg for nonferrous metals. These limits will be met in the total repository inventory by the metals that constitute the payload containers alone; thus, WIPP tracks the number and type of payload containers emplaced in the repository as reported in the WWIS by the sites (see section 3.2.1).

The repository limit for CPR is a maximum of 2×10^7 kg. Sites are required to estimate the CPR weights and report these estimates in the WWIS on a payload container basis as required by section 3.6.1.

Waste generators must quantify and report the activity of specific radionuclides for the purpose of tracking the total radionuclide inventory of the repository as specified in section 3.3.1 of this CH-WAC. The presence or absence of these specific radionuclides is determined from AK, radioassay, or both in accordance with appendix A of this CH-WAC. The results of this determination are reported in the WWIS on a payload container basis.

3.1.5 Land Withdrawal Act Requirements

The term “WIPP” means the Waste Isolation Pilot Plant project authorized under section 213 of the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164; 93 Stat. 1259-1265) to demonstrate the safe disposal of radioactive waste materials generated by atomic energy defense activities (reference 2, section 2[19]). Hence, by law, WIPP can accept only radioactive waste generated by atomic energy defense activities of the United States (reference 2, section 2[19]).

3 - 3
The DOE and its predecessor agencies were engaged in a broad range of activities that fall under the heading of atomic energy defense activities. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the following functions (references 13 and 14):

- naval reactors development
- weapons activities, including defense inertial confinement fusion
- verification and control technology
- defense nuclear materials productions
- defense nuclear waste and materials by-products management
- defense nuclear materials security and safeguards and security investigations
- defense research and development

Using AK, DOE sites must determine that each waste stream to be disposed of at WIPP is "defense" TRU waste.

High-level radioactive waste or spent nuclear fuel shall neither be transported, emplaced, nor disposed of at WIPP (reference 2, section 12). Also, no transuranic waste may be transported by or for the DOE to or from WIPP, except in packages (1) the design of which has been certified by the Nuclear Regulatory Commission, and (2) that have been determined by the Nuclear Regulatory Commission to satisfy its quality assurance requirements (reference 2, section 16).

3.2 Container Properties

3.2.1 Description

Acceptance Criterion. Each payload container shall be assigned to a payload shipping category. (Reference 9, section 5.1.1) Authorized payload containers include:

- 55-gallon drums (either direct loaded or containing a pipe component)
- standard waste boxes (SWBs, either direct loaded, or containing up to four direct loaded 55-gallon drums, or containing one bin)
- ten drum overpacks (TDOPs, either containing up to ten direct loaded 55-gallon drums, six 85-gallon drum overpacks, or one SWB)

Payload containers must be made of steel and be in good and unimpaired condition prior to shipment from the generator/storage sites. A payload container in good and unimpaired condition 1) does not have significant rusting, 2) is of sound structural integrity, and, 3) does not leak. Significant rusting is any observable flaking, bubbling, pitting, or other degradation of the payload container's structural integrity due to oxidation. Rusting that causes no more than a discoloration of the payload container surface is not considered
significant. A payload container is not of sound structural integrity if it has breaches or significant denting/deformation. Breaching is defined as a penetration in the payload container that exposes the internals of the container. Significant denting/deformation is defined as damage to the payload container that results in creasing, cracking, or gouging of the metal, or damage that affects payload container closure. Dents or deformations that do not result in creasing, cracking, or gouging or affect payload container closure are not considered significant. Payload containers shall meet U.S. Department of Transportation (DOT) Specification 7A, Type A, packaging requirements (reference 3, section 5.9.12; reference 6, attachment M1, section M1-1b; reference 9, section 2.1.1). Generator sites will report to the WWIS the number and types of payload containers shipped to the WIPP (reference 11, appendix WCL).

3.2.2 Weight Limits and Center of Gravity

Acceptance Criterion. Each payload container, payload assembly, and loaded TRUPACT-II shall comply with the weight limits shown in table 3.2.2. Weight calculations for the payload assembly must include measurement error expressed as one standard deviation. The total weight of the top seven 55-gallon drums or SWB of the payload assembly shall be less than or equal to the total weight of the bottom seven 55-gallon drums or SWB, respectively. The total weight of the top five 55-gallon drums or three 85-gallon drum overpacks in a TDOP shall be less than or equal to the total weight of the bottom five 55-gallon drums or three 85-gallon drum overpacks, respectively. Calibrations of the scales used to make these weight determinations shall be in accordance with the National Institute of Standards and Technology (NIST) Handbook 44 or an equivalent standard. (Reference 9, section 2.3; Reference 25)

<table>
<thead>
<tr>
<th>Container</th>
<th>Maximum Gross Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-gallon drum</td>
<td>≤1,000</td>
</tr>
<tr>
<td>55-gallon drum containing a six-inch-diameter standard pipe component (i.e., a standard pipe overpack)</td>
<td>≤328</td>
</tr>
<tr>
<td>55-gallon drum containing a twelve-inch-diameter standard pipe component (i.e., a standard pipe overpack)</td>
<td>≤547</td>
</tr>
<tr>
<td>55-gallon drum containing an S100 pipe component (i.e., an S100 pipe overpack)</td>
<td>≤650</td>
</tr>
<tr>
<td>55-gallon drum containing an S200 pipe component (i.e., an S200 pipe overpack)</td>
<td>≤547</td>
</tr>
<tr>
<td>SWB</td>
<td>≤4,000</td>
</tr>
<tr>
<td>TDOP</td>
<td>≤6,700</td>
</tr>
<tr>
<td>Payload assembly of fourteen 55-gallon drums</td>
<td>≤7,265</td>
</tr>
<tr>
<td>Payload assembly of two SWBs</td>
<td>≤7,265</td>
</tr>
</tbody>
</table>
3.2.3 Assembly Configurations

Acceptance Criterion. Payload container assembly configurations authorized for shipment in the TRUPACT-II shall be in accordance with table 3.2.3.

Table 3.2.3
Payload Container Assembly Configurations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>55-gallon drums</td>
</tr>
<tr>
<td>14</td>
<td>55-gallon drums, each containing one standard pipe component</td>
</tr>
<tr>
<td>14</td>
<td>55-gallon drums, each containing one S100 pipe component</td>
</tr>
<tr>
<td>14</td>
<td>55-gallon drums, each containing one S200 pipe component</td>
</tr>
<tr>
<td>2</td>
<td>SWBs</td>
</tr>
<tr>
<td>2</td>
<td>SWBs, each containing one bin</td>
</tr>
<tr>
<td>2</td>
<td>SWBs, each containing up to four 55-gallon drums</td>
</tr>
<tr>
<td>1</td>
<td>TDOP containing up to 10 55-gallon drums</td>
</tr>
<tr>
<td>1</td>
<td>TDOP containing up to six 85-gallon drums (each 85-gallon drum containing one 55-gallon drum)</td>
</tr>
<tr>
<td>1</td>
<td>TDOP containing one SWB</td>
</tr>
<tr>
<td>1</td>
<td>TDOP containing one bin within an SWB</td>
</tr>
<tr>
<td>1</td>
<td>TDOP containing up to four 55-gallon drums within an SWB</td>
</tr>
</tbody>
</table>

Although 85-gallon drum overpacks are acceptable at WIPP, they are not authorized for transport in a TRUPACT-II as individual payload containers.

3.2.4 Removable Surface Contamination

Acceptance Criterion. Removable surface contamination on CH-TRU waste payload containers, payload assemblies, and packagings shall not exceed 20 dpm/100 cm² alpha and 200 dpm/100 cm² beta-gamma (reference 3, section 5.9.12; reference 6, attachment M1, section M1-1d[2]; reference 10; and reference 15). The fixing of surface contamination to meet these criteria is not allowed by WIPP in accordance with best management practices for ensuring worker radiation dose as low as reasonable achievable.
3.2.5 Identification/Labeling

Acceptance Criterion. Each payload container shall be labeled with a unique container identification number using bar code labels permanently attached in conspicuous locations. The payload container identification number shall be in medium to low density Code 39 bar code symbology as required by ANSI/AIM BC1-1995 (reference 16) in characters at least one inch high and alphanumeric characters at least one-half inch high. In the case of 55-gallon drums, the bar code identification labels shall be placed at three locations approximately 120 degrees apart so that at least one label is clearly visible when the drums are assembled into a seven-pack (i.e., a label must be visible after slip sheets and wrapping are applied). In the case of SWBs, bar code labels are required on the flat sides of the SWBs. (Reference 18) For TDOPs, a minimum of one bar code is required.

