WIPP Test Phase Plan:
Performance Assessment

April 1990

United States Department of Energy
Waste Isolation Pilot Plant
Carlsbad, New Mexico
WIPP Test Phase Plan:
Performance Assessment

April 1990

United States Department of Energy
Waste Isolation Pilot Plant
Carlsbad, New Mexico
WIPP TEST PHASE PLAN:

PERFORMANCE ASSESSMENT

April 1990

UNITED STATES DEPARTMENT OF ENERGY
WASTE ISOLATION PILOT PLANT
CARLSBAD, NEW MEXICO
The U.S. Department of Energy acknowledges significant contributions from the following organizations during preparation of this Plan.

Sandia National Laboratories
Westinghouse Electric Corporation
IT Corporation
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>ES-1</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 TRU Waste Management System</td>
<td>1-5</td>
</tr>
<tr>
<td>1.1.1 Generating/Storage Sites Description</td>
<td>1-6</td>
</tr>
<tr>
<td>1.1.2 Transportation System Description</td>
<td>1-6</td>
</tr>
<tr>
<td>1.1.3 WIPP Description</td>
<td>1-7</td>
</tr>
<tr>
<td>1.1.4 WIPP Project Development</td>
<td>1-9</td>
</tr>
<tr>
<td>1.2 Objectives of the Test Phase</td>
<td>1-13</td>
</tr>
<tr>
<td>1.2.1 Performance Assessment</td>
<td>1-14</td>
</tr>
<tr>
<td>1.2.1.1 Requirements of the EPA Standard</td>
<td>1-14</td>
</tr>
<tr>
<td>1.2.1.2 Approach</td>
<td>1-15</td>
</tr>
<tr>
<td>1.2.1.3 Performance Assessment Methodology</td>
<td>1-15</td>
</tr>
<tr>
<td>1.2.2 Operations Demonstration</td>
<td>1-18</td>
</tr>
<tr>
<td>1.3 TRU Waste Requirements for the Test Phase</td>
<td>1-18</td>
</tr>
<tr>
<td>1.4 Schedule</td>
<td>1-20</td>
</tr>
<tr>
<td>1.5 Organization of the Plan</td>
<td>1-23</td>
</tr>
<tr>
<td>2.0 PERFORMANCE ASSESSMENT</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Brief Description of 40 CFR 191, Subpart B</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2 Performance Evaluation in the Environmental Impact Statements</td>
<td>2-9</td>
</tr>
<tr>
<td>2.3 Factors Affecting the Long-Term Performance of the Disposal System</td>
<td>2-10</td>
</tr>
<tr>
<td>2.3.1 Room Closure Rates</td>
<td>2-11</td>
</tr>
<tr>
<td>2.3.2 Brine Flow or Seepage Within the Salado Formation</td>
<td>2-13</td>
</tr>
<tr>
<td>2.3.3 Gas Generation in Waste Disposal Rooms</td>
<td>2-15</td>
</tr>
<tr>
<td>2.3.4 Shaft and Panel Seals</td>
<td>2-17</td>
</tr>
<tr>
<td>2.3.5 Hydrology and Radionuclide Transport Outside the Disturbed Rock Zone</td>
<td>2-18</td>
</tr>
<tr>
<td>2.4 Overview of Technical Approach for Compliance with 40 CFR 191, Subpart B</td>
<td>2-23</td>
</tr>
<tr>
<td>2.4.1 Performance Assessment</td>
<td>2-23</td>
</tr>
<tr>
<td>2.4.2 Technical Support</td>
<td>2-30</td>
</tr>
<tr>
<td>2.5 Description of the Performance Assessment Program</td>
<td>2-32</td>
</tr>
<tr>
<td>2.5.1 Quality Assurance</td>
<td>2-34</td>
</tr>
<tr>
<td>2.6 Elements of the Performance Assessment Program</td>
<td>2-34</td>
</tr>
<tr>
<td>Element 1.1 Scenario Screening</td>
<td>2-35</td>
</tr>
<tr>
<td>Element 1.2 Repository/Shaft System: Behavior Characterization and Performance Modeling</td>
<td>2-38</td>
</tr>
<tr>
<td>Element 1.3 Controlled Area: Behavior Characterization and Performance Modeling</td>
<td>2-54</td>
</tr>
<tr>
<td>Element 1.4 Computational System</td>
<td>2-66</td>
</tr>
<tr>
<td>Element 1.5 Consequence Analysis</td>
<td>2-68</td>
</tr>
<tr>
<td>2.7 Activity Descriptions</td>
<td>2-70</td>
</tr>
<tr>
<td>2.7.1 Performance Assessment Activities</td>
<td>2-70</td>
</tr>
<tr>
<td>Activity PA.1 Scenarios: Screening</td>
<td>2-71</td>
</tr>
<tr>
<td>Activity PA.2 Scenarios: Probability Assignment</td>
<td>2-72</td>
</tr>
</tbody>
</table>

Revision 0, April 1990
<p>| Activity PA.3 | Hydrologic Modeling: Regional (Los Medanos Model) | 2-73 |
| Activity PA.4 | Hydrologic Modeling: Local | 2-75 |
| Activity PA.5 | Transport Modeling | 2-77 |
| Activity PA.6 | Pathways/Dosimetry | 2-79 |
| Activity PA.7 | Repository/Shaft System Modeling | 2-80 |
| Activity PA.8 | Preliminary Consequence Analysis | 2-83 |
| Activity PA.9 | Sensitivity Analysis | 2-85 |
| Activity PA.10 | Final Consequence Analysis | 2-88 |
| Activity PA.11 | Develop Primary Data Base | 2-89 |
| 2.7.2 | Supporting Activities: Disposal System Characterization | 2-90 |
| 2.7.2.1 | Disposal Room and Drift System Activities | 2-91 |
| Activity S.1.1.1 | Backfill-Mix Creep and Permeability Behavior | 2-96 |
| Activity S.1.1.2 | Backfill-Mix Selection Tests | 2-97 |
| Activity S.1.1.3 | Drum and Box Mechanical Response | 2-98 |
| Activity S.1.1.4 | Laboratory Studies of Repository Chemistry | 2-99 |
| Activity S.1.1.5 | Radionuclide Chemistry | 2-102 |
| Activity S.1.2.1 | Backfill-Mix Consolidation Model | 2-104 |
| Activity S.1.2.2 | Drum and Box Collapse Models | 2-105 |
| Activity S.1.2.3 | Backfill-Mix Selection Analysis | 2-106 |
| Activity S.1.2.4 | Disposal Room Performance Model | 2-107 |
| Activity S.1.2.5 | Engineered Alternatives | 2-108 |
| Activity S.1.2.6 | Additional Development of EQ3/6 | 2-109 |
| Activity S.1.3.1 | Simulated TRU Testing (Rooms T and J) | 2-111 |
| Activity S.1.3.2 | Alcove Gas Generation and Depletion Tests | 2-112 |
| Activity S.1.3.3 | Bin-Scale Gas Generation and Depletion Tests | 2-114 |
| 2.7.2.2 | Sealing System Activities | 2-116 |
| Activity S.2.1.1 | Geochemical Stability | 2-120 |
| Activity S.2.1.2 | Crushed Salt Consolidation | 2-121 |
| Activity S.2.1.3 | Cementitious and Earthen Materials Development | 2-122 |
| Activity S.2.2.1 | Crushed Salt Consolidation Modeling | 2-123 |
| Activity S.2.2.2 | Seal System Design, Analysis, and Integration | 2-124 |
| Activity S.2.3.1 | Small-Scale Seal Performance Tests | 2-125 |
| Activity S.2.3.2 | Large-Scale Seal Testing | 2-128 |
| Activity S.2.3.3 | Borehole Plugging | 2-129 |
| 2.7.2.3 | Salado Formation Structural and Fluid-Flow Behavior Activities | 2-130 |
| Activity S.3.1.1 | Stress Generalization; Verification of the Creep Flow Surface | 2-136 |
| Activity S.3.1.2 | Transient Strain Limit Determination | 2-137 |
| Activity S.3.1.3 | Pressure Effect on Fracture Rehealing | 2-139 |
| Activity S.3.1.4 | Moisture Effect on Creep Rate | 2-140 |
| Activity S.3.1.5 | Stress, Strain/Brine Transport | 2-141 |
| Activity S.3.2.1 | Constitutive Model Development | 2-142 |
| Activity S.3.2.2 | Numerical Code Development | 2-143 |
| Activity S.3.2.3 | Code Verification and Validation | 2-144 |
| Activity S.3.3.1 | Air Intake Shaft Performance ... | 2-150 |
| Activity S.3.3.2 | Intermediate-Scale Borehole Test (Room Cl) | 2-151 |
| Activity S.3.3.3 | Panel Structural-Response Tests ... | 2-152 |
| Activity S.3.3.4 | Gas Flow/Permeability ... | 2-153 |
| Activity S.3.3.5 | Near-Field Flow Characterization .. | 2-154 |
| Activity S.3.3.6 | Brine Inflow Scale and Stratum Effects | 2-155 |
| Activity S.3.3.7 | Pore Pressure for Brine Inflow ... | 2-156 |
| Activity S.3.3.8 | Brine Inflow to Excavated Rooms ... | 2-157 |
| Activity S.3.3.9 | Brine Permeability Testing of the Disposal Horizon | 2-158 |
| Activity S.3.3.10 | Air Intake Shaft Brine Permeability Testing | 2-159 |
| Activity S.3.3.11 | Shaft Geophysics .. | 2-160 |
| Activity S.3.3.12 | Underground Geophysics .. | 2-161 |
| Activity S.3.3.13 | Brine Sampling and Evaluation Program | 2-162 |
| 2.7.2.4 Non-Salado Formation Hydrology and Nuclide Migration Activities .. | 2-163 |
| Activity S.4.1.1 | Batch Kd Measurements .. | 2-168 |
| Activity S.4.1.2 | Mechanistic Studies of Sorption .. | 2-169 |
| Activity S.4.1.3 | Solute Column Transport .. | 2-170 |
| Activity S.4.1.4 | Rustler Radiocarbon .. | 2-171 |
| Activity S.4.1.5 | Mineralogical and Hydrochemical Studies in Support of Sorption Experiments .. | 2-172 |
| Activity S.4.2.1 | Final Two-Dimensional Culebra Modeling | 2-173 |
| Activity S.4.2.2 | Solute Transport-Brine Reservoir Breach Into the Culebra | 2-175 |
| Activity S.4.2.3 | Far-Field Hydrologic Flow and Boundary Conditions | 2-177 |
| Activity S.4.2.4 | Far-Field Culebra Transport Mechanisms Under Disturbed and Undisturbed Conditions .. | 2-178 |
| Activity S.4.3.1 | H-11 Multipad/Tracer Test .. | 2-179 |
| Activity S.4.3.2 | Rustler Response to Air Intake Shaft .. | 2-180 |
| Activity S.4.3.3 | Single-Hole Hydraulic Tests of the Rustler Formation | 2-181 |
| Activity S.4.3.4 | Single-Pad Interference Tests of the Culebra Dolomite | 2-182 |
| Activity S.4.3.5 | Conceptual Hydrogeologic Model of the Rustler Formation | 2-183 |
| Activity S.4.3.6 | Bell Canyon Hydrologic Information ... | 2-184 |
| Activity S.4.3.7 | Dewey Lake Red Beds Hydrology ... | 2-185 |
| Activity S.4.3.8 | Surface Geophysics .. | 2-186 |
| Activity S.4.3.9 | Regional Geochemical Studies: Solute Chemistry and Mineralogy | 2-187 |</p>
<table>
<thead>
<tr>
<th>Activity</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity S.4.3.10 Regional Geochemical Studies: Dissolution</td>
<td>2-188</td>
</tr>
<tr>
<td>Activity S.4.3.11 Regional Geochemical Studies: Paleoclimate</td>
<td>2-189</td>
</tr>
<tr>
<td>2.8 Activity Schedules</td>
<td>2-190</td>
</tr>
</tbody>
</table>

REFERENCES... R-1
LIST OF TABLES

<table>
<thead>
<tr>
<th>Page</th>
<th>1-1 Work Elements and Subelements for Performance Assessment</th>
<th>1-16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-2 Waste Types and Quantities for Gas Generation Tests</td>
<td>1-19</td>
</tr>
<tr>
<td></td>
<td>2-1 Work Elements, Subelements, and Information Needs for</td>
<td>2-33</td>
</tr>
<tr>
<td></td>
<td>Performance Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-2 Models for Repository/Shaft Systems Simulation and</td>
<td>2-81</td>
</tr>
<tr>
<td></td>
<td>Associated Data Needs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-3 Applications of the Disposal Room and Drift System</td>
<td>2-92</td>
</tr>
<tr>
<td></td>
<td>Investigations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-4 Applications of the Sealing System Investigations</td>
<td>2-117</td>
</tr>
<tr>
<td></td>
<td>2-5 Applications of the Salado Formation Structural and</td>
<td>2-131</td>
</tr>
<tr>
<td></td>
<td>Fluid-Flow Behavior Investigations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-6 Applications of the Non-Salado Formation Hydrology</td>
<td>2-164</td>
</tr>
<tr>
<td></td>
<td>and Nuclide Migration Investigations</td>
<td></td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Page</th>
<th>1-1 Location of WIPP and the Waste Generating/Storage Sites</th>
<th>1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-2 Flow Diagram of WIPP Development from Site Selection</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>to the Disposal Phase Decision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-3 The Waste Isolation Pilot Plant</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td>1-4 WIPP Project Summary Schedule</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>1-5 Summary Schedule for the Test Phase</td>
<td>1-21</td>
</tr>
<tr>
<td></td>
<td>2-1 Cutaway View of the Controlled Area and the</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>Repository/Shaft System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-2 Stratigraphic Cross Section at WIPP</td>
<td>2-19</td>
</tr>
<tr>
<td></td>
<td>2-3 Hydrologic Test Wells near WIPP</td>
<td>2-21</td>
</tr>
<tr>
<td></td>
<td>2-4 Flow Chart of the Performance Assessment Process</td>
<td>2-24</td>
</tr>
<tr>
<td></td>
<td>2-5 Relationship Among Disposal Room and Drift System</td>
<td>2-95</td>
</tr>
<tr>
<td></td>
<td>Activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-6 Relationship Among Sealing System Activities</td>
<td>2-119</td>
</tr>
<tr>
<td></td>
<td>2-7 Relationship Among Salado Formation Structural</td>
<td>2-134</td>
</tr>
<tr>
<td></td>
<td>Behavior Activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-8 Relationship Among Salado Formation Fluid-Flow</td>
<td>2-135</td>
</tr>
<tr>
<td></td>
<td>Behavior Activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-9 Relationship Among Non-Salado Formation Hydrology and</td>
<td>2-167</td>
</tr>
<tr>
<td></td>
<td>Nuclide Migration Activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-10 Schedule for Performance Assessment Activities</td>
<td>2-191</td>
</tr>
<tr>
<td></td>
<td>2-11 Schedule for Disposal Room and Drift System Activities</td>
<td>2-193</td>
</tr>
<tr>
<td></td>
<td>2-12 Schedule for Sealing System Activities</td>
<td>2-196</td>
</tr>
<tr>
<td></td>
<td>2-13 Schedule for Salado Formation Structural and Fluid-Flow</td>
<td>2-197</td>
</tr>
<tr>
<td></td>
<td>Behavior Activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-14 Schedule for Non-Salado Formation Hydrology and</td>
<td>2-198</td>
</tr>
<tr>
<td></td>
<td>Nuclide Migration Activities</td>
<td></td>
</tr>
</tbody>
</table>

Revision 0, April 1990 -v-
EXECUTIVE SUMMARY

The U.S. Department of Energy (DOE) is responsible for managing the disposition of transuranic (TRU) wastes resulting from nuclear weapons production activities of the United States. These wastes are currently stored nationwide at several of the DOE's waste generating/storage sites. The goal is to eliminate interim waste storage and achieve environmentally and institutionally acceptable permanent disposal of these TRU wastes, much of which is mixed waste, that is, waste that is also contaminated with hazardous substances. The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being considered as a disposal facility for these TRU wastes.

The mission of WIPP as established by Congress in 1979 (Public Law 96-164) is to provide "...a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission." The fundamental responsibility of WIPP's mission, to demonstrate safe disposal of TRU wastes, is being fulfilled in a phased stepwise approach, leading up to the decision whether to designate WIPP a disposal facility. With the Construction Phase of the WIPP facility nearing completion, WIPP is ready to initiate the next major phase in its development, the Test Phase. The Test Phase period is proposed to collect additional technical data to improve confidence in the prediction of the long-term performance of the repository as required by the applicable environmental regulations (40 CFR 191 and 268).

This document, WIPP Test Phase Plan: Performance Assessment ("the Plan"), has been reviewed by the Blue Ribbon Panel, the Environmental Evaluation Group (EEG), the New Mexico Environmental Improvement Division, the U.S. Environmental Protection Agency (EPA), and the National Academy of Sciences/National Academy of Engineering (NAS/NAE) WIPP Panel. This plan is a living document and will be reassessed and revised periodically based on review comments and the future needs of the Project. It describes the first of the following two major programs planned for the Test Phase of WIPP: (1) Performance Assessment - determination of the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard, 40 CFR 191, Subpart B, Sections 13 and 15; and (2) Operations Demonstration - evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP underground facility. The Operations Demonstration Program has received external peer review from the Secretary's Blue Ribbon Panel, the Advisory Committee on Nuclear Facility Safety (Ahearne Committee), the NAS/NAE WIPP Panel, and the EEG. The DOE has determined that any operations demonstration would not be initiated until high confidence is achieved in complying with 40 CFR 191, Subpart B. The need for and scope of the operations demonstration will be evaluated after operational experience gained from the performance assessment tests has been assessed. In addition, DOE is prepared to comply with conditions that may be imposed by EPA in its proposed conditional Resource Conservation and Recovery Act (RCRA) No-Migration Variance.

Prior to initiation of the Test Phase, the following major technical and institutional activities must occur: land withdrawal must be resolved, the Final Safety Analysis Report approved, a RCRA No-Migration Variance granted, and DOE's Record of Decision issued (Decision Plan for WIPP, Rev. 2A). The Final
Supplement to the Environmental Impact Statement (FSEIS) has been published
(DOE, 1990b). Major aspects of WIPP's development have been reviewed by the
NAS/NAE WIPP Panel and the EEG. In addition, prior to the initial shipment of
waste to WIPP, the DOE and the transportation corridor states will perform many
exercises with simulated waste to ensure the system is in place to safely
transport and handle the waste. At the conclusion of the Test Phase, the WIPP
facility will be evaluated to determine whether it is suitable for permanent
disposal of TRU waste. If WIPP is judged to be suitable, the Disposal Phase
(an additional 20 years of operation) would then be initiated to demonstrate
waste disposal. Only current and future TRU waste meeting the requirements of
the WIPP Waste Acceptance Criteria will be accepted for disposal. Assuming that
the WIPP repository can be shown to meet all regulatory criteria, it will become
the first mined geologic repository for radioactive waste in the United States.

OBJECTIVES OF THE WIPP TEST PHASE

The purpose of the Test Phase is to further the intent of Congress to
demonstrate safe and environmentally acceptable disposal of defense wastes and
thereby establish a permanent disposal facility for TRU wastes. The activities
that will provide the needed information include experiments, analyses, and
operations at the WIPP facility. Although the initial part of the Test Phase is
well defined, experimental programs will evolve with increasing understanding of
the systems under test. The nature, scope, waste quantities, and timing of
additional tests remain flexible. The sum total of experiments recommended by
various groups to date would initially require approximately 2 percent by volume
of the design capacity for waste.

The initial plans for the Test Phase described in this document call for the
emplacement of approximately 0.5 percent by volume of the design capacity for
Phases 1 and 2 of the alcove tests and Phases 1 and 2 of the bin-scale tests.
These bin-scale and alcove tests will support assessment of compliance with the
EPA Standard, 40 CFR 191, Subpart B, Sections 13 and 15, and will provide data
to verify that data and assumptions used for modeling in the RCRA No-Migration
Variance Petition are conservative. Additional tests will be defined based on
the data acquired during the first two phases of the bin-scale and alcove tests
and to incorporate potential engineered alternatives.

In addition, the EPA has requested that the Project monitor the performance of
the facility by emplacing waste in two full-scale, instrumented, backfilled,
sealed rooms after an appropriate demonstration of retrieval using simulated
waste. Waste requirements for these two full-scale room tests would be approxi-
mately 1.5 percent by volume of design capacity. The DOE will conduct a
feasibility evaluation to determine the best technical approach, scope, and
timing of such monitoring. The DOE will consult the NAS/NAE WIPP Panel, the
EPA, the State of New Mexico, and the EEG prior to initiation of such tests.

Also, waste requirements for an Operations Demonstration have not yet been
determined. As suggested by several reviewers, the DOE will evaluate the
operational experience to be gained through the conduct of all of the test
activities and will factor this into a future decision on the scope of any
Operations Demonstration. Waste emplaced in the WIPP facility during the Test
Phase will be retrievable until a decision is made whether WIPP should become a
disposal facility. During the Test Phase, per agreement with the State of New
Mexico, WIPP will meet the applicable requirements of the EPA Standard, 40 CFR 191, Subpart A. The DOE is committed to complying with all applicable regulations for the WIPP, both during the Test Phase and Operations and following closure of the site.

The two primary objectives of the Test Phase are to demonstrate

1. Reasonable assurance of compliance of the WIPP disposal system (the combination of the repository/portal system and the controlled area) with the long-term disposal standards of the EPA Standard, 40 CFR 191, Subpart B, Sections 13 and 15. Compliance of the disposal system will be determined based on a probabilistic performance assessment, incorporating both data and interpretations developed during the Test Phase. The performance assessment will include an evaluation of potential engineered alternatives.

2. The ability of the DOE TRU waste management system (the generating/storage sites, the transportation system, and WIPP) to safely and effectively certify, package, transport, and emplace waste underground at WIPP in accordance with all applicable regulatory requirements. Acceptability of the waste management system will be evaluated by operations testing and monitoring, both individually and collectively, of the elements of the TRU waste management system.

This Plan focuses on the methods and activities required to demonstrate compliance with the long-term performance standard of 40 CFR 191, Subpart B, Sections 13 and 15. Performance assessment, as defined in 40 CFR 191.12(q), is required only to demonstrate compliance with Section 191.13, Containment Requirements. The WIPP Project will also use performance-assessment techniques in demonstrating compliance with Section 191.15, Individual Protection Requirements. In addition, several of the tests planned for the Test Phase will provide data that will be used for comparison with data and assumptions used in the WIPP No-Migration Variance Petition modeling, to verify that it is conservative.

DESCRIPTION OF TEST PHASE ACTIVITIES

The objectives will be accomplished by completion of two important programs - Performance Assessment and (if needed) an Operations Demonstration. These two programs, which are described below, will provide the necessary information to determine compliance of the disposal system with applicable environmental requirements and to evaluate the safety and effectiveness of the TRU waste management system operations. An Operations Demonstration would be conducted only after a high level of confidence is achieved in complying with 40 CFR 191 Subpart B and the need for such a demonstration after operational experience gained from the performance assessment tests has been assessed.

Although Subpart B of 40 CFR 191 was vacated and remanded to the EPA by the U.S. Court of Appeals for the First Circuit, this Plan addresses the Standard as first promulgated. The 1987 Second Modification to the Agreement for Consultation and Cooperation between the DOE and the State of New Mexico (1981) commits the WIPP Project to evaluate compliance with the Standard as first promulgated until a revised standard becomes available. Compliance plans for the WIPP
facility will be revised as necessary in response to any changes in the Standard.

PERFORMANCE ASSESSMENT - The performance objective for the WIPP disposal system is to adequately isolate TRU waste from the accessible environment; the performance requirement is reasonable assurance of compliance with the 10,000-year release limits and the 1,000-year dose limits of the EPA Standard, 40 CFR 191, Subpart B, Sections 13 and 15. The 10,000-year performance assessment will predict cumulative releases of radionuclides to the accessible environment resulting from both disturbed and undisturbed performance of the disposal system. The 1,000-year assessment will predict annual doses to members of the public in the accessible environment resulting from undisturbed disposal system performance. It will not address the concentration limits established by Subpart B for special sources of ground water, because no such sources exist at WIPP. In evaluating compliance with Subpart B, the guidance provided in Appendix B of the Standard will be followed. To ensure that all plausible responses are identified, scenarios will be developed by coupling the individual events and processes that occur. These scenarios will be screened on the basis of probability, consequence, physical reasonableness, and regulatory interest.

Consequence analysis is used to calculate a performance measure for each of the remaining significant scenarios. The performance measures for the scenarios are normalized, summed, and reported as a "complementary cumulative distribution function" of release probabilities. Uncertainties in the data must be included in calculations of the performance measure for each scenario. To show that WIPP can meet the annual dose limits set for 1,000-year performance, the Standard requires that releases from the undisturbed scenarios be analyzed. If any release to the accessible environment is predicted, transport along biological pathways will be modeled, and doses will be estimated. Uncertainties in the data are included in the dose calculations.

The performance assessment process is divided into five elements: scenario screening; repository/shaft system behavior and performance modeling; controlled area behavior characteristics and performance modeling; computational system development; and consequence analysis. The combined repository/shaft system and controlled area represent the disposal system being assessed.

The performance assessment is scheduled to be completed and a Draft Comparison to the Standard issued in late CY 1993. Until that time, the Project will use available data, and estimates where data are unavailable, to perform a preliminary consequence analysis and sensitivity analysis every six months, with reports to be issued annually. These annual reports and the Draft Comparison to the Standard will be issued for external peer review by the EPA, the NAS/NAE WIPP Panel, the State of New Mexico, and the EEG. The DOE will meet periodically with the EPA Office of Radiation Programs as the remanded portions of 40 CFR 191 are rewritten, in order to ensure that the WIPP compliance approach is consistent with provisions of the new Standard. In addition, there will be periodic briefings to the EPA regarding the Project's compliance with the requirements of RCRA. The Final Comparison to the Standard is scheduled to be issued in late CY 1994. These target dates are based on current understanding of site performance, current assumptions on waste forms, and existing uncertainties. As new data become available, the schedule may be adjusted accordingly.
Disposal System Characterization Activities

Accurately simulating behavior of the disposal system requires data derived from experiments conducted in the laboratory as well as in the WIPP underground. Such scientific investigations have been conducted since 1975. These studies have resolved many technical issues and have focused attention on aspects still requiring investigation.

There are four major areas of scientific investigation integral to the assessment of disposal system performance. These areas examine the behavior of the disposal room and drift system, the sealing system, structural and fluid-flow behavior of the Salado Formation, and non-Salado hydrology and radionuclide migration. Investigation of these areas involves both laboratory and large-scale underground tests.

Disposal room and drift system activities will examine the interaction of TRU waste and backfill in a waste room. The combined interactions of the source term, waste containers, emplaced backfill and admixtures, brine inflow, and gas generation will be studied through laboratory testing, modeling, and in situ testing. The behavior and performance of possible backfills and additives to be emplaced in access drifts as part of facility decommissioning are also being investigated.

An important parameter of the disposal room and drift system is gas generation. Gaseous products will be generated by microbial and radiolytic decomposition of the TRU waste and corrosion of the waste and waste containers. Gas generation tests with actual TRU waste are required to characterize the behavior of the disposal system under realistic conditions. These tests consist of laboratory tests using radioactive and nonradioactive simulated wastes, three phases of bin-scale tests with CH-TRU waste, and two phases of alcove tests with CH-TRU waste. These tests will provide the data needed to evaluate the effects of gas generated by the waste in realistic environments for both the operational (short-term) period and the postoperational (long-term) period. The information collected in these tests will aid the performance assessment in establishing a sufficient level of confidence in the consequence analysis to demonstrate compliance with the EPA Standard. The waste quantities required for these tests represent approximately 0.5 percent by volume of the WIPP disposal area design capacity. In addition to supporting the Performance Assessment Program, the gas generation tests will provide information to be used to verify that data and assumptions used in the modeling for the RCRA No-Migration Variance Petition are conservative.

Sealing system activities will examine seal design, system behavior, and overall seal performance. Seals will be developed for use in drifts to isolate waste panels, in access shafts to isolate the repository from the accessible environment, and in exploratory boreholes. Laboratory and in situ tests will evaluate behavior of potential seal materials such as crushed salt, salt/clay mixtures, and concretes. The effect of hazardous constituents of the waste on permanent seal components will also be tested.

Studies of structural and fluid-flow behavior of the Salado Formation will improve the capability to model fluid flow, hydrologic transport, waste room and drift response, and shaft closure. Healing of fractures in the disturbed zone.
outside excavations and around seals in shafts and access drifts will be evaluated. Effects of brine on salt creep will be examined. Laboratory and in situ tests will provide data for improving models of excavation closure, fracture behavior, permeability, and fluid-flow characteristics of the Salado Formation, and brine inflow to excavated rooms. A wide range of studies will address the behavior of penetrations through the Salado Formation, openings at the repository level, and fluid flow to and through these disturbances in the host rock.

The non-Salado hydrology and radionuclide migration activities will address transport of waste to the Rustler Formation and in the Rustler Formation under present and future conditions. Laboratory studies of sorption and retardation in the Rustler Formation are included, as well as in situ geophysical and hydrological tests from the surface.

In conjunction with the performance assessment, potential engineered alternatives to the current waste disposal system design will be examined. This examination will prepare the Project to implement any necessary changes to the design in a timely manner as a contingency if performance assessment results have a high degree of uncertainty or are unsatisfactory. Examples of alternatives under consideration are waste processing, alternative backfill materials, changes in the storage room or panel configuration, and passive markers. Engineered alternatives will be screened for relative effectiveness using a design analysis model, and will be screened for feasibility with respect to state of technology, regulatory concerns, and schedule. Alternatives that seem effective and feasible will be evaluated using the formal performance assessment process to quantify the improvement in disposal system performance. The binscale tests, which will use actual TRU waste underground at WIPP, will include both as-received waste and modified waste forms, as well as various backfill configurations. Preliminary recommendations of the Engineered Alternatives Task Force include six modified waste forms and three backfill alternatives.

The quality assurance requirements for the Test Phase are defined in a Quality Assurance Program that complies with the basic requirements and applicable supplements of ANSI/ASME NQA-1-1986 (QA Program Requirements for Nuclear Facilities), DOE Order 5700.6B, DOE AL Order 5700.6B (General Operations Quality Assurance), Chapter 11 (Quality Assurance) of the WIPP Final Safety Analysis Report, WIPP DOE 87-007 QA Operations Program, WIPP Project Office Management Directives, and the Sandia National Laboratories Quality Plan and Organization 6000 QA Policy. All activities associated with the performance assessment experiments, from design, implementation, and data collection through analysis and reporting, as well as all performance assessment activities, will comply with the requirements of the Quality Assurance Program.

OPERATIONS DEMONSTRATION - The purpose of the Operations Demonstration Program would be to demonstrate safe and effective emplacement of certified waste at the WIPP facility. A separate document will be developed to describe the needed objectives of an Operations Demonstration to support an assessment of the need for such a demonstration after the operational experience gained from the performance assessment tests. Key elements of the Operations Demonstration would be waste certification and packaging at the generating/storage sites, the operation of the transportation system, and operation of the WIPP facility. This demonstration will be integrated to include all elements of the TRU waste
management system and will require both CH- and RH-TRU waste operations. Operational data needs include results from the evaluation of the safety, environmental adequacy, and effectiveness of operations that will certify, transport, and emplace waste at the WIPP facility. In addition, operational data would be derived from the experience gained during mock demonstrations of bin and drum emplacement and retrieval and the emplacement of actual TRU waste for bin-scale and alcove tests underground at WIPP. The goal of the Operations Demonstration would be to provide assurance that operations can be conducted within the limits of all applicable regulatory, technical, industrial, and managerial criteria.

SUMMARY

The Test Phase will begin with the receipt of CH-TRU waste for bin-scale and alcove gas generation tests. In accordance with the Secretary of Energy's Decision Plan for WIPP (Rev. 2A; DOE, 1990a), the Secretary could announce a projected date for Test Phase initiation in June 1990. For illustrative purposes in this document, it will be assumed that the Test Phase begins at the end of CY 1990. Current plans call for 0.5 percent by volume of the waste disposal capacity of WIPP to be emplaced for these experiments. The need is being evaluated for further bin-scale experiments, for the two full-scale rooms requested by the EPA, and for the Operations Demonstration, each of which would require additional waste.

There are two primary programs planned for the Test Phase: Performance Assessment and (if needed) Operations Demonstration. This Plan addresses only the Performance Assessment program, which consists of a large number of activities, including data collection, modeling, and calculations leading to a performance assessment. These calculations will show whether WIPP can demonstrate reasonable assurance that it is in compliance with Subpart B of 40 CFR 191, Sections 13 and 15; they will take into consideration the effects of engineered alternatives that could be implemented if performance assessment results are otherwise unsatisfactory. In addition, the Test Phase will provide data that can be compared with data and assumptions used in the No-Migration Variance Petition modeling, to verify that it is conservative. Annual consequence analysis reports will be issued to demonstrate the Project's progress toward compliance with 40 CFR 191, Subpart B. Following issuance of the Final Comparison to the Standard scheduled for late CY 1994 and an evaluation of WIPP's ability to comply with all applicable environmental regulations, the decision whether to designate WIPP a repository is scheduled to be made in late CY 1995.
1.0 INTRODUCTION

The U.S. Department of Energy (DOE) has the responsibility to plan, develop, and implement a long-term defense transuranic (TRU) waste management program. The program must be technically feasible and effective and environmentally and institutionally acceptable. TRU waste generated from nuclear weapons production activities is currently stored at several DOE waste generating/storage sites. The DOE's goal is to end interim storage and achieve permanent disposal of TRU waste. The primary components of the DOE TRU waste management system are the TRU waste generating/storage sites, a transportation system, and the Waste Isolation Pilot Plant (WIPP), a first-of-a-kind facility to demonstrate deep geologic disposal. Figure 1-1 shows the location of the TRU waste generating/storage sites and the WIPP site.

