Mr. John E. Kieling, Chief
Hazardous Waste Bureau
New Mexico Environment Department
2905 Rodeo Park Drive East, Building 1
Santa Fe, New Mexico 87505-6303

Subject: Transmittal of Revised Documents and CBFO Responses to NMED Comments on the Final Audit Report for Audit A-13-18 of the INL/CCP

Dear Mr. Kieling:

This letter transmits the revised Final Audit Report for Audit A-13-18 of the Idaho National Laboratory Central Characterization Program (INL/CCP) and the Carlsbad Field Office (CBFO) responses to the New Mexico Environment Department (NMED) comments received by letter dated January 6, 2014.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

If you have any questions, please contact Mr. Michael R. Brown, Director of the CBFO Office of Quality Assurance, at (575) 234-7476.

Sincerely,

Jose R. Franco, Manager
Carlsbad Field Office

Enclosures
Mr. John E. Kieling

D. Bryson, CBFO
M. Brown, CBFO
J.R. Stroble, CBFO
G. Basabilvazo, CBFO
M. Navarrete, CBFO
D. Miehls, CBFO
T. Morgan, CBFO
M. Pinzel, CBFO
N. Castaneda, CBFO
R. Joglekar, EPA
S. Ghose, EPA
R. Lee, EPA
T. Kliphuis, NMED
S. Holmes, NMED
R. Maestas, NMED
C. Smith, NMED
V. Daub, CTAC
R. Allen, CTAC
T. Ackman, CTAC
D. Harvill, CTAC
G. White, CTAC

*ED denotes electronic distribution

cc: w/enclosures
WIPP Operating Record * EF
CBFO QA File EF
CBFO M&RC EF

*EF denotes electronic file format
Appendix A
Response to NMED Approval Letter dated January 6, 2014
NMED comments on the
Idaho National Laboratory/Centralized Characterization
project (INL/CCP) final audit report A-13-18

NMED's review indicated that the body of the Audit Report and the C6 checklists generally appear to address the applicable elements. NMED provides the following comment for the Permittees consideration:

The C6 Checklist Version Dated May 8, 2012

1. Questions 9 and 149 of the C6 Checklist indicate that the procedure given, CCP-TP-068, answers the question. This procedure was not included in the Audit Report in hardcopy or electronically.

Response:
Procedure CCP-TP-068 was added to the report in Attachment 4, Table of Audited Documents, and Attachment 6, Procedure Revision Matrix. Procedure CCP-TP-068 will also be sent electronically.

2. Questions 68 and 69 of the C6 Checklist indicate that the procedure given, CCP-PO-002, answers the question. The procedure was not in the Audit Report in hardcopy or electronically.

Response:
Procedure CCP-PO-002 was added to the report in Attachment 4, Table of Audited Documents, and Attachment 6, Procedure Revision Matrix. Procedure CCP-PO-002 will also be sent electronically.

3. Question 80 of the C6 Checklist does not have the Permit citation listed with the question. The citation should be (Section C2-1a).

Response:
Checklist C6-2 dated May 8, 2012 was revised to incorporate change.

The C6 Version Dated March 13, 2013

1. The response to Question 9 and 149 of the C6 Checklist was “Refer to C6-1, May 8, 2012” checklist. The procedure given in the previous checklist, CCP-TP-068 was not included in the Audit Report in hardcopy or electronically.

Response:
Procedure CCP-TP-068 was added to the report in Attachment 4, Table of Audited Documents, and Attachment 6, Procedure Revision Matrix. Procedure CCP-TP-068 will also be sent electronically.
2. The response to Questions 68 and 69 of the C6 Checklist was to “Refer to C6-1, May 8, 2012” checklist. The procedure given in the previous checklist, CCP-PO-002, was not included in the Audit report in hardcopy or electronically.

Response:
Procedure CCP-PO-002 was added to the report in Attachment 4, Table of Audited Documents, and Attachment 6, Procedure Revision Matrix. Procedure CCP-PO-002 will also be sent electronically.

3. Question 237 of the C6 Checklist indicates that the procedural citation given, CCP-TP-005, Section 4.5.3 [A] answers the question. CCP-TP-005, Section 4.5.3 [A] refers to Head Space Gas Analytical Data. The correct citation should be CP-TP-005, Section 4.5.3 [C], which refers to Radiography and VE Data.

Response:
Section 4.5.3[A] in procedure CCP-TP-005 is not the correct citation for question 237 of the C6 Checklist. The C6 Checklist was revised to reflect the correct citation, Section 4.5.3[C].
Appendix B
Redlined A-13-18 Final Report
U.S. DEPARTMENT OF ENERGY
CARLSBAD FIELD OFFICE

REVISED
FINAL AUDIT REPORT

OF THE
IDAHO NATIONAL LABORATORY
CENTRAL CHARACTERIZATION PROGRAM

IDAHO FALLS, IDAHO
AND CARLSBAD, NEW MEXICO

AUDIT NUMBER A-13-18

June 3 – 6, 2013

TRU WASTE CHARACTERIZATION AND CERTIFICATION

Prepared by: Tamara D. Ackman, CTAC
Audit Team Leader

Approved by: Michael R. Brown, Director
CBFO Office of Quality Assurance
Oba-Vincent, CBFO
Acting Quality Assurance Director
1.0 EXECUTIVE SUMMARY

Carlsbad Field Office (CBFO) Recertification Audit A-13-18 was conducted to evaluate the continued adequacy, implementation, and effectiveness of Idaho National Laboratory (INL) transuranic (TRU) waste characterization activities performed for INL by the Nuclear Waste Partnership LLC (NWP) Central Characterization Program (CCP). Activities were evaluated relative to the requirements of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and the CBFO Quality Assurance Program Document (QAPD).

The audit team evaluated characterization and certification activities for contact-handled (CH) Summary Category Groups (SCGs) S3000 homogeneous solids waste, S4000 soils/gravel waste, and S5000 debris waste, and remote-handled (RH) SCGs S3000 homogeneous solids waste and S5000 debris waste. The audit included other technical elements and, quality assurance (QA) elements, as described in this report.

The audit was conducted at the INL/CCP facility near Idaho Falls, Idaho, and the NWP/CCP facilities in Carlsbad, New Mexico, June 3 – 6, 2013. The audit team concluded that INL/CCP adequately incorporates upper-tier requirements into its program plans and procedures. The audit team verified that the INL/CCP program for characterization and certification activities continues to be adequate, satisfactorily implemented, and effective.

The audit team identified no WAP-related conditions adverse to quality (CAQs) resulting in corrective action reports (CARs) during the audit. No WAP-related deficiencies, isolated in nature and requiring only remedial corrective action, were identified and corrected during the audit (CDA). No WAP-related Observations or Recommendations were identified during the audit.

2.0 SCOPE AND PURPOSE

2.1 Scope

The audit team evaluated the continued adequacy, implementation, and effectiveness of the INL/CCP TRU waste characterization and certification activities for CH SCGs S3000 homogeneous solids, S4000 soils/gravel, and S5000 debris wastes, and RH SCGs S3000 homogeneous solids and S5000 debris wastes. The following elements were evaluated.

General (Idaho Falls)

- Results of Previous Audits
- Changes in Programs or Operations
- New Programs or Activities Being Implemented
- Changes in Key Personnel
Quality Assurance (Carlsbad)

- Personnel Qualification and Training
- Nonconformance Reporting
- Records

Technical Activities

NWP/CCP (Carlsbad)

- WIPP Waste Information System/Waste Data System (WWIS/WDS)

INL/CCP (Idaho Falls)

- Acceptable Knowledge (AK)/Waste Certification
- Project-level Data Verification and Validation (V&V)
- Real-time Radiography (RTR)
- Visual Examination (VE)
- Headspace Gas (HSG) Sampling
- Solids Sampling and Analysis

The evaluation of INL/CCP TRU waste activities and documents was based on current revisions of the following documents:

- Waste Isolation Pilot Plant Hazardous Waste Facility Permit NM4890139088-TSDF (HWFP)
- Quality Assurance Program Document, DOE/CBFO-94-1012
- CCP Transuranic Waste Characterization Quality Assurance Project Plan, CCP-PO-001
- Related INL/CCP technical and quality assurance implementing procedures

For the purpose of reporting results of the this audit, in an agreement reached with the New Mexico Environment Department (NMED) (reference CBFO Memorandum CBFO:OQA:DSM:MAG:13-1431 dated May 30, 2013), the audit team used C6 checklists dated May 8, 2012, and March 13, 2013, to ensure that the requirements and activities associated with chemical sampling and analysis and solids sampling and analysis were appropriately evaluated, since those activities had been conducted at INL between the dates of the last recertification audit (A-12-13) and the elimination of chemical sampling and analysis and solids sampling and analysis in the Permit Modification issued March 13, 2013. To ensure clarity, this report identifies where the May 8, 2012, version of the C6 was used.
2.2 Purpose

Audit A-13-18 was conducted to assess the level of compliance of waste characterization and certification and QA program activities for CH SCGs S3000 homogeneous solids, S4000 soils/gravel, and S5000 debris wastes, and RH SCGs S3000 homogeneous solids and S5000 debris wastes.

3.0 AUDIT TEAM AND OBSERVERS

AUDITORS/TECHNICAL SPECIALISTS

Dennis Miehls Management Representative, CBFO Office of Quality Assurance (OQA)
Martin Navarrete OQA Representative, CBFO
Tamara Bowden Audit Team Leader, CBFO Technical Assistance Contractor (CTAC)
Cindi Castillo Auditor, CTAC (HSG)
Berry Pace Auditor, CTAC (VE and SS)
Rick Castillo Auditor, CTAC (AK)
Jim Schuetz* Auditor, CTAC (C6 QA)
Katie Martin* Auditor, CTAC (C6 QA)
Prissy Martinez Auditor/Technical Specialist, CTAC (RTR)
Paul Gomez Technical Specialist, CTAC (HSG)
Porf Martinez Technical Specialist, CTAC (RTR)
Kirk Kirkes Technical Specialist, CTAC (PL V&V)
Rhett Bradford Technical Specialist, CTAC (VE and SS)
Dick Blauvelt Technical Specialist, CTAC (AK)

*Personnel located in Carlsbad, NM

OBSERVERS

Marcus Pinzel CBFO Office of the National TRU Program (NTP)
Joe Harvill Senior Manager, CTAC
Steve Holmes NMED
Ricardo Maestas NMED
Connie Walker NMED

4.0 AUDIT PARTICIPANTS

INL/CCP individuals involved in the audit process are identified in Attachment 1. Attachment 2 contains a list of personnel contacted during the audit by subject area. A pre-audit meeting was held at the INL/CCP site near Idaho Falls, ID, and the Skeen-Whitlock Building in Carlsbad, NM, on June 3, 2013. Daily briefings were held with INL/CCP management and staff to discuss issues and potential deficiencies. The audit was concluded with a post-audit meeting held at the INL/CCP site near Idaho Falls, ID, and in the Skeen-Whitlock Building in Carlsbad, NM, on June 6, 2013.
5.0 SUMMARY OF AUDIT RESULTS

5.1 Program Adequacy, Implementation, and Effectiveness

The audit team concluded that the INL/CCP TRU waste characterization, certification, and transportation programs evaluated are adequately established for compliance with upper-tier requirements, effectively implemented, and satisfactory in achieving the desired results. The specific program elements and areas evaluated are described below.

The audit team identified no WAP-related CAQs resulting in a CAR during the audit. No WAP-related deficiencies, isolated in nature and requiring only remedial corrective action, were identified and corrected during the audit (CDA). No WAP-related Recommendations or Observations were identified during the audit.

Attachment 3 consists of boxes containing objective evidence reviewed during the audit. Attachment 4 is a table listing INL/CCP documents examined during the audit. Attachment 5 lists the processes and equipment evaluated during the audit. Attachment 6 is the procedure revision matrix identifying procedure changes since the last recertification audit (A-12-13). Audit activities, including objective evidence reviewed, are described in this report.

5.2 General Activities

5.2.1 Results of Previous Audits

During the audit, the audit team verified that corrective actions for a CAQ documented during the previous INL/CCP Recertification Audit, A-12-13, was satisfactorily implemented and maintained. Corrective actions for CBFO CAR 12-027 (overall inattention to detail in CCP batch data reports (BDRs)) from Audit A-12-13 were also found to be satisfactorily implemented and maintained.

5.2.2 Changes in Program or Operations

INL/CCP no longer performs CH RTR characterization. The RTR unit was removed in December 2012. CBFO conducted Surveillance S-13-19 on January 24, 2013, to observe VE operations on CH S3000 solids waste, with the understanding that a review of completed BDRs and operator qualification would be evaluated during INL/CCP Recertification Audit A-13-18 (see section 5.4.6 for details). The requirements for Headspace Gas and Analysis and Solids Sampling and Analysis characterization activities were removed from the HWFP on March 13, 2013. These activities were evaluated on all work performed from the previous audit (A-12-13, June 2012) through March 13, 2013.
5.2.3 New Programs or Activities Being Implemented

No new programs or activities have been implemented since the performance of Audit A-12-13.

5.2.4 Changes in Key Personnel

INL/CCP has added Steve Castro as an alternate Site Project Manager (SPM), but there have been no other significant changes in key personnel since the performance of Audit A-12-13.

5.3 WAP-related Quality Assurance Activities

As discussed in section 2.0, WAP-related QA program elements were evaluated using WAP checklists C6-1 and C6-3, dated May 8, 2012.

5.3.1 Personnel Qualification and Training

The audit team interviewed responsible personnel and reviewed documentation to verify that INL/CCP met the requirements of the CBFO QAPD and CCP-QP-002, Rev. 34, CCP Training and Qualification Plan. Training and qualification records for the following positions were reviewed: CH waste and RH waste Acceptable Knowledge Experts (AKEs); SPMs; HSG Operators/Independent Technical Reviewers (ITRs); VE Operators/ITRs; and RTR Operators/ITRs.

Records reviewed included the INL CH Program List of Qualified Individuals (LOQI) dated 5/31/2013, the RH Program LOQI dated 5/7/2013, subject matter expert/on-the-job-training appointment letters, test drum (capability demonstrations) and training container documentation, and annual eye examination forms for nondestructive examination (NDE) RTR Operators.

No WAP-related deficiencies regarding personnel qualification and training were identified during the audit. The procedures reviewed and objective evidence assembled and evaluated during the audit indicated that the applicable requirements for Personnel Qualification and Training are adequately established for compliance with upper-tier requirements, and are satisfactorily implemented and effective.

5.3.2 Nonconformance Reporting

The audit team conducted interviews and reviewed implementing procedure CCP-QP-005, Revision 22, CCP TRU Nonconforming Item Reporting and Control, to determine the degree to which the procedure adequately addresses upper-tier requirements.

The audit team interviewed the project office quality assurance engineer and then randomly selected a sample of nonconformance reports (NCRs) for review:

NCR-INL-0346-12, R0 NCR-INL-0349-12, R0 NCR-INL-0353-12, R0
NCR-INL-0357-12, R0 NCR-INL-0368-12, R0 NCR-INL-0428-12, R0
The purpose of the NCR review was to confirm that administrative deficiencies are being appropriately documented and tracked through resolution.

The audit team also reviewed NCR-INL-1759-12, R0; NCR-INL-0418-12, R1; NCR-INL-0396-12, R1; and NCR-INL-0437-12, R0, which documented nonadministrative deficiencies first identified at the SPM level. The team determined that the deficiencies had been reported to the Permittee within seven days, as required. There were no reportable RH NCRs since the previous recertification audit. All NCRs were verified as being managed and tracked in the CCP Integrated Data Center on the CCP NCR Logs.

No WAP-related deficiencies regarding nonconformances were identified during the audit. The procedures reviewed and objective evidence assembled and evaluated during the audit indicated that the applicable requirements for nonconformances are adequately established for compliance with upper-tier requirements, and are satisfactorily implemented and effective.

5.3.3 Records

The audit team conducted interviews and reviewed implementing procedures relative to the control and administration of QA records to determine the degree to which the procedures adequately address upper-tier requirements. The audit team reviewed procedures CCP-PO-001, Rev. 20, *CCP Transuranic Waste Characterization Quality Assurance Project Plan*; CCP-QP-008, Rev. 21, *CCP Records Management*; and CCP-QP-028, Rev. 15, *CCP Records Filing, Inventorying, Scheduling, and Dispositioning*. Control of QA records was verified through review of the CH RIDS dated 8/2/2012, and the RH RIDS dated 7/23/2012.

No WAP-related deficiencies regarding records were identified during the audit. The procedures reviewed and objective evidence assembled and evaluated during the audit indicated that the applicable requirements for records are adequately established for compliance with upper-tier requirements, and are satisfactorily implemented and effective.

5.4 Technical Activities

Audit team evaluations of applicable INL/CCP technical activities are summarized in the following subsections.
5.4.1 Table C6-1, WAP Checklist (May 8, 2012)

As discussed in section 2.0, overall WAP activities were evaluated using WAP checklist C6-1, dated May 8, 2012. Checklist C6-3, dated March 13, 2013, was used for the evaluation of project-level data V&V requirements associated with RTR.

The audit was performed to assess INL/CCP’s ability to manage and perform TRU waste characterization and certification activities for CH SCGs S3000 homogeneous solids waste, S4000 soils/gravel waste, and S5000 debris waste, and RH SCGs S3000 homogeneous solids waste and S5000 debris waste. The C6-1 QAP checklist addresses general program requirements from an overall management perspective. The general requirements checklist addresses both technical requirements and specific WAP-related QA programmatic requirements that, when collectively implemented, ensure effective overall management of TRU waste characterization and certification activities. Requirements are integrated into controlled documents to ensure the waste characterization strategy as defined in the WAP is accomplished and documented in accordance with controlled processes and procedures.

Technical activities evaluated for characterization and certification activities consisted of data-generation and project-level V&V, AK, RTR, VE, SS&A, HSG S&A (including Performance Demonstration Program [PDP] participation), preparation of WSPFs for CH SCG S3000 homogeneous solids waste, S4000 soils/gravel waste, and S5000 debris waste, and RH SCG S3000 homogeneous solids waste and RH SCG S5000 debris waste, and WWIS/WDS data entry. Objective evidence was selected and reviewed to evaluate the implementation of the associated characterization activities. BDRs, sampling records, and personnel qualification and training documentation were included in the evaluation. Where possible, the audit included direct observation of actual waste characterization activities. Each characterization process involves:

- Collecting raw data
- Collecting quality assurance/quality control samples or information
- Reducing the data to a useable format, including a standard report
- Review of the report by the data generation facility and the site project office
- Comparing the data against program data quality objectives (DQOs)
- Reporting the final waste characterization information to the WIPP

The flow of data from the point of generation to inclusion in the WSPF for each characterization technique was reviewed to ensure that all applicable requirements were captured in the site operating procedures. Specific procedures audited and the objective evidence reviewed are described in the following sections.

During the audit, INL/CCP demonstrated compliance with the waste characterization requirements of the HWFP WAP through documentation and by performing characterization activities.

The audit team conducted personnel interviews and reviewed objective evidence to ensure project-level activities were adequately performed to support waste
characterization. INL/CCP BDRs were evaluated based on project-level requirements for RTR, VE, DTC, and HSG sampling for the S5000, S4000 and S3000 SCGs. Random selection requirements for HSG were evaluated, as well as the quarterly repeat data generation-level requirements for RTR, HSG, and VE. No solids/soil sampling activities had been conducted since the last recertification audit.

A review was performed on the following WSPF/Characterization Information Summaries (CIS) and associated BDRs:

WSPF ID-RF-3114 and CIS Lot 109, Rev. 1
WSPF ID-RF-S5300-A and CIS Lot 137
WSPF ID-SDA-SOIL and CIS Lots 75 and 76
WSPF IN-NRF-SPC and CIS Lots 3 and 4

Visual Examination BDRs:
IN-SRP-VE-000085
IN-ARP-VE-002812
INLRHVE12001

Headspace Gas:
INHSG1204, ECL12029M
INHSG1202, ECL12023M
INHSG1206, ECL12036M

RTR:
INRTR5120004
RTR11-00132
RTR11-00157
INLRHRTR13005
INLRHRTR12012

The audit team evaluated procedure CCP-TP-530, Rev. 10, CCP RH TRU Waste Certification and WWIS/WDS Data Entry, and procedure CCP-TP-030, Rev. 31, CCP CH TRU Waste Certification and WWIS/WDS Data Entry, with respect to requirements of the QAPD, Rev. 11, section 2.1, Work Processes. The audit team determined that QAPD requirements are being adequately addressed and that the procedures contain adequate flow-down of CBFO QAPD requirements.

The audit team interviewed CCP Waste Certification Officials (WCOs) and reviewed CCP training records, and determined that the WCOs are qualified to perform certification activities for both RH and CH waste. Waste Certification Assistants (WCAs) were found to be qualified to perform certification activities for RH and CH waste WWIS/WDS data entry activities. WCOs and WCAs are qualified to perform these activities for all CCP host site locations.

The audit team interviewed CCP WCOs and determined that there have been no recent additions of WSPFs for RH or CH waste at the INL/CCP host site location.
The audit team evaluated a sample of data entry packages for both RH and CH waste WWIS/WDS data entry and waste container certification. Data are entered and verified in spreadsheet applications and subsequently submitted to the WWIS/WDS database. Data packages included CIS lists, WWIS/WDS Container Data Reports, WDS Master Template.xls data spreadsheet reports, RH WDS Master Template.xls data spreadsheet reports, and pages from BDRs showing characterization data values that were entered. WWIS/WDS Overpack Data Reports for RH and CH overpack assemblies were included in the data entry packages. Assignment of dunnage containers in CH ten-drum overpack (TDOP) assemblies is performed using functions within WWIS/WDS, and was determined to be adequate. Data for waste SCGs for CH debris and CH and RH soils/solids/vitrified waste were included in the data packages. Data entry and certification of 55-gallon drums, standard waste boxes, TDOPs, and RH canister container types were evaluated and determined to be satisfactory with respect to details of the specific types. The audit team determined that data for individual waste containers and overpack assemblies is properly entered, verified, and certified.

The audit team evaluated software applications used for electronic transfer of data to the WWIS/WDS internet-based application. Application of software QA and control of these software items are adequate.

No WAP-related deficiencies related to Table C6-1 were identified during the audit. The procedures reviewed and objective evidence assembled and evaluated during the audit provided evidence that Table C6-1 requirements are adequately established, satisfactorily implemented and effective.

5.4.2 Table C6-2, Solids and Soil/Gravel Sampling Checklist (May 8, 2012)

Solids sampling procedures include CCP-TP-008, CCP Solids Sampling Procedure, and CCP-TP-512, CCP Remote-Handled Waste Sampling. No sampling had occurred since the last recertification audit (A-12-13) and as of March 13, 2013, sampling is no longer required by the Permit. Accordingly, no evaluations were performed related to solids sampling.

5.4.3 Table C6-3, Acceptable Knowledge Checklist (May 8, 2012)

As discussed in section 2.0, AK activities were evaluated using WAP checklists C6-1 and C6-3, dated May 8, 2012.

The audit team reviewed specific and complete AK program documentation for CH debris waste stream ID-AECHDM, originally generated at Argonne National Laboratory – East (ANLE) and shipped to INL for WIPP characterization and certification; CH solids stream ID-RF-S3150A, from Rocky Flats Environmental Technology Site; CH soils stream ID-SDA-SOIL, from the excavation of the Subsurface Disposal Area (SDA) at INL; and RH TRU debris stream ID-ANLE-S5000, originally generated in hot cell activities at ANLE.
With respect to review of the AK record for an RH S3000 waste stream, as in the previous audit, there were no RH solids streams completely prepared for audit. Therefore, the audit team once again reviewed the available AK record for waste stream IN-ID-BTO-030. This waste stream was generated at the Bettis Atomic Power Laboratory and then shipped to INL, where it has been repackaged and is being processed for shipment to WIPP. An approved AK Summary, applicable AK attachments, and relevant AK source documents have been prepared and were reviewed along with an RTR BDR for this four-drum waste stream.

The objective evidence compiled and reviewed included the AK Summary Reports, numerous AK source documents, HWFP Waste Analysis Plan (WAP)-compliant waste stream profile forms (WSPFs) and attachments, and BDRs for HSG, Solids Sampling & Analysis, VE, and RTR. Random container selection memos for HSG and solids sampling lots were reviewed, along with corresponding HSG and Solids Analysis Summary Reports. Additional supporting documentation for the WCPIP requirements included Characterization Reconciliation Reports and supporting documentation.

With regard to the WAP requirements, in addition to the AK Summary Reports, AK Source Document Summaries, and other relevant AK records cited above, the audit team reviewed for each waste stream the AK Documentation Checklist (attachment 1), the AK Information List (attachment 4), the AK Hazardous Constituents List (attachment 5), the AK Waste Form, Waste Material Parameters, Prohibited Items and Package (attachment 6), along with the applicable justification memo for waste material parameter weight estimates, and the AK Container List (attachment 8), with memos supporting the process for adding containers to the waste streams. Examples of the resolution of AK discrepancies in the AK record at characterization, NCRs dealing with prohibited items, AK accuracy reports, and the most recent internal surveillance were also collected and examined. Requisite training records were reviewed by the audit team for AKEs and SPMs based upon names provided by the AK auditors. The WAP-required container traceability exercise was conducted for a total of 10 waste containers from the five waste streams. The drums selected provided BDRs for RTR, VE, HSG sampling and analysis, and solids sampling and analysis.

No WAP-related deficiencies related to Table C6-3 were identified during the audit. The procedures reviewed and objective evidence assembled and evaluated during the audit provided evidence that Table C6-3 requirements are adequately established, satisfactorily implemented and effective.

5.4.4 Table C6-4, Headspace Gas Checklist (May 8, 2012)

As discussed in section 2.0, HSG sampling activities were evaluated using WAP checklist C6-4, dated May 8, 2012.

No HSG sampling activities were being performed during the audit. HSG sampling operations were evaluated by conducting personnel interviews and reviewing HSG BDRs INHSG1202, INHSG1204, and INHSG1206, which were found to be satisfactory. Training and qualification of sampling personnel were confirmed to be acceptable. The
audit team verified the field reference standard certificate of accuracy during the audit and found it to be acceptable.

No WAP-related deficiencies related to Table C6-4 were identified during the audit. The procedures reviewed and objective evidence assembled and evaluated during the audit provided evidence that Table C6-4 requirements are adequately established, satisfactorily implemented and effective.

5.4.5 Table C6-3, Radiography Checklist (March 13, 2013)

As discussed in section 2.0, HSG sampling activities were evaluated using WAP checklist C6-3, dated March 13, 2013.

The audit team evaluated the adequacy, implementation and effectiveness of INL/CCP ability to characterize and certify CH and RH SCGs S3000 solids and S5000 debris wastes using the RTR characterization process. The audit team evaluated the following RTR-related CCP procedures: CCP-QP-002, Rev. 34, CCP Training and Qualification Plan; CCP-TP-028, Rev. 7, CCP Radiographic Test Drum and Training Container Construction; CCP-TP-053, Rev. 12, CCP Standard Real-Time Radiography (RTR) Inspection Procedure; and CCP-TP-508, Rev. 7, Standard Real-Time Radiography Inspection Procedure. The results of the review indicate that the referenced procedures adequately address upper-tier requirements.

The audit team evaluated required test and training drum audio/video media for six RTR operators. Record reviews included RTR operator training and qualification cards, waste stream training attendance sheets, eye exams, American Society of Nondestructive Testing (ASNT)-TC-1A Level II Radiography Certificates, and test/training drum documentation. The audit team verified that RTR operators were appropriately qualified.

RTR Unit 5, formerly located in Radioactive Waste Management Complex building WMF-610, was used to characterize CH SCG S3000 solids waste and S5000 debris waste from the date of the previous audit until it was taken out of service in December 2012. The audit team reviewed CH BDRs generated during this period. INL/CCP is no longer performing RTR waste characterization activities for CH SCG S3000 solids waste or S5000 debris waste using RTR Unit 5. Interviews with cognizant INL/CCP RTR personnel indicated that the unit was removed from the site in December 2012.

The audit team conducted a walk-through of the RTR Unit 0659 at the Idaho Nuclear Technology and Engineering Center (INTEC) building 659. The RTR unit contained the required hardware to effectively characterize RH SCG S3000 solids waste and S5000 debris waste. The audit team observed RTR RH waste characterization activities being performed during the audit on June 4, 2013. The audit team observed the lines pair test and the characterization scan on container FC0100A-1. The audit team interviewed RTR operators, reviewed CCP Standing Orders, and verified the availability of current AK Summaries and RTR operating procedures. The audit team also examined RTR
operational logbook CCP-INL-RH-RTR-007, and verified logbook entries were logged, as required, and reviewed by the vendor project manager (VPM) on a weekly basis.

The audit team examined the following CH RTR BDRs:

INRTR5120001 INRTR5120002 INRTR5120003 INRTR5120004

The audit team examined the following RH RTR BDRs:

INLRHRTR12005 INLRHRTR12013 INLRHRTR13001 INLRHRTR13002
INLRHRTR13003

The procedure and document reviews and field observations provided evidence that the applicable requirements for characterizing CH SCG S3000 solids waste and S5000 debris waste using RTR Unit 5 were effectively implemented from the date of the previous audit to the time the unit was taken out of service in December 2012. CH RTR is now being performed at the Advanced Mixed Waste Treatment Project (AMWTP).

No WAP-related deficiencies related to Table C6-3 were identified during the audit. The procedures reviewed and objective evidence assembled and evaluated during the audit provided evidence that Table C6-3 requirements are adequately established, satisfactorily implemented and effective.

5.4.6 Table C6-4, Visual Examination Checklist (March 13, 2013)

As discussed in section 2.0, HSG sampling activities were evaluated using WAP checklist C6-4, dated March 13, 2013.

The audit team evaluated VE activities performed by INL/CCP. For CH waste, VE is performed in accordance with CCP-TP-006, CCP Visual Examination Technique for Idaho National Laboratory (INL) Newly Generated TRU Waste. For RH waste, VE is performed in accordance with CCP-TP-500, CCP Remote-Handled Waste Visual Examination. The audit team toured the waste management facility, building 1617, on June 4, 2013, to observe VE activities. Additionally, the audit team reviewed BDRs and training records for VE operators and Visual Examination Experts (VEEs). The audit team found no concerns related to VE activities.

The audit team examined the following CH and RH VE BDRs:

IN-ARP-VE-002793 IN-SRP-VE-000028 IN-SRP-VE-000001
IN-SRP-VE-000183 INLRHVE12001

No WAP-related deficiencies related to Table C6-4 were identified during the audit. The procedures reviewed and objective evidence assembled and evaluated during the audit provided evidence that Table C6-4 requirements are adequately established, satisfactorily implemented and effective.
6.0 CORRECTIVE ACTIONS, OBSERVATIONS, AND RECOMMENDATIONS

6.1 Corrective Action Reports

During the audit, the audit team may identify CAQs, as described below, and document such conditions on CARs.

Condition Adverse to Quality (CAQ) – An all-inclusive term used in reference to any of the following: failures, malfunctions, deficiencies, defective items, nonconformances, and technical inadequacies.

Significant Condition Adverse to Quality – A condition which, if uncorrected, could have a serious effect on safety, operability, waste confinement, TRU waste site certification, regulatory compliance demonstration, or the effective implementation of the QA program.

No WAP-related deficiencies necessitating a CAR were identified.

6.2 Deficiencies Corrected During the Audit

During the audit, the audit team may identify CAQs. The audit team members and the Audit Team Leader (ATL) evaluate the CAQs to determine if they are significant. Once a determination is made that the CAQ is not significant, the audit team member, in conjunction with the ATL, determines if the CAQ is an isolated case requiring only remedial action and therefore can be CDA. Deficiencies that can be classified as CDA are those isolated deficiencies that do not require a root cause determination or actions to preclude recurrence, and those for which correction of the deficiency can be verified prior to the end of the audit. Examples include one or two minor changes required to correct a procedure (isolated), one or two forms not signed or not dated (isolated), or one or two individuals have not completed a reading assignment.

Upon determination that the CAQ is isolated, the audit team member, in conjunction with the ATL, evaluates/verifies any objective evidence/actions submitted or taken by the audited organization and determines if the condition was corrected in an acceptable manner. Once it has been determined that the CAQ has been corrected, the ATL categorizes the condition as CDA.

No WAP-related deficiencies, requiring remedial action only, were identified during the audit.

6.3 Observations

During the audit, the audit team may identify potential problems that should be communicated to the audited organization. The audit team members, in conjunction with the ATL, evaluate these conditions and classify them as Observations using the following definition.

Observation – A condition that, if not controlled, could result in a CAQ.
Once a determination is made, the audit team member, in conjunction with the ATL, categorizes the condition appropriately.

No WAP-related Observations were identified during this audit.

6.4 Recommendations

During the audit, the audit team may identify suggestions for improvement that should be communicated to the audited organization. The audit team members, in conjunction with the ATL, evaluate these conditions and classify them as Recommendations using the following definition.

Recommendations – Suggestions that are directed toward identifying opportunities for improvement and enhancing methods of implementing requirements.

Once a determination is made, the audit team member, in conjunction with the ATL, categorizes the condition appropriately.

No WAP-related Recommendations were identified during the audit.

7.0 LIST OF ATTACHMENTS

Attachment 1: Personnel Contacted During the Audit
Attachment 2: Personnel Contacted During the Audit by Subject Area
Attachment 3: Objective Evidence Compiled During the Audit (provided in boxes)
Attachment 4: Table of Audited Documents
Attachment 5: List of Processes and Equipment Evaluated During the Audit
Attachment 6: Procedure Revision Matrix
<table>
<thead>
<tr>
<th>NAME</th>
<th>TITLE/ORG</th>
<th>PREAUDIT MEETING</th>
<th>CONTACTED DURING AUDIT</th>
<th>POST AUDIT MEETING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen, Randall</td>
<td>Audits & Assessments Manager/CTAC</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ams, David</td>
<td>CCP/LANL AK</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Andrews, Sway</td>
<td>Operator/DTC/CWI</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Armijo, Cheryl</td>
<td>Records Analyst/NTPC Training</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bhatt, Raj</td>
<td>RH TRU/CWI</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Billett, Michele</td>
<td>Training Coordinator/NTPC Training</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Blyth, Bob</td>
<td>Quality Assurance/DOE-ID</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cannon, Val</td>
<td>Assurance Programs Manager/NWP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castro, Steve</td>
<td>SPM/CCP NWP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Christensen, Tyson</td>
<td>RTR LO/VJT/CCP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Davis, Chris G.</td>
<td>Decon/RTR Operator/CCP</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Fisher, A.J.</td>
<td>Support Group Manager/NWP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Frost, Lisa</td>
<td>CH Support/CWI</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Harvill, Joe</td>
<td>Senior Manager/CTAC</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holmes, Steve</td>
<td>Observer/NMED</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Johnsen, Tom</td>
<td>CH TRU STR/CWI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones, Laura</td>
<td>NCR Coordinator/QA/NWP</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Joo, Irene</td>
<td>RH PM/NWP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kirkes, Creta</td>
<td>WCO/WCA/WWIS-WDA Data Entry/CCP</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Klingler, Larry</td>
<td>Quality Assurance/NWP/CCP</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>LaRue, Bruce</td>
<td>Environmental Scientist/ID DEQ INL Oversight Program</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ledford, Wayne</td>
<td>QA Specialist/NWP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Lee, Ronnie</td>
<td>PM/NWP/NTPC</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NAME</td>
<td>TITLE/ORG</td>
<td>PREAUDIT MEETING</td>
<td>CONTACTED DURING AUDIT</td>
<td>POST AUDIT MEETING</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Maestas, Ricardo</td>
<td>Observer/NMED</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Miles, Jeri</td>
<td>VPM/CCP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Murdock, Mel</td>
<td>Shipping Shift Supervisor/CH Packaging/AMWTP</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nesser, Catherine</td>
<td>QA Specialist/NWP</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pearcy, Mark</td>
<td>SPM/CCP</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pearcy, Sheila</td>
<td>CCP Records Manager/Stoller</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Peters, Kevin</td>
<td>AKE/CCP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pimentel, Trisha</td>
<td>Records/CCP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pinzel, Marcus</td>
<td>DOE/CBFO</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Poole, Jeff</td>
<td>VE Expert/NWP/CCP</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pruitt, Doug</td>
<td>DOE-ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramirez, Mike</td>
<td>WCO/WWIS-WDS Data Entry/NWP/CCP</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reynolds, Tammy</td>
<td>Program Manager/NWP/CCP</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Roberts, Ben</td>
<td>DOE-ID</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sensibaugh, Michael</td>
<td>Operations Manager/NWP/CCP</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Smith, Greg</td>
<td>RH VPM/NWP CCP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Smith, Scott</td>
<td>CCP/AKE</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Stallings, Andrew</td>
<td>RTR/VE/CCP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verlanic, Bill</td>
<td>P.M./NWP/CCP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernon, Jim</td>
<td>SPM/NWP/CCP</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Walker, Connie</td>
<td>Observer/NMED</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Walters, Eddy</td>
<td>HSG Lead/NFT/CCP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Watson, Lisa</td>
<td>LANL AK/CCP</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
PERSONNEL CONTACTED DURING THE AUDIT BY SUBJECT AREA

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel Qualification and Training</td>
<td>Michele Billett, Cheryl Armijo</td>
</tr>
<tr>
<td>Control of Nonconforming Items</td>
<td>Laura Jones</td>
</tr>
<tr>
<td>Records</td>
<td>Sheila Peary</td>
</tr>
<tr>
<td>WIPP Waste Information System (WWIS Data Entry)</td>
<td>Creta Kirkes, Mike Ramirez</td>
</tr>
<tr>
<td>Waste Certification/Project Level Data V&V</td>
<td>Steve Castro, Jim Vernon, Irene Joo</td>
</tr>
<tr>
<td>Solids Sampling and Analysis</td>
<td>N/A</td>
</tr>
<tr>
<td>Acceptable Knowledge</td>
<td>Kevin Peters, Raj Bhatt, Lisa Watson, David Ams, Irene Joo, Scott Smith</td>
</tr>
<tr>
<td>Headspace Gas Sampling and Analysis</td>
<td>Eddy Walters</td>
</tr>
<tr>
<td>Real-Time Radiography</td>
<td>Tyson Christensen, Greg Smith, Chris G. Davis, Trisha Pimentel</td>
</tr>
<tr>
<td>Visual Examination</td>
<td>Jeff Poole, Steve Castro, Jim Vernon</td>
</tr>
</tbody>
</table>
Objective Evidence Reviewed During the Audit

The objective evidence supporting Audit A-13-18 is included in the box(es) submitted with this report. Included in the box(es) is a “Content Map” describing the location (using color coding) and identity of all required objective evidence supporting the performance of the audit.
<table>
<thead>
<tr>
<th>Document No.</th>
<th>Rev</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CCP-PO-001</td>
<td>20</td>
<td>CCP Transuranic Waste Characterization Quality Assurance Project Plan</td>
</tr>
<tr>
<td>2. CCP-PO-002</td>
<td>27</td>
<td>CCP Transuranic Waste Certification Plan</td>
</tr>
<tr>
<td>2.3 CCP-QP-002</td>
<td>34</td>
<td>CCP Training and Qualification Plan</td>
</tr>
<tr>
<td>2.4 CCP-QP-005</td>
<td>22</td>
<td>CCP TRU Nonconforming Item Reporting and Control</td>
</tr>
<tr>
<td>4.5 CCP-QP-008</td>
<td>21</td>
<td>CCP Records Management</td>
</tr>
<tr>
<td>5.6 CCP-QP-021</td>
<td>8</td>
<td>CCP Surveillance Program</td>
</tr>
<tr>
<td>6.7 CCP-QP-028</td>
<td>15</td>
<td>CCP Records Filing, Inventorying, Scheduling, and Dispositioning</td>
</tr>
<tr>
<td>7.8 CCP-TP-001</td>
<td>20</td>
<td>CCP Project Level Data Validation and Verification</td>
</tr>
<tr>
<td>8.9 CCP-TP-002</td>
<td>25</td>
<td>CCP Reconciliation of DQOs and Reporting Characterization Data</td>
</tr>
<tr>
<td>9.10 CCP-TP-003</td>
<td>19</td>
<td>CCP Data Analysis for S3000, S4000, and S5000 Characterization</td>
</tr>
<tr>
<td>10.11 CCP-TP-005</td>
<td>24</td>
<td>CCP Acceptable Knowledge Documentation</td>
</tr>
<tr>
<td>11.12 CCP-TP-006</td>
<td>17</td>
<td>CCP Visual Examination Technique for INL Newly Generated TRU Waste Retrieved from Pits</td>
</tr>
<tr>
<td>12.13 CCP-TP-008</td>
<td>10</td>
<td>CCP Solids Sampling Procedure</td>
</tr>
<tr>
<td>13.14 CCP-TP-028</td>
<td>7</td>
<td>CCP Radiographic Test Drum and Training Container Construction</td>
</tr>
<tr>
<td>14.15 CCP-TP-030</td>
<td>31</td>
<td>CCP CH TRU Waste Certification and WWIS/WDS Data Entry</td>
</tr>
<tr>
<td>15.16 CCP-TP-033</td>
<td>19</td>
<td>CCP Shipping of CH TRU Waste</td>
</tr>
<tr>
<td>16.17 CCP-TP-053</td>
<td>12</td>
<td>CCP Standard Real-Time Radiography (RTR) Inspection Procedure</td>
</tr>
<tr>
<td>18. CCP-TP-068</td>
<td>9</td>
<td>CCP Standardized Container Management</td>
</tr>
<tr>
<td>18.19 CCP-TP-080</td>
<td>5</td>
<td>CCP Operating the WMF 610 Real-Time Radiography (RTR) System</td>
</tr>
<tr>
<td>19.20 CCP-TP-082</td>
<td>8</td>
<td>CCP Waste Container Filter Vent Operation</td>
</tr>
<tr>
<td>19.21 CCP-TP-093</td>
<td>17</td>
<td>CCP Sampling of TRU Waste Containers</td>
</tr>
<tr>
<td>20.22 CCP-TP-106</td>
<td>8</td>
<td>CCP Headspace Gas Sampling Batch Data Report Preparation</td>
</tr>
<tr>
<td>21.23 CCP-TP-113</td>
<td>16</td>
<td>CCP Standard Contact-Handled Waste Visual Examination</td>
</tr>
<tr>
<td>22.24 CCP-TP-119</td>
<td>5</td>
<td>CCP Operating the Real-Time Radiography (RTR) System #5</td>
</tr>
<tr>
<td>23.25 CCP-TP-162</td>
<td>2</td>
<td>CCP Random Selection of Containers for Solids and Headspace Gas Sampling and Analysis</td>
</tr>
<tr>
<td>24.26 CCP-TP-500</td>
<td>11</td>
<td>CCP Remote-Handled Waste Visual Examination</td>
</tr>
<tr>
<td>25.27 CCP-TP-506</td>
<td>2</td>
<td>CCP Preparation of the RH TRU Waste AK Characterization Reconciliation Report</td>
</tr>
<tr>
<td>26.28 CCP-TP-507</td>
<td>7</td>
<td>CCP Shipping of Remote-Handled Transuranic Waste</td>
</tr>
<tr>
<td>27.29 CCP-TP-508</td>
<td>7</td>
<td>CCP RH Standard Real-Time Radiography Inspection Procedure</td>
</tr>
<tr>
<td>28.30 CCP-TP-512</td>
<td>5</td>
<td>CCP Remote-Handled Waste Sampling</td>
</tr>
<tr>
<td>29.31 CCP-TP-530</td>
<td>10</td>
<td>CCP RH TRU Waste Certification and WWIS/WDS Data Entry</td>
</tr>
<tr>
<td>30.32 WP 13-QA.03</td>
<td>21</td>
<td>Quality Assurance Independent Assessment Program</td>
</tr>
</tbody>
</table>
LIST OF PROCESSES AND EQUIPMENT EVALUATED DURING THE AUDIT

<table>
<thead>
<tr>
<th>WIPP #</th>
<th>Process/Equipment Description</th>
<th>Applicable to the Following Waste Streams/Groups of Waste Streams</th>
<th>Currently Approved by NMED</th>
<th>Currently Approved by EPA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEW PROCESSES OR EQUIPMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PREVIOUSLY APPROVED PROCESSES OR EQUIPMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14VE1</td>
<td>Visual Examination (VE) Procedure – CCP-TP-006</td>
<td>Solids (S3000) Soils (S4000) Debris (S5000)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>Description – Visual Examination Technique (VET)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14RHVE1</td>
<td>Visual Examination Procedure – CCP-TP-500</td>
<td>Solids (S3000) Soils (S4000) Debris (S5000)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>Description - The VE of audio/video media process used for a total of 70 retrievably stored remote-handled (RH) debris waste drums</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14RR2</td>
<td>Nondestructive Examination Procedure – CCP-TP-053</td>
<td>Solids (S3000) Debris (S5000)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>Equipment – MCS RTR-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description – MCS Real-time Radiography (RTR) Mobile Characterization (RTR-5) System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14RRH1</td>
<td>Nondestructive Examination Procedure – CCP-TP-508</td>
<td>Solids (S3000) Debris (S5000)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td>Equipment – RTR-RTR-0659</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description – VJ Technologies, Real-time Radiography Characterization (RH-RTR-0659) System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>Acceptable Knowledge</td>
<td>Solids (S3000) Soils (S4000) Debris (S5000)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>N/A</td>
<td>Solids/Soils and Gravel Sampling and Custody for CH</td>
<td>Solids (S3000) Soils (S4000)</td>
<td>YES</td>
<td>N/A</td>
</tr>
<tr>
<td>WIPP #</td>
<td>Process/Equipment Description</td>
<td>Applicable to the Following Waste Streams/Groups of Waste Streams</td>
<td>Currently Approved by NMED</td>
<td>Currently Approved by EPA</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>N/A</td>
<td>Solids/Soils and Gravel Sampling and Custody for RH</td>
<td>Solids (S3000)</td>
<td>YES</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>SUMMA® Headspace Gas (HSG) Sampling and Custody Debris Sampling</td>
<td>Debris (S5000)</td>
<td>YES</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>Data Verification and Validation</td>
<td>Solids (S3000) Soils (S4000) Debris (S5000)</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>N/A</td>
<td>WIPP Waste Information System (WWIS)</td>
<td>Solids (S3000) Soils (S4000) Debris (S5000)</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
PROCEDURE REVISION MATRIX

<table>
<thead>
<tr>
<th>No.</th>
<th>Procedure Number</th>
<th>Procedure Title</th>
<th>Revision During Last Annual Audit</th>
<th>Revision During Current Annual Audit</th>
<th>Brief Description of Procedure Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CCP-PO-001</td>
<td>CCP Transuranic Waste Characterization Quality Assurance Project Plan (QAPjP)</td>
<td>R20</td>
<td>R20</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>CCP-PO-002</td>
<td>CCP Transuranic Waste Certification Plan</td>
<td>R26</td>
<td>R27</td>
<td>27 – Revised to incorporate Revision 7.3 and Revision 7.4 of DOE/WIPP-02-3122, Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant, which incorporates the changes resulting for the Class 2 Permit modification entitled “Revised Waste Analysis Plan Waste Characterization Methods” which was approved by New Mexico Environment Department (NMED) on March 13, 2013, incorporate organizational changes to reflect transition to Nuclear Waste Partnership (NWP), to clarify the hierarchy of quality assurance (QA) program documents, and minor editorial changes.</td>
</tr>
</tbody>
</table>
| 23 | CCP-QP-002 | CCP Training and Qualification Plan | R32 | R34 | 33 - As a corrective action in response to CBFO CAR 12-033, revised the document to remove references to Lead SPMs and Alternate SPMs, so that any qualified SPM may perform the actions in Section 3.1.
34 - Revised to incorporate Standing Order CCP-SO-086, Clarification of the Time Period for Performance of the RTR Semiannual Training Container Required by CCP-QP-002; incorporate changes to DOE/WIPP-02-3214, Remote-Handled TRU Waste Characterization Program Implementation Plan; update the title of the organization, as appropriate; and minor editorial changes. |
PROCEDURE REVISION MATRIX

<table>
<thead>
<tr>
<th>Current INL/CCP Annual Audit A-13-18</th>
<th>Previous INL/CCP Annual Audit A-12-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP-QP-005 CCP TRU Nonconforming Item Reporting and Control</td>
<td>R21</td>
</tr>
<tr>
<td>CCP-QP-008 CCP Records Management</td>
<td>R19</td>
</tr>
<tr>
<td>CCP-QP-021 CCP Surveillance Program</td>
<td>R7</td>
</tr>
<tr>
<td>CCP-QP-028 CCP Records Filing, Inventorying, Scheduling and Dispositioning</td>
<td>R14</td>
</tr>
<tr>
<td>CCP-TP-001 CCP Project Level Data Validation and Verification</td>
<td>R19</td>
</tr>
<tr>
<td>CCP-TP-002 CCP Reconciliation of DQOs and Reporting Characterization Data</td>
<td>R24</td>
</tr>
<tr>
<td>CCP-TP-003 CCP Data Analysis for S3000, S4000, and S5000 Characterization</td>
<td>R18</td>
</tr>
<tr>
<td>CCP-TP-005 CCP Acceptable Knowledge Documentation</td>
<td>R24</td>
</tr>
<tr>
<td>CCP-TP-006 CCP Visual Examination Technique for INL Newly Generated TRU Waste Retrieve from Pits</td>
<td>R16</td>
</tr>
<tr>
<td>CCP-TP-008 CCP Solids Sampling Procedure</td>
<td>R9</td>
</tr>
</tbody>
</table>

22 - Revised to add definitions; to move 2.5.1 to 4.2.1 [F]; to clarify 4.4.15 and Attachment 1, 4.2.10, and Carlsbad Field Office (CBFO) notification in 4.3.1; to add new 4.9.3 to address removal of Hold Tags when voiding a Nonconformance Report (NCR); to incorporate freeze file changes; to modify Attachment 1; to correct some typos and editorial mistakes.