Payload containers shall be marked "Caution Radioactive Material" using a yellow and magenta label as specified in 10 CFR Part 835 (reference 15). Those payload containers whose contents are also RCRA regulated (mixed-TRU) shall be additionally marked "Hazardous Waste" as specified in 40 CFR § 262.32 (reference 17).

If an empty 55-drum is used as dunnage to complete a payload configuration, the dunnage container shall be labeled with the following information:

• Unique container identification number
• “EMPTY” or “DUNNAGE”

If a seven-pack of only dunnage 55-gallon drums or a dunnage SWB is used in the TRUPACT-II, the container(s) shall be labeled only “EMPTY” or “DUNNAGE.” The unique container identification number label is not required for a seven-pack of dunnage 55-gallon drums or a dunnage SWB. (Reference 9, section 2.4.1)

3.2.6 Dunnage

Acceptance Criterion. A shipper shall use empty 55-gallon drums or a SWB as dunnage to complete a payload configuration if too few payload containers are available that meet transportation requirements. The dunnage container(s) must meet the specifications of Appendix 2.1 of the TRAMPAC with the exception that dunnage containers shall have open vent ports (i.e., not filtered or plugged). (Reference 9, section 2.2.1)

To maximize the efficiency of disposal operations at the WIPP, the use of dunnage drums should be minimized. In the event the use of dunnage drums cannot be avoided, the preferred practice for maximizing the efficiency of waste handling and the utilization of disposal room capacity is to ship them in assemblies (i.e., a seven-pack assembly of 55-gallon drums). The use of dunnage drums is reviewed and approved concurrently with the review and approval of shipment assemblies by the WWIS Data Administrator on a case-by-case basis.
3.2.7 Filter Vents

Acceptance Criterion. Payload containers that have been stored in an unvented condition (i.e., no filter and/or unpunctured liner) shall be aspirated for a specific length of time as described in the TRAMPAC to ensure equilibration of any gases that may have accumulated in the closed payload container. (Reference 9, section 5.3.1 and appendix 5.9)

Each payload container shall have one or more filter vents that meet the specifications of Appendix 2.5 of the TRAMPAC (reference 3, section 5.9.12; reference 9, section 2.5.1). Filter vent models purchased on or after January 1, 2002, shall consist of corrosion-resistant housings with press-fit filter media. The model number of each filter vent or combination of filter vents installed on a payload container shall be reported to the WWIS. A listing of available CBFO filter vent models is provided on the CBFO Web Page (http://www.wipp.carlsbad.nm.us/transport.htm). This Internet link is provided for informational purposes only and may change.

3.3 Radiological Properties

With respect to the required radiological properties identified within this section, they can be divided into two distinct groups.

The first group includes the activity of the ten WIPP-tracked radionuclides (i.e., 241Am, 238Pu, 239Pu, 240Pu, 242Pu, 233U, 234U, 238U, 90Sr, and 137Cs) and the TRU alpha activity concentration (i.e., >100 nCi/g of alpha-emitting TRU isotopes with half lives greater than 20 years) of the waste. This set of radiological properties is regulated by the EPA in accordance with 40 CFR Parts 191 and 194. Estimates of their activities shall be derived from a system of controls certified by CBFO that includes AK, computations, measurements, sampling, etc. (reference 12, appendix WCL). Appendix A provides the methods and requirements by which to characterize the radiological composition of the CH-TRU Waste utilizing radioassay techniques.

The second group includes the remaining radionuclides contributing to the total activity, the fissile gram equivalent (FGE), the plutonium-239 equivalent curies (PE-Ci), and the decay heat of the payload container. This set of radiological data is regulated both by the NRC as specified in the TRAMPAC (reference 9) and the CBFO as required by the WIPP TSR (reference 3). PE-Ci quantities shall be calculated for each payload container in accordance with appendix B. Any TRAMPAC compliant method may be used to quantify the remaining radiological properties at the discretion of the shipping facility. Appendix A provides recommended radioassay methods by which to characterize the remaining radiological properties. However, the resulting data (e.g., AK from Safeguards and Security data), the source/method from which the data was generated, and the basis for the reliability of the data shall be submitted to and approved by CBFO prior to use.
3.3.1 Radionuclide Composition

Acceptance Criterion. The activity of $^{241}\text{Am}, ^{238}\text{Pu}, ^{239}\text{Pu}, ^{240}\text{Pu}, ^{242}\text{Pu}, ^{233}\text{U}, ^{234}\text{U}, ^{238}\text{U}, ^{90}\text{Sr}$, and ^{137}Cs shall be established on a payload container basis for purposes of tracking their contributions to the total WIPP radionuclide inventory (reference 12, appendix WCL). The estimated activity and associated total measurement uncertainty (TMU), expressed in terms of one standard deviation, for these ten radionuclides shall be reported to the WWIS on a payload container basis. For any of these ten radionuclides whose presence can be substantiated from AK and/or computations but whose measurement is determined to be below the lower limit of detection (LLD) of the radioassay method, the site shall report "<LLD" to the WWIS for their activity and uncertainty; otherwise a value of zero is reported.

In addition, all radionuclides other than the ten WIPP-tracked radionuclides (i.e., $^{241}\text{Am}, ^{238}\text{Pu}, ^{239}\text{Pu}, ^{240}\text{Pu}, ^{242}\text{Pu}, ^{233}\text{U}, ^{234}\text{U}, ^{238}\text{U}, ^{90}\text{Sr}$, and ^{137}Cs) that comprise 95% of the radioactive hazard for the payload container shall be reported on the TRUPACT-II manifest in accordance with 49 CFR §172.203 and 49 CFR §173.433 (reference 21, reference 26). The activities of these other radioisotopes shall also be reported to the WWIS along with their associated TMU, expressed in terms of one standard deviation.

3.3.2 ^{239}Pu Fissile Gram Equivalent

Acceptance Criterion. For each payload container and loaded TRUPACT-II, the sum of ^{239}Pu FGE plus two times the TMU shall comply with the limits in table 3.3.2 (reference 3, sections 5.9.11 and 5.9.12; reference 9, section 3.1.1). The values calculated for ^{239}Pu FGE and its associated TMU shall be reported to the WWIS for each payload container and loaded TRUPACT-II.

Table 3.3.2
^{239}Pu FGE Limits

<table>
<thead>
<tr>
<th>Container Type</th>
<th>^{239}Pu FGE Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-gallon drum (including all pipe overpacks)</td>
<td>≤ 200</td>
</tr>
<tr>
<td>SWB</td>
<td>≤ 325</td>
</tr>
<tr>
<td>TDOP</td>
<td>≤ 325</td>
</tr>
<tr>
<td>TRUPACT-II (containing either 14 55-gallon drums, 2 SWBs, or 1 TDOP)</td>
<td>≤ 325</td>
</tr>
<tr>
<td>TRUPACT-II (containing either 14 standard, 14 S100, or 14 S200 pipe overpacks)</td>
<td>≤ 2800</td>
</tr>
</tbody>
</table>
3.3.3 TRU Alpha Activity Concentration

Acceptance Criterion. TRU waste payload containers shall contain more than 100 nanocuries per gram of waste (nCi/g) of alpha-emitting TRU isotopes with half-lives greater than 20 years. Without taking into consideration the TMU, the TRU alpha activity concentration for a payload container is determined by dividing the TRU alpha activity of the waste by the weight of the waste. The weight of the waste is determined by subtracting the tare weight of the payload container (including the weight of the rigid liner and any shielding, if applicable) from the gross weight of the payload container. In the event waste containers (e.g., 55-gallon drums) that have been radioassayed are overpacked in a payload container (e.g., in an SWB), sites shall sum the individual TRU alpha activity values of the individual waste containers and divide by the sum of the individual waste container weights (less container, shielding, and liner weights as appropriate) to determine the activity per gram for the payload container. Whereas the TRU alpha activity concentration shall be reported to the WWIS, there are no reporting requirements for the associated TMU. (Reference 2, section 2[20]; Reference 3, section 5.9.12)

3.3.4 239Pu Equivalent Activity

Acceptance Criterion. Plutonium-239 equivalent curie (PE-Ci) limits are shown in table 3.3.4. PE-Ci quantities shall be calculated for each payload container and reported to WIPP using the WWIS. There are no reporting requirements for the associated TMU. (Reference 3, section 5.9.12)