In 1979, Congress passed authorizing legislation for WIPP and established its mission in Public Law (PL) 96-164:

"...the WIPP is authorized as a defense activity of the Department of Energy, administered by the Assistant Secretary of Energy for Defense Programs, for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission."

The Final Environmental Impact Statement (FEIS; DOE, 1980) for the WIPP Project was completed in October 1980. Subsequently, a Record of Decision was published on January 28, 1981, to proceed with WIPP, pursuant to regulations of the Council on Environmental Quality for implementation of the National Environmental Policy Act. The Record of Decision concluded that the benefits of proceeding with the WIPP Project, when weighed against its potential environmental impacts and costs, and after considering the benefits, impacts, and costs of reasonable available alternatives, merited proceeding with the phased construction and operation of WIPP. In late 1988, the DOE made a decision to update the WIPP Environmental Impact Statement. A draft Supplement to the Environmental Impact Statement (SEIS) was issued in April 1989 (DOE, 1989b). Following an extended public comment and review period, the final SEIS was issued in January 1990, and a Record of Decision will be published in April 1990.

The fundamental responsibility of the mission, to demonstrate safe disposal in compliance with relevant environmental regulatory requirements, is being fulfilled using a stepwise, phased approach. Figure 1-2 is a flow diagram illustrating the development of WIPP through several decision points leading to a decision whether to designate WIPP a disposal facility for TRU waste. The facility is now in transition from the Construction Phase to the Test Phase. Before the Test Phase can be initiated, several major technical and institutional activities (Decision Plan for WIPP, Rev. 2A; DOE, 1990a) must be accomplished, including land withdrawal, either administrative or legislative, a Final Safety Analysis Report for the facility approved, a No-Migration Variance granted by the U.S. Environmental Protection Agency (EPA) under the Resource Conservation and Recovery Act (RCRA; EPA, 40 CFR Part 268), and DOE's Record of Decision issued.
Figure 1-1. Location of WIPP and the Waste Generating/Storage Sites
Figure 1-2. Flow Diagram of WIPP Development from Site Selection to the Disposal Phase Decision

Revision 0, April 1990
1-3
During the Test Phase, the WIPP facility will be utilized to perform radioactive and nonradioactive experiments to evaluate the technical and operational aspects of environmentally acceptable disposal of defense-generated TRU waste. The information gathered during the Test Phase will support a determination of compliance with the primary environmental regulatory requirement governing disposal of radioactive wastes: 40 CFR 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes ("the EPA Standard"; EPA, 1985).

The EPA Standard, 40 CFR 191, is divided into two subparts which limit radiation and cumulative releases. The first, Subpart A - Environmental Standards for Management and Storage, applies to a disposal facility before decommissioning; the second, Subpart B - Environmental Standards for Disposal, for the most part, applies after decommissioning. Because WIPP will not be a disposal facility during the Test Phase, Subpart A technically does not apply to the Test Phase. However, pursuant to agreements with the State of New Mexico, the facility will operate in compliance with the requirements of 40 CFR 191, Subpart A, beginning with the initial receipt of waste. Subpart A requires that the facility be operated in a manner that provides reasonable assurance that the combined annual radiation doses to members of the public from waste management and storage operations do not exceed 25 mrem to the whole body and 75 mrem to any critical organs. Prior to being designated a permanent disposal facility for TRU waste, the facility must be able to demonstrate compliance with Subpart B of 40 CFR 191. Sections 13 and 15 include a performance assessment and other demonstrations of the ability of the facility to meet certain radiological limits for 1,000 years and 10,000 years after disposal.

WIPP is designed for disposal of certified contact-handled (CH) and remotely handled (RH) TRU waste. Approximately 60 percent of the TRU waste to be disposed of at WIPP is mixed waste; that is, in addition to being radioactively contaminated, it contains materials classified as hazardous and is thus subject to the Land Disposal Restrictions under RCRA. Using the specific criteria identified in 40 CFR 268, Section 6, the DOE has submitted a petition to the EPA demonstrating that there will be no migration of hazardous constituents from the repository for as long as the waste remains hazardous. The EPA's approval of a No-Migration Variance for WIPP will allow the facility to accept wastes otherwise prohibited or restricted from land disposal.

At the conclusion of the Test Phase, information acquired during this period, in conjunction with data collected earlier, will be evaluated to determine whether the WIPP facility is suitable to be a disposal facility for TRU waste. If WIPP is judged to be suitable, the Disposal Phase (an additional 20 years of operation) would then be initiated to demonstrate disposal of current and future TRU waste that meets the WIPP Waste Acceptance Criteria (DOE, 1989b), which were developed to certify that only waste with characteristics within certain bounding limits will be handled and emplaced in the WIPP facility. At the conclusion of the Disposal Phase, the WIPP site would be decommissioned in a way that would allow the safe, permanent disposition of surface and underground facilities consistent with the applicable regulations.

Current plans call for approximately 0.5 percent of the WIPP disposal area design capacity of CH-TRU waste to be emplaced in Panels 1 and 2 of the WIPP underground facility for these tests. Chapter 2 of this document and the test plans (Brush, 1990; Molecke, 1990a, 1990b) provide the rationale for the CH-TRU
waste tests and information on the quantities and types of waste currently planned to be used. However, the DOE is evaluating additional bin-scale tests associated with the engineered alternatives study (discussed in Activity S.1.2.5), a request by the EPA to instrument and seal two full-scale rooms of waste, and the Operations Demonstration, each of which would require additional quantities of waste. All waste emplaced during the Test Phase will be readily retrievable.

This document, WIPP Test Phase Plan: Performance Assessment ("the Plan"), is a living document and will be reassessed and revised periodically based on review comments and the future needs of the Project. It identifies and describes the first of the following two key programs planned for the Test Phase: Performance Assessment and Operations Demonstration. The Performance Assessment Program will assess the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard, 40 CFR 191, Subpart B, Sections 13 and 15. The Operations Demonstration Program, which has received external peer review from the Secretary's Blue Ribbon Panel, the Advisory Committee on Nuclear Facility Safety (Ahearne Committee), the National Academy of Sciences/National Academy Engineering (NAS/NAE) WIPP Panel, and the Environmental Evaluation Group (EEG), could be used to further evaluate the safety and effectiveness of the TRU waste management system's ability to emplace design throughput quantities of TRU waste in the underground facility. The DOE has determined that any operations demonstration would not be initiated until high confidence is achieved in complying with 40 CFR 191, Subpart B. The need for and scope of the operations demonstration will be evaluated after operational experience gained from the performance assessment tests has been assessed.

Several of the activities to be carried out for the Performance Assessment Program will also collect data that will be compared with data and assumptions used in modeling for the No-Migration Variance Petition (DOE, 1990c), which was prepared in accordance with the RCRA Land Disposal Restrictions, 40 CFR 268, Section 6. The RCRA Land Disposal Restrictions, as relevant to WIPP, are more fully explained in the WIPP No-Migration Variance Petition, which has been submitted to the EPA for review and approval.

This Plan is a programmatic document which provides an appropriate framework for achievement of the objectives of the Performance Assessment Program. Planned activities are clearly delineated and integrated, but not detailed to the level of daily administration. Test plans have been, or will be, prepared to provide further levels of detail. Other subjects, such as quality assurance and safety, are mentioned but not discussed in detail in this Plan; however, each is thoroughly discussed in appropriate Project documents.

1.1 TRU WASTE MANAGEMENT SYSTEM

For the purposes of this Plan, the DOE TRU waste management system consists of three components: the waste generating/storage sites, the transportation system, and the WIPP facility. Each is briefly discussed in this section. In addition, this section contains a brief summary of the WIPP Project development.
1.1.1 Generating/Storage Sites Description

There are ten generating/storage sites (Figure 1-1) within the DOE TRU waste management system. The primary sites shipping experimental waste for the Test Phase will probably be the Idaho National Engineering Laboratory, which will ship stored CH-TRU waste, and the Rocky Flats Plant, which will provide newly generated CH-TRU waste. Other sites may also ship waste during this period.

Each site that will ship waste to the WIPP facility must meet the requirements of the National Environmental Policy Act and the WIPP Waste Acceptance Criteria. The sites are authorized to implement certification procedures which, together with records generated by the certification process and periodic audits, provide documented evidence and assurance that only waste meeting the Waste Acceptance Criteria will be shipped to the WIPP facility. Transportation of TRU waste to the WIPP facility in TRUPACT-IIa requires that all generating/storage sites meet the requirements of the TRUPACT-II Certificate of Compliance, Safety Analysis Report for Packaging, and the TRUPACT-II Authorized Method for Payload Control. To control these additional shipping requirements, the shippers are preparing implementation plans, similar to those required for waste certification.

1.1.2 Transportation System Description

The transportation system to be employed for shipment of TRU waste to the WIPP facility from the generating/storage sites is highly visible, and has received considerable public attention in recent years due to the potential for transportation-related accidents. However, the safety record associated with transport of radioactive materials has been excellent (Stoller Corporation, 1989; Office of Technology Assessment, 1986). In addition, prior to initial shipment of waste to WIPP, the DOE and the transportation corridor states will perform many exercises with simulated waste to ensure the system is in place to safely transport and handle the waste.

New shipping containers have been designed, built, and licensed specifically for transport of TRU waste. CH-TRU waste drums and boxes will be shipped in TRUPACT-II shipping containers, and RH-TRU waste will be shipped in RH-TRU waste shipping casks. These shipping containers meet Department of Transportation Type B packaging requirements (49 CFR 173); the TRUPACT-II shipping container has been and the RH-TRU waste shipping cask will be certified by the Nuclear Regulatory Commission for safe transportation of nuclear materials. The Standard Waste Box and 55-gallon drums have been certified to Department of Transportation requirements as a Type A container. A TRUPACT-II shipping container will hold 14 drums (two 7-packs) or two Standard Waste Boxes of waste.

The transportation system will use the satellite-based tracking TRANsportation COMMunication System (TRANSCOM) to monitor shipments during transit to and from the WIPP site. Access to tracking information will be made available to the officials in New Mexico, other corridor states, and to Indian Tribes and Pueblos requesting such access. Emergency response training is being provided to emergency responders and officials in New Mexico, other corridor states, and Indian Tribes and Pueblos.
1.1.3 WIPP Description

The WIPP site is located in southeastern New Mexico, approximately 26 mi (42 km) southeast of Carlsbad (Figure 1-1). The TRU waste to be shipped to WIPP is typically comprised of discarded material from defense weapons production and related processes. The waste typically includes a wide variety of materials, such as glassware, metal pipes and tools, disposable laboratory clothing, cleaning rags, and solidified sludges, all contaminated with TRU elements, and approximately 60 percent is hazardous mixed wastes as defined by RCRA. Much of the CH-TRU waste is packaged in 55-gallon (208-liter) metal drums; in the future, Standard Waste Boxes will be the primary package for the TRU waste. Some waste is presently stored in large metal boxes whose disposition will be evaluated at a later date. The average surface dose rate (≤14 mrem/h) from the CH-TRU waste drums and boxes, which constitute 97 percent of the waste scheduled to be shipped to the WIPP facility, is such that workers may handle the containers without any special shielding precautions. Only 3 percent of the waste drums (RH-TRU) must be remotely handled; these drums will be packaged in steel canisters for remote handling and in specially shielded casks for transportation.

The WIPP consists of both surface and underground facilities, including the Waste Handling Building, an Exhaust Filter Building, a Security Building with a visitor center, an Emergency Services Building, a TRUPACT-II maintenance facility, various other support buildings, four shafts to the underground area, underground workings at a single level for waste tests and disposal, and underground maintenance shops (Figure 1-3).

The Waste Handling Building is equipped to handle CH- and RH-TRU wastes in separate areas. The CH-TRU waste area includes shipping and receiving, inspection and inventory, preparation, and an overpack and repair room for damaged containers. The RH-TRU waste area includes shipping and receiving, shipping cask preparation and decontamination, cask loading and unloading, and a hot cell above the loading area for waste canister storage, overpacking, decontamination, and transfer. Although the primary purpose of the Waste Handling Building is to handle TRU waste for emplacement, it is also equipped to handle any TRU waste that must be retrieved. Two independent airlocks at the shaft entrance allow wastes to enter from either the CH- or the RH-TRU waste areas. High efficiency particulate air filtration equipment is utilized in all radioactive materials areas of the Waste Handling Building.

The underground facility is located about 2,150 ft (655 m) below the land surface in the bedded salt (halite) of the Salado Formation. The Salado Formation is approximately 2,000 ft (600 m) thick and 225 million years old. The underground facility is at one mined level and designed in a conventional "room-and-pillar" arrangement. It includes three separate mined areas: a test/disposal area for CH- and RH-TRU wastes; an experimental area dedicated to research and development in rock mechanics, seal design, and facility design; and a shaft pillar area that connects the waste test/disposal, shaft, and experimental areas. The typical disposal rooms are 13 ft (4 m) high, 33 ft (10 m) wide, and 300 ft (91 m) in length; each is separated from the next by 100-ft (30-m) wide pillars of rock salt. Ultimately, eight panels of seven rooms each will be mined. The underground areas are excavated using continuous
Figure 1-3. The Waste Isolation Pilot Plant
mining machines. The mined salt is transported by underground haulage vehicles to a surge bin at the Salt Handling Shaft for removal from the mine.

For final disposal, CH-TRU waste drums and boxes will be stacked in the waste disposal rooms and covered with backfill. RH-TRU waste canisters will be emplaced in horizontal boreholes drilled into the walls of the rooms. The capacity of the WIPP disposal facility is 6,200,000 cubic feet of CH-TRU waste and 250,000 cubic feet of RH-TRU waste.

1.1.4 WIPP Project Development

Since PL 96-164 was enacted establishing the mission of the WIPP Project, program activities have focused on completion of major segments or phases of the Project, thereby allowing significant progress to be made toward demonstrating the safety of WIPP. Each major phase has provided an opportunity to study and evaluate the most recent information, individually and collectively, prior to proceeding with the next phase. Strong influences on the development of the WIPP Project have been the adherence to DOE Order 4700.1 (and its predecessor) regarding "Major System Acquisition" for DOE construction projects, the Consultation and Cooperation Agreement with the State of New Mexico, applicable EPA regulations, and interaction with the NAS/NAE WIPP Panel. The following summary of progress for the WIPP Project illustrates the extent of information collected to date and clarifies the readiness of the Project to enter the Test Phase.

The major phases of the WIPP Project and their relationship to the Key Decisions required in DOE Order 4700.1 are illustrated in Figure 1-4. Key Decision 1 in October 1979 was based upon preliminary site characterization and conceptual design and marked the beginning of the Preliminary Design (Title I). Key Decision 2 in September 1981, to initiate Detail Design (Title II), was made after evaluation of the preliminary design and the 1981 Record of Decision to proceed with the WIPP Project. Key Decision 3 occurred in July 1983 and was based on the successful conclusion of the Site and Preliminary Design Validation Program. This decision initiated the Construction Phase. Key Decision 4, the last decision in terms of DOE Order 4700.1, will be the decision whether the construction phase is complete. This decision would be made after the capability to meet technical performance goals approved in the Project baseline and operational readiness have been demonstrated. Before Key Decision 4 can be made, the following activities must be complete: the Final Safety Analysis Report (DOE, 1989d) must be approved, the Preoperational Appraisal and Operational Readiness Review approved, and the SEIS Record of Decision issued. Three other activities, key to the decision, are already complete: the FSEIS, the TRUPACT-II Certificate of Compliance, and major facility construction. The decision is the responsibility of the Energy Systems Acquisition Advisory Board and is expected to be made as early as June 1990 (Decision Plan for WIPP, Rev. 2A).

Numerous activities were completed to provide the basis for the Key Decisions described above. Investigation of the geographic area proposed for WIPP, the Los Medanos region of southeastern New Mexico, began in 1972 with a careful review of the extensive geologic data base developed by potash and hydrocarbon industry exploration in the area. The results of this review were favorable,
Figure 1-4. WIPP Project Summary Schedule
and detailed characterization of the present site was initiated in 1976 with drilling of a stratigraphic borehole, ERDA-9, at the center of the site. Between 1975 and 1988, over 95 boreholes were drilled and over 35,000 feet of core were retrieved specifically for geologic evaluation of the site. More than 40 of these WIPP boreholes have been used to acquire hydrologic data needed to establish models of local and regional hydrology. In addition, a variety of geophysical exploration techniques, including electrical resistivity, seismic reflection, gravity, and magnetic surveys, have contributed to understanding the site geology (Lappin, 1988).

A comprehensive WIPP research and development program began in 1975 with investigations of salt creep properties and constitutive laws, gas generation from the degradation of TRU waste, corrosion behavior of TRU waste containers, and backfill behavior. From 1981 through 1983, field tests were conducted on waste package materials, large-scale salt deformation, and brine transport in a potash mine near the WIPP site. Investigations in the WIPP underground began in 1982 with the instrumentation of the Salt Handling Shaft and selected underground drifts. An extensive underground (in situ) test program for thermal/structural interactions, plugging and sealing, brine inflow, and waste package performance began in 1983 and is still in progress (Tyler et al., 1988).

In April 1979, the draft Environmental Impact Statement was issued for public comment. These comments were considered and responses made prior to issuing the Final Environmental Impact Statement in October 1980. A Record of Decision was published on January 28, 1981, to proceed with WIPP. Following issuance of the Record of Decision, development and construction of the WIPP facility was initiated. Construction was accomplished in two distinct phases: (1) the Site and Preliminary Design Validation (SPDV) Program, and (2) Facility Construction.

The SPDV Program (1981-1983) was developed and implemented consistent with the Record of Decision to permit direct observation of geologic conditions at the proposed repository horizon and to allow determination of the geomechanical response of the salt beds after excavation of underground workings. Two shafts were drilled, and a four-room test panel was excavated at the selected disposal depth. Extensive data from geologic investigations showed the geology of the disposal horizon to be consistent with predictions based on previous investigations and as described in the FEIS (DOE, 1980). SPDV Program results (DOE, 1983) were made available for review by the State of New Mexico and the public. The results were also presented to the NAS/NAE WIPP Panel, which concluded that a repository meeting the geologic criteria for site selection could be constructed at the WIPP site (NAS, 1983). Based upon the SPDV data and in consideration of comments from all program reviewers, it was concluded that a sound basis had been established to proceed with facility construction.

In concert with the technical activities conducted during the SPDV phase, WIPP was engaged in a comprehensive institutional program. Most significant among the institutional efforts were those which culminated in formal agreements with the State of New Mexico. Several State oversight groups were formed during the late 1970s. The EEG was established to provide independent technical review of safety and environmental aspects of the WIPP Project. An Interim Legislative Radioactive Materials Committee, now known as the Radioactive and Hazardous Materials Committee, consisting of New Mexico legislators, was formed to provide the State with legislative oversight. The Executive Branch convened a Radioactive Waste Consultation Task Force, comprised of cabinet-level members,
to provide input and advice to the Governor. The EEG has provided continuous independent technical oversight of environmental, health, and safety aspects of the WIPP Project by reviewing geologic, hydrologic, environmental/ecological, and engineering studies and reports concerning the Project. The Environmental Evaluation Group has also conducted independent studies and prepared formal reports of their evaluations. In addition, the State of New Mexico has applied to the EPA to obtain Authorization to regulate mixed waste. Upon gaining approval, which is expected to occur in 1990, the New Mexico Environmental Improvement Division will have responsibility for administering the RCRA mixed waste program, the New Mexico Hazardous Waste Act, and all other applicable state environmental laws and regulations.

In addition to the open communication with these State organizations, the DOE entered into both a Stipulated Agreement and a Consultation and Cooperation Agreement with the State of New Mexico in 1981. The Stipulated Agreement (DOE, U.S. Department of Interior, and State of NM, 1981) identified geotechnical work to be performed to resolve certain State concerns. The Consultation and Cooperation Agreement defined the process and procedures for consultation and cooperation between the DOE and the State of New Mexico. The geotechnical studies included as part of the original Stipulated Agreement were completed during the SPDV phase. In December 1982, the DOE and the State of New Mexico entered into a Supplemental Stipulated Agreement which included additional geotechnical studies, environmental monitoring, transportation monitoring, emergency response activities, road upgrading, and State liability issues. The Consultation and Cooperation Agreement has been modified several times since its inception. Discussions have also been conducted with representatives from corridor states and Indian reservations through which TRU waste shipments to WIPP are planned. These discussions included such subjects as routing, emergency response, and notification of shipments.

The WIPP Construction Phase (1983-1990) has encompassed all major surface facilities, two additional shafts leading to the underground, excavation and outfitting of the underground experimental areas, and excavation of Panel I and associated drifts (Figure 1-3). During the Construction Phase, a formal construction acceptance program was implemented, which required walk-throughs to compare design drawings and specifications to actual construction, system and subsystem testing and certifications to demonstrate that systems were constructed as designed, and as-built drawings. A subsequent start-up program evaluated all the identified critical operating systems, including the Waste Handling and Exhaust Filter Buildings, the shaft and hoisting systems, the CH-TRU waste handling system and equipment, all monitoring systems, controls and instrumentation, utilities (electrical, water, and fire protection), and the underground ventilation system. This process of systematic testing and audits of the construction systems and facilities, which is nearly complete, provides assurance that the intent of the designs has been implemented.

Following the completion of appropriate elements of the start-up program, a series of operational demonstrations was performed focusing on the full CH- and RH-TRU waste handling operations to be used for waste emplacement, as well as the demonstration of retrievability of both waste types. These demonstrations included mock CH- and RH-TRU waste retrieval demonstrations and CH- and RH-TRU waste preoperational checkouts. To further ensure that WIPP will operate safely, two oversight programs have been implemented. An Operational Readiness Review is providing a comprehensive check on safety, administrative, and
operational aspects of the WIPP systems. A comprehensive Preoperational
Appraisal, independent of WIPP management, is providing a thorough review of
the WIPP environmental, safety, and health programs with an in-depth inspection
of the site facilities, and a review and analysis of operations and supporting
documentation.

1.2 OBJECTIVES OF THE TEST PHASE

The purpose of the Test Phase is to continue activities in support of the
intent of Congress to demonstrate safe disposal of defense wastes and thereby
establish a permanent disposal facility for TRU waste. To accomplish this, the
WIPP Project will conduct its operations in compliance with applicable laws and
regulations. The Project will demonstrate that it is in compliance with the
applicable requirements of the EPA Standard, 40 CFR 191, which regulates TRU
waste management and disposal, and will acquire data to verify data and assump-
tions for modeling in its No-Migration Variance Petition, which was prepared to
satisfy the requirements of the RCRA Land Disposal Restrictions, 40 CFR 268,
Section 6. This Plan addresses the long-term performance requirements of the
repository as given in 40 CFR 191, Section 13, Containment Requirements, and
Section 15, Individual Protection Requirements, for which the WIPP Project will
use performance-assessment techniques. 40 CFR 191, Section 14, Assurance
Requirements, and Section 16, Ground Water Protection Requirements, do not
require the use of performance-assessment techniques and are not discussed
here.

Although Subpart B of the Standard was remanded to the EPA by the U.S. Court of
Appeals for the First Circuit, this Plan addresses the Standard as first
promulgated. The 1987 Second Modification to the Agreement for Consultation
and Cooperation between the DOE and the State of New Mexico (1981) commits the
WIPP Project to evaluate compliance with the Standard as first promulgated
until a revised Standard becomes available. Compliance plans for the WIPP
facility will be revised as necessary in response to any changes to the
Standard.

The two primary objectives of the Test Phase are to demonstrate

- Reasonable assurance of compliance of the WIPP disposal system (the
 combination of the repository/shaft system and the controlled area)
 with the long-term disposal standards of the EPA Standard, 40 CFR
 191, Subpart B, Sections 13 and 15. Compliance of the disposal
 system will be determined based on a probabilistic performance
 assessment, incorporating both data and interpretations developed
during the Test Phase. The performance assessment will include an
evaluation of potential engineered alternatives.

- The ability of the DOE TRU waste management system (the generating/
 storage sites, the transportation system, and WIPP) to safely and
effectively certify, package, transport, and emplace waste under-
ground at WIPP in accordance with all applicable regulatory
requirements. Acceptability of the waste management system will be
evaluated by operations testing and monitoring, both individually
and collectively, of the TRU waste management system.
The focus of this Plan is to describe the method and activities required to demonstrate compliance with the long-term performance standard of 40 CFR 191, Subpart B, Sections 13 and 15.

1.2.1 Performance Assessment

The Performance Assessment Program will evaluate whether the WIPP disposal system can reasonably be expected to isolate TRU waste from the accessible environment after decommissioning in accordance with the requirements set forth in 40 CFR 191, Subpart B, Sections 13 and 15.

1.2.1.1 Requirements of the EPA Standard

The performance objective of the WIPP disposal system is to adequately isolate the waste from the accessible environment; the performance requirements for radionuclides are compliance with the 10,000-year release limits and the 1,000-year dose limits in Subpart B, Sections 13 and 15. In evaluating compliance with Subpart B, the WIPP Project will follow the guidance provided in Appendix B to the EPA Standard. The Standard requires different predictions of disposal system performance for 1,000-year and 10,000-year periods. The Standard specifies that a performance assessment be used to predict the cumulative releases of radionuclides to the accessible environment for the 10,000-year period; cumulative releases must be within the limits established in Appendix A of the Standard. Parts of the WIPP 10,000-year performance assessment methodology can be used to assess compliance with the 1,000-year performance requirements. The 1,000-year assessment will predict annual doses to members of the public in the accessible environment resulting from undisturbed disposal system performance. It will not address the concentration limits established by Subpart B, Section 16, for special sources of ground water, because no such sources exist at WIPP.

The EPA Standard, 40 CFR 191, is procedural; it identifies the approach to be taken and provides explicit guidance for implementation. To show that WIPP can meet cumulative release limits set for the 10,000-year requirements, the performance of the disposal system must be predicted, taking into account all plausible responses to all significant events and processes that might affect the disposal system. To ensure that all plausible responses are identified, scenarios are developed by coupling the individual events and processes that could occur. Scenarios are screened by removing those that fall outside the bounds set by the regulation. Consequence analysis is used to calculate a performance measure for each of the remaining significant scenarios. The performance measures for all remaining scenarios are normalized, summed, and reported as a complementary cumulative distribution function of release probabilities. Uncertainties in the data must be included in calculations of the performance measure for each scenario. To provide a reasonable expectation that the WIPP repository can meet annual dose limits set for 1,000-year performance, the Standard requires that releases from the undisturbed scenario be analyzed. If any release to the accessible environment is predicted, transport along biological pathways is modeled and dose estimates are made. Uncertainties in the data are included in the dose calculations.

The performance assessment will provide quantitative measures of the long-term performance of the WIPP disposal system. EPA recognized that sole reliance on
numerical predictions of releases and doses to determine compliance may not be appropriate and acknowledged that such predictions may need to be supplemented with qualitative judgments. The final decision will be based on a reasonable expectation of compliance with Subpart B, Sections 13 and 15, and will include quantitative measures of performance and qualitative judgments.

1.2.1.2 Approach

A framework was established to guide the acquisition of information for Performance Assessment during the Test Phase. The framework consists of five major program elements which identify the major program components required to evaluate compliance (Table 1-1). Elements contain both procedural and technical requirements. Disposal system characterization activities have been developed to provide the data to satisfy these requirements.

Because of the broad scope of each of the elements, they are, in turn, divided into subelements. The subelement consists of more discrete components of the program, which are used to develop specific information needs, as discussed in Chapter 2. For example, Element 1.2, Repository/Shaft System: Behavior Characterization and Performance Modeling, has as one of its subelements, Subelement 1.2.1, Waste Disposal Room Behavior and Modeling. To adequately understand the room behavior and to model its behavior, specific information must be available. One of the information needs for this subelement is Information Need 1.2.1.6, Gas Generation and Behavior. Data for this information need will come from several different activities (e.g., S.1.3.2, Alcove Gas Generation Tests, and S.1.3.3, Bin-Scale Gas Generation Tests), each of which is described in Chapter 2.

1.2.1.3 Performance Assessment Methodology

The performance assessment methodology developed for WIPP (Bertram-Howery and Hunter, 1989a) consists of seven major components: (1) data collection, model development, and engineered alternatives, (2) scenario development and screening, (3) preliminary consequence analysis, (4) sensitivity and uncertainty analysis, (5) final consequence analysis and comparison with the EPA Standard, 40 CFR 191, (6) analysis of undisturbed performance, and (7) documentation. Disposal system characterization (or supporting) activities provide the data, models, and engineered alternatives for the first component, and comprise the bulk of the Performance Assessment Program. The other six components are developed in Performance Assessment activities. Section 2.4.1 provides a detailed explanation of each component.

There are four major areas of scientific investigation integral to the assessment of disposal system performance. These areas examine the behavior of the disposal room and drift system, the sealing system, structural and fluid-flow behavior of the Salado Formation, and non-Salado hydrology and radionuclide migration. Investigation of these areas involves both laboratory and large-scale underground tests.
Table 1-1. Work Elements and Subelements for Performance Assessment

Element 1.1 Scenario Screening
Subelement 1.1.1 Climatic Change
Subelement 1.1.2 Nuclear Criticality
Subelement 1.1.3 Human Intrusion
Subelement 1.1.4 Seal Performance
Subelement 1.1.5 Probability Assignment

Element 1.2 Repository/Shaft System: Behavior Characterization and Performance Modeling
Subelement 1.2.1 Waste Disposal Room Behavior and Modeling
Subelement 1.2.2 Panel Seal Behavior and Modeling
Subelement 1.2.3 Access Drift Behavior and Modeling
Subelement 1.2.4 Shaft Seal Behavior and Modeling
Subelement 1.2.5 Transport Modeling

Element 1.3 Controlled Area: Behavior Characterization and Performance Modeling
Subelement 1.3.1 Los Medanos Regional Flow Modeling
Subelement 1.3.2 Controlled Area Flow Modeling
Subelement 1.3.3 Hydrologic Transport Modeling
Subelement 1.3.4 Borehole Plug Behavior and Modeling

Element 1.4 Computational System
Subelement 1.4.1 Development of the Compliance Assessment System
Subelement 1.4.2 Compliance Assessment Data Bases

Element 1.5 Consequence Analysis
Subelement 1.5.1 Containment Requirements
Subelement 1.5.2 Individual Protection Requirements

Model segments are being developed to simulate the response of the disposal system to each process or event within each scenario. Model segments that predict the behavior of the waste disposal rooms, panel seals, access drifts, shaft seals, and the migration of radionuclides through the controlled area will be integrated into an overall performance model. This performance model will then be used to predict the consequences of credible scenarios to evaluate compliance with the Standard.

The development of model segments begins with laboratory and field research to identify and begin to assess the individual processes, such as creep closure, brine inflow, gas generation, and migration of radionuclides through panel seals, shaft seals, and overlying water-bearing rock units. While the models are being developed, field and laboratory studies continue acquiring the data.
necessary for use in the model segments. Among the data collection activities are the tests that have been designed to provide realistic data on TRU waste gas generation and to evaluate the effectiveness of gas getters in the backfill. These tests include laboratory tests with simulated waste; bin-scale tests, which will use approximately six drums of waste per bin to produce conditions representative of long-term effects; and underground (in situ) alcove tests designed to develop gas generation and consumption data that are representative of the heterogeneous mixture of CH-TRU waste. Additional information on these underground tests can be obtained in Chapter 2, Activities S.1.3.2 (p. 2-112) and S.1.3.3 (p. 2-114), and in the Test Plans (Brush, 1990; Molecke, 1990a, 1990b).

In addition, the experimental program will collect data which will be compared with the data and assumptions used in modeling for the RCRA No-Migration Variance Petition, which was submitted to the EPA. Key aspects of the experimental program related to RCRA compliance are

- To identify any hazardous components (such as volatile organic compounds and heavy metals) that may be released from the waste in significant quantities,
- To gain greater understanding of potential chemical interactions that may occur between various waste types and between waste and repository host rock, brine, and alternative backfill and gas getter materials,
- To evaluate, through a combination of modeling and experimental studies, the expected structural and fluid-flow response of WIPP to internal gas pressurization,
- To evaluate the potential for degradation of the seals and plugs (final design, not temporary inflatable seals) due to exposure to the volatile organic compounds in the waste, and
- To observe and report waste and repository behavior to meet monitoring requirements related to the granting by the EPA of a No-Migration Variance for the WIPP.

In conjunction with the performance assessment activities, the Project will examine engineered alternatives to the current waste disposal system design. It will prepare the Project to implement any necessary changes to the design in a timely manner as a contingency if performance assessment results have a high degree of uncertainty or are unsatisfactory, or if changes are required to enhance the demonstration of no migration as required under RCRA. Examples of types of alternatives under consideration include waste processing and changes in the storage room or panel configuration. Engineered alternatives will be screened for relative effectiveness using a design analysis model and will be screened for feasibility with respect to state of technology, regulatory concerns, and worker exposure; they will then be tested in laboratory or larger scale experiments where possible. Preliminary recommendations of six modified waste forms and three backfill alternatives will be tested in laboratory, bin-scale, and alcove tests. Potentially effective and feasible alternatives will be evaluated using the formal performance assessment process to quantify the improvement in disposal system performance.

