Mr. Steve Warren, General Manager
Westinghouse TRU Solutions
P.O. Box 2078
Carlsbad, NM 88221-2078

Subject: Transmittal of Audit Report for Audit A-04-28

Dear Mr. Warren:

The Carlsbad Field Office performed Audit A-04-28 of Washington TRU Solutions (WTS) on June 2, 3, and 7, 2004. No Corrective Action Reports were issued as a result of the audit. The audit team concluded that overall, the portions of the WTS Environmental Monitoring Program selected for audit are adequate, satisfactorily implemented, and effective. The details of the audit, as well as the audit team's conclusions, are detailed within the enclosed audit report.

Should you have any questions concerning this audit, please contact me at (505) 234-7442.

Sincerely,

M. Lea Chism
Quality Assurance Specialist

Enclosure

cc: w/enclosure
A. Holland, CBFO
G. Basabilvazo, CBFO
S. Casey, CBFO
M. Eagle, EPA
B. Shroff, EPA
S. Zappe, NMED
D. Winter, DNFSB
M. Lipscomb, WTS
D. Reber, WTS
L. Will, WTS
J. May, CTAC
S. Harrison, CTAC
L. Greene, WRES
D. Bignell, WRES
J. Siegel, WRES
WIPP Operating Records, MS 486-06
CBFO QA File
CBFO M&RC

*ED denotes electronic distribution
CBFO/QA/MLC/LS/04-1544/UFC 2300.00
U.S. DEPARTMENT OF ENERGY
CARLSBAD FIELD OFFICE

AUDIT REPORT
OF
WASHINGTON TRU SOLUTIONS (WTS)
CARLSBAD, NEW MEXICO
AUDIT NUMBER A-04-28
June 2, 3, and 7, 2004
SELECTED PORTIONS OF THE WTS ENVIRONMENTAL MONITORING PROGRAM

Prepared by: Jeffrey D. May, CTAC
Audit Team Leader

Approved by: Ava L. Holland, CBFO
Quality Assurance Manager

Date: 6/33/04
Date: 7/6/04
EXECUTIVE SUMMARY

Carlsbad Field Office (CBFO) Audit A-04-28 was conducted to evaluate Washington TRU Solutions (WTS) adequacy and implementation of WTS data processing activities over the last seven years as they relate to selected portions of the Environmental Monitoring program. The audit was conducted at the WTS facility and in the Skeen-Whitlock Building (SWB) June 2, 3, and 7, 2004.

The audit team concluded that overall, the applicable WTS procedures are adequate relative to the flow-down of the data processing requirements from the Compliance Certification Application (CCA) and the Compliance Recertification Application (CRA). The audit team also concluded that the requirements contained within the CCA and CRA in relation to data processing are being satisfactorily implemented through the applicable WTS implementing procedures, and that the selected processes are effective.

The audit team identified four concerns during the performance of the audit. As a result of these concerns, four recommendations were offered for WTS managements consideration (Recommendations 1 through 4).

SCOPE

The audit evaluated the adequacy and implementation of WTS data processing activities over the last seven years as they relate to selected portions of the Environmental Monitoring program.

The specific activities audited included:

- Delaware Basin Monitoring
- Groundwater Surveillance Program
- Geomechanical Monitoring Program
- Subsidence Monitoring
- Monitoring and Data Software

The following data processing activities were audited for each of the activities listed above:

- Prepping methods to ensure data integrity
- Methods used to collect and qualify data
- Methods used to compile sets of data in a consistent manner, and use of properly qualified software
- Data analysis methods (e.g., V&V, statistical analysis, preparation of summary data)
- Methods used to transfer and report data in regulatory documents
- Electronic data preservation methods
AUDIT TEAM

Jeff May Audit Team Leader, CBFO Technical Assistance Contractor (CTAC)
Jim Schuetz Auditor, CTAC
Jim Kenney Technical Specialist, CTAC
Lokesh Chaturvedi Technical Specialist, CTAC

AUDIT PARTICIPANTS

Individuals contacted during the audit are identified in Attachment 1. A pre-audit conference was held in the WTS Engineering Conference Room on June 2, 2004. A daily meeting was held with WTS management and staff to discuss issues and potential deficiencies. The audit was concluded with a post-audit conference held in the SWB conference room T-224 on June 7, 2004.