<table>
<thead>
<tr>
<th>Waste Container</th>
<th>Packing Configuration</th>
<th>239Pu PE-Ci Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-gallon drum in good condition</td>
<td>Direct load – all approved waste forms</td>
<td>≤ 80</td>
</tr>
<tr>
<td></td>
<td>Direct load – solidified/vitrified waste only</td>
<td>≤ 1,800</td>
</tr>
<tr>
<td></td>
<td>Overpacked into a 85-gallon drum, SWB, or TDOP – all approved waste forms</td>
<td>≤ 1,100</td>
</tr>
<tr>
<td></td>
<td>Overpacked into a 85-gallon drum, SWB, or TDOP – solidified/vitrified waste only</td>
<td>≤ 1,800</td>
</tr>
<tr>
<td>55-gallon drum in damaged condition</td>
<td>Overpacked into a 85-gallon drum, SWB, or TDOP – all approved waste forms</td>
<td>≤ 80, ≤ 130, ≤ 130 respectively</td>
</tr>
<tr>
<td></td>
<td>Overpacked into a 85-gallon drum, SWB, or TDOP – solidified/vitrified waste only</td>
<td>≤ 1,800</td>
</tr>
<tr>
<td>55-gallon pipe component in good condition</td>
<td>Direct load – all approved waste forms</td>
<td>≤ 1,800</td>
</tr>
<tr>
<td>85-gallon drum in good condition</td>
<td>Overpacked into a TDOP – all approved waste forms</td>
<td>≤ 1,100</td>
</tr>
<tr>
<td></td>
<td>Overpacked into a TDOP – solidified/vitrified waste only</td>
<td>≤ 1,800</td>
</tr>
</tbody>
</table>
3.3.5 Radiation Dose Rate

Acceptance Criterion. The external radiation dose rates of individual payload containers shall be \(\leq 200 \, \text{mrem/h} \) at the surface. The external radiation dose rates of the TRUPACT-II shall be \(\leq 200 \, \text{mrem/h} \) at the surface and \(\leq 10 \, \text{mrem/h} \) at 2 m. Additional internal payload container shielding, beyond that identified in appendix 2.1 of the TRAMPAC as an integral component of the payload container, shall not be used to meet this criterion. Total dose rate and the neutron contribution to the total dose rate shall be reported for each payload container in the WWIS. (Reference 3, section 5.9.12; Reference 6, module I, section I.D.1; Reference 9, section 3.2.1)

3.3.6 Decay Heat

Acceptance Criterion. The sum of the decay heat for each payload container plus its TMU shall be less than or equal to the limits of the assigned shipping category specified in table 5.5-1 of appendix 5.5 of the TRAMPAC. For those payload containers that exceed the decay heat limit, a determination of compliance with the unified flammable (gas/VOC) concentration limit as specified in the TRAMPAC allows the payload container to be shipped in the TRUPACT-II package under test category (see section 3.5.5). The values calculated for decay heat and its associated TMU shall be reported to the WWIS for each payload container. (Reference 9, section 5.2 and appendix 5.5)

3.4 Physical Properties

3.4.1 Residual Liquids

Acceptance Criterion. Liquid waste is prohibited at WIPP. Waste shall contain as little residual liquid as is reasonably achievable by pouring, pumping, and/or aspirating. Internal containers shall also contain no more than 1 inch or 2.5 cm in the bottom of the internal
containers. The total residual liquid in any payload container shall not exceed 1 percent by volume of that payload container. If visual examination methods are used in lieu of radiography, then the detection of any liquids in non-transparent internal containers will be addressed by using the total volume of the internal container when determining the total volume of liquids within the payload container. (Reference 3, section 5.9.12; Reference 6, module II, section II.C.3.a; Reference 6, attachment B, sections B-1c and B-3c; Reference 9, section 2.6.1; Reference 12, appendix WCL)

3.4.2 Sealed Containers

Acceptance Criterion. Payload containers shall be verified to be free of sealed containers greater than 4 L. (Reference 6, attachment B1, section B1-1a)

3.5 Chemical Properties

3.5.1 Pyrophoric Materials

Acceptance Criterion. Pyrophoric radioactive materials shall be present only in small residual amounts (<1 percent by weight) in payload containers and shall be generally dispersed in the waste. Radioactive pyrophorics in concentrations \(\leq 1 \) percent by weight and all nonradioactive pyrophorics shall be reacted (or oxidized) and/or otherwise rendered nonreactive prior to placement in the payload container. Nonradionuclide pyrophoric materials are not acceptable at WIPP. (Reference 3, section 5.9.12; Reference 6, module II, section II.C.3.b; Reference 9, section 4.1.1)

3.5.2 Hazardous Waste

Acceptance Criterion. Hazardous wastes not occurring as co-contaminants with TRU wastes (non-mixed hazardous wastes) are not acceptable at WIPP. Each CH-TRU mixed waste container shall be assigned one or more EPA hazardous waste codes as appropriate. Only EPA hazardous waste codes listed as allowable in the Hazardous Waste Facility Permit may be managed at WIPP. Wastes exhibiting the characteristic of ignitability, corrosivity, or reactivity (EPA hazardous waste numbers of D001, D002, or D003) are not acceptable at WIPP. (Reference 6, module II, section II.C.3.g) In the context of this CH-WAC, hazardous waste codes are synonymous with hazardous waste numbers. (Reference 6, module II, sections II.C.3.c and II.C.4)

3.5.3 Chemical Compatibility

Acceptance Criterion. TRU waste containing incompatible materials or materials incompatible with payload container and packaging materials, shipping container materials, other wastes, repository backfill, or seal and panel closure materials are not acceptable for transport in the TRUPACT-II and disposal at the WIPP. Chemical constituents shall conform to the lists of allowable materials in tables 4-1 through 4-8 of the
TRAMPAC. Other chemicals or materials not identified in these tables are allowed provided that they meet the requirements for trace constituents as specified in section 4.3 of the TRAMPAC. (Reference 6, module II, section II.C.3.d; Reference 9, sections 4.3 and 4.4)

3.5.4 Explosives, Corrosives, and Compressed Gases

Acceptance Criterion. Waste shall contain no explosives, corrosives, or compressed gases (pressurized containers). (Reference 3, section 5.9.12; Reference 6, module II, section II.C.3.g; Reference 9, section 4.2.1)

3.5.5 Headspace Gas Concentrations

Acceptance Criterion. The headspace gas of payload containers shall be sampled and analyzed in accordance with an approved site-specific QAPJP, as defined in the WIPP WAP, to determine volatile organic compound (VOC) concentrations. (Reference 6, module II, section II.C.3.I)

Flammable VOCs are restricted to ≤500 ppm in the payload container headspace. For those payload containers that exceed the flammable VOC limit, a determination of compliance with the unified flammable (gas/VOC) concentration limit as described in the TRAMPAC allows the payload container to be shipped in the TRUPACT-II under the test category. (Reference 9, section 5.2 and appendix 5.7)

Test category payload containers shall be tested to quantify the hydrogen/methane, VOC, and total gas generation rates (as appropriate) for purposes of determining if all applicable limits are met. (Reference 9, section 5.2 and appendix 5.7)

3.5.6 Polychlorinated Biphenyl Concentration

Acceptance Criterion. Waste shall contain no polychlorinated biphenyl (PCB) concentrations equal to or greater than 50 parts per million (ppm). (Reference 6, module II, section II.C.3.f)

3.6 Data Package Contents

3.6.1 Characterization and Certification Data

Acceptance Criterion. Sites shall prepare a WSPF for each waste stream. Each WSPF shall be approved by the CBFO prior to the first shipment of that waste stream. Characterization and certification information for each payload container shall be submitted to the WWIS and approved by the Data Administrator. Sites are required to estimate the CPR weights and report these estimates in the WWIS on a payload container basis. Any
payload container from a waste stream that has not been preceded by an appropriate certified WSPF is not acceptable at WIPP. (Reference 6, attachment B, section B-4b[2])

3.6.2 Shipping Data

Acceptance Criterion. Sites shall prepare a bill of lading and a uniform hazardous waste manifest for CH-TRU waste shipments. The land disposal restriction notification for CH-TRU mixed waste shipments shall state that the waste is not prohibited from land disposal. For shipment in TRUPACT-II, the following documents shall be prepared for containers and assemblies, as appropriate: payload container transportation certification document; overpack payload container transportation certification document; and payload assembly transportation certification document. (Reference 6, attachment B, section B-4b(2); Reference 9, section 6, appendices 6.1 and 6.2)
4.0 QUALITY ASSURANCE REQUIREMENTS

Quality assurance is an integral part of TRU waste characterization, certification, transportation, and operation activities. This section defines the QA program requirements that provide confidence that TRU waste characterization, certification, and transportation activities will be performed satisfactorily by each participating site. The QA requirements applicable to WIPP are addressed in the QAPD (reference 8).