Revision 0, April 1990 1-17
1.2.2 Operations Demonstration

The DOE has determined that any operations demonstration would not be initiated until high confidence is achieved in complying with 40 CFR 191, Subpart B. The need for and scope of the operations demonstration will be evaluated after operational experience gained from the performance assessment tests has been assessed. In addition, DOE is prepared to comply with conditions that may be imposed by EPA in its proposed conditional RCRA No-Migration Variance.

The purpose of the Operations Demonstration would be to further evaluate the ability of the TRU waste management system to provide safe and effective handling, waste certification, transportation, and disposal of the TRU waste at emplacement rates up to those required for full-scale operation of the WIPP facility. This demonstration would include all elements of the DOE TRU waste management system (the generating/storage sites, the transportation system, and WIPP) and require both CH- and RH-TRU wastes. If needed, the Operations Demonstration would follow a phased approach that will build upon previous confirmation of facility and operational readiness, cold operations, experience with handling of bin-scale and alcove test waste, and proceed to the next step, full-scale operations with radioactive waste. It would reflect an integrated, stepwise progression of facility readiness, training, nonradioactive operational demonstrations, and demonstrations with radioactive wastes progressing from initial receipt rates to higher quantities representative of required WIPP throughput rates.

Prior to receipt of actual radioactive waste at WIPP, all operational procedures from waste receipt to retrieval and shipment will be checked out with non-radioactive ("cold"), non-hazardous materials. Handling and emplacement of TRU waste used for the bin-scale and alcove scale tests will provide some limited experience for the waste management system. Specifically, experience will be gained in preparation and loading of waste at the waste generating/storage facility; transportation and tracking of waste shipments; receipt, unloading, and emplacement of waste; and storage of waste.

1.3 TRU WASTE REQUIREMENTS FOR THE TEST PHASE

An important component of the Test Phase is the need to conduct experiments with actual TRU waste underground in the WIPP repository. The waste will be used to conduct underground (in situ) gas generation tests, which will be used to reduce the level of uncertainty in the performance assessment and will provide data for comparison with data and assumptions used in modeling WIPP's demonstration that hazardous constituents of the waste will not migrate.

The Performance Assessment Program requires simulation of the WIPP disposal system and an evaluation of the consequences of credible release scenarios. An adequate understanding of the disposal room behavior is an important element of these consequence predictions. As part of the characterization of the room, gas generation and consumption by microbial and radiolytic decomposition of the TRU waste and corrosion of the waste containers, as well as the influx of naturally occurring gas from the host rock, must be evaluated. This evaluation will include two basic types of tests conducted in the WIPP underground: bin-scale and alcove tests (Table 1-2). Data from monitoring an estimated 124 specially designed bins will be used to verify laboratory data concerning gas.
Table 1-2. Waste Types and Quantities for Gas-Generation Tests

<table>
<thead>
<tr>
<th>Phase</th>
<th>Alcove</th>
<th>Type</th>
<th>Drums</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>TA1</td>
<td>None: baseline</td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td>TA2</td>
<td>As-Received</td>
<td>1,050</td>
</tr>
<tr>
<td>Phase 2</td>
<td>TA3</td>
<td>Prepared</td>
<td>1,050</td>
</tr>
<tr>
<td>Phase 2</td>
<td>TA4</td>
<td>Compacted</td>
<td>350</td>
</tr>
<tr>
<td>Phase 2</td>
<td>TA5</td>
<td>Prepared</td>
<td>1,050</td>
</tr>
<tr>
<td>Phase 2</td>
<td>TA6</td>
<td>Compacted</td>
<td>350</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3,850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase</th>
<th>Bins</th>
<th>Drum-Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>48</td>
<td>252</td>
</tr>
<tr>
<td>Phase 1</td>
<td>4</td>
<td>None: baseline</td>
</tr>
<tr>
<td>Phase 2</td>
<td>68</td>
<td>356</td>
</tr>
<tr>
<td>Phase 2</td>
<td>4</td>
<td>None: baseline</td>
</tr>
<tr>
<td>Phase 3</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>608</td>
</tr>
</tbody>
</table>

1This table does not include additional quantities for the Test Phase that may be required to support additional bin-scale tests for evaluation of engineered alternatives, a request by the EPA to instrument and seal two full-scale rooms of waste, and the Operations Demonstration. These programs are currently being evaluated by the DOE.

generation during the postoperational phase of the facility. Additional test bins may be required to accommodate potential test contingencies, specifically including any new engineered modifications to waste and backfill. In the alcove tests, which represent both initial operational conditions and postoperational conditions, an estimated total of 3,850 drums of CH-TRU waste will be emplaced in specially mined alcoves in the WIPP facility. Chapter 2, Performance Assessment, and the Test Plans (Brush, 1990; Molecke, 1990a, 1990b) provide further descriptions of the TRU waste requirements for the EPA compliance effort.

Although the initial part of the Test Phase is well defined, experimental programs will evolve with increasing understanding of the systems under test.
The nature, scope, waste quantities, and timing of additional tests remain flexible. The sum total of experiments recommended by various groups to date would initially require approximately 2 percent by volume of the design capacity for waste.

The initial plans for the Test Phase described in this document call for the emplacement of approximately 0.5 percent by volume of the design capacity for Phases 1 and 2 of the alcove tests and Phases 1 and 2 of the bin-scale tests. These bin-scale and alcove tests will support assessment of compliance with the EPA Standard, 40 CFR 191, Subpart B, Sections 13 and 15. Additional tests will be defined based on the data acquired during the first two phases of the bin-scale and alcove tests and to incorporate potential engineered alternatives.

In addition, the EPA has requested that the Project monitor the performance of the facility by emplacing waste in two full-scale, instrumented, backfilled, sealed rooms after an appropriate demonstration of retrieval using simulated waste. Waste requirements for these two full-scale room tests would be approximately 1.5 percent by volume of design capacity. The DOE will conduct a feasibility evaluation to determine the best technical approach, scope, and timing of such monitoring. The DOE will consult the NAS/NAE WIPP Panel, the EPA, the State of New Mexico, and the EEG prior to initiation of such tests.

Waste requirements for an Operations Demonstration have not yet been determined. The DOE will evaluate the operational experience to be gained through the conduct of all of the test activities and will factor this into future decisions on the scope and timing of an Operations Demonstration. Waste emplaced in the WIPP facility during the Test Phase will be retrievable until a decision is made whether WIPP should become a disposal facility. During the Test Phase, per agreement with the State of New Mexico, WIPP will meet the applicable requirements of the EPA Standard, 40 CFR 191, Subpart A.

1.4 SCHEDULE

The Test Phase will begin with the first receipt of waste for bin-scale and alcove gas generation tests and will continue for about five years (Figure 1-5). In accordance with the Secretary of Energy's Decision Plan for WIPP (Rev. 2A; DOE, 1990a), the Secretary could announce a projected date for Test Phase initiation in June 1990. For illustrative purposes in this document, it will be assumed that the Test Phase begins at the end of CY 1990. At the end of the Test Phase, a decision is scheduled to be made whether WIPP will become a permanent repository for TRU waste. To support this decision, a Test Phase Decision Report will be issued in mid-1995, containing summaries and conclusions from the major programs (e.g., 40 CFR 191 compliance, Operations Demonstration, RCRA) conducted during the Test Phase. This report will be issued to appropriate external organizations for review prior to the decision date.

Many of the performance assessment and disposal system characterization activities shown in the summary schedule (Figure 1-5) have been in progress for several years and will continue into the Test Phase. The nature and scope of these on-going experimental studies have been guided by past sensitivity analysis and disposal system performance calculations. The approach that is being taken in demonstrating compliance with the EPA Standard, 40 CFR 191, and in guiding the experimental program will place more emphasis on sensitivity...
Figure 1-5. Summary Schedule for the Test Phase
analysis and disposal system performance calculations. This approach is illustrated by the iterative nature of the process. Until issuance of the Draft Comparison to the Standard, the Project will be performing an iterative set of performance assessment calculations every six months, using the most recent models and data sets available from the experimental activities. The results of these interim consequence analyses will be provided in briefings to the NAS/NAE WIPP Panel, the EPA, the State of New Mexico, and the EEG every six months, and documented in a report to be issued annually for external distribution.

The date for issuance of the Draft Comparison to the Standard is scheduled for late CY 1993, with the Final Report to be issued late 1994. These dates are predicated on obtaining the required data from the experimental program such that the parameter and system uncertainties are sufficiently reduced and there is reasonable assurance that WIPP will comply with the 40 CFR 191 Standard, as well as other applicable environmental regulatory requirements. If reasonable assurance of compliance cannot be demonstrated due to an inadequate data base or if new technical concerns arise and require investigation, the target date will be revised accordingly. Alternatively, if WIPP cannot be shown to comply with the 40 CFR 191 Standard, or with other applicable environmental requirements, the site will not be used for radioactive waste disposal.

The schedule for the experimental program indicates that all planned experiments will provide the data needed to demonstrate compliance by late CY 1994. Two activities of special interest to the performance assessment analyses are the bin-scale and alcove gas generation tests and the engineered alternatives study. Prior to emplacing experimental waste in the alcoves, a seal leakage test must be completed and the leakage rate found acceptable. The gas generation tests assume an incremental approach to testing, from initial emplacement of simple waste/backfill combinations to emplacement of increasingly more complex experiments incorporating compacted waste and potential engineered alternatives. Preliminarily recommended engineered alternatives, including six modifications to the waste form and three backfill alternatives, will be incorporated into the laboratory, bin-scale, and alcove tests.

It is expected that usable data will be available from the bin-scale tests approximately six months after emplacement of the bins and approximately 12 months after initiation of each alcove test. Gas generation data will be available for incorporation into the Draft Comparison to the Standard from all three phases of the bin-scale tests, including testing of engineered alternatives and/or backfill, and from the first four alcoves (TA1 - TA4). Prior to issuance of the Final Report, the gas generation data will be updated and expanded to include data from Alcoves TA5 and TA6, which will incorporate the combined effects of waste and emplaced backfill, and may incorporate potential engineered alternatives. Following issuance of the Final Report, gas generation data will continue to be gathered from all bin and alcove tests until the end of the Test Phase to confirm the estimates of gas generation used in predicting the repository behavior. Should significant differences between the gas generation estimates used in predicting the repository behavior and the updated test results occur, the repository performance would be reevaluated.

Several other activities, such as the large-scale seal test and the brine room (Room Q) test, will continue to gather data beyond the Final Comparison to the Standard issuance date. They will provide data to confirm any estimates or
assumptions and to increase confidence in the analyses of disposal system behavior.

1.5 ORGANIZATION OF THE PLAN

Chapter 2 of this Plan discusses details of the program. It presents the methodology for performance assessment and specific activities designed to provide a confident assessment of the disposal system performance.
2.0 PERFORMANCE ASSESSMENT

Investigations at the WIPP site have been underway for almost 15 years; only during the past five years has a regulatory standard governing releases of radioactive waste from WIPP been in place. Early investigations were somewhat generic, and they examined specific processes (e.g., meteorite impact), parameter values (e.g., 1,000,000 years), and repository-design considerations (e.g., high level waste) that have now been resolved. Past investigations, external review by groups like the NAS/NAE WIPP Panel and the State of New Mexico, and the EPA Standard (EPA, 1985) have made it possible to focus more sharply on the factors that are most likely to influence compliance with the regulatory standards and that are of concern to the technical oversight community. For example, shorter time periods, i.e., 10,000 years, are now of interest, and the analysis must be probabilistic. Before 1985, no regulatory standard was in place, so the approach taken to showing the adequacy of the site and design was completely safety-oriented. For example, the Final Environmental Impact Statement (FEIS; DOE, 1980) calculated doses to persons arising from transport of radionuclides to the Pecos River.

The DOE has performed several relatively short-term studies to ensure that the WIPP performance assessment and experimental program, which is a multi-year effort, is heading in the right direction. Both the FEIS (DOE, 1980) and the Final Supplement to the Environmental Impact Statement (FSEIS; DOE, 1990b) were prepared to evaluate the environmental impacts and safety of the repository using conservative assumptions about important parameters. The FSEIS examined two scenarios that are known to be of interest during the final performance assessment: undisturbed performance and human intrusion. The FSEIS demonstrated that the doses that arise, even after human intrusion through the repository and into a brine pocket, are small or negligible for expected rock and waste properties, in comparison with radiation standards protecting members of the public. Even for rock and waste properties substantially worse than expected, doses after many years of exposure are roughly equal to background radiation doses (DOE, 1990b, e.g., Tables 5.54 and 5.61). Two "demonstration documents" (Bertram-Howery et al., 1989, Draft Forecast of the Final Report for the Comparison to 40 CFR Part 191, Subpart B. for the Waste Isolation Plant Plan; Marietta et al., 1989, Performance Assessment Methodology Demonstration: Methodology Development for Evaluating Compliance with EPA 40 CFR 191, Subpart B. for the Waste Isolation Plant Plan) have been published; they also examine a limited number of scenarios that are known or thought to be particularly important. The Methodology Demonstration contains a preliminary probabilistic analysis of the cases examined in the FSEIS. The demonstration shows how the performance assessment methodology is applied to the undisturbed scenario and to several human intrusion scenarios that are considered to present the most difficulty in showing compliance with the standard. The calculations and analyses necessary for the demonstration shows how the "total system" models are used iteratively for examining priorities in experimental programs. The Forecast has the same scope and table of contents as the Final Comparison to the Standard and will allow all interested parties to iteratively review the projected format of the report prior to reviewing the results of the performance assessment. Similar demonstration documents will be published annually to show the progress of the performance assessment.
This chapter documents the information needs and activities that will be performed to determine compliance with the EPA Standard, 40 CFR 191, Subpart B, Sections 13 and 15. Section 13, the Containment Requirements, and Section 15, the Individual Protection Requirements, require predictions of releases of radionuclides for 10,000 years and doses for 1,000 years, respectively. The term "performance assessment" is used herein to refer to the prediction of long-term performance for both requirements. In this Plan, the elements and activities related to evaluation of compliance with the Standard focus on long-term performance for these two requirements. A more detailed presentation of the background and descriptions of the performance assessment and supporting activities that will be performed during the Test Phase can be found in a report by Bertram-Howery and Hunter (1989b) entitled Preliminary Plan for Disposal-System Characterization and Long-Term Performance Evaluation of the Waste Isolation Pilot Plant. Additional information on the performance assessment methodology is available in Plans for Evaluation of the Waste Isolation Pilot Plant's Compliance with EPA Standards for Radioactive Waste Management and Disposal (Bertram-Howery and Hunter, 1989a).

This chapter is organized as follows. Section 2.1 briefly describes the EPA Standard, 40 CFR 191, Subpart B. A brief summary of the performance evaluation presented in the WIPP FEIS (DOE, 1980) and the FSEIS (DOE, 1990b) is presented in Section 2.2. Section 2.3 discusses the factors that affect the long-term performance of the disposal rooms. An overview of the technical approach for the determination of compliance with Subpart B of the EPA Standard is provided in Section 2.4, and a description of the WIPP Performance Assessment Program is contained in Section 2.5. Descriptions of the work elements and information needs are presented in Section 2.6. Section 2.7 summarizes the activities to be performed to complete the performance assessment, and Section 2.8 describes the scheduling of activities.

2.1 BRIEF DESCRIPTION OF 40 CFR 191, SUBPART B

The EPA Standard, 40 CFR 191, is divided into two subparts. The application of both Subpart A and Subpart B of the Standard to WIPP is described in the report, Waste Isolation Pilot Plant Compliance Strategy for 40 CFR Part 191 (DOE, 1989c), which discusses the application of various terms and definitions contained in the Standard to WIPP. Although Subpart B of the Standard was remanded to the EPA by the U.S. Court of Appeals for the First Circuit, this Plan addresses the Standard as first promulgated. The 1987 Second Modification to the Agreement for Consultation and Cooperation between the DOE and the State of New Mexico (1981) commits the WIPP Project to evaluate compliance with the Standard as first promulgated until a revised Standard becomes available.

Subpart A applies to a disposal facility prior to decommissioning and limits annual radiation doses to members of the public from waste management and storage operations. Subpart B applies for the most part after decommissioning and limits cumulative releases of radioactive materials to the accessible environment for 10,000 years. Subpart B also limits both annual radiation doses to members of the public in the accessible environment and radioactive contamination of certain sources of ground water for 1,000 years after disposal. Table A in Appendix A to the Standard specifies how to determine the 10,000-year release limits, and Appendix B provides nonmandatory guidance for implementation of Subpart B. The four sections of Subpart B, the associated
definitions, and two appendices establish a framework of procedures to be applied in complying with the Standard. Terms from the Standard important to the discussions in this Plan are briefly discussed below.

As defined in the Standard, "disposal" will occur after the waste is permanently emplaced underground and the repository and shafts are sealed. "Accessible environment" is defined in the Standard as: (1) the atmosphere, (2) land surfaces, (3) surface waters, (4) oceans, and (5) all of the lithosphere beyond the controlled area.

The concept of "sites" is integral to Subparts A and B limits on releases of waste from the repository or disposal facility, both during operation and after closure. "Site" is used differently in the two subparts. Passive institutional control of the controlled area (Figure 2-1), which is important to determining compliance with Subpart B of the Standard, depends on the definition of "site." "Site" has also been used generically for many years by the waste management community (e.g., in the phrases "site characterization" or "site-specific"); few generic uses of the word correspond to either of the EPA's usages. However, "site" is used both in the sense of the Standard and generically in this Plan.

The term "disposal site" as used in Subpart B and Appendix B to the Standard differs from "site" as defined for Subpart A. For the purposes of the WIPP strategy for compliance with Subpart B, the disposal site, which must be marked for protection of future generations, is the same as the controlled area. The controlled area for Subpart B includes the surface and subsurface of the secured area and additional surrounding areas, the extent of which will be determined during the performance assessment (DOE, 1989c). The Standard limits the controlled area to the region within 3 mi (5 km) of the waste panel boundaries; it will not be less than the area withdrawn.

Sections 13 and 15 of 40 CFR 191, Subpart B, the Containment Requirements and Individual Protection Requirements, necessitate predictions of releases of radionuclides for 10,000 years and doses for 1,000 years, respectively.

Section 14 of 40 CFR 191, Subpart B, contains the Assurance Requirements, which complement the Containment Requirements. No testing is required to satisfy Section 14; therefore, it is not addressed in this Plan. The Assurance Requirements implementation plan contains additional information (Westinghouse, 1987).

Section 16 of 40 CFR 191, Subpart B, protects "special sources of ground water" from contamination at concentrations greater than certain limits. This is the only requirement in the Standard that limits radionuclide concentrations. No ground water within 3 mi (5 km) of the maximum allowable extent of the controlled area satisfies the definition of a "special source of ground water." Therefore, the WIPP Project will comply with this requirement by documenting that no "special source of ground water" exists. No additional data acquisition or analysis is necessary for compliance with this requirement.

Appendix A to the Standard establishes the release limits for all the regulated radionuclides. Table 1 in that appendix gives the limit for cumulative

Revision 0, April 1990 2-3
Figure 2-1. Cutaway View of the Controlled Area and the Repository/Shaft System
releases, per unit of waste, to the accessible environment for 10,000 years after disposal for each radionuclide. Note 1(e) to Table 1 defines the unit of waste as an amount of TRU wastes containing one million curies of alpha-emitting transuranic radionuclides with half-lives greater than 20 years. Note 2(b) describes how to develop release limits for a TRU waste disposal system: the release limits are the quantities in Table 1 multiplied by the number of units of waste in the repository. Note 6 describes the manner in which the release limits are to be used to determine compliance with Section 13: for each radionuclide released, the ratio of the cumulative release to the total release limit for that radionuclide must be determined; the ratios for all radionuclides released are then summed for comparison to the requirements of Section 13. Thus the quantity of a radionuclide that may be safely released depends on the quantities of all other nuclides projected to be released, but cannot exceed its own release limit. The summed normalized release cannot exceed 1 for probabilities greater than 0.1 and cannot exceed 10 for probabilities greater than 0.001. Releases that occur with probabilities less than 0.0001 are not regulated.

Appendix B to the Standard is EPA's guidance to the implementing agency (in this case, the DOE). In the preamble to the Standard (EPA, 1985, p. 38069), the EPA states that it intends the guidance to be followed: "...Appendix B...describes certain analytical approaches and assumptions through which the [EPA] intends the various long-term numerical standards of Subpart B to be applied. This guidance is particularly important because there are no precedents for the implementation of such long-term environmental standards, which will require consideration of extensive analytical projections of disposal system performance." The EPA based Appendix B on some of the analytical assumptions it used to develop the technical basis for the numerical disposal standards. Thus, the EPA "believes it is important that the assumptions used by the [DOE] are compatible with those used by the EPA in developing this rule. Otherwise, implementation of the disposal standards may have effects quite different than those anticipated by EPA" (EPA, 1985, p. 38074).

The primary objective of Subpart B is to ensure that the disposal system will isolate the waste from the accessible environment by limiting long-term releases and the associated risks to populations. This objective is reflected in the Containment Requirements. Evaluation of compliance is based on a performance assessment, which has specific meaning within the Standard:

"Performance Assessment" means an analysis that: (1) identifies the processes and events that might affect the disposal system; (2) examines the effects of these processes and events on the performance of the disposal system; and (3) estimates the cumulative releases of radionuclides, considering the associated uncertainties, caused by all significant processes and events. These estimates shall be incorporated into an overall probability distribution of cumulative release to the extent practicable (40 CFR 191, Section 12[q]).

Subpart B limits risks to individuals in ways compatible with the primary objective (EPA, 1985, p. 38070). The methodology developed for performance assessment can be used to predict releases so that doses can be predicted as specified by the Individual Protection Requirements. This dose assessment must provide a reasonable expectation that the annual dose equivalent from the
disposal system to any member of the public in the accessible environment will not exceed 25 millirems to the whole body or 75 millirems to any critical organ. The Standard requires that modeled individuals be assumed to consume 2 liters (2.1 quarts) of drinking water per day from a "significant source of ground water" outside the controlled area. These requirements apply to undisturbed performance of the disposal system, considering all potential release and dose pathways, for 1,000 years after disposal:

"Undisturbed performance" means predicted behavior of a disposal system, including consideration of the uncertainties in predicted behavior, if the disposal system is not disrupted by human intrusion or the occurrence of unlikely natural events (40 CFR Part 191.12(p)).

Unlikely natural events are those that have not occurred rapidly enough in the past to affect the Salado Formation at the repository horizon within the controlled area so as to have caused the release of radionuclides, had they been present. Only the presence of ground water has affected the Salado Formation in the vicinity of WIPP at the repository horizon for the past several million years. Therefore, the WIPP Project will simulate only ground-water flow and the effects of the repository as the undisturbed performance (DOE, 1989c).

The EPA defines a "significant source of ground water" as

(1) An aquifer that: (i) Is saturated with water having less than 10,000 milligrams per liter of total dissolved solids; (ii) is within 2,500 feet of the land surface; (iii) has a transmissivity greater than 200 gallons per day per square foot; and (iv) is capable of continuously yielding at least 10,000 gallons per day to a pumped or flowing well for a period of a least a year; or (2) an aquifer that provides the primary source of water for a community water system as of November 18, 1985 (40 CFR Part 191, Section 12[n]).

No water-bearing unit in the vicinity of WIPP meets the EPA's first definition of a "significant source of ground water" throughout its extent because the level of dissolved solids is high and the transmissivity is low in most places (Mercer, 1983; LaVenue et al., 1988; Siegel et al., 1988); however, the WIPP Project will assume that any portion of a water-bearing unit that meets the first definition is a "significant source of ground water." Communication between nonqualifying and qualifying portions will be evaluated. No water-bearing unit near the WIPP facility meets the EPA's second definition of "significant source of ground water."

The Project does not expect releases to occur outside the controlled area within 1,000 years; therefore, dose calculations for the undisturbed performance may be unnecessary outside the controlled area. Recent calculations for site characterization suggest that, under modern head gradients, ground-water travel time from the center of the site (essentially the tops of the shafts) to the land withdrawal boundary is significantly longer than 1,000 years (Reeves et al., 1987; LaVenue et al., 1988). If the performance assessment predictions of travel times from the repository, up the shafts into the Culebra Dolomite Member, and to the boundary of the controlled area corroborate this, no radionuclides could be transported to a significant source of ground water.
outside the controlled area within the time of regulatory interest. The nearest aquifer that is certainly a significant source of ground water is the Pecos Valley alluvial fill at Malaga Bend, 16 mi (26 km) away. The Project does not plan to predict transport of radionuclides so far outside the controlled area. The current understanding of ground-water flow strongly indicates that such a prediction will not be required.

The EPA acknowledged that implementation of the Containment Requirements might require modification of those standards in the future. This implementation "will require collection of a great deal of data during site characterization, resolution of the inevitable uncertainties in such information, and adaptation of this information into probabilistic risk assessments." Although EPA is currently confident that this will be successfully accomplished, such projections over thousands of years to determine compliance with an environmental regulation are unprecedented. If - after substantial experience with these analyses is acquired - disposal systems that clearly provide good isolation cannot reasonably be shown to comply with the containment requirements, the EPA would consider whether modifications to Subpart B were appropriate" (EPA, 1985, p. 38074).

EPA recognized that Subpart B must be implemented in the design phase because active surveillance cannot be relied upon over the very long time frames of interest. EPA also recognized that the Standard "must accommodate large uncertainties, including uncertainties in our current knowledge about disposal system behavior and the inherent uncertainties regarding the distant future" (EPA, 1985, p. 38070).

Both the Containment Requirements and the Individual Protection Requirements require a "reasonable expectation" that their various quantitative tests can be met, to "acknowledge the unique considerations likely to be encountered upon implementation of these disposal standards" (EPA, 1985, p. 38071). The Standard "clearly indicates that comprehensive performance assessments, including estimates of the probabilities of various potential releases whenever meaningful estimates are practicable, are needed to determine compliance with the containment requirements" (EPA, 1985, p. 38076). These requirements "emphasize that unequivocal proof of compliance is neither expected nor required because of the substantial uncertainties inherent in such long-term projections. Instead, the appropriate test is a reasonable expectation of compliance based upon practically obtainable information and analysis" (EPA, 1985, p. 38076). The EPA believes that the Standard requires "very stringent isolation while allowing the [DOE] adequate flexibility to handle specific uncertainties that may be encountered" (EPA, 1985, p. 38076).

The EPA's assumptions regarding performance assessments and uncertainties are incorporated in Appendix B to the Standard, which the EPA intends the implementing agencies to follow. EPA intended these assumptions to "discourage overly restrictive or inappropriate implementation" of the requirements (EPA, 1985, p. 38077). The guidance in Appendix B to the Standard indicates that "compliance should be based upon the projections that the [DOE] believes are more realistic....Furthermore,...the quantitative calculations needed may have to be supplemented by reasonable qualitative judgments in order to appropriately determine compliance with the disposal standards" (EPA, 1985, p. 38076). In particular, Appendix B states
The [EPA] believes that the [DOE] must determine compliance with §§191.13, 191.15, and 191.16 of Subpart B by evaluating long-term predictions of disposal system performance. Determining compliance with §191.13 will also involve predicting the likelihood of events and processes that may disturb the disposal system. In making these various predictions, it will be appropriate for the [DOE] to make use of rather complex computational models, analytical theories, and prevalent expert judgment relevant to the numerical predictions. Substantial uncertainties are likely to be encountered in making these predictions. In fact, sole reliance on these numerical predictions to determine compliance may not be appropriate; the [DOE] may choose to supplement such predictions with qualitative judgments as well.

In Section 13(b), the Containment Requirements state that

Performance assessments need not provide complete assurance that the requirements of 191.13(a) will be met. Because of the long time period involved and the nature of the events and processes of interest, there will inevitably be substantial uncertainties in projecting disposal system performance. Proof of the future performance of a disposal system is not available in the ordinary sense of the word when compared to situations that deal with much shorter time frames. Instead, what is required is a reasonable expectation, on the basis of the record before the (DOE), that compliance with 191.13(a) will be achieved.

The EPA recognized that there are too many uncertainties in projecting the behavior of natural and engineered components for 10,000 years and too many opportunities for errors in calculations or judgments for the numerical requirements to be sufficient for determining disposal system acceptability. Qualitative requirements were included in the Standard to ensure that "cautious steps are taken to reduce the problems caused by these uncertainties" (EPA, 1985, p. 38079). These qualitative Assurance Requirements are an essential complement to the quantitative Containment Requirements. Each qualitative requirement was chosen to compensate for some aspect of the inherent uncertainty in projecting the future performance of a disposal system. The Assurance Requirements state that compliance with their provisions will "provide the confidence needed for long-term compliance with the requirements of 191.13." A WIPP Project document (Westinghouse, 1987) has been prepared to guide future program implementation of the Assurance Requirements.

The determination of compliance with Subpart B depends on the calculated complementary cumulative distribution function and the calculated doses; however, it also depends on the strength of the assurance strategies that will be implemented and on the qualitative judgment of the DOE and its analysts. The preceding discussion clearly demonstrates the EPA's recognition of the difficulties involved in predicting the future and in quantifying the outcomes of future events. It also shows that the EPA expects the DOE to understand the uncertainties in the disposal system's behavior only to the extent practical.

One type of uncertainty that cannot be completely resolved is the validity of available models for predicting disposal system behavior 10,000 years into the future. Although models will be validated to the extent possible, expert judgment must be relied upon where validation is not possible. In the case of
competing conceptual models, if a single conceptual model cannot be demonstrated to be the most consistent with available data, the most conservative conceptual model that is consistent with the data will be used.

2.2 PERFORMANCE EVALUATION IN THE ENVIRONMENTAL IMPACT STATEMENTS

The adequacy of the WIPP disposal system to isolate TRU waste was considered in the WIPP Final Environmental Impact Statement (DOE, 1980) and in the FSEIS (DOE, 1990b). Both evaluations of performance were deterministic, in contrast to the requirement of the EPA Standard, 40 CFR 191, which specifies that a probabilistic performance assessment be done. Although the methodology used for these evaluations would not satisfy the procedural requirements of the EPA Standard, the results do provide an indication that WIPP geologic environment will safely isolate wastes.

Calculations in the FEIS included two "worst-case" analyses that represented physically plausible extremes for fluid disruption of the repository and for human intrusion into the repository (DOE, 1980). One scenario assumed that all the water flowing in the Rustler Formation above the repository was diverted through the repository and back to the Rustler Formation. The other scenario assumed that material from a waste container was carried directly to the surface. The probability of occurrence of scenarios was not estimated. Uncertainty analyses were not performed, although the calculations were considered reasonably conservative. Cumulative releases were not calculated; instead, peak releases and their times of occurrence were predicted. The maximum peak release predicted in the Final Environmental Impact Statement to occur at Malaga Bend was \(2 \times 10^{-4}\) curies per year 1,200,000 years after decommissioning. The maximum peak release at 3 mi (4.8 km) was \(3.3 \times 10^{-4}\) curies per year at 400,000 years. Fifty-year dose commitments (integrated dose from a one-year intake) were estimated for all scenarios and found to be significantly less than natural background at the WIPP site.

The FSEIS evaluated two basic long-term release scenarios expected to bound potential impacts that could result from the long-term disposal of TRU waste at WIPP. The first scenario examined the long-term performance of an undisturbed repository. The second scenario examined a hypothetical intrusion into the repository by an exploratory borehole passing through the repository into a pressurized brine reservoir below. The first scenario, with two variations, used expected, mid-range values for the various input parameters. In the second scenario, which had four variations, the flow and transport properties were intentionally degraded (i.e., the transport of potential contaminants was greatly increased), in order to evaluate long-term repository behavior under more severe, less probable conditions. Additionally, in three of the variations, potential engineered modifications (e.g., precompaction of waste) were postulated to at least partially mitigate the effects of this behavior. Therefore, these scenarios predict the undisturbed and disturbed behavior of the repository under both expected conditions and under more pessimistic conditions. As in the FEIS, the probability of occurrence of scenarios was not estimated.

Both radiation exposure and lead intake for the most exposed individual were calculated in the FSEIS. In the two versions of the first scenario that treat the undisturbed repository, no radionuclides would reach the ground water or
the surface within 10,000 years; therefore, there is no potential for human exposure within that time.

In all versions of the second scenario in the FSEIS, radioactive material and lead would be brought to the surface immediately. Resultant exposures to the drill crew and a nearby downwind ranch family were about two orders of magnitude below usual guidelines (e.g., 100 mrem/yr general dose limit established by the International Commission on Radiation Protection). The expected behavior of the disturbed repository is well within these guidelines and natural background radiation exposure levels. If, however, the groundwater flow parameters are considerably poorer than expected, the doses predicted are at or above the radiation guidelines. The highest total dose would occur in the case in which transport parameters were degraded and no engineered modifications were postulated to minimize the impacts; the peak is 129 mrem/50 yr about 1500 years after the intruding borehole is plugged and abandoned. Precompaction of the waste was estimated to reduce the predicted doses by 44 percent. Similarly, degraded conditions combined with possible mitigation measures result in predicted committed doses which are well within applicable guidelines.

In contrast, the Standard promulgated in 1985 required that the WIPP disposal system's impact on the accessible environment (as defined by the EPA) be calculated quite differently. Cumulative radionuclide releases to the accessible environment (at the site boundary and on the surface of the controlled area) over the 10,000 years following repository closure must be predicted. The annual dose to man resulting from any releases to the accessible environment must also be predicted for 1,000 years after closure, considering only the undisturbed performance of the disposal system and including drinking from a significant source of ground water outside the controlled area. Both sets of predictions must consider the uncertainties associated with the disposal system's performance. The release predictions are presented as a single complementary cumulative distribution function, which incorporates the probabilities and the parameter uncertainties of all the scenarios.