SUMMARY OF AUDIT RESULTS

Program Adequacy, Implementation, and Effectiveness

The audit team concluded that overall, the applicable WTS procedures are adequate relative to the flow-down of data processing requirements from the CCA and the CRA. The audit team also concluded that the requirements contained within the CCA and CRA in relation to data processing are being satisfactorily implemented through the applicable WTS implementing procedures and that the selected processes are effective.

Audit Details

WTS implementing procedures included in the audit are identified in Attachment 2. Details of audit activities, including specific objective evidence reviewed, are contained in the audit checklists.

5.2.1 Delaware Basin Monitoring

The Delaware Basin Monitoring Program was evaluated in relation to data processing activities. An interview was conducted with the senior engineer assigned to the program. During this evaluation, objective evidence relating to the data processing activities was evaluated, including the Delaware Basin Drilling Surveillance Plan, WP 02-PC.02, Rev. 0, implementing procedures, and vendor-supplied raw data. The reviews and interviews focused on the data processing activities and verified that the following activities were performed in accordance with an approved program and are implemented in a satisfactory and effective manner.

Data processing prepping methods to ensure data integrity
Methods used to collect and qualify data
Methods used to compile sets of data

Data analysis methods

Methods to transfer data and report data in regulatory documents

Data preservation methods

One concern resulted in the recommendation that WTS finalize WP 02 EC 3002, Rev. 2 prior to performing further data collection (Recommendation No. 1). Overall, the audit team determined that the data processing controls are adequate, satisfactorily implemented, and effective.

5.2.2 Groundwater Surveillance Program

The WTS Groundwater Surveillance Program was evaluated in relation to data processing activities. The audit team interviewed five WTS scientists and associate scientists who are responsible for conducting this program. Using the CRA, Section 7.2.3, and Appendices MON and DATA as guides, the auditors queried the WTS scientists regarding procedures and the frequency of sampling, analysis, data collection, and record keeping. The audit team evaluated objective evidence related to data processing activities, including the implementing plan and procedures, data package WQSP-1 Culebra, Round 17, the Monthly Groundwater Level Measurement Report, and the storage methods for the data. The primary objective evidence examined was the WTS Groundwater Monitoring Program Plan (WP 02-1, Rev. 6). In addition, two WTS technical procedures were examined: Groundwater Level Measurement (WP 02-EM 1014, Rev. 3) and Procedure for Data Validation, Rev. 2 (WO 02-EM 3003). Methods for the collection of data files were also examined.

The audit resulted in no concerns in relation to the Groundwater Surveillance Program. Overall, the audit team determined that the data processing controls are adequate, satisfactorily implemented, and effective.

5.2.3 Geomechanical Monitoring Program

The WTS Geomechanical Monitoring Program was evaluated in relation to data processing activities within the program. The audit team interviewed a principal engineer, a senior engineer, and an engineering technician who are responsible for conducting this program. Using the CRA, Section 7.2.3, and Appendices MON and DATA as guides, the auditors queried the WTS personnel regarding the procedures and frequency of sampling, analysis, data collection, and record keeping.

The primary objective evidence examined was the WIPP Geotechnical Engineering Program Plan (WP 07-01, Rev. 3), effective date 12/7/02. In addition, three WTS technical procedures were examined: Geomechanical Instrument Data Processing, WP07-EU 1303, Rev. 0, effective date 1/15/01; Manually Acquired Geomechanical Instrumentation Data, WP 07-EU 1301, Rev. 4, effective date 5/25/04; and Geologic
and Fracture Mapping of Facility Horizon Drifts, WP 07 – EU 1001, Rev. 0, effective date 8/9/02. In addition, the collection of data files was examined and the data collection and processing system was observed.

Two concerns were identified during the audit in relation to the Geomechanical Monitoring Program, which were both classified as recommendations to be offered to WTS management for consideration. The first recommendation related to the use and development of a standardized form or memo to notify Underground Operations, Engineering and Safety of anomalies that may impact ground control and/or safety of underground operations (Recommendation No. 2). The second recommendation related to notification of Geotechnical Engineering in writing, the details of any encounter of conditions during mining, such as a pressurized air pocket (Recommendation No. 3). Overall, the audit team determined that the data processing controls are adequate, satisfactorily implemented, and effective.

5.2.4 Subsidence Monitoring

The Subsidence Monitoring Program was evaluated in relation to the data processing activities. An interview was conducted with the senior engineer, engineer, and technical writer assigned to the program. During this evaluation, objective evidence relating to the data processing activities was evaluated, including the Subsidence Survey Data Acquisition Report, the WIPP Underground and Surface Surveying Program, the WIPP Subsidence Monument Leveling Survey 2003, and the Subsidence Monitoring Software Quality Assurance Plan, implementing procedures, and acquired raw data. The reviews and interviews focused on the data processing activities and verified that the following activities were performed in accordance with an approved program and are implemented in a satisfactorily and effective manner.