Each site shall be responsible for developing, documenting, and implementing site-specific QA plans that address the elements of the QAPD that apply to their TRU waste program. Specifically, sites shall develop QA plans that govern TRU waste characterization, certification, and transportation activities. These site-specific QA plans shall be submitted to the CBFO for approval. TRU wastes may not be formally characterized, certified, or shipped to WIPP before CBFO approval of these QA plans. The CBFO and the Management and Operating Contractor will conduct audits and surveillances to ensure that sites are in compliance with their approved site-specific QA plans.

4.1 Waste Characterization Quality Assurance Requirements

Sites are responsible for describing required QA and quality control (QC) activities applicable to TRU waste characterization in site-specific QA documentation. All analytical laboratories analyzing WIPP waste characterization samples for the TRU waste sites shall have established, documented QA/QC programs.

Data quality objectives are qualitative and quantitative statements that specify WIPP program technical and quality objectives; they are determined through the data quality objective process (reference 19). The data quality objectives for waste characterization activities relating to the physical and chemical properties of the waste are contained in the WAP of the WIPP Hazardous Waste Facility Permit (reference 6, attachment B3). The radioassay data quality objectives are given in appendix A of this document.

Any payload containers with unresolved discrepancies associated with hazardous waste characterization will not be managed or disposed of at WIPP until the discrepancies are resolved (reference 6, attachment B4, section B4-4). Corrective action reports applicable to WIPP WAP requirements shall be resolved prior to waste shipment (reference 6, attachment B6, section B6-4).

4.2 Waste Certification Quality Assurance Requirements

Participating sites shall develop and implement a site-specific QA plan for waste certification that describes the required QA and QC activities applicable to the certification of TRU waste to the CH-WAC. Site-specific QA plans must comply with the requirements of the QAPD (reference 8).
4.3 Waste Transportation Quality Assurance Requirements

Quality assurance requirements for the transportation of TRU waste involve two elements: compliance with TRUPACT-II payload control requirements and compliance with TRUPACT-II usage requirements. The QA requirements for payload control compliance are derived from the certificate of compliance for the TRUPACT-II issued by the NRC (reference 5). The certificate of compliance references the TRAMPAC (reference 9). The QA requirements for compliance with TRUPACT-II usage requirements are derived from 10 CFR Part 71, 49 CFR Part 173 (references 20, 21), the TRUPACT-II certificate of compliance (reference 5), DOE Orders 460.1 and 460.2 (references 22, 23), and the TRUPACT-II Operating and Maintenance Instructions Manual (reference 24). Participating sites shall develop and implement site-specific QA plans that comply with these requirements. Sites are responsible for describing the QA and QC activities applicable to the specific parameters of the transportation packaging methods for payload control in a site-specific TRAMPAC. Sites shall develop and implement a transportation packaging QA program that defines the QA and QC activities applicable to usage of the TRUPACT-II. This program controls the use of the NRC-certified packaging (TRUPACT-II) and shall comply with the TRUPACT-II Operating and Maintenance Instructions Manual.
5.0 REFERENCES

NOTE: The current revision of these reference documents is applicable. The Internet links are provided for informational purposes only and may change.

 (http://www.access.gpo.gov/nara/cfr/waisidx_00/49cfr173_00.html)

 (ftp://ftp.wipp.carlsbad.nm.us/usermanual.pdf)

 (http://www.access.gpo.gov/nara/cfr/waisidx_00/40cfr191_00.html)

 (http://www.access.gpo.gov/nara/cfr/waisidx_01/10cfr835_01.html)

APPENDIX A

Radioassay Requirements for Contact-Handled Transuranic Waste
A.1 Introduction

The Waste Isolation Pilot Plant (WIPP) requires radiological characterization data to:

- track the cumulative activity of the WIPP radionuclide inventory, by isotope, for those radionuclides listed in section 3.3.1,
- demonstrate that each payload container disposed of at the WIPP contains TRU waste as specified in section 3.3.3, and
- verify that applicable transportation and facility limits on individual payload containers and assemblies for FGE, PE-Ci, and decay heat are not exceeded, as specified in section 3.3.2, 3.3.4 and 3.3.6.

The requisite data can be derived from AK, radioassay or both using CBFO approved NDA or RC techniques, instruments and procedures. Each site must technically justify that the AK and/or radioassay techniques, instruments and procedures used:

- are appropriate for the specific waste stream and waste content code descriptions being assayed, and
- will result in an unbiased cumulative activity of the WIPP radionuclide inventory on a waste stream basis.

Existing radioassay data collected prior to the implementation of a quality assurance program pursuant to 40 CFR §194.22(a)(1) shall be qualified in accordance with an alternate methodology that is approved by CBFO and employs one or more of the following methods:

- peer review in accordance with NUREG-1297 (Ref A18),
- corroborating data,
- confirmatory testing (i.e., testing made on a representative sub-population of payload containers within a waste stream using statistical sampling and analysis), or
- demonstrating the equivalence of an alternate QA program as described in reference A15, section 5.4).

A.2 Statistical Sampling and Analysis Methods for Confirmatory Testing

The isotopic compositions must be confirmed to ensure the waste stream isotopic composition is sufficiently similar, providing confidence that the statistically selected representative sample of waste containers reliably reflects the range and variability in
the AK when compared to the confirmatory WIPP certified radioassay data. Sites may opt to perform confirmatory testing of AK, with regard to radionuclide isotopic ratios, on a statistically selected sample population of containers in a waste stream instead of conducting 100% confirmatory testing of AK. In order to qualify radionuclide isotopic ratio AK for use in radiological characterization utilizing confirmatory testing as permitted by 40 CFR §194.22(b), a statistical selection of representative waste containers from each site-specified waste stream is analyzed on a WIPP certified radioassay system. The radionuclide isotopic compositions measured by WIPP certified systems are compared to the AK to confirm that the AK is representative of the waste stream.

A.2.1 Random Sampling of Containers

A representative selection requires that the method used to identify the specific containers affords each container an equal opportunity (likelihood) for selection. Simple random sampling, stratified random sampling, and systematic random sampling are various ways to ensure representativeness in the sample selection. The specific method used may depend upon the waste characteristics but, when appropriate, stratified and systematic sampling usually provide increased precision (smaller variance) over simple random sampling.

Sites shall document the technical basis for the random selection of waste containers to be sampled. The methods for the random selection of containers for performing confirmatory testing shall be approved by CBFO prior to their use.

A.2.2 Confirmation of Radionuclide Isotopic Ratios

The number of containers that are selected for confirmatory testing of radionuclide isotopic ratios is based on the need to examine sufficient containers to provide appropriate confidence that the proportion of containers that do not closely conform to AK is small. With finite populations of containers a test based in the hypergeometric probability distribution is the appropriate method to confirm this hypothesis. Selected containers are individually radioassayed. Results of the radioassay are compared with the radionuclide isotopic ratios established by AK for the waste stream (or selected sub-population). A sufficient number of containers is statistically selected and examined in order to demonstrate with at least 95 percent confidence that the number of outlier containers, if any, in the waste stream (or selected sub-population) constitutes less than 10 percent. The term “outlier container” refers to any selected container that fails the test criterion.

The criterion for determining the pass/fail status is based upon the comparison of the observed radionuclide isotopic ratios from the WIPP certified radioassay measurements with the radionuclide isotopic ratios obtained from AK for the particular material classification assigned (e.g., weapons grade plutonium, enriched uranium, etc.) If the activity percentage of the principal constituent isotopes, defined as those individually
comprising one percent or more of the specified class of material, lie more than one standard deviation outside the specified allowable activity percent range for the class, the container shall be considered an outlier.

Table A-2.2 provides the number of waste containers to be selected and examined, for the specified size of the waste container population. This table also identifies the maximum number of allowed outlier containers that may be found while performing confirmatory measurements on the WIPP certified radioassay system based on the specified confidence levels (i.e., 95%/10%). If more than the maximum number of outlier containers are found while performing the confirmatory testing, the sample will have failed to demonstrate the required level of confidence with the site's AK for isotopic ratios and 100% of the waste containers must be radioassayed. The values in Table A-2.2 are based on the supposition that, if the number of outlier containers actually constitute 2% of the waste stream (or selected sub-population), there is less than a 20% chance of observing more than the allowed maximum number of outliers in the sample. At the same time, observing no more than the allowed maximum number supports at least 95% confidence that the outliers constitute less than 10% of the total population.