20 - Revised to clarify editorial changes, transmitting of records, and destruction of QA records.
21 - Revised to incorporate Nuclear Waste Partnership (NWP) transition changes.

8 - Revised to incorporate Nuclear Waste Partnership (NWP) transition changes.

15 - Revised to incorporate Nuclear Waste Partnership (NWP) transition changes.

20 – Revised to remove references to P-TS. Also revised due to CAR-LANL-0005-12 and CBFO CAR 12-033.

25 - Revised to include timeframe for transmitting the waste stream profile form package to records. Also revised to make editorial changes needed.

19 - Revised to incorporate Nuclear Waste Partnership (NWP) transition changes.

N/A

17 - Revised to change the Visual Examination (VE) Lead to VE Expert (VEE) as part of an observation from U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) Surveillance S-08-007. Added requirements for detecting the presence of roaster oxide, and mitigating or eliminating it if discovered in transuranic (TRU) waste.

10 - Revised to incorporate standing order CCP-SO-INL-10-006 Rev. 0 and to clarify the solid sampling process.
<table>
<thead>
<tr>
<th>No.</th>
<th>Procedure Number</th>
<th>Procedure Title</th>
<th>Revision During Last Annual Audit</th>
<th>Previous INL/CCP Annual Audit A-12-13</th>
<th>Brief Description of Procedure Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4314</td>
<td>CCP-TP-028</td>
<td>CCP Radiographic Test and Training Drum Requirements</td>
<td>R6</td>
<td>R7</td>
<td>7 - Revised to allow Vendor Project Manager (VPM) to assemble Training Containers.</td>
</tr>
<tr>
<td>4415</td>
<td>CCP-TP-030</td>
<td>CCP CH TRU Waste Certification and WWIS Data Entry</td>
<td>R30</td>
<td>R30</td>
<td>N/A</td>
</tr>
<tr>
<td>4516</td>
<td>CCP-TP-033</td>
<td>CCP Shipping of CH TRU Waste</td>
<td>R19</td>
<td>R19</td>
<td>N/A</td>
</tr>
<tr>
<td>4617</td>
<td>CCP-TP-053</td>
<td>CCP Standard Real-Time Radiography (RTR) Inspection Procedure</td>
<td>R11</td>
<td>R12</td>
<td>12 - Revised to change format of attachments. Clarified format of container weights and clarified steps for documenting nonconformance reports (NCRs) on Attachment 2, CCP Radiography Data Sheet (Example).</td>
</tr>
<tr>
<td>18</td>
<td>CCP-TP-066</td>
<td>CCP Standardized Container Management</td>
<td>R8</td>
<td>R9</td>
<td>9 - Revised to incorporate elements of Central Characterization Program (CCP) Standing Order CCP-SO-096 Rev. 0 for the application of administrative hold on containers when applying a Vendor Project Manager (VPM) HOLD indicator tag and clarified visual examination (VE) operator requirements for traveler and VE data sheet.</td>
</tr>
<tr>
<td>4719</td>
<td>CCP-TP-080</td>
<td>CCP Operating the WMF-610 Real-Time Radiography (RTR) System</td>
<td>R3</td>
<td>R5</td>
<td>4 - Revised due to host site installing new equipment on RTR-1001.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 - Revised to reflect the changes to Advanced Mixed Waste Treatment Project (AMWTP) Technical Safety Requirement/Documented Safety Analysis (TSR/DSA) requirements.</td>
</tr>
<tr>
<td>48-</td>
<td>CCP-TP-082</td>
<td>CCP Preparing and Handling Waste Containers for Headspace Gas Sampling</td>
<td>R8</td>
<td>R8</td>
<td>N/A</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROCEDURE REVISION MATRIX

<table>
<thead>
<tr>
<th>No.</th>
<th>Procedure Number</th>
<th>Procedure Title</th>
<th>Revision During Last Annual Audit</th>
<th>Revision During Current Annual Audit</th>
<th>Brief Description of Procedure Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4921</td>
<td>CCP-TP-093</td>
<td>CCP Sampling of TRU Waste Containers</td>
<td>R16</td>
<td>R17</td>
<td>17 - Revised to respond to CAR-12-040 to enhance the numbering of the Chain of Custody.</td>
</tr>
<tr>
<td>5022</td>
<td>CCP-TP-106</td>
<td>CCP Headspace Gas Sampling Batch Data Report Preparation</td>
<td>R7</td>
<td>R8</td>
<td>8 - Revised to incorporate freeze file.</td>
</tr>
<tr>
<td>5123</td>
<td>CCP-TP-113</td>
<td>CCP Standard Contact-Handled Waste Visual Examination</td>
<td>R16</td>
<td>R16</td>
<td>N/A</td>
</tr>
<tr>
<td>5224</td>
<td>CCP-TP-119</td>
<td>CCP Operating the Real-Time Radiography (RTR) System #5</td>
<td>R4</td>
<td>R5</td>
<td>5 - Revised to reflect the changes to Advanced Mixed Waste Treatment Project (AMWTP's) Technical Safety Requirement/Documented Safety Analysis (TSR/DSA) requirements.</td>
</tr>
<tr>
<td>5325</td>
<td>CCP-TP-162</td>
<td>CCP Random Selection of Containers for Solids and Headspace Gas Sampling and Analysis</td>
<td>R1</td>
<td>R2</td>
<td>2 - Revised to incorporate Nuclear Waste Partnership (NWP) transition changes and freeze file changes.</td>
</tr>
<tr>
<td>5426</td>
<td>CCP-TP-500</td>
<td>CCP Remote-Handled Waste Visual Examination</td>
<td>R11</td>
<td>R11</td>
<td>N/A</td>
</tr>
<tr>
<td>5527</td>
<td>CCP-TP-506</td>
<td>CCP Preparation of the RH Transuranic Waste Acceptable Knowledge Characterization Reconciliation Report</td>
<td>R2</td>
<td>R2</td>
<td>N/A</td>
</tr>
<tr>
<td>5628</td>
<td>CCP-TP-507</td>
<td>CCP Shipping of Remote-Handled Transuranic</td>
<td>R7</td>
<td>R7</td>
<td>N/A</td>
</tr>
<tr>
<td>5729</td>
<td>CCP-TP-508</td>
<td>CCP RH Standard Real-Time Radiography Inspection Procedure</td>
<td>R7</td>
<td>R7</td>
<td>N/A</td>
</tr>
</tbody>
</table>
PROCEDURE REVISION MATRIX

<table>
<thead>
<tr>
<th>No.</th>
<th>Procedure Number</th>
<th>Procedure Title</th>
<th>Current</th>
<th>Previous</th>
<th>Brief Description of Procedure Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2830</td>
<td>CCP-TP-512</td>
<td>CCP Random Selection of Containers for Solids and Headspace Gas Sampling and Analysis</td>
<td>R5</td>
<td>R5</td>
<td>N/A</td>
</tr>
<tr>
<td>31</td>
<td>CCP-TP-530</td>
<td>CCP RH TRU Waste Certification and WWIS/WDS Data Entry</td>
<td>R10</td>
<td>R10</td>
<td>N/A</td>
</tr>
</tbody>
</table>
| 3032 | WP 13-QA.03 | Quality Assurance Independent Assessment Program | R19 | R21 | 20 - • Deleted requirements to enter external assessment findings in CTS throughout the document.
• Updated organization names in accordance with MD 1.1.
21 - • Removed from section 2.0 last bullet of lead assessor responsibilities and last bullet of surveillor responsibilities.
• Added to sections 5.0 and 6.0 provisions to document findings corrected during assessment on the WIPP Form in accordance with WP 04-IM1000 (Corrective action for CBFO CAR 12-020).
• Deleted attachment 9, and added reference to WP 09-CN3025 in section 4.3.
• Deleted Attachment 10, Concerns Form and its mention from section 5.0. |
Appendix C
Redlined C6 Checklists
Solids and Soils/Gravel Sampling Checklist

GENERAL SOLIDS SAMPLING REQUIREMENTS

<table>
<thead>
<tr>
<th>WAP Requirement</th>
<th>Procedure Documented</th>
<th>Example of Implementation/ Objective Evidence, as applicable</th>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T5 Are procedures documented that adequately ensure that when a Determination Request has not been approved, sampling and analysis of newly generated homogeneous solid and soil/gravel waste streams shall be conducted in accordance with the requirements specified in Attachment C1, Section C1-2? (Section C-3d(1)(a))</td>
<td>CCP-TP-008, (All) CCP-TP-512, (All)</td>
<td>Y N/A N/A</td>
<td>No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>T6 Are procedures in place to ensure that the number of newly generated soils/gravel waste containers to be randomly sampled will be determined using the procedure specified in Section C2-1, wherein a statistically selected portion of the waste will be sampled? (Section C-3d(1)(a))</td>
<td>CCP-TP-162, (All)</td>
<td>Y N/A N/A</td>
<td>No solids/soils waste was sampled since the last audit.</td>
</tr>
</tbody>
</table>
| **T7** Are procedures in place to ensure that the following sample collection requirements for retrievably stored and newly generated waste streams are met:
- The number of random samples collected for characterization of retrievably homogeneous solid and soil/gravel stored waste is performed by developing preliminary mean and variance estimates for each analyte to define the number of required random samples; and that the sample selection process is adequately documented.
- A minimum of 5 waste containers in a retrievably stored waste streams are sampled to establish the preliminary estimate for the number of samples.
- Based on the number of samples required by the preliminary estimate, the subsequent sample means and deviations for each analyte are evaluated against the regulatory threshold for each constituent to determine if additional samples shall be collected.
- Samples (the number of which is statistically determined) are collected to verify that a TRU mixed waste is below the regulatory threshold, where the regulatory threshold is the toxicity limit for toxicity characteristics and the PRQL for listed waste constituents.
- Samples from preliminary estimates counted as required samples were randomly selected and were collected, analyzed, and validated using representative methods. (Section C2-1a) | CCP-TP-162, (All) CCP-TP-001, S. 4.2 CCP-TP-003, S. 4.1 | Y N/A N/A | No solids/soils waste was sampled since the last audit. |
80. Are procedures in place that allow toxicity characteristic contaminants associated with F-numbers for a waste stream to be omitted from sampling requirements?

(Section C2-1a)

<table>
<thead>
<tr>
<th>Location Adequate? Y/N (Why?)</th>
<th>Item Reviewed</th>
<th>Adequate? Y/N</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP-TP-003, Note S. 4.1</td>
<td>N/A</td>
<td>N/A</td>
<td>No solids/soils waste was sampled since the last audit</td>
</tr>
</tbody>
</table>

SOLIDS SAMPLING PROCEDURES

81. Do procedures ensure that samples for retrievably stored waste are collected using appropriate coring tools or other EPA approved methods, and that newly generated wastes that are sampled from a process as it is generated are sampled using EPA approved methods, including scoops and ladles, that are capable of collecting a representative sample?

(Section C1-2a)

<table>
<thead>
<tr>
<th>Location Adequate? Y/N (Why?)</th>
<th>Item Reviewed</th>
<th>Adequate? Y/N</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP-TP-008, (All)</td>
<td>N/A</td>
<td>N/A</td>
<td>No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>CCP-TP-512, (All)</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

82. Do site specific procedures, QAPJPs, and/or SOPs indicate that rotational coring tools are available for the collection of cores and non-rotational coring tools available for collection of cores in relatively soft media? The method used shall be appropriate to retrieve the maximum core amount. The coring tools will include the following features:

- Removable tube liners constructed of rigid materials unlikely to affect the composition and/or concentration of target analytes in the sample core (Teflon®) and sufficiently transparent to allow visual examination of the core. The liner outer diameters are between 1-2 inches and the liner wall thickness is no greater than 1/16 inch. The liner shall fit flush with the coring tool inner wall and be of sufficient length to hold a core representative of the waste along the entire depth of the waste.
- Sleeves composed of polycarbonate, Teflon, or glass for most samples and brass or stainless steel for non-metal samples
- Liner end caps shall fit tightly around the ends of the liner and shall be composed of materials unlikely to affect the composition and/or concentration of analytes in the core (Teflon®)
- Spring retainers shall be used when the physical properties of the sampling media may cause the sample to fall out of the liner. The retainer shall be composed of inert materials and the inner diameter shall not be less than the inner diameter of the liner
- Coring tools may have an air lock mechanism. The air lock shall also close when the core is removed from the waste container
- Core extruders shall be used to extrude the liner if the liner does not slide freely
- Coring tools shall be of sufficient length to hold the liner and shall be constructed to allow placement of the liner leading edge as close as possible to the coring tools leading edge

No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.
WAP Requirement

INL/CCP Recertification Audit A-13-18

Table C6-2 Solids and Soils/Gravel Sampling Checklist

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Procedure Documented</th>
<th>Sample Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>82a</td>
<td>All surfaces of the coring tool that have the potential to contact the sample core or sample media shall be cleaned prior to use. Rotation coring tools shall have a mechanism to minimize inner liner rotation and shall be designed to minimize frictional heat transfer to the sample core. The leading edge of the coring tool is may be sharpened and tapered to a diameter equivalent or slightly smaller than the inner diameter of the liner. Non-Rotational coring tools shall be designed to minimize the kerf width (1/2 the difference between the outer diameter of the tool and the tools inlet inner diameter).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>83</td>
<td>Does the site adequately document that the liner material and retainers are not likely to contain any analytes of concern?</td>
<td>N/A</td>
</tr>
<tr>
<td>84</td>
<td>Are procedures in place to ensure that equipment blanks are collected and evaluated to verify that liner material, retainers, or other sampling equipment in contact with the sample do not contain analytes of concern?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCP-TP-008, S. 2.6.2 CCP-TP-512, S. 2.7.1 S. 3.4.1</td>
<td>Y</td>
</tr>
<tr>
<td>85</td>
<td>Are procedures in place to ensure that sampling is completed in a timely manner, within 60 minutes of core collection, or that the core shall remain in the capped liner, or the coring tool shall remain in the waste container with the air lock mechanism attached?</td>
<td>CCP-TP-008, S. 2.3.3 CCP-TP-512, S. 4.2.9 NOTE S. 4.2.18</td>
</tr>
<tr>
<td>86</td>
<td>Are procedures in place to ensure that VOC samples are sampled prior to extruding the core from the liner and that the sample locations are documented? These samples may be collected by choosing a single sample from the representative subsection of the core, or three equal length VOC sample locations on the core are selected randomly along the long axis of the core.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/ Objective Evidence, as applicable</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>INL/CCP Recertification Audit A-13-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table C6-2 Solids and Soils/Gravel Sampling Checklist</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>form a single 15-gram composite sample. Smaller sample sizes may be used if method PRQL requirements are met for all analytes. (Section C1-2a(2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Are procedures documented to ensure that a VCC sample is collected using a metal coring cylinder or equivalent equipment as described in SW-846 and that the sample is immediately extruded into a 40 mL VOA vial (or other containers specified in appropriate SW-846 methods)? (Section C1-2a(2))</td>
<td>N/A</td>
</tr>
<tr>
<td>88</td>
<td>Are procedures in place to ensure that SVOC and Metals sample location(s) on the core are selected randomly along the long axis of the core and that the sample locations are documented, or that samples are collected at the same locations as VOC samples? Samples may be collected by splitting or composting the representative subsection of the core. The representative subsections are chosen by randomly selecting a location along the portion of the core from which the sample was taken? (Section C1-2a(2))</td>
<td>N/A</td>
</tr>
<tr>
<td>89</td>
<td>Are procedures in place to ensure that the SVOC and Metals samples are collected using equipment constructed of materials unlikely to affect the composition or concentrations of the samples? (Section C1-2a(2))</td>
<td>CCP-TP-008, S. 2.6.1 & 2.6.2 CCP-TP-512, S. 3.4.1</td>
</tr>
<tr>
<td>90</td>
<td>Are procedures in place to ensure that newly generated waste samples collected by means other than coring are collected as soon as possible and that spatial and temporal homogeneity is evaluated to determine if composite or grab samples are appropriate? (Section C1-2a(2))</td>
<td>CCP-TP-008, S. 2.3.3, 4.2.6 [F], 4.2.7 [H] CCP-TP-512, S. 2.5.1, 4.2.9 NOTE</td>
</tr>
<tr>
<td>91</td>
<td>Are procedures in place to ensure sample volumes, preservatives, containers, and holding times meet the following specifications: Minimum sample quantity VOC 15 grams SVOC 50 grams Metals 10 grams</td>
<td>CCP-TP-008, S. 4.2 & 4.3 CCP-TP-512, S. 4.2.10</td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/ Objective</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Table C6-2 Solids and Soils/Gravel Sampling Checklist</td>
<td>Location</td>
<td>Adequate?</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>Adequate?</td>
</tr>
<tr>
<td>(Quantity may be increased or decreased according to the requirements of the analytical laboratory, as long as the QAOs are met.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preservative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>Cool to 4C</td>
<td></td>
</tr>
<tr>
<td>SVOC</td>
<td>Cool to 4C</td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td>Cool to 4C</td>
<td></td>
</tr>
<tr>
<td>Sample Container</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>40 mL VOA glass vial (or other appropriate containers) cap</td>
<td></td>
</tr>
<tr>
<td>SVOC</td>
<td>glass jar with Teflon® lined cap</td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td>polyethylene or polypropylene bottle</td>
<td></td>
</tr>
<tr>
<td>Holding Time from Date of Collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>14 days prep/40 days analyze</td>
<td></td>
</tr>
<tr>
<td>SVOC</td>
<td>14 days prep/40 days analyze</td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td>180 days/ 28 days Hg</td>
<td></td>
</tr>
<tr>
<td>(Table C1-4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUALITY CONTROL SAMPLE COLLECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Are procedures in place to ensure that sampling precision will be determined through the collection of co-located core field duplicate samples for core samples and through the collection of co-located samples for samples collected using alternate methods at the frequency of once per 20 sample batch collected over 14 days or once per week, whichever is more frequent? (Section C1-2b(1))</td>
<td>CCP-TP-008, S. 2.3.1 CCP-TP-512, S. 2.3.1 & 2.3.2</td>
</tr>
<tr>
<td>93</td>
<td>Are procedures in place to ensure that co-located cores are collected side by side as close as feasible to each other, that the cores are collected and handled in the same manner? (Section C1-2b(1))</td>
<td>CCP-TP-008, S. 2.3.2 CCP-TP-512, S. 2.3.1</td>
</tr>
<tr>
<td>94</td>
<td>Are procedures in place to ensure that an additional sampling location is found or new co-located cores are collected if the visual examination of the original co-located cores detects inconsistency in the sample color, texture, or waste type? (Section C1-2b(1))</td>
<td>CCP-TP-008, S. 2.3.2 CCP-TP-512, S. 2.3.1</td>
</tr>
<tr>
<td>Item</td>
<td>Adequate? (Y/N)</td>
<td>Comment</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>95</td>
<td>Y/N</td>
<td>No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>96</td>
<td>N/A</td>
<td>Disposable sampling equipment Used and purchased certified Clean. No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>97</td>
<td>N/A</td>
<td>Disposable sampling equipment Used and purchased certified Clean. No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>99</td>
<td>N/A</td>
<td>Disposable sampling equipment Used and purchased certified Clean. No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/ Objective Evidence, as applicable</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>100 Are procedures in place to ensure that equipment blanks are analyzed for VOC, SVOC, and Metals and that the entire equipment batch will be re-cleaned and re-sampled if any analytes are detected at levels greater than 3 times the MDL or PRDL? (Section C1-2b(2))</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>101 Are procedures and processes in place to ensure that equipment blanks are traceable to a specific equipment cleaning batch and that the equipment cleaning batch is traceable to specific identified sampling equipment? Are sampling equipment or coring tools labeled with unique identification numbers that are referenced in field records? (Section C1-2b(3))</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>102 Are procedures in place to ensure that disposable sampling equipment is certified as clean prior to use? (Section C1-2b(2))</td>
<td>CCP-TP-008, S. 2.6.1 & 2.6.2 CCP-TP-512, S. 2.7.1 & 4.1.4</td>
<td>Y</td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/ Objective Evidence, as applicable</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>DOCUMENTED</td>
<td>EVIDENCE, AS APPLICABLE</td>
</tr>
<tr>
<td>LOCATION Adequate? Y/N (Why?) Reviewed Y/N</td>
<td>ITEM Adequate? Y/N</td>
<td>N/A</td>
</tr>
<tr>
<td>103 Are procedures in place to ensure that all sampling and coring tools are tested prior to use in accordance with manufacturers specification to ensure that the air-lock mechanism and rotation mechanism are in working order? (Section C1-2c)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>104 Are procedures in place to ensure that malfunctioning sampling and coring tools are repaired or replaced prior to use? (Section C1-2c)</td>
<td>CCP-TP-008, S. 4.1.4 CCP-TP-512, S. 4.1.6</td>
<td>Y</td>
</tr>
<tr>
<td>105 Are procedures in place to ensure that all equipment is cleaned, sealed inside a protective wrapping and stored in a clean area? (Section C1-2c)</td>
<td>CCP-TP-008, S. 4.1.4 CCP-TP-512, S. 4.1.6</td>
<td>Y</td>
</tr>
<tr>
<td>106 Are procedures in place to ensure that an adequate spare part inventory is available? (Section C1-2c)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>107 Are procedures in place to ensure that all equipment maintenance and repair is documented in field records and that field record logbooks are available to document equipment maintenance and repair activities? (Section C1-2c)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
WAP Requirement

INL/CCP Recertification Audit A-13-18
Table C6-2 Solids and Soils/Gravel Sampling Checklist

<table>
<thead>
<tr>
<th>Location</th>
<th>Adequate? Y/N (Why?)</th>
<th>Item Reviewed</th>
<th>Adequate? Y/N</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP-TP-008, S. 4.1.1, 4.1.2 & 4.1.3</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013. No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>CCP-TP-008, S. 2.6.1</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/ Objective Evidence, as applicable</td>
<td>Comment (e.g., any change in procedure since last audit, etc.)</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>INL/CCP Recertification Audit A-13-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table C6-2 Solids and Soils/Gravel Sampling Checklist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAMPLE HANDLING AND CUSTODY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Do formats for field logs and custody records specify documentation of the following information:</td>
<td>CCP-TP-008, Att. 1 & 2 CCP-TP-512, S. 4.2.13 & Att. 1 & 2</td>
<td>Y N/A</td>
<td>No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td></td>
<td>• Signature of individual initiating custody control, along with the date and time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Documentation of sample numbers for each sample under custody. Sample numbers will be referenced to a specific sampling event description that will identify the sampler(s) through signature, date and time of sample collection, type/number containers for each sample, sample matrix, preservatives (if applicable), requested methods of analysis, place/address of sample collection and the waste container number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For off-site shipping, method of shipping transfer, responsible shipping organization or corporation, and associated air bill or lading number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111a</td>
<td>• Signatures of custodians relinquishing and receiving custody of samples including date and time of transfer.</td>
<td>CCP-TP-008, S. 4.3 & Att. 1 & 2 CCP-TP-512, S. 4.3 & Att. 1 & 2</td>
<td>Y N/A</td>
<td>No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td></td>
<td>• Description of final sample container disposition, along with signature of individual removing sample container from custody</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Comments section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Documentation of discrepancies, breakage or tampering (Section C1-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Are procedures in place to ensure that samples and sampling equipment are identified with unique identification numbers? (Section C1-5)</td>
<td>CCP-TP-008, S. 2.6.1 CCP-TP-512, S. 4.1.10</td>
<td>Y N/A</td>
<td>No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/Objective Evidence, as applicable</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Location Adequate?
Y/N (Why?)
Item Reviewed
Adequate? Y/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do sample tags or labels contain the following information:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Sample ID number</td>
<td>CCP-TP-008, S. 2.6.1, & Att. 1 & 2</td>
<td>Y</td>
<td>N/A</td>
<td>No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>· Sampler initials and organization</td>
<td>CCP-TP-512, S. 4.1.10, Att. 1 & 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Ambient temperature and pressure (for gas samples only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Sample description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Requested analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· Date and time of collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· QC designation (if applicable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Section C1-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are procedures in place to ensure waste containers and samples are sealed with intact custody seals and that one or more of the following custody conditions are met:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· It is in the possession of an authorized individual</td>
<td>CCP-TP-008, S. 2.5.2, Att. 1 & 2</td>
<td>Y</td>
<td>N/A</td>
<td>No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
<tr>
<td>· It is in the view of an authorized individual, after being in the possession of that individual</td>
<td>CCP-TP-512, S. 2.3.4 & Att. 1 & 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· It was in the possession of an authorized individual and access to the sample was controlled by locking or placement of signed custody seals that prevent undetected access</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>· It is in a designated secure area, such as a controlled access location with complete documentation of personnel access or a radiological containment area (hot cell or glove box)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Section C1-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are procedures in place to ensure that sample custody is maintained until the sample is released by the SPM or is expended?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Section C1-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are procedures in place to ensure that samples in glass jars are wrapped in plastic to prevent breakage and placed in appropriate containers, such as coolers, for shipment?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Section C1-6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirement</td>
<td>Procedure Documented</td>
<td>Evidence, as applicable</td>
<td>Adequate? Y/N (Why?)</td>
<td>Item Reviewed</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>119</td>
<td>Are procedures in place to ensure that adequate cold packs are included in the sample shipping container to ensure that all temperature requirements are met? (Section C1-6)</td>
<td>CCP-TP-008, S. 2.5.1 & 4.3.4 CCP-TP-912, S. 4.2.22 S. 4.3.1[8]</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>120</td>
<td>Are procedures in place to ensure that sample COC forms are secured for shipment to the inside of the sealed and locked shipping container and that samples and shipping containers are affixed with tamper proof seals? (Section C1-6)</td>
<td>CCP-TP-008, S. 25.3 & 4.3.9 CCP-TP-912, S. 4.3.1[D], 4.2.20 & NCTE</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>121</td>
<td>Are procedures in place to ensure that appropriate blank samples are included with each shipment container containing VOC samples? (Section C1-6)</td>
<td>CCP-TP-008, S. 4.2.7[F] & Att. 2 CCP-TP-012, S. 2.3.6</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>122</td>
<td>Are procedures in place to ensure that a custody seal or device is securely affixed across the lid and body of each sample and shipment container, and is traceable to the individual who affixed the seal or device? (Section C1-6)</td>
<td>CCP-TP-008, S. 4.2.12, 4.3.5 CCP-TP-912, S. 4.2.20 & NOTE</td>
<td>Y</td>
<td>N/A</td>
</tr>
</tbody>
</table>

LABORATORY OPERATIONS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Procedure Documented</th>
<th>Evidence, as applicable</th>
<th>Adequate? Y/N (Why?)</th>
<th>Item Reviewed</th>
<th>Adequate? Y/N</th>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Are procedures in place to ensure that only laboratories that are qualified through participation in the Performance Demonstration Program are eligible to analyze waste samples? (Section C-3a(3))</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>The INL Labs were evaluated by CBFO Audit A-13-19.</td>
</tr>
<tr>
<td>124</td>
<td>Are procedures available from all participating laboratories that adequately document that custody is maintained until the sample is released by the site project manager or until the sample is expended? (Section C1-5)</td>
<td>CCP-TP-008, Att. 2</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>No solids/soils waste was sampled since the last audit</td>
</tr>
</tbody>
</table>

Example of Implementation / Objective Evidence, as applicable

Item Adequate? Reviewed

Not applicable

Adequate? Y/N

No applicable

Comment (e.g., any change in procedure since last audit, etc.)

PERMIT ATTACHMENT C6

Page 14 of 20
<table>
<thead>
<tr>
<th>WAP Requirement</th>
<th>Procedure Documented</th>
<th>Example of Implementation/Objective Evidence, as applicable</th>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 INL/CCP Recertification Audit A-13-18 Table C6-2 Solids and Soils/Gravel Sampling Checklist</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>VOLATILE AND SEMI-VOLATILE ANALYSIS OF CORE SAMPLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125 Are procedures documented to ensure that all VOC and SVOC analyses are evaluated using the following criteria:</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>- GC/MS Tunes, Initial Calibrations and Continuing Calibration will be performed and evaluated using criteria in Table C3-5 (VOCs) or Table C3-7 (SVOCs) and SW-846 methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Precision is shall be assessed through analyzing of laboratory duplicates or matrix spike duplicates, LCS replicates, and PDP blind-audit samples in comparison to Table C3-4 (VOCs) and Table C3-6 (SVOCs).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Accuracy as %R is shall be assessed through evaluation of LCS, Matrix spikes, PDP blind-audit samples, and surrogate compounds in comparison to criteria in Table C3-4 and Table C3-5 (VOCs) and Table C3-6 and Table C3-7 (SVOCs) or the SW-846 method.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Laboratory completeness shall be expressed as the number of samples analyzed with valid results as a percent of the total number of samples collected.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Comparability is assessed through the use of standardized SW-846 methods sample preparation and methods that meet the QAO requirements in Tables C3-4 and C3-5 (VOCs) and Tables C3-6 and C3-7 (SVOCs), traceable standards, and by requiring participation in the PDP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Representativeness is assured through the use of unbiased sample collection.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Results and method detection limits are expressed in Mg/Kg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- All method detection limits and program required quantitation limits shall be less than or equal to the limits listed in Table C3-4 or Table C3-6 and the detection limit study procedures shall be documented in SOPs. (Section C3-6 and C3-7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126 Are procedures documented to ensure that Tentatively Identified Compounds shall be added to the target analyte list if detected in a given waste stream if they are reported in 25% of the waste containers sampled from a given waste stream, and if they appear in the 20.4.1.200 NMAC (incorporating 40 CFR 261) Appendix VIII list? (Section C-3a(1))</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Are procedures documented to ensure that the following criteria are met with regard to the recognition and reporting of TICS for GC/MS Methods for homogeneous solids and soils and gravels in accordance with SW-846 criteria:

- Relative intensities of major ions in the reference spectrum (ions greater than 10% of the most abundant ion) should be present in the sample spectrum.
- The relative intensities of the major ions should agree within ±20 percent.
- Molecular ions present in the reference spectrum should be present in the sample spectrum.
- Ions present in the sample spectrum but not in the reference spectrum should be reviewed for possible background contamination or presence of coeluting compounds.
- Ions present in the reference spectrum but not in the sample spectrum should be reviewed for possible subtraction from the sample spectrum because of background contamination or coeluting peaks.
- The reference spectra used for identifying TICs shall include, at minimum, all of the available spectra for compounds that appear in the 20.4.1.200 NMAC (incorporating 40 CFR 261) Appendix VIII list. The reference spectra may be limited to VOCs when analyzing headspace gas samples.
- TICs for headspace gas analyses that are performed through FTIR analyses shall be identified in accordance with the specifications of SW-846 Method 8410.

(Section C3-1)

<table>
<thead>
<tr>
<th>Procedure Documented</th>
<th>Example of Implementation/ Objective Evidence, as applicable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location Adequate? Y/N (Why?)</td>
<td>Item Reviewed Adequate? Y/N</td>
<td>(e.g., any change in procedure since last audit, etc.)</td>
</tr>
<tr>
<td>126a</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

TICs shall be reported as part of the analytical batch data reports for GC/MS Methods in accordance with the following minimum criteria:

- a TIC in an individual container headspace gas or solids sample shall be reported in the analytical batch data report if the TIC meets the SW-846 identification criteria listed above and is present with a minimum of 10% of the area of the nearest internal standard.
- a TIC in a composited headspace gas sample that contains 2 to 5 individual container samples shall be reported in the analytical batch data report if the TIC meets the SW-846 identification criteria listed above and is present with a minimum of 2% of the area of the nearest
WAP Requirement

INUCCP Recertification Audit A-13-18

Table C6-2 Solids and Soils/Gravel Sampling Checklist

<table>
<thead>
<tr>
<th>Location</th>
<th>Adequate? Y/N (Why?)</th>
<th>Item Reviewed</th>
<th>Adequate? Y/N</th>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
</table>

- a TIC in a composited headspace gas sample that contains 6 to 10 individual container samples shall be reported in the analytical batch data report if the TIC meets the SW-846 identification criteria listed above and is present with a minimum of 1% of the area of the nearest internal standard.

- a TIC in a composited headspace gas sample that contains 11 to 20 individual container samples shall be reported in the analytical batch data report if the TIC meets the SW-846 identification criteria listed above and is present with a minimum of 0.5% of the area of the nearest internal standard.

(Section C3-1)
<table>
<thead>
<tr>
<th>WAP Requirement</th>
<th>Procedure Documented</th>
<th>Example of Implementation/Objective Evidence, as applicable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>INL/CCP Recertification Audit A-13-18
Table C6-2 Solids and Soils/Gravel Sampling Checklist ¹</td>
<td></td>
<td></td>
<td>(e.g., any change in procedure since last audit, etc.)</td>
</tr>
<tr>
<td>METALS ANALYSIS OF CORE SAMPLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Are procedures in place to ensure that all Metals analyses are evaluated using the following criteria:</td>
<td></td>
<td>The INL Labs were evaluated by CBFO Audit A-13-19.</td>
</tr>
<tr>
<td></td>
<td>• Precision shall be assessed by analyzing of laboratory sample duplicates or laboratory matrix spike duplicates, LCS replicates, and PDP blind-audit samples in comparison to Table C3-8</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Accuracy is shall be assessed through analysis of laboratory , matrix spikes, PDP blind-audit samples, serial dilutions, interference check samples, and laboratory control samples in comparison to criteria in Tables C3-8 and C3-9</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Instrument detection limits are expressed in ug/L and results are listed in Mg/Kg.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• All instrument detection limits and program required detection limits shall be less than the limits listed in Table C3-8 and the detection limit study procedures shall be documented in laboratory SOPs. The Instrument detection limits shall be less than the associated PRDL for each analyte (This requirement is not mandatory if the sample concentrations are greater than 5 times the instrument detection limit (IDL) for a method)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Instrument detection limits shall be determined semiannually using procedures documented in laboratory SOPs</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>127a</td>
<td>• Laboratory completeness shall be expressed as the number of samples analyzed with valid results as a percent of the total number of samples submitted for analysis.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Comparability is assessed through use of standardized SW-846 sample preparation and methods that meet the QAO requirements in Tables C3-8 and C3-9, demonstrating successful participation in the PDP and use of traceable standards.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Representativeness is assured through the use of unbiased sample collection and preparation of samples using unbiased methods.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Results PRQLs are expressed in Mg/Kg wet weight (Section C3-8)</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

1. INUCCP Recertification Audit A-13-18
2. N/A N/A N/A N/A
3. The INL Labs were evaluated by CBFO Audit A-13-19.
QUALITY ASSURANCE OBJECTIVES

<table>
<thead>
<tr>
<th>Item</th>
<th>Procedure Documented</th>
<th>Example of Implementation/Objective Evidence, as applicable</th>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>Are procedures in place to ensure that the sample completeness rate is expressed as the number of valid samples collected as a percentage of the total samples collected for each waste stream? The rate must be greater than 90 percent for all compounds in a waste stream. (Section C3-3)</td>
<td>CCP-TP-002, Att. 1</td>
<td>Y</td>
</tr>
<tr>
<td>129</td>
<td>Are procedures in place to ensure that sampling operations are comparable through the use of standardized procedures, sampling equipment, and measurement unit’s participation in the PDP? (Section C3-3)</td>
<td>CCP-TP-008, (All) CCP-TP-512, (All)</td>
<td>Y</td>
</tr>
<tr>
<td>130</td>
<td>Are procedures in place to ensure that sampling precision shall be determined through the collection of field duplicates at a rate of 1 per sampling batch (up to 20 samples) or 1 per week, whichever is more frequent? (Section C3-3)</td>
<td>CCP-TP-008, S. 2.3.1 CCP-TP-512, S. 2.3.1 & 2.3.2</td>
<td>Y</td>
</tr>
<tr>
<td>131</td>
<td>Are procedures in place to ensure that the variance measured between co-located core samples is compared to the variance within the waste stream using the F-test? (Section C3-3)</td>
<td>CCP-TP-001, S. 4.4</td>
<td>Y</td>
</tr>
<tr>
<td>132</td>
<td>Are procedures in place to ensure that sampling accuracy as a result of equipment blank evaluation is determined through the collection of equipment blanks at a frequency of once per equipment cleaning batch? (Section C3-3)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
WAP Requirement

INL/CCP Recertification Audit A-13-18

Table C6-2 Solids and Soils/Gravel Sampling Checklist

<table>
<thead>
<tr>
<th>Item</th>
<th>Adequate?</th>
<th>Location</th>
<th>Y/N (Why?)</th>
<th>Item Reviewed</th>
<th>Adequate?</th>
<th>Y/N</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Sampling procedures are for grab sampling. No solid sampling activities have occurred since the last recertification audit. Additionally, the requirement for solid sampling was eliminated with the Permit modification that occurred on March 13, 2013.</td>
</tr>
</tbody>
</table>

- Use of coring tools and sampling equipment that are clean prior to use.
- The entire depth of the waste minus a documented safety factor shall be cored and the core collected shall have a core length greater than or equal to 50 percent.
- The core recovery is calculated as the length of the core collected over the depth of the waste in the container.
- Coring operations and tools should be designed to minimize alteration of the in-place waste characteristics and the minimum waste disturbance shall be verified by visually examining the core and documenting the observation in field logbooks.

(Note: If core recovery is less than 50 percent, a second core shall be randomly selected. The core with the best recovery shall be used for sample collection.) (Section C3-3)

1. The WAP requirements should be presented in documents, such as procedures. Each of the questions posed under WAP requirements is meant to ask whether procedures are in place or whether documents are evident which demonstrate that the specific WAP requirement is or can be met.
REvised
Table C6-3 Radiography Checklist
INL/CCP Recertification Audit A-13-18
June 3 – 6, 2013

PERMIT ATTACHMENT C6
Page 1 of 12
QUALITY ASSURANCE OBJECTIVES

<table>
<thead>
<tr>
<th>Item</th>
<th>Reviewed Adequate?</th>
<th>Y/N (Why)</th>
<th>Evidence, as applicable</th>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rad·hv</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INUCCP Recertification Audit A-13-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table C6-3 Radiography Checklist</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAP Requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCEDURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documented</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUALITY ASSURANCE OBJECTIVES

<table>
<thead>
<tr>
<th>233</th>
<th>Are process procedures in place to meet the following Quality Assurance Objectives?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>Does the site describe in its QAPs and SOP(s) activities to reconcile any discrepancies between two radiography operators with regard to identification of the waste matrix code, liquids in excess of TSDF-WAC limits, and compressed gases through independent replicate scans and independent observations? And additionally, activities to verify the precision of radiography prior to use by tuning precisely enough to demonstrate compliance with QA0s through viewing an image test pattern?</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Was accuracy obtained by using a target to tune the image for maximum sharpness and by requiring operators to successfully identify 100 percent of the required items in a training container during their initial qualification and subsequent requalification?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>233a</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Was an audio/video tape (or equivalent media) of the radiography examination and a radiography data form validated according to the requirements in Section C3-4?</td>
</tr>
<tr>
<td></td>
<td>Was an audio/video tape (or equivalent media) of the radiography examination and a radiography data form obtained for 100% of the waste containers subject to radiography?</td>
</tr>
<tr>
<td></td>
<td>Is comparability ensured through the use of standardized radiography procedures and operator training and qualifications (Section C3-2a)</td>
</tr>
</tbody>
</table>

Example of Implementation/ Objective Evidence, as applicable

<table>
<thead>
<tr>
<th>Item Reviewed</th>
<th>Adequate?</th>
<th>Y/N</th>
<th>Evidence, as applicable</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTR BDRs:</td>
<td></td>
<td></td>
<td>INRTR5120001</td>
<td></td>
</tr>
<tr>
<td>INLRHRTR12005</td>
<td></td>
<td></td>
<td>INLRHRTR12013</td>
<td></td>
</tr>
<tr>
<td>INLRHRTR13002</td>
<td></td>
<td></td>
<td>INLRHRTR13003</td>
<td></td>
</tr>
<tr>
<td>RTR Operator Training Records (RTR-2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/ Objective Evidence, as applicable</td>
<td>Comment (e.g., any change in procedure since last audit, etc.)</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>Does the site have procedures to ensure that radiography is used to identify and verify waste container contents and verify the waste’s physical form? Does the site have procedures to identify prohibited materials? (Section C-3b; C1-1)</td>
<td>CCP-TP-053, S. 1.0, Table 1 & Att. 2</td>
<td>RTR BDRs: INRTR5120001, INRTR5120002, INRTR5120003, INRTR5120004, INLRHTR12005, INLRHTR12013, INLRHTR13001, INLRHTR13002, INLRHTR13003 (RTR-1)</td>
<td>Y</td>
</tr>
<tr>
<td>235</td>
<td>Do procedures or other supporting documentation ensure that every waste container will undergo radiography and/or VE as necessary to augment AK? (Section C-3b)</td>
<td>CCP-TP-001, S. 3.1, 4.2 & Att. 2</td>
<td>IN-SRP-VE-000085, INARP-VE-002812, INLRHVE12001 (GEN-5) INRTR5120004, RTR11-00132, RTR11-00157, INLRHTR13005, INLRHTR12012 (GEN-7)</td>
<td>Y</td>
</tr>
<tr>
<td>236</td>
<td>Do procedures ensure that containers whose contents prevent full examination are examined by visual examination rather than by radiography unless the site certifies that visual examination would provide no additional relevant information for that container based on the AK information for the waste stream? (Section C1-1)</td>
<td>CCP-TP-053, S. 4.4.2 [B] & [C] CCP-TP-508, S. 4.3.3 [B]</td>
<td>RTR BDRs: INRTR5120001, INRTR5120002, INRTR5120003, INRTR5120004, INLRHTR12005, INLRHTR12013, INLRHTR13001, INLRHTR13002, INLRHTR13003 (RTR-1)</td>
<td>Y</td>
</tr>
<tr>
<td>237</td>
<td>Do procedures or other supporting documentation ensure that the physical form determined by radiography is compared with the waste stream descriptions? If discrepancies are noted, will a new waste stream be identified? (Section C-3b)</td>
<td>RTR CCP-TP-053, S. 4.4.2[H.2], Att. 2 & 3 CCP-TP-508, S. 4.3.3[E.1]</td>
<td>RTR BDRs: INRTR5120001, INRTR5120002, INRTR5120003, INRTR5120004, INLRHTR12005, INLRHTR12013, INLRHTR13001, INLRHTR13002</td>
<td>Y</td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/ Objective Evidence, as applicable</td>
<td>Comment (e.g., any change in procedure since last audit, etc.)</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>238 Are there procedures to ensure the data is obtained from an audio/video recorded scan provided by trained radiography operators? (Section C1-1)</td>
<td>CCP-TP-053, S. 2.2, Att. 2 & 3</td>
<td>INLHRTR13003 (RTR-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCP-TP-058, S. 2.2, Att. 2 & 3</td>
<td>PL WSPF ID-RF-3114, CIS Lot 109, Rev. 1 (GEN-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL WSPF ID-RF-S5300, CIS Lot 157 (GEN-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL WSPF ID-SDA-SOIL, CIS Lot 75 & 76, Rev. 1 (GEN-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL WSPF ID-NRF-SPC, CIS Lot 3 & 4 (GEN-4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTRTR5120004, RTR11-00132, RTR11-00157, INLHRTR13005, INLHRTR12012 (GEN-7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239 Were all activities required to achieve the radiography objective described in site Quality Assurance Project Plans (QAPPs) and Standard Operating Procedures (SOPs)? (Section C3-2)</td>
<td>CCP-TP-053, (All)</td>
<td>RTR BDRs: INTRTR5120001 INTRTR5120002 INTRTR5120003 INTRTR5120004 INLHRTR12005 INLHRTR12013 INLHRTR13001 INLHRTR13002 INLHRTR13003 (RTR-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCP-TP-508, (All)</td>
<td>INTRTR5120001 INTRTR5120002 INTRTR5120003 INTRTR5120004 INLHRTR12005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adequate? Y/N (Why)

Example of Implementation/ Objective Evidence, as applicable

Comment (e.g., any change in procedure since last audit, etc.)
<table>
<thead>
<tr>
<th>WAP Requirement</th>
<th>Procedure Documented</th>
<th>Example of Implementation/ Objective Evidence, as applicable</th>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240 Did the radiography system consist of the following equipment or equivalent:</td>
<td>CCP-TP-053, S. 4.2 - 4.4 CCP-TP-508, S. 4.1 - 4.3 CCP-TP-119, (All) CCP-TP-080, (All)</td>
<td>Y RTR BDRs: INRTR5120001 INRTR5120002 INRTR5120003 INRTR5120004 INLRHTR12005 INLRHTR12013 INLRHTR13001 INLRHTR13002 INLRHTR13003 (RTR-1)</td>
<td>The audit team verified the radiography system contained the referenced components to adequately characterize container contents.</td>
</tr>
<tr>
<td>241 Did the X-ray producing device have controls which allow the operator to vary voltage, thereby controlling image quality? Was it possible to vary the voltage, typically between 150-400 kV, to provide an optimum degree of penetration through the waste? Was high-density material examined with the X-ray device set on the maximum voltage? Was low-density material examined at lower voltage settings to improve contrast and image definition?</td>
<td>CCP-TP-053, S. 4.4.1 [C] CCP-TP-508, S. 4.3.2 [D]</td>
<td>Y RTR BDRs: INRTR5120001 INRTR5120002 INRTR5120003 INRTR5120004 INLRHTR12005 INLRHTR12013 INLRHTR13001 INLRHTR13002 INLRHTR13003 (RTR-1)</td>
<td>The audit team verified the radiography system contained the referenced components to adequately characterize container contents.</td>
</tr>
<tr>
<td>242 Do procedures or other documentation ensure that an audio/videotape or equivalent is made of the waste container scan and maintained as a non-permanent record?</td>
<td>CCP-TP-053, S. 4.3, 5.1.2, Att. 1,2 & 3 CCP-TP-508, S. 4.2, 5.1.2, Att. 1,2 & 3</td>
<td>Y RTR BDRs: INRTR5120001 INRTR5120002 INRTR5120003 INRTR5120004 INLRHTR12005 INLRHTR12013</td>
<td></td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/Objective Evidence, as applicable</td>
<td>Comment (e.g., any change in procedure since last audit, etc.)</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DATA COMPILATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>243 Are there procedures to ensure that a radiography data form is used to document the waste matrix code, ensure the waste container contains no ignitable, corrosive or reactive waste by documenting the absence of liquid in excess of TSDF-WAC limits or compressed gases, and verify that the physical form of the waste is consistent with the waste stream description documented on the WSPF? (Section C1-1)</td>
<td>CCP-TP-053, S. 4.4, Att. 2 & 3</td>
<td>RTR BDRs: INLRHRTR13001, INLRHRTR13002, INLRHRTR13003 (RTR-1)</td>
<td>Y</td>
</tr>
<tr>
<td>245 If radiography indicates that the waste does not match the waste stream description, do procedures ensure that the appropriate corrective action was taken? (Section C-3b)</td>
<td>CCP-TP-053, S. 4.4.2 [H.2], CCP-TP-508, S. 4.3.3 [E.1]</td>
<td>Y</td>
<td>RTR BDRs: INLRHRTR13001, INLRHRTR13002, INLRHRTR13003 (RTR-1)</td>
</tr>
<tr>
<td>246 If a discrepancy is noted, do procedures ensure that the proper waste stream assignment is determined, the correct hazardous waste numbers assigned, and the resolution documented? (Section C-3b)</td>
<td>CCP-TP-005, S. 4.8, S. 4.9, Att. 10</td>
<td>Y</td>
<td>AK Discrepancy Resolutions at Characterization and AK Reevaluations (AK-22)</td>
</tr>
<tr>
<td>TRAINING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>247 Do site procedures ensure that only trained personnel are allowed to operate</td>
<td>CCP-TP-053</td>
<td>Y</td>
<td>RTR BDRs:</td>
</tr>
<tr>
<td>WAP Requirement</td>
<td>Procedure Documented</td>
<td>Example of Implementation/ Objective Evidence, as applicable</td>
<td>Comment (e.g., any change in procedure since last audit, etc.)</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>INL/CAP Recertification Audit A-13-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table C6-3 Radiography Checklist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>radiography equipment? (Section C1-1)</td>
<td>S. 2.2.1 CCP-TP-508, S. 2.2.1 CCP-QP-002, S. 4.3.2</td>
<td>INRT5120001 INRT5120002 INRT5120003 INRT5120004 INLHRTR12005 INLHRTR12013 INLHRTR13001 INLHRTR13002 INLHRTR13003 (RTR-1) RTR Operator Training Records (RTR-2)</td>
<td></td>
</tr>
<tr>
<td>248 Do site procedures ensure that training requirements for radiography operators is based upon existing industry standard training requirements? (Section C1-1)</td>
<td>CCP-QP-002, S. 4.3.2 [A.2]</td>
<td>Y RTR Operator Training Records (RTR-2)</td>
<td>Y</td>
</tr>
<tr>
<td>249 Does the documented training program provide radiography operators with both formal and on-the-job training (OJT)? (Section C1-1)</td>
<td>CCP-QP-002, S. 4.3.2</td>
<td>Y RTR Operator Training Records (RTR-2)</td>
<td>Y</td>
</tr>
<tr>
<td>250 Does the documented training program ensure that the radiography operators are instructed in the specific waste generating practices and typical packaging configurations expected to be found in each waste stream at the site? (Section C1-1)</td>
<td>CCP-QP-002, S. 4.1 & 4.2</td>
<td>Y RTR Operator Training Records (RTR-2)</td>
<td>Y</td>
</tr>
<tr>
<td>251 Does the documented training program ensure that the OJT and apprenticeship are conducted by an experienced, qualified radiography operator prior to qualification of the candidate? (Section C1-1)</td>
<td>CCP-QP-002, S. 4.3.2[A]</td>
<td>Y RTR Operator Training Records (RTR-2)</td>
<td>Y</td>
</tr>
<tr>
<td>252 Is the documented training program site specific? (Section C1-1)</td>
<td>CCP-QP-002, S. 4.1 & 4.3.2</td>
<td>Y RTR Operator Training Records (RTR-2)</td>
<td>Y</td>
</tr>
<tr>
<td>262 Does the documented training program ensure that a training drum with various container sizes is scanned by each operator on a semiannual basis? Is the videotape reviewed by a supervisor to ensure that operator's interpretations remain consistent and accurate? (Section C1-1)</td>
<td>CCP-QP-002, S. 4.3.2 [C.2], [C.3] & [D] CCP-TP-028, (All)</td>
<td>Y RTR Operator Training Records (RTR-2)</td>
<td>Y</td>
</tr>
<tr>
<td>263 Do site procedures ensure that the site prepares Testing Batch Data Reports or equivalent which includes all data pertaining to radiography for up to 20 waste</td>
<td>CCP-TP-053, S. 4.9</td>
<td>Y RTR BDRs: INRT5120001 INRT5120002</td>
<td></td>
</tr>
</tbody>
</table>

PERMIT ATTACHMENT C6
Page 8 of 12
<table>
<thead>
<tr>
<th>WAP Requirement¹</th>
<th>Procedure Documented</th>
<th>Example of Implementation/ Objective Evidence, as applicable</th>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td>CCP-TP-508, S. 4.8</td>
<td>INRTR5120003, INLRHRTR12005, INLRHRTR13001, INLRHRTR13002, INLRHRTR13003 (RTR-1)</td>
<td></td>
</tr>
<tr>
<td>266</td>
<td>CCP-TP-508, S. 4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>267</td>
<td>CCP-TP-053, S. 4.3</td>
<td>Y</td>
<td>RTR BDRs: INRTR5120001, INRTR5120002, INRTR5120003, INRTR5120004, INLRHRTR12005, INLRHRTR12013, INLRHRTR13001, INLRHRTR13002, INLRHRTR13003 (RTR-1)</td>
</tr>
<tr>
<td>268</td>
<td>CCP-TP-053, S. 4.5 & 4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>269</td>
<td>CCP-TP-508, S. 4.4 & 4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUALITY ASSURANCE

265 Does the documented training program ensure that the imaging system characteristics are verified on a routine basis? (Section C1-1)

266 Do procedures ensure that independent replicate scans and replicate observations of the video output of the radiography process are performed under uniform conditions and procedures? Are independent replicate scans performed on one waste container per day or per testing batch of 20 samples, which ever is less frequent, by a qualified radiography operator that was not involved in the original scan of the water container? Are independent observations of one scan (not the replicate scan) performed once per day or per testing batch, which ever is less frequent?
<table>
<thead>
<tr>
<th>WAP Requirement</th>
<th>Procedure Documented</th>
<th>Example of Implementation/ Objective Evidence, as applicable</th>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>267 Do procedures ensure that oversight functions include periodic audio/video media reviews of accepted waste containers, are performed by qualified radiography operators that were not involved in the original scans of the waste containers? (Section C1-1)</td>
<td>CCP-TP-053, S. 4.5 & 4.6 CCP-TP-508, S. 4.4 & 4.5</td>
<td>INLRHRTR13002 INLRHRTR13003 (RTR-1)</td>
<td></td>
</tr>
<tr>
<td>268 Is the site project manager responsible for monitoring the quality of the radiography data and calling for corrective action, when necessary? (Section C1-1)</td>
<td>CCP-TP-001, S. 4.2 & Att. 2</td>
<td>INRTR5120004, RTR 11-00132, RTR11-00157, INLRHRTR13005, INLRHRTR12012, (GEN-7)</td>
<td></td>
</tr>
<tr>
<td>277 Do procedures ensure that all applicable data generation review verification and validation activities specified in C3-4 are followed, including all signatory releases? (Section C3-4)</td>
<td>CCP-TP-053, S. 4.10 & Att. 3 CCP-TP-508, S. 4.9, Att. 3 & 4</td>
<td>RTR BDRs: INRTR5120001 INRTR5120002 INRTR5120003 INRTR5120004 INLRHRTR12005 INLRHRTR12013 INLRHRTR13001 INLRHRTR13002 INLRHRTR13003 (RTR-1)</td>
<td></td>
</tr>
<tr>
<td>278 Do procedures ensure that radiography tapes have been reviewed at a frequency of one waste container per day or once per testing batch, whichever is less frequent, to ensure data are correct and completed?</td>
<td>CCP-TP-053, S. 4.6 CCP-TP-508,</td>
<td>RTR BDRs: INRTR5120001 INRTR5120002 INRTR5120003</td>
<td></td>
</tr>
<tr>
<td>WAP Requirement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INL/CCP Recertification Audit A-13-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table C6-3 Radiography Checklist</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do procedures ensure that all applicable project-level signatory releases and DQOs (Section C3-3) as specified in the WAP are performed?

