APPLICATION OF BERYLLIUM-7 AND LEAD-210 CONCENTRATION MEASUREMENTS TO MONITORING THE VALIDITY OF EFFLUENT AIR SAMPLING AT THE WASTE ISOLATION PILOT PLANT

Donald H. Gray

Environmental Evaluation Group
New Mexico

December 2003
APPLICATION OF BERYLLIUM-7 AND LEAD-210 CONCENTRATION MEASUREMENTS TO MONITORING THE VALIDITY OF EFFLUENT AIR SAMPLING AT THE WASTE ISOLATION PILOT PLANT

Donald H. Gray

Environmental Evaluation Group
7007 Wyoming Boulevard NE, Suite F-2
Albuquerque, New Mexico 87109

and

505 North Main Street
Carlsbad, New Mexico 88220

December 2003
The purpose of the New Mexico Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment of New Mexico. The WIPP Project, located in southeastern New Mexico, became operational in March 1999 for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The EEG was established in 1978 with funds provided by the U.S. Department of Energy (DOE) to the State of New Mexico. Public Law 100-456, the National Defense Authorization Act, Fiscal Year 1989, Section 1433, assigned the EEG to the New Mexico Institute of Mining and Technology and continued the original contract DE-AC04-79AL10752 through DOE contract DE-AC04-89AL58309. The National Defense Authorization Act for Fiscal Year 1994, Public Law 103-160, and the National Defense Authorization Act for Fiscal Year 2000, Public Law 106-65, continued the authorization.

EEG performs independent technical analyses on a variety of issues. Now that the WIPP is operational, these issues include facility modifications and waste characterization for future receipt and emplacement of remote-handled waste, generator site audits, contact-handled waste characterization issues, the suitability and safety of transportation systems, mining of new panels, analysis of new information as part of the five year recertification cycles as mandated by the WIPP Land Withdrawal Act. Review and comment is also provided on the annual Safety Analysis Report and Proposed Modifications to the Hazardous Waste Facility Permit. The EEG also conducts an independent radiation surveillance program which includes a radiochemical laboratory.

Matthew K. Silva
Director
EEG STAFF

Lawrence E. Allen, M.S., Geologic Engineer
George Anastas, M.S., CHP, PE, DEE, Health Physicist/Nuclear Engineer
Sally C. Ballard, B.S., Radiochemical Analyst
Radene Bradley, Secretary III
James K. Channell, Ph.D., CHP, Deputy Director
Patricia D. Fairchild, Secretary III
Donald H. Gray, M.A., Laboratory Manager
John Haschets, Assistant Environmental Technician
Linda P. Kennedy, M.L.S., Librarian
Lanny W. King, Environmental Technician
Thomas M. Klein, M.S., Environmental Scientist
Jill Shortencarier, Executive Assistant
Matthew K. Silva, Ph.D., Director
Susan Stokum, Administrative Secretary
Ben A. Walker, B.A., Quality Assurance Specialist
Scott B. Webb, Ph.D., Health Physicist
Judith F. Youngman, B.A., Administrative Officer
ACKNOWLEDGMENTS

The author wishes to thank Dr. Matthew Silva, Dr. Jim Channell, Dr. Scott Webb, Mr. George Anastas, Mr. Larry Allen, Ms. Linda Kennedy, Mr. Thomas Klein and Mr. Ben Walker for their helpful comments and suggestions in review of the report. Also, thanks to Ms. Linda Kennedy for her work with the figures and Ms. Susan Stokum for her careful attention to detail during final word processing.
TABLE OF CONTENTS

FOREWORD .. iii
EEG STAFF ... iv
ACKNOWLEDGMENTS .. v
LIST OF TABLES ... viii
LIST OF FIGURES ... viii
ACRONYMS AND SYMBOLS ... ix
EXECUTIVE SUMMARY ... xi
INTRODUCTION .. 1
STATION A ... 2
WATER INFLOW .. 4
ATMOSPHERIC TRACERS ... 5
CONCLUSIONS AND RECOMMENDATIONS .. 9
REFERENCES ... 11
LIST OF EEG REPORTS ... 13
LIST OF TABLES