<table>
<thead>
<tr>
<th>Population Size (N)</th>
<th>Sample Size (n)</th>
<th>Maximum Observed Outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 33</td>
<td>N</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>34 to 50</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>51 to 75</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>76 to 100</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>101 to 150</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>151 to 200</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>201 to 300</td>
<td>57</td>
<td>2</td>
</tr>
<tr>
<td>301 to 500</td>
<td>59</td>
<td>2</td>
</tr>
<tr>
<td>501 to 750</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>751 to 1500</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>1501 or more</td>
<td>61</td>
<td>2</td>
</tr>
</tbody>
</table>

Confirmatory testing of isotopic ratios need only address isotopes listed in section 3.3.1. In the event the results of confirmatory testing substantiate the isotopic ratios as
determined from AK, then and only then shall AK serve as the basis for the establishment of isotopic ratios specific to the waste stream (or selected sub-population) from which the sample was selected.

A.3 Data Quality Objectives

The data quality objectives for WIPP certifiable radiological characterization data are established in section 3.3 of the WAC. They are summarized below in table A-3 as they apply to individual payload containers.

Table A-3

<table>
<thead>
<tr>
<th>Requirement</th>
<th>DQO</th>
<th>Confidence *</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRU α-activity > 100 nCi/g</td>
<td>A > LLD</td>
<td>N/A</td>
</tr>
<tr>
<td>Fissile mass ≤ 200 FGE (55-gallon and 100-gallon drums)</td>
<td>FGE + 2σ_{\text{TMU}(FGE)} ≤ 200</td>
<td>97.5%</td>
</tr>
<tr>
<td>Fissile mass ≤ 325 FGE (SWBs and TDOPs)</td>
<td>FGE + 2σ_{\text{TMU}(FGE)} ≤ 325</td>
<td>97.5%</td>
</tr>
<tr>
<td>Decay heat ≤ TRAMPAC limit</td>
<td>DH + 1σ_{\text{TMU}(DH)} ≤ L_{\text{TRAMPAC}}</td>
<td>84%</td>
</tr>
</tbody>
</table>

*Confidence means the statistical level of confidence that the limit is not exceeded. It is derived from the DQO that assumes contributions to TMU are normally distributed.

There are no stipulated data quality objectives for PE-Ci or individual isotope activities (except as they impact the requirements listed above).

In support of the above requirements, each site must evaluate, document and technically justify the following determinations.

Lower Limit of Detection: The lower limit of detection (LLD) for each radioassay must be determined. Instruments performing TRU/low-level waste discrimination measurements must have an LLD of 100 nCi/g or less. Site specific environmental background and container specific interferences must be factored into determining the LLD.

Total Measurement Uncertainty (TMU): The method used to calculate the TMU for the quantities in table A-3 must be documented and technically justified for each CBFO certified radioassay system. Compliance with this requirement will be evaluated in reviews of the TMU documentation package for each assay system by CBFO. General guidance for determining the TMU is provided in references A13 and A14.

Calibration Procedures and Frequencies: Each radioassay measurement system shall be calibrated before initial use. The range of applicability of system calibrations must
be specified in site procedures. The matrix/source surrogate waste combination(s) used for calibration shall be representative of the

- activity range(s) or gram loading(s),
- waste form(s), and
- relevant waste matrix characteristics (e.g., densities, moderator content) planned for measurement by the system.

Calibration(s) shall be performed in accordance with consensus standards, when such standards exist. If consensus standards are not used, full documentation of the calibration technique must be provided to and approved by CBFO prior to use. Primary calibration standards shall be obtained from suppliers maintaining a nationally accredited measurement program. When primary standards are not available, the standards used shall be correlated with primary standards obtained from the nationally accredited measurement program. For calorimetry, calibration shall be performed in accordance with reference A.9

Calibration Verification: Verification of the radioassay measurement system's calibration shall be performed after any one of the following occurs:

- major system repairs and/or modifications
- replacement of the measurement system's components, e.g., detector, neutron generator or supporting electronic components
- significant changes to the system's software
- relocation of the system

Calibration verification shall consist of demonstrating that the system is within the range of acceptable operation as specified in sections A.4.2 or A.4.3. Secondary standards can be used for the calibration verification if their performance has been correlated with the calibration standard. If a verification of the measurement system's calibration or other test demonstrates that the system's response has significantly changed (e.g., the control chart data is outside established action limits), a re-calibration of the system shall be performed.

A.4 Quality Control

To ensure that data of known and documented quality are generated, each participating measurement facility shall implement a documented facility QA program. Any radioassay technique used for TRU waste must be performed in accordance with calibration and operating procedures that have been written, approved, and controlled by the site or
testing facility. Laboratory procedures must contain applicable quality controls. Facility QA programs shall specify qualitative and quantitative acceptance criteria for the QC checks of this program and corrective action measures to be taken when these criteria are not satisfied.

A.4.1 General Requirements

Radioassay Training: Only appropriately trained and qualified personnel shall be allowed to perform radioassay and data validation/review. Standardized Training requirements for radioassay personnel shall be based upon existing industry standardized training requirements (e.g., ASTM C1490, Standard Guide for Selection, Training and Qualification of Nondestructive Assay (NDA) Personnel, ANSI N15.54, Radiometric Calorimeters – Measurement Control Program) and shall meet the specifications in the QAPD. Requalification of radioassay personnel shall be based upon evidence of continued satisfactory performance and must be performed at least every two years.

Software QC Requirements: All computer programs and revisions thereof used for radioassay shall meet the applicable requirements in the QAPD (A10).

A.4.2 NDA QC Requirements

The assay procedures cited in various American Society for Testing and Materials (ASTM) and American National Standards Institute (ANSI) standards (references A3-A6, A17, and A19) and NRC standard practices and guidelines (reference A7) as referenced in this appendix are recommended for use at all testing facilities.

Background Measurements: Background measurements must be performed daily, unless otherwise approved by CBFO. Contributions to background due to radiation from nearby radiation producing equipment, standards or wastes must be carefully controlled or more frequent background checks must be performed. For calorimeters, basepower or baseline measurements shall be conducted at a frequency determined by each site and approved by CBFO.

Instrument Performance Measurements: Performance checks on calibrated and operable gamma and neutron NDA instruments must be performed once per operational day. Performance checks shall include efficiency checks (when applicable), matrix correction checks and, for spectrometric instruments, peak position and resolution checks.

Both radioactive sources and surrogate waste matrix drums (both non-interfering and interfering) are used. Once per operational week an interfering matrix must be used to assess the long-term stability of the NDA instrument's matrix correction. The interfering surrogate matrix drums are rotated each week, as appropriate, so that the weekly operational checks do not use the same interfering surrogate matrix drum two weeks in
Interfering surrogate matrix drums must have matrix characteristics corresponding to the mid- and upper range (as few as two) of the NDA instrument's matrix calibration range. They must be constructed in such a way that their characteristics do not change over time.

Radioactive sources should be long-lived, easy to position relative to the detector(s), and of sufficient radioactivity to obtain good results with relatively short count times.

Performance checks for calorimetry shall be performed with traceable electrical and/or heat standards at frequencies a frequency determined by each site, consistent with reference A9. This information is specified in site operating procedures and approved by CBFO.

Data Checks: Background (for calorimetry: baseline or base power) and performance measurements shall be reviewed and evaluated at least weekly to determine continued acceptability of the assay system and to monitor performance trends. If daily performance checks result in data that are outside the acceptable range, the required responses in table A-4.2 shall be followed.

Table A-4.2
Range of Applicability

<table>
<thead>
<tr>
<th>Acceptable Range</th>
<th>Required Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2σ²</td>
<td>No action required.</td>
</tr>
<tr>
<td>Warning Range</td>
<td>The performance check standard shall be rerun no more than two times. If the rerun performance check(s) result in data = 2σ, then the additional performance checks shall be documented and work may continue. If the system does not fall below 2σ after two rerun performance checks, then the required response for the action range shall be followed.</td>
</tr>
<tr>
<td>Action Range</td>
<td>Work shall stop and a NCR shall be written. The radioassay system shall be removed from service pending completion of corrective actions, and all assays performed since the last acceptable performance check are suspect, pending satisfactory resolution. Recalibration or calibration verification is required prior to placing the system back into service.</td>
</tr>
</tbody>
</table>

*Reference A19

σ² - the standard deviation is only based on the reproducibility of the control chart measurements themselves. This is not TMU.