(Section C3-4b)

<table>
<thead>
<tr>
<th>Procedure Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP-TP-001, S. 4.2 & Att. 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example of Implementation/Objective Evidence, as applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate? Y/N</td>
</tr>
<tr>
<td>Item Reviewed</td>
</tr>
<tr>
<td>Adequate? Y/N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate? Y/N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. 4.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adequate? Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>

At the data generation level, do procedures ensure that all electronic and video data stored appropriately to ensure that waste container, sample, and associated QA data are readily retrievable? Are radiography tapes reviewed, at a frequency of one waste container per day or once per testing batch, whichever is less frequent, against the data reported on the radiography form?

(Section C3-4a, C3-4a(1))

<table>
<thead>
<tr>
<th>Procedure Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP-TP-053, S. 4.6 & 5.0</td>
</tr>
<tr>
<td>CCP-TP-508, S. 4.5 & 5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example of Implementation/Objective Evidence, as applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate? Y/N</td>
</tr>
<tr>
<td>Item Reviewed</td>
</tr>
<tr>
<td>Adequate? Y/N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTR BDRs: INRTR5120001, INRTR5120002, INRTR5120003, INRTR5120004, INLRHRTR12005, INLRHRTR12013, INLRHRTR13001, INLRHRTR13002, INLRHRTR13003 (RTR-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comment (e.g., any change in procedure since last audit, etc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate? Y/N</td>
</tr>
<tr>
<td>y</td>
</tr>
</tbody>
</table>

Example of Implementation/Objective Evidence, as applicable

<table>
<thead>
<tr>
<th>Item Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSPF ID-RF-3114, CIS Lot 109, Rev. 1</td>
</tr>
<tr>
<td>WSPF ID-RF-S5300, CIS Lot 137</td>
</tr>
<tr>
<td>WSPF ID-SDA-SOIL, CIS Lot 75 & 76, Rev. 1</td>
</tr>
<tr>
<td>WSPF ID-NRF-SPC, CIS Lot 3 & 4</td>
</tr>
<tr>
<td>INRTR5120004, RTR11-00132, RTR11-00157, INLRHRTR13005, INLRHRTR12005 (RTR-1)</td>
</tr>
</tbody>
</table>

Comment

<table>
<thead>
<tr>
<th>Adequate? Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>

Example of Implementation/Objective Evidence, as applicable

<table>
<thead>
<tr>
<th>Item Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTR BDRs: INRTR5120001, INRTR5120002, INRTR5120003, INRTR5120004, INLRHRTR12005, INLRHRTR12013, INLRHRTR13001, INLRHRTR13002, INLRHRTR13003 (RTR-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adequate? Y/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>
| WAP Requirement ¹
INL/CCP Recertification Audit A-13-18
Table C6-3 Radiography Checklist | Procedure Documented | Example of Implementation/ Objective Evidence, as applicable | Comment (e.g., any change in procedure since last audit, etc.) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>283 At the project level, do procedures require the Site Project Manager to certify that the radiography data are complete and acceptable based on the videotape review of at least one waste container per testing batch or daily, whichever is less frequent? (Section C3-4b(1))</td>
<td>Location Adequate? Y/N (Why)</td>
<td>Item Reviewed Adequate? Y/N</td>
<td></td>
</tr>
<tr>
<td>CCP-TP-001, S. 4.2 & Att. 2</td>
<td>Y</td>
<td>INRTR5120004, RTR11-00132, RTR11-00157, INLRHRTR13005, INLRHRTR12012 (GEN-7)</td>
<td>Y</td>
</tr>
</tbody>
</table>

1. The WAP requirements should be presented in documents, such as procedures. Each of the questions posed under WAP requirements is meant to ask whether procedures are in place or whether documents are evident which demonstrate that the specific WAP requirement is or can be met.
Appendix D
Added CCP Documents
CCP-PO-002
Revision 27

CCP
Transuranic Waste Certification Plan

Approved by: CCP Site Project Manager
Mike Ramirez
Date: 5-30-13

Approved by: NWP Quality Assurance
Val Cannon
Date: 5-30-13

Approved by: NTPC Manager
Ed Gulbransen
Date: 5-30-13

Approved by: DOE-CBFO
Office of Quality Assurance Actng Director
Dennis Miehls
Date: 5-30-13

Approved by: DOE-CBFO
Office of National TRU Program Director
J.R. Stroble
Date: 5-30-13
RECORD OF REVISION

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Date Approved</th>
<th>Description of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>02/12/2003</td>
<td>Added CCP-TP-046, CCP-TP-047 AND CCP-TP-048 to Attachment 1, Table A.3-3, NDA Procedures.</td>
</tr>
<tr>
<td>6</td>
<td>06/11/2003</td>
<td>Updated to Revision 5 of the Quality Assurance Program Description (QAPD).</td>
</tr>
<tr>
<td>7</td>
<td>11/20/2003</td>
<td>Supplemented the description of the CCP organization in Section 4.1.1; added work planning criteria to Section 4.1.2[B]; revised Sections 4.10 and 4.10.2 to better describe how independent assessments are scheduled and conducted; updated procedure references.</td>
</tr>
<tr>
<td>8</td>
<td>01/08/2004</td>
<td>Added Procedures into Tables A-3.3, B-1, B-3, and B-4. Removed cancelled procedure (CCP-TP-080) from Table B-4.</td>
</tr>
<tr>
<td>9</td>
<td>03/15/2004</td>
<td>Incorporate changes to Revision 1 of DOE/WIPP-02-3122, Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant and other editorial changes. Changed references to match WAC.</td>
</tr>
<tr>
<td>11</td>
<td>02/24/2005</td>
<td>Revised to incorporate LANL Off-Site Source Recovery (OSR) Project. The Facility Quality Assurance Officer (FQAO) responsibilities were removed from this document to address Environmental Protection Agency (EPA) concerns regarding document consistency.</td>
</tr>
<tr>
<td>12</td>
<td>03/10/2005</td>
<td>Added procedures to Table A-3.3, Table B-1, and Table B-3. Added new Table B-3A, Solids Sampling Procedures.</td>
</tr>
<tr>
<td>13</td>
<td>05/09/2005</td>
<td>Incorporated changes to Revision 3 of DOE/WIPP-02-3122, CH-WAC for the WIPP. Updated 2.0 in Attachment 8. Updated web links in Section 5.</td>
</tr>
<tr>
<td>14</td>
<td>12/29/2005</td>
<td>Incorporated changes to Table 3.3.22, 239Pu FGE Limits for Packages and Rev. 2 of the CH-TRAMPAC and editorial changes.</td>
</tr>
<tr>
<td>Revision Number</td>
<td>Date Approved</td>
<td>Description of Revision</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>15</td>
<td>03/22/2006</td>
<td>Revised to add procedures to Attachment 1, Radioassay Requirements for Contact-Handled Transuranic Waste, Table A-3.3, NDA Procedures and Attachment 4, Procedure Tables, and editorial corrections throughout. Updated Figure 2-1, Central Characterization Project (CCP) Organization. Changed all references to DOE O 414.1A to DOE O 414.1. Updated step 3.2.2(B) (B.1) and step 3.2.6(B)(B.2) to address Carlsbad Field Office (CBFO) Document Review Record (DRR) comments.</td>
</tr>
<tr>
<td>19</td>
<td>05/22/2007</td>
<td>Revised to change the references for quality planning, list CCP special processes, and add a new Section 5.7 addressing configuration management of CCP equipment.</td>
</tr>
<tr>
<td>21</td>
<td>01/26/2009</td>
<td>Revised procedure lists to include new and modified procedures/titles. Also, revised to incorporate Revision 6.2 of DOE/WIPP 02-3122, Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant.</td>
</tr>
<tr>
<td>22</td>
<td>01/12/2010</td>
<td>Revised to incorporate Revision 6.4 of DOE/WIPP-02-3122, Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant.</td>
</tr>
<tr>
<td>23</td>
<td>04/07/2010</td>
<td>Revised to add Hanford Non-Destructive Assay (NDA) equipment.</td>
</tr>
<tr>
<td>24</td>
<td>06/30/2010</td>
<td>Revised to incorporate Revision 6.5 of DOE/WIPP-02-3122, Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant.</td>
</tr>
<tr>
<td>Revision Number</td>
<td>Date Approved</td>
<td>Description of Revision</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>27</td>
<td>05/31/2013</td>
<td>Revised to incorporate Revision 7.3 and Revision 7.4 of DOE/WIPP-02-3122, Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant, which incorporates the changes resulting for the Class 2 Permit modification entitled “Revised Waste Analysis Plan Waste Characterization Methods” which was approved by New Mexico Environment Department (NMED) on March 13, 2013, incorporate organizational changes to reflect the transition to Nuclear Waste Partnership (NWP), to clarify the hierarchy of quality assurance (QA) program documents, and minor editorial changes.</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1.0 INTRODUCTION ... 9
 1.1 CBFO Organization and Responsibilities ... 10
 1.1.1 DOE-CBFO Office Director, Office of (Quality Assurance Manager) 10
 1.1.2 DOE-CBFO Office Director, Office of National TRU Program 10

2.0 ORGANIZATION OF THE CCP ... 12
 2.1 Organization and Responsibilities .. 12
 2.1.1 CCP Management ... 12
 2.1.2 NTPC Certification Manager .. 13
 2.1.3 CCP Certification Manager ... 13
 2.1.4 CCP Transportation Certification Official (TCO) .. 15
 2.1.5 NWP Quality Assurance (QA) Manager .. 16
 2.1.6 Quality Assurance (QA) .. 16
 2.1.7 CCP Waste Certification Official (WCO) .. 18

3.0 COMPLIANCE PLAN FOR CH-WAC .. 20
 3.1 Organization of Requirements ... 20
 3.1.1 DOE Operations and Safety Requirements for WIPP 21
 3.1.2 NRC Transportation Safety Requirements for Type B Packages 21
 3.1.3 NMED Hazardous Waste Facility Permit Requirements 21
 3.1.4 EPA Compliance Recertification Decision Requirements 21
 3.1.5 EPA Approval for PCB Disposal .. 22
 3.1.6 Land Withdrawal Act Requirements (Public Law 102-579) 22
 3.2 Container Properties Criteria and Requirements ... 23
 3.2.1 Payload Container Description ... 23
 3.2.2 Container Weight and Center-of-Gravity ... 26
 3.2.3 Assembly Configurations ... 26
 3.2.4 Removable Surface Contamination (Payload Containers) 26
 3.2.5 Container Identification/Labeling .. 27
 3.2.6 Dunnage ... 29
 3.2.7 Filter Vents ... 30
 3.3 Radiological Properties ... 31
 3.3.1 Radionuclide Composition .. 31
 3.3.2 Fissile Material Quantity (239Pu FGEs) .. 33
 3.3.3 TRU Alpha Activity Concentration ... 37
 3.3.4 239Pu Equivalent Activity .. 38
 3.3.5 Radiation Dose Equivalent Rate .. 40
 3.3.6 Decay Heat ... 41
 3.4 Physical Properties ... 41
 3.4.1 Observable Liquid .. 41
 3.4.2 Sealed Containers .. 42
 3.5 Chemical Properties .. 43
 3.5.1 Pyrophoric Materials ... 43
 3.5.2 Hazardous Waste .. 44
 3.5.3 Chemical Compatibility .. 45
 3.5.4 Explosives, Corrosives, and Compressed Gases 46
 3.5.5 HSG VOC Concentrations .. 47
 3.5.6 Polychlorinated Biphenyl (PCB) Concentration 47
3.6 Data Package Contents .. 48
3.6.1 Characterization and Certification Data ... 48
3.6.2 Shipping Data .. 49

4.0 WASTE ACCEPTANCE REQUIREMENTS AND CRITERIA FOR RH WASTE ….. 51
4.1 Organization of Requirements .. 51
4.2 DOE Operations and Safety Requirements for WIPP ... 52
4.3 NRC Transportation Safety Requirements ... 52
4.4 NMED Hazardous Waste Facility Permit Requirements .. 53
4.5 EPA Compliance Recertification Decision Requirements .. 53
4.6 WIPP Land Withdrawal Act Requirements (Public Law 102-579) 54
4.7 Container Properties .. 55
4.7.1 Description .. 55
4.7.2 Weight Limits .. 56
4.7.3 Assembly Configurations ... 57
4.7.4 Removable Surface Contamination .. 57
4.7.5 Identification/Labeling .. 58
4.7.6 Dunnage .. 61
4.7.7 Filter Vents .. 61
4.8 Radiological Properties ... 62
4.8.1 Radionuclide Composition ... 63
4.8.2 239Pu Fissile Gram Equivalent/235U Fissile Equivalent Mass (FEM) 65
4.8.3 TRU Alpha Activity Concentration ... 68
4.8.4 239Pu Equivalent Activity .. 69
4.8.5 Radiation Dose Equivalent Rate .. 70
4.8.6 Decay Heat ... 70
4.9 Physical Properties .. 71
4.9.1 Observable Liquid ... 71
4.9.2 Sealed Containers ... 72
4.9.3 Physical Form .. 73
4.10 Chemical Properties ... 74
4.10.1 Pyrophoric Materials .. 74
4.10.2 Hazardous Waste ... 75
4.10.3 Chemical Compatibility ... 75
4.10.4 Explosives, Corrosives, and Compressed Gases ... 76
4.10.5 Headspace Gas Concentrations ... 77
4.10.6 Polychlorinated Biphenyls (PCBs) .. 77
4.11 Data Package Contents .. 78
4.11.1 Characterization and Certification Data ... 78
4.11.2 Shipping Data .. 79

5.0 QUALITY ASSURANCE PLAN ... 80
5.1 Organization and Quality Assurance Program ... 80
5.1.1 Organization .. 81
5.1.2 Implementation of the QA Program .. 85
5.2 Personnel Qualification and Training .. 87
5.2.1 Qualification Requirements .. 88
5.2.2 Training Requirements .. 88
5.3 Quality Improvement .. 89
5.4 Documents .. 91
LIST OF TABLES

Table 1. Authorized Payload Container Contents ... 26
Table 2. 239Pu FGE Limits for Payload Containers ... 34
Table 3. PE-Ci Limits ... 39
Table 4. 239Pu FGE Limits for a Canister Shipped in an RH-TRU 72-B Package 66
Table 5. 239Pu FGE Limits for Drums Shipped in a 10-160B Package 67
Table 6. 235U FEM Limit for a Canister Shipped in an RH-TRU 72-B Package 67
Table 7. PE-Ci Limits ... 69
Table A-1. Data Quality Objectives (DQOs) for Radioassay ... 123
Table A-2. Upper Limits for %RSD vs. Number of Replicates ... 126
Table A-2.1. NDA Procedures .. 127
Table A-3. Range of Applicability .. 130
Table B-1. Container Management Procedures ... 140
Table B-2. Radiography Procedures .. 140
Table B-3. VE Procedures ... 140
Table B-4. GGT Procedures .. 140
Table B-5. Certification Procedures .. 140
Table B-6. Remote-Handled Procedures .. 141
Table C-1. PE-Ci Weighting Factors for Selected Radionuclides 143

LIST OF FIGURES

Figure 1-1. CCP Document Hierarchy for TRU Waste Characterization, Certification, and Transportation .. 11
Figure 2-1. CCP Organization .. 19

LIST OF APPENDIXES

Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste 117
Appendix 2 – Appendix 1 References ... 135
Appendix 3 – Acronyms and Abbreviations .. 137
Appendix 4 – Procedure Tables ... 140
Appendix 5 – PE-Ci Activity ... 142
Appendix 6 – Glossary ... 144
Appendix 7 – Payload Container Integrity Checklist .. 151
Appendix 8 – Payload Management of TRU Alpha Activity Concentration 155
Appendix 9 – Radiography Requirements for Contact-Handled Transuranic Waste 158
Appendix 10 – Visual Examination Requirements for Contact-Handled Transuranic Waste .. 164
1.0 INTRODUCTION

The Central Characterization Program (CCP) is tasked with characterizing and certifying Transuranic (TRU) waste for disposal at the Waste Isolation Pilot Plant (WIPP). Accordingly, the CCP must comply with DOE/WIPP 02-3122, Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC). The WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WAC also requires that the CCP produce documents, including a certification plan, that addresses applicable requirements and criteria pertaining to packaging, characterization, certification, and shipping of defense TRU waste to WIPP for disposal.

The CCP may provide its services to a site by contracting directly with that site. If this is the case, the scope of services provided by CCP is specified in a Statement of Work (SOW) issued by the site. The SOW also specifies health and safety requirements, quality requirements, and other requirements specific to that site. A site-specific interface document may also be prepared which provides more detail on the site-CCP interface. The CCP has the option to use data from established TRU waste characterization activities at a U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO)-certified site, per site-specific interface documents. Transportation services may be provided through the CCP Certified Program or by other DOE-CBFO certified sites.

The site has general management oversight responsibility for work performed by the CCP at the site. The site is responsible for ensuring that CCP conducts its activities in compliance with site requirements, as defined in the site-specific interface document for that location.

Figure 1-1, CCP Document Hierarchy for TRU Waste Characterization, Certification, and Transportation illustrates the hierarchy of regulatory requirements for TRU waste characterization, certification, and transportation, and reflects the flow-down of requirements from higher-level documents to site-level program documents and implementing procedures. To ensure that future changes to the WAC and other relevant requirements documents are appropriately reflected, this CCP Transuranic Waste Certification Plan (hereinafter referred to as the Plan) will be reviewed at least annually and updated as necessary.

This Plan establishes the programmatic framework and criteria within which the CCP ensures that TRU wastes can be certified as compliant with the WAC. This Plan includes the following sections:

- Section 2.0, ORGANIZATION OF THE CCP, describes the interaction between the characterization, certification, and transportation personnel, and lists the responsibilities of key CCP officials.
Section 3.0, COMPLIANCE PLAN FOR CH-WAC, describes CCP activities and specific documents that implement and verify compliance with each requirement.

Section 4.0, WASTE ACCEPTANCE REQUIREMENTS AND CRITERIA FOR RH WASTE, describes CCP activities and specific documents that implement and verify compliance with each requirement.

Section 5.0, QUALITY ASSURANCE PLAN, describes how the CCP complies with DOE/CBFO-94-1012, U.S. Department of Energy Carlsbad Field Office Quality Assurance Program Document (QAPD) (Reference 18), the WAC (Reference 47), DOE/WIPP-02-3214, Remote-Handled TRU Waste Characterization Program Implementation Plan (WCPIP) (Reference 17), and provides the QA Plan for transportation as required by Title 10 Code of Federal Regulations (CFR), Energy, Part 71, Packaging and Transportation of Radioactive Material, Subpart H, Quality Assurance.

This Plan and associated Quality Assurance (QA) Plan (Section 5.0), CCP-PO-001, CCP Transuranic Waste Characterization Quality Assurance Project Plan (QAPjP), CCP-PO-003, CCP Transuranic Authorized Methods for Payload Control (CCP CH-TRAMPAC), and CCP-PO-505, Remote-Handled Transuranic Waste Authorized Methods for Payload Control establish the programmatic framework for the CCP’s waste characterization, certification, and transportation activities. The QA Plan (Section 5.0) within this Plan implements all of the applicable CBFO QAPD requirements. These documents are submitted to the CBFO for review and approval. CCP will not characterize, certify, or ship TRU wastes to the WIPP before CBFO approval of this Plan.

1.1 CBFO Organization and Responsibilities

1.1.1 DOE-CBFO Office Director, Office of (Quality Assurance Manager)

[A] The DOE-CBFO QA Manager provides independent oversight of QA activities of the CCP and approves this Plan. This will include audits and surveillances to ensure that CCP is in compliance with this Plan.

1.1.2 DOE-CBFO Office Director, Office of National TRU Program

[A] The DOE-CBFO Office Director, Office of National TRU Program provides overall policy direction and oversees the CCP characterization and certification activities and approves this Plan.
Figure 1-1. CCP Document Hierarchy for TRU Waste Characterization, Certification, and Transportation

Note 1: The TRAMPACs as referenced by the TRUPACT-II, TRUPACT-III, HalfPACT, and RH-TRU 72-B Certificates of Compliance, the Safety Analysis Report (SAR) as referenced by the 10-160B Certificate of Compliance, and the WIPP Hazardous Waste Facility Permit (HWFP) provide detailed requirements. This Plan provides only an overview of these requirements.

Note 2: Final Environmental Impact Statement (FEIS), Supplemental Environmental Impact Statement (SEIS).

Note 3: All work performed by the site for the CBFO must be performed under an approved QA program. The site-specific Transuranic Waste Authorized Methods for Payload Control (TRAMPAC) can be a separate document or can be embodied in the site waste certification plan. The 10-160B SAR does not require the preparation of a site-specific TRAMPAC. Instead, acceptable methods for payload compliance for the 10-160B package are implemented by a Nuclear Regulatory Commission (NRC)-approved site-specific Appendix to the 10-160B SAR.
2.0 ORGANIZATION OF THE CCP

The responsibilities for TRU waste management of the CCP are distributed within various organizations. This section identifies the organizations involved in the CCP and describes the responsibilities of and interactions between these organizations.

2.1 Organization and Responsibilities

2.1.1 CCP Management

[A] CCP management has overall responsibility for successfully accomplishing activities subject to the QAPD. Management provides the necessary planning, organization, direction, control, resources, and support to achieve their defined objectives. Management is responsible for planning, performing, assessing, and improving the work.

[B] CCP management is responsible for establishing and implementing policies, plans, and procedures that control the quality of work, consistent with the provisions of the CBFO QAPD.

[C] Ensuring that adequate technical and QA training is provided for personnel performing activities subject to the CBFO QAPD.

[D] CCP management is responsible for ensuring that individual workers are knowledgeable of requirements for work they perform and are provided the necessary resources and administrative controls needed to accomplish assigned tasks.

[E] Ensuring compliance with all applicable regulations, DOE orders and requirements, and applicable federal, state, and local laws.

[F] Ensuring that personnel adhere to procedures for the generation, identification, control, and protection of QA records.

[G] Exercising the authority and responsibility to STOP unsatisfactory work such that cost and schedule do not override environmental, safety, or health considerations.

[H] Developing, implementing, and maintaining plans, policies, and procedures that implement the CBFO QAPD.

[I] Identifying, investigating, reporting, and correcting quality problems.
Members of CCP management are responsible for achieving and maintaining quality in their area. Quality achievement is the responsibility of those performing the work. Quality achievement is verified by persons or organizations not directly responsible for performing the work.

CCP management empowers employees by delegating authority and decision making to the lowest appropriate level in the organization.

Figure 2-1, CCP Organization, is a functional organization chart pertaining to TRU waste characterization and certification activities at the CCP. The following subsections identify the organizations that oversee the CCP and describe the roles and responsibilities of key positions within the CCP charged with implementing the requirements defined in this Plan.

2.1.2 NTPC Certification Manager

The National TRU Program Certification (NTPC) Manager is responsible for the day-to-day management and direction of CCP activities. The NTPC Certification Manager is responsible for:

[A.1] Ensuring successful CCP/site interface.

[A.2] Ensuring CCP plans and operations are coordinated, integrated, and consistent with DOE-CBFO programs, policies, and guidance.

[A.3] Coordinating CCP activities and functioning as principal point-of-contact (POC) with DOE-CBFO and other regulating agencies.

2.1.3 CCP Certification Manager

The CCP Certification Manager is the principal POC with DOE (including CBFO and National TRU Program [NTP]) for technical activities associated with TRU waste. The CCP Certification Manager performs the Site Project Manager (SPM) duties described in Appendix E of the CBFO QAPD. The CCP Certification Manager may delegate specific individuals within CCP to perform functions that are the responsibility of an SPM. The use of the term “SPM” in this Certification Plan refers to those delegated individuals. This delegation is documented by the completion and approval of an SPM Qualification Card in accordance with CCP-QP-002.
The CCP Certification Manager coordinates with the CCP Waste Certification Official (WCO) and Transportation Certification Official (TCO) and oversees CCP activities to ensure that TRU waste is characterized and certified compliant with WIPP requirements. Specific responsibilities assigned to the CCP Certification Manager include the following:

[A.1] Reviewing and approving this Plan.

[A.2] Developing, maintaining, reviewing, approving, and implementing CCP procedures and plans. Development, approval, and implementation of procedures and plans will occur at the earliest time consistent with the schedule for accomplishing the activities.

[A.3] Scheduling revisions and distributing CCP procedures and plans and forwarding these documents (if significantly revised) to DOE-CBFO for review and approval before implementation. The term "significantly revised" means non-editorial changes in accordance with the CBFO QAPD, Section 1.4.3.

[A.4] Ensuring CCP personnel receive appropriate training and are properly qualified, so that suitable proficiency is achieved and maintained.

[A.5] Obtaining Acceptable Knowledge (AK) information from waste generators regarding U.S. Environmental Protection Agency (EPA) hazardous waste numbers.

[A.8] Halting characterization or certification activities if problems affecting the quality of certification processes or work products exist.

[A.9] Validating and verifying characterization data.

[A.10] Reconciling verified data with data quality objectives (DQOs).

[A.12] Preparing and submitting SPM Data Validation Summaries, Waste Stream Profile Forms (WSPFs), Characterization Information Summaries, Waste Stream Characterization Packages, and QA/Quality Control (QC) reports to DOE-CBFO.

[B] The CCP Certification Manager may delegate any of these activities to another individual; however, the CCP Certification Manager retains ultimate responsibility for ensuring that CCP certification requirements are met.

2.1.4 CCP Transportation Certification Official (TCO)

[A] The CCP TCO documents and certifies that payload containers and assemblies to be transported meet the requirements of CCP-PO-003. Specific responsibilities of the TCO include the following:

[A.1] Reviewing the applicable CCP transportation plans and transportation procedures.

[A.2] Interfacing with the SPM, CCP Certification Manager, WCO, and QA on matters associated with waste transportation.

[A.3] Reviewing and maintaining CCP-PO-003.

[A.4] Ensuring that data used in completion of the transportation documents are accurate and demonstrate that the waste is acceptable for transportation.

[A.5] Preparing and signing Payload Container Transportation Certification Documents (PCTCDs) and Overpack Payload Container Transportation Certification Documents (OPCTCDs).

[A.6] Preparing and signing Payload Assembly Transportation Certification Documents (PATCDs).

[A.8] Ensuring that the transportation data entered into the WIPP Waste Information System/Waste Data System (WWIS/WDS) are accurate and demonstrate that waste is acceptable for disposal at WIPP.

[A.10] Halting transportation certification activities if problems affecting the certification or work process exist.

2.1.5 NWP Quality Assurance (QA) Manager

[A] The (NWP) Nuclear Waste Partnership QA Manager has the overall responsibility and authority to perform independent assessments to verify the organization’s achievement of quality and assure the effective implementation of the QA program. The NWP QA Manager has the responsibilities and authorities described in Section 1.1.5 of WP 13-1, Nuclear Waste Partnership LLC Quality Assurance Program Description (NWP QAPD).

2.1.6 Quality Assurance (QA)

[A] QA provides QA oversight and planning for TRU waste characterization and certification, verifies the implementation of the QAP|P and the QA requirements of this Plan, and provides day-to-day guidance to CCP staff on quality-related matters. QA has the authority to STOP CCP work activities if quality is not assured or controlled. QA has no assigned responsibilities unrelated to the QA Program that would prevent appropriate attention to QA matters. QA is responsible for verifying the achievement of quality by those performing the work. As shown in the organization chart in Figure 2-1, the Assurance Programs Manager reports to the NWP QA Manager, so that required authority and organizational freedom are provided, including sufficient independence from cost and schedule considerations. The Assurance Programs Manager performs the duties and has the responsibilities and authorities described for the site project QA manager in Appendix E of the CBFO QAPD. QA specific responsibilities include the following:

[A.1] Reviewing and approving CCP procedures and plans including this Plan.

[A.2] Coordinating and participating in internal and external audits and assessments to verify compliance.

[A.3] Tracking compliance and evaluating trends in compliance with QA objectives (QAOs).

[A.4] Performing assessments of testing facilities.

[A.5] Tracking and trending CCP nonconformances and corrective action reports (CARs).

[A.7] Submitting semi-annual and other QA/QC reports to the CCP Certification Manager and DOE-CBFO.

[A.8] Participating in the development of responses to Corrective Action Reports generated by DOE-CBFO or other external assessment organizations.

[A.9] Reviewing and approving supplier and subcontractor QA Plans.

[A.11] Providing guidance to all CCP organizations concerning identification, control, and protection of QA records.

[A.12] STOPPING work if quality is not ensured or controlled.

[A.13] Providing day-to-day guidance on quality-related matters to CCP staff.

[A.14] Maintaining liaison with participant QA organizations and other affected organizations.

[A.16] Interfacing, as appropriate, with the DOE-CBFO staff, participants, and other stakeholders on QA matters.

[A.17] Assisting CCP organizations with quality planning, documentation, quality measurement, and problem identification and resolution.

[A.18] Initiating, recommending, or providing solutions to quality problems through designated channels.

[A.19] Ensuring that further processing, delivery, installation, or use is controlled until proper disposition of a nonconformance, deficiency, or unsatisfactory condition has occurred.

[A.20] Coordinating with responsible management on resolution of differences of opinion involving the definition and implementation of QA Program requirements. If not resolved, progressively elevating
the issues to successively higher levels of management as necessary.

[A.21] Ensuring that a graded approach is used to exercise control over activities affecting quality to an extent consistent with their importance.

[A.22] Interfacing with the CCP WCO and TCO on matters related to waste certification and transportation.

[A.23] Providing inspection services for procurement, including source inspections

[A.24] Providing vendor qualification and maintenance of the NWP Qualified Suppliers List (QSL) for vendors used by the CCP.

[B] QA may delegate one or more individuals to perform the above functional responsibilities; however, QA retains ultimate responsibility for ensuring compliance with QA requirements.

2.1.7 CCP Waste Certification Official (WCO)

[A] The CCP WCO is responsible for reviewing data and information necessary to document TRU waste payload containers prepared for shipment to WIPP meet specified criteria. The WCO coordinates activities related to waste certification. Specific duties and responsibilities of the WCO include the following:

[A.1] Certifying that waste packages meet WAC requirements.

[A.2] Interfacing with the CCP Certification Manager, SPM, TCO, and QA on matters related to waste certification.

[A.3] Stopping waste certification activities if problems affecting the quality of certification processes or work products exist.

[A.4] Ensuring that certification data entered into the WIPP WWIS/WDS are accurate and demonstrate the acceptability of the waste for transport to and disposal at the WIPP.

[A.5] Reviewing the applicable CCP plans and procedures and any other waste certification-related documents.

[A.7] Preparing responses to deficiency reports.

[B] The WCO may delegate one or more individuals to perform the above responsibilities; however, the WCO retains ultimate responsibility for ensuring compliance with WAC requirements.

Figure 2-1. CCP Organization
3.0 COMPLIANCE PLAN FOR CH-WAC

This section describes how the CCP complies with the requirements of the WIPP WAC and associated requirements contained in the WIPP Documented Safety Analysis (DSA) (Reference 4), the Transuranic Package Transporter II (TRUPACT-II), Transuranic Package Transporter III (TRUPACT-III), and/or HalfPACT Certificates of Compliance (References 5 and 6), the WIPP Land Withdrawal Act (LWA) (Reference 2) the WIPP HWFP (Reference 9), the Compliance Recertification Decision (Reference 10), the Initial Report for Polychlorinated Biphenyl (PCB) Disposal Authorization (Reference 11), the EPA letter of approval to land dispose non-liquid PCBs at WIPP (References 12 and 13), and the Revision to the Record of Decision for the DOE’s WIPP Disposal Phase and associated WIPP National Environmental Policy Act (NEPA) database (References 14 and 15).

3.1 Organization of Requirements

WAC requirements are organized under five major categories: container properties, radiological properties, physical properties, chemical properties, and data package contents. Sections 3.2 through 3.6 correlate with the organization in the WAC for Contact-Handled (CH) TRU waste requirements and identify methods of compliance to meet each requirement. Procedures that implement the process controls, techniques, tests, and other actions to be applied to each TRU payload container, waste stream, and shipment are also identified. Revisions of requirements in referenced documents controlled by agencies or organizations other than DOE (e.g., EPA, NMED, and NRC) shall have precedence over values quoted in this Plan. Changes incorporated in future revisions of the CH-WAC will be reflected in future revisions of this Plan.

Regarding any discussions of compliance and verification methods, if a requirement is not met, personnel will initiate a Nonconformance Report (NCR) or a CAR in accordance with CCP-QP-005, CCP TRU Nonconforming Item Reporting and Control. Corrective action will be taken in accordance with CCP-QP-029, CCP Corrective Action Management, to resolve nonconformances. Section 5.3 of this Plan provides additional details about the NCR/CAR process. Only waste from a properly characterized waste stream will be certified as meeting the requirements and associated criteria contained in this Plan. Waste containers for a waste stream that has not been represented by an approved WSPF will not be shipped to WIPP for disposal (Reference 9, Part 2, Section 2.3.3.10). The required characterization, certification, and shipment data will be transmitted to WIPP using the WWIS/WDS.
3.1.1 DOE Operations and Safety Requirements for WIPP

[A] The WIPP DSA (Reference 4) addresses TRU waste handling and emplacement operations. The waste acceptance for emplacement in the WIPP will conform to the WAC.

3.1.2 NRC Transportation Safety Requirements for Type B Packages

[A] Acceptable methods for payload compliance control are defined in the TRUPACT-II, TRUPACT-III and HalfPACT Certificates of Compliance and implemented by the CH-TRAMPAC (References 23a and 23b). For shipments to WIPP, the CCP has prepared a CCP CH-TRAMPAC (CCP-PO-003) and a CCP TRUPACT-III TRAMPAC (CCP-PO-050 CCP Trupact-III TRU Waste Authorized Methods For Payload Control [CCP TRUPACT-III TRAMPAC]) describing compliance with each payload parameter. The CCP CH-TRAMPAC and CCP TRUPACT-III TRAMPAC will contain sufficient detail to allow reviewers to adequately understand and evaluate the compliance methodology for each payload parameter.

[B] The QA Program in Section 5.0 of this Plan defines the QA activities that apply to the use of NRC-approved transportation packaging in accordance with Title 10 CFR Part 71, Subpart H (Reference 24).

3.1.3 NMED Hazardous Waste Facility Permit Requirements

[A] TRU waste is classified as TRU mixed waste if it contains hazardous constituents regulated under the New Mexico Hazardous Waste Act (Reference 25). Only TRU mixed waste and TRU waste that have been characterized in accordance with WIPP Waste Analysis Plan (WIPP WAP) and that meet the treatment, storage, and disposal facility waste acceptance criteria as presented in permit Sections 2.3.3.1 through 2.3.3.10 will be shipped to WIPP for disposal. The CCP QAP describes compliance with the WIPP WAP.

3.1.4 EPA Compliance Recertification Decision Requirements

[A] Title 40 CFR §194.24(c) (Reference 26) requires the DOE to specify the limiting values for waste components to be emplaced in the repository. The EPA’s Recertification Decision specifies waste components (including free water,
metals, and cellulose, plastic, and rubber) and their limits that are associated with the waste proposed for disposal at WIPP.

[B] CCP estimates or determines the weight of cellulose, plastics, and rubber, and reports this estimate in the WWIS/WDS on a container basis. In addition, CCP quantifies and reports the activity values of each of the following radionuclides for purposes of tracking the inventory curie content: ^{241}Am, ^{238}Pu, ^{239}Pu, ^{240}Pu, ^{242}Pu, ^{235}U, ^{234}U, ^{238}U, ^{90}Sr, and ^{137}Cs. The presence or absence of these radionuclides is determined using AK documentation and radioassay in accordance with Appendix A of the WAC. The results of these determinations are reported in the WWIS/WDS on a payload container basis. TRU waste payload containers shall contain more than 100 nanocuries per gram (nCi/g) of waste of alpha-emitting TRU isotopes with half-lives greater than 20 years, as specified in Section 3.3.3.

3.1.5 EPA Approval for PCB Disposal

PCB contaminated TRU and PCB contaminated TRU waste mixed with a hazardous waste including PCB remediation waste, PCB Articles, and PCB bulk product waste may be stored and disposed at the WIPP (References 11, 12, 13, 14, and 15). Waste streams identified as containing PCBs shall be brought to the attention of the CBFO in order that a determination can be made regarding their acceptability at WIPP. Applicable waste acceptance criteria are addressed in Sections 3.2.5, 3.4.1, and 3.5.6.

3.1.6 Land Withdrawal Act Requirements (Public Law 102-579)

[A] WIPP can only accept radioactive waste generated by atomic energy defense activities of the United States (Reference 1). A TRU waste is eligible for disposal at the WIPP if it has been generated in whole or in part by one or more of the following functions (References 27 and 28):

- Naval reactors development
- Weapons activities, including defense inertial confinement fusion
- Verification and control technology
• Defense nuclear materials production
• Defense nuclear waste and materials by-products management
• Defense nuclear materials security and safeguards and security investigations
• Defense research and development

Using AK, CCP determines that each waste stream to be disposed at WIPP is “defense” TRU waste.

[B] High-level radioactive waste or spent nuclear fuel shall neither be transported, emplaced, nor disposed of at the WIPP. Also, no TRU waste may be transported by or for the DOE to or from the WIPP, except in Type B packages:

• the design of which has been certified by the NRC, AND
• that have been determined by the NRC to satisfy its QA requirements.

3.2 Container Properties Criteria and Requirements

3.2.1 Payload Container Description

[A] Requirements

[A.1] Each payload container shall be assigned to a payload shipping category (References 23a and 23b). Authorized payload containers are listed in Table 1, Authorized Payload Container Contents. Payload containers shall meet U.S. Department of Transportation (DOT) Specification 7A, Type A, packaging requirements delineated in 49 CFR 173.465 (Reference 4, Section 2.6.2; Reference 9, Attachment A1, Section A1-1b, Reference 12, Section VI.F). Payload containers must be made of steel and be in good and unimpaired condition prior to shipment from the generator/storage sites. To demonstrate compliance with the requirement that payload containers be in good and unimpaired condition, the exterior of all payload containers shall undergo 100 percent visual inspection prior to loading into a Type B package. The results of this visual inspection
shall be documented using Appendix 7, Payload Container Integrity Checklist, of this Plan. A payload container in good and unimpaired condition, 1) does not have significant rusting, 2) is of sound structural integrity, and, 3) does not show signs of leakage. Significant rusting is a readily observable loss of metal due to oxidation (e.g., flaking, bubbling, or pitting) that causes degradation of the payload container’s structural integrity. Rusting that causes discoloration of the payload container surface or consists of minor flaking is not considered significant. A payload container is not of sound structural integrity if it has breaches or significant denting/deformation. Breaching is defined as a penetration in the payload container that exposes the internals of the container. Significant denting/deformation is defined as damage to the payload container that results in creasing, cracking, or gouging of the metal, or damage that affects payload container closure. Dents or deformations that do not result in creasing, cracking, or gouging or affect payload container closure are not considered significant. CCP will report to the WWIS/WDS the number and types of payload containers planned for shipment to the WIPP.

[B] Compliance and Verification

[B.1] The CCP procures payload containers (e.g., drums, Standard Waste Box [SWBs], Standard Large Box2 [SLB2] and Ten-Drum Overpack [TDOPs]) that meet the following requirements:

(a) SWBs, SLB2s, and TDOPs are procured to the same standards and specifications as the containers used in Type A testing.

(b) New 55-gallon drums are procured as UN1A2 reusable drums, in accordance with applicable requirements of 49 CFR 173, which is allowable per CBFO memo CBFO:NTP:JFS97-1144UFC5822. Drums may also be procured to the same standards and specifications as the drums used in Type A testing.

[B.2] Recovered drums are inspected to ensure that they are DOT Specification 17C or 17H or meet
UN1A2 requirements for reusable drums. Permanent markings embossed on the bottom of the drums are used to verify the drum type if procurement records are not available. Alternatively, if the markings are not visible (e.g., drums that are galvanized through a dipping process, which obscures the embossing), the drums are inspected and inspection results are compared to requirements for 17C, 17H, or UN1A2 drums. Personnel examine retrievably stored containers for compliance with the applicable requirements and verify that the containers are in good condition in accordance with site-specific container management procedures (See Appendix 4, Procedure Tables, Table B-1), and CCP-TP-033, *CCP Shipping of CH-TRU Waste*. CCP-TP-033 contains Appendix D from the WAC, and is used to document compliance with the Payload Container Integrity Checklists.

[B.3] Personnel document their procurement acceptance and/or visual inspections. If packages cannot be shown to meet the above requirements by procurement records and/or physical examination, CCP personnel take corrective action (e.g., repackage the waste into a certifiable container) to resolve the nonconformance.

[B.4] Personnel will report the number and types of containers to WIPP using WWIS/WDS, in accordance with CCP-TP-030, *CCP CH-TRU Waste Certification and WWIS/WDS Data Entry*.
Table 1. Authorized Payload Container Contents

<table>
<thead>
<tr>
<th>Payload Container</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-gallon drum</td>
<td>Either direct loaded or containing a pipe component (commonly referred to as a pipe overpack container [POC])</td>
</tr>
<tr>
<td>85-gallon drum(^1)</td>
<td>Either direct loaded or containing a 55-gallon drum</td>
</tr>
<tr>
<td>100-gallon drum</td>
<td>Direct loaded</td>
</tr>
<tr>
<td>Shielded container</td>
<td>Containing a 30-gallon steel drum</td>
</tr>
<tr>
<td>SWB</td>
<td>Either direct loaded or containing up to four 55-gallon drums, up to three 85-gallon drums, up to two 100-gallon drums, or one bin</td>
</tr>
<tr>
<td>SLB2</td>
<td>Direct loaded or containing various individual containers (4 x 4 x 7-foot boxes and 5 x 5 x 8-foot boxes as well as other containers of smaller sizes)</td>
</tr>
<tr>
<td>TDOP</td>
<td>Either direct loaded or containing up to ten 55-gallon drums or up to six 85-gallon drums or one SWB</td>
</tr>
</tbody>
</table>

\(^1\)The term “85-gallon drum” includes 75-gallon to 88-gallon drums.

3.2.2 Container Weight and Center-of-Gravity

[A] Requirements

[A.1] See the CH-TRAMPAC for weight limits and center-of-gravity requirements (Reference 23a). See the TRUPACT-III TRAMPAC for applicable weight limits (Reference 23b).

3.2.3 Assembly Configurations

[A] Requirements

[A.1] See the CCP CH-TRAMPAC and TRUPACT-III TRAMPAC for payload assembly configuration requirements (References 23a and 23b).

3.2.4 Removable Surface Contamination (Payload Containers)

[A] Requirements

[A.1] The removable surface contamination for each CH-TRU waste payload container, payload assembly and packaging must be measured and documented prior to shipment. Removable surface contamination
on CH-TRU waste payload containers, container assemblies, and packaging shall not be greater than 20 disintegrations per minute (dpm) per 100 square centimeters (cm²) for alpha-emitting radionuclides and 200 dpm per 100 cm² for beta-gamma-emitting radionuclides (Reference 9, Attachment A1, Section A1-1d[2]; References 29 and 30).

[A.2] Fixing surface contamination to meet the above criterion is not permitted.

[B] Compliance and Verification

[B.1] A Host site Radiological Control Technician (RCT) surveys TRU waste payload containers, payload assemblies and packaging, for removable surface contamination before they are loaded for shipment. The RCT assesses removable contamination and documents the results in accordance with Host site radiological survey procedures. If the RCT determines that removable contamination exceeds 20 dpm per 100 cm² for alpha-emitting radionuclides or 200 dpm per 100 cm² for beta-gamma-emitting radionuclides, personnel determine whether surface contamination can be removed to meet established limits. If compliance with removable surface contamination limits cannot be achieved, personnel segregate and disposition noncompliant container(s) in accordance with CCP-QP-005. The survey results are added to the container data package. The WCO confirms removable surface contamination survey results in accordance with Host site radiological survey procedures. CCP-TP-033 is utilized to comply with requirements of this section.

3.2.5 Container Identification/Labeling

[A] Requirements

[A.1] Each CH-TRU waste payload container shall be uniquely identified by means of bar code labels permanently attached in conspicuous locations. (Reference 23a, Section 2.4; Reference 23b, Section 2.3). The unique payload container identification number shall include a site identifier as a prefix (References 23a and 23b, Section 6.2.1).
[A.2] The container identification number shall be in medium to low density Code 39 bar code symbology as required by American National Standards Institute (ANSI) Standard ANSI/Association for Automatic Identification and Mobility (AIM) BC1-1995 (Reference 31) in characters at least 1-in. high, and alphanumeric characters at least 0.5-in. [inch] high. In the case of a 55-gallon, 85-gallon, or 100-gallon drum, or a shielded container, a minimum of three bar code identification labels shall be placed at approximately equal intervals around the circumference of the drum or shielded container (e.g., 120 degrees for three labels, 90 degrees for four labels) so that at least one label is clearly visible when drums or shielded containers are assembled into a payload assembly (e.g., a label must be visible after slip sheets and wrapping are applied). The bar code labels are required on the flat sides of SWBs. For TDOPs and SLB2s, a minimum of one bar code is required.