2.3 FACTORS AFFECTING THE LONG-TERM PERFORMANCE OF THE DISPOSAL SYSTEM

An accurate assessment of the long-term performance of the disposal system requires an understanding of disposal room behavior during and after the consolidation process; an understanding of the effectiveness of the panel and shaft seals; and an understanding of the effectiveness of the local geology and hydrology in preventing or retarding the transport of radionuclides to the environment.

The objective of this section is to summarize the present understanding of the long-term performance of the disposal system and draw upon the extensive amount of work completed to date for WIPP. The discussion briefly considers (1) creep closure of the WIPP underground workings, including the disturbed rock zone; (2) brine seepage both into and out of the excavations; (3) gas generation, consumption, and transport as a result of radiolytic, biological, or corrosion reactions involving emplaced waste and waste containers; (4) sealing of the shafts and panels; and (5) hydrologic and radionuclide-transport characteristics of the overlying and underlying strata.
2.3.1 Room Closure Rates

The observed closure behavior of openings at the facility horizon is more rapid and more complex than expected prior to underground experience. In fact, both the total macroscopic wall-to-wall and ceiling-to-floor closure to date and present closure rates (after five years) are approximately three times those originally expected. Ignoring possible complications, the more rapid closure results in time estimates of 60 to 200 years for closure to a near final state, depending on the initial waste and backfill density, brine influx rate, and creep closure rate.

Certain structural effects or processes resulting from excavation of the rooms were not fully anticipated prior to underground experience. The observed excavation effects result in the formation of a disturbed rock zone at the facility horizon (Borns and Stormont, 1988). At present, the significantly disturbed zone extends approximately 7 ft (2 m) from the underground workings. However, it has not been possible to include the disturbance due to excavation in numerical modeling to date, nor is there consensus concerning its long-term importance.

The disturbed rock zone has the following characteristics:

1. Volumetric dilation as a result of grain boundary opening, as evidenced by detailed geophysical surveys.

2. Macroscopic fracturing as a result of opening preexisting fractures and generating new structures, extending from at least the base of Marker Bed 139 (about 5 ft (1.5 m) below the floor of the disposal horizon) to anhydrite "b" (about 7 ft (2 m) above the top of the disposal horizon).

3. Increases in apparent permeabilities (as interpreted from gas injection tests) by as much as several orders of magnitude, from a few nanodarcies (or less) in the far field to the darcy range in the very near field.

4. An apparent decrease in rock mass shear modulus (decreased mechanical strength), as a result of grain boundary dilation or macroscopic fracturing.

5. Growth of zones of partial hydrologic saturation and/or two-phase flow, as a result of some combination of volumetric dilation at a rate faster than brine inflow, rock mass dehydration by ventilation, and two-phase (gas driven) flow in response to near-field depressurization of gas charged brines.

Two conceptual levels of complexity in the mechanical closure behavior of the Salado Formation are at least partially consistent with available data. The existing model, amenable to numerical modeling, is based on the interpretation that coherent creep of the Salado Formation will dominate the system, independent of any disturbed rock zone that might develop. With this model, more rapid macroscopic closure is strictly beneficial. The model assumes (1) that any disturbed rock zone is very small in volume and importance relative to the volume of deforming portions of the Salado Formation, and (2) that any disturbed rock zone developed during closure will be eliminated by the back
pressures exerted by the waste and backfill emplaced in rooms and drifts. Mechanical back pressures are not expected to be generated until the waste and backfill are compacted to approximately 95 percent of their final state of density. Thus, removal of a disturbed rock zone by back pressure, especially if the disturbed rock zone has expanded to include anhydrite, will not occur until very late in the closure process.

The second level of conceptual complexity, based on underground observation of the disturbed rock zone, also assumes that coherent creep of the Salado Formation outside the disturbed rock zone is the major structural process involved in repository closure. However, observation suggests that the disturbed rock zone may

1. Serve as a "sink" for some or all of the brine that seeps into the rooms and shafts by storing brine in macroscopic fractures and perhaps the volumetrically dilated zone, thus resulting in a more complex, time- and geometry-dependent brine behavior than expected in the absence of a disturbed rock zone.

2. Enlarge the effective room dimensions during closure (not by increasing the total room volume, but by moving the surface at or near atmospheric pressure to the outer boundary of the disturbed rock zone), increasing both the time required for closure to final state and the volumes available for brine inflow beyond those estimated on the basis of wall closure calculations assuming coherent creep.

3. Affect the final degree of closure by extending to intersect the relatively brittle Marker Bed 139 or other more permeable units outside of the Salado Formation and allowing gas and/or brine entry into these units.

4. Complicate the design and/or postemplacement behavior of seals in panel entries, access drifts, and shafts.

Strong structural members, such as pipes and rods, within waste drums emplaced in WIPP may locally prevent complete compaction of waste and backfill under lithostatic load, even in the absence of brine seepage, gas generation, and disturbed rock zone effects. Although such members may result in local zones of increased porosity, it is not clear that these zones will interconnect; i.e., it is not clear that they will themselves result in any effective increase in room-scale permeability.

Two additional facts complicate prediction of the long-term closure behavior of the repository. First, the WIPP waste varies greatly in porosity, mechanical properties, and inorganic and organic chemistry, making it difficult to define the time-dependent geocchemical and mechanical state of the waste for calculations. Second, the present design of the WIPP, even including backfill and getters, calls for the initial postemplacement porosity to be relatively high, approximately 50 percent. As a result, a large reduction of volume within the rooms must occur before final state is reached. Engineered alternatives to mitigate the potential impact of many of the uncertainties discussed in this section would decrease the initial free volume within the rooms, and hence the time required for final closure.
In summary, the uncertainty about the mechanical behavior of the Salado Formation during closure of the WIPP repository does not extend to fundamentally different conceptual models. Far-field coherent creep of the Salado Formation is considered to be the dominant process involved. The present uncertainty concerns only the time-dependent extent and possible role of the disturbed rock zone observed to develop in the underground facility.

2.3.2 Brine Flow or Seepage Within the Salado Formation

There are two major reasons for the difference between brine volumes within WIPP expected prior to underground experience and those observed underground. Prior to underground experience, the possibility of leakage from the Rustler Formation downward into the rooms through the shafts was not considered. Secondly, it was assumed that the Salado Formation contained no free water on grain boundaries.

Leakage from the Rustler Formation (largely the Culebra Dolomite Member) into each of the WIPP shafts does not exceed approximately 6×10^{-2} liters per second, even when the shaft is unlined and no effort is made to control drainage. This amount is minimal compared to that observed in many mines, but it does require control. Accordingly, the WIPP shafts have been lined and grouted through the Rustler Formation, successfully eliminating inflow. This conventional treatment will be adequate to control leakage from the Rustler Formation during the operational lifetime of WIPP, approximately 25 years. After this operational period, shaft seals will be emplaced to eliminate any further leakage.

The occurrence and behavior of brine within the Salado Formation is of greatest interest, however. The presence of brine in the Salado Formation adjacent to the underground workings is indicated primarily by the small "weeps" that commonly develop on the walls shortly after excavation. Small amounts of brine also drain from some of the instrumentation and observation holes in the walls or roofs of the underground or collect in holes emplaced in the floor. The weeps, which are indicated by small salt crusts formed by evaporation of the moisture, are stratigraphically controlled, being more abundant in argillaceous than in clean halite. Rarely does the brine flow rate to the mine face or wall exceed the evaporation rate due to mine ventilation. In fact, growth of the weeps generally ceases less than a year after construction of a given face (Deal and Case, 1987).

In the simplest interpretation, consistent with assumptions prior to underground experience, the transient brine weeps could be interpreted as the direct result of stress-driven flow, with no contribution of flow from the far field, i.e., from beyond the zone that is hydrologically or structurally affected by the presence of the underground workings. Alternatively, it may be assumed that the disturbed rock zone is dilational, that the zone serves as a "sink" for brine flow, and that the outer boundary of the disturbed rock zone represents the "effective room surface" for purposes of fluid flow, i.e., the surface at which fluid pressures are reduced to near atmospheric. In this interpretation, the fact that weep growth on wall surfaces ceases may indicate only that the effective room surface has moved into the rock mass in response to the formation of a disturbed rock zone and may not indicate that the flow rate into the disturbed zone is transient on the same one-year time scale as weep growth.
The time scale of the transient brine seepage behavior should decrease with decreasing geometric scale of measurement. Consistent with this interpretation, a measured near steady-state brine inflow of 5×10^{-8} to 1×10^{-7} liters per second into sealed and unheated test holes (Nowak and McTigue, 1987) has been used as one basis to calculate a permeability supporting long-term Darcy flow in the far field. To date, the best direct measurements of far-field hydraulic conductivity within the Salado Formation are in the range of 10^{-14} to 10^{-15} meters/second (Peterson et al., 1987; Saulnier and Avis, 1988; Tyler et al., 1988). The conductivities calculated from brine inflow to test boreholes are also within this range (Nowak et al., 1988). However, stratigraphic effects have not yet been measured reliably, nor have the relative effects of borehole closure and fluid flow on either estimated permeability or extrapolated far-field fluid pressures been unambiguously determined. However, the general effect of borehole closure during pulse withdrawal testing of a discrete interval is to increase the measured fluid pressure (and hence both apparent fluid-flow rate and apparent permeability) above values calculated including the effects of closure.

Presently there are several uncertainties about the hydraulic characteristics of the Salado Formation: (1) the state of hydraulic saturation in the far field; (2) the driving forces for fluid flow, i.e., whether flow results from mechanical deformation, induced head gradients, or gas driven, two-phase behavior; and (3) the relevant flow paths, i.e., whether porous medium flow (including stratigraphic effects) or fracture flow is more important. These uncertainties affect the time scale of fluid flow and the rock mass volumes involved in flow for both short and long time scales.

As a result of these uncertainties, there are at present two general types of conceptual models for brine movement within the Salado Formation. One conceptual model, based on far-field Darcy flow (e.g., Bredehoeft, 1988; Nowak et al., 1988), assumes that (1) the Salado Formation is hydraulically saturated in the far field, although near-field effects may include formation of a local zone of two-phase behavior or partial saturation, and (2) fluid flow from the far field is the controlling or limiting process in the long term and can be modeled adequately using the Darcy equation, after accounting for stratigraphic effects and variability. In a Darcy formalism, fluid flow is directly proportional to the pressure gradient even when these gradients are very low. Even using such an approach, transient effects may extend over hundreds of years or more on the repository scale.

Other concepts for fluid movement within the Salado Formation are based on the interpretation that the concept of Darcy permeability within a sequence of layered evaporites such as the Salado Formation is valid only in those regions that have been significantly disturbed. In one such interpretation, the far-field permeability of the pristine halite is assumed to be essentially zero under any pressure gradient, i.e., undisturbed halite is assumed to have no interconnected porosity. By this interpretation, brine will flow into or out of the WIPP repository only in response to formation of a disturbed rock zone within which mechanical deformation is sufficient to generate interconnected porosity.

A less extreme but similar conceptual model assumes that there is some interconnected porosity within the Salado Formation even under undisturbed
This model assumes that grain boundary fluids are so strongly bound that fluid flow only occurs under strong gradients, such as those generated near an underground excavation. With this model, fluid flow would take place in the near field even in the absence of mechanical disturbance. However, there would be no far-field fluid flow, due to the absence of sufficient gradients in this region.

The long-term or steady-state fluid inflow to the repository would decrease to zero by either non-Darcy conceptual model, possibly prior to complete saturation of the rooms and panels. Thus, either of the latter conceptual models may indicate that it is not necessary to assume that the repository will become hydraulically saturated in the long term, even in the absence of human intrusion.

Currently, it is not certain either that the different conceptual models of fluid flow within the Salado Formation have significantly different impacts to the long-term performance of the WIPP repository or that adequate measurements can be made in the field to distinguish between the models. All three conceptual models are consistent with the measurement of significant permeabilities within the disturbed rock zone and with observed transient flow behavior at relatively early times. In fact, preliminary calculations indicate that the volumes of brine collected to date may all come from within the present disturbed rock zone, even if modeled assuming Darcy flow. In general, interpretations assuming Darcy flow in the far field appear to be conservative, in that they do not result in an extrapolated zero flow rate at long times and do indicate maximum amounts of brine inflow.

From the viewpoint of long-term performance of the WIPP facility, the fundamental questions are whether (1) brine inflow into the disposal rooms will be sufficient to saturate backfill, waste, and the disturbed rock zone, either before or after compaction to the final mechanical state; and (2) the far-field permeability will be sufficient to dissipate brine and/or gas pressures at and near the final state, at some fluid pressure below lithostatic load.

2.3.3 Gas Generation in Waste Disposal Rooms

Microbial and radiolytic decomposition of the waste and corrosion of the drums could potentially lead to the generation of large amounts of gas. Pressurization of the disposal rooms may result if the rate of gas production exceeds the rate by which gas can be consumed in chemical reactions or migrate out of the disposal area. This pressurization could become a driving force for the release of radionuclides from the repository in the event of human intrusion.

Activities S.1.1.4, S.1.3.2, and S.1.3.3 of this Plan focus on the questions and studies directly related to gas generation and consumption within the repository. In summary, present knowledge concerning gas behavior within the repository suggests that

1. The total amount of gas generated within the repository by corrosion may be significantly greater than expected in 1980; however, the total estimated gas-generation potential is smaller than in 1980. Radiolysis of brine may also be a significant source of gas if the repository resaturates.
2. The addition of gas getters to the backfill should be considered for reducing the buildup of CO₂ and possibly H₂.

3. As a result of very low permeabilities and apparent far-field hydraulic saturation of the Salado Formation, gas transport rates from the disposal rooms into the undisturbed Salado Formation may be minimal at long times. This transport will be limited by solubility and diffusion, rather than by mass flow, thus giving rise to high gas pressures if gas generation rates are significant.

The combined impact of these changes is that gas generation, consumption, and transportation within the repository are extremely significant and are being reconsidered. At present, the limited data and combined uncertainties in net gas behavior result in broad uncertainty in the expected gas pressure history of the repository. If gas pressures exceed lithostatic pressure, these effects may

1. Result in gas-driven tensile fracturing of the Salado Formation in the near-field or far-field domains by generating pressures exceeding the least principle stress (near field) or lithostatic load (far field).

2. Stop structural closure at some porosity and permeability greater than that expected to occur in the absence of gas effects, by maintaining long-term gas pressures approximating the lithostatic load.

3. Result in a gas charged, one-phase fluid or a two-phase fluid system providing a driving force during human intrusion involving a single borehole.

4. Result in gases/brines escaping around seals or in VOCs acting to degrade seals.

5. Stop brine inflow.

If rigid structural members in the waste and the presence of a disturbed rock zone prohibit compaction to a final state of near-zero porosity, it may be possible to maintain a two-phase fluid system within the waste-filled rooms and disturbed rock zone at fluid pressures below lithostatic. The maintenance of a one-phase, gas-charged brine capable of providing a driving force in the event of human intrusion requires only that pressures greater than that of a column of brine extending to the surface be developed and maintained within the waste disposal facility.

Factors affecting gas generation rates and potentials include

1. The mass of cellulosic materials and nutrients (such as phosphate) available in the waste inventory for microbial degradation.

2. The relative oxidation state within the repository, as buffered by the combined effects of radiolysis and organic activity.

3. The masses of iron and aluminum in the waste inventory available for corrosion.
4. The volume of water (in the form of brine or water vapor) available for decomposition by anoxic corrosion, microbial activity, and radiolysis. Modifications to the waste such as thermal treatment to oxidize the organics and metals can be performed if necessary to reduce the amount of gas that can be generated. Waste and/or backfill can also be modified if necessary to reduce the initial void volume in the storage rooms to reduce brine inflow, thereby limiting gas generation from anoxic corrosion and radiolysis.

The currently planned gas-generation tests (Activities S.1.1.4, S.1.3.3, S.1.3.2) incorporate information on gas generation from the waste generators and will also collect similar information from the international community. Results of testing will be used to determine the need for and extent of additional measures to mitigate any potential adverse impacts associated with gas generation from the waste.

2.3.4 Shaft and Panel Seals

The goal for both shaft and panel sealing systems is to minimize migration of radionuclides from the waste disposal horizon into the surrounding environment. Many of the specifications for panel seals are directly applicable to shaft seals. The major difference between the two sealing systems is the host rock/seal interaction. All panel seals are contained within the Salado Formation while various units and a wider range of lithologies must be sealed in the shaft. These different lithologies affect the interaction of the seal and the host rock. As with the panel seals, the primary long-term sealing strategy for WIPP shafts is based on the reconsolidation of crushed salt to be emplaced in the Salado Formation at the lower section of the shafts (Stormont, 1988a; Tyler et al., 1988).

The evaluation of sealing materials and seal designs has been derived from laboratory and small-scale in situ testing, as well as from numerical modeling and analysis. The laboratory work has focused on sealing materials: crushed salt blocks and quarried salt, cementitious materials, and clays (primarily bentonite). For salt, laboratory and in situ studies have been directed toward understanding reconsolidation of crushed salt and the resulting fluid-flow properties. For bentonite, the density, swelling, and fluid-flow properties have been investigated. Laboratory and in situ test data indicate that bentonite-based seals will effectively restrict fluid flow over the short term. The long-term stability and integrity of salt and bentonite, as well as cement and cement/bentonite mixtures, have been the primary focus of laboratory investigations (Tyler et al., 1988). Large-scale, in situ seal tests are planned.

The long-term behavior of the sealing system's structure, fluid flow, and in situ interactions was modeled by numerical codes. These codes were based on preliminary laboratory data and were used to predict results of in situ tests. As in situ data became available, the codes were refined to more accurately reflect the physical processes and behavior.

In situ experiments have tested various sealing materials and designs under actual conditions. These experiments include permeability measurements of the
various host or representative lithologies, tests of sealing systems representative of shaft seals, and evaluations of backfill and borehole plugs. These sealing tests have provided high quality thermal, structural, and fluid-flow data for candidate sealing materials in various configurations.

A comprehensive evaluation of shaft sealing materials, seal geometries, and locations within certain stratigraphic units has been completed (Stormont, 1988a). The factors evaluated include Rustler Formation hydrology, adjacent disturbed rock zone permeabilities, brine inflow in the Salado Formation, and shaft closure in the Salado. The reference design for seals in the Rustler is a concrete/bentonite composite. The reference design for Salado seals incorporates both multicomponent and reconsolidated, crushed salt seals. The primary material for sealing WIPP shafts is reconsolidated salt excavated from the waste disposal area. Although the WIPP reference shaft sealing system requires work to reduce uncertainty and corroborate the findings of the preliminary evaluations, no fundamental reason has been found to revise the design concepts (Tyler et al., 1988).

2.3.5 Hydrology and Radionuclide Transport Outside the Disturbed Rock Zone

Geologic and hydrologic site characterization activities at the WIPP facility have updated or refined the overall conceptual model of the geologic, hydrologic, and structural behavior of the WIPP site, with the objective of providing data adequate for use in performance assessment. A summary of the current conceptual model for geologic, hydrologic, and structural behavior of the WIPP site can be found in a report by Lappin (1988).

Two types of transient responses are occurring at and near the WIPP site: the continuing natural response of geologic and hydrologic systems to the end of the last pluvial period (period of decreased temperatures and increased precipitation approximately 12,000 to 16,000 years ago) in southeast New Mexico, and the continuing geologic responses to hydrologic, geochemical, and structural transients induced by WIPP site characterization and facility construction.

The Bell Canyon Formation (Figure 2-2) (largely shales, siltstones, and sandstones) contains the first relatively continuous water-bearing zone beneath the WIPP repository horizon. In some parts of the northern Delaware Basin, the unit contains permeable channel sandstones that are targets for hydrocarbon exploration. Recent studies suggest, however, that the upper Bell Canyon Formation at the WIPP site does not contain any major channel sandstone. These studies indicate that the final direction of fluid flow following interconnection of the Bell Canyon, Salado, and Rustler Formations would be downward into the Bell Canyon Formation, contrary to earlier assumptions. These observations indicate that the Bell Canyon Formation will not provide a source of fluids for contamination of the overlying Rustler Formation water-bearing units should a breach of the repository occur.

The Castile and Salado Formations, sequentially overlying the Bell Canyon Formation, are predominantly layered anhydrites and halites. Formation permeabilities in the Castile and Salado Formations remote from the WIPP excavations are generally less than 0.1 microdarcy. The low permeability of
these two formations provides effective confining boundaries to fluid flow from
the repository to water-bearing zones above and below the facility horizon.

Pressurized brines have been encountered in Castile Formation anhydrite in the
WIPP-12, ERDA-6, and Belco boreholes (Popielak et al., 1983), north and south
of the center of the WIPP site (Figure 2-3). Geophysical studies indicate that
Castile Formation brines are probably present beneath a portion of the WIPP
waste emplacement panels (Earth Technology, 1988), consistent with earlier
assumptions. However, these brines are approximately 660 ft (200 m) or more
below the WIPP facility horizon and are not of concern to long-term performance
except in case of a human-intrusion breach of the facility.

The Rustler Formation is a layered unit of anhydrites, siltstones, and halites
containing two variably fractured carbonate units, the Culebra and Magenta
Dolomite Members. The Culebra Dolomite is the first continuous water-bearing
unit above the WIPP repository horizon and is at least an order of magnitude
more permeable than other members of the Rustler Formation, including the
Magenta Dolomite. As a result, the Culebra Dolomite dominates fluid flow
within the Rustler Formation at the WIPP site and is the most significant
pathway to the accessible environment from the WIPP repository except for
direct breach to the surface. Culebra Dolomite transmissivity varies by
approximately six orders of magnitude in the region containing the WIPP site,
ranging from 2.15×10^{-9} meters2/second to 1.34×10^{-3} meters2/second
(Lappin, 1988). Culebra Dolomite transmissivity in the central portion of
the site, including all four WIPP shafts, is low; higher Culebra Dolomite
transmissivities are found in areas to the southwest, southeast, and northwest.

In the WIPP site area, modern flow in the Culebra Dolomite Member is confined
and largely north to south. However, fluid flow and geochemistry within the
Culebra Dolomite and shallower units are in continuing transient response to
the marked decrease or cessation of localized recharge at approximately the end
of the last pluvial period. Both bulk chemistry and isotopic relations of
Culebra Dolomite fluids are inconsistent with modern flow directions if steady-
state, confined flow is assumed. It is assumed that recharge to the Rustler in
the past occurred within Nash Draw, with resultant flow generally to the east
and southeast. Flow is interpreted to have reoriented to its present general
southerly direction in response to the end of recharge. This interpretation of
the change in flow directions within the Rustler is based largely on uranium-
disequilibrium studies (Lambert and Carter, 1987). Because of the relative
head potentials within the Rustler Formation at and near the WIPP site, there
appears to be a small amount of vertical fluid flow between its members, even
though the permeabilities of Rustler Formation members other than the Culebra
Dolomite are quite low. Where measured successfully, the modern head poten-
tials within the Rustler Formation prevent fluid flow from the surface downward
into the Rustler carbonates. These results suggest that recharge from the
surface to the Rustler Formation is not occurring at the WIPP site. Deuterium-
oxxygen analyses available from the Rustler Formation consistently indicate an
isotopic character distinct from that of modern meteoric precipitation in the
area (Lambert and Harvey, 1987). The results of stable isotope, radiocarbon,
and uranium disequilibrium studies are also consistent with the interpretation
of no measurable modern recharge to the Culebra Dolomite from the surface at or
near the WIPP site.
Figure 2-3. Hydrologic Test Wells near WIPP
Within and near Nash Draw, evaporite karst processes operate within the Rustler Formation, as evidenced by the continuing development of small caves and sinkholes in near-surface anhydrites and gypsoms of the Forty-niner and Tamarisk Members. There is no evidence of karstic hydrology in the Rustler Formation at the WIPP site. However, fracturing of some portions of the Culebra Dolomite is sufficient at the site to strongly affect both hydraulic and transport behavior over distances of approximately 100 ft (30 m). Detailed transport calculations and ground-water flow modeling indicate that fracturing effects are not significant in regional-scale transport within the Culebra Dolomite, as long as the modern head distribution is not significantly disturbed.

The Dewey Lake Red Beds overlying the Rustler Formation consist largely of siltstones and claystones, with subordinate sandstones. In tested locations, the Dewey Lake Red Beds are too low in permeability for successful hydrologic testing. At the WIPP site the Dewey Lake Red Beds are unsaturated, but less than 1/2 mi (1 km) south of the WIPP site boundary, sandstones within the Dewey Lake Red Beds produce potable water. Isotopic relations suggest that surficial waters have contributed to the formation of secondary gypsum veins within the Dewey Lake Red Beds, but that the Dewey Lake Red Beds and Rustler Formation hydrologic systems are not currently well connected. Limited strontium isotope studies of the Rustler Formation and Dewey Lake Red Beds appear to indicate limited vertical fluid flow from the Rustler upward into the Dewey Lake Red Beds and a major involvement of surficial materials in crystallization of secondary veins within the Dewey Lake Red Beds (Lambert, 1988). Similar studies, again based on limited data, indicate that secondary gypsum veins within the Rustler could not have crystallized in equilibrium with modern meteoric recharge in the area.

In addition to the geologic and hydrologic characteristics of the disposal system, radionuclide transport calculations require a source term, i.e., a description of the quantities, species, and rates of radionuclides available for transport. The chemical behavior of the important radionuclides in TRU waste in WIPP brine must be predicted to define the source term.

Laboratory studies provide a unique opportunity to develop a mechanistic understanding of repository and radionuclide chemistry. Because chemical reactions can produce or consume large quantities of gas and water, studies of these reactions are necessary to predict their effects on repository gas and water budgets. The gas and water contents of the repository could affect room-closure rates, geomechanical properties of the room contents, and the likelihood of radionuclide release. Various chemical reactions can also affect the Eh and pH of any brine present in the rooms; these parameters will in turn influence the solubilities of certain gases in the brine and the speciation, solubilities, and sorption of radionuclides. Laboratory studies will be used to quantify the effects of significant processes under conditions that isolate the processes from each other, yet are nevertheless realistic, and to determine the effects of variations in repository chemistry on these processes. Modeling studies will be used to extend the results of laboratory studies to other conditions and to simulate the complex interactions between the processes studied in the laboratory.
2.4 OVERVIEW OF TECHNICAL APPROACH FOR COMPLIANCE WITH 40 CFR 191, SUBPART B

2.4.1 Performance Assessment

In 1986, the Project reviewed the performance assessment activities, the regulatory requirements, and the methodology developed at Sandia National Laboratories for the Subseabed Disposal Project and for the Nuclear Regulatory Commission (NRC) and EPA regulatory development programs. The outcome of the review was a decision for the performance assessment to use proven conceptual methodology rather than develop a new methodology. The Standard suggests that if another methodology is used, different from the NRC/EPA conceptual methodology, comparisons of the new methods with those used to develop the NRC/EPA methodology would have to be made. The NRC/EPA methodology, documented by Hunter et al. (1986), was selected.

Using this methodology, the first step was to develop and begin screening the scenarios that will guide the performance evaluation. The next step was to develop tools allowing the conceptual performance assessment methodology to be used in an actual performance assessment. The main undeveloped computational tool was an executive code that would control, track, and store for future reference all parts of each calculation for each scenario. Earlier work by the Subseabed Disposal Project and NRC/EPA groups identified human error in translation between different subcodes within a given scenario as a major failure mode. An executive code, CAMCON, has been developed to remove most, if not all, of the possible human errors (Rechard, 1989).

The performance assessment methodology presented here is a complex process comprising seven major components: (1) data collection, model development, and engineered alternatives, (2) scenario development and screening, (3) preliminary consequence analysis, (4) sensitivity and uncertainty analysis, (5) final consequence analysis and comparison with the EPA Standard, (6) analysis of undisturbed performance, and (7) documentation. The interrelationships between these components are shown in Figure 2-4 and are briefly described below; a more complete description can be found in Bertram-Howery and Hunter (1989b).

Data Collection, Model Development, and Engineered Alternatives: Consequence modeling requires the development of conceptual models, which are geologic and hydrologic descriptions of the region surrounding the WIPP and descriptions of the repository, derived from disposal system characterization data. The activities that provide this information are described in Section 2.7.2, beginning on p. 2-90. Because WIPP site characterization and repository design have been underway since 1975, the observational data base is large. These programs have also developed several numerical models that will be incorporated into the performance assessment computational methodology. An important component of the methodology is the development of accepted regional and local hydrologic and material-transport models that describe the movement of water and dissolved waste through the site.

Characterization of the disposal system and the surrounding area and development of models will continue during the Test Phase, both to support the performance assessment and to complete the disposal facility conceptual design. The existing data base will be expanded to support a larger, regional conceptual model domain for performance assessment. This expansion includes gathering and
Figure 2-4. Flow Chart of the Performance Assessment Process
synthesizing additional geologic and hydrologic data for the selected domain and for outlying regions that may influence this domain. The data base will also be expanded to include more specific data on the backfill performance and salt creep closure. It also will include the conceptual design of the seals and data on gas generation. The disposal system characterization activities provide most of this component of the performance assessment methodology. If no data or sparse data are available for a given parameter, performance assessment will use the best available estimates of the parameter's range and distribution and perform appropriate sensitivity analyses to determine the effect of the parameter uncertainty on the results for each affected scenario. The uncertainty in the parameter may be larger than would be the case if the information were better characterized.

If preliminary performance assessment calculations indicate a potential for uncertain or unsatisfactory performance, it may be necessary to implement modifications to the waste forms or to the reference disposal system design. The effort to be prepared to implement these modifications is currently underway (Activity S.1.2.5; Arthur, 1989) and consists of three parts: model development, design analysis, and engineered alternatives feasibility evaluation. An integrated deterministic model is under development that will include room and shaft models; it will be capable of simulating both natural processes and human intrusion scenarios. A routine will be included that evaluates releases of radioactive and hazardous constituents from the disposal system. The final deterministic model will be used to highlight any potential problems with regulatory compliance and to evaluate the relative effectiveness of proposed modifications to the current design. Additional information needs and any recommended experimental programs will be identified where appropriate. Appropriate alternatives based on preliminary recommendations will be tested in laboratory, bin-scale, and alcove tests to demonstrate their effectiveness in mitigating the problems they are designed to alleviate. These final recommendations will then be evaluated using the formal performance assessment process to quantify the improved performance of the disposal system.

Scenario Development and Screening: Preliminary estimates of consequences can also be used to screen out scenarios, if their omission is not expected to change the remaining probability distribution of cumulative releases significantly. In addition, events, processes, and scenarios can be screened out if they are physically unreasonable or not of regulatory interest. Finally, scenarios can be omitted, or screened out, from the performance assessment if the probability of occurrence is less than 1 in 10,000 in 10,000 years. Establishing the probability of occurrence of scenarios is therefore necessary to show compliance with the Standard. The events retained for further WIPP scenario development include the effects of a pressurized brine occurrence beneath the WIPP, climatic change, dissolution of waste or rock immediately adjacent to the repository, drilling into the repository, ground-water flow, the effects of mining for resources, seal performance, subsidence of overlying rock into the repository, waste/rock interaction, and waste effects.

The methodology for scenario development and screening continues to evolve during the WIPP performance assessment. For earlier deterministic assessments for the WIPP Program, scenarios have been developed using flow diagrams. For probabilistic assessments, changes in the amount of rain at a site, for example,
would be handled in the range and distribution of the parameters in that process and thus would not lead to multiple scenarios. Because 40 CFR 191 is the first waste management standard to require a probabilistic methodology, early scenario development work for the WIPP performance assessment produced lists of scenarios that had mixed sets of branch points (Bingham and Barr, 1979).

With the different types of regulations needing different types of scenarios the word scenario should not be used without qualification. Scenarios developed for deterministic calculations differ from those for a probabilistic analysis in that they must include both the event or process and the data ranges. For probabilistic analysis the data ranges are not included in the scenario.

Currently, the events and processes identified as important by Hunter (1989) are being used to prepare a set of probabilistic scenarios (Guzowski, 1990). These will be reviewed for completeness and clarity of type of scenario at each branch point within the flow diagram.

Supplements to the scenario development report will contain the results of scenario screening and will incorporate or respond to any comments from outside organizations and individuals. If it is necessary to develop or expand scenarios because of new data, these new scenarios will be reported in the supplements.

Preliminary Consequence Analyses: The preliminary consequence analysis will assemble and test the entire suite of codes, models, and techniques necessary to prepare a complementary cumulative distribution function (CCDF) that indicates the probability of exceeding various levels of cumulative release for comparison with the Standard. If the performance assessment methodology is found to be deficient during the preliminary analyses, these deficiencies will be corrected before the final consequence analysis is performed. Scenarios that survive the screening will be analyzed. Regional and local hydrologic models will be used to examine ground-water flow under the various scenarios. Codes appropriate for simulating the transport of radionuclides through geologic formations will be selected. Models provided by various disposal system characterization activities will be assembled and adapted into the model of the repository/shaft system, which will comprise linked codes for models of the rooms, panel seals, drifts from the panel seals to the shafts, and shafts and seals.

Effects of uncertainty in scenario probabilities will be examined and potential problems identified during the preliminary consequence analysis. A determination of the need for dose calculations can also be made at this stage. The complementary cumulative distribution functions calculated during this preliminary work will be incomplete. In some cases, data will be insufficient and the Project will still be carrying out important sensitivity analyses to design scenario-dependent computational strategies. Preliminary consequence analyses will be subject to continuous internal peer review. Semiannual briefings on the results of the preliminary consequence analyses will be presented to EPA, NAS/NAE, the State of New Mexico, and the EEG. The results will be documented annually and issued externally.