Table 1. Radiological Properties of 7Be and 210Pb.. 6
Table 2. Measured Activity Concentration (mBq/m3) of 7Be and 210Pb at Skid A-3 and Station D... 7

LIST OF FIGURES

Figure 1. Exhaust Shaft and Station A... 2
Figure 2. Station A Probe... 3
Figure 3. Idealized Schematic of WIPP Repository Airflow.................................. 5
Figure 4. Measured Concentrations of 7Be at Skid A-3 and Station D............... 8
Figure 5. Measured Concentrations of 210Pb at Skid A-3 and Station D.............. 8
ACRONYMS AND SYMBOLS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>Beryllium</td>
</tr>
<tr>
<td>Bq</td>
<td>Becquerel</td>
</tr>
<tr>
<td>CEMRC</td>
<td>Carlsbad Environmental Monitoring and Research Center</td>
</tr>
<tr>
<td>DOE</td>
<td>US Department of Energy</td>
</tr>
<tr>
<td>EEG</td>
<td>Environmental Evaluation Group</td>
</tr>
<tr>
<td>NESHAPS</td>
<td>National Emissions Standards for Hazardous Airborne Pollutants</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>TRU</td>
<td>Transuranic</td>
</tr>
<tr>
<td>TSP</td>
<td>Total Suspended Particulate</td>
</tr>
<tr>
<td>WIPP</td>
<td>Waste Isolation Pilot Plant</td>
</tr>
<tr>
<td>WTS</td>
<td>Washington TRU Solutions</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

The Waste Isolation Pilot Plant (WIPP) is an underground repository in southeast New Mexico owned and operated by the U.S. Department of Energy (DOE) for the purpose of safely disposing of transuranic (TRU) waste materials generated by the national defense programs. During normal operations, the underground rooms and drifts at WIPP are ventilated by three large induced draft exhaust fans. These fans pull approximately 425,000 cu ft/min down an intake shaft, through the repository, up a 4.3-meter-diameter exhaust shaft and out one or more exhaust vents to the atmosphere. A sampling station, called Station A, has been established near the top of the exhaust shaft so that a sample of the effluent air may be extracted immediately before the effluent air is discharged to the environment.

Over the past ten years two observations have generated concern regarding the validity of the aerosol sampling regime at Station A. First, as early as April 1993, there were indications that moisture in the exhaust shaft was interfering with the operation of hot-wire flow sensors (MVS 1993). Subsequently, video inspections of the probes and shaft liner revealed a build-up of salt deposits on the probes, water flowing into the shaft through several cracks in the liner and water droplets entrained in the exhaust airflow being carried up toward the probes. The probes were pulled on a regular basis for inspection and cleaning and were often found to be wet. One concern has been that the actual sampling conditions resulting from wet probes and sample lines at Station A have not been approximated by the test conditions used to characterize the operation of the sampling system and, therefore, the ability of the system to extract a representative sample from the exhaust airstream under all conditions was unproven.

Second, because of the moisture in the exhaust shaft, salt build-up on the sampling probe might reduce the efficacy of the sampling regime.

In September 2003 the Environmental Evaluation Group (EEG) began to reexamine archived data from analysis by gamma spectrometry of filter samples from Skid A-3 of Station A and from a more recently established sampling station, called Station D. Station D, located in the
E300 drift near the bottom of the exhaust shaft, samples air coming down the E300 drift leading from the active repository rooms. The E300 airflow accounts for about 70% of the air discharged from the exhaust shaft during normal operations. Station D conforms to the requirements of ANSI N13.1-1999 (Gadbury 2001) for representative sampling. Furthermore, Station D uses the same sample head design and the same sample media (filters) as are used at Station A, but is unaffected by water inflow to the exhaust shaft.