[A.3] Payload containers shall be marked “Caution Radioactive Material” using a yellow and magenta label as specified in 10 CFR Part 835 (Reference 30).

[A.4] Payload containers whose content are also Resource Conservation and Recovery Act (RCRA) regulated (mixed-TRU) shall be additionally marked “Hazardous Waste” as specified in 40 CFR §262.32 (Reference 33).

[A.5] For TRU and mixed-TRU wastes containing PCBs, the payload containers shall be marked in accordance with 40 CFR §761.40 (Reference 13).

[A.6] Additionally, DOT Type B packages (i.e., the TRUPACT-II, TRUPACT-III and HalfPACT) containing PCBs must be properly marked in accordance with the EPA letter of approval and 40 CFR §761.40 (References 12 and 13).

[A.7] If an empty drum or shielded container is used as dunnage to complete a shipment to the WIPP, the drum shall be labeled with a unique payload identification number and “EMPTY” or “DUNNAGE.”
[A.8] If a seven-pack of 55-gallon drums, a four-pack of 85-gallon drums, a three-pack of 100-gallon drums, or a SWB is shipped as dunnage to fill a TRUPACT-II, the drums or SWB will be labeled as “EMPTY” or “DUNNAGE” but will not be labeled with the unique site-specific payload container identification numbers (CINs) or included in WWIS/WDS data.

[B] Compliance and Verification

[B.1] Fifty-five gallon, 85-gallon, 100-gallon drums or shielded container certified will have a minimum of three bar code labels equally spaced around the drum that identify the site and contain a unique identification number in accordance with the Host site-specific container management procedure(s). Bar code labels will be affixed on the flat side of SWBs, while on a TDOP, a minimum of one bar code will be affixed.

[B.2] After verifying payload parameters, personnel ensure each container is marked with the appropriate site and container identification number in accordance with the host site-specific container management procedures. The TCO verifies the container marking (e.g., barcode, Radiation Material, PCB, or Hazardous Waste labels) in accordance with CCP-TP-033.

[B.3] Refer to Section 3.2.6[B] of this Plan for compliance with the dunnage requirements and verifications.

3.2.6 Dunnage

[A] Requirements

[A.1] See the CCP CH-TRAMPAC for dunnage requirements (Reference 23a).

[A.2] The use of dunnage shall be minimized.

[A.3] In the event the use of dunnage cannot be avoided, the preferred practice for maximizing the efficiency of waste handling and the utilization of disposal room capacity is to ship them in assemblies (e.g., a seven-pack assembly of 55-gallon drums).
[B] Compliance and Verification

[B.1] The minimization of the use of dunnage is through load management. The use of dunnage drums is reviewed and approved concurrently with the review and approval of shipment assemblies by the WWIS/WDS Data Administrator on a case-by-case basis.

3.2.7 Filter Vents

[A] Requirements

[A.1] Payload containers that have been stored in an unvented condition (i.e., no filters and/or unpunctured liner) shall be aspirated for a specific length of time as described in the CH-TRAMPAC to ensure equilibration of any gases that may have accumulated in the closed payload container (References 23a and 23b, Section 5.3.1). All payload containers (including overpacks, but not dunnage containers) shall be vented with one or more filters to control gas concentration and pressure (Reference 4, Section 2.6.2; Reference 47, Reference 23a, Section 2.5.1; Reference 23b, Section 2.4.1; Reference 9, Attachment A1, Section A1-1b[2]). Filters shall meet the specifications described in the WIPP Hazardous Waste Facility Permit and the CH-TRAMPAC, and TRUPACT-III TRAMPAC (Reference 9, Attachment A1, Section A1-1d [1]; Reference 23a, Section 2.5.1; Reference 23b, Section 2.4.1). The model number of each filter vent or combination of filter vents will be reported using the WWIS/WDS.

[B] Compliance and Verification

[B.1] Personnel will procure approved filters for use on TRU waste containers. Filters will be selected from the DOE-CBFO-approved filter list. Filters will be procured in accordance with CCP-QP-015, CCP Procurement.

[B.2] The personnel visually verify that filter vents, if present, have been installed properly. If filter vents are not installed, personnel procure filter vents that meet specifications and install the correct number of
filter vents. The WCO confirms payload venting in accordance with CCP-TP-030. When a payload container does not meet the payload container filter requirements, an NCR is initiated. Nonconforming filters are replaced as necessary.

3.3 Radiological Properties

3.3.1 Radionuclide Composition

[A] Requirements

[A.1] The radionuclide composition of each waste container being characterized must be quantified and reported for purposes of tracking the inventory curie content. The activities and masses of the following radionuclides must be reported: 241Am, 238Pu, 239Pu, 240Pu, 242Pu, 233U, 234U, 238U, 90Sr, and 137Cs. The estimated activities and masses, including their associated total measurement uncertainties (TMU) expressed in terms of one standard deviation for these ten radionuclides shall be reported to the WWIS/WDS on a payload container basis. For any of these ten radionuclides whose presence can be substantiated from AK, direct measurement, computations, or a combination thereof, and whose measured data are determined to be below the lower limit of detection (LLD) for that radionuclide, the site shall report the character string “< LLD” to the WWIS/WDS for the activity and mass of that radionuclide; otherwise a value of zero shall be reported. Quantitative estimates for LLD shall not be used when calculating related radiological properties of the waste such as TRU alpha activity concentration, 239Pu Fissile Gram Equivalent (FGE), decay heat, etc.

[A.2] In addition, all radionuclides other than the ten WIPP-tracked radionuclides (i.e., 241Am, 238Pu, 239Pu, 240Pu, 242Pu, 233U, 234U, 238U, 90Sr, and 137Cs) that contribute to 95 percent of the radioactive hazard for the payload container shall be reported on the bill of lading or manifest in accordance with Title 49 CFR, Transportation §172.203, (Reference 36) and Title 49 CFR §173.433, (Reference 37). The activities and masses of these other radioisotopes shall also be reported to the WWIS/WDS along with their
associated TMU, expressed in terms of one standard deviation for each waste container.

[B] Compliance and Verification

[B.1] CCP uses AK and measurements to determine radionuclide composition. The requirements for nondestructive assay (NDA) are presented in Appendix 1, Radioassay Requirements for Contact-Handled Transuranic Waste. NDA personnel quantify radionuclide values in accordance with the applicable procedures listed in Appendix 1, Table A-2.1, NDA Procedures. NDA personnel use AK data and assay measurements and calculations to create an isotopic profile of each waste container. The activities and masses of the ten WIPP-tracked radionuclides including TMU (one standard deviation) and all radionuclides other than the ten WIPP-tracked radionuclides including TMU (one standard deviation) that contribute to 95 percent of the radioactive hazard for the payload container being characterized will be reported for each container using WWIS/WDS in accordance with procedure CCP-TP-030. In addition, all radionuclides other than the ten WIPP-tracked radionuclides that contribute to 95 percent of the radioactive hazard for the payload container shall be reported on the bill of lading or manifest in accordance procedure CCP-TP-033.

[B.2] For any of the ten WIPP-tracked radionuclides whose presence can be substantiated from AK, direct measurement, or a combination thereof, and whose measured data are determined to be below the LLD for that radionuclide, the CCP will report the character string “< LLD” to the WWIS/WDS for the activity and mass of that radionuclide; otherwise a value of zero will be reported.
3.3.2 Fissile Material Quantity (\(^{239}\text{Pu}\) FGEs)

[A] Requirements

[A.1] For each payload container, the sum of \(^{239}\text{Pu}\) FGE plus two times its associated TMU, expressed in terms of one standard deviation, shall comply with the limits in Table 2, \(^{239}\text{Pu}\) FGE Limits for Payload Containers (Reference 4, Section 6.4.2 References 23a and 23b, Section 3.1.1). The values calculated for \(^{239}\text{Pu}\) FGE and its associated TMU, expressed in terms of one standard deviation, shall be reported to the WWIS/WDS for each payload container.

[A.2] See the CCP CH-TRAMPAC for \(^{239}\text{Pu}\) FGE limits applicable to the TRUPACT-II and/or HalfPACT packaging (Reference 23a).

[A.3] See the CCP CH-TRUPACT-III TRAMPAC for \(^{239}\text{Pu}\) FGE limits applicable to the TRUPACT-III packaging (Reference 23b).
Table 2. 239Pu FGE Limits for Payload Containers

<table>
<thead>
<tr>
<th>Waste Container Type</th>
<th>Be/BeO Limits</th>
<th>Special Waste Container Geometry/Material Requirements</th>
<th>239Pu FGE Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Machine Compacted Waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55- (excluding pipe overpacks), 85-, and 100-gallon drums</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>None</td>
<td>≤ 200</td>
</tr>
<tr>
<td>55-gallon drum configured as a pipe overpack (i.e., a standard, S100, S200, or S300 pipe overpack)</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>None</td>
<td>≤ 200</td>
</tr>
<tr>
<td>Shielded Container</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>None</td>
<td>≤ 200</td>
</tr>
<tr>
<td>SLB2</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>The minimum 240Pu content in grams for the SLB2 waste container, denoted in the adjacent 239Pu FGE Limit column as a parenthetical, shall be determined after the subtraction of two times the error (i.e., two standard deviations)</td>
<td>≤ 325</td>
</tr>
<tr>
<td>SWB</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>None</td>
<td>≤ 340 (5)</td>
</tr>
<tr>
<td>TDOP</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>None</td>
<td>≤ 360 (15)</td>
</tr>
<tr>
<td>55- (excluding pipe overpacks), 85-, and 100-gallon drums</td>
<td>$>1%$ by weight of the waste up to 100 kg</td>
<td>None</td>
<td>≤ 380 (25)</td>
</tr>
<tr>
<td>SWB</td>
<td>$>1%$ by weight of the waste</td>
<td>None</td>
<td>≤ 100</td>
</tr>
<tr>
<td>TDOP</td>
<td>$>1%$ by weight of the waste</td>
<td>None</td>
<td>≤ 100</td>
</tr>
</tbody>
</table>
Table 2. ^{239}Pu FGE Limits for Payload Containers (Continued)

<table>
<thead>
<tr>
<th>Waste Container Type</th>
<th>Be/BeO Limits</th>
<th>Special Waste Container Geometry/Material Requirements</th>
<th>^{239}Pu FGE Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Compacted Waste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe overpacks (i.e., a standard, S100, S200, or S300 pipe overpack)</td>
<td>> 1% by weight of the waste</td>
<td>None</td>
<td>≤ 140</td>
</tr>
<tr>
<td>55- (excluding pipe overpacks), 85-, and 100-gallon drums</td>
<td>≤ 1% by weight of the waste</td>
<td>Partially compacted waste. Applies to waste that has been compacted such that the distribution and form of polyethylene in the waste does not exceed 0.646 gram/cubic centimeter (g/cm3), i.e., 70% of the theoretical full density of polyethylene (0.923 g/cm3).</td>
<td>≤ 200</td>
</tr>
<tr>
<td>55- (excluding pipe overpacks), 85-, and 100-gallon drums</td>
<td>≤ 1% by weight of the waste</td>
<td>Fully compacted waste without design vertical spacing. Applies to waste that has been compacted such that the distribution and form of polyethylene in the waste exceeds 0.646 g/cm3, i.e., 70% of the theoretical full density of polyethylene (0.923 g/cm3).</td>
<td>≤ 170</td>
</tr>
<tr>
<td>55- (excluding pipe overpacks), 85-, and 100-gallon drums</td>
<td>≤ 1% by weight of the waste</td>
<td>Fully compacted waste with design vertical spacing. Applies to waste that has been compacted such that the distribution and form of polyethylene in the waste exceeds 0.646 g/cm3, i.e., 70% of the theoretical full density of polyethylene (0.923 g/cm3), and the dimensions of the payload containers (e.g., 100-gallon drums) ensure a minimum 0.5-in. separation between their compacted waste contents and other axially adjacent payload containers.</td>
<td>≤ 200</td>
</tr>
<tr>
<td>Shielded Container</td>
<td>≤ 1% by weight of the waste</td>
<td>None</td>
<td>≤ 200</td>
</tr>
</tbody>
</table>
Table 2. 239Pu FGE Limits for Payload Containers (Continued)

<table>
<thead>
<tr>
<th>Waste Container Type</th>
<th>Be/BeO Limits</th>
<th>Special Waste Container Geometry/Material Requirements</th>
<th>Waste Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWB/TDOP</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>Fully compacted waste with design vertical spacing. Applies to waste that has been compacted such that the distribution and form of polyethylene in the waste exceeds 0.646 g/cm3, i.e., 70% of the theoretical full density of polyethylene (0.923 g/cm3), and contains one 16-gauge steel 100-gallon drum having a top and bottom design spacing of 0.75 and 0.50-inches, respectively, with no loose material or other drums of waste in the SWB/TDOP.</td>
<td>≤ 250</td>
</tr>
<tr>
<td>SWB/TDOP</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>Fully compacted waste with design vertical spacing. Containing one 55-, 85-, or 100-gallon drum whose design ensures a minimum of 0.5-in. vertical spacing between drum contents and the exterior top and bottom of the drum (e.g., a recessed lid) with no loose material or other drums of waste in the SWB/TDOP.</td>
<td>≤ 200</td>
</tr>
<tr>
<td>SWB/TDOP</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>Partially compacted waste. Containing one 55-, 85-, or 100-gallon drum whose contents have been compacted such that the distribution and form of polyethylene in the waste does not exceed 0.646 g/cm3, i.e., 70% of the theoretical full density of polyethylene (0.923 g/cm3) with no loose material or other drums of waste in the SWB/TDOP.</td>
<td>≤ 200</td>
</tr>
<tr>
<td>SWB/TDOP</td>
<td>$\leq 1%$ by weight of the waste</td>
<td>Fully compacted waste with design vertical spacing. Applies to waste that has been compacted such that the distribution and form of polyethylene in the waste exceeds 0.646 g/cm3, i.e., 70% of the theoretical full density of polyethylene (0.923 g/cm3).</td>
<td>≤ 185</td>
</tr>
</tbody>
</table>

[B] Compliance and Verification

[B.1] Personnel obtain the CH-TRU waste fissile content in accordance with the processes described in Appendix 1, Radioassay equipment is qualified under the corresponding Performance Demonstration Program (PDP) requirements. CCP calculates the fissile or fissionable radionuclide content of the CH-TRU waste container as 239Pu FGE according to approved calculation methods in accordance with CCP-TP-033.

[B.2] Personnel compile and review AK to make initial determinations about radionuclide content and concentrations. CCP confirms AK by obtaining information on the isotopic composition of the waste through radioassay of the filled payload container.
[B.3] Personnel compute the container \(^{239}\text{Pu} \) FGE and container \(^{239}\text{Pu} \) FGE TMU manually or using a computational algorithm. Individual radionuclide mass quantities and TMUs are converted to \(^{239}\text{Pu} \) FGE by multiplying the mass value (g) by \(^{239}\text{Pu} \) FGE conversion factors (FGE/g) listed in Table 3.1.2 of the CH-TRAMPAC (Reference 23a) and Table 3.1-1 of the TRUPACT-III TRAMPAC (Reference 23b). The \(^{239}\text{Pu} \) FGE of each payload container shall be calculated from the isotopic composition and quantity of radionuclides. The \(^{239}\text{Pu} \) FGE value plus two times the measurement error shall be less than the applicable limit for each payload container.

[B.4] The total \(^{239}\text{Pu} \) FGE error is the square root of the sum of the squares of the individual \(^{239}\text{Pu} \) FGE TMUs. Two times this error shall be added to the \(^{239}\text{Pu} \) FGE of the Type B package payload and compared to the limit. The \(^{239}\text{Pu} \) FGE of the radionuclides in each payload container will be reported to the WIPP using the WWIS/WDS and the TRUPACT-II and TRUPACT-III payload total FGE will be recorded on the PATCD. Payload containers shipped to the WIPP will meet both the Type B package and the WIPP repository requirements for criticality.

3.3.3 TRU Alpha Activity Concentration

[A] Requirements

[A.1] TRU waste containers to be disposed of at the WIPP shall contain greater than 100 nCi/g of waste of alpha-emitting TRU isotopes, with half-lives greater than 20 years. Without taking into consideration the TMU, the TRU alpha activity concentration for a payload container is determined by dividing the TRU alpha activity of the waste by the weight of the waste. The weight of the waste is the weight of the material placed into the payload container (i.e., the net weight of the container). The weight of the waste is typically determined by subtracting the tare weight of the payload container (including the weight of the rigid liner and any shielding external from the waste, if applicable) from the gross weight of the payload container. In the event waste containers (e.g., 55-gallon, 85-gallon or 100-gallon drums) that have been radioassayed are overpacked in a payload container (e.g., in a SWB), CCP shall sum the
individual TRU alpha activity values of the individual waste containers and divide by the sum of the individual net waste weights (i.e., less container, shielding, and liner weights as appropriate) to determine the activity per gram for the payload container. Should CCP utilize load management by overpacking waste containers, the determination of the payload container’s TRU alpha activity concentration shall be in accordance with Appendix 8, Payload Management of TRU Alpha Activity Concentration. Loading a 55-gallon pipe-overpack with cans is considered direct loading, not overpacking for the purposes of calculating the weight of the container. The TRU alpha activity concentration shall be reported to the WWIS/WDS; however, there are no reporting requirements for its associated TMU (Reference 35, Chapter 4).

[B] Compliance and Verification

[B.1] Personnel measure TRU alpha activity concentration in accordance with the NDA processes described in Appendix 1. Personnel calculate the TRU alpha activity concentration of the CH TRU waste container manually or using computational algorithms. Personnel will subtract the tare weight of the containers before calculating the TRU alpha activity concentration. Personnel validate and verify calculation programs, before the data are used in accordance with CCP-QP-022, CCP Software Quality Assurance Plan. Assay data are validated and verified, and submitted in batch data reports (BDRs) to the CCP Project Office. The WCO confirms the reported TRU alpha activity concentration is appropriately calculated and above the specified limit.

3.3.4 239Pu Equivalent Activity

[A] Requirements

[A.1] 239Pu equivalent curie (PE-Ci) limits are shown in Table 3, PE-Ci Limits. PE-Ci quantities shall be calculated in accordance with Appendix 5 for each payload container and reported to the WIPP using the WWIS/WDS (Reference 4, Section 3.3.2.3.1 and Table 3.3-6). There are no reporting requirements for the associated TMU.
Table 3. PE-Ci Limits

<table>
<thead>
<tr>
<th>Payload Container</th>
<th>Packing Configuration</th>
<th>PE-Ci Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-, 85-, and 100-gallon drum</td>
<td>Direct loaded – all approved waste forms other than solidified/vitrified waste</td>
<td>≤ 80 PE-Ci</td>
</tr>
<tr>
<td>Shielded Container</td>
<td>Direct loaded – vented 30-gallon inner steel drum – all approved waste forms other than solidified/vitrified waste</td>
<td>≤ 80 PE-Ci</td>
</tr>
<tr>
<td>SLB2</td>
<td>Direct loaded – all approved waste forms other than solidified/vitrified waste</td>
<td>≤560 PE-Ci</td>
</tr>
<tr>
<td>SWB</td>
<td>Direct loaded (or a bin) – all approved waste forms other than solidified/vitrified waste</td>
<td>≤ 560 PE-Ci</td>
</tr>
<tr>
<td>TDOP</td>
<td>Direct loaded – all approved waste forms other than solidified/vitrified waste</td>
<td>≤ 800 PE-Ci</td>
</tr>
<tr>
<td>85-gallon drum</td>
<td>Overpacking an undamaged¹ 55-gallon drum – all approved waste forms other than solidified/vitrified waste</td>
<td>≤ 1100 PE-Ci</td>
</tr>
<tr>
<td>SWB, TDOP</td>
<td>Overpacking an assembly of undamaged¹ 55- or 85-gallon drums with no single payload container within the assembly exceeding 1100 PE-Ci – all approved waste forms other than solidified/vitrified waste</td>
<td>≤ 1200 PE-Ci</td>
</tr>
<tr>
<td>TDOP</td>
<td>Overpacking an undamaged¹ SWB – all approved waste forms other than solidified/vitrified waste</td>
<td>≤ 1200 PE-Ci</td>
</tr>
<tr>
<td>Pipe Overpacks (Standard, S100, S200, and S300)</td>
<td>All approved waste forms</td>
<td>≤ 1800 PE-Ci</td>
</tr>
<tr>
<td>All</td>
<td>Solidified/vitrified waste</td>
<td>≤ 1800 PE-Ci</td>
</tr>
</tbody>
</table>

¹ An undamaged container provides an additional barrier should a breach occur in the overpack. When overpacking one or more damaged waste containers, direct loaded PE-Ci limits apply.

[B] Compliance and Verification

[B.1] Personnel calculate the activity of the CH-TRU waste container as PE-Ci according to the methodology in Appendix 5 of this Plan and CCP-TP-030. Personnel identify payload containers exceeding limits stated in Table 2, segregate them, and disposition them in accordance with approved nonconformance and corrective action management procedures. The WCO verifies compliance of the PE-Ci limits. Personnel will report the PE-Ci activity to the WIPP using the WWIS/WDS.
3.3.5 Radiation Dose Equivalent Rate

[A] Requirements

[A.1] The external radiation dose equivalent rate of individual payload containers shall be:

[A.2] ≤200 milliroentgen equivalent man (mrem)/hour (hr) at the surface with the exception of the S100 and S300 pipe overpacks which are limited to ≤179 mrem/hr and ≤155 mrem/hr, respectively, at the surface (References 23a and 23b, Section 3.2; Reference 4, Sections E1 and 2.1). Internal payload container shielding shall not be used to meet this criterion, except for authorized shielded payload container configurations such as the use of 55-gallon drums containing a pipe component or a shielded container (Reference 23a, Section 2.9). Total dose equivalent rate and the neutron contribution to the total dose equivalent rate shall be reported for each payload container in the WWIS/WDS.

[B] Compliance and Verification

[B.1] A Host site RCT measures surface dose rates of the individual payload containers in accordance with site radiological survey procedures using the beta-gamma and neutron dose rates for each container at the surface, and records the results for each payload container. If the combined beta-gamma and neutron dose rate exceeds the dose rate specified in step 3.3.5[A] at the surface for any container, the container is rejected, marked, and segregated. Total dose equivalent rate and the neutron contributions to the total payload container dose rate will be reported separately using the WWIS/WDS in accordance with CCP-TP-030.
3.3.6 Decay Heat

[A] Requirements

[A.1] See the CCP CH-TRAMPAC and TRUPACT-III TRAMPAC for decay heat requirements (References 23a and 23b).

[B] Compliance and Verification

[B.1] Personnel will compute the payload container decay heat and the measurement error manually or using a computational algorithm in accordance with CCP-TP-030. Personnel will ensure that the results of the calculations are equal to or less than the limits of the assigned shipping category. Individual radionuclide mass quantities and errors are converted to decay heat by multiplying the mass values (g) by decay heat conversion factors (W/g). Table 3.1-2 in the CH-TRAMPAC and TRUPACT-III TRAMPAC (References 23a and 23b) lists 239Pu FGE, decay heat, and specific activity for many radionuclides. The values calculated for decay heat and its associated TMU (expressed in terms of one standard deviation) shall be reported to the WWIS/WDS for each payload container in accordance with CCP-TP-030.

3.4 Physical Properties

3.4.1 Observable Liquid

[A] Requirements

[A.1] Liquid waste is not acceptable at the WIPP. Observable liquid containing PCBs is prohibited at the WIPP.

Liquid in the quantities delineated below is acceptable:

• Observable liquid shall be less than 1 percent1 by volume of the outermost container at the time of radiography or visual examination (VE) (Reference 9).

1The limit of “less than 1 percent” is taken from the CH-TRAMPAC and TRUPACT-III TRAMPAC and is more restrictive than the limit of “no more than 1 percent” in the HWFP.
• Internal containers with more than 60 milliliters (ml) or 3 percent by volume observable liquid, whichever is greater, are prohibited.

• Containers with Hazardous Waste Number U134 assigned shall have no observable liquid.

• Overpacking the outermost container that was examined during radiography or visual examination or redistributing untreated liquid within the container shall not be used to meet the liquid volume limits.

(Reference 9, Part 2, Section 2.3.3.1, Attachment C, Sections C-1c and C-3b; Reference 23a, Section 2.6.1; Reference 23b, Section 2.5.1; Reference 35, Appendix TRU Waste; Reference 12, Conditions of Approval, II.A.2).

[B] Compliance and Verification

[B.1] Initially, AK is used to determine container contents. Personnel estimate liquid volume by radiography and/or VE, in accordance with site-specific radiography and VE procedures (See Appendix 4, Tables B-2 and B-3). During VE, if personnel detect any liquid waste in non-transparent internal containers by shaking the internal container, they will assume that the internal container is completely filled and add the entire volume of the internal container to the total liquid in the container being characterized using VE.

Personnel reject payload containers whose liquid volumes exceed the limits defined in 3.4.1 [A.1]. If necessary, personnel repackage noncompliant waste containers in accordance with site-specific VE procedures (See Appendix 4, Table B-3).

3.4.2 Sealed Containers

[A] Requirements

[A.1] Sealed containers that are greater than four liters (L) (nominal) are prohibited except for solid inorganic waste (Waste Material Type II.2) packaged in a metal container (Reference 23a, Section 2.8.1; Reference 23b, Section 2.7.1).
[B] Compliance and Verification

[B.1] Personnel will ensure that payload containers are verified to be free of sealed containers greater than four liters. Personnel use VE and/or Real-Time Radiography to ensure prohibited physical waste forms are not present in waste containers (See Appendix 4, Table B-2 through B-3).

Payload containers rejected for sealed containers greater than four liters or more are marked and segregated. The container is repackaged and reprocessed to verify the criteria are met. The WCO confirms the sealed container criteria in accordance with CCP-TP-030.

3.5 Chemical Properties

3.5.1 Pyrophoric Materials

[A] Requirements

[A.1] Radioactive pyrophoric materials shall be present only in small residual amounts (<1 percent by weight) in payload containers and shall be generally dispersed in the waste. Radioactive pyrophorics in concentrations greater than 1 percent by weight and all nonradioactive pyrophorics shall be reacted (or oxidized) and/or otherwise rendered nonreactive prior to placement in the payload container (References 23a and 23b, Section 4.1.1). Nonradionuclide pyrophoric materials are not acceptable at the WIPP (Reference 4, Section 11.4.1; Reference 9, Attachment C, Section C-1c; Reference 9, Part 2, Section 2.3.3.2; References 23a and 23b, Section 4.1.4).

[B] Compliance and Verification

[B.1] Personnel verify compliance with pyrophorics restriction by obtaining information documented in AK. VE and radiography verify there is no indication and document that waste does not contain pyrophorics or other prohibited material (See list of real-time radiography [RTR] and VE procedures in Appendix 4, Tables B-2 and B-3). Personnel review and evaluate AK to verify that waste-producing processes included
no pyrophorics or other prohibited materials. AK includes sampling and analysis data, documentation of waste stream descriptions, or actions to treat or stabilize the waste to eliminate specific characteristics.

3.5.2 Hazardous Waste

[A] Requirements

[A.1] Hazardous wastes not occurring as co-contaminants with TRU wastes (non-mixed hazardous wastes) are not acceptable at the WIPP. Each CH-TRU-mixed waste container shall be assigned one or more EPA hazardous waste codes as appropriate. Only EPA hazardous waste codes listed as allowable in the WIPP Hazardous Waste Facility Permit may be managed at the WIPP. Some of the waste may also be identified by unique state hazardous waste codes. Those wastes are acceptable at the WIPP as long as the Treatment, Storage, and Disposal Facility WAC are met (Reference 9, Attachment C, Section C-1b; Reference 9, Part 2, Section 2.3.4). Wastes exhibiting the characteristic of ignitability, corrosivity, or reactivity (EPA hazardous waste numbers of D001, D002, or D003) are not acceptable at WIPP. In the context of this Plan, hazardous waste codes are synonymous with hazardous waste numbers (Reference 9, Attachment C, Section C-1c; Reference 9, Part 2, Sections 2.3.3.3, 2.3.3.7, and 2.3.4).

[B] Compliance and Verification

[B.1] Personnel will ensure that each individual waste payload container is assigned to a waste stream identified by acceptable EPA hazardous waste codes and documented on a DOE-approved WSPF. Personnel will report the hazardous waste codes for each container to the WIPP via the WWIS/WDS in accordance with CCP-TP-030. EPA hazardous waste codes are assigned based on AK. CCP uses CCP-TP-005, CCP Acceptable Knowledge Documentation, to compile, review, evaluate, confirm and report AK documentation. The AK Summary Report delineates waste streams and assigns hazardous waste codes. If data are insufficient to
demonstrate that the concentration of the constituent is less than the regulatory level, the EPA hazardous waste number for the identified constituent is applied to the waste stream. CCP will report hazardous waste codes in accordance with CCP-TP-002, CCP Reconciliation of DQOs and Reporting Characterization Data; CCP-TP-005 and CCP-TP-030.

3.5.3 Chemical Compatibility

[A] Requirements

[A.1] TRU waste containing incompatible materials or materials incompatible with payload container and packaging materials, shipping container materials, other wastes, repository backfill, or seal and panel closure materials are not acceptable for transport in the TRUPACT-II, TRUPACT-III, or HalfPACT or for disposal at the WIPP. Chemical constituents shall conform to the lists of allowable materials in Tables 4.3-1 through 4.3-8 of the CH-TRAMPAC. Other chemicals or materials not identified in these tables are allowed provided that they meet the requirements as specified in Section 4.3.1 of the CH-TRAMPAC and TRUPACT-III TRAMPAC (Reference 9, Attachment C, Section C-1c; Reference 9, Part 2, Section 2.3.3.4; References 23a and 23b, Sections 4.3 and 4.4).

[B] Compliance and Verification

[B.1] Personnel ensure compliance with the chemical compatibility requirements based on AK. Only wastes that have been shown to meet the approved chemical lists in Tables 4.3-1 through 4.3-8 of the CH-TRAMPAC and Tables 4.3-1 through 4.3-7 of the TRUPACT-III TRAMPAC are acceptable at the WIPP. The WCO confirms compliance with the chemical compatibility criteria in accordance with CCP-TP-030. If necessary, personnel repackage CH TRU waste containers not meeting the chemical compatibility requirement.
3.5.4 Explosives, Corrosives, and Compressed Gases

[A] Requirements

[A.1] Waste shall contain no explosives, corrosives, or compressed gases (pressurized containers) (Reference 9, Attachment C, Section C-1c; Reference 9, Part 2, Sections 2.3.3.5 and 2.3.3.7; References 23a and 23b, Section 4.2.1).

[B] Compliance and Verification

[B.1] Personnel ensure that explosives, compressed gases, and corrosive liquids are not present in payload containers. Chemicals (e.g., oxidizers) capable of forming explosive mixtures under some conditions are also prohibited from the waste. Waste-generation processes are assessed for safety hazards such as potential explosion hazards and potential inadvertent production of explosive materials in accordance with CCP-TP-005. Corrosives must be either excluded from the payload container or processed to neutralize the corrosive material or otherwise render it noncorrosive. CCP operating procedures describe the specific actions taken to ensure compliance with the corrosive material prohibition, (e.g., site-specific radiography and VE procedures [See Appendix 4, Tables B-2 and B-3]).

[B.2] Personnel verify compliance with the prohibited items requirement by obtaining AK information (e.g., administrative, operating, QA procedures, and safety assessments) documenting that waste does not contain explosives, corrosives, or pressurized containers. Personnel review and evaluate AK to verify that waste-producing processes included no prohibited or restricted materials. AK includes sampling and analysis data, documentation of waste stream descriptions, or actions to treat or stabilize the waste to eliminate specific characteristics. Personnel verify that prohibited materials are not in the waste container through radiography or VE (See list of RTR and VE procedures in Appendix 4, Tables B-2 and B-3).
3.5.5 HSG VOC Concentrations

[A] Requirements

[A.1] The headspace gas (HSG) of payload containers shall be determined in accordance with a site-specific TRAMPAC (References 23a and 23b, Section 5.2), as required.

[B] Compliance and Verification

[B.1] CCP Personnel ensure that the required QAOs meet the requirements specified for gas generation rates in the Gas Generation QAPjP. For those payload containers that exceed the flammable volatile organic compound (VOC) limit, a determination of compliance with the flammable (gas/VOC) concentration limit as described in the CH-TRAMPAC allows the payload container to be shipped in the Type B package under the test category.

[B.2] Test category payload containers are tested by direct measurement in accordance with gas generation testing (GGT) procedures (See Appendix 4, Table B-4) to quantify the hydrogen/methane, VOC, and total gas generation rates (as appropriate) for purposes of determining if all applicable limits are met in accordance with CCP-TP-030.

[B.3] Representative sampling of HSG may be used to quantify the hydrogen/methane, VOC, and total gas generation rates (as appropriate) for purposes of determining if all applicable limits are met in accordance with CCP-TP-030.

3.5.6 Polychlorinated Biphenyl (PCB) Concentration

[A] Requirements

[A.1] For TRU and mixed-TRU wastes containing PCBs meeting the condition of approval in Reference 12, the payload container data entered into the WWIS/WDS shall include the earliest date of waste generation (i.e., the date of removal from service for disposal), the date of waste certification for disposal, and the date the waste was sent to the WIPP for disposal (Reference 12, Section III.D.4). Additionally,
the estimated weight of the PCBs in kilograms (kg) (as recorded on the Uniform Hazardous Waste Manifest [UHWM]) and a description of the type of PCB waste (e.g., PCB Articles, PCB remediation waste), shall be entered into the WWIS/WDS (Reference 13, § 761.207 [a][2] and § 761.180). Hanford, Idaho National Laboratory, Savannah River Site, Oak Ridge National Laboratory, Knolls Atomic Power Laboratory, and Los Alamos National Laboratory are authorized to ship their TRU and TRU-mixed wastes containing PCBs to WIPP (References 14 and 15).

[B] Compliance and Verification

[B.1] Personnel use AK obtained from CCP-TP-005, and/or verification, and testing to demonstrate compliance with the PCB requirement. Personnel use nondestructive examination (NDE) (VE and RTR) procedures (See Appendix 4, Tables B-2 and B-3) during packaging of newly generated waste to identify the presence of PCBs. For retrievably stored debris waste, personnel compile, record, and evaluate AK to demonstrate compliance with the PCB limitation. The WCO verifies compliance with the PCB requirements.

3.6 Data Package Contents

3.6.1 Characterization and Certification Data

[A] Requirements

[A.1] Sites shall prepare a WSPF for each waste stream. Each WSPF shall be approved by the DOE-CBFO prior to the first shipment of that waste stream. Characterization and certification information for each payload container shall be submitted to the WWIS/WDS and approved by the WWIS/WDS Data Administrator. Sites are required to estimate the cellulose, plastics, and rubber (CPR) weights and report these estimates in the WWIS/WDS on a payload container basis. Any payload container from a waste stream that has not been preceded by an appropriate certified WSPF is not acceptable at the WIPP (Reference 9, Part 2, Section 2.3.3.10).
[B] Compliance and Verification

[B.1] Personnel will verify compliance with the data package requirements by reviewing data packages in accordance with CCP-TP-001, CCP Project Level Data Validation and Verification, and CCP-TP-005. Personnel will prepare and submit the WSPF to DOE-CBFO in accordance with procedure CCP-TP-002. The WCO ensures that the WWIS/WDS data are entered into the system and transmitted to the DOE-CBFO for approval before waste shipment in accordance with CCP-TP-030. Waste containers will be certified under an approved WSPF prior to shipment.

3.6.2 Shipping Data

[A] Requirements

[A.1] Sites shall prepare either a Bill of Lading or a UHWM for CH-TRU waste shipments as required by the transportation requirements. The Land Disposal Restriction (LDR) notification for CH-TRU mixed waste shipments shall state that the waste is not prohibited from land disposal (Reference 9, Attachment C, Section C-5b(2); References 23a and 23b, Section 6).

[B] Compliance and Verification

[B.1] Personnel verify compliance with the data package requirements by reviewing the data packages in accordance with CCP-TP-001 and CCP-TP-005. The TCO and WCO ensure that the WWIS/WDS data are entered into the system and transmitted to DOE-CBFO for approval before waste shipment in accordance with CCP-TP-030 and CCP-TP-033.

[B.2] The TCO prepares a PCTCD/OPCTCD for each payload container and a PATCD for each payload assembly in accordance with the CCP CH-TRAMPAC prior to loading the container into a Type B package. The TCO completes the PCTCD/OPCTCD and PATCD to certify an individual payload container and a PATCD to certify the payload assembly for shipping in accordance with CCP-TP-033, which is based on
Section 6.0 of the CCP CH-TRAMPAC. The PCTCDs, OPCTCDs, and the PATCDs are completed prior to shipping the Type B package. The LDR Exemption Notification form is completed for mixed waste shipments in accordance with CCP-TP-033. The shipping site’s transportation personnel or personnel prepare a bill of lading or UHWM. For non-mixed waste shipments, a Bill of Lading is prepared. A UHWM is prepared for mixed waste shipments. If the TCO is the shipper of record, shipping data are prepared in accordance with CCP-TP-033.

[B.3] CCP Transportation is tasked with the final review of the payload assembly and documentation. The final approval of the assembly and documentation (UHWM or Bill of Lading) is done by CCP Transportation or other certified Host site program.
4.0 WASTE ACCEPTANCE REQUIREMENTS AND CRITERIA FOR RH WASTE

This section describes how the CCP complies with the requirements of the WIPP WAC for RH waste and associated requirements contained in the WIPP DSA (Reference 4), RH TRU 72-B and 10-160B Certificates of Compliance (References 7 and 8), WIPP LWA (Reference 2), WIPP Hazardous Waste Facility Permit (Reference 9), Compliance Recertification Decision (Reference 10), Initial Report for PCB Disposal Authorization (Reference 11), EPA letter of approval to land dispose non-liquid PCBs at WIPP (References 12 and 13), Revision to the Record of Decision for the DOE’s WIPP Disposal Phase and associated WIPP NEPA database (References 14 and 15), EPA’s letter of approval of DOE’s RH TRU Waste Characterization Program (Reference 16), and the WCPIP (Reference 17).

4.1 Organization of Requirements

The purpose of Section 4.0 and related appendices is to describe the compliance methods and rationale for the requirements and associated criteria that must be met for RH TRU waste to be transported to, managed at, and disposed of in the WIPP. The requirements/criteria and associated compliance methods are organized under five major headings: Container Properties, Radiological Properties, Physical Properties, Chemical Properties, and Data Package Contents. Sections 4.7 through 4.11 correlate with the organization in the WIPP WAC for RH TRU waste requirements and identify methods of compliance to meet each requirement. Procedures that implement the process controls, techniques, tests, and other actions to be applied to each RH-TRU payload container, waste stream, and shipment are also identified. Revisions of requirements in referenced documents controlled by agencies or organizations other than DOE (e.g., EPA, NMED and NRC) shall have precedence over values quoted in this Plan. Changes incorporated in future revisions of the WIPP WAC for RH waste will be reflected in future revisions of this Plan.

In addition to the discussion described in this section, a CCP RH-TRU Waste Certification Plan for 40 CFR Part 194 compliance is presented in Appendix 11, CCP RH TRU Waste Certification Plan for 40 CFR Part 194 Compliance to this Plan. This Appendix satisfies the WCPIP requirement for a waste certification plan that provides, among other things, a listing of the DQOs specified in the WCPIP and the identification of methods and a description of the rationale that will be used to assess compliance with those DQOs.

Regarding any discussions of compliance and verification methods, if a requirement is not met, personnel will initiate an NCR or a CAR in accordance with CCP-QP-005. Corrective action will be taken in accordance with CCP-QP-029 to resolve nonconformances. Section 5.3
provides additional details about the NCR/CAR process. Only waste from a properly characterized waste stream will be certified as meeting the requirements and associated criteria contained in this Plan. Waste containers for a waste stream which has not been represented by an approved WSPF will not be shipped to WIPP for disposal (Reference 9, Part 2, Section 2.3.3.10). The required characterization, certification, and shipping data will be transmitted to the WIPP using the WWIS/WDS.

4.2 DOE Operations and Safety Requirements for WIPP

4.2.1 The WIPP DSA addresses waste handling and emplacement operations. Waste acceptance for emplacement in the WIPP will conform to the WAC to meet the DSA (Reference 4).

4.3 NRC Transportation Safety Requirements

4.3.1 Acceptable methods for payload compliance are defined in the RH-TRU 72-B and 10-160B Certificates of Compliance (References 7 and 8).

Acceptable methods for payload compliance for the RH-TRU 72-B are implemented by the RH-TRAMPAC (Reference 41). CCP-PO-505 describes how CCP will ensure compliance with each payload parameter. The CCP RH-TRAMPAC contains sufficient detail to allow reviewers to adequately understand and evaluate the compliance methodology for each payload parameter.

The payload requirements for the 10-160B package and site-specific compliance are specified by the 10-160B SAR (Reference 38). Prior to use of the 10-160B package, CCP will prepare a CCP Appendix if applicable. For shipments in the 10-160B package, CCP verifies compliance to the requirements for the applicable site-specific appendix to the 10-160B SAR. The 10-160B SAR does not require the preparation of a site-specific “TRAMPAC.”

4.3.2 The QA Program described in Section 5.0 defines the QA activities that apply to the use of NRC-approved transportation packaging in accordance with 10 CFR Part 71, Subpart H (Reference 24).
4.4 NMED Hazardous Waste Facility Permit Requirements

4.4.1 TRU waste is classified as TRU-mixed waste if it contains hazardous constituents regulated under the New Mexico Hazardous Waste Act (Reference 25). Only TRU-mixed waste and TRU waste that have been characterized in accordance with the WIPP WAP and that meet the Treatment, Storage and Disposal Facility (TSDF) WAC as presented in permit Sections 2.3.3.1 through 2.3.3.10 will be shipped to WIPP for disposal. The CCP QAP describes compliance with the WIPP WAP.

4.5 EPA Compliance Recertification Decision Requirements

4.5.1 Title 40 CFR § 194.24(c) requires the DOE to specify the limiting values for waste components to be emplaced in the repository (Reference 26). The EPA’s Compliance Recertification Decision (Reference 10) identifies the repository limits for several waste components including free water, metals, and CPR.

4.5.2 CCP estimates or determines the weight of CPR and reports this estimate in the WWIS/WDS on a container basis. The repository limit for CPR is a maximum of 2.2 X 10^7 kg. In addition, CCP quantifies and reports the activity values of each of the following radionuclides for purposes of tracking the inventory curie content: 241Am, 238Pu, 239Pu, 240Pu, 242Pu, 233U, 234U, 236U, 90Sr, and 137Cs. The presence or absence of these radionuclides is determined using AK documentation and radiological characterization techniques performed in accordance with the WCPIP. The results of these determinations are reported in the WWIS/WDS on a payload container basis. TRU waste payload containers shall contain more than 100 nCi/g of alpha-emitting TRU isotopes with half-lives greater than 20 years, as specified in Section 4.8.3 (Reference 47).

4.5.3 EPA Approval for PCB Disposal

PCB-contaminated TRU and PCB-contaminated TRU waste mixed with a hazardous waste including PCB remediation waste, PCB articles, and PCB bulk product waste may be stored and disposed at the WIPP (References 11, 12, 13, 14 and 15). Applicable waste acceptance criteria are addressed in Sections 4.7.5 (Identification/Labeling), 4.9.1 (Observable Liquids), and 4.10.6 (Polychlorinated Biphenyls).

Waste streams identified as containing PCBs shall be brought to the attention of the CBFO in order that a determination can be made regarding their acceptability at WIPP.
4.6 WIPP Land Withdrawal Act Requirements (Public Law 102-579)

4.6.1 WIPP can accept only radioactive waste generated by atomic energy defense activities of the United States (Reference 2, Section 2(19)). A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the following functions (References 27 and 28):

- naval reactors development
- weapons activities, including defense inertial confinement fusion
- verification and control technology
- defense nuclear materials production
- defense nuclear waste and materials by-products management
- defense nuclear materials security and safeguards and security investigations
- defense research and development

Using AK, CCP determines that each waste stream to be disposed of at WIPP is "defense" TRU waste (Reference 2).

4.6.2 High-level radioactive waste or spent nuclear fuel shall neither be transported, emplaced, nor disposed of at WIPP (Reference 2, Section 12). Also, no TRU waste may be transported by or for the DOE to or from WIPP, except in packages:

- the design of which has been certified by the NRC, and
- that have been determined by the NRC to satisfy its QA requirements.
4.7 Container Properties

4.7.1 Description

[A] Requirements

[A.1] The only payload containers authorized for receipt of RH-TRU waste in the RH bay of the Waste Handling Building at WIPP include 55-gallon drums and RH-TRU waste canisters shipped in 10-160B and RH-TRU 72-B packaging, respectively (references 7 and 8). The site shall report the number and type of payload containers to WIPP using the WWIS/WDS.

[A.2] Payload containers must meet DOT Type 7A standards (Reference 4, Section 2.5.2). Prior to loading in the transportation packaging, the exterior of a payload container must undergo 100 percent visual inspection to ensure compliance with the requirement that payload containers be in good and unimpaired condition. The results of this visual inspection must be documented. Inspection of 55-gallon drums shall be documented using the payload container integrity checklist contained in Appendix 7. A payload container is in good and unimpaired condition if it does not have significant rusting, is of sound structural integrity, and does not show signs of leakage.

The RH-TRU waste canister shall comply with the specifications in the CCP RH-TRAMPAC (Reference 7).

[B] Compliance and Verification

[B.1] CCP only uses RH-TRU 72-B waste canisters for use in the RH-TRU 72-B cask as payload containers for RH waste. The only authorized payload container of RH-TRU waste for shipment in the 10-160B to WIPP is a 55-gallon drum. CCP reports the number and type of payload containers to WIPP using the WWIS/WDS in accordance with procedure CCP-TP-530, CCP RH TRU Waste Certification and WWIS/WDS Data Entry.

[B.2] The CCP procures canisters in accordance with procedure CCP-QP-015 to comply with specifications
of Appendix 1.3.4 of the DSA for the RH-TRU 72-B Cask.

One hundred percent visual inspection of the exterior of the payload container is performed to ensure that the payload container is in good and unimpaired condition. The results of this inspection are documented. Inspection of payload containers for compliance to requirements is performed in accordance with CCP-TP-507, *CCP Shipping of Remote-Handled Transuranic Waste*.

All payload containers are assigned to a Content Code per procedure CCP-TP-530.

4.7.2 Weight Limits

[A] Requirements

[A.1] Each payload container shall comply with the following maximum weight limit:

- Removable Lid Canister (direct loaded or drum loaded) – 4,240 lbs (Reference 39)
- Welded Lid Canister (direct loaded) – 5,250 lbs (Reference 40)
- Welded Lid Canister (drum loaded) – 5,980 lbs (Reference 40)
- NS15 Neutron Shielded Canister – 3100 lbs (Reference 41)
- NS30 Neutron Shielded Canister – 3100 lbs (Reference 41)
- 1,000 lbs (453.59 kg) per 55-gallon drum (Reference 17, Section 2.4.1; Reference 4, Section 2.5.2.2)

See the RH-TRU 72-B and/or 10-160B packaging Certificates of Compliance for applicable package weight limits (References 7 and 8).
Compliance and Verification

[B.2] CCP verifies the weight limits of the payload containers and the 10-160B cask are within tolerance using DOE/WIPP 06-3336, 10-160B RH Cask Program Guidance. The TCO certifies compliance to applicable weight limits in accordance with CCP-TP-507.

4.7.3 Assembly Configurations

[A] Requirements

[A.1] See the RH-TRU 72-B and/or 10-160B packaging Certificates of Compliance for assembly configuration requirements (References 7 and 8).

[B] Compliance and Verification

[B.1] Loading of waste, either direct loading or loading with drums, into RH-TRU canisters is performed in accordance with site-specific canister loading procedures.

[B.2] Loading of waste drums, into a 10-160B Cask is performed in accordance with 10-160B loading procedures.

4.7.4 Removable Surface Contamination

[A] Requirements

[A.1] Removable surface contamination on TRU waste payload containers, payload assemblies, and packagings shall not exceed 20 dpm/100 cm² alpha and 200 dpm/100 cm² beta-gamma (Reference 9, Attachment A1, Section A1-1d[2]; References 29 and 30). The fixing of surface contamination to meet these criteria is not allowed by WIPP in accordance
with best management practices for ensuring worker radiation dose is within the as low as reasonably achievable (ALARA) guidelines.

[B] Compliance and Verification

[B.1] Compliance is achieved by measurement using radiological contamination surveys. Specifically, a Host site RCT surveys RH-TRU waste canisters for removable surface contamination prior to loading into the cask. Packaging (i.e., cask) is surveyed for removable surface contamination after completion of cask loading and prior to shipment. Survey results are then compared to removable surface contamination limits to determine compliance per procedure CCP-TP-530. If removable contamination exceeds limits, surfaces may be wiped and cleaned and resurveyed to achieve compliance. Fixing of surface contamination is prohibited.

4.7.5 Identification/Labeling

[A] Requirements

[A.1] Each payload container shall be labeled with a unique payload container identification number permanently applied in a conspicuous location. The unique payload container identification number shall include a site identifier as a prefix.

[A.2] For the RH-TRU waste canisters, payload container labeling shall be as follows:

- Each canister shall be labeled with a unique payload container identification number (ID) that includes a site identifier as a prefix.

- The characters composing the canister ID number shall be approximately 2-inches high and of a color contrasting with their background.

- A minimum of three canister ID numbers shall be placed at approximately equal intervals around the circumference of the canister and within 18-inches of the top of the canister.
[A.3] Exceptions to the labeling/identification requirements may be granted upon request to and approval from the CBFO.