The WIPP methodology will be implemented using a modular system of computer codes referred to as the "compliance assessment system." The complex disposal system at the WIPP requires that the series of computer codes in the compliance
assessment system be controlled by an executive software package, CAMCON (Compliance Assessment Methodology CONtroller; Rechard, 1989). CAMCON minimizes analyst intervention and automatically handles quality assurance during the calculational process. The primary data base comprises the analyzed, strictly quality-assured data for performance assessment purposes. The primary data base must be interfaced with CAMCON by objectively or subjectively extending it to regular grid information. These new data files will be placed into the secondary data base where they may be directly accessed by the various model components of CAMCON. The preliminary consequence analysis will set up the entire calculation sequence, using CAMCON and the appropriate data bases, for each significant scenario.

Sensitivity and Uncertainty Analysis: Sensitivity analyses will be performed for each scenario that appears to be of regulatory interest as part of the preliminary consequence analysis. Figure 2-4 shows sensitivity analysis as an iterative step preceding consequence analysis. The main function of sensitivity analysis is to determine the relative importance of the parameters that provide input to the consequence analysis. This information provides guidance to the Performance Assessment Program in the following ways:

- **Identifying the critical input parameters.** Sensitivity analysis of the computational system for a scenario helps identify those parameters that are important in modifying the response of a model segment and those model segments that are important in modifying the response of the system. These input parameters or model segments are then analyzed in greater detail to see how they are changing. For those components which are changing in a nonlinear manner, more precise values will be needed for both the parameter range and the distribution.

- **Determine the relative importance of data collection activities.** As the relative importance and required accuracy of input parameters are determined, sensitivity analysis provides the opportunity to upgrade or downscale the priorities of data collection activities. This prioritization will provide direction to the Project for more efficient use of finite resources and expertise.

- **Provide guidance to the development of design enhancements.** If it is determined that a critical parameter needs to be known to an accuracy that is beyond the capabilities of the current technology, design modifications may be employed to lessen the importance of that parameter on the long-term performance. For example, if it is determined that brine inflow rates cannot be established with sufficient confidence to be within an acceptable range, compaction of the waste and the use of grout backfill could greatly reduce the time required for the rooms to close and thus reduce the quantity of brine expected to flow into the room.

Sensitivity analysis for a given scenario begins with a description of a conceptual model of the disposal system. The best available computational models and required input data for each affected subsystem are then assembled to simulate the response of the disposal system to the scenario. Response, or performance, is usually measured in terms of either potential doses to individuals over a 1,000-year interval, or as 10,000-year cumulative releases of individual radionuclides. Key input parameters are then varied over some
reasonable range of values to determine the effect of varying these parameters on the consequence of the scenario. Poorly defined parameters that are shown through sensitivity analysis to have a strong effect on performance are highlighted as key parameters. Activities that provide accurate and defensible values for these key parameters will be given a high priority. Activities that provide values for parameters that are shown to be less critical to performance will be downgraded to a lower priority. The results of ongoing sensitivity analyses will be subject to peer review and will be documented annually.

A number of sensitivity analyses have been used in the past to determine the nature of the critical risks and issues at the WIPP, primarily by determining their effects on the safety of the repository. The promulgation of the EPA Standard shifted the emphasis of the assessments from safety to compliance with the Standard, that is, from doses to releases and from the Pecos River to the controlled area. Initial sensitivity analyses in direct support of the performance assessment revealed that brine-influx rates, radionuclide solubility, radionuclide inventory, and initial void volume were critical parameters to be understood before compliance with the Standard could be demonstrated. Four energy sources were identified that could move waste from the repository horizon to the accessible environment: drilling equipment and fluids, gravitational effects, gas generation and entrainment within the rooms or panels, and the pressurized brine occurrence below the repository. At about the same time, in-situ experiments revealed that the permeability of the Salado Formation is a few orders of magnitude less than had been thought based on above-ground testing. Analyses of the new data showed that gas-generation rates and volumes are also critical.

Further analysis may show that the performance of the disposal system is insensitive to some parameters that are now being investigated; unfortunately, it is difficult to determine in advance of the complete analysis which of the parameters these might be. In the near term, the technical and scientific programs of the WIPP Project will continue to perform sensitivity analyses to provide some guidance on the most important parameters in the overall risk-assessment model and will use these analyses as a guide in establishing program priorities. Some activities may eventually be terminated, but experience has shown the risks associated with prematurely terminating an investigation before the whole assessment is complete. For example, initial work on gas generation was performed about 10 years ago, but was terminated because the rock permeabilities were believed to be higher than they are now known to be, and it was thought that no high gas pressures could develop.

A method has been developed to use sensitivity analysis in conjunction with the generation of preliminary complementary cumulative distribution functions (CCDFs) to determine the effects of individual parameters, scenarios, and subsystems (e.g., disposal room) on potential compliance with 40 CFR 191. For example, trial calculations have examined the potential effects of changes in waste solubility, porosity, permeability, and hydraulic conductivity on releases arising from selected scenarios. These calculations have shown that by varying values of these parameters over selected ranges hypothetical releases may be either above or below the release limits set by 40 CFR 191. Similar calculations will be used in the future to focus experimental programs and examinations of engineered alternatives on critical subsystems, scenarios, and parameters.
Studies to be published early in 1990 will illuminate the rationale for the current program. A history of the sensitivity analyses will identify past studies that have used optimization and other techniques throughout the lifetime of the WIPP Project to identify the most significant parameters for topics of research and development. New sensitivity analyses (Rechard et al., 1990) are also scheduled to be completed early in 1990. These and other sensitivity analyses will be used to further assign priorities to the extent feasible and prudent.

Uncertainty analysis determines the uncertainty in the performance-measure calculation resulting from uncertainty in scenarios, models, and input data. The WIPP Project will address scenario uncertainty through external peer review. Uncertainty in the models will be addressed through verification, validation, calibration programs, and quality assurance. Uncertainty in the input data will be incorporated by Monte Carlo sampling. The Standard requires that the performance assessment results be incorporated into an overall probability distribution of cumulative release to the extent practicable. Appendix B of the Standard suggests that the results be assembled into a single complementary cumulative distribution function that indicates the probability of exceeding various levels of cumulative release. This single curve will incorporate all parameter uncertainty. If this single distribution function meets the release limits, then a disposal system can be considered to be in compliance with the Containment Requirements. Uncertainty analysis is an integral part of consequence analysis.

Final Consequence Analysis and Comparison with Standard: Final consequence analysis will be performed for each scenario determined to be significant during the scenario-screening process. It will use the performance assessment methodology described for the preliminary consequence analysis, modified as necessary to correct any deficiencies found during that earlier analysis. The results of the final analysis will be assembled and presented in the form of a complementary cumulative distribution function, which will be compared with the Standard. This activity comprises several tasks: finalizing all data and models, simulating all scenarios through CAMCON, analyzing each scenario's results, producing the final complementary cumulative distribution function, and comparing the complementary cumulative distribution function with the Standard.

Analysis of Undisturbed Performance: If any release of radionuclides from the undisturbed scenario during the first 1,000 years is projected by the final consequence analysis, annual doses will be calculated and compared with 40 CFR 191, Section 15, Individual Protection Requirements. Releases to the accessible environment are not expected during that time, so dose calculations should not be necessary; however, the WIPP Project will be prepared to perform such calculations. The Project intends to use the compliance assessment system in demonstrating compliance with the Individual Protection Requirements. A scenario describing the undisturbed performance of the repository will be simulated using reasonable projections of the expected behavior of the repository. Release calculations for the undisturbed scenario will use CAMCON models to determine the need for dose calculations. Pathways and dosimetry models and corresponding data bases will be included in CAMCON.

Documentation: DOE is currently responsible for determining whether WIPP complies with Subpart B of the Standard. That determination will be based on a
document that describes the compliance evaluation process and compares the disposal system performance with the Standard. A report issued late in 1989 (Bertram-Howery et al., 1989) is a preview of the Draft Comparison to the Standard, having the same format, table of contents, and, where available, text. A second document (Marietta et al., 1989) presents the methodology to be used in the final performance assessment for external review of format and scope by the EPA, NAS/NAE WIPP Panel, State of New Mexico, and EEG. Where final text is not yet available, the 1989 texts are annotated outlines of the final texts. These documents will be revised annually to incorporate the results of the iterative performance assessment calculations. The Draft Comparison to the Standard will include descriptions and results of the final consequence analysis and the complementary cumulative distribution function for the Containment Requirements (Section 13) and dose estimates for the Individual Protection Requirements (Section 15). It will also address the Assurance Requirements (Section 14) and the Ground Water Protection Requirements (Section 16). The Draft Comparison to the Standard will reflect the final form of 40 CFR 191, Subpart B, if it has been promulgated.

2.4.2 Technical Support

The technical approach for the WIPP disposal system characterization has been and continues to be a systematic process that will obtain sufficient technical information for establishing a design basis for waste isolation and for performance assessment of the disposal system. Five major processes have been identified that will ultimately provide a level of confidence that the data base is adequate:

- **Laboratory Testing and Model Development** including theoretical analysis and the determination of physical and chemical properties of materials.
- **Site Characterization** including geology, hydrology, geochemistry, and geophysics.
- **In Situ Testing** including the acquisition of data from full-scale tests underground, in some cases using actual waste.
- **Data Reduction and Analysis** including the feedback process of comparing in situ and field data with predictions.
- **Evaluation and Validation** including the adjustment and refinements of theoretical models and techniques to predict long-term behavior that would be expected in the host rock.

Laboratory testing and model development for waste isolation have been continuing efforts of the WIPP Project since 1975. These efforts include extensive model development, theoretical analysis, and laboratory testing. Depending on the technical issue being addressed, model development can be associated with a laboratory, material property testing program, or with a theoretical study of mechanisms, physical and chemical processes, or fundamental static or dynamic laws. Laboratory testing and theoretical studies are performed in an appropriate sequence or in parallel to evaluate the adequacy of the model to represent the phenomenon in question. Laboratory testing and theoretical analyses are usually conducted as complementing efforts so that
when complete, a predictive model can be used to represent material behavior or response of a physical/chemical process.

Site characterization activities have been underway since 1975. The overall conceptual model of the geologic, hydrologic, and structural behavior of the site has been developed and refined. Site characterization is nearly complete.

In situ testing with and without radioactive wastes is necessary to validate design concepts and models to be used for performance assessment. Although models and theoretical developments can be evaluated in part by laboratory or bench-scale experiments, in situ testing has been considered a vital part of the WIPP for

- Providing the basis for establishing a level of confidence in models by validation with data from in situ tests.
- Establishing designs and systems concepts including appropriate performance criteria.
- Demonstrating the developed technology for scientific and public scrutiny and acceptance.

In situ testing for waste isolation is limited for practical reasons because it cannot in all situations accurately simulate effects over large areas (repository size) nor can it directly address long-term effects. Configurations for the in situ tests at WIPP are therefore linked with theoretical techniques so that test results can then be used to evaluate the capability to predict response through the testing period and 10,000 years into the future.

In situ tests at WIPP have been configured to measure a wide range of parameters that are used in models and data developed from laboratory studies. These models and the information obtained from numerous studies are also used in calculations that determine the scope, configuration, and measurement location of the individual in situ tests. Calculations, normally completed prior to initiating a test, establish reference predictions of the proposed test and develop a format against which a direct comparison can be made with in situ measurements. This comparison between model prediction and in situ measurement then forms the basis for data analysis and evaluation studies.

Data reduction and analysis must ensure quality control while large numbers of data are managed in an efficient and effective manner. The data reduction portion of the process provides a systematic procedure developed appropriately for (1) screening the raw data, (2) reviewing it for missing information, (3) making appropriate corrections and adjustments for time shifts or calibrations based on the judgment of the principal investigators, (4) evaluating and analyzing the corrected data for consistency based on comparisons with similar measurements or expected physical or chemical responses, and (5) presenting the information in data reports for subsequent analyses.

Evaluation and validation examine analyzed, in situ data and compare them with early laboratory data and theoretical studies. Many of the chemical- and radioactive-interaction, fluid-flow, material-property, and constitutive models will be evaluated against in situ behavior of material components and systems. Adjustments to computer codes and analytical techniques will be made if necessary so that the predictive procedures will more closely represent actual behavior.

Revision 0, April 1990
2.5 DESCRIPTION OF THE PERFORMANCE ASSESSMENT PROGRAM

The program for determination of compliance with 40 CFR 191, Subpart B, is divided into elements and activities. The elements provide a framework that defines the type of information and data that is necessary to evaluate compliance with the Standard. Activities describe the specific tasks that will provide the data needs identified in the elements.

The elements are presented in a hierarchy that illustrates the logic of the data needs for performance assessment (Table 2-1). There are five basic elements: (1) scenario screening, (2) repository/shaft system behavior, (3) controlled area behavior, (4) computational system development, and (5) consequence analysis. These elements are further divided into more specific data needs, which are presented as subelements. Each subelement, in turn, develops the more detailed information needs.

The information needs mentioned above define the activities that will be performed. There are two basic sets of activities described in Section 2.7: (1) performance assessment, and (2) supporting (disposal system characterization) activities. The performance assessment activities focus on the scenario development and modeling that will be used to predict the consequences of credible processes and events that could potentially lead to releases of radionuclides from the disposal system. Disposal system characterization activities focus on obtaining the data and understanding necessary to provide input to the performance assessment models.

The procedural approach to predicting performance is based on the guidance provided by the EPA with the Standard. Although this is not the only possible approach, it is based on techniques used by the EPA to evaluate the feasibility of the Standard itself. For the 10,000-year performance, the EPA has indicated that the predicted releases from all simulations for all scenarios analyzed will be combined with the scenario probabilities and presented in one complementary cumulative distribution function. This single function will be compared with the release limits set by the Standard. For the 1,000-year performance, the annual release distribution for each release location is used to calculate an annual dose distribution. The EPA has indicated that the mean or the median of each dose distribution will be used for comparison with the dose limits.

These analyses will require that the behavior of the entire system be adequately simulated to determine compliance, and that certain components of the system also be simulated separately. For example, the undisturbed performance will require simulation of the entire system, while certain human-intrusion scenarios will require simulation of intrusion into a room and subsequent transport in the Culebra Dolomite Member of the Rustler Formation. Some scenarios, such as intrusion into a pressurized brine occurrence, may require specialized models. The assessment elements address the scenario analysis, the assembly of appropriate subsystem and system computational models to describe conceptual models for each scenario, the complexity of the computational system, and the calculation of releases and doses. Assembly of the models requires characterization of the total disposal system, including the behavior of the repository and shaft system and the potential for hydrologic transport of radionuclides beyond the repository and shaft system.
<table>
<thead>
<tr>
<th>Element 1.1</th>
<th>Scenario Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subelement 1.1.1 Climate Change</td>
<td></td>
</tr>
<tr>
<td>1.1.1.1 Modern Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>1.1.1.2 Paleoclimatology/Hydrology</td>
<td></td>
</tr>
<tr>
<td>1.1.1.3 Recharge</td>
<td></td>
</tr>
<tr>
<td>Subelement 1.1.1.2 Nuclear Criticality</td>
<td></td>
</tr>
<tr>
<td>1.1.2.1 Radioactive Inventories</td>
<td></td>
</tr>
<tr>
<td>1.1.2.2 Radionuclide Distributions and Concentrations</td>
<td></td>
</tr>
<tr>
<td>1.1.2.3 Reconstruction</td>
<td></td>
</tr>
<tr>
<td>Subelement 1.1.3 Human Intrusion</td>
<td></td>
</tr>
<tr>
<td>1.1.3.1 Flow Direction and Deeper Geologic Formation Boreholes</td>
<td></td>
</tr>
<tr>
<td>1.1.3.2 Rock Effects</td>
<td></td>
</tr>
<tr>
<td>1.1.3.3 Deeper Geologic Formation Flow Characteristics</td>
<td></td>
</tr>
<tr>
<td>1.1.3.4 Culebra Dolomite Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>1.1.3.5 Two-Borehole Effects</td>
<td></td>
</tr>
<tr>
<td>1.1.3.6 Subsidence Zone</td>
<td></td>
</tr>
<tr>
<td>1.1.3.7 Flow Variations</td>
<td></td>
</tr>
<tr>
<td>Subelement 1.1.4 Seal Performance</td>
<td></td>
</tr>
<tr>
<td>1.1.4.1 Seal Performance</td>
<td></td>
</tr>
<tr>
<td>1.1.4.2 Failure Modes</td>
<td></td>
</tr>
<tr>
<td>Subelement 1.1.5 Probability Assignment</td>
<td></td>
</tr>
<tr>
<td>1.1.5.1 Scenarios</td>
<td></td>
</tr>
<tr>
<td>1.1.5.2 Expert Opinion</td>
<td></td>
</tr>
<tr>
<td>1.1.5.3 Probabilities</td>
<td></td>
</tr>
<tr>
<td>Subelement 1.2 Repository/Shaft System: Behavior and Performance Modeling</td>
<td></td>
</tr>
<tr>
<td>1.2.1 Waste Disposal Room Design</td>
<td></td>
</tr>
<tr>
<td>1.2.2 Tunnel Seals Behavior and Modeling</td>
<td></td>
</tr>
<tr>
<td>1.2.3 Access Drift Behavior and Modeling</td>
<td></td>
</tr>
<tr>
<td>1.2.4 Shaft Seals Behavior and Modeling</td>
<td></td>
</tr>
<tr>
<td>1.2.5 Transport Modeling</td>
<td></td>
</tr>
<tr>
<td>Subelement 1.3 Contained Area Behavior and Performance Modeling</td>
<td></td>
</tr>
<tr>
<td>1.3.1 Las Medulas Regional Flow Modeling</td>
<td></td>
</tr>
<tr>
<td>1.3.2 Panel Seal Behavior and Fluid-Flow Characteristics</td>
<td></td>
</tr>
<tr>
<td>1.3.3 Culebra Dolomite Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>1.3.4 Sealed Rock Zone and Geochemistry</td>
<td></td>
</tr>
<tr>
<td>1.3.5 Closure, Concepts, and Designs</td>
<td></td>
</tr>
<tr>
<td>Subelement 1.4 Computational System</td>
<td></td>
</tr>
<tr>
<td>1.4.1 Development of the Compliance Assessment System</td>
<td></td>
</tr>
<tr>
<td>1.4.2 Primary Data Assembly</td>
<td></td>
</tr>
<tr>
<td>Subelement 1.5 Consequence Analysis</td>
<td></td>
</tr>
<tr>
<td>1.5.1 Containment Requirements</td>
<td></td>
</tr>
<tr>
<td>1.5.2 Individual Protection Requirements</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-1. Work Elements, Subelements, and Information Needs For Performance Assessment
The Performance Assessment Program will be considered complete when

- The complete set of significant scenarios with probabilities of occurrence has been defined and the corresponding set of disposal system conceptual models described.
- Each conceptual model can be adequately simulated by a system of optimized computational models using appropriate, well-defined data sets.
- The data sets have undergone quality assurance and the computational models and systems of models have been verified and validated to the extent possible.
- The computational system is operational and record keeping is adequate to support repetition or modification of each simulation.
- The final analyses and comparisons to the release limits and dose limits in the Standard are complete and a peer review process has affirmed that the analyses are adequate.

2.5.1 Quality Assurance

The activities described in Section 2.7 will be performed in compliance with a detailed Quality Assurance Program. The goal of this program is to assure that research and performance assessment activities are controlled and well documented, using good laboratory, engineering, and management practices. Quality assurance is a tool to assist management in planning, executing, and documenting the experimental program. By supporting the experimental program and assuring accurate records, quality assurance will contribute to the defensibility of the experimental data and resulting conclusions.

The quality assurance (QA) requirements for the Performance Assessment Program are defined in a Quality Assurance Program that complies with the basic requirements and applicable supplements of ANSI/ASME NQA-1-1986 (QA Program Requirements for Nuclear Facilities), DOE Order 5700.6B, DOE AL Order 5700.6B (General Operations Quality Assurance), Chapter 11 (Quality Assurance) of the WIPP Final Safety Analysis Report, WIPP DOE 87-007 QA Operations Program, WIPP Project Office Management Directives, and the Sandia National Laboratories Quality Plan and Organization 6000 QA Policy. All activities associated with repository characterization as well as all performance assessment will comply with the requirements of the Quality Assurance Program.

2.6 Elements of the Performance Assessment Program

This section describes the work elements and subelements that support completion of the Performance Assessment Program. The work is divided into five elements and corresponding subelements and information needs (Table 2-1). Each subelement provides a list and description of the information needs required to address that subelement. Each information need identified has been given a four-digit reference number. The first two digits refer to the element it supports, the third digit refers to the subelement, and the fourth digit refers to the specific information need established under the subelement. In addition, each information need description provides a reference (with page number) to the relevant activities that support the information need.
ELEMENT 1.1 Scenario Screening

The WIPP Project has published a report (Hunter, 1989) that identifies all processes and events examined for inclusion in the WIPP consequence analysis and justifies dismissal of those processes or events that have been screened out and require no further consideration. These events and processes have been screened on the basis of probability, physical reasonableness, consequence, and regulatory interest. A second report, identifying the probabilistic scenarios retained for the initial consequence analysis, will define the disposal system conceptual models, which must be simulated for the 10,000-year performance. It is expected that approximately 10 significant scenarios will be thoroughly analyzed; the remainder are not expected to contribute significantly to the complementary cumulative distribution function.

A number of scenarios, events, and processes require further consequence analyses to determine whether they are of regulatory interest. These analyses are part of the screening process and may be relatively simple or complex. Screening begins with analyses of the particular events or processes listed below. The subelements do not necessarily correspond to scenarios to be retained for the final consequence analysis. After examining Hunter's (1989) results, these subelements were chosen for early examination because: (1) they are likely to be dismissed as a result of the screening analyses; (2) they are ready for screening analysis; and (3) results of these analyses can be used to guide data collection, further screening efforts, and both preliminary and final consequence analyses. Other analyses may be subsequently defined; both would be documented in later supplements.

Performance Assessment Activities PA.1 and PA.2 address the information needs for Element 1.1.

Subelement 1.1.1 Climatic Change

This subelement requires screening of climatic change processes (that should be included in the final consequence analysis) to determine whether any reasonable change can cause variations in flow in any of the stratigraphic units of the controlled area within 10,000 years.

The information needs for this subelement include

1.1.1.1 Modern Hydrology: three-dimensional models of the hydrologic characteristics of the region and the controlled area.

1.1.1.2 Paleoclimatology/Hydrology: predictions of future climatic changes and their effects on the hydrology.

1.1.1.3 Recharge: incorporating potential recharge rates and changes in the hydrologic model.

Subelement 1.1.2 Nuclear Criticality

This subelement requires determining whether any likely conditions could lead to nuclear criticality in the disposal system after the shafts are sealed, and whether the response of the disposal system would significantly affect the
results of the consequence analysis by increasing thermal loading or changing the radionuclide inventory.

The information needs for this subelement include

1.1.2.1 Radionuclide Inventory: inventory of radionuclides to be disposed of at the WIPP facility.

1.1.2.2 Radionuclide Distributions and Concentrations: a description of the distributions and concentrations of those radionuclides of concern throughout the waste panels over the regulatory time period.

1.1.2.3 Reconcentration: incorporating the potential for reconcentration of radionuclides outside the waste panels into the criticality calculations.

Subelement 1.1.3 Human Intrusion

Human-intrusion events that must be screened include boreholes into deeper geologic formations, the effects of two boreholes through one panel, and solution mining.

This subelement requires (1) determining whether drilling into deeper geologic formations is significant; (2) determining whether penetration of the same waste panel by two boreholes is likely to alter the flow pattern in the Culebra Dolomite Member within the controlled area; and (3) determining whether solution mining is probable, and if so, whether it is likely to affect releases.

The following information needs for this subelement will be obtained from field studies or from the literature:

1.1.3.1 Flow Direction in Deeper Geologic Formation Boreholes: the expected direction of flow in a borehole between the Culebra Dolomite Member and the deeper geologic formations.

1.1.3.2 Room Effects: the effect of the flow direction in deeper geologic formation boreholes on an intersected disposal room.

1.1.3.3 Deeper Geologic Formation Flow: the rate of flow to the accessible environment in the deeper geologic formation if flow is confirmed to be downward from the Culebra Dolomite Member.

1.1.3.4 Culebra Dolomite Hydrology: a model of ground-water flow in the Culebra Dolomite.

1.1.3.5 Two-Borehole Effects: incorporating flow down a borehole, through a waste panel, up a second borehole, and back into a water-bearing unit.

1.1.3.6 Subsidence Zone: hydrologic properties of the subsided zone above an abandoned, collapsed potash mine in the site vicinity.
1.1.3.7 Flow Variations: changes in adjacent flow patterns caused by any of the above events.

Subelement 1.1.4 Seal Performance

This subelement requires identification of the major effects of nonstandard seal performance to determine which effects cannot be screened out.

The information needs for this subelement include

1.1.4.1 Seal Performance: data on seal component performance.

1.1.4.2 Failure Modes: potential modes of seal failure.

Subelement 1.1.5 Probability Assignment

This subelement requires assignment of a probability of occurrence to each scenario that cannot otherwise be screened out.

Information needs for this subelement include

1.1.5.1 Scenarios: identifying scenarios that require probability assignments.

1.1.5.2 Expert Opinion: obtaining expert opinion on the probabilities of events and processes that make up each scenario.

1.1.5.3 Probabilities: calculating or assigning a probability for each scenario.
ELEMENT 1.2 Repository/Shaft System: Behavior Characterization and Performance Modeling

The repository/Shaft system is one part of the two-part disposal system. Performance of the repository/Shaft system must be adequately simulated over 1,000- and 10,000-year periods to determine whether radionuclides can migrate to the surrounding formations or to the surface above the shafts. If such movement is predicted, then transport through the other part of the disposal system, the controlled area, must be adequately simulated (Element 1.3). For scenarios that change the expected performance without human intrusion, performance of the entire repository/Shaft system may be simulated using the appropriate conceptual models of the disposal system. For most human-intrusion scenarios, the performance of only parts of the repository/Shaft system may be simulated.

The behavior of the integrated repository and shaft system, including the response of the waste disposal rooms (Subelement 1.2.1), panel seals (Subelement 1.2.2), drift backfill materials (Subelement 1.2.3), shaft seal systems (Subelement 1.2.4), and transport (Subelement 1.2.5) must be sufficiently understood to support a reasonable expectation of compliance with the Standard. Characterization requires theoretical analyses and model studies, laboratory testing, and in situ investigations.

The most likely natural mechanisms for transporting radionuclides out of the repository and into the surrounding rock are ground water movement and diffusion through ground water. Disposal systems can be designed to prevent or delay radionuclide migration into the accessible environment. Backfill barriers, specifically mixtures of bentonite clay and crushed salt, are being designed to provide a material that will eventually have permeabilities low enough to significantly limit movement of fluids. The backfill's sorptive properties and low permeability may slow the migration of radionuclides if dissolution of the waste occurs.

Gases generated by the bacteriological and radiological decomposition of the TRU waste and corrosion of the drums could become a driving force for radionuclide movement, if intermediate or final consolidation states of the waste disposal rooms include appreciable pressurized, gas-filled porosity. However, additives could consume or act as getters for most gases generated within the waste room and eliminate gas as a driving force for radionuclide migration.

The characteristics of the source term and predictions of how these characteristics change over time are also considerations for waste disposal. Knowledge of the initial waste characteristics and their subsequent alterations through radioactive decay and possible organic complexing is required to design adequate waste confinement systems. The effects of backfill materials and additives and of brine inflow must also be known. Estimates of the radionuclide and nonradionuclide inventories of the waste, including physical and chemical states, are necessary for evaluating the capability of a disposal room to confine radionuclides. These estimates are necessary for predicting the movement of radionuclides out of the repository toward the accessible environment.
Waste confinement within a waste disposal room isolates radioactive material from the accessible environment. Isolation is achieved if the host rock (including any sealed man-made penetration within it and any disturbed rock adjacent to the panels and seals) forms a barrier to radionuclide transport. Waste isolation focuses on the integrity and continuity of rock salt, its potential for encapsulating the waste through creep closure of waste disposal rooms, its ability to deform without severe fracturing and fracture propagation, its ability to self-heal fractures from natural or man-made disturbances, and its inherent resistance to fluid flow (low permeability).

Penetrations made in characterizing the WIPP site and constructing the facility could provide pathways for radionuclide release. As a result, seals in underground openings and in shafts and plugs in boreholes are required for waste isolation. These barriers must perform effectively soon after emplacement as well as throughout the 10,000-year period of regulatory interest.

Performance of the repository and shaft system can be simulated for the final consequence analysis when

- The repository/shaft system's behavior has been defined and modeled, and testing has shown that the system is adequately understood.

- The understanding of the repository/shaft system's effect on long-term containment has been determined by models and analyses to be adequate for input to performance assessment.

- Computational models for performance assessment scenario simulations can be developed from and supported by more detailed mechanistic or phenomenological models and interpretations of the repository and shaft system.

- A peer review process has affirmed that the characterization has been completed to an acceptable confidence level.

Subelement 1.2.1 Waste Disposal Room Behavior and Modeling

Waste disposal room behavior must be characterized. The room behavior is affected by the interactions among (1) gas generated by corrosion or bacteriological and radiological decomposition of the emplaced TRU waste; (2) creep closure of the surrounding salt formation encapsulating the waste and backfill materials; (3) brine flow into and potentially out of the rooms; and (4) the potential for gas flow out of the repository, either through seal components (at early times) or the far-field host rock (at long times). The consequences of generated gas, fluid inflow and outflow through the disturbed rock zone, and the interactions of room deformation, backfill consolidation, waste container deformation and fluid absorption in the solid waste/backfill matrix must be understood, both with respect to radionuclide migration and with respect to hazardous components of the waste. This subelement will define the total system interaction that would, in any way, impact waste confinement, encapsulation, and movement of both radionuclides and hazardous waste components out of the room.
Performance assessment requires simulating the behavior of the waste disposal rooms both while the rooms are in a transient state and after a final steady state has been attained. It also requires simulating disturbance of the rooms by human intrusion in either state. Simulating room behavior will determine the quantities of radionuclides and brine that can be moved out of the rooms and through the panels and shafts, the surrounding rock in the disturbed rock zone, or through penetrating boreholes under various scenarios. Because waste will also be emplaced in the drifts that connect the panels, performance of these drifts south of the northernmost panel seals will be simulated using appropriate models.

Information needs for this subelement include

1.2.1.1 Source Term: (a) defining the room source term (considering the waste inventory, its radioactive composition, organic and inorganic chemical constituents, decomposition processes including radiolysis, microbial activity, corrosion, and radionuclide speciation in solution), which considers the disposal room environment from the time of waste emplacement to final equilibration; and (b) developing mathematical models that consider variability in the source term resulting from variability in brine inflow, brine chemistry, gas volume and chemistry, and room consolidation in various scenarios. Evaluation of engineered modifications to waste and backfill are specifically included in this effort. Modeling capability will include those disturbed conditions under which large quantities of water or brine are introduced or injected (e.g., pressurized brine occurrence scenario) and the room contents are disrupted by drilling (including mechanical removal of wastes in drill cuttings and drilling mud, erosion and entrainment of room contents by water or brine, and leaching). The source term includes (1) the quantities of important radionuclides and hazardous materials in the WIPP inventory that might be mobilized for possible transport to the accessible environment; (2) the scenario-dependent rates at which these materials might be mobilized; and (3) examination of potential effects resulting from interaction of hazardous materials with waste, backfill, and seal components.

Relevant Activities:
Lab: S.1.1.4 (p. 2-99), S.1.1.5 (p. 2-102)
Modeling: S.1.2.6 (p. 2-109)
In Situ: S.1.3.2 (p. 2-112), S.1.3.3 (p. 2-114)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.1.2 Backfill: (a) understanding the behavior of a "design-basis" crushed salt and bentonite-clay backfill mixture(s) surrounding the TRU waste drums during reconsolidation; (b) understanding the backfill's capacity for consuming brine, gas, radionuclides, and VOCs if additives (getters) are mixed into the backfill; (c) evaluating the potential impact of any proposed engineering modifications to backfill other than those (e.g., getters) presently being considered; and (d) incorporating mechanical,
hydrologic, and geochemical properties and effects of backfill on the radionuclide source term, gas generation, reconsolidation, resaturation, and retardation in appropriate mathematical models and data sets.

Relevant Activities:
Lab: S.1.1.1 (p. 2-96), S.1.1.2 (p. 2-97), S.4.1.2 (p. 2-169), S.4.1.3 (p. 2-170)
Modeling: S.1.2.1 (p. 2-104), S.1.2.3 (p. 2-106)
In Situ: S.1.3.1 (p. 2-111), S.3.3.12 (p. 2-161)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.1.3 Container Response: (a) determining the time-dependent reduction in void volume that would take place in each container when disposal room closure reconsolidates the backfill, ruptures the container, collapses the container and compacts its contents into a solid matrix; (b) defining the intermediate and final states of the container, backfill, and fluid system; (c) determining the effects of proposed modifications of the waste form; and (d) incorporating the effects of reconsolidation, resaturation, and gas generation in appropriate mathematical models and data sets on waste containers.

Relevant Activities:
Lab: S.1.1.3 (p. 2-98), S.3.1.1 (p. 2-136), S.3.1.2 (p. 2-137), S.3.1.4 (p. 2-140)
Modeling: S.1.2.2 (p. 2-105), S.3.2.1 (p. 2-142), S.3.2.2 (p. 2-143)
In Situ: S.1.3.1 (p. 2-111), S.3.3.12 (p. 2-161)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.1.4 Closure: (a) determining the time-dependent rates at which the disposal room closes, based on the mechanisms deforming the surrounding salt and stratigraphic marker beds (where appropriate) (deformation results when salt is subjected to overburden stresses and room- and panel-geometry effects; this behavior is affected by clay seams and anhydrite layers, which result in fractures and near-field dilation, followed by partial healing due to redistribution of compressive stresses); and (b) developing mathematical models of room closure that account for time dependent room and panel geometry, creep, structural support of the backfill, drum collapse, internal gas generation, and (to the extent possible) the mechanical behavior of the disturbed rock zone around the facility.