The purpose of the reexamination was to compare the efficacy of the sampling regime at Skid A-3 with that of the uncompromised sampling regime at Station D by tracking and comparing the measured concentrations of 7Be and 210Pb at the two sampling locations. Both 7Be and 210Pb are naturally-occurring radionuclides found in ambient air and are associated with the smaller (<2 micron diameter) aerosol particles. The results of the EEG analysis show that the <2 micron aerosol concentrations, using 7Be and 210Pb as tracers, were approximately the same for the samples of air drawn through the sampling filters at both Skid A-3 and Station D. Statistical examination of these data confirmed the two sampling stations to be highly correlated for each radionuclide, with correlation coefficients of 0.913 ($p = 0.004$) for 7Be and 0.866 ($p = 0.000$) for 210Pb.

This report assumes uniform mixing of the effluent aerosol across the exhaust shaft. With that caveat, these results support a conclusion that the presence of water in the exhaust shaft and salting up of the sampling probe during the period from September 2001 to the present had little effect on the collection of <2 micron aerosol particles at Skid A-3 and, consequently, for that period and for that aerosol size fraction, Station A measurements should be considered to be representative of the effluent airstream. Further work is needed and planned to determine whether this conclusion can be extended to include particles in the 2-10 micron range.
INTRODUCTION

The U.S. Department of Energy’s (DOE) Waste Isolation Pilot Plant (WIPP) in southeast New Mexico is the nation’s first nuclear waste repository dedicated to the permanent safe disposal of waste materials contaminated with transuranic (TRU) radionuclides from the national defense programs. The WIPP was designed and constructed to bury TRU waste 650 meters (2150 feet) underground in a 600-meter-thick (2000-feet-thick) layer of bedded salt called the Salado formation. At closure it is estimated the WIPP will contain over 6 million curies of radioactivity, with about half of the total from isotopes of plutonium and americium. The WIPP received its first shipment of waste in March 1999 and as of October 2, 2003, contained 15,299 m3 of waste materials (DOE 2003).

During normal operations the underground rooms and drifts at WIPP are ventilated by large induced draft exhaust fans which move air at a rate of approximately 425,000 cu ft/min through the repository, up a 4.3-meter-diameter exhaust shaft, and out one or more exhaust vents to the atmosphere. A sampling station, called Station A, has been established at the top of the exhaust shaft so that a sample of the effluent air may be extracted immediately before it is released to the environment. Station A consists of three independent sampling lines and instrument platforms called skids, supporting pumps, filter holders, and flow-monitoring equipment. The sampled air is split into three equal fractions which are each passed through sample filters at the rate of 2 cu ft/min to collect suspended aerosol particles. Efforts have been aimed at insuring that all three filter samples are true replicates. Each day the filters are collected by personnel from Washington TRU Solutions (WTS), the DOE’s management and operating contractor for WIPP; the Carlsbad Environmental Monitoring and Research Center; and the New Mexico Environmental Evaluation Group (EEG), a group of scientists and engineers mandated by Congress to carry out independent technical oversight of DOE activities at WIPP. The filters are then analyzed for various alpha-, beta-, and gamma-emitting radionuclides. The EEG uses the results of its analyses to verify WIPP’s compliance with federal standards limiting the public’s annual committed effective dose from WIPP operations, codified in 40 CFR 61 Subpart H, the National Emissions Standards for Hazardous Airborne Pollutants (NESHAPS).
Figure 1 depicts the top of the exhaust shaft and the sampling location at Station A. As shown, three independent sampling lines have been established. These are labeled A-1, A-2, and A-3. The lines are located at the east, west, and south sides of the exhaust shaft, approximately 2 feet from the shaft liner. Currently, the line on the south side of the shaft (A-3) is the designated “skid of record” for determination of compliance with NESHAPS. Each sample line delivering sampled air to the splitter block in the enclosure extends into the exhaust airstream 21 feet below ground surface. The lines themselves are 2-inch diameter steel tubes. The lower end of the lines support a shrouded probe assembly (see Figure 2) designed and tested by Texas A&M University (McFarland et al. 1988) to extract a representative sample of the effluent air. The suspended aerosol particles are collected on Versapore® filters having a 3-micron absolute pore diameter.