[A.4] The 10-160B 55-gallon payload container identification shall be in medium to low density Code 39 bar code symbology as required by ANSI, standard ANSI/AIM BC1-1995 (Reference 31) in characters at least 1-in. high and alphanumeric characters at least ½-in. high. In the case of 55-gallon drums, the labels must be placed approximately 120 degrees apart so that one label is visible once the containers are assembled into a 5-drum carriage.

[A.5] Payload containers shall be marked "Caution Radioactive Material" using a yellow and magenta label as specified in 10 CFR Part 835 (Reference 30). Those payload containers whose contents are also RCRA regulated (mixed-TRU), shall be additionally marked "Hazardous Waste" as specified in 40 CFR §262.32 (Reference 33). For TRU and TRU-mixed wastes containing PCBs, the payload containers shall be marked in accordance with 40 CFR §761.40 (References 12 and 13). Additionally, DOT Type B packages containing PCBs must be properly marked in accordance with 40 CFR §761.40 (References 12 and 13).

[A.6] If an empty 55-gallon drum is used as dunnage to complete a payload configuration in the 10-160B package, the dunnage container shall be labeled with the following information:

- Unique payload container identification number
- "EMPTY" or "DUNNAGE"

[A.7] If a five-drum carriage of only dunnage 55-gallon drums is used in the 10-160B, the containers shall be labeled only "EMPTY" or "DUNNAGE," and the unique container identification number label is not required for these containers.
Compliance and Verification

[B.1] CCP verifies canisters are labeled in accordance with CCP-TP-507 procedure. This procedure must include instructions to satisfy the following requirements:

- Each canister is labeled with a unique ID that includes a site identifier as a prefix.
- Characters composing the canister ID number on labels are approximately 2-inches high and of a color contrasting with their background.
- A minimum of three canister ID labels are placed on a canister at approximately equal intervals around the circumference of the canister and within 18-inches of the top of the canister.
- Alternate labeling of payload containers may be used only after a request to use an alternate labeling approach is submitted and approved by CBFO on a case-specific basis.

[B.2] CCP verifies payload containers are marked in accordance with CCP-TP-507 procedure. These procedures must contain instructions to ensure the following:

- All RH-TRU and TRU mixed payload containers are marked “Caution Radioactive Material” using a yellow and magenta label.
- All RH-TRU mixed waste payload containers are marked “Hazardous Waste.”
- All RH-TRU DOT Type B packages containing PCBs are marked in accordance with 40 CFR § 761.40.

[B.3] CCP verifies 10-160B 55-gallon payload containers are labeled in accordance with procedure CCP-TP-507.
4.7.6 Dunnage

[A] Requirements

[A.1] See the 10-160B packaging Certificate of Compliance for dunnage requirements (Reference 8).

To maximize the efficiency of operations at the WIPP, CCP will minimize the use of dunnage drums.

[B] Compliance and Verification

[B.1] The use of dunnage is not applicable to the RH-TRU 72-B shipping package. The minimization of the use of dunnage for the 10-160B Cask is through payload configuration. The use of dunnage drums is reviewed and approved concurrently with the review and approval of shipment assemblies by the WWIS/WDS Data Administrator on a case-by-case basis.

[B.2] CCP verifies 10-160B 55-gallon dunnage containers are labeled in accordance with procedure CCP-TP-507.

4.7.7 Filter Vents

[A] Requirements

[A.1] Each payload container and any sealed secondary or internal containers (greater than four liters in size), in the payload container shall meet the filter vent specifications of Reference 4, Section 2.5.2; Reference 7; Reference 8; Reference 9, Attachment A1, Section A1-1b[2]; and Reference 41; Section 2.4.1. These filter vents shall meet the specification of the 10-160B SAR and RH-TRAMPAC (Reference 38; Reference 41, Section 2.4.1).

The model number of each filter vent or combination of filter vents installed on a payload container shall be reported to the WWIS/WDS database (Reference 48).

[B] Compliance and Verification

[B.1] The TCO verifies the presence and model of filter(s) installed on individual payload containers in accordance with CCP-TP-507. CCP verifies any sealed secondary or internal containers (greater than
four liters in size), overpacked in the payload container shall be either vented or filtered to meet the specifications of Reference 7 or Appendix 1.3.5 of Reference 8 by VE using CCP-TP-500, CCP Remote-Handled Waste Visual Examination, or an evaluation of the AK record. CCP procures filters in accordance with CCP-QP-015 to specifications that comply with all applicable requirements for filter vents. Only filters identified on the listing of approved CBFO filter vent models are procured by CCP.

[B.2] The model numbers of each filter vent or combination of filter vents installed on a payload container (and internal containers, as applicable) are reported to the WWIS/WDS in accordance with procedure CCP-TP-530.

4.8 Radiological Properties

With respect to the required radiological properties identified within this Section, they can be divided into two distinct groups.

The first group includes the activities and masses of the ten WIPP-tracked radionuclides (i.e., 241Am, 238Pu, 239Pu, 240Pu, 242Pu, 233U, 234U, 238U, 90Sr, and 137Cs), and the TRU alpha activity concentration (i.e., >100 nCi/g of alpha-emitting TRU isotopes with half lives greater than 20 years), of the waste. Total activity will be quantified and tracked to ensure compliance with the LWA limits for RH-TRU waste including limiting activity to 23 curies per liter (Ci/l) per canister, limiting disposed RH-TRU waste to 5.1 million curies, and limiting surface dose rates of canister to 1000 roentgen equivalent man per hour (rem/hr). No more than 5 percent by volume of the RH-TRU waste received at WIPP may have a surface dose rate in excess of 100 rem/hr. Estimates of their activities and masses shall be derived from a system of controls certified by CBFO that includes AK, computations, measurements, and sampling (Reference 35). CCP RH-TRU Waste Certification Plan for 40 CFR Part 194, Compliance, provides the methods and requirements used to characterize the radiological composition of the RH-TRU waste.

The second group includes the remaining radionuclides contributing to the FGE, the PE-Ci, and the decay heat of the payload container. This set of radiological data is regulated both by the NRC as specified in the RH transportation documentation (References 7 and 8), and the CBFO as required by the WIPP DSA (Reference 4). PE-Ci quantities shall be calculated for each payload container in accordance with Appendix 5. Any method that complies with the Certificate of Compliance may be used to quantify the remaining radiological properties at the discretion of the shipping facility.
However, the resulting data (e.g., AK from Safeguards and Security data), the source and method from which the data was generated, and the basis for the reliability of the data shall be submitted to and approved by CBFO prior to use.

4.8.1 Radionuclide Composition

[A] Requirements

[A.1] RH-TRU waste received at the WIPP shall not exceed 23 curies per liter maximum activity level (averaged over the volume of the canister) (Reference 2, Section 7).

[A.2] Contents of the 10-160B may include fissile material contaminants provided the mass limits of the 10 CFR 71.15 are not exceeded and the plutonium content does not exceed 0.74 tera-bequerel (20 curies) (Reference 8). The quantity of radioactive material must not exceed 3,000 times the Type A quantity (Reference 8).

[A.3] The activities and masses of ^{241}Am, ^{238}Pu, ^{239}Pu, ^{240}Pu, ^{242}Pu, ^{233}U, ^{234}U, ^{238}U, ^{90}Sr, and ^{137}Cs shall be established on a payload container basis for purposes of tracking their contributions to the total WIPP radionuclide inventory (Reference 35). The estimated activities and masses, including their associated TMU expressed in terms of one standard deviation, for these ten radionuclides shall be reported to the WWIS/WDS on a payload container basis. For any of these ten radionuclides whose presence can be substantiated from AK, direct measurement, computations, or a combination thereof, and for which measured data are determined to be below the LLD for that radionuclide, the site shall report the character string “< LLD” to the WWIS/WDS for the activity and mass of that radionuclide; otherwise a value of zero shall be reported (Reference 17, Section 2.4.6).

[A.4] In addition, all radionuclides other than the ten WIPP-tracked radionuclides (i.e., ^{241}Am, ^{238}Pu, ^{239}Pu, ^{240}Pu, ^{242}Pu, ^{233}U, ^{234}U, ^{238}U, ^{90}Sr, and ^{137}Cs), that contribute to 95 percent of the radioactive hazard for the payload container shall be reported on the RH-TRU 72-B or 10-160B bill of lading or manifest. The activities and masses of these other...
radioisotopes shall also be reported to the WWIS/WDS along with their associated TMU, expressed in terms of one standard deviation, for each waste container (Reference 35).

[B] Compliance and Verification

[B.1] CCP determines the radionuclide composition and quantity through a combination of AK and established radionuclide measurement methods (e.g., CCP-TP-504, CCP Dose-to-Curie Survey Procedure for Remote-Handled Transuranic Waste). The radionuclide measurement methods that may be used are described in greater detail in Appendix 11. Radionuclide measurement is either performed directly on the payload container or on all of the smaller waste containers composing the payload container. If radionuclide measurement is not performed directly on the payload container itself, then, the measurement values (and uncertainties) for the payload container are calculated from the associated measurement results for all of the smaller containers composing the payload container.

CCP uses radionuclide measurement results to calculate and quantitate the total activity averaged over the volume of the payload container in the RH-TRU 72-B Cask to determine compliance with the 23 Ci/l limit.

CCP uses radionuclide measurement results to quantitate the activity and masses of the ten WIPP-tracked radionuclides and all other radionuclides that contribute to 95 percent of the radioactive hazard in a payload container. The activities and masses of these radionuclides, including their associated TMU (expressed in terms of one standard deviation), are reported to the WWIS/WDS on a payload container basis per procedure CCP-TP-530 and are reported on the Bill of Lading or UHWM. For any of the ten WIPP-tracked radionuclides that are measured below the LLD and whose presence can be substantiated from AK, direct measurement, computations, or a combination thereof, are reported as "< LLD" for its activity and mass to the WWIS/WDS.
[B.2] The contents of the 10-160B may include fissile material contaminants provided the mass limits of the 10 CFR 71.15 are not exceeded and the plutonium content does not exceed 0.74 tera-bequerel (20 curies) (Reference 8). The quantity of radioactive material must not exceed 3,000 times the Type A quantity (Reference 8). Compliance to these requirements are accomplished and verified through procedures CCP-TP-507 and 10-160B loading procedures.

4.8.2 ^{239}Pu Fissile Gram Equivalent/^{235}U Fissile Equivalent Mass (FEM)

[A] Requirements

[A.1] Each canister must comply with the limits in either Table 4 or Table 6. For a canister, either the sum of the ^{239}Pu FGE plus two times its associated TMU, expressed as one standard deviation, shall comply with the applicable limits in Table 4 or the ^{235}U Fissile Equivalent Mass (FEM) weight percentage plus two times is associated TMU, with TMU expressed in terms of one standard deviation, shall comply with the applicable limit in Table 6 (Reference 7).

[A.2] See the 10-160B packaging Certificates of Compliance for applicable ^{239}Pu FGE requirements (Reference 8 and Table 5 for associated drum requirements).

[A.3] The values calculated for the ^{239}Pu FGE or ^{235}U FEM and their associated TMUs (expressed in terms of one standard deviation) shall be reported to the WWIS/WDS for each payload container.
Table 4. 239Pu FGE Limits for a Canister Shipped in an RH-TRU 72-B Package

<table>
<thead>
<tr>
<th>Payload Contents</th>
<th>239Pu FGE Limit (Removable/Welded Lid Canister)</th>
<th>239Pu FGE Limit (Neutron Shielded Canister)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Machine-Compacted Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be/BeO limited to ≤ 1 percent by weight of the waste</td>
<td>≤ 315</td>
<td>≤ 245</td>
</tr>
<tr>
<td>Be/BeO limited to ≤ 1 percent by weight of the waste including credit taken for ≥ 5g of 240Pu Poisoning1</td>
<td>≤ 325</td>
<td>≤ 245</td>
</tr>
<tr>
<td>Be/BeO limited to ≤ 1 percent by weight of the waste including credit taken for ≥ 15g of 240Pu Poisoning1</td>
<td>≤ 350</td>
<td>≤ 245</td>
</tr>
<tr>
<td>Be/BeO limited to ≤ 1 percent by weight of the waste including credit taken for ≥ 25g of 240Pu Poisoning1</td>
<td>≤ 370</td>
<td>≤ 245</td>
</tr>
<tr>
<td>Be/BeO > 1 percent by weight of the waste and is chemically or mechanically bound</td>
<td>≤ 305</td>
<td>Unauthorized</td>
</tr>
<tr>
<td>Be/BeO > 1 percent by weight of the waste and is not chemically or mechanically bound</td>
<td>≤ 100</td>
<td>Unauthorized</td>
</tr>
<tr>
<td>Machine-Compacted Waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Be/BeO limited to ≤ 1 percent by weight of the waste</td>
<td>≤ 245</td>
<td>≤ 245</td>
</tr>
<tr>
<td>Be/BeO > 1 percent by weight of the waste</td>
<td>Unauthorized</td>
<td>Unauthorized</td>
</tr>
</tbody>
</table>

1The minimum 240Pu content for the RH-TRU waste canister shall be determined after the subtraction of two times the error.
Table 5. 239Pu FGE Limits for Drums Shipped in a 10-160B Package

<table>
<thead>
<tr>
<th>Payload Contents</th>
<th>239Pu FGE Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Machine-Compacted Waste</td>
<td></td>
</tr>
<tr>
<td>55-gallon drum (Be/BeO limited to \leq 1 percent by weight of the waste)</td>
<td>\leq 200 g</td>
</tr>
<tr>
<td>55-gallon drum (Be/BeO >1 percent by weight of the waste)</td>
<td>\leq100 g</td>
</tr>
<tr>
<td>Machine-Compacted Waste</td>
<td></td>
</tr>
<tr>
<td>55-gallon drum (Be/BeO limited to \leq1 percent of the weight of the waste)</td>
<td>\leq 170 g</td>
</tr>
<tr>
<td>55-gallon drum (Be/BeO limited \leq1 percent of the weight of the waste). 1.0-in. design spacing must be maintained between drum content and exterior top and bottom</td>
<td>\leq 200 g</td>
</tr>
</tbody>
</table>

Table 6. 235U FEM Limit for a Canister Shipped in an RH-TRU 72-B Package

<table>
<thead>
<tr>
<th>Payload Contents</th>
<th>Weight % 235U FEM (Removable/Welded Lid Canister)</th>
<th>Weight % 235U FEM (Neutron Shielded Canister)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-machine compacted homogenous solid/sludge with a particle size characteristic dimension of 1 in. or less that is primarily uranium (in terms of heavy metal component) with waste matrix distributed to not exceed enrichment limit (Reference 41).</td>
<td>\leq 0.96</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

[B] Compliance and Verification

[B.1] CCP determines the quantity of fissile material in a payload container using established radionuclide measurement methods performed on the contents of the payload container as described in Appendix 11. Radionuclide measurement results are used to calculate the 239PuFGE and associated uncertainty (expressed as one standard deviation) for a payload container.

[B.2] CCP determines the presence and quantity of beryllium on a waste stream basis by AK and is documented in the associated waste stream AK Summary Report. AK documentation is collected, evaluated and reported in accordance with CCP-TP-005 and is summarized on a waste stream basis in AK Summary Reports.
[B.3] CCP compares the measured/calculated FGE plus two times uncertainty for a payload container and cask to the applicable FGE limits based on beryllium content.

[B.4] CCP reports the values calculated for the FGE and its associated uncertainty for each payload container to the WWIS/WDS as two separate items in accordance with CCP-TP-530.

4.8.3 TRU Alpha Activity Concentration

[A] Requirements

[A.1] TRU waste payload containers shall contain more than 100 nCi/g of alpha-emitting TRU isotopes with half-lives greater than 20 years (Reference 2, Section 2 [18]). Without taking into consideration the TMU, the TRU alpha activity concentration for a payload container is determined by dividing the TRU alpha activity of the waste by the weight of the waste.

The TRU alpha activity concentration shall be reported to the WWIS/WDS (Reference 35, Chapter 4; Reference 17, Section 2.4.5).

[B] Compliance and Verification

[B.1] CCP uses established radionuclide measurement methods (see Appendix 11) to quantitate the amount of alpha-emitting TRU isotopes with half-lives greater than 20 years (i.e., TRU alpha activity) in the waste contents of payload containers. Calibrated scales are used to determine the weight of waste material in payload containers (i.e., determine the net weight). The TRU alpha activity concentration is calculated by dividing the measured TRU alpha activity (without uncertainty) in a payload container by its net weight. Calculations are performed either manually or with the use of validated computational algorithms. If containers (e.g., 55-gallon or 30-gallon drums) are loaded into a canister, the TRU alpha activity concentration for the canister is determined by dividing the summation of the individual TRU alpha activity values of the individual waste containers by the summation of the individual net weights. Methods used to determine the TRU alpha activity...
concentration have a lower limit of detection of 100 nCi/g or less.

The TRU alpha activity concentration for a payload container is reported to the WWIS/WDS in accordance with CCP-TP-530.

4.8.4 \(^{239}\text{Pu}\) Equivalent Activity

[A] Requirements

[A.1] PE-Ci limits are shown in Table 7.

[A.2] PE-Ci quantities shall be calculated for each payload container (see Appendix B), and reported to WIPP using the WWIS/WDS (Reference 4, Section 3.3.2.3.1 and Table 3.3-6). There are no reporting requirements for the associated TMU (Reference 44).

Table 7. PE-Ci Limits

<table>
<thead>
<tr>
<th>Payload Container</th>
<th>Packing Configuration</th>
<th>PE-Ci Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH TRU Waste Canister 55-Gallon Drum (shipped in a 10-160B)</td>
<td>All approved waste forms other than solidified/vitrified waste</td>
<td>(\leq 240)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\leq 80)</td>
</tr>
<tr>
<td>RH TRU Waste Canister 55-Gallon Drum (shipped in a 10-160B)</td>
<td>Solidified/vitrified waste</td>
<td>(\leq 1,800)</td>
</tr>
</tbody>
</table>

[B] Compliance and Verification

[B.1] CCP uses established radionuclide measurement methods (see Appendix 11) to quantitate the amount of radioactive material in payload containers. The measurement results are used to calculate the PE-Ci for each payload container as specified in Appendix 5. CCP compares the calculated PE-Ci (without uncertainty) value to the applicable PE-Ci limits for a payload container, assembly or drum to determine compliance with applicable limits.
CCP reports the calculated PE-Ci quantities for each payload container to WIPP using the WWIS/WDS in accordance with CCP-TP-530.

4.8.5 Radiation Dose Equivalent Rate

[A] Requirements

[A.1] The external surface radiation dose equivalent rate of individual containers must be > 200 mrem/hr and $< 1,000$ rem/hr (Reference 2, Sections 2 and 7).

[A.2] Total dose equivalent rate and the neutron contribution to the total dose equivalent rate shall be reported for each payload container in the WWIS/WDS (Reference 2, Section 16 and Reference 17, Section 2.4.4).

[A.3] See the RH-TRU 72-B and/or 10-160B packaging Certificates of Compliance for applicable radiation dose equivalent rate requirements (References 7 and 8).

[B] Compliance and Verification

[B.1] CCP using Host site personnel or records, measure container dose equivalent rates in accordance with site radiological survey procedures. The measurements are compared to applicable radiation dose equivalent rate limits and restrictions to determine compliance. The total dose equivalent rate and the neutron contribution to the total dose equivalent rate for each payload container are reported to the WWIS/WDS in accordance with CCP-TP-530.

4.8.6 Decay Heat

[A] Requirements

[A.1] See the RH-TRU 72-B and/or 10-160B packaging Certificates of Compliance for applicable decay heat requirements (References 7 and 8).
[B] Compliance and Verification

[B.1] CCP uses established radionuclide measurement methods (see Appendix 11) to quantitate the activity and mass of the radionuclides contained within the payload container. The measurement results are used to calculate the total decay heat (and TMU) for each payload container and payload assembly.

CCP compares the calculated decay heat value plus TMU (expressed in terms of one standard deviation) to the applicable decay heat limit for a payload container and payload assembly, as applicable, to determine compliance.

CCP reports the calculated decay heat values and associated TMU (expressed in terms of one standard deviation) for each payload container to WIPP using the WWIS/WDS in accordance with CCP-TP-530.

4.9 Physical Properties

4.9.1 Observable Liquid

[A] Requirements

[A.1] Liquid waste is not acceptable at the WIPP. Observable liquid containing PCBs is prohibited at the WIPP. Liquid in the quantities delineated below is acceptable.

- Observable liquid shall be less than 1 percent\(^1\) by volume of the outermost container at the time of radiography or visual examination (Reference 9).

- Internal containers with more than 60 ml or 3 percent by volume observable liquid, whichever is greater, are prohibited.

- Containers with Hazardous Waste Number U134 assigned shall have no observable liquid.

\(^{1}\)The limit of “less than 1 percent” is taken from the RH-TRAMPAC and is more restrictive than the limit of “no more than 1 percent” in the HWFP.
• Overpacking the outermost container that was examined during radiography or visual examination or redistributing untreated liquid within the container shall not be used to meet the liquid volume limits.

For sites that use VE, the detection of any liquid in non-transparent internal containers, detected from shaking the internal container, will be handled by assuming that the internal container is filled with liquid and adding this volume to the total liquid in the container being characterized using VE (Reference 9, Part 2, Section 2.3.3.1; Reference 9, Attachment C, Sections C-1c and C-3b; Reference 41, Section 2.5.1; Reference 35; Reference 12, Conditions of Approval, II.A.2).

[B] Compliance and Verification

CCP initially uses AK to determine container contents. AK documentation is collected and compiled in accordance with DOE/WIPP-02-3214 and/or CCP-TP-005. Personnel estimate liquid volume by AK, radiography or VE of the waste. Personnel reject payload containers found to exceed the criteria in 4.9.1[A.1].

4.9.2 Sealed Containers

[A] Requirements

[A.1] Sealed containers that are greater than four liters (nominal), are prohibited except for metal containers packaging solid inorganic waste: this packaging configuration does not generate flammable gas (Reference 41, Section 2.7.1).

[B] Compliance and Verification

[B.1] CCP achieves compliance through AK, radiography or VE of the waste contents of payload containers. VE is performed in accordance with procedure CCP-TP-500 and radiography is performed in accordance with procedure CCP-TP-508, CCP RH Standard Real-Time Radiography Inspection Procedure. Unvented rigid containers greater than four liters in volume are identified and controlled by an
NCR in accordance with CCP-QP-005 and dispositioned appropriately.

4.9.3 Physical Form

[A] Requirements

[A.1] Debris waste (S5000), shall be reported in WWIS/WDS as plastic using the volume of the waste container multiplied by 620 kg/cubic meters (m^3), up to the net weight of the waste. Soils and gravel (S4000) shall be reported to WWIS/WDS as the net weight of the waste with the waste material parameter type of “soil.” Homogeneous solids (S3000) shall be reported to the WWIS/WDS as the net weight of the waste with the waste material parameter type appropriate to the waste. Debris included in containers of S3000 or S4000 waste shall be reported to WWIS/WDS as plastic with an estimated weight. Plastic packaging will also be reported to WWIS/WDS (as packaging), (Reference 17, Section 2.4.3).

[B] Compliance and Verification

[B.1] CCP using CCP-TP-530, reports the data to WWIS/WDS as follows: Debris waste (S5000), as plastic using the volume of the waste container multiplied by 620 kg/m3, up to the net weight of the waste. If the net weight of the waste is greater than the calculated plastic, the excess is assigned to the material parameters by the percentages described in the AK Report. Soils and gravel (S4000), as the net weight of the waste with the waste material parameter type of “soil.” Homogenous solids (S3000), as the net weight of the waste with the waste material parameter type appropriate to the waste. Debris included in containers of S3000 or S4000 waste shall be reported to WWIS/WDS as plastic with an estimated weight. Plastic packaging will also be reported to WWIS/WDS (as packaging).
4.10 Chemical Properties

4.10.1 Pyrophoric Materials

[A] Requirements

[A.1] Radioactive pyrophoric materials shall be limited to residual amounts (<1 percent by weight), in payload containers and shall be generally dispersed in the waste. Radioactive pyrophorics in concentrations ≥1 percent by weight and all nonradioactive pyrophoric materials shall be reacted (or oxidized), and rendered nonreactive prior to placement in the payload container (Reference 41, Section 4.4.1). Nonradionuclide pyrophoric materials are not acceptable at WIPP (Reference 4, Section 11.4.1; Reference 9, Attachment C, Section C-1c; Reference 9, Part 2, Section 2.3.3.2.

[B] Compliance and Verification

[B.1] CCP demonstrates compliance through acceptable knowledge documentation. Radiography and VE will be used, when necessary, to examine a waste container to verify its physical form. Specifically, AK is used to demonstrate that nonradionuclide pyrophoric materials are not present in a waste stream and that pyrophoric radioactive materials are limited to residual amounts. Waste streams for which AK documentation indicates the possible presence of radioactive pyrophorics in concentrations greater than or equal to 1 percent by weight are reacted (or oxidized), and rendered nonreactive. AK documentation is collected and compiled in accordance with DOE/WIPP-02-3214 and CCP-TP-005 and is summarized on a waste stream basis in AK Summary Reports.
4.10.2 Hazardous Waste

[A] Requirements

[A.1] Hazardous wastes not occurring as co-contaminants with TRU wastes (non-mixed hazardous wastes), are not acceptable at WIPP. Each RH-TRU mixed waste container shall be assigned one or more hazardous waste numbers as appropriate. Only EPA hazardous waste numbers listed as allowable in the Hazardous Waste Facility Permit may be managed at WIPP. Some of the waste may also be identified by unique state hazardous waste codes. These wastes are acceptable at WIPP as long as the TSDF waste acceptance criteria are met (Reference 9, Attachment C, Section C-1b; Reference 9, Part 2, Sections 2.3.3.3 and 2.3.4). Wastes exhibiting the characteristic of ignitability, corrosivity, or reactivity (EPA hazardous waste numbers of D001, D002, or D003), are not acceptable at WIPP (Reference 9, Attachment C, Section C-1c; Reference 9, Part 2, Sections 2.3.3.7 and 2.3.4).

[B] Compliance and Verification

[B.1] CCP assigns EPA hazardous waste numbers to waste streams based on AK. AK is the basis for demonstrating compliance that hazardous waste, if present in TRU waste, occurs only as co-contaminants with the TRU waste. A more detailed description of the AK process used to assign EPA hazardous waste numbers to a waste stream is presented in the QAPjP. AK documentation is compiled, evaluated and reported in accordance with DOE/WIPP-02-3214 and CCP-TP-005 and is summarized by waste stream in an AK Summary Report.

4.10.3 Chemical Compatibility

[A] Requirements

[A.1] TRU waste containing incompatible materials or materials incompatible with payload container and packaging materials, shipping container materials, other wastes, repository backfill, or seal and panel closure materials are not acceptable for transport in
the RH-TRU 72-B or 10-160B packages or for disposal at the WIPP. Chemical constituents shall conform to the lists of allowable materials in the RH-TRU 72-B RH-TRAMPAC and Appendix 4.10.2 of the 10-160B SAR (References 41 and 38).

[A.2] The total quantity of the trace chemicals/materials (materials that occur in the waste in quantities less than 1 percent [weight]), not listed in Table 4.3-1, in the payload container is restricted to less than 5 percent weight (Reference 41). Chemical constituents in a payload of a particular waste-specific content code shall conform to the allowable chemical list for that content code. The content code must be reported to the WWIS/WDS for each payload container (References 7 and 8).

[B] Compliance and Verification

[B.1] Personnel ensure compliance with the chemical compatibility requirements based on AK. The WCO confirms compliance with the chemical compatibility criteria in accordance with CCP-TP-530. If necessary, personnel repackage waste containers not meeting the chemical compatibility requirement.

4.10.4 Explosives, Corrosives, and Compressed Gases

[A] Requirements

[A.1] Waste shall contain no explosives, corrosives, or compressed gases (pressurized containers), (Reference 9, Attachment C, Section C-1c; Reference 9, Part 2, Sections 2.3.3.5 and 2.3.3.7; Reference 41, Section 4.2.1).

[B] Compliance and Verification

[B.1] CCP assesses compliance through acceptable knowledge documentation. Specifically, AK is used to determine if explosives, corrosives, and/or compressed gases may be present in a waste stream. Radiography and VE will be used, when necessary, to examine a waste container to verify its physical form. AK documentation is collected and compiled in accordance with procedure CCP-TP-005 and is
summarized on a waste stream basis in AK Summary Reports.

4.10.5 Headspace Gas Concentrations

[A] Requirements

[A.1] The headspace gas of payload containers shall meet the requirements of the TRAMPAC (if shipping in RH-TRU 72-B packaging), or Appendix 4.10.2 (if shipping in the 10-160B packaging) (References 9, 41, and 38 respectively).

[B] Compliance and Verification

[B.1] CCP demonstrates compliance through the following methods:

- AK that demonstrates that the concentration of flammable VOCs in the headspace of waste containers of a waste stream is less than 500 parts per million (ppm).

AK documentation is collected, evaluated and reported in accordance with DOE/WIPP-02-3214 and CCP-TP-005 and is summarized on a waste stream basis in AK Summary Reports. Headspace gas sampling is performed in accordance with approved procedures.

4.10.6 Polychlorinated Biphenyls (PCBs)

[A] Requirements

[A.1] For TRU and TRU-mixed wastes containing PCBs meeting the conditions of approval in Reference 12, the payload container data entered into the WWIS/WDS shall include the earliest date of waste generation (i.e., the date of removal from service for disposal), the date of waste certification for disposal, and the date the waste was sent to the WIPP for disposal (Reference 12, Section III.D.4). Additionally, the estimated weight of the PCBs in kilograms (as recorded on the UHWM) and a description of the type of PCB waste (e.g., PCB remediation waste, PCB bulk product waste, etc.), shall be entered into the WWIS/WDS (Reference 13, §761.207(a)(2) and
§761.180). Hanford, Idaho National Laboratory, Savannah River Site, Oak Ridge Reservation, Knolls Atomic Power Laboratory, and Los Alamos National Laboratory are authorized to ship their TRU and TRU-mixed wastes containing PCBs to WIPP (References 14 and 15).

[B] Compliance and Verification

[B.1] CCP uses AK (which may include results of sampling and analysis) to identify waste streams that may contain PCBs. For waste streams that are identified as PCB contaminated, the AK record also includes a description of the type of PCB waste present (e.g., PCB remediation waste, PCB bulk product waste). AK documentation is collected, evaluated and reported in accordance with DOE/WIPP-02-3214 and CCP-TP-005 and is summarized on a waste stream basis in AK Summary Reports. Special information identified below is entered into the WWIS/WDS for each affected payload container in accordance with procedure CCP-TP-530.

1. Date of removal from service.
2. Date of waste certification for disposal.
3. Date the waste was sent to the WIPP for disposal.
4. The estimated weight of the PCBs in kilograms.
5. Description of the type of PCB waste.

CCP only certifies and ships PCB contaminated TRU waste from sites with an approved EPA PCB waste disposal authorization.

4.11 Data Package Contents

4.11.1 Characterization and Certification Data

[A] Requirements

[A.1] Sites shall prepare a WSPF for each waste stream. Each WSPF shall be approved by the Permittees prior to the first shipment of that waste stream.
Characterization and certification information for each payload container shall be submitted to the WWIS/WDS and approved by the Data Administrator. Any payload container from a waste stream that has not been preceded by an appropriate certified WSPF is not acceptable at WIPP (Reference 9, Part 2, Section 2.3.3.10).

[A.2] See the WCPIP (Reference 17) for additional characterization and certification data requirements.

[B] Compliance and Verification

[B.1] CCP prepares and submits WSPFs to the Permittees for review and approval per the instructions given in procedure CCP-TP-002. Characterization data for each payload container used to prepare the WSPF and the Characterization Reconciliation Report is submitted to the WWIS/WDS in accordance with procedure CCP-TP-530. CPR weights are estimated and input into the WWIS/WDS as described in Section 4.5.

4.11.2 Shipping Data

[A] Requirements

[A.1] Sites shall prepare either a bill of lading or a UHWM for RH TRU waste shipments as required by the transportation requirements. The land disposal restriction notification for RH TRU mixed waste shipments shall state that the waste is not prohibited from land disposal (Reference 9, Attachment C, Section C-5b(2); Reference 41).

[B] Compliance and Verification

[B.1] CCP prepares and completes the UHWM and/or Bill of Lading in accordance with CCP-TP-507. The Land Disposal Restriction Exemption Notification is completed for mixed waste shipments in accordance with procedure CCP-TP-507 and states that the waste is not prohibited from land disposal.
5.0 QUALITY ASSURANCE PLAN

The CBFO QAPD establishes QA program requirements for the programs, projects, and activities sponsored by CBFO. The NWP QAPD describes how NWP applies the QA program requirements of the CBFO QAPD to NWP activities, including CCP. This QA plan describes and implements the NWP QAPD requirements for the CCP. It is based on the NWP QAPD as it applies to the characterization, certification, and transportation of TRU waste as performed by CCP, and therefore incorporates the applicable requirements from the regulatory and commitment QA program source documents identified in the CBFO QAPD. This QA plan also fulfills the requirements for a transportation QA plan as required in 10 CFR Part 71, Subpart H. The scope of the integrated Quality Assurance Program Requirements for Nuclear Facilities (NQA)-1 Program is to ensure that all items and activities that are important to the safe containment of TRU Waste in the WIPP are in compliance with Program objectives. Applicable criteria are also identified in the individual element descriptions contained in this QA Plan.

The QA program is developed and maintained through an ongoing process that selectively applies QA criteria as appropriate to the function or work activity being performed. The organization of this QA Plan is generally based on the CBFO QAPD elements.

The QA program is implemented in accordance with a set of Quality Procedures that are applicable to all CCP activities, independent of the location where these activities are performed. The QA program also includes Technical Procedures and other documentation, some of which are site-specific and some of which are applicable across CCP. Implementing Technical Procedures are listed in the tables in Appendix 4.

QA program document references are included, as applicable, in each of the individual QA element descriptions throughout this QA Plan.

5.1 Organization and Quality Assurance Program

(Applicable Criteria: 10 CFR 830.122 Criterion 1
40 CFR 194.22(a)(2)(i)
ASME NQA-1-1989, Criterion 1
DOE O 414.1 Criterion 1
CBFO QAPD, Section 1.1
NWP QAPD, Section 1.1)

This QA program applies to items and activities affecting waste characterization, certification, and transportation by the CCP. The QA program elements are integrated into CCP items and activities through reviews, assessments, inspections, and approval and control of records and documents. The CCP has identified the Program Manager, the
Certification Program Manager, SPM, Assurance Programs Manager, TCO, and WCO as being responsible for ensuring QA within CCP. The responsibilities of each of these positions, as well as other personnel involved with TRU waste characterization and certification, are summarized in this Plan (Section 2.1).

Figure 1-1 (see Section 1.0) illustrates the hierarchy and interrelationships of QA documents governing the QA program. Quality management documents are audited and/or assessed to ensure they meet CCP requirements.

Personnel plan certification activities and document the planning process. Planning documentation is subject to review by subject matter experts (SMEs). CCP planning documentation consists of this Plan, the WIPP WAP, the WAC, the QAPjP, the CH-TRAMPAC, RH-TRAMPAC, the GGT QAPjP, implementing procedures, QA plans, training plans, and facility and certification process designs.

5.1.1 Organization

(Applicable criteria: 10 CFR Part 830.122 Criterion 1
DOE O 414.1 Criterion 1
ASME NQA-1-1989, Criterion 1
CBFO QAPD Section 1.1.1
NWP QAPD, Section 1.1)

The organization structure, functional responsibilities, levels of authority, and lines of communication for activities affecting quality are documented in this Plan, and CCP implementing procedures. Specific duties and responsibilities assigned to CCP management are summarized in the Plan, Section 2.1.1, and in CCP-PO-001.

The QA organization is responsible for ensuring the implementation of the QA program and verifying that activities affecting quality have been correctly performed. They have sufficient authority, access to work areas, and organizational freedom to identify quality problems; initiate, recommend, or provide solutions to quality problems; verify implementation of solutions; and ensure that further processing, delivery, installation, or use is controlled until proper disposition of nonconformances, deficiencies, or unsatisfactory conditions has occurred. QA personnel have direct access to responsible management at a level where appropriate action can be effected. They report to a management level such that required authority and organizational freedom are provided, including sufficient independence from cost and schedule considerations. Specific duties and responsibilities assigned to QA are summarized in the Plan, Section 2.1.4, and in CCP-PO-001.
The organizational structure of CCP, and the assignment of responsibilities, is based on the following QA principles, such that:

- Quality is achieved and maintained by those who have been assigned responsibility for performing work.
- Quality achievement is verified by personnel or organizations that are not directly responsible for performing the work.
- The individuals or organizations responsible for establishing and executing the QA program may delegate any or all of the work, but shall retain responsibility therefore.
- Responsibility for the control of further processing, delivery, installation, or operation of nonconforming items shall be designated in writing.
- When more than one organization is involved in the execution of activities covered by this document, the responsibility and authority of each organization shall be clearly established and documented.
- The external interfaces between organizations and the internal interfaces between organizational units, and changes thereto, shall be documented.
- Interface responsibilities shall be defined and documented.

All personnel involved with TRU waste certification and packaging are responsible for achieving and maintaining the quality of their activities and products. All personnel are responsible for promptly reporting existing, developing, or potential conditions adverse to quality to responsible management for evaluation and action. Management personnel are responsible for achieving and maintaining quality in the work activities under their control.

[A] Communication and Interface Responsibilities

(Applicable Criteria: CBFO QAPD Section 1.1.1.4
NWP QAPD, Section 1.1.10 and 1.1.11)

CCP management communicates to all levels of the organization timely information pertinent to quality performance, including status of the quality program, status and resolution of significant quality problems, lessons learned, quality management practices and improvements, and trend analysis results.
The responsibility and authority of the CCP and each participating organization are clearly established and documented in an interface document for each site. The external interfaces between CCP participant organizations, the internal interfaces between organizational units, and interface changes are documented. Interface responsibilities are defined and documented and include the requirements for management, performance, and assessment. Interfaces between CCP and the waste generating sites are detailed in project-level Interface Agreement documents specifically written for each site. Interfaces between CCP and NWP support organizations are defined in CCP implementing procedures.

[B] Reports to Management

(Applicable Criteria: CBFO QAPD Appendix E, Section 8 NWP QAPD, Section 1.1.8)

QA provides the QA interface between facilities and the CCP Certification Manager and SPM. QA oversees the NCR/CAR process for CCP related deficiencies and coordinates with the CCP Certification Manager and SPM to track and notify the appropriate personnel of nonconformances, and verify corrective action completion in accordance with CCP-QP-005. QA at project sites report the results of their surveillance assessments to the Assurance Programs Manager, and together they track assessment results and corrective actions. QA prepares and transmits a semi-annual QA report to the CCP Certification Manager and the DOE.

[C] Delegation of Work

(Applicable Criteria: CBFO QAPD Section 1.1.1.5 NWP QAPD, Section 1.1.6)

Management empowers employees by delegating authority and decision making to the lowest appropriate level in the organization. If work is delegated, the individual making the delegation retains responsibility for the delegated work. QA is responsible for determining the effectiveness of the QA program, which is accomplished through internal reporting procedures, audits, and assessments.
[D] Resolution of Disputes

(Applicable Criteria: CBFO QAPD Section 1.1.1.6
NWP QAPD, Section 1.1.7)

Disputes related to QA program requirements will be resolved by QA and cognizant personnel. If not resolved, the issues will be elevated progressively to successively higher levels of management as necessary.

[E] QA Management

(Applicable Criteria: CBFO QAPD, Section 1.1.3.A
NWP QAPD, Section 1.1.5)

QA Management shall:

[E.1] Schedule and conduct QA assessments.

[E.2] Maintain liaison with participant QA organizations and other affected organizations.

[E.3] Ensure preparation, review, and issuance of QA plans and procedures that implement the provisions of the NWP QAPD.

[E.4] Review and approve supplier and subcontractor QA plans.

[E.5] Track or perform trend analysis of quality problems, and report quality problem areas.

[E.6] Provide for the administrative processing of documentation of concerning conditions adverse to quality.

[E.7] Have direct access to responsible management at a level where appropriate action can be effected.

[E.8] Be sufficiently independent from cost and schedule considerations.

[E.9] Have the organizational freedom to communicate with management.

[E.10] Have no assigned responsibilities unrelated to the QA program that would prevent appropriate attention to QA matters.

[E.12] Interface, as appropriate, with the CBFO staff, participants, and other stakeholders on QA matters.

[E.13] Assist subordinate organizations with quality planning, documentation, quality measurement, and problem identification and resolution.

[E.14] Provide guidance to all applicable subordinate organizations concerning identification, control, and protection of QA records.

[F] The QA organization shall have sufficient authority, access to work areas, and organizational freedom to:

(Applicable Criteria: CBFO QAPD, Section 1.1.1.3.B
NWP QAPD, Section 1.1.5)

[F.1] Identify quality problems.

[F.2] Recommend solutions.

[F.3] Verify implementation of solutions.

[F.4] Ensure that unsatisfactory conditions are controlled until proper disposition has occurred.

5.1.2 Implementation of the QA Program

(Applicable criteria: 40 CFR 194.22(a)(1)
ASME NQA-1-1989, Criterion 2
CBFO QAPD Section 1.1.2
NWP QAPD, Section 1.1.8)

The QA program is planned, implemented, and maintained in accordance with the requirements found in the CBFO QAPD, NWP QAPD, American Society of Mechanical Engineers (ASME) NQA-1-1989, 40 CFR § 194.22, and 10 CFR § 830.122. The QA program identifies the activities and items to which it applies, and provides control over activities affecting quality to an extent consistent with their importance. The QA program has been implemented during the process of program development, start-up, and operation.

The QA program provides for the planning and accomplishment of activities affecting quality under suitable controlled conditions.
Controlled conditions include the use of appropriate equipment, suitable environmental conditions for performing waste characterization and transportation activities, and assurance that prerequisites have been satisfied. This program also provides for special controls, processes, test equipment, tools, and skills to attain the required quality and for verification of quality.

[A] Grading Items and Activities and Applying Management Controls

(Applicable Criteria: CBFO QAPD Section 1.1.2.3
NWP QAPD, Section 1.1.8.2)

The graded approach to application of QA controls is used by the CCP to determine the importance of the item or activity with respect to the CCP mission, regulatory requirements, hazards, and life-cycle of the item or activity. Management controls are applied commensurate with the determined importance of the item or activity. The CCP uses the graded approach in accordance with CCP-QP-001, CCP Graded Approach, to comply with CBFO QAPD and NWP QAPD requirements for grading items and activities and applying management controls. Revisions to CCP-QP-001 are submitted to CBFO for approval prior to implementation.

[B] Work Planning

(Applicable Criteria: CBFO QAPD Section 1.1.2.4
NWP QAPD, Section 1.1.12)

CCP performs and documents planning to ensure that work is accomplished under suitably controlled conditions. CCP implements planning in accordance with CCP-QP-010, CCP Document Preparation, Approval and Control, and CCP-QP-026, CCP Inspection Control. As appropriate, planning elements include:

[B.1] Definition of work scope, objectives, and a listing of the primary tasks involved.

[B.2] Identification of scientific approaches or technical methods used to collect, analyze or study results of applicable work.

[B.3] Identification of field and testing standards and quality criteria.
[B.4] Identification of applicable implementation documents; appropriate nationally recognized standards will be used whenever possible.

[B.5] Identification of field and testing equipment or other equipment.

[B.6] Identification of, or provisions for the identification of, required records and the recording of objective evidence of the results of the work performed.

[B.7] Identification of prerequisites, special controls, specific environmental conditions, processes, or skills.

[B.8] Identification of computer software.

[C] Peer Review

(Applicable criteria: CBFO QAPD Section 1.1.2.5
NWP QAPD, Section 1.1.12)

When peer reviews are required, they are accomplished in accordance with CCP-TP-511, CCP Peer Review.

5.2 Personnel Qualification and Training

(Applicable criteria: 10 CFR 830.122 Criterion 2
ASME NQA-1-1989, Criterion 2
DOE O 414.1 Criterion 2
CBFO QAPD Section 1.2
NWP QAPD, Section 1.2)

The QA program provides for training and qualification, as necessary, of personnel performing activities affecting quality to ensure that suitable proficiency is achieved and maintained. Personnel performing work in support of CCP receive QA training and are qualified to ensure that proficiency is achieved and maintained in the performance of their assigned tasks. Records documenting qualifications and completed training programs are maintained and controlled. Training and qualification are performed in accordance with CCP-QP-002, CCP Training and Qualification Plan and CCP-QP-040, Support Training.
5.2.1 Qualification Requirements

(Applicable criteria: CBFO QAPD Section 1.2.1
NWP QAPD, Section 1.2.1)

The CCP Certification Manager and Training determine qualification standards for each job category relevant to the CCP and ensure that qualifications of personnel, including minimum education and experience, have been verified. Personnel maintain minimum qualifications in accordance with CCP-QP-002. The CCP Certification Manager determines which positions relevant to the CCP require minimum qualifications. The period of effectiveness for qualification associated with special processes and operations that require special skills and the requalification criteria are specified or referenced in CCP-QP-002. The CCP Certification Manager ensures that auditable records documenting personnel qualifications are maintained as described in CCP-QP-008, CCP Records Management. Records of qualified personnel, their areas of qualification, and qualification periods (as appropriate) are retained in the records files.

5.2.2 Training Requirements

(Applicable criteria: CBFO QAPD Section 1.2.2
NWP QAPD, Section 1.2.2)

The CCP Certification Manager and Training ensure that personnel receive indoctrination and training on the scope, purpose, and objectives and the specific QAOs of the tasks being performed. Personnel performing activities affecting quality are trained according to the training plan to ensure they achieve and maintain proficiency. Personnel receive initial and continuing training requisite with their activities and level of responsibility, as described in CCP-QP-002.

Training is designed, developed, conducted, and evaluated in accordance with requirements described in CCP-QP-002. Training programs may include classroom instruction; practical hands-on experience; supervised on-the-job training (OJT); self-paced individual study; and written, oral, or practical demonstration of worker competence. The CCP Certification Manager analyzes job positions and determines task responsibilities for personnel to ensure education, experience, and training is commensurate with minimum requirements specified. The CCP Certification Manager is responsible for ensuring that auditable records documenting the required training and qualifications are maintained in accordance with CCP-QP-002.
5.3 Quality Improvement

(Applicable Criteria: 10 CFR 830.122 Criterion 3
ASME NQA-1-1989, Criteria 15 & 16
DOE O 414.1 Criterion 3
CBFO QAPD Section 1.3
NWP QAPD, Section 1.3)

Quality improvement is a management process, carried out to improve items, services, products, or processes. All aspects of quality work activities and the management system are subject to continuous improvement through the assessment and feedback processes.

Conditions adverse to quality are identified promptly and corrected as soon as practical. In the case of a significant condition adverse to quality, the cause of the condition is determined and corrective action taken to preclude recurrence. The identification, cause, and corrective action for significant conditions adverse to quality are documented and reported to appropriate levels of management. Follow-up action is taken to verify implementation of corrective actions.

Items that do not conform to specified requirements are controlled to prevent inadvertent installation or use. Controls are provided for identification, documentation, evaluation, segregation when practical, and disposition of nonconforming items, and for notification to affected organizations.

Personnel continually evaluate and improve project activities. QA ensures that quality improvement is achieved by identifying and controlling conditions adverse to quality, analyzing trends, reporting and tracking nonconformances, and implementing corrective actions. These quality improvement activities detect and prevent unacceptable quality problems and thereby increase accuracy and reliability, and reduce variability. Data analysis and trending are performed in accordance with CCP-QP-014, CCP Quality Assurance Trend Analysis and Reporting.

A condition adverse to quality is an all-inclusive term used in reference to failures; malfunctions; deficiencies; and nonconforming items, materials, parts, or components, and processes. Personnel ensure that nonconforming items, materials, parts, or components are adequately identified and segregated from acceptable items and materials to preclude their inadvertent use. CCP and Host site personnel have the authority to stop certification, packaging, and transportation activities and/or refuse to accept work products or services (e.g., procured items, documentation, packaging, and waste shipments) that do not conform to requirements. Personnel report conditions adverse to quality to QA personnel, who ensure that the condition adverse to quality is investigated and that corrective action is taken as described in this section. Employees have
the responsibility to stop work that poses a clear and imminent danger to the safety and health of employees, subcontractors, visitors, or the environment.

Personnel notify QA of conditions adverse to quality affecting waste to be shipped to WIPP and forward CARs related to violations of the WIPP Hazardous Waste Facility Permit to QA for tracking. Conditions adverse to quality are documented, evaluated for significance, corrected, tracked, and reported in accordance with CCP-QP-029 and CCP-QP-005. All violations of the WIPP Hazardous Waste Facility Permit will be managed as significant conditions adverse to quality.

Deficiencies are uncontrolled and unapproved deviations from an approved plan, procedure, or expected result. Deficiencies specific to the CCP also include documentation or management practices that do not meet the requirements related to waste certification or payload container preparation, which are identified in the WIPP WAP, RH-TRAMPAC, CH-TRAMPAC, WAC, QAPD, and applicable federal and state regulations. Personnel are responsible for identifying any condition that affects compliance with these requirements. Assessments may often identify systems, processes, products, or services that do not meet performance criteria established in planning documents. When deficiencies are found, personnel take prompt action to rectify the situation.

Any individual who identifies a condition adverse to quality initiates an NCR or CAR in accordance with CCP-QP-005 or CCP-QP-029. If the safety or quality of the certification process could be compromised by continued use of a nonconforming item, the item is taken out of service and tagged or otherwise identified to prevent reuse or acceptance until the nonconformance is corrected. QA or the QA personnel at the facility where the nonconformance is identified ensures that an NCR is initiated and that corrective action is taken to resolve the nonconformance.