Relevant Activities:
Lab: S.3.1.1 (p. 2-136), S.3.1.2 (p. 2-137), S.3.1.3 (p. 2-139), S.3.1.4 (p. 2-140)
Modeling: S.3.2.1 (p. 2-142), S.3.2.2 (p. 2-143), S.3.2.3 (p. 2-144), S.3.2.6 (p. 2-149)
In Situ: S.3.3.12 (p. 2-161)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)
1.2.1.5 Brine Inflow and Room Resaturation: (a) determining the time-dependent rates of brine inflow from the formation into the disposal room, as influenced by the pattern and density of rock fractures or other continuous flow paths, by stress differentials around the excavated disposal room opening, by the presence of MB139 and other stratigraphic discontinuities, and by the rate of internal gas pressurization; (b) determining the fluid-flow properties of halite and other rock types in both the far-field and near-field domains; and (c) developing mathematical models of room resaturation that account for variability in brine-inflow rates, unsaturated and two-phase flow, gas-generation effects, effects of the disturbed rock zone, and the time-dependent response of both waste and backfill to fluid flow.

Relevant Activities:

Lab: S.3.1.5 (p. 2-141)
Modeling: S.3.2.4 (p. 2-146), S.3.2.6 (p. 2-149)
In Situ: S.3.3.4 (p. 2-153), S.3.3.6 (p. 2-155), S.3.3.7 (p. 2-156), S.3.3.8 (p. 2-157), S.3.3.9 (p. 2-158), S.3.3.13 (p. 2-162)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.1.6 Gas Generation and Behavior: (a) experimentally determining the gas compositions, net generation rates, and relative importance of mechanisms involving radiolysis, microbial activity, and corrosion for as-received waste, modified waste, and both present and modified backfill; (b) determining the behavior of VOCs, including possible effects on backfill behavior and materials compatibility; and (c) developing mathematical models that include rates of gas production and removal, potential pressure buildup, and the effects of this buildup on waste compaction, room closure, brine inflow, and gas generation and potential release resulting from in situ waste and container decomposition.

Relevant Activities:

Lab: S.1.1.2 (p. 2-97), S.1.1.4 (p. 2-99), S.1.1.5 (p. 2-102)
Modeling: S.1.2.6 (p. 2-109)
In Situ: S.1.3.2 (p. 2-112), S.1.3.3 (p. 2-114)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.1.7 Disturbed Rock Zone: (a) defining and characterizing the disturbed rock zone that excavation produces in the host rock surrounding the disposal room (including both halite and other rock types); and (b) investigating the time-dependent behavior of the disturbed rock zone and its effect on permeability, fluid flow, radionuclide transport capacity, gas transport, gas-storage capacity, and flow into and out of the storage rooms.

Relevant Activities:

Lab: S.3.1.3 (p. 2-139), S.3.1.5 (p. 2-141)
Modeling: S.3.2.1 (p. 2-142), S.3.2.2 (p. 2-143), S.3.2.5 (p. 2-147), S.3.2.6 (p. 2-149)
1.2.1.8 Systems Interactions: (a) understanding the synergistic behavior of the above components as they affect the total performance of the waste rooms and panels, including effects of room closure, backfill, wastes, brine, and gas; (b) incorporating these effects in appropriate mathematical models.

Relevant Activities:
Lab: S.1.1.3 (p. 2-98)
Modeling: S.1.2.1 (p. 2-104), S.1.2.2 (p. 2-105), S.1.2.4 (p. 2-107)
In Situ: S.1.3.1 (p. 2-111)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.1.9 Disposal Room Design: modifying or refining the existing room design, based on information acquired during the WIPP Test Phase, if necessary. Systems analysis of engineered modifications of waste forms, backfill, and emplacement approaches will be performed in parallel with the current testing program; these analyses will consider the long-term isolation characteristics of materials placed in the room.

Relevant Activities:
Lab: S.1.1.1 (p. 2-96), S.1.1.3 (p. 2-136), S.3.1.2 (p. 2-137), S.3.1.3 (p. 2-139), S.3.1.4 (p. 2-140), S.3.1.5 (p. 2-141)
Modeling: S.1.2.2 (p. 2-105), S.1.2.4 (p. 2-107), S.1.2.5 (p. 2-108), S.3.2.1 (p. 2-142), S.3.2.2 (p. 2-143), S.3.2.3 (p. 2-144)
In Situ: S.1.3.2 (p. 2-112)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

Summary of Disposal Room Data Base

Investigations of disposal room behavior provided the following extensive data base and understanding of phenomena that can be applied to an assessment of waste confinement and isolation.

- The overall understanding of expected disposal-room behavior, including uncertainties, was developed and documented by Lappin et al. (1989). The conceptual model was used in deterministic calculations of expected WIPP behavior to 10,000 years.

- Waste container buoyancy, temperature increase at water-bearing strata and ground surface, deformation at water-bearing strata and ground surface, and surface subsidence all have been found insignificant for conditions at WIPP.
Sophisticated constitutive models have been formulated from laboratory tests of rock specimens, accounting for all major observed mechanical behaviors and thermal conductivity observed in the laboratory. However, these models at present do not adequately describe the observed behavior of the Disturbed Rock Zone (DRZ).

Numerical codes have been developed that can solve large-scale, two-dimensional problems with multiple layers of nonlinear materials. Three-dimensional codes are being developed.

Benchmarking and parallel calculation exercises have provided confidence in the precision of the codes available for structural calculations.

Reference constitutive laws and material parameters have been established so that calculations may proceed for the waste room/panel configuration.

A series of large-scale, in situ tests has been fielded and is providing high quality data on structural interactions, fluid flow, and waste container performance. Analyses of the in situ results are proceeding.

Performance of CH- and RH-TRU waste containers in the WIPP environment has been examined through accelerated test data and found to be predictable.

Structural response of CH-TRU waste containers has been determined for early time loadings.

The reconsolidation and sorptive properties of crushed salt/clay-backfill mixtures are generally understood. Additives to enhance waste confinement in the disposal room are being investigated.

Early laboratory, modeling, and in situ investigations of brine flow in the host rock and into disposal rooms have been completed and evaluated.

Data on the disturbed rock zone surrounding an excavated opening underground have been acquired and the disturbed rock zone's influence on waste confinement is being evaluated.

Preliminary estimates of gas-generation rates and compositions due to microbial activity and anoxic corrosion were documented by Lappin et al. (1989), in addition to the estimated range in actinide solubilities.

A properly tailored backfill mixture has the potential to absorb at least as much brine as the maximum calculated inflow.
Subelement 1.2.2 Panel Seal Behavior and Modeling

The panel sealing system’s capability to function for the required period as an internal repository barrier for radionuclide migration to the access drifts must be understood. This includes external effects that influence the sealing system behavior and the behavior’s performance under changing physical, chemical, and environmental conditions. Seal behavior will be resolved when a sealing system has been developed, evaluated, and tested in situ, and found to perform as predicted.

Performance assessment requires simulating transport through or around the panel seals during the transient state and after a steady reconsolidation state has been attained; it also requires simulating panel seal disturbance in either state. The computational model will include flow through the seals, between the host rock and the seal, and through the surrounding disturbed rock zone. Simulating panel seal behavior will determine the quantities of waste, brine, and gas that can be moved through or around the panel seals in various scenarios.

Information needs for this subelement include

1.2.2.1 Disturbed Rock Zone and Fluid-Flow Characteristics: (a) determining the permeability and fluid-flow properties of the surrounding rock units so that the rate of brine influx to disposal rooms and potential gas buildup and dissipation out of disposal rooms to the panel seals can be understood; (b) examining other fluid flow influences such as excavation effects, existing natural anomalies, and pore pressure phenomena that may affect sealing system performance; and (c) developing a mathematical model of transport through the disturbed rock zone, accounting for changes in the behavior of the disturbed rock zone around the panel seals, and for resaturation and retardation.

Relevant Activities:
Lab: S.1.1.1 (p. 2-96), S.2.1.2 (p. 2-121), S.3.1.5 (p. 2-141)
Modeling: S.1.2.1 (p. 2-104), S.2.2.1 (p. 2-123), S.3.2.4 (p. 2-146), S.3.2.5 (p. 2-147), S.3.2.6 (p. 2-149)
In Situ: S.3.3.4 (p. 2-153), S.3.3.5 (p. 2-154), S.3.3.9 (p. 2-158)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.2.2 Sealing System: (a) understanding the behavior of seal materials under in situ conditions over the long term; (b) evaluating structural stability, chemical compatibility, flow restriction capability, and emplacement requirements; (c) understanding the synergistic effects and performance of the entire panel sealing system and the host rock, particularly the capability of the seal to restrict fluid flow and radionuclide transport from the panel; (d) understanding the integrated, long-term interactions between seal system components, the host rock, and the expected waste matrix (including fluids, backfill, and the hazardous waste matrix).
components and radionuclide source term materials); and (e) developing a mathematical model of transport through and around the seals, accounting for retardation and for possible disintegration and/or fracture of the seals.

Relevant Activities:
Lab: S.2.1.1 (p. 2-120), S.2.1.2 (p. 2-121), S.2.1.3 (p. 2-122)
Modeling: S.2.2.1 (p. 2-123), S.2.2.2 (p. 2-124)
In Situ: S.2.3.1 (p. 2-125), S.2.3.2 (p. 2-128)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.2.3 Closure: (a) understanding the time-dependent behavior of the interface between the seal and host rock units and the effects that rock creep closure has on the structural integrity of the sealing system, including healing of the disturbed rock zone surrounding the panel entry; (b) evaluating the mechanisms required for restricting fluid flow and resisting displacement at the interface and the reactivity of the seal with the rock units, considering the influence of the disturbed rock zone; and (c) developing a mathematical model of panel closure, accounting for panel drift and seal geometry, creep, and structural interaction of the seals from emplacement to final structural equilibration.

Relevant Activities:
Lab: S.2.1.3 (p. 2-122), S.3.1.1 (p. 2-136), S.3.1.2 (p. 2-137), S.3.1.3 (p. 2-139), S.3.1.4 (p. 2-140)
Modeling: S.3.2.1 (p. 2-142), S.3.2.2 (p. 2-143), S.3.2.3 (p. 2-144), S.3.2.6 (p. 2-149)
In Situ: S.2.3.1 (p. 2-125), S.2.3.2 (p. 2-128)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.2.4 Sealing Criteria, Concepts, and Designs: (a) defining a panel sealing system that will be effective as a barrier under the EPA Standard; (b) establishing quantitative parameters for the sealing system for use in performance assessment; (c) establishing engineering criteria and concepts for more detailed panel seal designs.

Relevant Activities:
Lab: S.2.1.1 (p. 2-120), S.2.1.2 (p. 2-121), S.2.1.3 (p. 2-122)
Modeling: S.2.2.2 (p. 2-124), S.3.2.6 (p. 2-149)
In Situ: S.2.3.1 (p. 2-125), S.2.3.2 (p. 2-128), S.3.3.4 (p. 2-153), S.3.3.5 (p. 2-154)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

Summary of Panel Seal Data Base

The long-term strategy for sealing panels includes use of reconsolidated, crushed salt at the panel entryways. This reconsolidated salt will eventually
form a seal that approaches the density, permeability, strength, and other mechanical properties of the intact salt.

The present data base for panel seal behavior is summarized below (Stormont, 1988a; Tyler et al., 1988).

- A reference panel sealing concept appears adequate to ensure long-term waste isolation. Decisions on usable approaches to sealing in the marker beds have yet to be made.

- The principal long-term sealing strategy involves reconsolidation of crushed salt. Studies regarding crushed salt behavior have resulted in a numerically implemented, constitutive equation for salt reconsolidation, and emplacement techniques have been verified by in situ tests.

- Laboratory and in situ data indicate that bentonite-based seals will be viable until the crushed salt component of the seal has completely reconsolidated.

- Reference cementitious mixtures have been developed and emplaced in situ. A structural model for the cementitious seal/rock system based on the in situ data will be further evaluated.

- Characterization of the disturbed rock zone, principally by gas flow tests, has guided panel seal concepts.

- A series of intermediate-scale, in situ sealing tests has yielded high quality thermal, structural, and fluid-flow data for candidate sealing materials in various configurations. Data and preliminary analysis reports have been completed and others will be prepared.

- Initial analyses of sealing systems, incorporating structural and fluid-flow response of the sealing material and the host rock, suggest the current seal system design should be successful.

- The current brine inflow model, based on Darcy-like flow, satisfactorily agrees with all available brine inflow data for unheated and heated WIPP boreholes and with independent in situ measurements of near-field gas and brine flow in the WIPP host rock. Scaled-up predictions and certain mechanistic assumptions in the model concerning brine pore pressure and flow paths will be tested with data from ongoing and planned WIPP in situ tests.

Subelement 1.2.3 Access Drift Behavior and Modeling

The performance of backfill materials in the access drifts must be understood (i.e., the potential for fluid flow and resulting radionuclide transport between the waste disposal panel and shaft seals). The reconsolidation behavior of the backfill under overburden stresses due to creep closure and under environmental effects, particularly brine inflow, will be investigated.

Performance assessment requires simulating transport through or around the access drifts between the panel seals adjacent to the disposal area and the
seals at the bases of the four shafts during the transient state and after reconsolidation has reached a steady state. The computational model will include flow through the drift backfill, between the host rock and the backfill, and through the surrounding disturbed rock zone. Because these access drifts must remain open for the entire operational phase of WIPP, the history of the disturbed rock zone and its response to remedial actions to maintain the access drifts is likely to be complex. Simulating drift behavior will determine the quantities of radionuclides and brine that can be moved through or around the drift in various scenarios.

Information needs for this subelement include

1.2.3.1 Backfill: (a) defining the extent of crushed salt reconsolidation (and possible additives) as a function of the rate of drift closure; (b) understanding brine inflow to the excavations; and (c) evaluating fluid-flow characteristics of reconsolidated backfill; and incorporating backfill properties and the effects of reconsolidation, resaturation, and retardation in appropriate mathematical models and data sets.

Relevant Activities:
Lab: S.1.1.1 (p. 2-96), S.2.1.2 (p. 2-121)
Modeling: S.1.2.1 (p. 2-104), S.1.2.3 (p. 2-106), S.2.2.1 (p. 2-123)
In Situ: S.1.3.1 (p. 2-111)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.3.2 Disturbed Rock Zone: developing a mathematical model of structural response and flow and transport through the disturbed rock zone, accounting for both resaturation and retardation.

Relevant Activities:
Lab: S.3.1.3 (p. 2-139), S.3.1.5 (p. 2-141)
Modeling: S.3.2.1 (p. 2-142), S.3.2.2 (p. 2-143), S.3.2.5 (p. 2-147), S.3.2.6 (p. 2-149)
In Situ: S.3.3.9 (p. 2-158), S.3.3.12 (p. 2-161)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.3.3 Closure: (a) determining the rate at which the drift closes and the surrounding rock deforms during salt creep subjected to overburden stress and excavation geometry effects (drift response in some locations could result in superficial fracturing followed by healing due to redistribution of compressive stresses); and (b) developing a mathematical model of drift closure that accounts for geometry of the drifts, creep, disturbed rock zone formation, and structural interaction of the backfill.

Relevant Activities:
Lab: S.3.1.1 (p. 2-136), S.3.1.2 (p. 2-137), S.3.1.3 (p. 2-139), S.3.1.4 (p. 2-140)
Modeling: S.3.2.1 (p. 2-142), S.3.2.2 (p. 2-143), S.3.2.3 (p. 2-144)
In Situ: None
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)
Summary of Access Drift Data Base

Materials appropriate for backfilling excavations following waste emplacement have been investigated (Tyler et al., 1988). These studies concerned sealing (Stormont, 1988a) and disposal room backfill and structures (Nowak, 1980; Nowak, 1981; Pfeifle, 1987; Tyler et al., 1988). The results are directly applicable to backfill material emplacement in drifts during repository sealing. In summary, the investigations for behavior of emplaced backfill and for the structural response of the drift configurations have provided the following data.

- Reference constitutive models and computer codes including multi-layer and nonlinear material properties have been developed to solve two-dimensional, structural problems.

- Recent structural calculations, which used the Tresca flow rule and a simplified constitutive model, provided good agreement with in situ data (within 2 percent for vertical closures and 18 percent for horizontal closures).

- In situ tests have provided high quality data on structural interaction and fluid flow that are applicable to preliminary analyses of interactions between the drift and the backfill and of the response of backfill materials.

- Reconsolidation and sorptive properties of candidate backfill materials, particularly crushed salt and clay mixtures, are generally understood. Effectiveness of backfill additives in retarding radionuclide transport is being investigated.

Subelement 1.2.4 Shaft Seal Behavior and Modeling

The shaft sealing system must function as a barrier to migration of radionuclides up to the water-bearing strata in the Rustler Formation and to the flow of fluids down to the facility horizon for the required period. External influences on sealing system behavior include changing structural conditions (stress and creep) and chemical environments in the various geologic units of WIPP stratigraphy within which shaft seals will be placed. Characterization requires development, evaluation, and testing of shaft seal systems that perform their intended purpose and are sufficiently understood to permit long-term performance predictions.

Performance assessment requires simulating transport through or around the shafts and seals from the repository horizon to the scenario-dependent discharge horizon. This requires the ability to simulate the entire length of the shafts to the surface after a steady reconsolidation state has been attained and perhaps during the transient state, as well as under various conditions of possible seal failure. The computational model must include leakage down the shaft from overlying water-bearing units and transport up the shaft as required by various scenarios. Flow must be simulated through the shaft seals and backfill, through the surrounding disturbed rock zone, and between the host rock and the shaft components. Shaft behavior simulations
will determine the quantities of unsaturated brines from overlying water-bearing units that might enter the repository through the shafts and will also determine the quantities of radionuclides and brine that can be moved through or around the shafts in various scenarios.

Information needs for this subelement include

1.2.4.1 Backfill: (a) incorporating shaft backfill properties and the effects of reconsolidation, resaturation, and retardation, and the effects on the backfill of dissolution/precipitation from downward leakage of overlying units in appropriate mathematical models and data sets.

Relevant Activities:
- Lab: S.1.1.1 (p. 2-96), S.2.1.2 (p. 2-121)
- Modeling: S.1.2.1 (p. 2-104), S.1.2.3 (p. 2-106), S.2.2.1 (p. 2-123)
- In Situ: None
- PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.4.2 Sealing System: (a) understanding the long-term behavior of sealing materials subjected to in situ configuration and geometry effects; (b) understanding brine inflow to the excavations; (c) evaluating structural and chemical stability of seal materials emplaced in the stratigraphic units, flow restriction capability, and emplacement techniques; (d) evaluating the impact of the coupled interactions of brine inflow, closure, and crushed-salt reconsolidation process; (e) evaluating the ability of the entire shaft-seal system and the host rock to restrict fluid flow to the repository from the overlying water-bearing strata and from the repository up the shaft to the overlying strata and surface, considering the long-term physical and chemical stability of each sealing system component emplaced in the various stratigraphic units in the shaft; and (f) developing a mathematical model of flow and transport through and around the seals, accounting for retardation and for possible disintegration and/or fracture of the seals, with accompanying dissolution/precipitation from downward leakage.

Relevant Activities:
- Lab: S.2.1.1 (p. 2-120), S.2.1.2 (p. 2-121), S.2.1.3 (p. 2-122)
- Modeling: S.2.2.1 (p. 2-123), S.2.2.2 (p. 2-124)
- In Situ: S.2.3.1 (p. 2-125), S.2.3.2 (p. 2-128)
- PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.4.3 Disturbed Rock Zone and Fluid-Flow Characteristics: (a) determining the permeability, hydrologic behavior, and brine inflow properties of WIPP shaft stratigraphic units so that seal system effectiveness and host rock influence at various levels can be understood, considering effects of the disturbed rock zone on fluid-flow properties of the host rock over time; and (b) developing a mathematical model of flow and transport through the
disturbed rock zone, accounting for resaturation, retardation, and changes in brine chemistry.

Relevant Activities:
Lab: S.1.1.1 (p. 2-96), S.2.1.2 (p. 2-121), S.3.1.5 (p. 2-141)
Modeling: S.1.2.1 (p. 2-104), S.2.2.1 (p. 2-123), S.3.2.4 (p. 2-146), S.3.2.5 (p. 2-147), S.3.2.6 (p. 2-149)
In Situ: S.3.3.6 (p. 2-155), S.3.3.7 (p. 2-156), S.3.3.8 (p. 2-157), S.3.3.10 (p. 2-159), S.3.3.11 (p. 2-160), S.4.3.2 (p. 2-180)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.4.4 Closure: (a) understanding the interfaces between shaft seals and host rock and the effects that shaft closure rates and mechanisms have on the reconsolidation of compacted crushed salt used in seals and on other seal materials, considering the mechanisms required for ensuring fluid-flow restriction and displacement resistance at the interface, the reactivity of the seal components with the host rock, and the influence of the disturbed rock zone; and (b) developing a mathematical model of shaft closure that accounts for geometry, creep, and structural interaction of the seals with the surrounding rock.

Relevant Activities:
Lab: S.3.1.1 (p. 2-136), S.3.1.2 (p. 2-137), S.3.1.3 (p. 2-139), S.3.1.4 (p. 2-140)
Modeling: S.2.2.2 (p. 2-124), S.3.2.1 (p. 2-142), S.3.2.2 (p. 2-143), S.3.2.3 (p. 2-144), S.3.2.6 (p. 2-149)
In Situ: S.2.3.1 (p. 2-125), S.3.3.1 (p. 2-150), S.3.3.2 (p. 2-151)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.2.4.5 Sealing Criteria, Concepts, and Designs: (a) determining shaft sealing requirements for an effective engineered barrier under the EPA Standard by establishing quantitative sealing system parameters at specific depths in the shaft so that performance assessment studies, criteria, concepts, and engineering designs for shaft seals can be completed.

Relevant Activities:
Lab: None
Modeling: S.2.2.2 (p. 2-124)
In Situ: S.2.3.2 (p. 2-128), S.3.3.1 (p. 2-150), S.3.3.2 (p. 2-151), S.3.3.3 (p. 2-152), S.3.3.10 (p. 2-159)
PA: PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

Summary of Shaft Seal Data Base

The data base for evaluating sealing materials and seal designs has been derived from laboratory and in situ testing, as well as from numerical modeling.
and analysis. The laboratory work has focused on sealing materials: crushed salt blocks and quarried salt, cementitious materials, and clays (primarily bentonite). For salt, laboratory and in situ studies have been directed toward understanding reconsolidation of crushed salt and the resulting fluid-flow properties. For bentonite, the density, swelling, and fluid-flow properties have been investigated. The long-term stability and integrity of salt and bentonite, as well as cement and cement/bentonite mixtures, have been the primary focus of laboratory investigations (Tyler et al., 1988).

In summary, the present data base (Tyler et al., 1988; Stormont, 1988a) for behavior of shaft seals suggests the following.

- Reference concepts for shaft seals appear adequate to ensure long-term waste isolation, subject to further evaluation.
- The principal long-term sealing strategy depends on reconsolidation of crushed salt at the lower level of the shaft. Studies of crushed salt behavior have resulted in a numerically implemented constitutive equation for salt reconsolidation. Emplacement techniques have been proven by in situ tests.
- Laboratory and in situ test data indicate that bentonite-based seals will effectively restrict fluid flow over the short term.
- Reference cementitious mixtures have been tested in situ. A structural model for the cementitious seal/rock system based on in situ data will be further evaluated.
- Characterization of the disturbed rock zone, principally by brine and gas flow tests, has guided shaft sealing concepts.
- A series of intermediate-scale, in situ sealing tests has provided high quality thermal, structural, and fluid-flow data for candidate sealing materials in various configurations. Data and preliminary-analysis reports have been completed.
- Initial analyses of sealing systems, incorporating structural and fluid flow response of the sealing material and host rock, have been completed. Calculations of creep closure have been used to evaluate the reconsolidation of crushed salt.

Subelement 1.2.5 Transport Modeling

Appropriate computational models will be selected, adapted, and optimized for coupling with the hydrologic-flow computational models to simulate long-term transport of radionuclides through or around the repository/shaft system.

This subelement is addressed by performance assessment activity PA.5. Information needs for this subelement include

1.2.5.1 Subdomains: Identifying important subdomains for transport modeling (e.g., including Marker Bed 139 as a transport path).
1.2.5.2 **Transport Mechanisms**: identifying important transport mechanisms for the various scenarios.

1.2.5.3 **Transients**: determining whether transport models capable of simulating transient hydraulic conditions, including specialized modeling components such as a brine-pocket model, are needed based on the results of scenario screening.

1.2.5.4 **Transport Codes**: selecting computational codes for transport in the repository/shaft system.

1.2.5.5 **Optimization**: optimizing coupling between hydrologic and transport domains and optimizing transport computational efficiency.
ELEMENT 1.3 Controlled Area: Behavior Characterization and Performance Modeling

The controlled area is the second part of the two-part disposal system. Modeling ground-water flow in the accessible environment and through the controlled area will establish boundary conditions for modeling transport out of the controlled area. Modeling ground-water flow in the controlled area will establish boundary conditions for the repository/shaft system. After the repository/shaft system model determines the source term, modeling of transport in the controlled area will determine the release to the accessible environment.

For undisturbed performance (expected conditions), the performance of the controlled area must be simulated to determine whether migration of radionuclides to the accessible environment can occur, if the repository/shaft system model predicts migration into the controlled area. For scenarios which change the predicted behavior without human intrusion, the controlled area will be simulated again using the appropriate conceptual models of the disposal system. For some human-intrusion scenarios, the performance of some hydrologic units of the controlled area will be simulated.

Subelement 1.3.1 Los Medanos Regional Flow Modeling

The boundary conditions and flow and transport properties within geologic units of interest in the accessible environment must be defined well enough to reliably model conditions and radionuclide releases at the outer boundary of the controlled area over a 10,000-year time period under undisturbed conditions and to model changes in flow and transport for disturbed conditions. The existing conceptual models and data bases characterizing the hydrologic flow must be extended to a three-dimensional computational model that will adequately simulate undisturbed and disturbed, long-term flow over a sufficiently large area to minimize boundary condition effects on flow in the controlled area.

The recent completion and comparison of isotopic, geochemical, and hydrologic studies (see Siegel et al., 1988) indicate that the hydrologic and geochemical setting of the Rustler Formation and shallow units at the WIPP site has changed significantly over approximately 10,000 years, the time period of regulatory interest. Both flow direction within the Rustler Formation and the state of saturation within the Dewey Lake Red Beds appear to have changed during this time in response to the cessation of surficial recharge at and near the WIPP site at least 10,000 years ago.

Figure 2-1 shows the relationship of the regional Los Medanos model domain to the local domain; the controlled area lies within the local domain. The model domain for the Los Medanos model will include about eight stratigraphic layers. The lateral boundaries will be determined by sensitivity studies. The layers in the present model are, from the surface downward, the Dockum Group, the Dewey Lake Red Beds, five members of the Rustler Formation (Forty-niner, Magenta, Tamarisk, Culebra, and unnamed), and the Salado Formation. This model domain extends laterally to natural boundaries, or far enough out to avoid boundary-condition effects on the simulation of flow in the controlled area.

Revision 0, April 1990

2-54
The Los Medanos three-dimensional model will be completed and used to develop initial computational fields and to establish computational meshes for analyses of the scenarios retained for the consequence analysis.

Information needs for this subelement include

1.3.1.1 **Culebra-Magenta**: incorporating the Culebra-Magenta hydrologic connection into the Los Medanos model.

Relevant Activities:
- Lab: None
- Modeling: None
- In Situ: None
- PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.1.2 **Dewey Lake Red Beds**: incorporating Dewey Lake Red Bed hydrologic parameters into the Los Medanos Model.

Relevant Activities:
- Lab: None
- Modeling: None
- In Situ: None
- PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.1.3 **Culebra**: incorporating fracture flow within the Culebra Dolomite into the Los Medanos Model, if transport calculations show that this phenomenon is important.

Relevant Activities:
- Lab: None
- Modeling: None
- In Situ: None
- PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.1.4 **Fluid Density**: incorporating updated fluid density data in the area south of the controlled area into the Los Medanos Model.

Relevant Activities:
- Lab: None
- Modeling: None
- In Situ: None
- PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85), PA.11 (p. 2-89)

1.3.1.5 **Regional Boundary Conditions**: incorporating additional hydrologic data for Clayton Basin, eastern boundary of the Los Medanos model, and southwest boundary of the model at Balmorrhea-Loving Trough into the Los Medanos model, if initial 10,000-year simulation shows that boundary conditions affect the results.
Relevant Activities:
Lab: None
Modeling: None
In Situ: None
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.1.6 Recharge: (a) estimating temperature and precipitation in southeastern New Mexico over approximately the past 10,000 years (paleoclimate); estimating the effects of variations in temperature and precipitation on surficial recharge at and near the WIPP site and on the hydrologic settings and behavior of the Rustler Formation and Dewey Lake Red Beds over the past 10,000 years; (b) determining whether reasonably estimated changes in climate and hydrologic setting can have significant impact on groundwater travel times and transport behavior; and (c) incorporating potential recharge rates and changes into the Los Medanos model.

Relevant Activities:
Lab: S.4.1.4 (p. 2-171)
Modeling: S.4.2.1 (p. 2-173), S.4.2.3 (p. 2-177)
In Situ: S.4.3.9 (p. 2-187), S.4.3.10 (p. 2-188), S.4.3.11 (p. 2-189)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.1.7 Extent of Dissolution: (a) estimating the possible extent of evaporite dissolution within the Rustler Formation over the next 10,000 years, and the possible effects of this dissolution on flow directions and rates within the Rustler; and (b) incorporating potential changes in the Los Medanos model.

Relevant Activities:
Lab: None
Modeling: S.4.2.3 (p. 2-177)
In Situ: S.4.3.9 (p. 2-187), S.4.3.10 (p. 2-188), S.4.3.11 (p. 2-189)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

Summary of Boundary Condition Data Base

Investigations applicable to establishing boundary conditions have provided the following data:

- Recent isotopic and geochemical studies are inconsistent with the assumption of steady-state boundary conditions, and the hydrology and geochemistry of the Rustler Formation appear to be still in transient response to a cessation of recharge occurring 12,000 to 16,000 years ago.
Limited uranium-disequilibrium studies indicate that ground-water flow directions within the two Rustler dolomite water-bearing units have changed since the end of the last recharge episode.

The isotopic character of the Rustler Formation is distinct from that of modern meteoric precipitation in the area.

The limited radiocarbon data base supports the interpretation of no modern vertical recharge to the Culebra.

Analyses from the Dewey Lake Red Beds indicate that some of the water in this unit may be "modern."

In general, the stable isotope data base for the Rustler Formation is probably adequate.

Two tests show that the Dewey Lake Red Beds are so impermeable that neither the state of saturation nor the permeability can be determined.

There appears to be limited vertical fluid flow from the Rustler upward into the Dewey Lake Red Beds.

A major involvement of surficial materials is indicated in crystallization of secondary gypsum veins within the Dewey Lake Red Beds. Secondary gypsum veins within the Rustler could not have crystallized in equilibrium with modern meteoric recharge in the area.

Subelement 1.3.2 Controlled Area Flow Modeling

The Salado Formation contains the underground workings of the WIPP facility, except for the four WIPP shafts, which penetrate overlying formations and the Salado Formation. Many of the subelements concerning the repository/shaft system, outlined in Element 1.2, include both the disturbed rock zone around the WIPP facility and the interaction of emplaced waste, backfill, and seals with the disturbed rock zone. However, the mechanical and hydrological behavior of the repository/shaft system is strongly influenced by the behavior of the geologic systems outside the disturbed rock zone.

The initial performance assessment site characterization results for non-Salado units will be used to assemble the Los Medanos three-dimensional model and the composite model of the controlled area to determine flow conditions for undisturbed performance. This approach assumes that the modern hydrologic settings and properties in the surrounding geology are not disturbed, except by the emplacement of shafts through the Rustler and overlying units. However, the undisturbed scenario requires evaluation of flow up and down the WIPP shafts and of transport up the shafts and through the Rustler Formation and Dewey Lake Red Beds to the accessible environment.

One human-intrusion scenario for the WIPP facility involves an incompletely plugged borehole interconnecting the Rustler/Dewey Lake Red Beds, the WIPP facility, and a brine occurrence within the Castile Formation. Brine occurrences are brines pressurized to near-lithostatic pressure and localized within fractured portions of the uppermost Castile Formation anhydrites. The high
pressures associated with these brine occurrences have the potential to hydrofracture competent, unfractured rocks when in communication with the above geologic units, or to expand and extend preexisting fractures. Conventional practice in drilling, following penetration of a pressurized Castile brine occurrence, would include plugging, casing, and/or grouting, but the long-term effectiveness of these procedures remains to be demonstrated. Therefore, an understanding of the important flow and transport mechanisms within the Rustler and Dewey Lake Red Beds between an incompletely plugged hole and the accessible environment must be evaluated.

A second human-intrusion scenario involves borehole interconnection of the Bell Canyon Formation (underlying the Castile Formation), the WIPP facility, and the Rustler Formation; in this scenario, Castile brines are not included. In the WIPP Final Environmental Impact Statement (DOE, 1980) it was assumed that the result of such interconnection would be flow and transport upward into the Rustler Formation. More recent studies (Beauheim et al., 1983; Beauheim, 1986) indicate that fluid flow and transport resulting from interconnection of the Bell Canyon would be downward into the Bell Canyon.