Figure 1. Exhaust Shaft and Station A
In operation, the shrouded probe can accumulate deposits of salt and other minerals, as well as diesel soot produced by underground equipment, which may partially block the probe opening and the waistline area shown in Figure 2. Studies (Chandra et al. 1993) at Texas A&M have suggested that a 6-mm-thick buildup on the inner surface of the probe tip could reduce the probe’s sampling efficiency for 10-micron particles, expressed as the ratio of the aerosol concentration at the exit of a partially-blocked probe to that of a clean unrestricted probe, by as much as 50%, given the same conditions of mean exhaust-stream airflow and aerosol concentration. These same experiments indicated that blockage of as much as one-third of the waistline had only a minimal effect on sampling efficiency.
WATER INFLOW

The above characterization tests were conducted under dry conditions. As early as April 1993, there were indications that moisture in the exhaust shaft was interfering with the operation of hot-wire flow sensors (MVS 1993). A few months later (Chandra et al. 1993), video inspections of the in-shaft probes revealed a build-up of salt deposits. Subsequently, the probes were pulled on a regular (approximately quarterly) basis for inspection and cleaning and were often found to be wet. By 1998 video inspections of the exhaust shaft liner and the probes clearly showed water flowing into the shaft through several cracks in the liner at about 85 feet below the shaft collar. These inspections showed water droplets entrained in the exhaust airflow being carried upward toward the probes. In early 2000, WTS initiated monthly probe pulls for inspection and cleaning.

The EEG first expressed concern that the presence of water in the exhaust shaft may invalidate effluent air monitoring at Station A in a letter to DOE (Neill 1995) in May 1995 and published that concern in an EEG report (Kenney et al. 1999) in October 1999. The basis of the concern has been that the actual sampling conditions resulting from wet probes and lines at Station A have not been approximated by the test conditions used to characterize the operation of the sampling system and, therefore, the ability of the system to extract a representative sample from the exhaust airstream under all conditions was unproven. Given that concern, it would not have been possible for EEG, based on measurements at Station A alone, to independently assess compliance with NESHAPs, with confidence.
ATMOSPHERIC TRACERS

In September 2003 the EEG began to reexamine archived data from analysis by gamma spectrometry of filter samples from the Station A “skid of record” (A-3) and from a more recently established sampling station, called Station D. Figure 3 shows an idealized schematic of the repository.

![Diagram of WIPP Repository Airflow](image)

Figure 3. Idealized Schematic of WIPP Repository Airflow

Air flows from the active repository rooms, through the E300 drift, past Station D, and up the exhaust shaft. Hence, the sampling at Station D takes place at the underground level and is not subjected to moisture in the exhaust shaft. The E300 airflow accounts for about 70% of the air discharged from the exhaust shaft during normal operations. Station D conforms to the requirements of ANSI N13.1-1999 (Gadbury 2001) for representative sampling. Furthermore, Station D uses the same sample head design and the same sample media (filters) as those used at Station A.

The purpose of the reexamination was to compare the efficacy of the sampling regime at Skid A-3 with that of the uncompromised sampling regime at Station D by tracking and comparing the measured concentrations of 7Be and 210Pb at the two sampling locations. Both 7Be and 210Pb
are naturally-occurring radionuclides. The action of cosmic rays on nitrogen and oxygen in the stratosphere produces ^7Be and once formed it becomes attached to submicron size particles (NCRP 1987). Measurements of ^7Be in samples collected near the surface of the earth are used as an indicator of meteorological processes which cause the atmosphere to “turn over”. The radon daughter ^{210}Pb is produced by decay of natural uranium in the surface of the earth and, in the atmosphere, is associated predominantly with particles of <2 micron diameter (Marley 2000). Both ^7Be and ^{210}Pb are widely used to monitor processes, such as precipitation, which remove aerosol particles from the air (Dibb 1990). The radiological properties of each are shown in Table 1 (Lederer 1978).