NCRs and CARs are forwarded to the CCP Project Office QA personnel. QA is responsible for validating and tracking CCP-related deficiencies to ensure that corrective action is implemented and that the corrective action resolves the nonconformance. Significant conditions adverse to quality are evaluated by QA and other affected organizations to determine if a work suspension is necessary. If necessary, work will be suspended until the condition is corrected and verified by QA. Personnel notify DOE-CBFO within seven calendar days of identification of any non-administrative nonconformance related to applicable requirements specified in the WIPP WAP, which are first identified at the SPM’s signature release level. Personnel submit the NCR to DOE-CBFO within 30 calendar days of identification of the deficiency. QA ensures dissemination of information that may prevent problems or help improve
parallel processes in other waste generator or activities and re-evaluates system performance after corrective actions have been implemented. The CCP Certification Manager provides the resources necessary to accomplish corrective actions. Any containers with unresolved discrepancies associated with waste characterization cannot be certified for disposal; this includes containers affected by CAR’s applicable to WIPP WAP and WAC requirements.

QA and the CCP Certification Manager are jointly responsible for identifying the following:

- Trends in nonconformances
- Root causes of nonconformances
- Specific, measurable corrective actions to resolve current problems and prevent recurrence
- Personnel responsible for implementing corrective actions
- Schedules for completing corrective actions

5.4 Documents

(Applicable Criteria: 10 CFR 830.122 Criterion 4
ASME NQA-1-1989, Criteria 6
DOE O 414.1 Criterion 4
CBFO QAPD Section 1.4
NWP QAPD, Section 1.4)

The preparation, issue, and change of documents that specify quality requirements or prescribe activities affecting quality are controlled to assure that correct documents are being employed. These documents, including changes, are reviewed for adequacy and approved for release by authorized personnel.

Personnel prepare and control documents supporting the quality of the CCP in accordance with CCP-QP-010. Document control coordinators will ensure that:

- Documents are controlled during the review and approval process.
- Applicable criteria for the review are identified. Criteria will consider technical adequacy, accuracy, completeness and compliance with requirements.
- Pertinent background information or data is made available to the reviewer.
• Reviews are performed by individuals other than the originator, who are also technically competent in the subject area.

• Organizations or technical disciplines affected by the document review the document.

• QA reviews documents that translate CBFO QAPD, WAC, WIPP WAP, CH-TRAMPAC, RH-TRAMPAC and WCPIP requirements.

• Review comments are resolved and evidence of review comment resolution is maintained.

• Documents are approved for release and distributed in accordance with CCP-QP-010. These documents include:
 - Program planning documents such as this Plan, the QAPjP, the TRAMPAC
 - Plans and procedures implementing TRU waste characterization, certification and packaging
 - Procedures implementing QA requirements

• Changes to documents, other than those designated as editorial changes, are reviewed by the same organizations that performed the original review and approval.

NWP controlled procedures are used for functions that NWP performs in support of CCP. These functions include procurement support, source inspection support, independent assessments, vendor audits, and QSL maintenance.
5.5 Records

(Applicable Criteria: 10 CFR Part 21
10 CFR Part 71
10 CFR 830.122 Criterion 4
ASME NQA-1-1989, Criterion 17
ASME NQA-2a-1990, Addenda, Part 2.7
ASME NQA-3 1989
Waste Isolation Pilot Plant Hazardous Waste Facility Permit
DOE O 414.1 Criterion 4
CBFO QAPD Section 1.5
NWP QAPD, Section 1.5
DOE O 414.1
DOE O 266.1
DOE G-414.1-2A
SNT-TC-1A-1980
NRC Certificate Number 9212
NRC Certificate Number 9218
NRC Certificate Number 9279
NRC Certificate Number 9204
NUREG-1297 (1988)
NUREG/BR-0167 (1993)
40 CFR Part 191
40 CFR Part 194)

Records that furnish documentary evidence of quality are specified, prepared, and maintained. Records are legible, identifiable, and retrievable. Records are protected against damage, deterioration, or loss. Requirements and responsibilities for record transmittal, distribution, retention, maintenance, and disposition are established and documented.

A QA record is an authenticated record that provides objective evidence of the quality of items and/or activities. The minimum lifetime and nonpermanent QA records are identified in the QAPjP. QA records are controlled and maintained to certify compliance with requirements and to reflect completed work. QA records are indexed, classified, controlled, and maintained by records management personnel as described in CCP-QP-008. The Records Inventory and Disposition Schedule (RIDS) is also defined in CCP-QP-028, CCP Records Filing, Inventorying, Scheduling, and Dispositioning.

Waste characterization data and QA/QC records related to TRU waste to be shipped to WIPP are designated as either Lifetime Records, or Non-Permanent Records. Records that are designated as Lifetime Records are maintained for the life of the waste characterization program.
plus six years; OR transferred for permanent archival storage to the WIPP Records Archive. Waste characterization records designated as Non-Permanent Records will be maintained for ten years from the date of record generation and then dispositioned according to their approved RIDS.

5.6 Work Process

(Applicable Criteria: 10 CFR 830.122 Criterion 5
DOE O 414.1 Criterion 5
CBFO QAPD Section 2.1
NWP QAPD, Section 2.1)

The work processes and items supporting and affecting quality are controlled through plans and procedures identified in this Plan, the QAPjP, and the TRAMPAC.

Characterization, fabrication, installation, and inspection processes affecting the quality of items or services are controlled by procedures. Special processes that control or verify quality, such as those used in welding, heat treating, and nondestructive examination, are performed by qualified personnel using qualified procedures in accordance with specified requirements.

5.6.1 Work

(Applicable Criteria: CBFO QAPD Section 2.1.1
ASME NQA-1-1989, Criterion 1
NWP QAPD, Section 2.1.1)

The CCP Certification Manager ensures that activities are controlled and conducted in accordance with facility-specific procedures that describe and control work processes applicable to TRU waste characterization or certification.

Individual operating procedures provide controls for performance of special processes. Special process training and qualification requirements are described in CCP-QP-002.

Each individual performing work is responsible for ensuring that work processes are controlled and comply with established criteria.

The CCP Certification Manager is responsible for ensuring that workers have the correct procedures, materials, and training to perform the required work. Instructions and procedures are maintained current with a documented and controlled method of revision. Instructions, procedures, and drawings are readily
available to personnel at locations requiring their use through either hard copy or electronic media.

5.6.2 Implementing Procedures

(Applicable criteria: ASME NQA-1-1989, Criterion 5
CBFO QAPD Section 2.1.2
NWP QAPD, Section 2.1.2)

Activities affecting quality are prescribed by and performed in accordance with documented instructions, procedures, or drawings of a type appropriate to the circumstances. These documents include or reference appropriate quantitative or qualitative acceptance criteria for determining that the prescribed activities have been satisfactorily accomplished.

Procedures and plans are developed, reviewed, approved, revised, and distributed in accordance with CCP-QP-010. CCP technical and QA personnel comply with the applicable technical standards and administrative controls described in procedures, which are reviewed and approved by the CCP Certification Manager and QA in accordance with CCP-QP-010. The CCP Certification Manager ensures personnel perform work following established procedures. For work processes such as procurement, source inspection, and independent assessments, applicable NWP non-CCP specific procedures are also used. CCP specific implementing procedures describe the required interfaces with applicable NWP general use procedures.

The procedures identified in this Plan, the QAPjP, and the TRAMPAC provide the following information:

- organizational and individual responsibilities
- training and qualification requirements
- technical, regulatory, and QA requirements
- step-by-step instructions for the process
- equipment specifications
- identification and control of items used or installed
- prevention of damage or loss and minimization of deterioration of items and materials during handling, storage, and shipment of items
• methods and criteria for ensuring and verifying the acceptability of equipment and materials used in the process (e.g., calibration)

• prerequisites, precautions, process parameters, and other limiting conditions

• products of the process

• quantitative and/or qualitative criteria for determining that prescribed process activities have been performed satisfactorily

• records generated by the process

• package and design control of equipment and materials

5.6.3 Item Identification and Control

(Applicable Criteria: ASME NQA-1-1989, Criterion 8
CBFO QAPD Section 2.1.3
NWP QAPD, Section 2.1.3)

Controls have been established to assure that only correct and accepted items are used or installed. Identification is maintained on items or in documents traceable to the items, or in a manner which assures that identification is established and maintained.

Items are identified and traced from time of receipt through end use. Physical markings, labels, tags or segregation are used to provide item identification and status. Specific details are provided in CCP-QP-017, CCP Identification and Control of Items.

5.6.4 Special Processes

(Applicable Criteria: ASME NQA-1-1989, Criterion 9
CBFO QAPD Section 2.1.4
NWP QAPD, Section 2.1.5)

Special processes that control or verify quality, such as those used in nondestructive examination, are performed by qualified personnel using qualified procedures in accordance with specified requirements.

Processes are considered to be special processes if:

• results are highly dependent on the control of the process

• results are highly dependent on the skill of the operator, or
• quality of the results cannot be readily determined by inspection or test of the product.

Implementing procedures have been developed to control special processes: NDE, NDA, DTC, Flammable Gas Analysis, GGT, and Helium Leak Detection. Training and qualification requirements for operators are identified in CCP-QP-002.

5.6.5 Handling, Storage, and Shipping

(Applicable Criteria: ASME NQA-1-1989, Criterion 13
CBFO QAPD Section 2.1.5
NWP QAPD, Section 2.1.6)

Handling, storage, cleaning, packaging, shipping, and preservation of items are controlled to prevent damage or loss and to minimize deterioration. Controls are provided through work and inspection procedures, shipping instructions, or other appropriate documents.

Measures are established in CCP-QP-015 and CCP-QP-023, CCP Handling, Storage and Shipping, to ensure that systems, components and items used for repair work for maintenance purposes or packaging purposes are adequately identified to preclude the use of incorrect or defective items. Also, where replacement of limited shelf life items is specified, measures are established to preclude use of items whose shelf life or time in operation has expired. Handling, storage, cleaning, shipping, and other means of preserving, transporting, and packaging of items are controlled in accordance with CCP-QP-023.

5.7 Configuration Management

(Applicable Criteria: CBFO QAPD Section 2.2
NWP QAPD, Section 2.2)

5.7.1 Equipment Configuration

CCP applies configuration management controls to characterization equipment, including vendor owned equipment, operated by CCP and its subcontractors on behalf of CBFO. In accordance with CCP-CM-001, CCP Equipment Change Authorization and Documentation, personnel:

• Coordinate the reviews of new equipment and changes/modifications/repairs to existing equipment.

• Establish and apply unique equipment numbering.
- Develop all required equipment change/modification/repair requests.

- Determine training needs due to equipment changes/modifications/repairs.

- Obtain appropriate approvals for equipment modifications, changes, repairs, and process drawing and document changes when required.

- Coordinate with host facility representatives in their reviews to ensure that proposed modifications comply with host facility Authorization Basis requirements.

- Oversee the implementation of approved changes.

- Ensure appropriate technical documentation is maintained on equipment changes/modifications/repairs.

5.7.2 Software Configuration

CCP applies configuration management controls to computer software and hardware/software configurations in accordance with the requirements of CCP-QP-022, as described in Section 5.14 of the Plan.

5.8 Procurement

(Applicable Criteria: 10 CFR 830.122 Criterion 7
ASME NQA-1-1989 Criteria 4 & 7
DOE O 414.1 Criterion 7
CBFO QAPD Section 2.3
NWP QAPD, Section 2.3)

Applicable design bases and other requirements necessary to ensure adequate quality are included or referenced in documents for procurement of items and services. Procurement documents require suppliers to have a QA program consistent with the graded application of quality requirements. Procurements are controlled to ensure conformance with specified requirements. Procurement controls provide for source evaluation and selection, evaluation of objective evidence of quality furnished by the supplier, source inspection, audit, and examination of items or services upon delivery or completion.

CCP implements procedures to ensure that procurement of items and services important to safety and quality meet requirements and perform as intended. Procurement controls are applicable to equipment and services,
including commercial grade items that directly affect testing, and data quality. Other NWP organizations provide support to the CCP for procurement process elements such as procurement planning, supplier selection and evaluation, bid evaluation, supplier performance evaluation, requisition review and processing, and procurement records. Personnel adhere to procurement and record keeping practices established in written procedures. The procurement criteria are implemented according to CCP-QP-015, NWP procedure WP 15-PC3609, *Preparation of Purchase Requisitions and Purchase Requisition Change Notices*, and the procedures specified in the following subsections.

When deemed appropriate, CCP may permit some or all supplier work to be performed under the NWP QA program, provided that the requirements are adequately implemented. In these cases, procurement documents shall specify the NWP QA implementing procedures, including CCP specific procedures that are applicable to the supplier and that CCP will provide these applicable documents to the supplier.

5.8.1 Procurement Document Review and Approval

(Applicable Criteria: CBFO QAPD Section 2.3.5, NWP QAPD, Section 2.3.2)

The CCP Certification Manager ensures that personnel control procurement documents in accordance with CCP-QP-015. Procurements are planned and controlled to ensure that suppliers have QA programs consistent with the intended use of the item being procured. Procurement activities shall be planned as early as possible. At a minimum, the activities shall be planned no later than the start of those procurement activities that are required to be controlled. Procurement documents supporting waste management and packaging and transportation activities must include required specifications and acceptance criteria. Procurement documents are reviewed by appropriate organizations and engineering disciplines to ensure that they contain adequate scope of work, technical requirements, supplier QA program requirements, and provisions for acceptance. Qualified personnel verify suppliers’ conformance to procurement document requirements.

5.8.2 Acceptance of Items or Services

(Applicable Criteria: CBFO QAPD Section 2.3.7, NWP QAPD, Section 2.3.4)

The SPM ensures that personnel control items and services purchased (including supplier evaluations and inspections) in accordance with CCP-QP-015, NWP Procedure
Methods shall be established for the acceptance of an item or service being furnished by a supplier. Prior to offering an item or service for acceptance, the supplier shall verify that the item or service complies with the procurement requirements. Documentary evidence of conformance to the procurement specifications is provided before installation or use of systems, components, items, and services, and is retained in accordance with CCP-QP-015. Acceptance of quality related systems, components, items and services will be through source verification, receipt inspection, post-installation testing, or supplier certificate of conformance as appropriate to the quality level. Supplier nonconformances will be documented, tracked, and dispositioned in accordance with CCP-QP-015. An example of conditions requiring a report of nonconformance include: The item does not conform to the original requirement even though the item can be restored to a condition such that its capability to function is unimpaired (i.e., a waiver is requested).

5.8.3 Control of Supplier Nonconformances

(Applicable Criteria: CBFO QAPD Section 2.3.8
NWP QAPD, Section 2.3.5)

Subcontractors perform work that directly affects the quality of characterization and certification data. CCP-QP-015, describes how personnel control subcontractor services. Subcontractors may support activities under a “staff augmentation” role or for procurement of products and services. Staff augmentation subcontractors operate under the umbrella of the QA program and are subject to applicable requirements for functions that they perform. Subcontractors who support the CCP will be informed of the need to perform operations in compliance with requirements.

If subcontractors are authorized to perform procurements of quality-affecting items and services, they are required to establish procurement controls and a QA program to ensure that purchased materials, equipment, and services conform to the procurement and QA program documents. NWP adds and maintains such subcontractors on the NWP QSL, to support the scope of work and ensure that the appropriate subcontractor QA controls are applied. The controls must include provisions, as appropriate, for source evaluation and selection, objective evidence of quality furnished by the contractor or subcontractor, inspection at the contractor or subcontractor source, and examination of products on delivery. Subcontractors are subject to periodic assessments and audits at intervals consistent with the importance, complexity, and quantity of the product or services provided to ensure compliance with
procurement requirements. Subcontractors shall submit copies of CCP-related, quality affecting documents to the CCP Certification Manager.

Items and services procured are subject to control of nonconformances. Quality Levels are determined for items and services procured for use, and quality-affecting items are evaluated for adequacy prior to use through receipt inspection, source inspection, functional testing, or other appropriate means. Items that are found deficient are documented, controlled to prevent use, evaluated, and corrective actions performed.

A combination of CCP specific and NWP general use procedures are used to exercise controls over supplier nonconformances. They include:

- CCP-QP-015, CCP Procurement
- CCP-QP-029, CCP Corrective Action Management
- CCP-QP-005, CCP TRU Nonconforming Item Reporting and Control
- WP 15-PC3609, Preparation of Purchase Requisitions and Purchase Requisition Change Notices

5.8.4 Commercial Grade Items

(Applicable Criteria: CBFO QAPD Section 2.3.9 NWP QAPD, Section 2.3.6 and 2.3.7)

Commercial grade items may be used when specified by design. Commercial grade items are identified in procurement documents using manufacturer or distributor catalog numbers or descriptions. Data collection and test instruments procured as commercial grade items that are intended for use in quality related applications are calibrated by qualified suppliers of calibration services prior to use. Commercial grade items are procured in accordance with CCP-QP-015, CCP-QP-026, WP 13-QA1003, Quality Assurance Receipt/Source Inspections, WP 15-PC3609, WP 13-QA3012, Supplier Evaluation and Qualification, and NWP Procurement Services Commercial Instruction C1015 Supplier Selection.
5.9 Inspection and Testing

(Applicable Criteria: 10 CFR 830.122 Criterion 8
ASME NQA-1-1989, Criteria 10 & 14
DOE O 414.1 Criterion 8
CBFO QAPD Section 2.4
NWP QAPD, Section 2.4)

Inspections required to verify conformance of an item or activity to specified requirements are planned and executed. Characteristics to be inspected and inspection methods to be employed are specified. Inspection results are documented. Inspection for acceptance is performed by persons other than those who performed or directly supervised the work being inspected.

The status of inspection and test activities is identified either on the items or in documents traceable to the items where it is necessary to assure that required inspections and tests are performed and to assure that items which have not passed the required inspections and tests are not inadvertently installed, used, or operated. Status is maintained through indicators appropriate to the activity or item, such as physical location and tags, markings, travelers, stamps, inspection records, or other suitable means. The authority for application and removal of tags, markings, labels, and stamps is specified.

Equipment is tested, inspected, and maintained in accordance CCP-QP-016, CCP Control of Measuring, Testing, and Data Collection Equipment; CCP-QP-026, and CCP-QP-027, CCP Test Control. CCP personnel identify and control items (e.g., items with limited shelf or operating lives, materials, equipment, and samples) and ensure that only correct and accepted items are used according to CCP-QP-026. These procedures and documents address planning, parameters for evaluation, techniques to be used qualifications of inspection and test personnel, hold points, documentation, acceptance criteria, and organizational responsibilities.

Personnel routinely test and inspect items and processes and control, calibrate, and maintain equipment to ensure proper operation and data quality. Procedures identified above implement an inspection program that establishes criteria for inspection of activities affecting quality by, or for, the organization performing the activity, and to verify conformance with the requirements for accomplishing the activity. The verification is performed in accordance with written procedures, instructions, or drawings. Personnel performing the inspections are independent from the individuals performing the activity being inspected. Equipment modifications, repairs, and replacement are inspected in accordance with the original design and inspection requirements unless an approved
alternative exists. The inspection program also provides for identification and documentation of deficiencies discovered during the inspection. Measures are established to indicate, by the use of markings, tags, stamps, labels, routing cards, or other suitable means, the status of inspections and tests performed. These measures provide for the identification of items that have satisfactorily passed required inspections and tests, where necessary, to preclude inadvertent bypassing of the inspections and tests.

Quality related procured items are inspected by qualified personnel at receipt or at the source prior to shipment. These inspections may include dimensional verification, functional testing, verification of documentation or other appropriate methods.

5.9.1 Qualification of Inspection and Test Personnel

*(Applicable Criteria: CBFO QAPD Section 2.4.1
NWP QAPD, Section 2.4.1)*

Inspection and test personnel are trained and qualified in accordance with CCP-QP-002, CCP-QP-030, *CCP Written Practice for the Qualification of CCP Helium Leak Detection Personnel*, and CCP-QP-032, *CCP Written Practice for the Qualification of CCP Pressure Change Leak Testing Personnel*. Candidates for inspection and test positions are evaluated for previous education, experience, training, and testing as appropriate. Minimum qualifications are established, and personnel selected for these activities are documented to have experience or training commensurate with the scope, complexity, or special nature of the inspections or tests performed. Inspection and test personnel are indoctrinated in the technical and QA objectives, requirements, and controls, and formal or OJT is performed as appropriate. Qualifications are documented, and records maintained in the Records System.

Job performance of inspection and test personnel is evaluated at periodic intervals, and is performed through review of evidence of continued satisfactory performance or redetermination of capability. If personnel are found to not perform adequately, they are removed from that function until the required capability is demonstrated. Personnel that have not performed inspection or testing activities in their qualified area for more than a year are re-evaluated for the required capability.
5.9.2 Qualification of Nondestructive Examination Personnel

(Applicable Criteria: CBFO QAPD Section 2.4.2.A
NWP QAPD, Section 2.4.1.2)

Personnel performing NDE are trained and certified in accordance with CCP-QP-002. This procedure implements the requirements of the American Society of Nondestructive Testing (ASNT) Recommended Practice No. SNT-TC-1A, June 1980 edition. Training and certification of NDE personnel are documented and records maintained in the Records System.

5.9.3 Inspection Planning

(Applicable Criteria: CBFO QAPD Section 2.4.3.1
NWP QAPD, Section 2.4.2.1)

Inspections are planned, performed and documented in accordance with CCP-QP-026. Inspection planning includes identification of work operations to be inspected, inspection hold points, identification of characteristics to be inspected, inspection methods, acceptance criteria, sampling requirements, method of documentation of inspection results, Measuring and Testing Equipment (M&TE) to be used, and identification of statistical methods for sampling.

The types of inspections that may be performed include:

- in-process inspections and monitoring
- final inspection
- in-service inspections

Each of these types of inspections may include review of documentation, examination or verification of physical characteristics, performance of tests, or other means of verifying quality and conformance to the applicable requirements.

Inspections are documented and records maintained as part of the Records System.

5.9.4 Test Requirements

(Applicable Criteria: ASME NQA-1-1989, Criterion 11
CBFO QAPD Section 2.4.4
NWP QAPD, Section 2.4.3)

Tests required to verify conformance of an item or computer program to specified requirements and to demonstrate satisfactory
performance for service shall be planned and executed. Characteristics to be tested and test methods to be employed are specified. Test results are documented and their conformance with acceptance criteria are evaluated.

Tests required to collect data are planned, executed, documented and evaluated. Test planning includes identification of test procedures, test requirements and acceptance limits, including required levels of precision and accuracy, identification of M&TE, test prerequisites, hold points, and test and data documentation requirements. Test results are documented and their conformance with acceptance criteria are evaluated by qualified personnel.

Testing is performed in accordance with CCP-QP-027.

5.9.5 Monitoring, Measuring, Testing, and Data Collection Equipment

(Applicable Criteria: 10 CFR 830.122, Criterion 5
 ASME NQA-1-1989, Criterion 12
 CBFO QAPD Section 2.4.5
 NWP QAPD, Section 2.5)

Tools, gages, instruments, and other measuring and test equipment used for activities affecting quality are controlled and at specified periods calibrated and adjusted to maintain accuracy within necessary limits. This equipment is controlled in accordance with CCP-QP-016.

[A] Use and Control of M&TE

(Applicable Criteria: CBFO QAPD Section 2.4.6
 NWP QAPD, Section 2.5.1)

Measuring and test equipment with the necessary range and accuracy is provided to qualified personnel for the inspection, test, and acceptance of material, parts, components, and systems. The specific controls imposed on measuring and test equipment are described in procedure CCP-QP-016, and CCP-QP-026. M&TE are labeled, and any that are found to be out of calibration are reviewed to determine the impact. Records are maintained in the Records System.
[B] Calibration

(Applicable Criteria: CBFO QAPD Section 2.4.7
NWP QAPD, Section 2.5.1)

Equipment accuracy is ensured by periodic calibration that is traceable to national standards or a documented equivalent basis for calibration. M&TE shall be calibrated to provide traceability of the calibration against certified equipment having known valid relationships to nationally recognized standards. If nationally recognized standards do not exist, the basis for calibration shall be documented. The specific controls imposed on measuring and test equipment are described in procedure CCP-QP-016, and CCP-QP-026.

5.10 Management Assessments

(Applicable Criteria: 10 CFR 820.122 Criterion 9
ASME NQA-1-1989 Criterion 2
DOE O 414.1 Criterion 9
CBFO QAPD Section 3.1
NWP QAPD, Section 3.1)

Management regularly assess the adequacy of that part of the QA program for which they are responsible to assure its effective implementation, and ensure compliance with applicable requirements. Management assessments are conducted according to CCP-QP-018, CCP Management Assessment. CBFO and external regulatory agencies also conduct assessments. QA tracks deficiencies identified during assessments; identifies corrective actions to resolve deficiencies according to CCP-QP-029 and CCP-QP-005, and ensures the resolutions are reported to the CCP Certification Manager and CBFO. Documentation of deficiencies identified in activities conducted at waste generating sites are also reported to the appropriate organizations at those sites, in accordance with interface documents.

Management periodically assesses the performance of its organization to determine the effectiveness of QA Program provisions that enable the organization to comply with requirements of the WIPP WAP, QAPD, WAC, and applicable procedures and documents. Managers evaluate QA Program effectiveness by focusing on the identification and resolution of both systemic and management issues and problems, and identifying strengths and weaknesses to facilitate actions to improve quality efficiency and cost-effectiveness. Management assessments may include an introspective evaluation to determine whether the entire integrated management system effectively focuses on meeting strategic goals. Management assessments are conducted as described in CCP-QP-018.
Management is responsible for the conduct of these assessments and reports at least annually on relevant findings.

5.11 Independent Assessments

(Applicable Criteria: 10 CFR 830.122, Criterion 10
ASME NQA-1-1989, Criterion 18
DOE O 414.1, Criterion 10
CBFO QAPD Section 3.2
NWP QAPD, Section 3.2)

Planned and scheduled audits are performed to verify compliance with all aspects of the QA program and to determine its effectiveness. These audits and surveillances are performed in accordance with written procedures or checklists by personnel who do not have direct responsibility for performing the activities being audited. Audit and surveillance results are documented and reported to and reviewed by responsible management. Follow-up actions are taken where indicated.

Documented independent assessments (audits and surveillances) are used to measure item service and quality, process adequacy and effectiveness, and to promote improvement.

5.11.1 Surveillances

(Applicable Criteria: CBFO QAPD Section 3.2.1
NWP QAPD, Section 3.2)

Surveillances are conducted primarily to monitor work in progress and to follow up on corrective actions. Surveillance results are reported and monitored similar to other assessment activities. At each host location, surveillances are scheduled as early in the project as practical. Surveillances are performed in accordance with CCP-QP-021, CCP Surveillance Program.

5.11.2 Audits

(Applicable Criteria: CBFO QAPD Section 3.2.2
NWP QAPD, Section 3.2)

Internal and external audits are planned and scheduled throughout the life of the CCP and are conducted by qualified personnel.

The CCP is subject to CBFO certification audits. A CBFO audit of is conducted before any waste characterized by the CCP is shipped to the WIPP and annually thereafter. In addition, the CBFO may conduct audits on a random basis. These audits are scheduled
through the CBFO QA Manager who coordinates the plans and schedule through the CCP Certification Manager.

5.12 Sample Control Requirements

(Applicable Criteria: CBFO QAPD Section 4.1
NWP QAPD, Section 4.1)

This section identifies the requirements for controlling samples of waste and environmental media. Control measures stated in site specific container management procedures (see Appendix 4, Table B-1) and analysis procedures include provisions for the identification, handling, storage and shipping, archiving, and identification of nonconforming drums.

Samples/drums are controlled and identified in a manner consistent with their intended use in accordance with container management procedures specific to each site (See Appendix 4, Table B-1).

5.12.1 Sample Identification

(Applicable Criteria: CBFO QAPD Section 4.2
NWP QAPD, Section 2)

[A] Waste containers used as samples are labeled and tracked in accordance with site specific container management procedures. Each waste container used as a sample is checked for physical marking that:

[A.1] Are applied using materials and methods that provide a clear and legible identification.

[A.2] Are not obliterated or hidden on the surface.

[B] If samples/waste containers used as samples are stored, they are controlled in accordance with container management procedures and the method requirements for characterization.

5.12.2 Handling, Storing, and Shipping Samples

(Applicable Criteria: CBFO QAPD Section 4.3
NWP QAPD, Section 4.3)

[A] Handling, storing, cleaning, packaging, and shipping waste containers used as samples is conducted in accordance with
established work and inspection implementing procedures, CCP-QP-023.

5.12.3 Disposition of Nonconforming Samples

(Applicable Criteria: CBFO QAPD Section 4.4
NWP QAPD, Section 4.4)

[A] Waste containers used as samples that do not conform to requirements are reported on an NCR in accordance with CCP-QP-005.

[B] The disposition of waste containers used as samples is identified and documented in accordance with CCP-QP-005.

5.13 Data Documentation, Control, and Validation

(Applicable Criteria: CBFO QAPD Section 5.3
NWP QAPD, Section 4.6 and 4.7)

5.13.1 Data are controlled to prevent loss and ensure integrity, security and freedom from error. Erroneous, rejected or superseded data are controlled to prevent use. Data uncertainty levels are determined prior to use. Data reduction methods are prescribed in technical procedures to allow validation of the reduction process. Data verification and validation is performed to assure accuracy, completeness and traceability in accordance with QA and technical procedures. These procedures include CCP-TP-001 and CCP-TP-002.

5.13.2 Data validation is a systematic process used to review data to ensure that the required data quality characteristics have been obtained. Results of the review may require that qualifiers be placed on the use of the data.

5.13.3 Validation methods shall be planned and documented. The documentation shall include the acceptance criteria used to determine if the data are valid.

5.13.4 All applicable data collected shall be validated. Validation shall include the following:

[A] The relevant documentation is reviewed to evaluate the technical adequacy, the suitability for the intended use, and the adequacy of the QA record.

[B] The results of the data review shall be documented.
The reviewer shall be independent of the collection activities.

5.13.5 Data validation shall be controlled to permit independent reproducibility by another qualified individual.

5.13.6 Data considered as established fact by the scientific and engineering community, such as engineering handbook data, critical tables, etc., do not require validation.

5.14 Software

(Applicable Criteria: ASME NQA-2a-1990 Part 2.7
CBFO QAPD Section 6
NWP QAPD, Section 6)

Computer software and hardware/software configurations used in activities are developed, documented, verified, validated, and tested prior to use in compliance with requirements contained in the QAPD, QAPjP, and NQA-1, Subpart 2.7, Quality Assurance Requirements of Computer Software for Nuclear Facility Applications (ASME 1989). CCP-QP-022 describes the processes for computer software development, validation, and verification.

Software used are identified and controlled through inventory and categorization, and configuration management is maintained. CCP-QP-022 provides the controls for configuration management; software procurement and development; software life-cycle management including installation, testing, verification and validation, operation, and retirement; access controls; and required documentation. Software problems are identified and reported, and changes to software are controlled.

5.15 Performance Demonstration Program (PDP)

The CCP participates in the PDP. PDP samples are processed according to procedures applicable to the specific testing and CCP-TP-058, CCP NDA Performance Demonstration Plan.
6.0 REFERENCES

NOTE
The current revision of these reference documents is applicable. The Internet links are provided for informational purposes only and may change.

 (http://www.epa.gov/epawaste/inforesources/online/index.htm)

 (http://www.wipp.energy.gov/library/DSA/DOE_WIPP_07_3372_Rev_3_DSA.pdf)

 (http://www.wipp.energy.gov/Documents_Transportation.htm)

 (http://www.wipp.energy.gov/Documents_Transportation.htm)

 (http://www.wipp.energy.gov/Documents_Transportation.htm)

 (http://www.wipp.energy.gov/Documents_Transportation.htm)

Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste

A.1 Introduction

Radioassay techniques are used to determine the radionuclide content of waste. Radioassay methods include both nondestructive and destructive techniques. The term "radioassay" includes all types of assay techniques. NDA refers only to nonintrusive assay techniques, whereas radiochemistry (RC) is used to refer to destructive assay techniques. This appendix is intended to apply to NDA activities conducted within the WIPP CCP.

Common NDA techniques rely on detection of gamma rays, neutrons, or heat generated by the waste. NDA is performed on a waste container basis.

RC will not be performed by CCP. If plans change, then RC will be performed in compliance with the requirements of the current WAC, and this Plan will be revised.

The DOE is required to collect radiological characterization data to:

- Track the WIPP radionuclide inventory, by isotopic activity and mass, for those radionuclides listed in Section 3.3.1,
- Demonstrate that each payload container disposed of at the WIPP contains TRU waste as specified in Section 3.3.3, and
- Verify that applicable transportation and facility limits on individual payload containers and assemblies for FGE, PE-Ci, and decay heat are not exceeded, as specified in Section 3.3.2, 3.3.4 and 3.3.6.

The radioassay process quantifies at least one of the more prevalent radionuclides known to be present in the waste. The remaining listed radionuclides present in the waste in significant quantities will be identified by direct measurement of isotopic ratios as discussed in Section A.2. The isotopic ratios are then used to quantify radionuclides based on the assay value.

The requisite data on isotopic ratios and quantities will be derived from AK (see Section A.2), radioassay or both using CBFO approved NDA or RC techniques, instruments and procedures. Each site must technically justify that the AK and/or radioassay techniques, instruments and procedures used:

- Are appropriate for the specific waste stream and waste content code descriptions being assayed, and
- Will result in unbiased values for the cumulative activity and mass of the WIPP radionuclide inventory.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

Existing radioassay data collected prior to the implementation of a QA program pursuant to 40 CFR §194.22(a)(1) may only be qualified in accordance with an alternate methodology that is approved by CBFO and employs one or more of the following methods:

- Peer review in accordance with NUREG-1297 (Reference A1),
- Corroborating data,
- Confirmatory testing (i.e., testing made on a representative sub-population of payload containers within a waste stream), or
- Demonstrating the equivalence of an alternative QA program (as described in Reference A2, Section 5.4).

Proposals for alternative approaches to identification and quantification of radioisotopes (e.g., quantification of isotopic ratio AK on a waste stream basis) must be submitted to CBFO for review and approval. CBFO will report such proposals to the EPA for consideration prior to issuing approval.

Controlled changes to radioassay (NDA or RC) related plans or procedures are managed through the document control process described in CCP-PO-001, CCP Transuranic Waste Characterization Quality Assurance Project Plan. The CCP Certification Manager and QA shall review all such changes and report to the CBFO those changes that could impact compliance with the criteria in this document. The CCP Certification Manager shall ensure that site approved changes to radioassay related plans or procedures affecting either the performance criteria or data quality of certified systems/processes are not used in the collection of waste certification data prior to CBFO’s review and approval. Related testing, calibration, and training performed in accordance with these site-approved changes, however, are not precluded from being conducted prior to CBFO’s review and approval. (Memorandum from CBFO to Distribution, CBFO:NTP:RMK:VW:02-2734: UFC:5822, July 29, 2002.)

The CCP program will establish or confirm isotopic ratios by direct measurements and these ratios will be used in conjunction with measured or AK data to calculate WIPP-reportable values.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

A.2 Radionuclide Isotopic Ratios

Establishing isotopic ratios for use in quantifying radionuclides is performed by direct measurement of the containers using WIPP-certified systems. Sites may opt to qualify AK as permitted by 40 CFR §194.22(b) by performing confirmatory testing using WIPP-certified radioassay systems. When a site performs direct measurements of isotopic ratios, it is expected that all containers in the waste stream will be measured, with the understanding that, in some cases, valid data may not be obtainable for given containers for technical reasons (e.g., lack of sufficient signal or poor counting statistics). All such instances will be documented and appropriately dispositioned by the measurement facility. For those few waste containers for which direct measurement does not yield useable isotopic ratio information, AK may be used. The assay programs will establish or confirm isotopic ratios by direct measurement and these ratios will be used in conjunction with the reported data to calculate WIPP-reportable values.

A.2.1 Methods for Confirmation of Isotopic Ratio AK

As a minimum, to confirm existing AK data, it is necessary to compare ratios of the two most prevalent radionuclides in the isotopic mix. For weapons and reactor grade plutonium, these are typically ^{239}Pu and ^{240}Pu. For heat source waste, the predominant radionuclides are typically ^{238}Pu and ^{239}Pu. Measured isotopic ratios for ^{241}Am may confirm existing AK by waste stream.

However, due to the fluctuation of ^{241}Am in certain waste streams, it may become necessary to measure ^{239}Pu to ^{241}Am isotopic ratios on all containers in that waste stream.

^{241}Am is the daughter of ^{241}Pu, which decays with a half-life of about 14 years. If the time since the chemical separation of the plutonium is known, the quantity of measured ^{241}Am can be used to calculate the quantity of ^{241}Pu. This assumes there was no ^{241}Am in the waste just after the chemical separation and that no ^{241}Am was added to or removed from the waste during the time since the separation. Since ^{241}Am is an indirect measurement of ^{241}Pu, it could be compared (by ratio) to any plutonium isotope (^{239}Pu or ^{240}Pu) associated with weapons and reactor grade plutonium.

For weapons grade and reactor grade waste, isotopic ratio values for ^{238}Pu can be assumed to be valid in AK data if the values for ^{239}Pu and ^{240}Pu have been confirmed. Because ^{242}Pu cannot be measured using NDA methods, the contribution of ^{242}Pu isotopic ratio is calculated by correlation techniques.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

For some of the generator sites that were involved primarily in weapons production, the fissile isotopes ^{235}U and ^{233}U and the fissionable isotope ^{238}U may not have been measured when the transuranic waste was originally assayed (i.e., using non-WIPP-certified systems), primarily because the plutonium isotopes were the radionuclides of interest to the generator site. However, other forms of AK may be available. If so, then the AK can be confirmed by data generated on a WIPP-certified system. If valid AK does not exist, then the data generated on a WIPP-certified system can only be used to detect or calculate ^{238}U, ^{235}U, and ^{233}U or to confirm their absence. Because ^{234}U cannot be measured using NDA methods, the isotopic ratios for ^{234}U may be calculated from the ^{235}U enrichment. Values or lack thereof, for ^{137}Cs can be confirmed by the data generated on a WIPP-certified system. This is typically done by measuring ^{137}Cs directly, or by comparing the NDA measured ^{241}Am 662 kiloelectron volt (keV) peak to the other ^{241}Am peaks (e.g., the 125 keV or 721 keV peaks) to determine if the 662 keV peak’s intensity is consistent with the expected ^{241}Am intensity. A disproportionate response for the 662 keV peak relative to the other ^{241}Am peaks may indicate the presence of ^{137}Cs. ^{90}Sr may be calculated from the value for ^{137}Cs and AK. If detected, a waste container’s concentration of ^{137}Cs can be used to derive a value of ^{90}Sr through the application of the appropriate scaling factor(s). All scaling factors used will be technically sound and based on known, documented relationships or correlations. The data report for the waste containers for which the ^{90}Sr value is derived in this manner shall reflect the use of a scaling factor(s) and provide sufficient documentation to enable its independent calculation. Finally, the gamma spectra must be carefully examined for significant presence of other radionuclides to ensure compliance with transportation requirements. Data obtained for radionuclides other than the WIPP-tracked radionuclides presented above are required to address confounding isotope issues (i.e., masking) with regard to NDA. When RC is used for confirmation radioassay instead of NDA, less reliance on calculated isotopics is required.

CCP will technically justify that the techniques used to confirm the absence or the ratio of non-measurable radionuclides are valid for the particular radioassay method used to confirm AK.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

A.2.2 Acceptable Knowledge (AK) Documentation

The use of AK information concerning the radiological composition of a waste stream will be documented either in the AK Summary Report for the waste characterization of the waste stream or in another controlled document approved by the SPM. Should this information be contained in AK package(s) prepared to meet other general waste characterization requirements, it need not be duplicated in other controlled documents that address the radiological properties of the waste stream; however, all relevant information must be included in the AK record. CCP uses procedure CCP-TP-005, CCP Acceptable Knowledge Documentation, to compile, review, evaluate, confirm, and report AK documentation.

The following discussion is included for the sake of completeness.

A.2.2.1 Required Elements

This section identifies the required radiological information that each TRU waste site or measurement facility must maintain for a waste stream. A TRU waste generator site or waste characterization facility may use AK to delineate the distribution of the 10 WIPP-tracked radioisotopes within a TRU waste stream and the presence or absence of isotopes. The type and quantity of supporting documentation may vary by waste stream and shall be compiled in a written record that shall include a summary identifying all sources of information used to delineate the waste stream’s isotopic distribution. The basis and rationale for the delineation shall be clearly summarized in an AK report and traceable to referenced documents. Assumptions made in this delineation shall be identified. The following information shall be included as part of the AK written record:

- Map of the site with the areas and facilities involved in TRU mixed waste generation, treatment, and storage identified
- Facility mission description as related to radionuclide-bearing materials and their management, e.g., routine weapons production, fuel research and development, and experimental processes
- Description of the specific site locations (such as the area or building) and operations relative to the isotopic composition of the TRU wastes they generated, e.g., plutonium recovery, weapons fabrication, pyrochemical operations and waste incineration
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste
(Continued)

- Waste identification or categorization schemes used at the facility relevant to the waste material’s isotopic distribution, e.g., the use of codes that correlate to a specific isotopic distribution, and a description of the isotopic composition of each waste stream

- Information regarding the waste’s physical and chemical composition that could affect the isotopic distribution, e.g., processes used to remove ingrown 241Am or alter its expected contribution based solely on radioactive decay kinetics

- Statement of all numerical adjustments applied to derive the material’s isotopic distribution, e.g., scaling factors, decay/ingrowth corrections and secular equilibrium considerations

- Specification of the isotopic ratios for the ten WIPP-tracked radionuclides (241Am, 238Pu, 239Pu, 240Pu, 242Pu, 233U, 234U, 238U, 90Sr, and 137Cs) and, if applicable, the radionuclides that comprise 95 percent of the radiological hazard on a waste stream, waste stream subpopulation, or container basis

A.2.2.2 Supplemental AK Information

Each generator site or measurement facility shall obtain supplemental AK information, dependent on availability. The amount and type of this information cannot be mandated, but sites shall collect information as appropriate to support their contention regarding the waste’s isotopic distribution. This information will be used to compile the waste’s AK written record. Supplemental AK documentation that may be used includes, but is not limited to, information from the following sources:

- Safeguards & Security, Materials Control & Accountability, and other nuclear materials control systems or programs and the data they generated

- Reports of nuclear safety or criticality, or accidents/excursions involving the use of special nuclear material (SNM) or nuclear material

- Waste packaging, waste disposal, building or nuclear material management area (NMMA) logs or inventory records, and site databases that provide information on SNM or nuclear materials

- Test plans, research project reports, or laboratory notebooks that describe the radionuclide content of materials used in experiments

- Information from site personnel (e.g., documented interviews)

- Historical analytical data relevant to the isotopic distribution of the waste stream
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

A.2.2.3 Discrepancy Resolution

If there is a discrepancy between AK information related to isotopic ratios or composition, the site will evaluate the sources of the discrepancy to determine if the discrepant information is credible. Information that is not credible or information that is limited in its applicability to WIPP characterization will be identified as such and the reasons for dismissing it will be justified in writing. Limitations concerning the information will be documented in the AK record and summarized in the AK Summary Report. In the event that the discrepancy cannot be resolved, the site will perform direct measurements for the impacted population of containers.

If discrepancies result in a change to the original determinations, the AK summary will be updated in accordance with procedure CCP-TP-005.

A.3 Data Quality Objectives (DQOs)

The DQOs for WIPP certifiable radiological characterization data are established in Section 3.3 of this Plan. They are summarized below in Table A-1, Data Quality Objectives (DQOs) for Radioassay, as they apply to individual payload containers.

Table A-1. Data Quality Objectives (DQOs) for Radioassay

<table>
<thead>
<tr>
<th>Requirement</th>
<th>DQO</th>
<th>Confidencea</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRU α-activity concentration > 100 nCi/gb</td>
<td>$A > \text{LLD}$</td>
<td>N/A</td>
</tr>
<tr>
<td>Fissile mass \leq FGE limit</td>
<td>$FGE + 2\sigma_{\text{TMU}(FGE)} \leq FGE$ limit</td>
<td>97.5%</td>
</tr>
<tr>
<td>Decay heat (DH) \leq CH-TRAMPAC limit</td>
<td>$DH + 1\sigma_{\text{TMU}(DH)} \leq L_{\text{CH-TRAMPAC}}$c</td>
<td>84%</td>
</tr>
</tbody>
</table>

aConfidence means the statistical level of confidence that the limit is exceeded or not exceeded depending on the requirements of the individual data quality objectives (DQOs). The confidence is derived from the specified DQOs which assume contributions to TMU are normally distributed.

bTRU waste determinations shall be in accordance with the Policy for the Management of TRU Alpha Activity Concentration when overpacking waste containers (see Appendix 8).

cTRAMPAC includes both the CH-TRAMPAC and the TRUPACT-III TRAMPAC.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste
(Continued)

There are no stipulated DQOs for PE-Ci or individual isotope activities (except as they impact the requirements listed above). However, at a minimum, radioassay programs must be capable of identifying, measuring, and reporting the presence or absence of:

- the ten radionuclides identified in Section 3.3.1 for tracking of the WIPP radionuclide inventory (see Section A.2.1),
- 235U, in order to calculate FGE, as required in Section 3.3.2 for compliance with transportation requirements, and
- other radionuclides whose presence contribute to 95 percent of the radioactive hazard, as specified in Section 3.3.1, for compliance with transportation requirements.

In support of the above requirements, each site must evaluate, document and technically justify the following determinations:

Lower Limit of Detection (LLD): The LLD for each radioassay system must be determined. Instruments performing TRU/low-level waste discrimination measurements must have an LLD of 100 nCi/g or less. Site specific environmental background and container specific interferences must be factored into LLD determinations. The LLD is that level of radioactivity which, if present, yields a measured value greater than the critical level with a 95 percent probability, where the critical level is defined as that value which measurements of the background will exceed with 5 percent probability. Because the LLD is a measurement-based parameter, it is not feasible to calculate LLDs for radionuclides that are not determined primarily by measurement, e.g., 90Sr. In such cases, the site shall derive the equivalent of an LLD, i.e., a reporting threshold for a radionuclide(s), when it is technically justified. This value may be based on decay kinetics, scaling factors or other scientifically based relationships and must be adequately documented in site records. For purposes of reporting radionuclide data in the WWIS/WDS, this value will be the equivalent of an LLD. References A3 and A4 provide information in developing the LLD.

Total Measurement Uncertainty (TMU): The method used to calculate the TMU for the quantities in Table A-1 must be documented and technically justified for each CBFO certified radioassay system. Compliance with this requirement will be evaluated in reviews of the TMU documentation package for each assay system by CBFO. General guidance for determining the TMU is provided in References A5 and A6.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste
(Continued)

Calibration Procedures and Frequencies: Each radioassay measurement system shall be calibrated before initial use. During calibration or re-calibration, system correction factors shall be established and algorithms adjusted such that the value of percent recovery (%R) is set equal to 100 percent; i.e., the system is calibrated to 100%R. The range of applicability of system calibrations must be specified in site procedures. The matrix/source surrogate waste combination(s) used for calibration shall be representative of the:

- activity range(s) or gram loading(s), and
- relevant waste matrix characteristics (e.g., densities, moderator content, container size) planned for measurement by the system.

Calibration(s) shall be performed in accordance with consensus standards, when such standards exist. If consensus standards are not used, full documentation of the calibration technique must be provided to and approved by CBFO prior to performing WIPP-related assays. Primary calibration standards shall be obtained from suppliers maintaining a nationally accredited measurement program. When primary standards are not available, the standards used shall be correlated with primary standards obtained from a nationally accredited measurement program. For calorimetry, calibration shall be performed in accordance with Reference A9.

Calibration Verification: Notwithstanding the need to calibrate individual components for replacement, changes or adjustments (e.g., energy calibration of a detector), verification of the radioassay measurement system’s calibration shall be performed after any one of the following occurs:

- major system repairs and/or modifications
- replacement of the measurement system’s components, e.g., detector, neutron generator or supporting electronic components that have the capacity to affect data
- significant changes to the system’s software
- relocation of the system
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste

(Continued)

Calibration verification shall consist of demonstrating that the system is within the range of acceptable operation. Secondary standards can be used for the calibration verification if their performance has been correlated with the calibration standard. If a verification of the measurement system’s calibration or other test demonstrates that the system’s response has significantly changed, a re-calibration of the system shall be performed.

Calibration Confirmation: In order to confirm that the calibration of the NDA system was correctly established, the accuracy and precision of the system are determined after each calibration or re-calibration by performing replicate measurements of a non-interfering matrix. Calibration confirmation replicate measurements shall be performed on containers of the same nominal size as those in which actual waste is assayed and according to approved waste assay procedures. The number of replicate measurements to be performed shall be documented and technically justified. The replicate measurements shall be performed using nationally recognized standards, or certified standards derived from nationally recognized standards that span the range of use. The standards used to calculate accuracy shall not be the same as those used for the system calibration. Accuracy is reported as percent recovery (%R). The applicable range for accuracy shall not exceed ± 30 percent on a non-interfering matrix. Precision is reported as percent relative standard deviation (%RSD). The %RSD shall not exceed the values listed in Table A-2, Upper Limits for %RSD vs. Number of Replicates, for the corresponding number of replicate measurements in a non-interfering matrix.