Comparison Programs: Sites using radioassay systems shall participate in any relevant measurement comparison program(s) sponsored or approved by the CBFO. Such programs may be conducted as part of the NDA PDP (reference A8) or through other...
third parties. (Reference: WIPP Compliance Certification Application including Annual Reports to the EPA)

A.4.3 Radiochemistry QC Requirements

Any RC method may be used as long as the assay results meet the DQOs specified in section A.3. Each laboratory used for TRU waste assay by RC shall demonstrate that the analytical methods are appropriate to assay the specific wastes for which they are proposed. These methods must contain the following general provisions:

- Assay standards must be prepared and used as indicated in the standard test methods.
- The sample taken from the waste must be representative and traceable to its specific waste batch or waste container.
- The test result for each sample must be associated with a specific lot, batch number, or container.

All methods will be preceded by radiochemical separation and/or preparation for measurement. Table A-4.3 presents a list of laboratory control procedures that must be performed by laboratories involved in the TRU waste RC process.

<table>
<thead>
<tr>
<th>QC Sample</th>
<th>Minimum Frequency</th>
<th>Acceptance Criteria</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory control samples (LCS)</td>
<td>One per analytical batch</td>
<td>75% to 125%R</td>
<td>See Laboratory Control Samplea</td>
</tr>
<tr>
<td>Method blank</td>
<td>One per analytical batch</td>
<td>Site-specific statistical control limits</td>
<td>See Method Blanksb</td>
</tr>
<tr>
<td>Laboratory duplicate</td>
<td>One per analytical batch</td>
<td>RPD (relative percent difference) ≤ 40, or project-specific requirements</td>
<td>See Laboratory Duplicatec</td>
</tr>
<tr>
<td>Matrix spike (MS)</td>
<td>One per analytical batch for ICP-MS, as required by the test performed</td>
<td>50 to 150%R</td>
<td>See Matrix Spike and Matrix Spike Duplicatea</td>
</tr>
<tr>
<td>Matrix spike duplicate (MSD)</td>
<td>One per analytical batch, as required by the test performed</td>
<td>50 to 150%R RPD ≤ 40, or project-specific requirements</td>
<td>See Matrix Spike and Matrix Spike Duplicatea</td>
</tr>
</tbody>
</table>
Radioisotopic tracers

Site-specific statistical
control limits

See Radioisotopic Tracer

Laboratory Control Sample (LCS): An LCS is analyzed at least once per analytical batch. If a solid matrix with established control limits is used as the LCS, the established limits may be used for the acceptance criteria. If LCS recoveries do not meet acceptance criteria, a non-conformance report is prepared and corrective action is initiated to determine the cause of the problem. Associated samples are qualified in the data report.

Method Blanks: A method blank is analyzed at least once per analytical batch. It contains all reagents in proportions equal to those in the samples and is carried through the analytical procedure to identify if contamination is present. Each site establishes the acceptance criteria for method blanks; they may be expressed as statistical control limits. Criteria may be absolute values, multiples of background variation, fractions of activity concentrations observed in samples, or other appropriate units. When results outside the criteria are obtained, a non-conformance report is prepared and corrective action is initiated to determine the cause of the problem. Associated samples are qualified in the data report.

Laboratory Duplicate. A laboratory duplicate is analyzed at least once per analytical batch. A laboratory duplicate is a separate aliquot from the same field sample carried through the entire analytical procedure. The RPD between duplicate results is compared with the criteria; if the RPD between duplicate results does not meet the criteria, a non-conformance report is prepared and corrective action is initiated to determine the cause of the problem. Associated sample results are qualified in the data report.

Matrix Spike and Matrix Spike Duplicate: Duplicate MSs on individual field samples are performed for inductively coupled plasma-mass spectrometry (ICP-MS) analysis at a minimum frequency of one pair (MS plus MSO) per analytical batch. The MSDs are preferred for any analytical procedure not using radioactive tracers. The MS and MSD results are acceptable if the criteria given above for percent recovery and RPD are met. Sample data associated with non-compliant MS and MSD results are qualified in the data report.

Radioisotopic Tracer: Some methods require that all samples, blanks, LCSs, and laboratory duplicates be spiked with radioisotopic tracers to determine chemical recoveries, counting efficiencies, or a combination thereof. Each site establishes the acceptance criteria for method blanks; they may be expressed as statistical control limits. When yields outside the criteria are obtained, a non-conformance report is prepared and corrective action is initiated to determine the cause of the problem. Associated samples are qualified in the data report.

Completeness of RC data shall be expressed as the ratio of the number of samples that are analyzed with valid results to the total number of samples that are submitted for analysis, expressed as a percent. Acceptable RC data shall be obtained for 90 percent of the samples acquired for waste characterization. Valid results for radioassay data are those that were obtained when the laboratory or testing facility demonstrated that the instrumentation and method were in control.

Representativeness of RC data shall be achieved by the collection of unbiased samples.

A.5 Data Management

A.5.1 Data Review and Validation

All radioassay data must be reviewed and approved by qualified personnel prior to being reported. At a minimum, the data must be reviewed by a technical reviewer and approved by the site project manager or his designee. The validation process includes verification that the applicable quality controls specified in section A.4 have been met.
A.5.2 Data Reporting

Radioassay data must be reported to the site project office on a testing batch basis. Batches are defined, for the purpose of the program, as a suite of waste containers undergoing radioassay using the same testing equipment. For NDA, the sites, without regard to waste matrix, specify size of a testing batch, as needed. For RC, a testing batch can be up to 20 waste containers without regard to waste matrix, as is consistent with industry practice.

Each radioassay testing facility is required to submit testing batch data reports for each testing batch to the site project office on standard forms (or electronic equivalent), as provided in approved site specific documentation. Radioassay testing batch data reports shall consist of the following:

- Testing facility name, testing batch number, container numbers included in that testing batch, and signature releases by the site project manager or his designee.

- Table of contents

- Background and performance check data or control charts for the relevant time period.

- Data validation per the QAPD (reference A15, section 5.3.2) and as described in site procedures.

- Separate testing report sheet(s) for each container in the testing batch that includes
 - Title "Radioassay Data Sheet"
 - Method used for radioassay (i.e., procedure identification)
 - TRUCON code, Item Description Code, waste matrix code, as applicable
 - Date of radioassay
 - Activities of individual radioisotopes present and their associated TMUs expressed in terms of one standard deviation (curies)
 - QC replicate (yes/no/NA)
 - Decay heat and the associated calculated TMU expressed in terms of one standard deviation (W).
 - Total 239Pu FGE and the associated calculated TMU expressed in terms of one standard deviation (g)
 - TRU alpha activity concentration (nCi/g)
 - Total 238Pu equivalent activity (curies)
 - Operator signature/date
 - Reviewer signature/date
A.5.3 Data or Records Retention

The following nonpermanent records shall be maintained at the radioassay-testing facilities or shall be forwarded to the site project office for maintenance, documented and retrievable by testing batch number, in accordance with the QAPD:

- Testing batch reports
- All raw data, including instrument readouts, calculation records, and radioassay QC results
- All instrument calibration reports, as applicable

A.6 Quality Characteristics Assessment

Per 40 CFR §194.22(c), there are five “quality characteristics” that have to be assessed. These quality characteristics and the method by which they are assessed are described in the following sections.

A.6.1 Data Accuracy

Per 40 CFR §194.22(c)(1), Data Accuracy is defined as “the degree to which data agree with an acceptable reference or true value.” For NDA methods, this quality characteristic is met and maintained through system calibration, system calibration verification, and determination of TMU, as discussed in section A.3. For RC methods, this quality characteristic is met and maintained through the requirements specified in table A-4.3 in section A.4.3.

A.6.2 Data Precision

Per 40 CFR §194.22(c)(2), Data Precision is defined as “a measure of the mutual agreement between comparable data gathered or developed under similar conditions expressed in terms of standard deviation.” For NDA methods, this quality characteristic is met and maintained through daily data (i.e., precision) checks, as specified in section A.4.2, and through determination of the LLD and the DQOs, as specified in section A.3. For RC methods, this quality characteristic is met and maintained through the requirements specified in table A-4.3 in section A.4.3.