The model domain for controlled area modeling will be 15 mi by 15.5 mi (24 km by 25 km). It will extend laterally beyond the boundary of the controlled area so that flow across the boundary into the accessible environment can be simulated without artificial boundary condition effects. The vertical domain may include the same layers as the Los Medanos model.

Information needs for this subelement include

1.3.2.1 Salado Formation: (a) determining and documenting permeabilities, long-term fluid pressures, brine contents, and degree of hydraulic saturation in Salado Formation halites, anhydrites, and clays in the far field; (b) determining whether the Salado Formation behaves as a continuous hydrologic system in the far field on the time scales of regulatory interest; (c) determining far-field deformation rates and mechanisms within the Salado Formation, and the mechanical interaction in the far field between the Salado and overlying units; and (d) developing a mathematical model of Salado Formation zone of influence around the repository and shafts.

Relevant Activities:
Lab: None
Modeling: S.3.2.2 (p. 2-143), S.3.2.3 (p. 2-144), S.3.2.4 (p. 2-146), S.3.2.5 (p. 2-147), S.3.2.6 (p. 2-149)
In Situ: S.3.3.6 (p. 2-155), S.3.3.7 (p. 2-156), S.3.3.11 (p. 2-160), S.3.3.9 (p. 2-158), S.3.3.10 (p. 2-159), S.3.3.11 (p. 2-160), S.3.3.12 (p. 2-161), S.3.3.13 (p. 2-162)
PA: PA.3 (p. 2-73), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.2 Culebra Dolomite Member: (a) determining the final, regional distribution of heads, transmissivities, and storativities in
the Culebra Dolomite Member, including evaluation of the uncertainties in both measurement and distribution of these variables; (b) determining the distribution of fracturing within the controlled area and determination of the effects of fracturing on ground-water flow under undisturbed conditions; (c) determining flow directions and rates under undisturbed conditions within the controlled area, including both flow under "preshaft" conditions and an estimate of how long it will take flow conditions at the WIPP site to recover from the effects of shaft sinking and hydraulic testing; (d) determining fluid geochemistry and behavior of radionuclides in Culebra fluids and in mixtures of Culebra and repository fluids, including organic complexing agents; (e) determining the effects of fracturing, matrix diffusion, and sorption/precipitation on radionuclide transport in the Culebra under undisturbed conditions; and (f) refining the Culebra model.

Relevant Activities:

Lab: S.4.1.1 (p. 2-168), S.4.1.2 (p. 2-169), S.4.1.3 (p. 2-170), S.4.1.4 (p. 2-171), S.4.1.5 (p. 2-172)
Modeling: S.4.2.1 (p. 2-173), S.4.2.2 (p. 2-175), S.4.2.3 (p. 2-177), S.4.2.4 (p. 2-178)
In Situ: S.4.3.1 (p. 2-179), S.4.3.2 (p. 2-180), S.4.3.3 (p. 2-181), S.4.3.4 (p. 2-182), S.4.3.5 (p. 2-183), S.4.3.8 (p. 2-186), S.4.3.9 (p. 2-187), S.4.3.10 (p. 2-188), S.4.3.11 (p. 2-189)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.3 Rustler/Salado Formation: (a) determining the time scales required for significant hydrologic interaction between the Salado Formation and overlying (and underlying) formations; and (b) extending Rustler Formation computational meshes to simulate the Salado/Rustler connection for screening scenarios.

Relevant Activities:

Lab: None
Modeling: S.3.2.5 (p. 2-147), S.4.2.1 (p. 2-173), S.4.2.3 (p. 2-177)
In Situ: S.3.3.9 (p. 2-158), S.3.3.10 (p. 2-159), S.4.3.5 (p. 2-183), S.4.3.6 (p. 2-184), S.4.3.7 (p. 2-185)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.4 Rustler Formation: (a) estimating the regional distribution of relative permeabilities and head potentials among the several members within the Rustler Formation and between the Rustler Formation and saturated portions of the Dewey Lake Red Beds; and (b) selecting codes and developing computational meshes for scenarios requiring Rustler Formation hydrology.
Relevant Activities:
Lab: None
Modeling: S.4.2.1 (p. 2-173), S.4.2.3 (p. 2-177)
In Situ: S.3.3.10 (p. 2-159), S.4.3.2 (p. 2-180), S.4.3.3 (p. 2-181), S.4.3.5 (p. 2-183)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.5 Dewey Lake Red Beds: (a) determining the regional distribution of hydraulic saturation within the Dewey Lake Red Beds; and (b) extending Rustler Formation computational meshes for scenarios including Dewey Lake Red Bed hydrology.

Relevant Activities:
Lab: None
Modeling: S.4.2.3 (p. 2-177)
In Situ: S.4.3.7 (p. 2-185), S.4.3.8 (p. 2-186)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.6 Rustler/Dewey Lake Red Beds: determining the bounding directions and magnitudes of modern vertical fluid flow within the Rustler Formation and between the Rustler Formation and Dewey Lake Red Beds.

Relevant Activities:
Lab: None
Modeling: S.3.2.5 (p. 2-147), S.4.2.1 (p. 2-173), S.4.2.3 (p. 2-177)
In Situ: S.3.3.10 (p. 2-159), S.4.3.2 (p. 2-180), S.4.3.3 (p. 2-181), S.4.3.5 (p. 2-183), S.4.3.7 (p. 2-185)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.7 Castile Formation Brines: (a) estimating the distribution and time dependent fluid pressures and flow rates of Castile Formation pressurized brine occurrences at and near the WIPP site; and (b) estimating the timing and efficiency of borehole plugging.

Relevant Activities:
Lab: None
Modeling: S.4.2.2 (p. 2-175), S.4.2.4 (p. 2-178)
In Situ: None
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.8 Pressurized Brine Hydrofracturing and Transport: (a) evaluating the hydrologic behavior (including response of preexisting fractures) and the effects on radionuclide transport of changes in fracture properties within the Culebra Dolomite Member and the Dewey Lake Red Beds in response to injection of Castile Formation...
brine, between the point of brine injection and the point that fluid-pressure heads and flow rates approximate those under undisturbed conditions, perhaps extending into the accessible environment; (b) evaluating the possibility of hydrofracturing within the Salado Formation as a consequence of Castile brine injection; and (c) incorporating the effects of brine injection in models for the Castile scenarios.

Relevant Activities:

Lab: None
Modeling: S.4.2.2 (p. 2-175), S.4.2.3 (p. 2-177), S.4.2.4 (p. 2-178)
In Situ: S.4.3.7 (p. 2-185), S.4.3.8 (p. 2-186)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.9 Bell Canyon Flow and Geochemistry: (a) evaluating possible flow directions and rates between the Rustler and Bell Canyon Formations and within the Bell Canyon; (b) evaluating the available Bell Canyon Formation geochemical, hydrologic, and nuclide-transport data bases and augmenting the data bases as required; and (c) extending Rustler Formation computational meshes to simulate the Rustler/Bell Canyon connection for screening scenarios.

Relevant Activities:

Lab: None
Modeling: S.4.2.3 (p. 2-177)
In Situ: S.4.3.6 (p. 2-184)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.10 Optimization: performing vertical and lateral resolution studies to optimize meshes for computational efficiency.

Relevant Activities:

Lab: None
Modeling: None
In Situ: None
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.2.11 Composite Domain: linking the Los Medanos and local three-dimensional computational models on a composite domain for computational efficiency.

Relevant Activities:

Lab: None
Modeling: None
In Situ: None
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)
Summary of Controlled Area Data Base

The current understanding of the controlled area is summarized as follows:

- Current values for the far-field permeability of the Salado Formation are in the range of 10^{-8} darcy, and it is not known if the Salado Formation behaves as a continuous hydrologic system in the far field.

- Recent modeling studies of Rustler/Culebra hydrology indicate a general southerly flow direction under modern undisturbed conditions.

- Culebra fluids are highly variable in composition and concentration of dissolved solids, ranging from relatively fresh water to brines half saturated with halite.

- The hydrologic and geochemical setting of the Rustler Formation at and near the WIPP facility is not at steady state and is responding to the cessation of recharge occurring 12,000 to 16,000 years ago.

- The Culebra transmissivity and head data bases will be adequate for performance assessment, and the Culebra storativity data bases should be adequate for performance assessment modeling.

- Transmissivity of claystones/siltstones in the Forty-niner, Tamarisk, and the unnamed lower members of the Rustler Formation are in the range of 2.4×10^{-10} to 7.6×10^{-9} meters2/second. The transmissivity of the anhydrites of the Rustler are too low to measure successfully in the field.

- Vertical fluid flow between the Magenta and the overlying Forty-niner Member of the Rustler Formation is upward. In areas where the Dewey Lake Red Beds are unsaturated or too tight to measure, no potential exists for downward flow from the surface to Rustler carbonates.

- There appears to be potential for limited upward flow into the Culebra Dolomite Member from the unnamed lower member, the Rustler/Salado contact zone, and at least a portion of the Salado Formation.

- Although important on the hydropad scale, the effects of fracturing are not significant to regional ground-water flow and performance assessment modeling for undisturbed conditions. Matrix diffusion plays a strong role in contaminant transport within the Culebra under these same conditions.

- The Dewey Lake Red Beds in the vicinity of the WIPP site appear to be hydrologically unsaturated. A limited number of private wells south of the WIPP site appear to produce water from "perched" zones within the unit.
The Castile Formation contains highly pressurized brines both north and south of the WIPP site. Geophysical studies indicate that similar brines may be present beneath a portion of the WIPP waste-emplacement panels.

At WIPP-12, fluid pressures at the surface, resulting from pressurized Castile brines, were approximately 200 psi, sufficient to drive saturated brine to the surface and have the potential to alter head gradients and flow directions/rates within the Culebra, at least temporarily, under a breach scenario.

Fluid flow following an interconnection of the Bell Canyon and Rustler Formations would be downward, into the Bell Canyon.

Subelement 1.3.3 Hydrologic Transport Modeling

Appropriate computational models will be selected, adapted, and optimized for coupling with the hydrologic-flow computational models to simulate transport of radionuclides through the controlled area to the accessible environment.

Subelement 1.3.3 is addressed by performance assessment activities PA.3, PA.4, PA.5, PA.7, and PA.9. Information needs for this subelement include

1.3.3.1 Subdomains: identifying important subdomains for transport modeling.

1.3.3.2 Transport Mechanisms: identifying important transport mechanisms in the various hydrologic units identified in 1.3.4.1 for various scenarios.

1.3.3.3 Transients: determining whether transport models capable of simulating transient hydraulic conditions, including specialized modeling components such as a model for pressurized brine, are needed based on the results of scenario screening.

1.3.3.4 Transport Codes: selecting computational codes for transport in the controlled area.

1.3.3.5 Optimization: optimizing coupling between hydrologic and transport domains and optimizing transport computational efficiency.

Subelement 1.3.4 Borehole Plug Behavior and Modeling

This subelement concerns the behavior and long-term performance of plugs that would be emplaced in drilled boreholes within the controlled area during facility closure. It also concerns the potential for communication between boreholes and the repository and the flow rate of fluids that could transport radionuclides from the controlled area into the accessible environment, especially flow to the surface resulting from human intrusion into a Castile Formation pressurized brine occurrence.
Information needs for this subelement include

1.3.4.1 Borehole Plugging Material Behavior: determining how effective cement- or mineral-based grouts will be in restricting fluid flow and maintaining the grout's stability and properties in the various host rocks over the required time period. Host rocks considered must include the Castile Formation anhydrites and both carbonate and noncarbonate units within the Rustler Formation.

Relevant Activities:
Lab: S.2.1.1 (p. 2-120), S.2.1.3 (p. 2-122)
Modeling: S.2.2.2 (p. 2-124)
In Situ: S.2.3.1 (p. 2-125), S.2.3.3 (2-129)
PA: PA.3 (p. 2-73), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.4.2 Borehole Plug Interactions: understanding the interaction between the plugging material and the host rock, including both salt and nonsalt units. The materials interactions will be examined to determine whether the borehole casing can be left in place while the plug is being installed.

Relevant Activities:
Lab: None
Modeling: S.2.2.2 (p. 2-124)
In Situ: S.2.3.1 (p. 2-125), S.2.3.3 (p. 2-129), S.3.3.1 (p. 2-150), S.3.3.2 (p. 2-151), S.3.3.3 (p. 2-152), S.3.3.10 (p. 2-159)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

1.3.4.3 Borehole Plugging Criteria, Concepts, and Designs: determining the requirements for borehole plugs, emplacement techniques, and plug performance as engineered barriers under the EPA Standard. Quantitative parameters for the plugging system for specific stratigraphic units will be established so that performance assessment can be completed and criteria, concepts, and engineering designs for borehole plugs can be developed.

Relevant Activities:
Lab: None
Modeling: S.2.2.2 (p. 2-124), S.3.2.5 (p. 2-147)
In Situ: S.2.3.1 (p. 2-125), S.2.3.3 (p. 2-129)
PA: PA.3 (p. 2-73), PA.4 (p. 2-75), PA.5 (p. 2-77), PA.7 (p. 2-80), PA.9 (p. 2-85)

Summary of Borehole Plug Data Base

Some of the characteristics of shaft and panel sealing materials are applicable to borehole plugging requirements. Previous assessments of borehole plugging requirements indicated that existing, open boreholes in the vicinity of the WIPP facility pose a negligible threat to the public (INTERA, 1981; Christensen
et al., 1981; Stormont, 1984). Existing boreholes do not penetrate the WIPP underground workings; salt between the boreholes and the repository must be dissolved or hydrofractured by high fluid pressures before connection to the repository can occur. As a result, long-term performance of plugs is not required in the Salado Formation and a cementitious mixture can therefore be used as the principal plugging material in the short-term. The Bell Canyon testing program provides a data base for evaluating the performance of borehole plugging materials and the techniques for emplacement (Christensen and Peterson, 1981). Summary evaluations of borehole plugging materials, strategy, and concepts are contained in more recent documents (Stormont, 1988a; Tyler et al., 1988). However, additional studies are needed to develop adequate plugs for boreholes drilled in the Rustler Formation. These plugs must restrict fluid flow and radionuclide transport from the Culebra Dolomite Member to the surface in the event of human intrusion into a pressurized brine occurrence.
Consequence analysis of the complex WIPP disposal system, including evaluation of uncertainties for all significant scenarios, will entail up to 1,000 simulations, assuming 100 Monte Carlo simulations per scenario for 10 scenarios. Each simulation should be reproducible and available for examination. Distributions will be developed for each scenario, and for the 10,000-year performance, the distributions must be combined probabilistically. The many different, complex computational models will be linked and/or coupled and executed for each simulation. The system must be automated to complete the performance assessment in a reasonable time period. The analyst should be able to set up new calculations quickly. The data flow through the system should be reliable and not specific to the particular computational models, because different scenarios may require different models. A significant procedural element in performance assessment of geologic repositories is reducing the computational problem to manageable dimensions.

The data base is an integral part of the compliance assessment system. The data selected for the performance assessment must be of high quality. The primary data should be reduced, analyzed, and carefully quality controlled, and should involve minimal subjective interpretation. The primary data base must contain all data necessary for the compliance assessment. The secondary data base must be constructed from the primary data base by evaluating and interpreting the data to arrive at a conceptual model of the disposal system for each scenario to be simulated. Interpretation can require objective or subjective interpolation of data. Objective techniques are easily reproduced by others. However, subjective interpretation requiring extrapolation of data requires professional judgment and must be well-documented to allow reproduction by others. Selection and interpretation of the primary data for conceptual models are the starting points for simulation of significant scenarios for the consequence analysis. Activity PA.11 addresses the information needs for Element 1.4 (Computational System).

Subelement 1.4.1 Development of the Compliance Assessment System

The set of computational models assembled for the subsystems of the disposal system will be linked, coupled where necessary, and integrated into CAMCON, a modular system that automatically controls the simulation. CAMCON has been developed and initial tests are complete.

Information needs for this subelement include

1.4.1.1 Computer Codes: (a) evaluating available flow and transport codes for performance, user friendliness, running speed, quality assurance, and capabilities; and (b) calibrating or benchmarking codes selected.

1.4.1.2 Variable Mesh: (a) adding variable mesh capability to the system; (b) developing three-dimensional interpolators for domain decomposition for hydrology and/or transport codes, and if necessary, (c) rezoning transport computational subdomains.
1.4.1.3 **Vertical Resolution:** determining necessary vertical stratigraphic resolution between layers in the three-dimensional hydrologic-flow models.

1.4.1.4 **Diagnostics:** developing appropriate diagnostics for the system.

1.4.1.5 **Sampling:** adding a sampling module to the system.

1.4.1.6 **Translators:** adding input and output translators for each code, to keep the data base independent of the codes.

Subelement 1.4.2 Compliance Assessment Data Bases

The primary data provided by the characterization programs will be interpreted to develop a secondary data base that adequately describes an appropriate conceptual model of the disposal system for long-term simulation of each significant scenario.

Information needs for this subelement include:

1.4.2.1 **Primary Data Assembly:** assembling all the pertinent data from the disposal system characterization activities into the primary data base.

1.4.2.2 **Primary Data Interpretation:** objectively or subjectively interpreting the primary data to develop a secondary data base containing appropriate data sets to describe the various parameters required to simulate each of the scenarios.
ELEMENT 1.5 Consequence Analysis

Assessment of compliance with Subpart B of the Standard requires comprehensive consequence analyses. These analyses must provide quantitative predictions of the doses that could occur during the first 1,000 years and of the releases that could occur over the first 10,000 years. The numerical predictions will be based on complex computational models, analytical theories, and prevalent expert judgment. Elements 1.1 through 1.4 address the incorporation of judgment, theory, and models into the performance assessment. Element 1.5 represents the culmination of all the disposal system characterization efforts and the assessment methodology development. When the disposal system has been adequately characterized and modeled, conceptual models have been developed for the scenarios, uncertainties have been resolved to the extent possible, and the compliance assessment system is in place, two tasks will remain. These are the consequence analyses to predict the releases of radionuclides to the accessible environment resulting from both disturbed and undisturbed performance and to predict the doses that might occur from undisturbed performance.

Subelement 1.5.1 Containment Requirements

In Appendix B to the Standard, EPA describes the manner in which the quantitative comparison with the Containment Requirements should be made. "The (EPA) assumes that, whenever practicable, the (DOE) will assemble all of the results of the performance assessments to determine compliance with 191.13 into a complementary cumulative distribution function that indicates the probability of exceeding various levels of cumulative release. When the uncertainties in parameters are considered in a performance assessment, the effects of the uncertainties considered can be incorporated into a single such distribution function for each disposal system considered. The (EPA) assumes that a disposal system can be considered to be in compliance with 191.13 if this single distribution function meets the requirements of 191.13(a)." Activities PA.8 and PA.10 address the information needs for Subelement 1.5.1.

Information needs for this subelement include

1.5.1.1 Scenarios and Probabilities: all scenarios of regulatory interest and their probabilities of occurrence for disturbed performance (as defined in Subpart B) of the disposal system for the first 10,000 years after disposal.

1.5.1.2 Conceptual Models: a conceptual model of the disposal system for each scenario.

1.5.1.3 Computational Models: a set of computational models for each scenario that will simulate behavior of the disposal system in response to that scenario.

1.5.1.4 Release Simulations: simulating behavior of the disposal system and developing a distribution of releases to the accessible environment for each scenario based on the parameter uncertainty in its conceptual model.
1.5.1.5 **Complementary Cumulative Distribution Function:** combining the releases and the associated scenario probabilities into a single complementary cumulative distribution function.

Subelement 1.5.2 **Individual Protection Requirements**

In Appendix B to the Standard, EPA describes the manner in which the quantitative comparison with the Individual Protection Requirements should be made. "When the uncertainties in undisturbed performance of a disposal system are considered, the (DOE) need not require that a very large percentage of the range of estimated radiation exposures ... fall below limits established in 191.15.... The EPA assumes that compliance can be determined based upon 'best estimate predictions' (e.g., the mean or the median of the appropriate distribution, whichever is higher)." Activities PA.8 and PA.10 address the information needs for Subelement 1.5.2; Activity PA.6 also addresses information needs 1.5.2.5 and 1.5.2.6.

Information needs for this subelement include

1.5.2.1 **Scenario:** the undisturbed behavior (as defined in Subpart B) of the disposal system for the first 1,000 years after disposal.

1.5.2.2 **Conceptual Model:** a conceptual model of the disposal system for undisturbed behavior.

1.5.2.3 **Computational Model:** a set of computational models that will simulate undisturbed behavior of the disposal system.

1.5.2.4 **Release Simulations:** simulating behavior of the disposal system and developing a distribution of releases to the accessible environment based on the parameter uncertainty in the conceptual model.

1.5.2.5 **Pathway Simulations:** simulating transport of released radionuclides through soil, water, air, and biota to man.

1.5.2.6 **Doses:** making the best-estimate dose prediction for each release distribution.
2.7 ACTIVITY DESCRIPTIONS

The Preliminary Plan for Disposal-System Characterization and Long-Term Performance Evaluation of the Waste Isolation Pilot Plant (Bertram-Howery and Hunter, 1989b) mapped the contribution of all existing activities (Table 2-1 of this plan) to the performance assessment. The current scientific program described in the Preliminary Plan is made up of activities that contribute directly to the Performance Assessment required to show compliance with the EPA Standard. Activities that could not be shown to contribute directly to the performance assessment have been dropped or are being phased out. Several activities have been modified in response to EPA, NAS/NAE WIPP Panel, and EEG review. The modifications have been incorporated into the activity descriptions.

This section provides brief descriptions of the specific activities that will be performed to obtain the information needed to support the five work elements described in Section 2.6 beginning on p. 2-34. Each activity description contains (1) a discussion of the focus of the activity, (2) the methodology that will be employed, and (3) a list of the information needs or elements addressed by the activity. For each information need or element listed, a reference number is given to allow cross-referencing with Section 2.7.1.

Activities directly related to the long-term performance assessment of the disposal system are described in Section 2.7.1. These activities are identified by the letters "PA" and sequential numbers for the 11 activities.

The supporting activities that provide conceptual models, input data, and model validation for the performance assessment are described in Section 2.7.2. The laboratory, modeling, and in situ activities are further divided into disposal room and drift system activities (Section 2.7.2.1), sealing system activities (Section 2.7.2.2), Salado Formation structural and fluid-flow activities (Section 2.7.2.3), and non-Salado hydrology and nuclide migration activities (Section 2.7.2.4). The supporting activities for these four technical areas are each identified by the letter "S" followed by a three-digit reference number. The first digit corresponds to the specific activity area (i.e., S.2._._ refers to a supporting activity in the sealing system category); the second digit is a 1 if the supporting activity is a laboratory study, a 2 if the supporting activity is a modeling activity, and a 3 if it is to be performed in situ. The third digit is the sequential number of supporting activities. For example, S.2.1.3 is the third laboratory activity of the sealing system area. Some of the supporting activities will also provide data that will be useful in showing compliance with RCRA. For example, some activities will examine whether hazardous waste components will degrade sealing materials (e.g., Activity S.2.1.1); gas data from the bin-scale and alcove tests will include measurements of VOCs (Activities S.1.3.2, S.1.3.3).

More detailed activity descriptions can be found in the Preliminary Plan (Bertram-Howery and Hunter, 1989b) and in individual test plans, which have been or are being prepared as appropriate.

2.7.1 Performance Assessment Activities

The 11 performance assessment activities described in this section are related to the development of scenarios and to an assessment of compliance with 40 CFR 191, Subpart B. The supporting activities that provide conceptual models, input data, and model validation for the performance assessment activities are described in Section 2.7.2.
Activity PA.1
SCENARIOS: Screening

1. Focus

The events and processes retained to date (Hunter, 1989) will be further screened and used to prepare a set of scenarios for final probabilistic consequence analyses (Activities PA.8 and PA.10). Currently, the WIPP performance assessment program is expanding the methodology of scenario development and screening to include the additional conditions and restraints that result from a probabilistic standard, the most important of which is the clear definition of what constitutes a branch point within a flow diagram. A report explaining the evolution of the methodology and the development of a set of scenarios for initial probabilistic analyses will be published (Guzowski, 1990).

2. Methodology

To perform preliminary modeling for the screening, existing models will be adapted to the scenario being examined, and bounds on consequences will be calculated. Results of screening these scenarios on the basis of probability, consequence, physical reasonableness, and regulatory interest will help determine whether other scenarios from the retained set will be examined and possibly screened. The scenario set retained for consequence analysis will be updated annually. Finally, the significant set of scenarios for final consequence analysis will be chosen.

3. Element Addressed

Scenario Screening (1.1)
Activity PA.2
SCENARIOS: Probability Assignment

1. Focus

Consequences for each significant scenario are combined with scenario probabilities to produce a single complementary cumulative distribution function for release to the accessible environment. Calculated probabilities for events and processes which have been eliminated are included in the Hunter (1989) document. However, based on further research, it may become necessary to evaluate probabilities or to estimate probabilities for those events and processes which are retained and for as-yet unexamined events and processes.

Probabilities of occurrence of selected scenarios that survive screening on the basis of simple consequence analysis, either for further screening or for direct use in preparing a complementary cumulative distribution function, must be estimated.

2. Methodology

The procedure for estimating probabilities of occurrence for events and processes is part of scenario development and screening. During scenario development, events and processes are screened on the basis of physical reasonableness, probability, and regulatory guidance. Consequence modeling will be used to further screen the remaining scenarios. Some scenarios for which sufficient data on probability do not exist may survive screening by consequence modeling. If so, probabilities of occurrence for these scenarios probably will have to be estimated using expert opinion.

A number of procedures for estimating probabilities of occurrence are available (Hunter and Mann, 1989). Hunter (1989) has analyzed numerous events and processes of interest at WIPP and the available data to determine the applicability of each of the probabilistic techniques. More than one probability technique was applicable to some of the events and processes, but in other cases, probabilities must be assigned using expert opinion. If scenarios to which probabilities were assigned, and not calculated, survive screening on the basis of consequence, it may be appropriate to select a panel of experts to determine or estimate their probabilities of occurrence.

3. Element Addressed

Scenario Screening (1.1)
Activity PA.3
HYDROLOGIC MODELING: REGIONAL (LOS MEDANOS MODEL)

1. Focus

Modeling of regional and local ground-water flow is the basis of radionuclide-transport calculations (Activity PA.5). A number of activities provide direct and indirect support to regional and local hydrologic modeling for performance assessment.

Site characterization defines the local conceptual model and the present flow fields, synthesizes observational data into flow and material-property fields that help explain and reproduce the data, and establishes confidence in our understanding of the geology, hydrology, and geochemistry of the WIPP site. This conceptual model and present flow fields will be used as initial conditions from which simulations of the system are run far into the future (10,000 years) to perform the consequence and uncertainty analyses required by 40 CFR 191.

Past ground-water flow modeling has been concerned primarily with the Culebra Dolomite Member of the Rustler Formation in the immediate vicinity of the controlled area. An important measure of our understanding of the site is how well we can reproduce observations (e.g., pumping drawdowns) with model calculations. These calibrated model fields represent only an initial field in the 10,000-year simulation that must be carried out to assess compliance with 40 CFR 191. Over 10,000 years, processes that affect flow and transport within the accessible environment could occur at some distance vertically and laterally from the present characterized domain; therefore, the spatial extent of the modeling/observational survey domain will be enlarged to reduce uncertainty in the result.

The model domain has been enlarged laterally from 14.9 x 15.5 mi (24 x 25 km) to 21.1 x 24.8 mi (34 x 40 km) and vertically to eight layers as a first step. However, data are sparse within the larger model (called the Los Medanos model) domain in some key areas; both modeling and field surveys are needed to reduce uncertainties. Within the original domain, the vertical extent of the models and field data will be expanded beyond the Culebra Dolomite Member. A three-dimensional model of the Rustler and younger formations is necessary, because scenarios include potential hydrologic transport to (and leakage from) the Magenta Member. Some scenarios also include the Dewey Lake Red Beds. These vertical model extensions require additional field data and modeling to reduce uncertainties in calculated releases.

The Los Medanos model is a "first-step," three-dimensional, conceptual model. The present numerical code used for simulations is SWIFT II. Domain size is 21.1 x 24.8 mi (34 x 40 km) with eight vertical layers. The Culebra Dolomite Member of the Rustler Formation represents one computational layer of the model. Mesh optimization, vertical resolution studies, and coupling with transport models on appropriate subdomains will be performed before final consequence analysis.
2. Methodology

Reducing uncertainty in lateral boundary conditions is important. Data along the computational domain boundaries are sparse in key areas. To improve simulations of ground-water flow, primarily by reducing boundary uncertainties, the following studies are useful:

- Determine areal extent of Culebra-Magenta hydraulic connection.
- Determine hydrologic parameters of the Dewey Lake Red Beds.
- If transport calculations show that these parameters are important, estimate fracture frequency and orientation (vertical versus horizontal) within the Culebra Dolomite Member.
- Expand the fluid-density data base to fill in areas in field maps where data are sparse.
- If initial 10,000-year modeling shows that boundary conditions are significantly affecting the results, fill out data coverage for remaining boundary conditions (Clayton Basin, eastern boundary, and southwest boundary at Balmorhea-Loving Trough).
- Study paleoclimate.

As additional data become available, the Los Medanos model will be used to calibrate an updated numerical model and to provide fields for sensitivity analyses, benchmark simulations for code comparisons, and mesh studies. Ultimately, the Los Medanos model will simulate ground-water flow for consequence analyses.

3. Element Addressed

Controlled Area: Behavior Characterization and Performance Modeling (1.3)
Activity PA.4
HYDROLOGIC MODELING: LOCAL

1. Focus

Modeling of regional and local ground-water flow is the basis for radionuclide-transport calculations. A number of activities provide direct and indirect support to hydrologic modeling for performance assessment. A ground-water flow model of the local hydrology for use in the preliminary and final consequence analysis must be established.

Site characterization has focused primarily on the Culebra Dolomite Member within and near the controlled area. This member is now well characterized; the SWIFT II code has been calibrated (in two dimensions) on the conceptual model and data. The calibrated fields provide a benchmark against which other models and/or meshes will be tested. As previously noted, scenarios also include the Magenta Dolomite Member and Dewey Lake Red Beds.

2. Methodology

The local model will be extended in three dimensions, and the three-dimensional local model will extend through the Rustler Formation for most scenarios. Therefore, studies examining the potential for vertical fluid flow within the Rustler Formation would be useful.

The extension of the local model to three dimensions has several subtasks. One is to choose appropriate codes and develop meshes for those scenarios requiring only Rustler hydrology. A second subtask is to extend Rustler codes and meshes for those scenarios that include Dewey Lake Red Beds hydrology. A third subtask, probably needed only in the scenario-screening stage, is to extend Rustler meshes to address the Salado-Rustler connection. This last subtask also includes (1) applying existing models to the site characterization conceptual model and incoming data from Subtasks 1 and 2, (2) studying vertical and lateral resolution to optimize meshes for computational efficiency, and (3) designing scenario-dependent calculations.

Some scenarios require additional data on the local scale. These scenarios examine the Salado and Bell Canyon Formations and pressurized brine occurrences in the Castile Formation. For the Salado and Bell Canyon Formations, hydrologic properties and radionuclide retardations are needed. These data will be used primarily in scenario screening, but Salado data are also needed for the repository/shaft systems model which will be used in some final scenario-dependent release calculations. These near-field data will need to be less uncertain than the others.

Because geophysical evidence indicates the possible presence of pressurized brine occurrences beneath the repository horizon (Earth Technology, 1988), and because it is difficult to rule out the existence of such features with absolute certainty, pressurized brine occurrences are important in several human-intrusion scenarios. Data on pressurized brine occurrences include volume, pressure, chemistry, and geometry. If the brine chemistry of these
pockets is much different from brines expected to resaturate the rooms, the source term will have to be modified to include them after a borehole breach. However, it should be possible to define a standard brine for possible reservoirs based on existing data from other locations. Pressure will also be estimated from data on other pressurized brine occurrences. Sizes and volumes will be estimated from geophysical surveys.

3. Element Addressed

Controlled Area: Behavior Characterization and Performance Modeling (1.3)
1. Focus

The release and dose calculations required to assess compliance with 40 CFR 191 cannot be completed without transport models. A number of activities provide direct and indirect support to transport modeling for performance assessment.

Three types of studies relating to the transport of radionuclides through geologic formations are needed. The first identifies important transport mechanisms in the various scenarios being considered and thus guides the selection of models and codes used for the consequence analysis. This study would ensure that the models and codes selected correctly simulate the relevant physical and chemical processes. The second type of study actually selects codes. This study assesses the capabilities, benchmarking, verification, and validation of various codes. Codes selected in this manner will have the most appropriate capabilities and also will provide confidence that they meet the WIPP quality assurance standards. The third type of study optimizes the implementation of the selected codes. The study will facilitate and streamline the actual computations during consequence analysis.

2. Methodology

This effort will consist of three tasks:

a. Identify the types of models and codes needed.
 - Perform sensitivity analysis of radionuclide transport in transient ground-water flow fields to determine whether transport models with transient capability are needed.
 - Determine which transport mechanisms (porous versus fracture, equivalent porous versus dual porosity) are important in the Culebra Dolomite Member for each of the various scenarios.
 - Identify important subdomains for transport modeling.

b. Select codes.
 - Assess capabilities of potential codes and compare with code requirements for performance assessment.
 - Assess codes' benchmarking, verification, and validation.
 - Select final codes for use in WIPP performance assessment and modify, if necessary.
c. Optimize transport computations for consequence analysis.

- Optimize coupling between hydrologic (Activities PA.3 and PA.4) and transport domains.

- Optimize computational efficiency for selected transport codes.