<table>
<thead>
<tr>
<th>Number of Replicates</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max %RSD</td>
<td>1.8</td>
<td>6.6</td>
<td>10.0</td>
<td>12.3</td>
<td>14.0</td>
<td>15.2</td>
<td>16.2</td>
<td>17.1</td>
<td>17.7</td>
<td>18.3</td>
<td>18.8</td>
<td>19.3</td>
<td>19.7</td>
<td>20.0</td>
</tr>
</tbody>
</table>

The values listed are derived from the measured standard deviation of the replicate measurements using \(\frac{s}{\mu} \times 100\% < \sqrt{(0.292) \times \frac{\chi^2_{0.05,n-1}}{n-1}} \times 100\% \) where s is the measured standard deviation, n is the number of replicates, \(\Phi \) is the true value, \(\chi^2_{0.05,n-1} \) is the critical value for the upper 5 percent tail of a one-sided chi-squared distribution with \(n-1 \) degrees of freedom, and 0.292 corresponds to a 95 percent upper confidence bound on the true system precision limit of 29.2 percent.

Measurement facilities may develop alternate limits for accuracy and precision subject to approval by CBFO prior to certification of waste.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

The CCP NDA standard operating procedures (Table A-2.1) demonstrate and justify that the radioassay techniques used are appropriate for specific waste streams.

Table A-2.1. NDA Procedures

<table>
<thead>
<tr>
<th>Procedure Title</th>
<th>Procedure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP Waste Assay Gamma Spectrometer (WAGS) and SWEPP Gamma-Ray Spectrometer (SGRS) Calibration Procedure</td>
<td>CCP-TP-010</td>
</tr>
<tr>
<td>CCP Waste Assay Gamma Spectrometer (WAGS) Operating Procedure</td>
<td>CCP-TP-019</td>
</tr>
<tr>
<td>CCP Mobile IQ3 System Calibration Procedure</td>
<td>CCP-TP-046</td>
</tr>
<tr>
<td>CCP Mobile IQ3 Gamma Scanner Operation</td>
<td>CCP-TP-047</td>
</tr>
<tr>
<td>CCP Mobile IQ3 System Data Reviewing, Validating and Reporting Procedure</td>
<td>CCP-TP-048</td>
</tr>
<tr>
<td>CCP Operating the High Efficiency Neutron Counter Using NDA 2000</td>
<td>CCP-TP-063</td>
</tr>
<tr>
<td>CCP Calibrating the High Efficiency Neutron Counter Using NDA 2000</td>
<td>CCP-TP-064</td>
</tr>
<tr>
<td>CCP Gamma Energy Assay (GEA) Calibration, Confirmation, and Verification Procedure</td>
<td>CCP-TP-070</td>
</tr>
<tr>
<td>CCP Gamma Energy Assay (GEA) Operating Procedure</td>
<td>CCP-TP-071</td>
</tr>
<tr>
<td>CCP Gamma Energy Assay (GEA) Data Review, Validation, and Reporting Procedure</td>
<td>CCP-TP-072</td>
</tr>
<tr>
<td>CCP Off-Site Source Recovery Project Sealed Source Radiological Characterization</td>
<td>CCP-TP-101</td>
</tr>
<tr>
<td>CCP Data Reviewing, Validating and Reporting Procedure for the High Efficiency Neutron Counter Using NDA 2000</td>
<td>CCP-TP-103</td>
</tr>
<tr>
<td>Operating the CCP High Efficiency Neutron Counter Using NDA 2000</td>
<td>CCP-TP-107</td>
</tr>
<tr>
<td>Calibrating the CCP High Efficiency Neutron Counter Using NDA 2000</td>
<td>CCP-TP-108</td>
</tr>
<tr>
<td>CCP Data Reviewing, Validating and Reporting Procedure</td>
<td>CCP-TP-109</td>
</tr>
<tr>
<td>CCP SWEPP Gamma-Ray Spectrometer (SGRS) Operating Procedure</td>
<td>CCP-TP-115</td>
</tr>
<tr>
<td>CCP SuperHENC Operating Procedure</td>
<td>CCP-TP-146</td>
</tr>
<tr>
<td>CCP SuperHENC Data Reviewing, Validating and Reporting Procedure</td>
<td>CCP-TP-148</td>
</tr>
<tr>
<td>CCP Drum Waste Assay System Imaging Passive/Active Neutron Operations</td>
<td>CCP-TP-166</td>
</tr>
<tr>
<td>CCP Drum Waste Assay Imaging Passive/Active Neutron Calibration</td>
<td>CCP-TP-167</td>
</tr>
<tr>
<td>CCP Drum Waste Assay System Imaging Passive/Active Neutron/Segmented Gamma Scanner Data Generation Level Validation</td>
<td>CCP-TP-168</td>
</tr>
<tr>
<td>CCP Operating the Mobile Segmented Gamma Scanner</td>
<td>CCP-TP-169</td>
</tr>
</tbody>
</table>
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

Table A-2.1. NDA Procedures (Continued)

<table>
<thead>
<tr>
<th>Procedure Description</th>
<th>Procedure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP SuperHENC Calibration Procedure</td>
<td>CCP-TP-170</td>
</tr>
<tr>
<td>CCP Calibrating the Mobile Segmented Gamma Scanner</td>
<td>CCP-TP-172</td>
</tr>
<tr>
<td>CCP Box Segmented Gamma System (BSGS) Operating Procedure</td>
<td>CCP-TP-189</td>
</tr>
<tr>
<td>CCP Box Segmented Gamma System (BSGS) Calibration Procedure</td>
<td>CCP-TP-190</td>
</tr>
<tr>
<td>CCP Box Neutron Assay System (BNAS) Operating Procedure</td>
<td>CCP-TP-191</td>
</tr>
<tr>
<td>CCP Box Neutron Assay System (BNAS) Calibration Procedure</td>
<td>CCP-TP-192</td>
</tr>
<tr>
<td>CCP Data Reviewing, Validating, and Reporting Procedure for Nondestructive Assay Box Counters</td>
<td>CCP-TP-193</td>
</tr>
<tr>
<td>Peer Review – Sealed Sources Peer Review Report</td>
<td>Record TWCP-18562</td>
</tr>
</tbody>
</table>

A.4 Quality Control (QC)

To ensure that data of known and documented quality are generated, each participating measurement facility shall implement a documented facility QA program. Any radioassay technique used for TRU waste must be performed in accordance with calibration and operating procedures that have been written, approved, and controlled by the site or testing facility. Laboratory procedures must contain applicable QCs. Facility QA programs shall specify qualitative and quantitative acceptance criteria for the QC checks of this program and corrective action measures to be taken when these criteria are not satisfied. NDA standard operating procedures address QC elements and are listed in Table A-2.1.

A.4.1 General Requirements

Radioassay Training: Only appropriately trained and qualified personnel shall be allowed to perform radioassay and data validation/review. Standardized Training requirements for radioassay personnel shall be based upon existing industry standardized training requirements (e.g., American Society for Testing and Materials [ASTM] C1490, Standard Guide for Selection, Training and Qualification of Nondestructive Assay [NDA] Personnel [Reference A8]; American National Standards Institute [ANSI] N15.54, Radiometric Calorimeters - Measurement Control Program [Reference A9]) and shall meet the specifications in the QAPD.

Requalification of radioassay personnel shall be based upon evidence of continued satisfactory performance and must be performed at least every two years. The training program is conducted in accordance with procedure CCP-QP-002, CCP Training and Qualification Plan.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

Software QC Requirements: All computer programs and revisions thereof used for radioassay shall meet the applicable requirements in Section 6.0 of the QAPD (Reference A2) and in accordance with procedure CCP-QP-022, *CCP Software Quality Assurance Plan*.

Comparison Programs: Sites using radioassay systems shall participate in any relevant measurement comparison program(s) sponsored or approved by the CBFO. Such programs may be conducted as part of the NDA PDP (References A7 and A10) or through other third parties (Reference: WIPP Compliance Recertification Application including Annual Reports to the EPA).

A.4.2 NDA QC Requirements

The assay procedures cited in various ASTM and ANSI standards (References A9, A11-A15) and NRC standard practices and guidelines (Reference A16) as referenced in this appendix are recommended for use at all testing facilities.

Background Measurements: Background measurements must be performed and recorded daily, unless otherwise approved by CBFO. Contributions to background due to radiation from nearby radiation producing equipment, standards or wastes must be carefully controlled or more frequent background checks must be performed. For calorimeters, basepower or baseline measurements shall be conducted at a frequency determined by each site and approved by CBFO.

Instrument Performance Measurements: Performance checks on calibrated and operable gamma and neutron NDA instruments must be performed and recorded once per operational day. Performance checks shall include efficiency checks (when applicable), matrix correction checks and, for spectrometric instruments, peak position and resolution checks.

Both radioactive sources and surrogate waste matrix containers (both non-interfering and interfering) are used. At least once per operational week an interfering matrix must be used to assess the long-term stability of the NDA instrument’s matrix correction. Surrogate waste containers must reflect the type of waste, (e.g., debris, sludge) currently being assayed. To verify calibration, radioactivity standards must be selected such that, over a six-month period, the operating range of the assay system is tested in each applicable surrogate waste matrix. The use of interfering and non-interfering matrices provides a realistic assessment of the assay system’s performance over time, and will assist measurement personnel in detecting potential problems relative to the matrices currently assayed by the measurement system.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

Interfering surrogate matrix containers must be constructed in such a way that the waste characteristics do not change over time.

Radioactive sources should be long-lived, easy to position relative to the detector(s), and of sufficient radioactivity to obtain good results with relatively short count times.

Performance checks for calorimetry shall be performed with electrical and/or heat standards traceable to a nationally accredited measurement program at a frequency determined by each site, consistent with Reference A17. This information is specified in site operating procedures and approved by CBFO.

Data Checks: Background (for calorimetry: baseline or base power) and performance measurements shall be reviewed and evaluated at least weekly to determine continued acceptability of the assay system and to monitor performance trends. If daily performance checks result in data that are outside the acceptable range, the required responses in Table A-3 shall be followed.

Table A-3. Range of Applicability

<table>
<thead>
<tr>
<th>Category</th>
<th>Acceptability Rangea</th>
<th>Required Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable Range</td>
<td>Data ≠ 2σb</td>
<td>No action required.</td>
</tr>
<tr>
<td>Warning Range</td>
<td>2σb < Data ≠ 3σb</td>
<td>The performance check standard shall be rerun no more than two times. If the rerun performance check(s) result in data within ± 2σ, then the additional performance checks shall be documented and work may continue. If the system does not fall within ± 2σ after two rerun performance checks, then the required response for the Action Range shall be followed.</td>
</tr>
<tr>
<td>Action Range</td>
<td>Data > 3σb</td>
<td>Work shall stop and the occurrence shall be documented and appropriately dispositioned (e.g., initiating a non-conformance report). The radioassay system shall be removed from service pending successful resolution of all necessary actions, and all assays performed since the last acceptable performance check are suspect, pending satisfactory resolution. Recalibration or calibration verification is required prior to returning the system back to service.</td>
</tr>
</tbody>
</table>

*aReference A15
bσ - the standard deviation is only based on the reproducibility of the data check measurements themselves. This is not TMU.
*cAbsolute Value
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste
(Continued)

A.5 Data Management

A.5.1 Data Review and Validation

All radioassay data must be reviewed and approved by qualified personnel prior to being reported. At a minimum, the data must be reviewed by a technical reviewer and approved by the SPM. The validation process includes verification that the applicable QCs specified in Section A.4 have been met. Radioassay data is reviewed at the data generation level in accordance with NDA operating procedures listed in Table A-2.1, while data validation and verification at the Project Office is performed in accordance with procedure CCP-TP-001, CCP Project Level Data Validation and Verification.

A.5.2 Data Reporting

Radioassay data must be reported to the Site Project Office on a testing batch basis. Batches are defined, for the purpose of the program, as a suite of waste containers undergoing radioassay using the same testing equipment. For NDA, the sites shall specify the size of the testing batch as needed, without regard to waste matrix.

Each radioassay testing facility is required to submit testing BDRs for each testing batch to the site project office on standard forms (either hard copy or electronic equivalent), as provided in approved site-specific documentation. Radioassay testing BDRs shall consist of the following:

- testing facility name, testing batch number, container numbers included in that testing batch, and signature release by the SPM
- table of contents
- background and performance data or control charts for the relevant time period
- data validation per the QAPD (Reference A2, Section 5.3.2) and as described in site procedures (Reference Table A-2.1)
- separate testing report sheet(s) for each container in the testing batch that includes:
 - title “Radioassay Data Sheet”
 - method used for radioassay (i.e., procedure identification)
 - date of radioassay
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

- activities and/or masses of individual radioisotopes present and their associated TMUs (curies and/or grams)
- operator signature/date
- reviewer signature/date

Other radiological properties to be documented for each container include:

- decay heat expressed in Watts (W) and its associated TMU
- total 239Pu FGE expressed in grams (g) and its associated TMU
- TRU alpha activity concentration expressed in curies/gram (Ci/g) and its associated TMU, and
- total 239Pu equivalent activity expressed in Ci

These calculated quantities shall be included in the radioassay BDR or other QA record or database.

When TMU is reported differently on the testing report sheet than in WWIS/WDS, the method of expressing TMU shall be specified on the testing report sheet or associated procedures/QAPjP.

Radioassay data reporting at the data generation level is performed in accordance with NDA operating procedures listed in Table A-2.1, while data validation and verification at the Project Office is performed in accordance with procedure CCP-TP-001. Data reporting in WWIS/WDS is performed in accordance with procedure CCP-TP-030.

A.5.3 Data and Records Retention

QA records are indexed, classified, controlled, and maintained by records management personnel as described in procedure CCP-QP-008, CCP Records Management, and the site Records System. Records management is addressed in Section 5.5 of this Plan.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste
(Continued)

The following nonpermanent records shall be maintained at the radioassay-testing facilities or shall be forwarded to the Site Project Office for maintenance, and shall be documented and retrievable by testing batch number, in accordance with the QAPD:

- testing batch reports
- all raw data, including instrument readouts, calculation records, and radioassay QC results
- all instrument calibration reports, as applicable

A.6 Quality Characteristics Assessment

Per 40 CFR §194.22(c), there are five “quality characteristics” that must be assessed. These quality characteristics and the method by which they are assessed are described in the following sections.

A.6.1 Data Accuracy

Per 40 CFR §194.22(c)(1), Data Accuracy is defined as “the degree to which data agree with an acceptable reference or true value.” For NDA methods, this quality characteristic is met and maintained as described in Section A.3.

A.6.2 Data Precision

Per 40 CFR §194.22(c)(2), Data Precision is defined as “a measure of the mutual agreement between comparable data gathered or developed under similar conditions expressed in terms of standard deviation.” For NDA methods, this quality characteristic is met and maintained as described in Section A.3.

A.6.3 Data Representativeness

Per 40 CFR §194.22(c)(3), Data Representativeness is defined as “the degree to which data can accurately and precisely represent a characteristic of a population, a parameter, variations at a sampling point, or environmental conditions.” For NDA methods, this quality characteristic for the waste stream is met and maintained through 100 percent measurement confirmation on a payload container basis. For NDA, since the entire waste container is subjected to measurement, representativeness pertaining to the actual measurement is not applicable.
Appendix 1 – Radioassay Requirements for Contact-Handled Transuranic Waste (Continued)

A.6.4 Data Completeness

Per 40 CFR §194.22(c)(4), Data Completeness is defined as “a measure of the amount of valid data obtained compared to the amount that was expected.” For NDA methods, this quality characteristic is met and maintained by requiring 100 percent valid results. Any results indicating the NDA measurement was invalid require re-measurement.

A.6.5 Data Comparability

Per 40 CFR §194.22(c)(5), Data Comparability is defined as “a measure of confidence with which one data set can be compared to another.” For NDA and RC methods, this quality characteristic is addressed by ensuring that all data are produced under the same system of controls. These controls apply to all aspects of the data generation process, including: procurement of analytical instruments; calibration and operation of assay equipment according to industry standards; preparation and use of standardized instrument and data review procedures; and, training of equipment operators and technical/data review personnel to the QAPD, as specified in Section A.4.1. All NDA systems and methods are approved by CBFO prior to use in generating waste characterization data. Additionally, comparison of measured data with AK derived or based values, as applicable, provides a means to assess comparability on a waste stream basis. Although no specific confidence level is specified, these controls provide comparability among all data generated under this program. Sites using radioassay systems shall participate in measurement comparison programs as specified in Section A.4.1.
Appendix 2 – Appendix 1 References

Appendix 2 – Appendix 1 References (Continued)

(http://www.wipp.energy.gov/Documents_NTP.htm)

Appendix 3 – Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK</td>
<td>Acceptable Knowledge</td>
</tr>
<tr>
<td>ALARA</td>
<td>as low as reasonably achievable</td>
</tr>
<tr>
<td>AMAD</td>
<td>activity mean aerodynamic diameter</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BDR</td>
<td>Batch Data Report</td>
</tr>
<tr>
<td>CBFO</td>
<td>Carlsbad Field Office</td>
</tr>
<tr>
<td>CAR</td>
<td>Corrective Action Report</td>
</tr>
<tr>
<td>CCP</td>
<td>Central Characterization Program</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CH</td>
<td>Contact-Handled</td>
</tr>
<tr>
<td>CH-TRAMPAC</td>
<td>Contact-Handled Transuranic Waste Authorized Methods for</td>
</tr>
<tr>
<td></td>
<td>Payload Control</td>
</tr>
<tr>
<td>CH-TRU</td>
<td>Contact-Handled Transuranic</td>
</tr>
<tr>
<td>Ci</td>
<td>curies</td>
</tr>
<tr>
<td>Ci/g</td>
<td>curies/gram</td>
</tr>
<tr>
<td>CIN</td>
<td>Container Identification Number</td>
</tr>
<tr>
<td>cm²</td>
<td>Square centimeters</td>
</tr>
<tr>
<td>cm³</td>
<td>Cubic centimeters</td>
</tr>
<tr>
<td>CPR</td>
<td>cellulose, plastic, and rubber</td>
</tr>
<tr>
<td>DA</td>
<td>Destructive assay</td>
</tr>
<tr>
<td>DSA</td>
<td>Documented Safety Analysis</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>DOT</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>DPM</td>
<td>disintegrations per minute</td>
</tr>
<tr>
<td>DQO</td>
<td>Data Quality Objective</td>
</tr>
<tr>
<td>DSA</td>
<td>Documented Safety Analysis</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>FEIS</td>
<td>Final Environmental Impact Statement</td>
</tr>
<tr>
<td>FEM</td>
<td>fissile equivalent mass</td>
</tr>
<tr>
<td>FGE</td>
<td>fissile gram equivalent</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GGT</td>
<td>gas generation testing</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>HSG</td>
<td>Headspace Gas</td>
</tr>
<tr>
<td>HWFP</td>
<td>Hazardous Waste Facility Permit</td>
</tr>
<tr>
<td>ID</td>
<td>identification number</td>
</tr>
<tr>
<td>in.</td>
<td>inch</td>
</tr>
<tr>
<td>keV</td>
<td>Kiloelectron Volt</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram(s)</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LLD</td>
<td>lower limit of detection</td>
</tr>
</tbody>
</table>
Appendix 3 – Acronyms and Abbreviations (Continued)

LDR Land Disposal Restriction
LWA Land Withdrawal Act
M3 cubic meter(s)
ml milliliter(s)
mrem milliroentgen equivalent man
M&TE Measuring and Testing Equipment
nCi/g nanocurie(s) per gram
NDA nondestructive assay
NCR Nonconformance Report
NDE Nondestructive Examination
NEPA National Environmental Policy Act
NMAC New Mexico Administrative Code
NMED New Mexico Environment Department
NMMA nuclear material management area
NRC U.S. Nuclear Regulatory Commission
NTP National TRU Program
NWP Nuclear Waste Partnership
OJT on-the-job training
OPCTCD Overpack Payload Container Transportation Certification Document
PATCD Payload Assembly Transportation Certification Document
PCB polychlorinated biphenyl
PCTCD Payload Container Transportation Certification Document
PDP Performance Demonstration Program
PE-Ci 239Pu equivalent curie(s)
POC point-of-contact
ppm parts per million
QA Quality Assurance
QAO Quality Assurance Objective
QAPD Quality Assurance Program Document
QAPjP Quality Assurance Project Plan
QC Quality Control
QSL Qualified Suppliers List
%R Percent Recovery
%RSD percent relative standard deviation
RC radiochemistry
RCRA Resource Conservation and Recovery Act
RCT Radiological Control Technician
rem roentgen equivalent man
RH Remote-Handled
RH-TRAMPAC Remote-Handled Transuranic Waste Authorized Methods for Payload Control
RIDS Records Inventory and Disposition Schedule
Appendix 3 – Acronyms and Abbreviations (Continued)

RPD relative percent difference
RSD relative standard deviation
RTR Real-Time Radiography
SAR Safety Analysis Report
SEIS Supplemental Environmental Impact Statement
SLB2 standard large box 2
SME subject matter expert(s)
SNM Special Nuclear Material
SOW Statement of Work
SPM Site Project Manager
SWB Standard Waste Box
TCO Transportation Certification Official
TDOP ten-drum overpack
TMU total measurement uncertainty
TRAMPAC Transuranic Authorized Methods for Payload Control
TRU Transuranic
TRUPACT-II Transuranic Package Transporter-II
TRUPACT-III Transuranic Package Transporter-III
TSDF Treatment, Storage, and Disposal Facility
VE visual examination
VOC volatile organic compound
UHWM Uniform Hazardous Waste Manifest
VEE Visual Examination Expert(s)
WAC Waste Acceptance Criteria
WCO Waste Certification Official
WDS Waste Data System
WCPIP *Remote-Handled TRU Waste Characterization Program Implementation Plan*
WIPP Waste Isolation Pilot Plant
WIPP WAP Waste Isolation Pilot Plant Waste Analysis Plan
WSPF Waste Stream Profile Form
WWIS WIPP Waste Information System
Appendix 4 – Procedure Tables

Table B-1. Container Management Procedures

<table>
<thead>
<tr>
<th>Procedure Title</th>
<th>Procedure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP Container Management</td>
<td>CCP-TP-035</td>
</tr>
<tr>
<td>CCP Standardized Container Management</td>
<td>CCP-TP-068</td>
</tr>
<tr>
<td>CCP Container Management</td>
<td>CCP-TP-120</td>
</tr>
</tbody>
</table>

Table B-2. Radiography Procedures

<table>
<thead>
<tr>
<th>Procedure Title</th>
<th>Procedure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP Standard Real-Time Radiography (RTR) Inspection Procedure</td>
<td>CCP-TP-053</td>
</tr>
</tbody>
</table>

Table B-3. VE Procedures

<table>
<thead>
<tr>
<th>Procedure Title</th>
<th>Procedure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP Visual Examination Technique for Idaho National Laboratory (INL) Newly</td>
<td>CCP-TP-006</td>
</tr>
<tr>
<td>Generated TRU Waste</td>
<td></td>
</tr>
<tr>
<td>CCP Sealed Source Visual Examination and Packaging</td>
<td>CCP-TP-069</td>
</tr>
<tr>
<td>CCP Standard Contact-Handled Waste Visual Examination</td>
<td>CCP-TP-113</td>
</tr>
</tbody>
</table>

Table B-4. GGT Procedures

<table>
<thead>
<tr>
<th>Procedure Title</th>
<th>Procedure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP Gas Generation Testing</td>
<td>CCP-TP-083</td>
</tr>
<tr>
<td>CCP Execution of Long-Term Objective for the Unified Flammable Gas Test</td>
<td>CCP-TP-138</td>
</tr>
<tr>
<td>Procedure</td>
<td></td>
</tr>
</tbody>
</table>

Table B-5. Certification Procedures

<table>
<thead>
<tr>
<th>Procedure Title</th>
<th>Procedure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP Transuranic Authorized Methods For Payload Control (CCP-CH-TRAMPAC)</td>
<td>CCP-PO-003</td>
</tr>
<tr>
<td>CCP CH-TRU Waste Certification and WWIS/WDS Data Entry</td>
<td>CCP-TP-030</td>
</tr>
<tr>
<td>CCP RH-TRU Waste Certification and WWIS/WDS Data Entry</td>
<td>CCP-TP-530</td>
</tr>
</tbody>
</table>
Appendix 4 – Procedure Tables (Continued)

Table B-6. Remote-Handled Procedures

<table>
<thead>
<tr>
<th>Procedure Title</th>
<th>Procedure Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCP Remote-Handled Waste Visual Examination</td>
<td>CCP-TP-500</td>
</tr>
<tr>
<td>CCP Dose-to-Curie Survey Procedure for Remote-Handled Transuranic Waste</td>
<td>CCP-TP-504</td>
</tr>
<tr>
<td>CCP Removable Lid Canister Loading</td>
<td>CCP-TP-505</td>
</tr>
<tr>
<td>CCP Shipping of Remote-Handled Transuranic Waste</td>
<td>CCP-TP-507</td>
</tr>
<tr>
<td>CCP RH Standard Real-Time Radiography Inspection Procedure</td>
<td>CCP-TP-508</td>
</tr>
<tr>
<td>CCP Remote-Handled Waste Sampling</td>
<td>CCP-TP-512</td>
</tr>
</tbody>
</table>
Appendix 5 – PE-Ci Activity

The concept of PE-Ci is intended to eliminate the dependency of radiological analyses on specific knowledge of the radionuclide composition of a TRU waste stream. A unique radionuclide composition and/or distribution are associated with most TRU waste streams at each site. By normalizing all radionuclides to a common radiotoxic hazard index, radiological analyses that are essentially independent of these variations can be conducted for the WIPP facility. ^{239}Pu, as a common component of most defense TRU wastes, was selected as the radionuclide to which the radiotoxic hazard of other TRU radionuclides could be indexed.

Modeled operational releases from the WIPP facility, including both routine and accident-related, are airborne. There are no known significant liquid release pathways during the operational phase of the facility. This, and the fact that TRU radionuclides primarily represent inhalation hazards, allows a valid relationship to be established, which normalizes the inhalation hazard of a TRU radionuclide to that of ^{239}Pu for the purpose of the WIPP radiological analyses. In effect, the radiological dose consequences of an airborne release of a quantity of TRU radioactivity with a known radionuclide distribution will be essentially identical to that of a release of that material expressed in terms of a quantity of ^{239}Pu. To obtain this correlation, the 50-year effective whole-body dose commitment or dose conversion factor for a unit intake of each radionuclide will be used.

For a known radioactivity quantity and radionuclide distribution, the ^{239}Pu equivalent activity is determined using radionuclide-specific weighting factors. The ^{239}Pu equivalent activity (AM) can be characterized by:

$$K_{\text{AM}} = \sum_{i=1}^{K} \frac{A_i}{W_{Fi}}$$

where K is the number of TRU radionuclides, A_i is the activity of radionuclide i, and W_{Fi} is the PE-Ci weighting factor for radionuclide i.

W_{Fi} is further defined as the ratio

$$W_{Fi} = \frac{E_{o}}{E_i}$$

where E_o (roentgen equivalent man [rem]/μCi) is the 50-year effective whole-body dose commitment due to the inhalation of ^{239}Pu particulates with a 1.0 μm activity median aerodynamic diameter (AMAD) and a weekly pulmonary clearance class, and E_i

1TRU as designated in this equation refers to any radionuclide with an atomic number greater than 92 and including ^{233}U.
Appendix 5 – PE-Ci Activity (Continued)

(rem/μCi) is the 50-year effective whole-body dose commitment due to the inhalation of radionuclide \((i)\) particulates with a 1.0 μm activity median aerodynamic diameter and the pulmonary clearance class resulting in the highest 50-year effective whole-body dose commitment.

Weighting factors calculated in this manner are presented in Table C-1 for radionuclides typically present in CH-TRU waste. If other TRU radionuclides are determined to be present in the payload container, their weighting factors can be obtained from the values of \(E_0\) and \(E_i\) contained in DOE/EH-0071 (Reference B1).

Table C-1. PE-Ci Weighting Factors for Selected Radionuclides

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Pulmonary Clearance Class<sup>a</sup></th>
<th>Weighting Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{233}\text{U})</td>
<td>Y</td>
<td>3.9</td>
</tr>
<tr>
<td>(^{237}\text{Np})</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>(^{236}\text{Pu})</td>
<td>W</td>
<td>3.2</td>
</tr>
<tr>
<td>(^{238}\text{Pu})</td>
<td>W</td>
<td>1.1</td>
</tr>
<tr>
<td>(^{239}\text{Pu})</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>(^{240}\text{Pu})</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>(^{241}\text{Pu})</td>
<td>W</td>
<td>51.0</td>
</tr>
<tr>
<td>(^{242}\text{Pu})</td>
<td>W</td>
<td>1.1</td>
</tr>
<tr>
<td>(^{241}\text{Am})</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>(^{243}\text{Am})</td>
<td>W</td>
<td>1.0</td>
</tr>
<tr>
<td>(^{242}\text{Cm})</td>
<td>W</td>
<td>30.0</td>
</tr>
<tr>
<td>(^{244}\text{Cm})</td>
<td>W</td>
<td>1.9</td>
</tr>
<tr>
<td>(^{252}\text{Cf})</td>
<td>Y</td>
<td>3.9</td>
</tr>
</tbody>
</table>

^a(W) Weekly, (Y) Yearly

Reference for Appendix 5

Appendix 6 – Glossary

10-160B Packaging – An NRC-certified Type B transportation packaging used for transportation of TRU wastes.

Acceptable knowledge (AK) – Any information about the process used to generate waste, material inputs to the process, and the time period during which the waste was generated, as well as data resulting from the analysis of waste, conducted prior to or separate from the waste certification process authorized by EPA’s Certification Decision, to show compliance with Condition 3 of the certification decision (Appendix A of this part) (40 CFR §194.2 and 194.67).

Activity – A measure of the rate at which a material emits nuclear radiation, usually given in terms of the number of nuclear disintegrations occurring in a given length of time. The common unit of activity is the curie, which amounts to 37 billion (3.7 x 10^{10}) disintegrations per second. The International Standard unit of activity is the becquerel and is equal to one disintegration per second.

Administrative controls – Provisions relating to organization and management, procedures, record keeping, assessment, and reporting necessary to ensure the safe operation of the facility.

Atomic energy defense activities – Activities of the Secretary of Energy (and predecessor agencies) performed in whole or in part in carrying out any of the following functions: naval reactors development; weapons activities, including defense inertial confinement fusion; verification and control technology; defense nuclear material production; defense nuclear waste and materials by-product management; defense nuclear materials security investigations; and defense research and development.

Authorization basis – Those aspects of the facility design and operational requirements relied upon by DOE to authorize the operation of nuclear facilities and processes.

Characterization – Sampling, monitoring, and analysis - whether by review of AK, nondestructive examination, NDA, or RC - to identify and quantify the constituents of a waste material.

Chemical compatibility – Assessing the properties of chemicals in a payload container (>1 weight percent); there must be no adverse safety or health hazards produced as a result of any mixtures that occur.
Appendix 6 – Glossary (Continued)

Completeness – The percentage of measurements made that are judged to be valid measurements. The completeness goal is to generate a sufficient amount of valid data based on program needs. Valid results for radioassay, and radiography data are those that were obtained when the laboratory or testing facility demonstrated that the instrumentation and method were in control; that is, that all calibration, verification, interference, and zero matrix checks met acceptance criteria.

Compressed gas – Compressed gases are those materials defined as such by 49 CFR Part 173, Subpart G.

Contact-Handled transuranic waste – Transuranic waste with a surface radiation dose equivalent rate not greater than 200 mrem/h.

Content code – A uniform system applied to waste forms to group those with similar characteristics for purposes of shipment in the TRUPACT-II, TRUPACT-III, HalfPACT, and RH-TRU 72-B packagings.

Corrosive/Corrosivity – A solid waste exhibits corrosivity if a sample of the waste is either aqueous and has a pH ≤2 or ≥12.5, or it is a liquid and corrodes steel at a rate >6.35 millimeter (0.250 in.) per year at a test temperature of 55°C Celsius (130°Fahrenheit) (40 CFR §261.22).

Curie – A unit of activity equal to 37 billion \(3.7 \times 10^{10}\) disintegrations per second.

Disposal – Permanent isolation of TRU waste from the accessible environment with no intent of recovery, whether or not such isolation permits the recovery of such waste (Reference 2, Section 2[5]).

Dose conversion factor – A numerical factor used in converting radionuclide uptake (curies) in the body to the resultant radiation dose (rem).

Dose equivalent rate – The radiation dose equivalent delivered per unit time (e.g., rem per hour).

Drum – Includes 55-gallon, 85-gallon, and 100-gallon drums as described in the CH-TRAMPAC and HWFP.

Fissile gram equivalent – An isotopic mass of radionuclide normalized to \(^{239}\text{Pu}\).
Appendix 6 – Glossary (Continued)

Fissile material – Any material consisting of or containing one or more radionuclides that can undergo neutron-induced fission with neutrons of essentially zero kinetic energy (e.g., thermal neutrons) such as 233U, 235U, and 239Pu.

HalfPACT – An NRC-certified Type B transportation packaging used for transportation of CH-TRU wastes.

Hazardous waste – Those wastes which are designated hazardous by EPA (or state) regulations. For a detailed description, see 40 CFR § 261.3. Hazardous wastes are listed in 20.4.1 New Mexico Administrative Code (NMAC), subpart II (40 CFR Part 261) and/or exhibit one of the four characteristics in 20.4.1 NMAC, subpart II (40 CFR Part 261) (i.e., ignitability, corrosivity, reactivity, and toxicity).

Headspace – The total contained volume of a container minus the volume occupied by the waste material.

Headspace gas – The gas within the headspace of a container.

Internal container – A container inside the outermost container examined during radiography or VE. Drum liners, liner bags, plastic bags used for contamination control, capillary-type lab ware, and debris not designed to hold liquid at the time of original waste packaging are not internal containers (Reference 9, Part 1, Section 1.5.17).

Lower Limit of Detection – The level of radioactivity which, if present, will yield a measured value greater than the critical limit with a 95 percent probability. The critical limit is defined as that value which measurements of the background will exceed with a 5 percent probability.

Machine-Compacted Waste – Waste whose volume has been reduced using a mechanical process.

Observable liquid – Liquid that is observable using radiography or VE (Reference 9, Part 1, Section 1.5.18)

Overpack - A container put around another container.

Package – (1) A packaging plus its contents. (2) The reusable Type B shipping container (i.e., TRUPACT-II, TRUPACT-III, HalfPACT, RH-TRU 72-B, and 10-160B) loaded with TRU waste payload containers, which has been prepared for shipment in accordance with the package QA program. (3) In the regulations governing the transportation of radioactive materials, the packaging, together with its radioactive contents, as presented for transport.
Appendix 6 – Glossary (Continued)

Packaging – The reusable Type B shipping container for transport of TRU waste payload containers (i.e., TRUPACT-II, TRUPACT-III, HalfPACT, RH-TRU 72-B, and 10-160B).

Packaging Quality Assurance Program – A site-specific document that defines the quality assurance and quality control activities applicable to usage of the NRC-approved packaging. This program shall meet the requirements of 10 CFR Part 71, Subpart H.

Payload container – The outermost container (i.e., a drum, shielded container, SLB2, SWB, TDOP, or canister) for TRU waste material that is placed in a reusable Type B shipping container (i.e., a TRUPACT-II, TRUPACT-III, HalfPACT, RH-TRU 72-B, and 10-160B) for transport.

Payload assembly – An assembly of payload containers qualified for transport in a TRUPACT-II, HalfPACT, or 10-160B.

Pipe overpack – A packaging configuration consisting of a vented cylindrical pipe component surrounded by dunnage within a vented 55-gallon drum with a rigid polyethylene liner and vented lid.

Plutonium-239 equivalent activity – An equivalent radiotoxic hazard of a radionuclide normalized to ^{239}Pu.

Precision – A measure of mutual agreement among individual measurements of the same property made under prescribed similar conditions; often expressed as a standard deviation or relative percent difference (RPD).

Pyrophoric – Materials that may ignite spontaneously in air or that emit sparks when scratched or struck, especially with materials such as steel. A flammable solid that, under transport conditions, might cause fires through friction or retained heat or that can be ignited readily and, when ignited, burns vigorously and persistently so as to create a serious transportation hazard. Included in the pyrophoric definition are spontaneously combustible materials, water reactive materials, and oxidizers. Examples of nonradioactive pyrophorics are organic peroxides, sodium metal, and chlorates.

Radioassay – Methods used to identify and quantify radionuclides in TRU waste. Radioassay includes NDA and RC.

Radiography – A nondestructive testing method that uses x-rays to inspect and determine the physical form of waste.

Radionuclide – A nuclide that emits radiation by spontaneous transformation.

Remote-Handled transuranic waste – Transuranic waste with a surface dose rate of 200 millirem per hour or greater (Reference 2, Section 2[12]).

RH-TRU Waste Canister – Container that is transported in the RH-TRU 72B Cask.

RH-TRU 72-B Packaging – An NRC-certified Type B transportation packaging used for transportation of RH TRU wastes.

Shielded container – A metal payload container authorized for use within the HalfPACT packaging, that has been tested by DOE to meet DOT Specification 7A Type A requirements. It is approximately the same size as a standard 55-gallon drum, contains one 30-gallon steel drum, and incorporates a nominal 1-inch layer of lead lining to shield waste forms with high gamma energies. Although the shielded container is managed during handling, shipment, storage, and disposal as a CH payload container, the waste contained in a shielded container is characterized and inventoried in the WWIS as RH waste.

Shipper – A TRU waste site that releases an NRC-approved packaging to a carrier for shipment.

Shipping category – A shipping category is defined by the following parameters: chemical composition of the waste (waste type), gas generation potential of the waste material type (quantified by the g-value for hydrogen), and gas release resistance (type of payload container and type and maximum number of confinement layers used).

Sites – Department of Energy TRU waste generator/storage sites.

Standard large box 2 – A specialized metal payload container with a top-loading and a bottom-loading option for use within the TRUPACT-III packaging, that has been tested by DOE to meet DOT Specification 7A Type A requirements.

Standard waste box – A metal payload container authorized for use within the TRUPACT-II or HalfPACT packaging, that has been tested by DOE to meet DOT Specification 7A Type A requirements.

Summary Category Group – Used to segregate TRU mixed wastes into broad groups having similar physical forms. The summary category groups include homogeneous solids (S3000) that are at least 50 percent by volume solid process residues, soil/gravel (S4000) that is at least 50 percent by volume soil/gravel, and debris (S5000) that is at least 50 percent by volume materials that meet the criteria specified in 20.4.1.800 New Mexico Administrative Code (incorporating 40 CFR §268.2(g]). Categorization is based on the Summary Category Group constituting the greatest volume of waste for a waste stream (Reference 9, Attachment C).
Appendix 6 – Glossary (Continued)

Ten-drum overpack – A metal payload container authorized for use within the TRUPACT-II packaging, that has been tested by DOE to meet DOT Specification 7A Type A requirements.

Test Category – Payload containers that do not meet the analytical category decay heat limits or whose concentration of flammable volatile organic compounds (VOCs) in the headspace exceeds 500 ppm are classified as test category (References 23a and 23b, Section 5.2.2).

Trace chemicals/materials – Chemicals/materials that occur individually in the waste in quantities less than 1 weight percent. The total quantity of trace chemicals/materials not listed as allowed materials for a given waste material type in any payload container is restricted to less than 5 weight percent (References 23a and 23b, Section 4.3.1, Reference 41, Section 4.3.1).

TRU isotope – An isotope of any element having an atomic number greater than uranium (i.e., 92).

TRU waste – Waste containing more than 100 nCi of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years, except for (1) high-level radioactive waste, (2) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations, or (3) waste that the NRC has approved for disposal on a case-by-case basis in accordance with 10 CFR Part 61 (Reference 2, Section 2[18]).

TRU mixed waste – TRU waste that is also a hazardous waste as defined by the Hazardous Waste Act and 20.4.1.200 NMAC (incorporating 40 CFR § 261.3) (Reference 9, Part 1, Section 1.5.7).

TRUPACT-II – An NRC-certified Type B transportation packaging used for transportation of CH-TRU wastes.

TRUPACT-III – An NRC-certified Type B transportation packaging used for transportation of CH-TRU wastes in the SLB2 container.

TRUPACT-III Transuranic Waste Authorized Methods for Payload Control (TRUPACT-III TRAMPAC) – The governing document for shipments in the TRUPACT-III packaging (Reference 23b, Section 1).

Verification – The act of authenticating or formally asserting the truth that a process, item, data set, or service is, in fact, that which is claimed. Data verification is the process used to confirm that all review and validation procedures have been completed.
Appendix 6 – Glossary (Continued)

Volatile organic compounds – For the purposes of the TRU waste program, those RCRA-regulated VOCs listed in the WIPP WAP and any additional compounds tentatively identified by VOC analytical procedures used to satisfy program requirements (i.e., any compound containing carbon and hydrogen with any other element that has a vapor pressure of 77.6 milliliters (ml) of mercury (1.5 psia) or greater under actual storage conditions).

Waste Acceptance Criteria – Constraints (limits) on the physical, chemical, and radiological properties of TRU waste and its packaging as determined by WIPP’s authorization basis requirements. TRU waste will not be approved for shipment to and disposal at the WIPP until it has been certified as meeting these criteria. Waste Acceptance Criteria ensure that TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.

Waste Analysis Plan – The waste analysis plan includes test methods, details of planned waste analysis for complying with the general waste analysis requirements of 20.4.1.500 NMAC (incorporating 40 CFR 264.13), a description of the waste shipment screening and verification process, and a description of the QA/QC program. Sites are required to implement the applicable requirements of the WIPP WAP.

Waste characterization – The process of determining that TRU waste meets the requirements of the WAC by the acceptable performance of the activities defined by CBFO-approved site-specific plans.

Waste certification – Formal and documented declaration by sites that waste has been characterized and meets the requirements of the WAC.

Waste matrix code – A DOE-developed coding system for grouping waste streams that have similar matrix constituents, especially for treatment objectives. This coding system allows waste streams within the DOE TRU waste system that have similar physical and chemical waste form properties to be categorized together (Transuranic Waste Baseline Inventory Report - 2004, DOE/TRU-2006-3344).

Waste stream – A waste stream is waste materials that have common physical form, that contain similar hazardous constituents and that are generated from a single process or activity (Reference 9, Appendix C).

WIPP Waste Information System – A computerized data management system used by WIPP to gather, store, and process information pertaining to CH and RH-TRU waste destined for or disposed of at WIPP. The WWIS database is a subsystem of the WDS.
Appendix 7 – Payload Container Integrity Checklist

The Operator is to visually examine 100 percent of the payload container exterior to determine if the payload container meets the criteria of Section 3.2.1. At a minimum, sites shall incorporate the questions and criteria contained in the following checklist into applicable site procedures (see CCP-TP-033, CCP Shipping of CH-TRU Waste). This payload container inspection shall be performed and documented as a part of the TRUPACT-II, TRUPACT-III, or HalfPACT loading process. Any YES answer on the inspection checklist will result in the operator discontinuing the inspection, marking the payload container as unacceptable for shipment, and removal of the payload container from the shippable inventory. Before the rejected container can be shipped, it must undergo appropriate corrective actions (e.g., evaluation, repackaging, overpacking), as applicable. All containers must have an acceptable and complete inspection checklist documenting that it meets the DOT 7A criteria. Personnel complete the following payload container integrity checklist in accordance with procedure CCP-TP-033.

<table>
<thead>
<tr>
<th>CONTAINER EXAMINATION</th>
<th>DISCUSSION OF CRITERIA</th>
<th>COMPLIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the payload container obviously degraded?</td>
<td>Obviously degraded means clearly visible and potentially significant defects in the payload container or payload container surface.</td>
<td>YES</td>
</tr>
<tr>
<td>2. Is there evidence that the payload container is, or has been, pressurized?</td>
<td>Pressurization can be indicated by a fairly uniform expansion of the sidewalls, bottom or top. Past pressurization can be indicated by a notable outward deflection of the bottom or top. Verify that the payload container is not warped.</td>
<td>YES</td>
</tr>
</tbody>
</table>
CONTAINER EXAMINATION

<table>
<thead>
<tr>
<th>CONTAINER EXAMINATION</th>
<th>DISCUSSION OF CRITERIA</th>
<th>COMPLIANCE</th>
</tr>
</thead>
</table>
| 3. Is there any potentially significant rust or corrosion such that wall thinning, pin holes, or breaches are likely or the load bearing capacity is suspect? | Rust shall be assessed in terms of its type, extent, and location. Pitting, pocking, flaking, or dark coloration characterizes potentially significant rust or corrosion. This includes the extent of the payload container surface area covered, thickness, and, if it occurs in large flakes or built-up (caked) areas. Rusted payload containers may not be accepted if:
A.1 Rust is present in caked layers or deposits
A.2 Rust is present in the form of deep metal flaking, or built-up areas of corrosion products
In addition, the location of rust should be noted; for example on a drum: top lid; filter region; locking chine; top one-third, above the second rolling hoop; middle one-third, between the first and second rolling hoops; bottom one-third, below the second rolling hoop; and on the bottom.
Payload containers may still be considered acceptable if the signs of rust show up as:
A.1 Some discoloration on the payload container
A.2 If rubbed would produce fine grit or dust or minor flaking (such that wall thinning does not occur). | YES NO |
| 4. Are any of the following apparent?
A.1 wall thinning
A.2 pin holes
A.3 breaches | Wall thinning, pin holes, and breaches can be a result of rust/corrosion (see discussion for #3). | YES NO |
| 5. Are there any split seams, tears, obvious holes, punctures (of any size), creases, broken welds, or cracks? | Payload containers with obvious leaks, holes or openings, cracks, deep crevices, creases, tears, broken welds, sharp edges or pits, are either breached or on the verge of being breached. Verify that there is no warpage that could cause the container to be unstable or prevent it from fitting properly in the applicable package. | YES NO |
| 6. Is the load-bearing capacity suspect? | The load-bearing capacity could be reduced for excessive rust (see discussion for #3), wall thinning (see discussion for #4), breaches, cracks, creases, broken welds, etc. (see discussion for #5). | YES NO |
Appendix 7 – Payload Container Integrity Checklist (Continued)

<table>
<thead>
<tr>
<th>CONTAINER EXAMINATION</th>
<th>DISCUSSION OF CRITERIA</th>
<th>COMPLIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Is the payload container improperly closed?</td>
<td>YES NO</td>
</tr>
<tr>
<td></td>
<td>Inspect the fastener and fastener ring (chine) if applicable for damage or excessive corrosion. Check the alignment of the fastener to ensure that it is in firm contact around the entire lid and the payload container will not open during transportation.</td>
<td>YES NO</td>
</tr>
<tr>
<td>8.</td>
<td>Are there any dents, scrapes, or scratches that make the payload container’s structural integrity questionable or prevent the top and bottom surfaces from being parallel?</td>
<td>YES NO</td>
</tr>
<tr>
<td></td>
<td>Deep gouges, scratches, or abrasions over wide areas are not acceptable. If top and bottom surfaces are not parallel, this would indicate that the container is warped. Dents should be less than 1/4 in. deep by 3-inches long and between ½ in. to 6-inches wide. All other dents must be examined to determine impact of structural integrity.</td>
<td>YES NO</td>
</tr>
<tr>
<td>9.</td>
<td>Is there discoloration which would indicate leakage or other evidence of leakage of material from the payload container?</td>
<td>YES NO</td>
</tr>
<tr>
<td></td>
<td>Examine the payload container regions near vents, top lid fittings, bottom fittings, welds, seams and intersections of one or more metal sheets or plates. Payload containers must be rejected if evidence of leakage is present.</td>
<td>YES NO</td>
</tr>
<tr>
<td>10.</td>
<td>Is the payload container bulged?</td>
<td>YES NO</td>
</tr>
<tr>
<td></td>
<td>For the purposes of this examination, bulging is indicated by:</td>
<td>YES NO</td>
</tr>
<tr>
<td></td>
<td>A.1 A fairly uniform expansion of the sidewalls, bottom, or top (e.g., in the case of a drum, either the top or bottom surface protrudes beyond the planar surface of the top or bottom ring.</td>
<td>YES NO</td>
</tr>
<tr>
<td></td>
<td>A.2 A protrusion of the side wall (e.g., in the case of a drum, beyond a line connecting the peaks of the surrounding rolling hoops or a line between a surrounding rolling hoop and the bottom or top ring), or</td>
<td>YES NO</td>
</tr>
<tr>
<td></td>
<td>A.3 Expansion of the sidewall (e.g., in the case of a drum, such that it deforms any portion of a rolling hoop).</td>
<td>YES NO</td>
</tr>
</tbody>
</table>
Appendix 7 – Payload Container Integrity Checklist (Continued)

References to Appendix 7

Appendix 8 – Payload Management of TRU Alpha Activity Concentration

1.0 Scope

The policies and methods for the management of TRU alpha activity concentration within each TRU waste payload container disposed of at the WIPP are set out in this appendix. They are based on the definition of TRU waste in the WIPP LWA, Public Law 102-579. The LWA defines TRU waste as:

“…waste containing more than 100 nanocuries of alpha emitting transuranic isotopes per gram of waste, with half lives greater than 20 years…” (Sec. 2[18]).

This appendix pertains specifically to the payload management of TRU alpha activity concentration of waste containers selected for overpacking.

2.0 Policies

The Office of National TRU Program has established the following policies for managing TRU alpha activity concentration in compliance with the LWA:
(References 1, 2, and 3)

- The TRU alpha activity concentration limit for TRU waste (> 100 nCi/g) applies to the TRU waste stream as a whole.

- Waste containers belonging to a TRU waste stream may vary in their TRU alpha activity concentration, some containing > 100 nCi/g and some containing < 100 nCi/g. Using process knowledge in combination with radioassay measurements to determine the presence of TRU isotopes within the waste stream, generator sites define a TRU waste stream based on its potential to include waste containers with a TRU alpha activity concentration in excess of 100 nCi/g.

- Waste containers belonging to the same TRU waste stream may be overpacked into a payload container (e.g., SWB or TDOP) provided the TRU alpha activity concentration of the payload container exceeds 100 nCi/g.
Appendix 8 – Payload Management of Transuranic (TRU) Alpha Activity Concentration (Continued)

3.0 Prerequisites for Implementation

- Each waste container selected for payload management must be part of the TRU waste stream identified in the AK Summary Report for that waste stream (References 2 and 3).