A.6.3 Data Representativeness

Per 40 CFR §194.22(c)(3), Data Representativeness is defined as “the degree to which data can accurately and precisely represent a characteristic of a population, a parameter, variations at a sampling point, or environmental conditions.” For NDA and RC methods, this quality characteristic for the waste stream is met and maintained...
through either 100% measurement confirmation on a payload container basis or through the statistical sampling of a waste stream, as discussed in section A.2. For NDA, since the entire waste container is subjected to measurement, representativeness pertaining to the actual measurement is not applicable. However, since a sample is physically removed from the container for RC measurements and must be representative of the waste within the container, section A.4.3 provides the criteria for representativeness for the actual sample itself.

A.6.4 Data Completeness

Per 40 CFR §194.22(c)(4), Data Completeness is defined as "a measure of the amount of valid data obtained compared to the amount that was expected." For NDA methods, this quality characteristic is met and maintained by requiring 100% valid results. Any results indicating the NDA measurement was invalid require re-measurement. For RC methods, this quality characteristic is met and maintained through the requirements specified in section A.4.3.

A.6.5 Data Comparability

Per 40 CFR §194.22(c)(5), Data Comparability is defined as "a measure of confidence with which one data set can be compared to another." For NDA and RC methods, this quality characteristic is met and maintained through training of operators and technical review personnel as required by industry standards and the QAPD, as specified in section A.4.1. Additionally, the NDA and RC methods are approved by CBFO prior to the use of generated waste characterization data. Finally, comparison of the measured data with the data provided by AK, as applicable, is used as a means to determine comparability. Although no specific confidence level is specified, these controls ensure comparability is maintained. Sites using radioassay systems shall participate in any relevant measurement comparison program(s) sponsored or approved by the CBFO. Such programs may be conducted as part of the NDA PDP (reference A8) or through other third parties.

Appendix A References

APPENDIX B

239Pu Equivalent Activity
The concept of 239Pu equivalent activity (PE-Ci) is intended to eliminate the dependency of radiological analyses on specific knowledge of the radionuclide composition of a TRU waste stream. A unique radionuclide composition and/or distribution is associated with most TRU waste streams at each site. By normalizing all radionuclides to a common radiotoxic hazard index, radiological analyses that are essentially independent of these variations can be conducted for the WIPP facility. 239Pu, as a common component of most defense TRU wastes, was selected as the radionuclide to which the radiotoxic hazard of other TRU radionuclides could be indexed.

Modeled operational releases from the WIPP facility, including both routine and accident-related, are airborne. There are no known significant liquid release pathways during the operational phase of the facility. This, and the fact that TRU radionuclides primarily represent inhalation hazards, allows a valid relationship to be established, which normalizes the inhalation hazard of a TRU radionuclide to that of 239Pu for the purpose of the WIPP radiological analyses. In effect, the radiological dose consequences of an airborne release of a quantity of TRU radioactivity with a known radionuclide distribution will be essentially identical to that of a release of that material expressed in terms of a quantity of 239Pu. To obtain this correlation, the 50-year effective whole-body dose commitment or dose conversion factor for a unit intake of each radionuclide will be used.

For a known radioactivity quantity and radionuclide distribution, the 239Pu equivalent activity is determined using radionuclide-specific weighting factors. The 239Pu equivalent activity (AM) can be characterized by:

$$AM = \sum_{i=1}^{K} A_i / WF_i$$

where K is the number of TRU1 radionuclides, A_i is the activity of radionuclide i, and WF_i is the PE-Ci weighting factor for radionuclide i.

WF_i is further defined as the ratio

$$WF_i = \frac{E_o}{E_i}$$

where E_o (rem/μCi) is the 50-year effective whole-body dose commitment due to the inhalation of 239Pu particulates with a 1.0 μm activity median aerodynamic diameter (AMAD) and a weekly pulmonary clearance class, and E_i (rem/μCi) is the 50-year effective whole-body dose commitment due to the inhalation of radionuclide (i)particulates with a 1.0 μm activity median aerodynamic diameter and the pulmonary

1TRU as designated in this equation refers to any radionuclide with an atomic number greater than 92 and including 233U.
clearance class resulting in the highest 50-year effective whole-body dose commitment.

Weighting factors calculated in this manner are presented in table B-1 for radionuclides typically present in CH-TRU waste. If other TRU radionuclides are determined to be present in the payload container, their weighting factors can be obtained from the values of E_0 and E_i contained in DOE/EH-0071 (reference B1).

Table B-1
PE-Ci Weighting Factors for Selected Radionuclides

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Pulmonary Clearance Class<sup>a</sup></th>
<th>Weighting Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>233U</td>
<td>Y</td>
<td>3.9</td>
</tr>
<tr>
<td>237Np</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>236Pu</td>
<td>W</td>
<td>3.2</td>
</tr>
<tr>
<td>238Pu</td>
<td>W</td>
<td>1.1</td>
</tr>
<tr>
<td>239Pu</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>240Pu</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>241Pu</td>
<td>W</td>
<td>51.0</td>
</tr>
<tr>
<td>242Pu</td>
<td>W</td>
<td>1.1</td>
</tr>
<tr>
<td>241Am</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>243Am</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>242Cm</td>
<td>W</td>
<td>30.0</td>
</tr>
<tr>
<td>244Cm</td>
<td>W</td>
<td>1.9</td>
</tr>
<tr>
<td>252Cf</td>
<td>Y</td>
<td>3.9</td>
</tr>
</tbody>
</table>

^a(W) Weekly, (Y) Yearly

Reference for Appendix B

APPENDIX C

Glossary
Acceptable knowledge - Knowledge used for waste characterization, which is based on the materials and processes used to generate a waste. Acceptable knowledge includes information about the physical form of the waste, the base materials composing the waste (especially hazardous and radioactive materials), and the process that generated the waste. Acceptable knowledge is used to define waste streams, assign summary categories, assign EPA hazardous waste numbers, estimate the weight fraction of CRP, and estimate isotopic ratios.

Activity - A measure of the rate at which a material emits nuclear radiation, usually given in terms of the number of nuclear disintegrations occurring in a given length of time. The common unit of activity is the curie, which amounts to 37 billion \((3.7 \times 10^{10})\) disintegrations per second. The International Standard unit of activity is the becquerel and is equal to one disintegration per second.

Administrative controls - Provisions relating to organization and management, procedures, record keeping, assessment, and reporting necessary to ensure the safe operation of the facility.

Atomic energy defense activities - Activities of the Secretary of Energy (and predecessor agencies) performed in whole or in part in carrying out any of the following functions: naval reactors development; weapons activities, including defense inertial confinement fusion; verification and control technology; defense nuclear material production; defense nuclear waste and materials by-product management; defense nuclear materials security investigations; and defense research and development.

Authorization basis - Those aspects of the facility design and operational requirements relied upon by DOE to authorize the operation of nuclear facilities and processes.

Characterization - Sampling, monitoring, and analysis—whether by review of AK, nondestructive examination, NDA, RC, headspace gas analysis, or chemical analysis of the volatile or semi-volatile organic compounds or metals—to identify and quantify the constituents of a waste material.

Chemical compatibility - Assessing the properties of chemicals in a payload container (>1 weight percent); there must be no adverse safety or health hazards produced as a result of any mixtures that occur.

Completeness - The percentage of measurements made which are judged to be valid measurements. The completeness goal is to generate a sufficient amount of valid data based on program needs. Valid results for analytical, radioassay, and radiography data are those that were obtained when the laboratory or testing facility demonstrated that the instrumentation and method were in control; that is, that all calibration, verification, interference, and zero matrix checks met acceptance criteria. Valid samples are those collected and submitted for analysis that were representative and met all preservation requirements.
requirements upon arrival at the laboratory.

Compressed gas - Compressed gases are those materials defined as such by 49 CFR Part 173, Subpart G.

Contact-handled transuranic waste - Transuranic waste with a surface dose rate not greater than 200 mrem/h. The payload container itself provides sufficient protection, and no extra shielding is required.

Content code - A uniform system applied to waste forms to group those with similar characteristics for purposes of shipment in the TRUPACT-II. The content code is not to be confused with the item description code.

Corrosive/Corrosivity - A solid waste exhibits corrosivity if a sample of the waste is either aqueous and has a pH ≤2 or ≥12.5, or it is a liquid and corrodes steel at a rate >6.35 mm (0.250 inch) per year at a test temperature of 55° (130°F). (40 CFR §261.22)

Curie - A unit of activity equal to 37 billion \(3.7 \times 10^{10}\) disintegrations per second.