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Half-life</th>
<th>Gamma Energy</th>
<th>Gamma Intensity (Abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^7Be</td>
<td>53.4 days</td>
<td>478 keV</td>
<td>10.4%</td>
</tr>
<tr>
<td>^{210}Pb</td>
<td>22.3 years</td>
<td>46.5 keV</td>
<td>4.05%</td>
</tr>
</tbody>
</table>

The reexamination included data files resulting from gamma spectrometry of filter samples collected since September 2001. The record has been continuous for Skid A-3, but not for Station D. The filters from both stations were grouped into monthly composites. For samples collected in 2002 and before, in most cases, the Station D composites were not assayed until many months after collection. Because of the relatively short radiological half-life of ^7Be, it was not possible to determine a ^7Be activity in those samples.

During sample collection at both stations, an automatic flow recorder kept a minute-by-minute record of airflow through the sample filters. Integration of these data produced measurements of the total volume of air sampled for each composite. The measured volumes were then used to calculate ^7Be and ^{210}Pb concentrations for each composite in millibecquerels (10^{-3} Bq) per cubic meter (mBq/m3). The results of these measurements are summarized in Table 2, which also includes a ratio of the concentration measured at Skid A-3 to the concentration measured at Station D.
<table>
<thead>
<tr>
<th>Coll. Date</th>
<th>Skid A-3 7Be</th>
<th>Sta. D 7Be</th>
<th>(A/D) 7Be</th>
<th>Skid A-3 210Pb</th>
<th>Sta. D 210Pb</th>
<th>(A/D) 210Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep-01</td>
<td>4.40</td>
<td>0.79</td>
<td>0.94</td>
<td>0.840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct-01</td>
<td>6.00</td>
<td>1.16</td>
<td>1.16</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov-01</td>
<td>4.92</td>
<td>0.94</td>
<td>1.09</td>
<td>0.862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-01</td>
<td>5.63</td>
<td>1.08</td>
<td>0.97</td>
<td>1.113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-02</td>
<td>4.81</td>
<td>1.09</td>
<td>1.08</td>
<td>1.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-02</td>
<td>3.75</td>
<td>0.89</td>
<td>0.99</td>
<td>0.890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar-02</td>
<td>5.38</td>
<td>0.79</td>
<td>0.82</td>
<td>0.963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr-02</td>
<td>5.57</td>
<td>0.82</td>
<td>0.72</td>
<td>1.139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May-02</td>
<td>5.41</td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun-02</td>
<td>4.72</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul-02</td>
<td>4.20</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug-02</td>
<td>4.66</td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep-02</td>
<td>4.62</td>
<td>1.10</td>
<td>0.87</td>
<td>1.264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct-02</td>
<td>3.82</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov-02</td>
<td>3.12</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec-02</td>
<td>2.54</td>
<td>2.01</td>
<td>1.264</td>
<td>0.65</td>
<td>0.73</td>
<td>0.890</td>
</tr>
<tr>
<td>Jan-03</td>
<td>2.61</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-03</td>
<td>3.71</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar-03</td>
<td>4.97</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr-03</td>
<td>5.00</td>
<td>5.36</td>
<td>0.933</td>
<td>0.65</td>
<td>0.62</td>
<td>1.048</td>
</tr>
<tr>
<td>May-03</td>
<td>5.40</td>
<td>6.45</td>
<td>0.837</td>
<td>0.68</td>
<td>0.72</td>
<td>0.932</td>
</tr>
<tr>
<td>Jun-03</td>
<td>5.38</td>
<td>4.95</td>
<td>1.087</td>
<td>0.57</td>
<td>0.49</td>
<td>1.164</td>
</tr>
<tr>
<td>Jul-03</td>
<td>4.64</td>
<td>4.03</td>
<td>1.151</td>
<td>0.65</td>
<td>0.61</td>
<td>1.066</td>
</tr>
<tr>
<td>Aug-03</td>
<td>3.80</td>
<td>4.28</td>
<td>0.888</td>
<td>0.71</td>
<td>0.73</td>
<td>0.973</td>
</tr>
<tr>
<td>Sep-03</td>
<td>3.81</td>
<td>3.44</td>
<td>1.108</td>
<td>0.69</td>
<td>0.66</td>
<td>1.045</td>
</tr>
</tbody>
</table>