Data processing prepping methods to ensure data integrity

Methods used to collect and qualify data

Methods used to compile sets of data

Data analysis methods

Methods to transfer data and report data in regulatory documents

Data preservation methods

The audit resulted in no concerns in relation to the Subsidence Monitoring Program. Overall the audit team determined that the data processing controls are adequate, satisfactorily implemented, and effective.

5.2.5 MONITORING AND DATA SOFTWARE EVALUATION

The audit team evaluated selected software applications and associated data entry procedures related to data used by WTS for the Environmental Monitoring Program.
The audit team evaluated software used by the Groundwater Monitoring, Subsidence Monitoring, Delaware Basin Monitoring, Geomechanical Monitoring, and Waste Receipt and Emplacement groups for data entry and reporting and determined that these groups utilize separate software applications to both collect and report data and that they have classified and evaluated this software using a graded approach. The groups use the following types of software and have applied an appropriate level of Software Quality Assurance based on the classification.

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Software Application(s)</th>
<th>Classification</th>
<th>Software Documentation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Monitoring</td>
<td>MS Excel spreadsheet</td>
<td>Data entered into a commercial off-the-shelf (COTS)</td>
<td>N/A, software holds data only and there is no functionality contained in the spreadsheet.</td>
<td>None</td>
</tr>
<tr>
<td>Subsidence Monitoring</td>
<td>WILDsoft, COLFFIX, and DIGILEV</td>
<td>WTS data generated by survey equipment using a COTS embedded software application</td>
<td>User manuals available and the Subsidence Monitoring group evaluated the software and tested the functionality for the intended use.</td>
<td>None</td>
</tr>
<tr>
<td>Delaware Basin Monitoring</td>
<td>NwMEXICO. mdb, TExAS.mdb, DELAWARE.DWG, and DELAWARE _1.DWG</td>
<td>WTS data entered into a commercial off-the-shelf (COTS) software application</td>
<td>N/A, software holds data only and there is no functionality contained in the drawing or in the database.</td>
<td>A ".mdb" file extension denotes an MS Access database and a ".dwg" file extension denotes an AUTOCad LT drawing.</td>
</tr>
</tbody>
</table>

The audit team reviewed groundwater analysis documents and groundwater reports and determined that groundwater analysis is performed by a contract laboratory that submits paper reports of data that are in turn manually entered into a spreadsheet for generating graphical report items. The spreadsheet is used to generate the graphical report items only and does not manipulate data. The graphical report items are reviewed and verified within the final report; therefore, the audit team determined that the software used for generating the graphical report items is exempt from software management. The audit team determined that the generation and maintenance of
paper records of the data and final reports are adequate and in accordance with WTS procedures.

The audit team reviewed the Software Quality Assurance Plan for subsidence monitoring software. The audit team determined that software is embedded within survey equipment that is used to generate subsidence data reports in paper format. Data from these reports is manually entered into a spreadsheet that generates a graph but does not manipulate data for the graphing output. The audit team determined that the software was adequately classified as COTS and was evaluated and tested.

The audit team reviewed raw report data and final reports of Delaware Basin well monitoring. The audit team determined that raw data are gathered, entered into drawing and database software applications, and maintained as records in accordance with WTS procedures. The audit team also determined that the software applications used to generate drawings and tables for the final reports do not manipulate data during the generation process and are therefore exempt from software management. The audit team determined that reports are generated, reviewed, and submitted as records in accordance with WTS procedures.

The audit team witnessed a demonstration and evaluated software lifecycle documentation for POLL.exe, PLOTMINE.exe, and JrGIS.exe software applications used for geomechanical reporting. The demonstration included functions used to electronically upload data, manually enter data, and generate reports. The audit team determined that the software applications are adequately classified as developed software, that software lifecycle documents and testing are adequate for this classification, and that data are uploaded, entered, and reported in accordance with WTS procedures.