Detection limit - The level of radioactivity which, if present, will yield a measured value less than the critical limit with a 95% probability. The critical limit is defined as that value which measurements of the background will exceed with a 5% probability.

Disposal - Permanent isolation of TRU waste from the accessible environment with no intent of recovery, whether or not such isolation permits the recovery of such waste (reference 2, section 2, subsection 5).

Dose conversion factor - A numerical factor used in converting radionuclide uptake (curies) in the body to the resultant radiation dose (rem).

Dose rate - The radiation dose delivered per unit time (e.g., rem per hour).

Fissile gram equivalent - An isotopic mass of radionuclide normalized to \(^{239}\text{Pu}\).

Fissile material - Any material consisting of or containing one or more fissile radionuclides such as \(^{235}\text{U}\), \(^{239}\text{U}\), and \(^{239}\text{Pu}\). Fissile materials are classified according to the controls needed to provide nuclear criticality safety during transportation, as provided in 49 CFR §173.455. Certain exclusions are provided in 49 CFR §173.453.

g-value - The number of hydrogen molecules generated per 100 electron volts of energy absorbed.

Hazardous waste - Those wastes which are designated hazardous by EPA (or state) regulations. For a detailed description, see 40 CFR §261.3. Hazardous wastes are
listed in 20 NMAC 4.1, subpart II (40 CFR Part 261) and/or exhibit one of the four characteristics in 20 NMAC 4.1, subpart II (40 CFR Part 261) (i.e., ignitability, corrosivity, reactivity, and toxicity).

Headspace - The total contained volume of a container minus the volume occupied by the waste material.

Headspace gas - The gas within the headspace of a container.

Overpack - A payload container placed around another container to control contamination or to enclose a damaged container.

Package - (1) A packaging plus its contents. (2) The reusable Type B shipping container (i.e., TRUPACT-II) loaded with TRU waste payload containers, which has been prepared for shipment in accordance with the package QA program. (3) In the regulations governing the transportation of radioactive materials, the packaging, together with its radioactive contents, as presented for transport.

Packaging - (1) For radioactive material, the assembly of components necessary to ensure compliance with the packaging requirements of 40 CFR § 173.40, subpart I. It may consist of one or more receptacles, absorbent materials, spacing structures, thermal insulation, radiation shielding, and devices for cooling or absorbing mechanical shocks. The conveyances, tie-down system, and auxiliary equipment may sometimes be designated as part of the packaging. (2) The reusable Type B shipping container for transport of TRU waste payload containers (i.e., TRUPACT-II). (3) A shipping container without its contents.

Packaging quality assurance program - A site-specific document that defines the quality assurance and quality control activities applicable to usage of the NRC-approved packaging. This program shall meet the requirements of 10 CFR Part 71, Subpart H.

Payload container - The outermost container for TRU waste material that is placed in a reusable Type B shipping container (i.e., TRUPACT-II) for transport.

Payload container assembly - An assembly of payload containers, such as a seven-pack of drums, that is intended to be handled and emplaced in the WIPP as a single unit.

Pipe overpack - A packaging configuration consisting of a vented cylindrical pipe component surrounded by dunnage within a vented 55-gallon drum with a rigid polyethylene liner and vented lid.

Plutonium - A metallic radioactive element used as a nuclear fuel to produce radioactive nuclides for research and as the fissile agent in nuclear weapons. The
symbol is Pu.

Plutonium equivalent curie (PE-Ci) - An equivalent radiotoxic hazard of a radionuclide normalized to 239Pu.

Precision - A measure of mutual agreement among individual measurements of the same property made under prescribed similar conditions; often expressed as a standard deviation or relative percent difference.

Pyrophoric - Materials that may ignite spontaneously in air or that emit sparks when scratched or struck, especially with materials such as steel. A flammable solid that, under transport conditions, might cause fires through friction or retained heat or that can be ignited readily and, when ignited, burns vigorously and persistently so as to create a serious transportation hazard. Included in the pyrophoric definition are spontaneously combustible materials, water reactive materials, and oxidizers. Examples of nonradioactive pyrophorics are organic peroxides, sodium metal, and chlorates.

Radioassay - Methods used to identify and quantify radionuclides in TRU waste. Radioassay includes NDA and RC.

Radiography - A nondestructive testing method that uses x-rays to inspect and determine the physical form of waste.

Radionuclide - A nuclide that emits radiation by spontaneous transformation.

Residual liquid - Liquids in quantities of less than 1 volume percent of the waste payload container that result from liquid residues remaining in well-drained internal containers, condensation of moisture, and liquid separation resulting from sludge/resin setting.

Shipper - A TRU waste site that releases a TRUPACT-II to a carrier for shipment.

Shipping category - A shipping category is defined by the following parameters: chemical composition of the waste (waste type), gas generation potential of the waste material type (quantified by the g-value for hydrogen), and gas release resistance (type of payload container and type and maximum number of confinement layers used).

Sites - Department of Energy TRU waste generator/storage sites.

Standard waste box - A payload container designed and manufactured in accordance with WIPP Engineering Specification E-I-343, authorized for use with TRUPACT-II transportation packages, that has been tested by DOE to meet DOT Specification 7A Type A requirements.
Ten-drum overpack - A metal payload container (73 inches high and 72 inches in outside diameter), authorized for use within the TRUPACT-II packaging, that has been tested by DOE to meet DOT Specification 7A Type A requirements.

Test Category - Payload containers that do not meet the analytical category limits are classified as test category. (TRAMPAC, revision 19, section 5.2)

Trace chemicals/materials - Chemicals/materials that occur individually in the waste in quantities less than 1 weight percent. The total quantity of trace chemicals/materials no listed as allowed materials for a given waste material type in any payload container is restricted to less than 5 weight percent. (TRAMPAC, revision 19, section 4.3.1)

Transuranic waste - Waste containing more than 100 nCi of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years, except for (1) high-level radioactive waste, (2) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations, or (3) waste that the NRC has approved for disposal on a case-by-case basis in accordance with 10 CFR Part 61. (Reference 2, section 2, subsection 18)

TRUCON content codes - (1) The document containing a description of the waste stream, waste form, and package configuration for each waste content code authorized for shipment in TRUPACT-II containers. (2) A type of shorthand representation of the chemical content and physical waste form of generator waste streams for use in the transportation safety analyses.

TRU mixed waste - TRU waste that is also a hazardous waste as defined by the Hazardous Waste Act and 20 NMAC 4.1.200 (incorporating 40 CFR § 261.3). (Reference 6, module I, section I.D.6)

TRUPACT-II - An NRC-certified Type B transportation packaging used for transportation of CH-TRU wastes.

TRUPACT-II Authorized Methods for Payload Control (TRAMPAC) - The TRAMPAC is the governing document for payload shipments in the TRUPACT-II. (Reference 9, section 1.0)

Verification - The act of authenticating or formally asserting the truth that a process, item, data set, or service is, in fact, that which is claimed. Data verification is the process used to confirm that all review and validation procedures have been completed.

Volatile organic compounds - For the purposes of the TRU waste program, those RCRA-regulated VOCs listed in the WIPP WAP and any additional compounds tentatively identified by VOC analytical procedures used to satisfy program requirements (i.e., any compound containing carbon and hydrogen with any other
element that has a vapor pressure of 77.6 mL of mercury (1.5 psia) or greater under actual storage conditions).

Waste acceptance criteria - Constraints (limits) on the physical, chemical, and radiological properties of TRU waste and its packaging as determined by WIPP’s authorization basis requirements. TRU waste will not be approved for shipment to and disposal at the WIPP until it has been certified as meeting these criteria. Waste acceptance criteria ensure that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.

Waste analysis plan - The waste analysis plan includes test methods, details of planned waste sampling and analysis, a description of the waste shipment screening and verification process, and a description of the QA/QC program. Sites are required to implement the applicable requirements of the WIPP WAP. (Reference 6, attachment B)

Waste characterization - The process of determining that TRU waste meets the requirements of the WAC by the acceptable performance of the activities defined by CBFO-approved site-specific plans.

Waste certification - Formal and documented declaration by sites that waste has been characterized and meets the requirements of the WIPP WAC.

Waste stream - A waste stream is waste material generated from a single process or from an activity which is similar in material, physical form, and hazardous constituents (reference 6, attachment B).