Mean ± 1SD 1.04 ± 0.16
Mean ± 1SD 1.01 ± 0.12

The results of the concentration measurements for 7Be and 210Pb are presented graphically in Figures 4 and 5 respectively.
The vertical bars in Figures 4 and 5 depict the 95% confidence intervals of the measurements. Statistical examination of these data confirmed the two sampling stations to be highly correlated for each radionuclide, with correlation coefficients (r) of 0.913 (p = 0.004) for 7Be and 0.866 (p = 0.000) for 210Pb.
CONCLUSIONS AND RECOMMENDATIONS

It should be noted that the concentrations of 7Be and 210Pb reported here are similar to those reported by other investigators (NCRP 1987) in surface air. This report assumes that the aerosol is uniformly mixed across the 4.3-meter-diameter exhaust shaft, as required by ANSI N13.1 1999. During the period covered by this report, video inspections of the condition of the sampling probes and of the exhaust shaft liner continued to show evidence of water inflow. Probe pulls during which the sample probes were hoisted out of the exhaust shaft for inspection and cleaning continued to show that the probes were often wet. However, the results reported here show that the aerosol concentrations, using 7Be and 210Pb as tracers, were approximately the same for the samples of air drawn through the filters at both Skid A-3 and Station D. These results support a conclusion that the presence of liquid water in the sampling system and salting up of the sampling probes during the period from September 2001 to the present had little effect on the collection of <2-micron-diameter aerosol particles at Skid A-3 and, consequently, for that period and for that aerosol size fraction, Skid A-3 measurements should be considered to be representative of the effluent airstream under the assumption of uniform mixing across the exhaust shaft.

Further work is needed to determine whether this conclusion holds for larger aerosol particles (2 to 10 micron diameter). Particles of 10 micron diameter are specifically benchmarked in ANSI N13.1 1999. The EEG (Rodgers 1987) suggested that at least 50% of 10-micron particles should be delivered by the sampling system to the collection media. Because uranium (238U and 234U) in the local environment comes predominantly from soil resuspension which generally produces particles in the larger size ranges (Seinfeld 1975, p89), 238U and 234U concentration measurements at Skid A-3 and Station D should correlate with the concentration of larger-sized particles. Also, the total suspended particulate (TSP) mass is typically bimodal, with one maximum occurring between 0.1 and 1.0 micron and another between 1 and 30 microns (Seinfeld 1975, p89). Rodgers (1987) has stated that particles as large as 100 microns could be carried up the exhaust shaft, even under low flow conditions. Consequently, TSP mass should be significantly influenced by larger particles. Therefore, the EEG will include measurements of
isotopic uranium and TSP mass in the suite of analyses for Station A and Station D samples beginning with the 2003 sampling year to attempt to determine the magnitude of larger particle losses, if any, occurring at Skid A-3.

The EEG will continue to regularly monitor 7Be and 210Pb in the samples collected at Stations A and D. As long as there continues to be little statistical difference between the concentrations at Stations A and D, we will conclude, with the qualifications stated above regarding uniform mixing and particle size, that the sampling processes at Stations A and D are equally valid. However, continuation of the regular inspection and maintenance programs already implemented by Washington TRU Solutions is needed to support this conclusion.
REFERENCES

| EEG-8 | Wofsy, Carla, *The Significance of Certain Rustler Aquifer Parameters for Predicting Long-Term Radiation Doses from WIPP*, September 1980. |

EEG-14 Not published.

EEG-22 EEG Review Comments on the Geotechnical Reports Provided by DOE to EEG Under the Stipulated Agreement Through March 1, 1983, April 1983.

EEG-31 Ramey, Dan, Chemistry of the Rustler Fluids, July 1985.

EEG-34 Chaturvedi, Lokesh, (edi.), The Rustler Formation at the WIPP Site, February 1987.

EEG-36 Lowenstein, Tim K., Post Burial Alteration of the Permian Rustler Formation Evaporites, WIPP Site, New Mexico, April 1987.

EEG-63 Maleki, Hamid and Lokesh Chaturvedi, Stability Evaluation of the Panel 1 Rooms and the E140 Drift at WIPP, August 1996.