The audit team witnessed a demonstration of data entry of receipt and emplacement data into the WIPP Waste Information System (WWIS). The demonstration included identification of data fields from paper record copy and entry of data into the WWIS. The audit team verified storage of receipt and emplacement data paper records. The audit team determined that data are identified and entered, and that data forms are submitted to records in accordance with WTS procedure. The audit team reviewed the WTS software quality assurance plan and discussed the maintenance of WWIS software with the WWIS data administrators and determined that the WWIS software application has received full NQA Part 2a Section 2.7 software quality assurance documentation. The WWIS software application and WWIS data are maintained by back-up of the WTS computer server. WWIS data are queried and reported to repository engineers for inventory reporting. The WWIS data administrator manually compares WWIS queries with already tested inventory summary reports as a verification of the query. WWIS does not manipulate data for inventory reporting, but submits data in a format readily usable by repository engineers for data manipulation using other software. The audit team determined that the WWIS software and WWIS data are controlled and maintained in accordance with WTS procedure.
One concern was identified during the audit in relation to the Geomechanical area, which was classified as a recommendation to be offered to WTS management for consideration. This recommendation was related to use of the Installation and Check-out form and the WTS Controlled Software Log (Recommendation No. 4).

Overall, the audit team determined that the monitoring software, as they relate to data processing, are adequate, satisfactorily implemented, and effective.

SUMMARY OF DEFICIENCIES

Corrective Action Reports

During the audit, the audit team may identify Conditions Adverse to Quality (CAQ) and document such conditions on Corrective Action Reports (CARs).

Condition Adverse to Quality (CAQ) – An all-inclusive term used in reference to any of the following: failures, malfunctions, deficiencies, defective items, nonconformances, and technical inadequacies.

Significant Condition Adverse to Quality – A condition which, if uncorrected, could have a serious effect on safety, operability, waste confinement, TRU waste site certification, regulatory compliance demonstration, or the effective implementation of the QA program.

No CARs were initiated as a result of Audit A-04-28.

Deficiencies Corrected During the Audit (CDA)

During the audit, the audit team may identify CAQs. The audit team members and the Audit Team Leader (ATL) evaluate the CAQs to determine if they are significant. Once a determination is made that the CAQ is not significant, the audit team member, in conjunction with the ATL, determines if the CAQ is an isolated case requiring only remedial action and therefore can be Corrected During the Audit (CDA). Deficiencies that can be classified as CDA are those isolated deficiencies that do not require a root cause determination or actions to preclude recurrence, and those for which correction of the deficiency can be verified prior to the end of the audit. Examples include:

- One or two minor changes required to correct a procedure (isolated)
- One or two forms not signed or not dated (isolated)
- One or two individuals have not completed a reading assignment

Upon determination that the CAQ is isolated, the audit team member, in conjunction with the ATL, evaluates/verifies any objective evidence/actions submitted or taken by the audited organization and determines if the condition was corrected in an acceptable
manner. Once it has been determined that the CAQ has been corrected, the ATL categorizes the condition as a CDA.

No deficiencies requiring remedial action only were identified as a result of the audit.

SUMMARY OF OBSERVATIONS AND RECOMMENDATIONS

During the audit, the audit team may identify potential problems or suggestions for improvement that should be communicated to the audited organization. The audit team members, in conjunction with the ATL, evaluate these conditions and classify them as Observations or Recommendations using the following definitions:

Observation – A condition that, if not controlled, could result in a CAQ.

Recommendations – Suggestions that are directed toward identifying opportunities for improvement and enhancing methods of implementing requirements.

Once a determination is made, the audit team member, in conjunction with the ATL, categorizes the condition appropriately.

Observations

No Observations were identified as a result of the audit.

Recommendations

The following Recommendations were presented for WTS management consideration:

1. The frequency of data collection for the Delaware Basin is being performed as required by the CRA and a new revision (Rev. 2) to WP 02 EC 3002, which is currently being written. It is recommended that WTS finalize WP 02 EC 3002, Rev. 2, prior to performing further data collection.

2. It is recommended that Geotechnical Engineering develop a standardized form or memo to use to notify Underground Operations, Engineering, and Safety, of anomalies that may impact the ground control and/or safety of underground operations discovered during the assessment of convergence measurements and geotechnical observations. This should be done as soon as such anomalies are noted, in addition to the bi-monthly report. Currently, this is being done verbally.

3. It is recommended that the Mine Operations notify Geotechnical Engineering in writing the details of any encounter of conditions during mining, such as a pressurized air pocket. It is further recommended that Geotechnical Engineering include such information in the annual Geotechnical Analysis Report.