- Sites shall submit to the CBFO, for its review and approval, applicable plans and procedures for making TRU waste determinations based on payload management practices that involve the overpacking of waste containers (Reference 2).

- CBFO will notify the EPA of sites seeking such authorization prior to CBFO’s approval of a site to manage TRU alpha activity concentration using payload management. The WIPP will not accept payload managed waste for disposal until EPA has received notice (Reference 3).

4.0 Implementation and Practice

- Each TRU waste stream selected for payload management must include in its AK Summary Report an estimate of the total waste volume and the percentage of the waste volume that is above and below 100 nCi/g (It should be noted that this information, although based on the best available AK information, is preliminary and subject to the performance of WIPP certified NDA measurements and cannot and will not be used as a measure of AK accuracy) (Reference 3).

- Each waste container selected for payload management must contain at least one TRU isotope (e.g., Pu-238, Pu-239, Pu-240, Pu-242) whose activity exceeds the LLD of the radioassay system used to characterize the waste (References 2 and 3). The applicability of LLD will vary from system to system and may be on a container basis. Sections 3.3.1 and A.3 of this document provide the applicable requirements for determining and reporting LLDs.

- Each waste container selected for payload management may only be overpacked into a payload container (e.g., SWB or TDOP) with other waste containers from the same TRU waste stream.

- The TRU alpha activity concentration of the payload container is determined according to Sections 3.3.3 and 4.3.3 of this document.
Appendix 8 – Payload Management of Transuranic (TRU) Alpha Activity Concentration (Continued)

5.0 References

2. Letter to Mr. Frank Marcinowski (Director, Office of Radiation and Indoor Air, U.S. Environmental Protection Agency) from Dr. Ines R. Triay (Manager, Carlsbad Field Office, U.S. Department of Energy), August 4, 2003

3. Letter to Dr. Ines R. Triay (Manager, Carlsbad Field Office, U.S. Department of Energy) from Mr. Frank Marcinowski (Director, Office of Radiation and Indoor Air, U.S. Environmental Protection Agency), August 8, 2003
Appendix 9 – Radiography Requirements for Contact-Handled Transuranic Waste

9.1 Radiography Requirements for Contact-Handled Waste

Radiography aids in the examination and identification of containerized waste. All activities required to achieve radiography objectives shall be described in site Program documents as identified in Appendix 4, Table B-2. These documents shall include instructions specific to the radiography systems used at the site. This appendix applies to radiography of CH waste; requirements for radiography of RH waste are found in the WCPIP.

A radiography system (e.g., real-time radiography or digital radiography/computed tomography), normally consists of an x-ray producing device, an imaging system, an enclosure for radiation protection, a waste container handling system, an audio/video recording system, and an operator control and data acquisition station. Although these six components are required, it is expected there will be some variation within a given component between sites. The radiography system shall have controls or an equivalent process which allow the operator to control image quality. On some radiography systems, it should be possible to vary the voltage between 150 and 400 kilovolts to provide an optimum degree of penetration through the waste.

To perform radiography, the waste container is scanned while the operator views the video monitor. An audio/video recording shall be made of the waste container scan and is maintained as a non-permanent record. A radiography data form shall also be used to document the Waste Matrix Code; verify there are no ignitable, reactive, or corrosive wastes present by verification that there is no observable liquid in excess of the waste acceptance criteria and there are no compressed gases; and estimated waste material parameter weights of the waste.

The estimated waste material parameter and weights for CH waste should be determined by compiling an inventory of waste items and packaging materials. The items on this inventory should be sorted by waste material parameter and combined with a standard weight look-up table to provide an estimate of waste material parameter weights.

Containers whose contents prevent full examination of the remaining contents shall be subject to visual examination unless the site certifies that visual examination would provide no additional relevant information for that container using acceptable knowledge for the waste stream.

For containers which contain classified shapes and undergo radiography, the radiography recording shall be considered classified information. The radiography data forms will not contain classified information.
Appendix 9 – Radiography Requirements for Contact-Handled Waste (Continued)

9.2 Radiography Training

The radiography system involves qualitative and semi-quantitative evaluations of visual displays. Operator training and experience are the most important considerations for assuring quality controls in regard to the operation of the radiography system and for interpretation and disposition position of radiography results. Only trained and qualified radiography operators shall be allowed to operate radiography equipment.

Standardized training and qualification requirements for radiography operators shall be based upon existing industry standard training requirements and shall comply with the training and qualification requirements of this document and the QAPD.

The site shall develop a training program that provides radiography operators with both formal and OJT. Radiography operators shall be instructed in the specific waste generating practices, typical packaging configurations, and associated waste material parameters expected to be found in each Waste Matrix Code at the site. The OJT and apprenticeship shall be conducted by an experienced, qualified radiography operator prior to qualification of the training candidate. The training programs shall be site-specific due to differences in equipment, waste configurations, and the level of waste characterization efforts. For example, certain sites use digital radiography equipment, which is more sensitive than real-time radiography equipment. In addition, the particular physical forms and packaging configurations at each site will vary; therefore, radiography operators shall be trained on the types of waste that are generated, stored, or characterized at that particular site.

The training program shall contain the following elements:

- Project Requirements
- State and Federal Regulations
- Basic Principles of Radiography
- Radiographic Image Quality
- Radiographic Scanning Techniques
- Application Techniques
- Radiography of Waste Forms
- Standards, Codes, and Procedures for Radiography
- Site-Specific Instruction
Appendix 9 – Radiography Requirements for Contact-Handled Waste (Continued)

The training program shall also contain OJT which addresses:

- System Operation
- Identification of Packaging Configurations
- Identification of Waste Material Parameters
- Weight and Volume Estimation
- Identification of Prohibited Items

Radiography test drums shall contain items common to the waste streams to be generated and stored at the site. The test drums shall be divided into layers with varying packing densities or different drums may be used to represent different situations that may occur during radiography examination at the site. Test drums shall be representative of the waste matrix codes for which WSPF approval is sought. Test drums shall be examined and successfully identified prior to waste stream shipment. The following is a list of required elements of a radiography test drum:

- A punctured aerosol can
- Pigtails on polyliners (horsetail bag)
- Pair of coveralls
- Empty bottle
- Irregular shaped pieces of wood
- Empty one-gallon paint can
- Full container
- Aerosol can with fluid
- One-gallon bottle with three tablespoons of fluid
- One-gallon bottle with one cup of fluid (upside down)
- Leaded glove or leaded apron
- Wrench

These items shall be successfully identified by the operator as part of the qualification process. Qualifications of radiography operators shall, at a minimum, encompass the following requirements:

- Successfully pass a comprehensive exam based upon training enabling objectives. The comprehensive exam will address all of the radiography operations, documentation, characterization and procedural elements stipulated in this WAC.

- Perform a practical capability demonstration in the presence of appointed site radiography SME. The person will be an experienced radiography operator who is also qualified as an OJT trainer.
Appendix 9 – Radiography Requirements for Contact-Handled Waste (Continued)

Re-qualifications of operators are based on evidence of continued satisfactory performance (primarily audio/video recording reviews), and shall be done at least every two years. Unsatisfactory performance will result in disqualification. Unsatisfactory performance is defined as the misidentification of a prohibited item in a training drum or a score of less than 80 percent on the comprehensive exam. Retraining and demonstration of satisfactory performance are required before a disqualified operator is again allowed to operate the radiography system.

A training drum with internal containers of various sizes shall be scanned semiannually by each operator. The audio/video recording shall then be reviewed by a supervisor to ensure that operator's interpretations remain consistent and accurate. Imaging system characteristic shall be verified on a routine basis.

9.3 Quality Control

Independent replicate scans and replicate observations of the video output of the radiography process shall be performed under uniform conditions and procedures. Independent replicate scans shall be performed on one waste container per day or once per testing batch, whichever is less frequent. Independent observation of one scan (not the replicate scan), shall be made once per day or once per testing batch, whichever is less frequent, by a qualified radiography operator other than the individual who performed the first examination. A testing batch is a suite of waste containers undergoing radiography using the same testing equipment. A testing batch can be up to 20 waste containers without regard to waste matrix.

Oversight functions include periodic audio/video recording reviews of accepted waste containers by a qualified radiography operator other than the operator who dispositioned the waste container. The results of this independent verification shall be made available to the radiography operator.

9.4 Data Review and Validation

A testing BDR for data validation and QA purposes is required when radiography is used to characterize waste. A testing BDR (or equivalent), includes data pertaining to radiography for up to 20 waste containers or samples.
Appendix 9 – Radiography Requirements for Contact-Handled Waste (Continued)

All measurement data is reviewed and approved by qualified personnel prior to being reported. Reviews shall meet the requirements of the QAPD. At a minimum, the data is reviewed by an independent technical reviewer and approved by the SPM. This review is performed by an individual other than the data generator who is qualified to have performed the initial work. The independent technical reviewer shall verify, at a minimum, the following information:

- Data generation and reduction is conducted in a technically correct manner in accordance with the methods used (verification of procedure and revision).

- Data is reported in the proper units and correct number of significant figures.

- Calculations are verified by a valid calculation program, a spot check of verified calculation programs, and/or 100 percent check of all hand calculations.

- Values that are not verifiable to within rounding or significant difference discrepancies shall be rectified prior to completion of independent technical review.

- The data is reviewed for transcription errors.

- The testing QA documentation for BDRs is complete and includes, as applicable, raw data, calculation records, calibration records (or references to an available calibration package), list of containers in the batch, and QC sample results. Corrective action is taken to ensure that all BDRs are complete and include all necessary raw data prior to completion of the independent technical review.

- QC sample results are within established control limits and, if not, the data have been appropriately dispositioned using the nonconformance process. This includes complete summarized qualitative and quantitative data for all waste containers with data flags or qualifiers.

- Radiography tapes are reviewed (independent observation) on a waste container basis at a minimum of once per testing batch or once per day of operation, whichever is less frequent.

- The container contains no indication that there is liquid in excess of this waste acceptance criteria, no indication of compressed gas, no indication of incompatible wastes, and the physical form matches the Waste Matrix Code.

- The appropriate QAOs have been met.
Appendix 9 – Radiography Requirements for Contact-Handled Waste (Continued)

All data must be approved by the SPM. The SPM shall verify, at a minimum, the following information:

- Data generation-level independent technical review, validation, and verification have been performed as evidenced by the completed review checklists and appropriate signature release. Batch data review checklists are complete.

- BDRs are complete and data are properly reported (e.g., data are reported in the correct units and with the correct number of significant figures).

- Data meet all applicable Quality Assurance Objectives.

The SPM shall provide a SPM Summary and a Data Validation Summary for each BDR. These reports may be combined and shall consist of a detailed checklist documenting that the batch has been adequately reviewed and that the data meet program objectives.

To ensure that data of known and documented quality are generated, each participating measurement facility shall implement a documented facility QA program. Facility QA programs shall specify qualitative and quantitative acceptance criteria for the QC checks of this program, and corrective actions to be taken when these criteria are not satisfied. Only appropriately trained and qualified personnel shall be allowed to perform data validation/review.
Appendix 10 – Visual Examination Requirements for Contact-Handled Transuranic Waste

10.1 Visual Examination Requirements for Contact-Handled Waste

This appendix applies to visual examination requirements for CH waste; requirements for visual examination of RH waste are found in the WCPIP.

Contact handled waste container contents may be verified directly by performing VE on the waste container contents. Visual examination may also be performed during packaging or repackaging of waste. The CCP performs VE in accordance with the procedures found in Appendix 4, Table B-3.

VE does not require audio/video recordings of the examination; the examination is documented on a data form and certified with signatures from two qualified VE operators. If the second operator cannot verify the descriptions of the first operator, corrective actions will be taken in accordance with the established QA Program.

VE shall be conducted to describe all contents of a waste container and includes estimated or measured weights of the contents. The description shall clearly identify all discernible waste items, packaging materials, and waste material parameters in the waste container. VE activities are documented on VE data forms.

VE video/audio recordings of containers that contain classified shapes shall be considered classified information. Visual examination data forms will not contain classified information.
Appendix 10 – Visual Examination Requirements for Contact-Handled Transuranic Waste (Continued)

10.2 Visual Examination Training

VE shall consist of a semi-quantitative and qualitative evaluation of the waste container contents and may be recorded on audio/video recording media. Standardized training for VE includes both formal classroom training and OJT. Personnel performing VE shall be instructed in the specific waste generating processes, typical packaging configurations, and the waste material parameters expected to be found in each Waste Matrix Code at the site. The OJT and apprenticeship shall be conducted by an operator experienced and qualified in VE prior to qualification of the candidate. The training shall be site-specific to include the various waste configurations at the site. For example, the particular physical forms and packaging configurations at each site will vary so operators shall be trained on types of waste that are generated, stored, or characterized at that particular site. VE operators need only be trained to the physical forms and packaging configurations used on the waste stream that they are examining and packaging. VE personnel shall be requalified once every two years.

Training shall address the following required elements:

- Project Requirements
- State and Federal Regulations
- Application Techniques
- Site-Specific Instruction

Training shall also include OJT that addresses:

- Identification of Packaging Configurations
- Identification of Waste Material Parameters
- Weight and Volume Estimation
- Identification of Prohibited Items

The SPM appoints each Visual Examination Expert (VEE) and ensures the appointment is facility-specific. The VEE shall be familiar with the waste generating processes that have taken place at the site and will also be familiar with all types of waste being characterized at that site. The VEE shall be responsible for the overall direction and implementation of the visual examination at that facility. The VEE shall receive training in the same elements as the visual examination personnel, including both formal training and OJT. Qualification of a VEE shall be based on familiarity with waste generating processes, familiarity with the types of waste being characterized, and meeting the training requirements discussed above. Consistent with other VE personnel, the VEE shall be requalified once every two years. CCP-QP-002 specifies the selection, qualification and training requirements for the VEE.
Appendix 10 – Visual Examination Requirements for Contact-Handled Transuranic Waste (Continued)

10.3 Method

Visual examination recorded on video/audio media meet the following minimum requirements:

- The audio/video media shall record the waste packaging event for the container such that all waste items placed into the container are recorded in sufficient detail and shall contain an inventory of waste items in sufficient detail that another trained VE operator can identify the associated waste material parameters.

- The video/audio media shall capture the waste container identification number.

- The personnel loading the waste container shall be identified on the video/audio media or on packaging records traceable to the loading of the waste container.

- The date of loading of the waste container will be recorded on the video/audio media or on packaging records traceable to the loading of the waste container.

VE performed using two operators shall meet the following minimum requirements:

- At least two site personnel who witnessed the packaging of the waste shall approve the data forms or packaging records attesting to the contents of the waste container.

- The data forms or packaging records shall contain an inventory of waste items in sufficient detail that a trained VE operator can identify the associated waste material parameters.

- The container identification number shall be recorded on the data forms or packaging records.

A description of the waste container contents is recorded on a VE data form. The description clearly identifies all waste material parameters and provides enough information to estimate weights of waste material parameters. In cases where bags are not opened, a brief written description of the contents of the bags shall contain an estimate of the amount of each waste type in the bags. The written records of VE are supplemented with the audio/videotape recording, if applicable.
Appendix 10 – Visual Examination Requirements for Contact-Handled Transuranic Waste (Continued)

10.4 Data Review and Validation

A testing BDR for data validation and QA purposes is required when VE is used to characterize waste. A BDR (or equivalent), includes data pertaining to VE for up to 20 waste containers or samples.

All measurement data is reviewed and approved by qualified personnel prior to being reported. Reviews meet the requirements of the QAPD. At a minimum, the data is reviewed by an independent technical reviewer and approved by the SPM. This review is performed by an individual other than the data generator who is qualified to have performed the initial work. The independent technical reviewer shall verify, at a minimum, the following information:

- Data generation and reduction were conducted in a technically correct manner in accordance with the methods used (verification of procedure and revision).
- Data were reported in the proper units and correct number of significant figures.
- Calculations have been verified by a valid calculation program, a spot check of verified calculation programs, and/or 100 percent check of all hand calculations.
- Values that are not verifiable to within rounding or significant difference discrepancies must be rectified prior to completion of independent technical review.
- The data have been reviewed for transcription errors.
- The testing QA documentation for BDRs is complete and includes, as applicable, raw data, calculation records and list of containers in the batch. Corrective action will be taken to ensure that all BDRs are complete and include all necessary raw data prior to completion of the independent technical review.
- The container contains no indication that there is liquid in excess of this waste acceptance criteria, no indication of compressed gas, no indication of incompatible wastes, and the physical form matches the Waste Matrix Code.
- The appropriate QAOs have been met.
Appendix 10 – Visual Examination Requirements for Contact-Handled Transuranic Waste (Continued)

All data must be approved by the SPM. The SPM shall verify, at a minimum, the following information:

- Data generation-level independent technical review, validation, and verification were performed as evidenced by the completed review checklists and appropriate signature release. Batch data review checklists are complete.

- BDRs are complete and data are properly reported (e.g., data are reported in the correct units and with the correct number of significant figures).

- Data meet all applicable Quality Assurance Objectives.

The SPM shall provide a SPM Summary and a Data Validation Summary for each BDR. These reports may be combined and shall consist of a detailed checklist documenting that the batch has been adequately reviewed and that the data meet program objectives.

To ensure that data of known and documented quality are generated, each participating measurement facility shall implement a documented facility QA program. Facility QA programs shall specify qualitative and quantitative acceptance criteria for the QC checks of this program, and corrective actions to be taken when these criteria are not satisfied. Only appropriately trained and qualified personnel shall be allowed to perform data validation/review.
CCP-TP-068

Revision 9

CCP
Standardized Container Management

EFFECTIVE DATE: 01/30/2013

Mike Ramirez
PRINTED NAME
APPROVED FOR USE
<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Date Approved</th>
<th>Description of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>03/23/2005</td>
<td>Initial issue.</td>
</tr>
<tr>
<td>1</td>
<td>04/15/2005</td>
<td>Revised to incorporate changes to address CBFO DRR comments.</td>
</tr>
<tr>
<td>2</td>
<td>04/13/2006</td>
<td>Revised to provide a consistent and standardized container management procedure.</td>
</tr>
<tr>
<td>3</td>
<td>10/19/2006</td>
<td>Revised in response to CAR No.: 06-037.</td>
</tr>
<tr>
<td>5</td>
<td>09/20/2007</td>
<td>Revised to incorporate changes to Attachment 1 and add Oakridge National Laboratory (ORNL) requirements.</td>
</tr>
<tr>
<td>6</td>
<td>07/13/2008</td>
<td>Revised to clarify the order of performance for efficiency and to reflect the fact that waste containers will be sampled by SUMMA® and Flammable Gas Analysis (FGA) as the Idaho National Laboratory (INL) Laboratory no longer provides hydrogen or methane results for SUMMA® samples.</td>
</tr>
<tr>
<td>7</td>
<td>05/28/2010</td>
<td>Revised in response to Corrective Action Report (CAR)-Los Alamos National Laboratory (LANL)-0006-09 and to clarify when a waste container must be put through container management.</td>
</tr>
<tr>
<td>8</td>
<td>09/28/2010</td>
<td>Revised to clarify instructions.</td>
</tr>
<tr>
<td>9</td>
<td>01/30/2013</td>
<td>Revised to incorporate elements of Central Characterization Program (CCP) Standing Order CCP-SO-096 Rev. 0 for the application of administrative hold on containers when applying a Vendor Project Manager (VPM) HOLD indicator tag and clarified visual examination (VE) operator requirements for traveler and VE data sheet.</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1.0 **PURPOSE** ... 4
 1.1 Scope .. 4

2.0 **REQUIREMENTS** .. 5
 2.1 References ... 5
 2.2 Training Requirements .. 5
 2.3 Procedure Implementation Requirements ... 5
 2.4 Equipment List ... 7
 2.5 Precautions and Limitations ... 7
 2.6 Prerequisite Actions ... 7
 2.7 Definitions ... 7

3.0 **RESPONSIBILITIES** ... 8
 3.1 Container Management Personnel .. 8
 3.2 VPM/Designee ... 8
 3.3 Site Project Manager (SPM) ... 9
 3.4 NDE Operator .. 9
 3.5 Nondestructive Assay (NDA) Operator .. 9
 3.6 HSG/Flammable Gas Analysis (FGA) Operator .. 10
 3.7 Gas Generation Testing Program (GGTP) Operator .. 10
 3.8 VE Operator .. 10
 3.9 Host Facility Waste Handling Personnel .. 10
 3.10 Facility Records Custodian ... 10

4.0 **PROCEDURE** ... 11
 4.1 Scale Calibration Check .. 11
 4.2 Retrievably Stored Waste Container Acceptance .. 12
 4.3 Container Weighing ... 14
 4.4 Container Traveler Initiation .. 15
 4.5 NDE Process .. 17
 4.6 NDA Process .. 18
 4.7 Headspace Gas (HSG)/Flammable Gas Analysis (FGA) Process 19
 4.8 Gas Generation Testing (GGT) ... 21
 4.9 Characterization Completion .. 22

5.0 **RECORDS** ... 23

LIST OF ATTACHMENTS

Attachment 1 – CCP Container Traveler (Label) ... 24
Attachment 2 – Container Inspection/Weight Report ... 25
Attachment 3 – Structural Integrity and Distortion Inspections Criteria 26
1.0 PURPOSE

This procedure describes and implements the Central Characterization Program (CCP) management, control, and tracking of transuranic (TRU) waste containers during the characterization process.

1.1 Scope

This procedure applies to personnel who support CCP TRU waste characterization activities at various Host sites. The Host site shall use their procedures for container movement and handling. Container tracking and management through CCP activities will be conducted using this procedure.
2.0 REQUIREMENTS

2.1 References

Baseline Documents

- CCP-PO-001, CCP Transuranic Waste Characterization Quality Assurance Project Plan
- CCP-PO-002, CCP Transuranic Waste Certification Plan
- CCP-PO-003, CCP Transuranic Authorized Methods for Payload Control (CCP CH-TRAMPAC)
- CCP-QP-005, CCP TRU Nonconforming Item Reporting and Control

Referenced Documents

- CCP-QP-008, CCP Records Management

2.2 Training Requirements

2.2.1 None.

2.3 Procedure Implementation Requirements

NOTE

The requirements listed in Section 2.3 provide each site with guidance to implement the standardized instruction in Section 4.0.

2.3.1 Within the constraints of this procedure and in order to meet operational needs, the Vendor Project Manager (VPM)/Designee may direct containers as required to allow for process efficiencies or corrective action for nonconforming conditions. Attachment 1, CCP Container Traveler (Label) serves as the container status indicator throughout characterization activities.

2.3.2 If a Nonconformance Report (NCR) is initiated at any time in the CCP process (from the initial introduction of the container into the CCP process to shipment of the container to the Waste Isolation Pilot Plant [WIPP]), the affected containers shall have a Hold Tag applied and be physically segregated if practical. Normally, the container(s) will not continue through the characterization process. If this is NOT the case, limitations or actions required in the approved NCR disposition shall be included on the NCR Hold Tag. In NO case, shall the container(s) proceed to shipment until the NCR disposition is complete.
2.3.3 NO retrievably stored (Legacy) waste container may enter the normal characterization process (i.e., real-time radiography [RTR], nondestructive assay [NDA], flammable gas analysis [FGA]/head space gas [HSG]) without a completed Attachment 2, Container Inspection /Weight Report. Retrievably stored (Legacy) waste containers must be characterized at nondestructive examination (NDE) first, unless otherwise directed by the VPM/Designee.

2.3.4 The inspection criteria in Attachment 3, Structural Integrity and Distortion Inspections Criteria, are used as a guide to determine if the container can be safely handled in the characterization activities. Containers that DO NOT meet container integrity requirements and are NOT safe to handle, shall be returned to the Host site. Containers that are unsatisfactory for Structural Integrity and Distortion Inspection, but are safe to handle, may be processed through the characterization activities.

2.3.5 Steps 4.2.1[A] through 4.4.1[D] may be performed in any order to make the inspection more efficient. Sub-steps of steps 4.2.1 through 4.2.5 must be performed as written. Step 4.2 may be performed while the drum is sitting on the scale to allow the weight to stabilize as long as the bottom of the drum has been inspected for integrity prior to placing on the scale.

2.3.6 Retrievably stored waste containers provided to the characterization process are normally stored in unheated storage areas. The VPM will determine if outside temperature dropped below the freezing temperature of water (32°F) during the 24 hours prior to delivery of the retrievably stored waste containers. Based on this information, the VPM will determine the need to heat the incoming containers and how long to heat the containers prior to NDE to ensure no frozen liquids exist in the waste container.

2.3.7 Not all characterization activities documented in Section 4.0 are conducted in each CCP characterization process. Container Management personnel will N/A characterization activities NOT performed at their site.

2.3.8 CCP will transfer sludge and soil/gravel containers selected for coring and solids samples analysis to outside programs, if necessary.

2.3.9 Attachment 1 may be a label or a paper copy on the container, in a protective sheet holder, as necessary.
2.3.10 Containers that are required to be reevaluated by another characterization process based on an NCR generated by the first process, do not require a new container traveler be placed on the container. The second process will still be required to report container and status to the VPM per the applicable step.

2.4 Equipment List

2.4.1 Calibrated scale.

2.4.2 Scale check weight(s).

2.5 Precautions and Limitations

2.5.1 IF steps in this procedure CAN NOT be completed as written, THEN work must be STOPPED, equipment placed in a safe configuration, AND the VPM/Desigee notified.

2.5.2 Workers who will be working in a radiation area must have read and signed that they understand the applicable authorized documents (e.g., Radiation Work Permit [RWP], etc.) as implemented by the Host site.

2.5.3 The VPM/Desigee will ensure containers characterized on Non-Certified equipment or under non-certified conditions (e.g., a higher calibration limit requiring a Tier 1 approval) at a certified site are controlled by a VPM Hold Tag.

2.6 Prerequisite Actions

2.6.1 None.

2.7 Definitions

2.7.1 None.
3.0 RESPONSIBILITIES

3.1 Container Management Personnel

NOTE
Container Management personnel may be CCP and/or Host site personnel as determined by CCP and the Host facility.

3.1.1 Verifies containers, or parent containers, are on the acceptable knowledge (AK) Tracking Spreadsheet.

3.1.2 Verifies containers have a legible radiological label/tag with a radiation dose equivalent rate of less than 200 millirem/hour (mrem/hr).

3.1.3 Performs container integrity inspection using Attachment 3, as a guide and documents on Attachment 2.

3.1.4 Performs container filter inspection and documents results on Attachment 2.

3.1.5 Performs scale calibration check and container weighing.

3.1.6 Records container weight information on Attachment 2.

3.1.7 Completes and provides Attachment 2 to the VPM/Designee.

3.1.8 Enters the Gross Weight, Waste Stream ID, and the Container ID Number on Attachment 1.

3.1.9 Affixes an Attachment 1 to containers designated for CCP characterization activities.

3.1.10 Provides direction to move containers, as required.

3.1.11 Assists with the segregation of deficient containers.

3.1.12 Assists with the segregation of CERTIFIED containers ready to be shipped for final disposal.

3.2 VPM/Designee

3.2.1 Schedules container movements with the Host site.
3.2.2 Provides the technical supervision for the following:

[A] Operation and calibration check of the container weighing scales.

[B] Container filter inspections.

[C] Container integrity inspections.

3.2.3 Ensures that containers requiring visual examination (VE) for Previously Packaged Waste, are annotated on Attachment 1.

3.2.4 Ensures that containers selected for Gas Generation Testing (GGT), if required, are annotated on Attachment 1.

3.2.5 Reviews Attachment 2.

3.3 Site Project Manager (SPM)

3.3.1 Selects containers for Waste Analysis Plan (WAP)-compliant HSG sampling (S5000 waste streams) and coring/solids sampling analysis (S3000 and S4000 waste streams).

3.3.2 Notifies the VPM/Designee of selections for these activities.

3.4 NDE Operator

3.4.1 Records and updates the applicable NDE information on Attachment 1.

3.4.2 Provides the container processing information (Container ID Number, Batch Data Report [BDR] Number, NCR Number if applicable, and reason for NCR) to the VPM/Designee.

3.5 Nondestructive Assay (NDA) Operator

3.5.1 Records and updates the applicable NDA information on Attachment 1.

3.5.2 Provides the container processing information (Container ID Number, BDR Number, NCR Number if applicable, and reason for NCR) to the VPM/Designee.
3.6 HSG/Flammable Gas Analysis (FGA) Operator

3.6.1 Records and updates the applicable HSG/FGA information on Attachment 1.

3.6.2 Provides the container processing information (Container ID Number, BDR Number, NCR Number if applicable, and reason for NCR) to the VPM/Designee.

3.7 Gas Generation Testing Program (GGTP) Operator

3.7.1 Records that GGT Sampling and Analysis is complete on Attachment 1.

3.7.2 Provides the container processing information (Container ID Number, BDR Number, NCR Number if applicable, and reason for NCR) to the VPM/Designee.

3.8 VE Operator

3.8.1 Ensures a new Attachment 1 is on the container after VE is completed.

3.8.2 Records and updates the applicable VE information on Attachment 1.

3.8.3 Provides the container processing information (Container ID Number, BDR Number, NCR Number if applicable, and reason for NCR) to the VPM/Designee.

3.9 Host Facility Waste Handling Personnel

3.9.1 Performs movement of containers to/from the characterization units and container staging/storage areas.

3.10 Facility Records Custodian

3.10.1 Receives, processes, and transmits all records generated by this procedure in accordance with CCP-QP-008, *CCP Records Management*.
4.0 PROCEDURE

NOTE
Before implementing this procedure, see Procedure Implementation Requirements in Section 2.3.

4.1 Scale Calibration Check

4.1.1 On each day the scale is used, perform the following:

[A] IF the scale is an electronic scale, THEN either verify the scale is turned ON, OR turn the power ON to the scale.

[B] Verify the following, AND record on Attachment 2:
 - [B.1] Scale ID #
 - [B.2] Location
 - [B.3] Scale Calibration Due Date
 - [B.4] Scale Calibration Date Valid (YES/NO)

[C] Check that the scale reads zero when NOT loaded.
 - [C.1] IF the scale DOES NOT read zero, THEN re-zero the scale in accordance with the manufacturer’s instructions.

[D] Perform a calibration check to verify the scale response is satisfactory as follows:
 - [D.1] Place a known Check Weight on the scale, AND verify the scale reads within the accuracy of the calibration (as listed on the calibration sticker or data sheet, as applicable).

[E] IF the scale calibration check is satisfactory, THEN circle SAT on Attachment 2.

[F] IF the scale reads outside of the calibration range, THEN SUSPEND WORK, circle UNSAT on Attachment 2, AND notify the VPM/Designee.
4.2 Retrievably Stored Waste Container Acceptance

Container Management Personnel

4.2.1 Verify Container ID is on the AK Tracking Spreadsheet.

[A] **IF** Container ID is **NOT** on the AK Tracking Spreadsheet, **THEN** **DO NOT** accept the container, contact the VPM/Designee, **AND** return the container to the Host site.

4.2.2 Record Container ID on Attachment 2.

4.2.3 Determine that the container is safe to handle by performing a container integrity inspection, using Attachment 3 as a guide.

[A] **IF** NO can be applied to all of the questions on Attachment 3, **THEN** circle **YES** on Attachment 2, **AND** proceed with the inspection.

[B] **IF** YES can be applied to any question on Attachment 3, **THEN** notify the VPM/Designee.

VPM/Designee

[B.1] Inspect the suspect container in coordination with appropriate Host site personnel.

Container Management Personnel

[B.2] **IF** the VPM/Designee determines that the container can be safely handled in the characterization activities, **THEN** circle YES on Attachment 2, document the VPM/Designee determination in the Comments section, **AND** proceed with the inspection.

[G] Return the Check Weight to its storage location.

[H] Initial and date Attachment 2.
4.2.4 Perform container filter inspection, AND document on Attachment 2:

[A] Check container filter vent(s) are legibly marked with:

[A.1] Manufacturer AND date of manufacture, lot number, or serial number, AND record all data available on Attachment 2.

[B] Check filter for proper gasket seating, tightness, AND height above container as follows:

[B.1] Filter gasket is slightly compressed, when visible.

[B.2] Filter is snug against container.

[B.3] Filter is NOT extended excessively above the top rim of container.

[C] IF the filter vent(s) meets the criteria listed in steps 4.2.4[A] through 4.2.4[B.3], THEN circle YES on Attachment 2, AND proceed with the inspection.

[D] IF the filter vent(s) DOES NOT meet the criteria listed in steps 4.2.4[A] through 4.2.4[B.3], THEN DO NOT accept the container, contact the VPM for further direction.
4.2.5 Inspect each container for a completed radiological label/tag, AND ensure the completed radiological label/tag is legible and records a radiation dose equivalent of less than 200 mrem/hr.

[A] IF radiological label/tag or survey reports less than 200 mrem/hr and is legible and complete, THEN circle SAT on Attachment 2, AND proceed with the inspection.

[B] IF NO radiological label/tag is attached to the container, THEN SUSPEND WORK on the container, and perform the following:

[B.1] Notify the VPM/Designee
[B.2] Request a radiation survey be performed
[B.3] Verify that a new radiological label/tag is attached
[B.4] Repeat step 4.2.5[A].

[C] IF radiological label/tag or survey reports greater than or equal to 200 mrem/hr, THEN SUSPEND WORK on the container, notify the VPM/Designee, return the container to the Host site, AND circle UNSAT on Attachment 2.

NOTE
This information must be available before characterization of the container through NDA.

Container Management Personnel

4.3 Container Weighing

4.3.1 Load the container onto the scale, AND allow the scale reading to stabilize.

4.3.2 Record the container’s Gross Weight (kilogram [kg]) on Attachment 2.

4.3.3 Initial and date Attachment 2 for obtaining the gross weight.

4.3.4 Remove the container from the scale.
4.4 Container Traveler Initiation

4.4.1 IF the container is Legacy waste, THEN perform the following:

[A] Enter the Container ID Number on Attachment 1, **AND** initial and date.

[B] Enter Waste Stream ID on Attachment 1, **AND** initial and date Attachment 1.

[C] Record the container’s Gross Weight (kg) on Attachment 1 from Attachment 2, **AND** initial and date.

[D] Affix Attachment 1 label on the container, in a protective sheet holder, as necessary.

[E] Repeat steps 4.2.1 through 4.4.1[D] as required for additional containers.

4.4.2 Print name, sign, and date the following completed form:

[A] Attachment 2

[B] Submit Attachment 2 to the VPM/Designee for review.

4.4.3 IF the container is Characterized by VE, THEN perform the following:

VE Operator

[A] Make a copy of the VE Data Sheet ensuring the weight and percent fill data is available for host site personnel labeling containers.

[B] Verify that a legible, completed radiological label/tag is attached to the waste container, **AND** that it records a radiation dose equivalent of <200 mrem/hr.

[B.1] IF no radiological label/tag is attached to the container, **THEN** request that the Radiological Control Technician (RCT) perform the required survey, **AND** attach a completed radiological label/tag.
[B.2] IF the radiological label/tag or survey reports a radiation dose equivalent of >200 mrem/hr, THEN initiate an NCR on the container, notify the site project manager (SPM), AND return the container to the Host site.

[C] Enter the Container ID, Gross Weight (kg), Waste Stream ID, AND initial and date Attachment 1.

[D] Enter N/A in all NDE section data and associated Initial/Date blanks on Attachment 1.

[E] Mark the appropriate VE process to be performed (Newly Generated Waste or VE for Previously Packaged Waste) on Attachment 1.

[F] Document the VE Completion Date on Attachment 1, AND initial and date.

[G] Provide attachment 1 and a copy of completed VE data sheet to Container Manager/designee.

[H] Place a copy of the VE Data Sheet in a protective sheet holder, as necessary, and attach to the container.

[I] Provide the container processing information (Container ID Number, BDR Number, NCR Number if applicable, and reason for NCR) to the VPM/Designee.

VPM/Designee

4.4.4 Review, print name, sign, and date all Attachment 2s AND submit to the Facility Records Custodian.

Facility Records Custodian

4.4.5 Receive, process, and transmit Attachment 2s in accordance with CCP-QP-008.
4.5 NDE Process

NOTE
This section DOES NOT apply to Newly Generated Waste that has been processed through VE or retrievably stored waste containers that are processed in VE and returned to complete the characterization process.

NDE Operator

4.5.1 Verify an Attachment 1 is on the container or a paper copy is placed on the container, in a protective holder, as necessary.

[A] IF NO Attachment 1 is on the container, THEN SUSPEND WORK on container, AND notify the VPM/Designee.

[B] IF an Attachment 1 is on the container, THEN perform the following:

[B.1] NDE in accordance with approved procedures.

4.5.2 Document the NDE completion date on Attachment 1, AND Initial and Date.

4.5.3 IF the system is not certified, THEN apply a VPM Administrative Hold Indicator on the container AND communicate the container number to the site SPM and (Project Manager) PM.

4.5.4 IF the container is rejected, THEN ensure a HOLD TAG is attached to the container.

4.5.5 Provide the container processing information (Container ID Number, BDR Number, NCR Number if applicable, reason for NCR) to the VPM/Designee.

4.5.6 Place a copy of the Radiography Data Sheet in a protective sheet holder attached to the waste container.

Site SPM

4.5.7 WHEN notified by Characterization Personnel that VPM Administrative Hold Indicator(s) has been applied, THEN place the container(s) on hold within Integrated Data Center (IDC) by generating a VPM HOLD Exclusion or adding the affected container(s) to an exclusion that already exists.
Characterization Personnel

4.5.8 Notify site SPM when VPM Administrative Hold Indicator has been removed.

Site SPM

4.5.9 Remove affected container(s) from VPM Hold Exclusion in the IDC.

4.6 NDA Process

NDA Operator

4.6.1 Verify an Attachment 1 is on the container or a paper copy is placed on the container, in a protective holder, as necessary, AND a copy of the VE or Radiography Data Sheet is available.

[A] IF NO Attachment 1 is on the container, THEN SUSPEND WORK on container, AND notify the VPM/Designee.

[B] IF an Attachment 1 is on the container, THEN perform NDA in accordance with approved procedures.

4.6.2 Document the NDA completion date on Attachment 1, AND Initial and Date.

4.6.3 IF the system is not certified, THEN apply a VPM Administrative Hold Indicator on the container AND communicate the container number to the site SPM and VPM.

4.6.4 Document the Preliminary Plutonium (Pu)-239 fissile gram equivalent (FGE) value (plus 2-sigma) on Attachment 1, AND Initial and Date on Attachment 1.

[A] IF the preliminary Pu-239 FGE value (plus 2-sigma) is NOT immediately available, THEN record N/A on Attachment 1, AND Initial and Date on Attachment 1.

4.6.5 IF the container is rejected, THEN ensure a HOLD TAG is attached to the container.

4.6.6 Provide the container processing information (Container ID Number, BDR Number, NCR Number, reason for NCR) to the VPM/Designee.
Site SPM

4.6.7 WHEN notified by Characterization Personnel that VPM Administrative Hold Indicator(s) has been applied, THEN place the container(s) on hold within IDC by generating a VPM HOLD Exclusion or adding the affected container(s) to an exclusion that already exists.

Characterization Personnel

4.6.8 Notify site SPM when VPM Administrative Hold Indicator has been removed.

Site SPM

4.6.9 Remove affected container(s) from VPM Hold Exclusion in the IDC.

HSG/FGA Personnel

NOTE
Procedure instructions for waste containers requiring WAP-compliant SUMMA® sampling begin with step 4.7.1. Procedure instructions for waste containers requiring FGA sampling begin with step 4.7.2.

4.7 Headspace Gas (HSG)/Flammable Gas Analysis (FGA) Process

4.7.1 IF a waste container is identified for a WAP-compliant HSG SUMMA® sample, THEN perform the following:

[A] Verify an Attachment 1 is on the container or a paper copy is placed on the container, in a protective holder, as necessary.

[A.1] IF NO Attachment 1 is on the container, THEN SUSPEND WORK on the waste container AND notify the VPM/Designee.

[B] Move the waste container to the thermal conditioning area.

[C] Record the date and time the waste container is placed in the Thermal Conditioning Area on Attachment 1, AND initial the entry.
AFTER the waste container has been in the Thermal Conditioning Area for a minimum of 72 hours, AND the VPM/Designee schedules the waste container for SUMMA® sampling, THEN move the container to the HSG SUMMA® sampling area.

GO TO step 4.7.3.

IF a waste container is identified for FGA sampling and analysis, THEN perform the following:

Verify an Attachment 1 is on the container or a paper copy is placed on the container, in a protective holder, as necessary.

IF NO Attachment 1 is on the container, THEN SUSPEND WORK on the waste container, AND notify the VPM/Desigee.

WHEN FGA is ready to sample the waste container, THEN move the waste container to the FGA sampling area.

Perform HSG AND/OR FGA Sampling in accordance with approved procedures.

Document the HSG/FGA Sampling completion date on Attachment 1, AND Initial and Date.

IF the system is not certified, THEN apply a VPM Administrative Hold Indicator on the container AND communicate the container number to the site SPM and VPM.

IF the container is rejected, THEN ensure a HOLD TAG is attached to the container.

Provide the container processing information (Container ID Number, BDR Number, NCR Number, reason for NCR) to the VPM/Designee.

WHEN notified by Characterization Personnel that VPM Administrative Hold Indicator(s) has been applied, THEN place the container(s) on hold within IDC by generating a VPM HOLD Exclusion or adding the affected container(s) to an exclusion that already exists.
Characterization Personnel

4.7.9 Notify site SPM when VPM Administrative Hold Indicator has been removed.

Site SPM

4.7.10 Remove affected container(s) from VPM Hold Exclusion in the IDC.

4.8 Gas Generation Testing (GGT)

NOTE
Waste containers are selected for GGT based on waste stream, implementation of the Long-Term Objective for the Unified Flammable Gas Test procedure, or other factors. The VPM/Designee will designate waste containers for GGT as directed by the SPM.

4.8.1 Move the waste containers identified for GGT Sampling and Analysis to the Designated Staging Area.

[A] Verify an Attachment 1 is on the container or a paper copy is placed on the container, in a protective holder, as necessary.

[A.1] IF NO Attachment 1 is on the container, THEN SUSPEND WORK on container, AND notify the VPM/Designee.

4.8.2 IF the waste container has been identified for processing in GGT, THEN circle YES, AND Initial and Date on Attachment 1.

4.8.3 IF the waste container DOES NOT require GGT, THEN circle NO, record N/A in the GGT Completion Date, Initial and Date on Attachment 1, AND have the waste container moved to its designated staging area.

4.8.4 Perform GGT in accordance with approved procedures.

4.8.5 Document the GGT completion date on Attachment 1, AND Initial and Date.

4.8.6 IF the container is rejected, THEN ensure a HOLD TAG is attached to the container.

4.8.7 Provide the container processing information (Container ID Number, BDR Number, NCR Number, reason for NCR) to the VPM/Designee.
4.9 Characterization Completion

Container Management Personnel

4.9.1 IF Attachment 1 is a label on the container,
THEN remove all copies of characterization data sheets, **AND**
forward to the VPM/Designee for disposition.

4.9.2 IF Attachment 1 is a paper copy,
THEN remove the Attachment 1 and all copies of characterization
data sheets, **AND** forward to the VPM/Designee for disposition.

VPM/Designee

4.9.3 Forward paper copy of Attachment 1 to the Facility Records
Custodian.

Facility Records Custodian

4.9.4 Receive, process, and transmit the paper copy of Attachment 1 in
accordance with CCP-QP-008.
5.0 RECORDS

5.1 Records generated during the performance of this procedure are maintained as quality assurance (QA) records in accordance with CCP-QP-008. The records are the following:

5.1.1 QA/Nonpermanent

[A] Attachment 1 – CCP Container Traveler (Label), paper copy only

[B] Attachment 2 – Container Inspection/Weight Report
Container Management Personnel:

<table>
<thead>
<tr>
<th>Field</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container ID:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Stream ID:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight:</td>
<td>Date</td>
<td>Initials</td>
</tr>
</tbody>
</table>

NDE

<table>
<thead>
<tr>
<th>Field</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDE:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NDA

<table>
<thead>
<tr>
<th>Field</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDA:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preliminary Pu-239 FGE:

<table>
<thead>
<tr>
<th>Field</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (Plus 2-sigma)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HSG

<table>
<thead>
<tr>
<th>Field</th>
<th>Date</th>
<th>Time</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container Placed in HSG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FGA

<table>
<thead>
<tr>
<th>Field</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGA:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GGT

<table>
<thead>
<tr>
<th>Field</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected for GGT? YES NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VE

- [] Newly Generated Waste
- [] VE for Previously Packaged Waste

<table>
<thead>
<tr>
<th>Field</th>
<th>Date</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment 2 – Container Inspection/Weight Report

<table>
<thead>
<tr>
<th>Structural Integrity / Safe to Handle</th>
<th>Container ID Number</th>
<th>Filters meet requirements</th>
<th>Filter Information</th>
<th>Rad Survey Label (Circle)</th>
<th>Gross Container Weight (kg)</th>
<th>Initials</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES / NO</td>
<td>YES / NO</td>
<td>YES / NO</td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scale ID #</th>
<th>Location</th>
<th>Calibration Due Date</th>
<th>Scale Calibration Due Date Valid YES / NO</th>
<th>Scale Calibration Check SAT / UNSAT</th>
<th>Initials</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAT / UNSAT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

Completed by:
Print Name: ___________________________ Signature: ___________________________ Date: __________

VPM/Designee Verification:
Print Name: ___________________________ Signature: ___________________________ Date: __________
CONTAINER EXAMINATION

| 1. | Is the payload container obviously degraded? | Obviously degraded means clearly visible and potentially significant defects in the payload container or payload container surface. |
| 2. | Is there evidence that the payload container is, or has been, pressurized? | Pressurization can be indicated by a fairly uniform expansion of the sidewalls, bottom or top. Past pressurization can be indicated by a notable outward deflection of the bottom or top. Verify that the waste container is not warped. |
| 3. | Is there any potentially significant rust or corrosion such that wall thinning, pin holes, or breaches are likely or the load-bearing capacity is suspect? | Rust shall be assessed in terms of its type, extent, and location. Pitting, pocking, flaking, or dark coloration characterizes potentially significant rust or corrosion. This includes the extent of the payload container surface area covered, thickness, and, if it occurs in large flakes or built-up (caked) areas. Rusted payload containers may **NOT** be accepted if:
 • Rust is present in caked layers or deposits.
 • Rust is present in the form of deep metal flaking, or built-up areas of corrosion products.
 In addition, the location of rust should be noted; for example on a waste container: top lid; filter region; locking chine; top one-third, above the second rolling hoop; middle one-third, between the first and second rolling hoops; bottom one-third, below the second rolling hoop; and on the bottom.
 Payload containers may still be considered acceptable if the signs of rust show up as:
 • Some discoloration on the payload container.
 • If rubbed would produce fine grit or dust or minor flaking (such that wall thinning does not occur). |
| 4. | Are any of the following apparent?
• wall thinning
• pin holes
• breaches | Wall thinning, pin holes, and breaches can be a result of rust/corrosion (see discussion for #3). |
| 5. | Are there any split seams, tears, obvious holes, punctures (of any size), creases, broken welds, or cracks? | Payload containers with obvious leaks, holes or openings, cracks, deep crevices, creases, tears, broken welds, sharp edges or pits, are either breached or on the verge of being breached. Verify that there is no warpage that could cause the container to be unstable or prevent it from fitting properly in the applicable package. |
| 6. | Is the load-bearing capacity suspect? | The load-bearing capacity could be reduced for excessive rust (see discussion for #3), wall thinning (see discussion for #4), breaches, cracks, creases, broken welds, etc. (see discussion for #5). |
Attachment 3 – Structural Integrity and Distortion Inspections Criteria (Continued)

<table>
<thead>
<tr>
<th>CONTAINER EXAMINATION</th>
<th>DISCUSSION OF CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Is the payload container improperly closed?</td>
<td>Inspect the fastener and fastener ring (chine), if applicable, for damage or excessive corrosion. Check the alignment of the fastener to ensure that it is in firm contact around the entire lid and the payload container will not open during transportation.</td>
</tr>
<tr>
<td>8. Are there any dents, scrapes, or scratches that make the payload container’s structural integrity questionable or prevent the top and bottom surfaces from being parallel?</td>
<td>Deep gouges, scratches, or abrasions over wide areas are not acceptable. If top and bottom surfaces are not parallel, this would indicate that the container is warped. Dents should be less than ¼ inch deep by 3 inches long and between ½ inch to 6 inches wide. All other dents must be examined to determine impact of structural integrity.</td>
</tr>
<tr>
<td>9. Is there discoloration which would indicate leakage or other evidence of leakage of material from the payload container?</td>
<td>Examine the payload container regions near vents, top lid fittings, bottom fittings, welds, seams and intersections of one or more metal sheets or plates. Payload containers must be rejected if evidence of leakage is present.</td>
</tr>
<tr>
<td>10. Is the payload container bulged?</td>
<td>For the purposes of this examination, bulging is indicated by:</td>
</tr>
<tr>
<td></td>
<td>• A fairly uniform expansion of the sidewalls, bottom, or top (e.g., in the case of a waste container, either the top or bottom surface protrudes beyond the planar surface of the top or bottom ring);</td>
</tr>
<tr>
<td></td>
<td>• A protrusion of the side wall (e.g., in the case of a waste container, beyond a line connecting the peaks of the surrounding rolling hoops or a line between a surrounding rolling hoop and the bottom or top ring); or</td>
</tr>
<tr>
<td></td>
<td>• Expansion of the sidewall (e.g., in the case of a waste container, such that it deforms any portion of a rolling hoop).</td>
</tr>
</tbody>
</table>