4. Installation and Checkout forms are complete for POLL.exe, PLOTMINE.exe, and JrGIS.exe software where these tested and approved software applications
were installed for the current version. The forms include the operating environment, but do not indicate the unique identification of the hardware operating computer. Recommend that the installation date be determined and the appropriate Installation and Checkout form be updated with a note to show the unique identification of the hardware operating computer. It is also recommended that the WTS Controlled Software Log be expanded to include the unique identification of the hardware operating computer(s) to provide an indication, as appropriate, that the software resides on a single hardware operating computer or that the software applications are installed on multiple hardware operating computers. This will provide a means, in addition to the installation and checkout documentation, to enhance the tracking of configuration management.

8.0 LIST OF ATTACHMENTS

Attachment 1: Personnel Contacted During the Audit
Attachment 2: WTS Implementing Procedures
Attachment 3: Summary Table of Audit Results
PERSONNEL CONTACTED DURING THE AUDIT

<table>
<thead>
<tr>
<th>NAME</th>
<th>ORGANIZATION</th>
<th>PREAUDIT MEETING</th>
<th>CONTACTED DURING AUDIT</th>
<th>POST AUDIT MEETING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balderrama, Mel</td>
<td>Associate Scientist/WRES</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bignell, Dale</td>
<td>Reg Compliance Mgr./WTS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boatwright, Wesley</td>
<td>Associate Scientist/WRES</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Carrasco, Rey</td>
<td>Principal ENGR./WTS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Casey, Steve</td>
<td>Environmental Compliance/CBFO</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Crawley, Mark</td>
<td>Principal Scientist/WRES</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Huges, Dave</td>
<td>EPA Compliance Programs/WRES</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kouba, Steve</td>
<td>EPA Compliance Programs/WRES</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kump, Dave</td>
<td>NTP/Transportation/WTS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lewis, ED</td>
<td>Sr. Engineer/WTS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Madl, Larry</td>
<td>Compliance Engr./WRES</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mathieu, Dennis</td>
<td>Eng. Tech/WTS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Patchet, Stan</td>
<td>Mgr. Mine Eng./WTS</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Reeves, Ron</td>
<td>WRES Program Mgr.</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Richardson, Ron</td>
<td>Sr. Scientist, WRES</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Salness, Rick</td>
<td>Hydrogeologist, WRES</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Santo, Linda</td>
<td>Mine Eng./WTS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Schrock, Beverly</td>
<td>Integrated Waste Ops/WTS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Siegel, Joel</td>
<td>Manager/WRES</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Speed, Dave</td>
<td>NTP/Transportation/WTS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vandekraats, John</td>
<td>Geotechnical Eng./WTS</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Will, Lisa</td>
<td>Ext. Oversight/WTS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>ORGANIZATION</td>
<td>PREAUDIT MEETING</td>
<td>CONTACTED DURING AUDIT</td>
<td>POST AUDIT MEETING</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Youngerman, Steve</td>
<td>Dep. Ops Mgr./WTS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zimmerly, Ben</td>
<td>Sr. Engineer/WTS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Activities</td>
<td>Applicable WTS Documents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware Basin Monitoring</td>
<td>DOE/WIPP-99-2308 rev 4 WP 02-EC3002 Rev 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater Surveillance Program</td>
<td>WP 02-1 Rev 6 WP 02-EM 1014 Rev 3 WP 02 EM 3003 Rev 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geomechanical Monitoring Program</td>
<td>WP 07-01 Rev 3 WP 07 EU 1301 Rev 4 WP 07 EU 1303 Rev 0 WP 07 EU 1001 Rev 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsidence Monitoring</td>
<td>WP 09-ES4001 Rev 0 WP 09-ES.01 Rev 4 DOE/WIPP 04-2293</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring and Data Software</td>
<td>WP-05-WH1011 WP-02-EC3002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary Table of Audit Results

<table>
<thead>
<tr>
<th>Audit Elements</th>
<th>Concern Classification</th>
<th>QA Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CARs</td>
<td>CDAs</td>
</tr>
<tr>
<td>Delaware Basin Monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundwater Surveillance Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geomechanical Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsidence monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring and Data Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Definitions

- **E** = Effective
- **S** = Satisfactory
- **I** = Indeterminate
- **M** = Marginal

Concern Classification

- **CARs** = Corrective Action Report
- **CDAs** = Corrected During Audit
- **Obs** = Observation
- **Rec** = Recommendation
- **Adequacy**
- **Implementation**
- **Effectiveness**

- **A** = Adequate
- **NE** = Not Effective
- **NA** = Not Adequate