Data needs are retardation of radionuclides, porosities, fracture geometry, dispersion coefficients, and water chemistry in all geological units through which transport might be expected, e.g., Rustler Formation, especially the Culebra Dolomite Member; Dewey Lake Red Beds; and Salado Formation. In the geologic formations and their members, data on spatial variability in material properties and brines are also needed.

3. Elements Addressed

Repository/Shaft System: Behavior Characterization and Performance Modeling (1.2)
Controlled Area: Behavior Characterization and Performance Modeling (1.3)
Activity PA.6
PATHWAYS/DOSIMETRY

1. Focus

Compliance with 40 CFR 191 on individual protection requires predictions of doses during the time period from repository closure to 1,000 years for undisturbed performance of the repository. Although releases to the accessible environment in 1,000 years are not expected, dose calculations may be necessary because (1) 40 CFR 191 has been remanded and its future is uncertain, and (2) releases to the accessible environment from undisturbed performance, while not expected, have not been ruled out.

The objective is to include pathways and dosimetry models in CAMCON (an automated system to manage the many simulations to be performed for the preliminary and final consequence analyses) and prepare corresponding data bases if dose calculations are needed for assessing compliance with individual protection regulations or for responding to possible results of the 40 CFR 191 remand.

2. Methodology

Two types of models are needed: biological pathways models and human dosimetry models. Biological pathways models are numerous and well documented. Two such models have been selected and will be adapted to WIPP scenarios and included in CAMCON. Historical data for these models are also plentiful. These data are the result of extensive biological and environmental surveys of the WIPP site and vicinity. The data will be collected in summary form for the appropriate pathways and computerized.

Human dosimetry models are also numerous and well documented. Appropriate dosimetry models have been selected for use in CAMCON. Their underlying data bases will be updated depending on radionuclide inventories.

3. Element Addressed

Consequence Analysis (1.5)
Activity PA.7
REPOSITORY/SHAFT SYSTEM MODELING

1. Focus

The behavior of the repository/shaft system must be understood sufficiently to simulate migration of radionuclides out of the repository to support Activities PA.6, PA.8, and PA.10. A large number of activities provide direct and indirect support to the modeling of the repository/shaft system using simple or complex models.

2. Methodology

An efficient, fast computational model or system of models for the simulation of repository/shaft behavior is needed. The repository/shaft system model will comprise a system of linked computational models:

a. Models of the rooms (closure, resaturation, waste containers, room chemistry, backfill, and retardation).

b. Models of the panel drifts and seals (flow and transport through seals, annular flow around seals, flow through surrounding disturbed rock zone, disintegration and/or fracturing, adjacent backfills, resaturation, closure, chemistry, and retardation).

c. Models of the drifts from panel seals to shafts (backfill, disturbed zone, resaturation, closure, brine chemistry, and retardation).

d. Models of the shafts and seals (flow and transport through and around the disturbed rock zones and seals, brine chemistry, retardation, and seal disintegration or fracture).

CAMCON will be the package for controlling this systems model during analyses performed to characterize sources in overlying formations for some scenarios.

The room model provides the source term for transport calculations. The room model will include the coupled effects of the waste containers and contents, backfill (including any chemical additives), gas generation, room closure, resaturation, retardation, and repository chemistry. Some of these components have been extensively modeled, but no attempt has been made to couple models into a complete package. To the extent possible, this coupling will be performed and tested. For performance assessment purposes, the room model will be studied and possibly simplified. The data needs, as presently conceived, are included in Table 2-2.

The model of panel drifts and seals will simulate flow and transport through and around the panels and seals, flow through the surrounding disturbed zone (accounting for resaturation), retardation in these materials (accounting for near-field brine chemistry), and possible degradation of the seals. For the adjacent backfill materials, the model should include the mixture with any chemical additives, material properties, effects on reconsolidation, resaturation, and retardation, and
Table 2-2. Models for Repository/Shaft Systems Simulation and Associated Data Needs

<table>
<thead>
<tr>
<th>Data</th>
<th>Panel Drifts/Shafts</th>
<th>Drifts from Panel Seals to Shafts</th>
<th>Shaft/Seals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repository chemistry</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inventory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentrations of radionuclides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in brine</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume of brine transferred</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migration rate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backfill:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixture</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Porosity</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Permeability</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Waste Containers and Contents:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response to closure and brine inflow</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Closure Rate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Generation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resaturation (brine inflow rate)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Disturbed Rock Zone:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity vs. distance</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Brine/gas permeabilities vs. distance</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Transport:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retardation due to backfill materials</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Retardation due to seal materials</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Retardation due to host rock</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Geometry</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Final Consolidation State</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Seals:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeability</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability (failure modes)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revision 0, April 1990 2-81
dissolution and precipitation. The data needs, as presently conceived, are included in Table 2-2.

The model of the drifts from the northernmost panel seals to shafts will simulate flow and transport from the panel seals adjacent to the storage area to the shaft repository-level seals, accounting for creep closure, geometry, backfill, repository chemistry, retardation, and the disturbed rock zone. Presently conceived data needs are similar to Table 2-2.

The model of the shaft and seals will simulate flow and transport through the shafts and their seals from the repository horizon to the scenario-dependent discharge horizon, e.g., the Culebra Dolomite Member of the Rustler Formation. The model will include flow through and around seals and backfill, flow through the disturbed rock zone, brine chemistry, retardation due to backfill, seal, and matrix materials, effects of seal disintegration and fracture, and dissolution and precipitation. Simulations will include flow down the shaft from leakage of overlying aquifers and flow with transport up the shaft required by various room pressurization scenarios. The presently conceived data needs are similar to Table 2-2.

The Salado component of the repository/shaft system model is an encompassing hydrologic model covering the larger zone of influence that drains during the resaturation period. This Salado component will be connected to the three-dimensional local model, so that potential Rustler-Salado vertical leakage will be included for scenario screening. A simplified version of the repository/shaft model will be embedded within the Salado component for scenario screening. Hydraulic properties and chemical interaction of radionuclides with rock matrix will be needed.

This system of models will interface with the larger CAMCON performance assessment system that includes geologic, hydrologic, and transport models. Many of the processes listed above are studied with various individual models. Some models are detailed, complex, finite element models for understanding processes and data, while other models are simplified for performing parameter variation studies that are useful for facility design. Therefore, some models may be more complex than needed for performance assessment and may be simplified, while others need to be enhanced to be adequate for the performance assessment application. These models will be adapted to performance assessment and included in a systems model of the repository and shafts.

3. Elements Addressed

Repository/Shaft System: Behavior Characterization and Performance Modeling (1.2)
Controlled Area: Behavior Characterization and Performance Modeling (1.3)
Activity PA.8
PRELIMINARY CONSEQUENCE ANALYSIS

1. Focus

Preliminary consequence modeling will allow the WIPP Project to assess the availability of data, techniques, and codes necessary to produce the release and dose calculations required to demonstrate compliance with 40 CFR 191 (Activities PA.6 and PA.10).

Preliminary consequence analysis is the process of setting up the calculation sequence, using CAMCON for each significant scenario. Preliminary release calculations are combined with probabilities to produce complementary cumulative distribution functions that scope the extent of the problem in the compliance-assessment step.

2. Methodology

All scenarios retained after screening (Activity PA.1) will be examined by the preliminary consequence analysis. However, the process of setting up the calculation sequence for each scenario is complex and time consuming, so scenarios may be grouped by commonality of modeling approach. For example, scenarios that can be analyzed by the same mesh would appear in the same group.

The preliminary groupings are the undisturbed scenario, the climate-hydrology-repository-shaft scenario group, and the human-intrusion scenario group. Early calculations will be repeated when revised models and additional data are obtained.

Conceptual models must be defined for each group. In developing these models, several items must be addressed:

- Sampling techniques will be compared to assure credibility and determine whether Latin hypercube sampling is the optimum sampling technique for these scenarios.
- Because each scenario is a sequence of events and processes, the order and time of occurrence of the event may be important to the calculated releases.
- Care must be taken to choose parameters that are sensitive, with ranges and distributions sufficiently known that the results will be realistic. These decisions will be based on sensitivity analyses.
- It is possible that analysis of some scenarios will require specialized modeling components. For example, the examination of human intrusion may require a model of pressurized brine occurrences.

After scenarios are grouped, codes selected, meshes defined, calibrated initial fields developed, and the input parameter space to be sampled
identified, the preliminary consequence analysis calculations can be made. Preliminary complementary cumulative distribution functions will be produced so that potential problems can be identified during this stage of the work. The complementary cumulative distribution functions calculated during this preliminary work will be incomplete, because each will represent only one or a few scenarios. Some data will not yet be available but important sensitivity analyses for designing scenario-dependent computational strategies will continue. Therefore, the complementary cumulative distribution functions will be used only for scoping purposes. Dose calculations will also be made. Biological pathways and human dosimetry models are being included in CAMCON.

This activity will identify any deficiencies in the WIPP performance assessment methodology and correct or supplement the methodology as necessary before final consequence analysis begins.

3. Element Addressed

Consequence Analysis (1.5)
Sensitivity analyses will be performed on the scenarios and on various parts of scenarios, on component subsystems, and on systems during the preliminary consequence analysis (Activity PA.8) to determine where additional data are needed and where computer code efficiency can be improved or where sufficient data have been acquired. Four reports will be published by mid-FY90 that include sensitivity analyses. First, the sensitivity analyses performed during the history of the WIPP Project will be compiled into a review report which will indicate present status and how these results relate to the performance assessment system. Second, the Methodology Demonstration report (Marietta et al., 1989) includes simple sensitivity analysis results. Third, sensitivity analyses related to assessing the importance of uncertain boundary conditions, recharge, vertical connection, and climate variability for scenario screening will be reported. Fourth, sensitivity studies will also focus on critical parameters such as radionuclide solubilities and permeabilities and porosities in the room, seals, MB139, and zones of the Culebra, and radionuclide retardations (Rechard et al., 1990). Room parameter variability will cover some proposed engineering modifications.

2. Methodology

Unlike uncertainty analysis, sensitivity analysis is not an explicit requirement of the Standard, but is a technique to understand and gain insight into the system. Hence, its primary usefulness is in the early phases of an assessment. An analyst may perform sensitivity analysis on individual module components or the system as a whole. Sensitivity analysis of an individual module allows an analyst to more fully understand the physical processes it represents. Sensitivity analysis of the whole system gives an analyst insight into the relative importance of modules and physical processes they represent and into the whole system in determining the performance measure. Sensitivity analysis identifies important parameters by quantitatively determining variation in model output that results from a specified variation in a submodel or model input parameter. Both the submodels and the master systems model, which links the submodels, will be examined to identify important parameters, whose range and distribution need to be known precisely, and unimportant parameters, which do not affect the results and need not be known with great precision.

Sensitivity analysis of the submodels will be completed within the experimental programs. Sensitivity analyses of the whole system will be completed within Activity PA.9 and will show which of the submodels are important.

Sensitivity analyses performed during the preliminary consequence analysis (Activity PA.8) will identify means of correcting deficiencies in the methodology or in the disposal system itself before the final consequence analysis.
There are three primary areas of sensitivity analysis:

a. Comparison of Sensitivity Analysis Methods for Computer Codes: Sensitivity analyses of computer codes can be performed using a response-surface methodology based on input determined from fractional factorial design, Latin hypercube sampling with and without regression analysis, differential analysis, adjoint and Green's function techniques, and the Fourier amplitude sensitivity test. The choice of approach will be based on the ease of implementation, flexibility, estimation of the cumulative distribution function of the output, and adaptability. For such a complex system of computer codes to be used in the WIPP performance assessment, a variety of techniques will probably have to be used. Care will be used to assure that the complexity of the sensitivity-analysis technique is appropriate where implemented.

b. Sensitivity Analysis of Geohydrologic System and Transport: The geohydrologic transport component of the performance assessment system can be separated from the repository/shaft part of the system. The geohydrologic component has defined the initial fields so that, given a source, the combined geohydrologic transport component can calculate the performance measure.

Sensitivity analysis of this component will

- Assess computational, physical, and chemical parameter sensitivities,
- Assess effects on the flow field and transport of brine density variations, pumping, injection, recharge, material and hydrologic data gaps, and boundary conditions, and
- Identify important processes and data for the analysis of the various scenarios.

c. Sensitivity Analysis - Repository/Shaft System: The repository/ shaft component of the performance assessment system can be run as a separate systems analysis for performance assessment. The repository/ shaft systems model will use CAMCON as a separate application. Its components will probably be room, panel and drifts, and shafts and seals models (Activity PA.7). Some calculations will require embedding parts of this system within a Salado or Salado-Rustler component.

Sensitivity analysis of this component will

- Assess computational, physical, and chemical parameter sensitivities,
- Identify important parameters for the analysis of the various scenarios, and
- When appropriate, simplify complex models used by the facility design group for use by performance assessment.
Examine the effects on the repository system of proposed engineered alternatives from Activity S.1.2.5.

The latter item is an important step in the repository/shaft model case because mechanical, resaturation, source, and transport models are complex and finely meshed compared with performance assessment needs. CAMCON will accept these codes, but simplification, primarily in meshing, would reduce running times. However, important processes within the whole system must be identified and retained and cannot be sacrificed just for the sake of simplification. This task is a methodical procedure for adapting individual complex models to performance assessment needs by assembling a repository/shaft systems model through CAMCON. The model will be interfaced with the geohydrologic transport model through the larger CAMCON performance assessment application.

3. Elements Addressed

Repository/Shaft System: Behavior Characterization and Performance Modeling (1.2)
Controlled Area: Behavior Characterization and Performance Modeling (1.3)
Activity PA.10
FINAL CONSEQUENCE ANALYSIS

1. Focus

For assessing compliance of WIPP with the Containment Requirements of 40 CFR 191, Subpart B, consequence analysis must be performed for each scenario that is determined to be significant during scenario screening. The results of the release analyses must be assembled and represented in the form of a single complementary cumulative distribution function, which will then be compared with the Standard.

2. Methodology

Final consequence analysis will examine the same scenarios and use the same codes and techniques used in the preliminary consequence analysis, with two exceptions. Any scenarios that have been shown to contribute negligibly to the complementary cumulative distribution function may be omitted from the final consequence analysis. Any codes or techniques that have shown deficiencies during the preliminary analysis will be corrected before the final analysis. In addition, the final consequence analysis will have access to additional and improved data not yet available for the preliminary consequence analysis.

This activity comprises several tasks:

a. Finalizing all data and models so they can be used in the final consequence analysis.

b. Processing all scenarios through CAMCON and analyzing the results.

c. Combining scenario consequences with probabilities to produce the final complementary cumulative distribution function, and then comparing the complementary cumulative distribution function with Section 191.13, Containment Requirements, of the Standard. In addition, if there is a release of radionuclides predicted to result from undisturbed repository performance during the first 1,000 years, doses will be calculated and compared with Section 191.15, Individual Protection Requirements, of the Standard.

3. Element Addressed

Consequence Analysis (1.5)
Activity PA.11
DEVELOP PRIMARY DATA BASE

1. Focus

Performance assessment calculations (Activities PA.6, PA.8, and PA.10) require a dedicated primary data base which must be interfaced with CAMCON. Data will continue to be collected from the experimental and design activities described in this Plan and must be integrated into the data base.

2. Methodology

The primary data base comprises those observed data selected to be used in the performance assessment. These data are analyzed and reduced. Data reduction, assembly, and interpretation is a complex task.

Primary data will be objectively or subjectively extended to regular grid information and placed into the secondary data base, where they can be directly accessed by the various model components of CAMCON. The primary data base is the foundation of a credible consequence analysis. These observed, experimental, and design data are supported by other WIPP programs through reports, scientific publications, and quality assurance. Therefore, performance assessment use of these data is critically important and must follow prescribed quality assurance procedures. To accomplish this task, a data base management system will be prepared.

3. Element Addressed

Computational System (1.4)
2.7.2 Supporting Activities: Disposal System Characterization

This section describes supporting activities either underway or proposed for implementation during the Test Phase and continuing until compliance with the EPA Standard is satisfactorily demonstrated. Scientific investigations of technical issues related to safe isolation of nuclear wastes in bedded salt have been conducted as part of the WIPP Project since 1975 (e.g., Matalucci and Hunter, 1982; Lappin, 1988; Tyler et al., 1988; and Lappin et al., 1989). These studies have resolved many technical issues and have focused attention on aspects still requiring investigation. The promulgation of the EPA Standard, 40 CFR 191, and RCRA, 40 CFR 268, has also helped to delineate areas of study that require more extensive data to assure adequate confidence in WIPP's isolation performance.

There are four major technical areas to address Elements 1.2 and 1.3:

The disposal room and drift system activities will address the interaction of TRU waste and backfill in a waste room with the surrounding rock. The combined interactions of the source term, waste containers, emplaced backfill and admixtures, brine inflow, and gas generation are studied through laboratory testing, modeling, and in situ testing. The behavior and performance of possible backfills and additives to be emplaced in access drifts as part of facility decommissioning are also being investigated.

The CH-TRU waste gas generation tests are an important part of the in situ test program at WIPP. These tests will extend laboratory data sets (which are collected on simulated waste) to CH-TRU waste and will provide real-waste data to validate model predictions of gas generation as a function of water content, waste heterogeneity, gas and water getters, backfills, etc., in the room; and transport out of the room. Planned and existing laboratory tests will bracket the times and conditions of interest for each important gas (H₂, CO₂, N₂) for 10,000 years. Bin-scale tests containing approximately six drums per bin of the appropriate CH-TRU waste, backfill materials, getters, and brine are planned to provide a real waste, synergistic test that complements the laboratory tests for those repository conditions found to be important. Finally, the alcove tests will provide data required to validate the gas generation models that will be developed from laboratory- and bin-scale tests. These models will be the basis of performance assessment models. The results will show whether predictions bracket the measured responses and thus determine, at least partially, whether the models and data sets are adequate to predict long-term behavior of the gases in the repository. Finally, although bin-scale and alcove tests will be initiated with the current design-basis waste and backfill, engineering modifications of the waste and backfill may be tested in Phase 3.

The sealing system activities involve seal design, system behavior, and overall performance evaluation. Seals will be developed for use in drifts to isolate waste panels, in access shafts to isolate the repository from the accessible environment, and in exploratory boreholes. Laboratory and in situ tests will evaluate behavior of potential seal materials such as crushed salt, salt/clay mixtures, and concretes.

Studies of structural and fluid-flow behavior of the Salado Formation should improve the capability to model fluid flow, hydrologic transport, waste room

Revision 0, April 1990 2-90
and drift response, and shaft closure. Healing of fractures in the disturbed zone outside excavations and around seals in shafts and access drifts is evaluated. Effects of brine on salt creep are examined. Laboratory and in situ tests provide data for improving models of excavation closure, fracture behavior, permeability, and fluid-flow characteristics of the Salado Formation, and brine inflow to excavated rooms. A wide range of studies addresses the behavior of penetrations through the Salado Formation, openings at the repository level, and fluid flow to and through these disturbances in the host rock.

The non-Salado hydrology and radionuclide migration activities will address transport of waste to the Rustler Formation and in the Rustler Formation under present and future conditions. Laboratory studies of sorption and retardation in the Rustler Formation are included, as well as in situ geophysical and hydrological tests from the surface.

Activities within the four major areas will be conducted during the Test Phase according to the overall assignment of priority based on data needs for seal-system design and performance assessment. Most in situ supporting activities described in this chapter are conducted in the northern part of the WIPP underground and in the Air Intake Shaft. The CH-TRU gas generation tests are to be conducted in the southern part of the underground facility and will provide full-scale confirmation of the previous laboratory and simulated-waste tests.

The discussions of the four activity areas which follow each contain (1) an activity flow diagram, (2) an activity matrix table, and (3) descriptive narratives. The activity matrix lists the activities and their applications to specific phenomena and parameters that will be examined. Each descriptive narrative describes the focus of the activity, the methodology to be used to perform the activity, and the information needs it supplies. The activities of each program area are further separated into (1) laboratory studies, (2) modeling studies, and (3) in situ tests.

2.7.2.1 Disposal Room and Drift System Activities

The disposal room and drift system activities (Table 2-3) focus on (1) interim or transient-state structural and fluid-flow behavior of waste and backfill; (2) the final state of waste entombment and how rapidly it will be achieved (in collaboration with the seal system activities described in this chapter); (3) design of the backfill for the drift system to further assure isolation of the waste; and (4) estimates of the time-dependent source term for release and migration of radionuclides and hazardous components, with and without human intrusion. The activities in this section represent final integration of various individual and often independent components of the disposal system. Integration is accomplished by systems analyses that determine how the components respond in concert (Tyler et al., 1988), leading to comprehensive models (Activity S.1.2.4) for evaluating the long-term performance of the repository system.
Table 2-3. Applications of the Disposal Room and Drift System Investigations

<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>Phenomena/Parameters Being Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disposal Room and Drift System</td>
</tr>
<tr>
<td></td>
<td>Sealing System</td>
</tr>
<tr>
<td></td>
<td>Structural and Fluid Flow Behavior, Salado</td>
</tr>
<tr>
<td></td>
<td>Hydrology and Nuclide Migration, Non-Salado</td>
</tr>
</tbody>
</table>

S.1.1 Laboratory Studies:

S.1.1.1 Backfill-Mix Creep and Permeability Behavior
- Room Closure, Brine Distribution
- Seal Permeability*

S.1.1.2 Backfill-Mix Selection Tests
- Getter Effectiveness, Backfill Performance

S.1.1.3 Drum and Box Mechanical Response
- Container Collapse, Room Closure, Waste/Backfill/Brine/Room Interactions

S.1.1.4 Repository Chemistry
- Source Term Chemistry, Gas Generation, Backfill Performance

S.1.1.5 Radionuclide Chemistry
- Source Term Chemistry, Radionuclide Solubility

S.1.2 Modeling Studies:

S.1.2.1 Backfill-Mix Consolidation Model
- Backfill Performance
- Seal Permeability*

S.1.2.2 Drum and Box Collapse Models
- Room Closure, Container Collapse

S.1.2.3 Backfill-Mix Selection Analysis
- Room Closure, Drift Seal Performance

S.1.2.4 Disposal Room Performance Model
- Room Closure

*Denotes a secondary application
Table 2-3. Applications of the Disposal Room and Drift System Investigations (Concluded)

<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>Phenomena/Parameters Being Addressed</th>
<th>Disposal Room and Drift System</th>
<th>Sealing System</th>
<th>Structural and Fluid Flow Behavior, Salado</th>
<th>Hydrology and Nuclide Migration, Non-Salado</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.1.2.5 Engineered Alternatives</td>
<td>Systems Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.1.2.6 Additional Development of EQ3/6</td>
<td>Radionuclide Solubility</td>
<td></td>
<td></td>
<td></td>
<td>Radionuclide Solubility, Radionuclide Transport*</td>
</tr>
</tbody>
</table>

S.1.3 In Situ Tests:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Waste/Room Interactions, Backfill Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.1.3.1 Simulated TRU Testing (Rooms T and J)</td>
<td>Waste/Room Interactions, Backfill Performance</td>
</tr>
<tr>
<td>S.1.3.2 Alcove Gas Generation and Depletion Tests</td>
<td>Gas Generation, Backfill Performance</td>
</tr>
<tr>
<td>S.1.3.3 Bin-Scale Gas Generation and Depletion Tests</td>
<td>Gas Generation, Getter Effectiveness</td>
</tr>
</tbody>
</table>

*Denotes a secondary application
Information from a number of activities will be used to select backfill and to model entombment of the disposal room contents. Most obvious are the rate of room closure (or possible expansion in response to gas pressurization) (Activity S.1.2.4), the compaction properties of the room contents (Activities S.1.1.1 to S.1.1.3, S.2.1.2, and S.2.1.3), and the rate of brine seepage into the room (Activities S.3.2.4, S.3.3.5, S.3.3.6, S.3.3.8 and S.3.3.9). Results from these activities will be combined to predict (1) time-dependent bounds on void volumes and fluid permeabilities of design-basis and modified waste and backfill in the rooms and drifts during compaction, (2) the rate at which the voids may become saturated or rates at which net gas generation may force gas into the surrounding rock, (3) the final permeability of the resaturated rooms, drifts, and surrounding disturbed zone (Activity S.3.2.6), and (4) the net interaction (Activity S.1.2.4) of gas, brine, and structural behavior in controlling the source term for migration of radionuclides and hazardous chemicals from the WIPP (Activity S.1.2.4). This prediction must integrate the results of laboratory (Activities S.1.1.4, S.1.1.5), bin-scale (S.1.3.3), and alcove (S.1.3.2) tests. Similar considerations in modeling seal performance can be found in Stormont and Arguello (1988).

Predictions of change in the state of waste entombment with time also depend on source-term predictions (the amount and mobility of the radioactive species and gases produced by waste decomposition). Source term activities quantify the chemical behavior of the disposal rooms (Activity S.1.1.4), predict radionuclide solubilities in concentrated brines (Activity S.1.1.5), and model radionuclide solubilities (Activity S.1.2.6). This information must be available to assess the mobility of the radionuclides under disturbed or undisturbed conditions.

The room behavior model will represent an understanding of a number of complex interactions. Data will be collected for the behavior of each component in the room and on the interactions of room closure, room backfill, drum collapse, gas generation, and brine inflow. Although all interactions and data sets may not be completely defined, sufficient data will be collected to allow expert judgment to define the models and data used in the performance assessment.

A flow diagram (Figure 2-5) illustrates how the activities in this program and information from other program areas are combined. First, laboratory tests and models of backfill consolidation are needed to select a backfill for the disposal rooms and the drift system. After a backfill is prescribed (Activity S.1.2.3), its mechanical response to closure is combined with the waste container collapse data (Activity S.1.1.3) and model (Activity S.1.2.2) to develop the disposal room performance model (Activity S.1.2.4). Best estimates of source characteristics, room closure, brine inflow, and gas formation are needed at various stages of model development. Experiments with CH-TRU waste and simulated wastes (Activities S.1.3.1, S.1.3.2, and S.1.3.3) will provide as complete in situ data as possible for partial validation of repository-system models.
Figure 2-5. Relationship Among Disposal Room and Drift System Activities
Activity S.1.1.1
BACKFILL-MIX CREEP AND PERMEABILITY BEHAVIOR

1. Focus

Additives to the crushed salt backfill, such as bentonite (Stormont, 1988a), are being considered because of their expected ability to absorb radionuclides and brine that may leak toward the seals (Nowak, 1988). However, sorption of brine is accompanied by swelling which may exert pressures on the surrounding rock, thereby retarding room closure (Pusch, 1980). Knowledge of the permeability and sorptive properties of bentonite also allows an assessment of the potential migration of soluble radionuclides and hazardous waste constituents. Additives other than bentonite should be tested to control gases produced during waste decomposition. Data on additives and their effects on seal permeability and room closure must be determined so that a suitable backfill-consolidation model can be developed (Activity S.1.2.1), and backfills and seal mixes (Activity S.1.2.3) can be selected. As used here, backfill includes such possible additives as gas getters and inhibitors. More extensive modifications are considered in Activity S.1.2.5.

2. Methodology

Laboratory tests on creep consolidation rates of a salt-bentonite backfill mixture are under way, to be followed by permeability and swelling-pressure tests. Determinations of how much brine can be absorbed by the bentonite or other additives will be performed at various moisture levels. The effects of gas getters and inhibitors on the backfill consolidation will be determined. Experiments to determine the shear strength of design-basis and modified waste/backfill mixtures will be conducted.

3. Information Needs Addressed

<table>
<thead>
<tr>
<th>Backfill (1.2.1.2)</th>
<th>Backfill (1.2.3.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposal Room Design (1.2.1.9)</td>
<td>Backfill (1.2.4.1)</td>
</tr>
<tr>
<td>Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1)</td>
<td>Disturbed Rock Zone and Fluid-Flow Characterization (1.2.4.3)</td>
</tr>
</tbody>
</table>
Activity S.1.1.2
BACKFILL-MIX SELECTION TESTS

1. Focus

Most backfill tests in the laboratory are on uniform mixes with various additives (Activity S.1.1.1). However, an assessment will be made whether emplacement of different backfill mixes at various locations within the disposal rooms could better control brine inflow, movement of soluble compounds, or evolution of gases. For example, backfill-rich bentonite could be placed next to the walls, thereby acting as a barrier to brine inflow. This activity will provide data for model development (Activity S.1.2.1) and backfill-mix selection analysis (Activity S.1.2.3).

2. Methodology

Various configurations of backfill mixes will be investigated analytically and results will be correlated with laboratory tests before a backfill design is proposed. Brine or gases will be introduced from one boundary into various configurations of tailored backfill and the effectiveness of gas getters and brine sorption will be measured. Results will be evaluated and a backfill design or geometry proposed.

3. Information Needs Addressed

Backfill (1.2.1.2)
Gas (1.2.1.6)
Activity S.1.1.3
DRUM AND BOX MECHANICAL RESPONSE

1. Focus

Laboratory studies of the extent and rate of drum and box collapse as a function of applied load are necessary to predict (1) when backstress from the collapse process will begin to retard room closure (Activity S.1.2.4), (2) the final state of collapse of the containers in the absence of internal fluid pressurization; and (3) the relative times or rates of waste/backfill compaction and elimination of the disturbed rock zone.

Predictions of the time-dependent void and brine content of disposal rooms near their terminal consolidated state, as well as estimates of the time required for achieving this state, depend upon the final state of collapse of the containers. The contents of these containers are highly variable, ranging from low-density, easily compressible, combustible materials to dense, relatively incompressible metal objects. Initial void space within containers can be as much as 75 percent of the container volume (Clements and Kudera, 1985). The state of collapse of the CH drums and boxes will be determined by stresses developed during room closure (Huerta et al., 1983; VandeKraats, 1987). Confining pressures will not exceed the lithostatic pressure (2,200 psi), which may be insufficient to produce a final state of consolidation near theoretical solid density. This activity will provide data to the drum-box collapse model (Activity S.1.2.2).

2. Methodology

In experiments on drum and box collapse, load/volume measurements will be made during crushing of individual drums containing simulated CH-TRU waste to augment results already reported. First, the stiffening of the container during collapse as lithostatic stress levels are approached will be examined. The next experiments will crush scale models of assemblages of drums and boxes to determine how mechanical interactions between adjacent containers alter their collapse. Finally, crushed containers will be surrounded by wet backfill to determine rates of brine entry into the waste.

3. Information Needs Addressed

Container Response (1.2.1.3)
Systems Interaction (1.2.1.8)
Activity S.1.1.4
LABORATORY STUDIES OF REPOSITORY CHEMISTRY

1. Focus

Activities S.1.1.4 and S.1.1.5 investigate the overall geochemical behavior of the waste-emplacement rooms. As used here, "repository chemistry" describes the overall behavior with the exception of radionuclides, and "radionuclide chemistry" investigates the behavior of the radionuclides of interest, including potential formation of complexes with soluble VOCs.

Laboratory studies provide a unique opportunity to develop a mechanistic understanding of repository chemistry because they can (1) quantify the effects of significant processes under conditions that isolate each process from the complex effects of other processes, yet are nevertheless realistic; (2) determine the effects of variations in repository conditions on these processes. The laboratory studies are discussed in detail by Brush (1990).

The repository chemistry laboratory studies have several objectives:

1. Quantify the production of hydrogen by anoxic corrosion of metals under various moisture conditions.

2. Quantify the effects of microbial degradation of the nonradioactive constituents of TRU waste on the gas and water budget of WIPP disposal rooms, the Eh and pH of any brine present, and the chemical behavior of radionuclides.

3. Determine the effects of radiolysis on the bioavailability of plastics and rubbers, and investigate the effects of waste compaction on gas generation by radiolysis.

4. Quantify the effectiveness and chemical effects of proposed backfill additives to remove gas or prevent its production.

5. If appropriate, investigate biodegradation of VOCs and material compatibility of soluble and volatile hazardous components with backfill components (e.g., bentonite) and cementitious seal components (e.g., salt-based grout).

2. Methodology

The methodology of each category of laboratory studies appears separately below.

Laboratory studies of anoxic corrosion

The objectives for these studies are to determine (1) anoxic corrosion rates for relevant iron and iron-based alloys in WIPP brines at 30°C, (2) whether anoxic corrosion of iron and iron-based alloys occurs using water vapor in equilibrium with free-standing brine and, if so, measure its rate, (3) whether anoxic corrosion of iron and iron-based alloys occurs using water absorbed by bentonite under partially saturated conditions, and
if so, measure its rate, (4) whether anoxic corrosion of other metals (e.g., aluminum) in the WIPP inventory occurs and, if so, measure rates for these metals, and (5) whether elevated hydrogen fugacities will limit or prevent further anoxic corrosion under some conditions. The studies will be conducted at Pacific Northwest Laboratory.

These experiments will be designed to enhance preliminary studies of the anoxic corrosion of 1018 mild steel in synthetic brine (Braithwaite, 1978; Braithwaite and Larson, 1978; Molecke, 1979). The preliminary studies collected gases from the headspace above the brine and used gas chromatography to confirm the production of \(\text{H}_2 \) in deaerated runs.

Laboratory studies of microbial degradation of nonradioactive simulated waste

The objectives of these studies are to (1) determine whether potentially significant microbial processes occur under overtest conditions, (2) quantify the effects of those processes that actually occur on gas and water budgets of the repository under realistic, not overtest conditions, (3) determine whether the microorganisms responsible for significant processes are likely to survive for periods sufficiently long enough to affect the long-term performance of the repository, and (4) quantify the effects of any significant microbial processes on the chemical behavior of radionuclides in the waste. The studies are being conducted at Stanford University.

Presently, batch bioassay procedures utilizing substrates more biodegradable than cellulosic materials are being used to investigate denitrification, sulfate reduction, fermentation, and methanogenesis under conditions of brine saturation. To simulate the microorganisms that may be present in WIPP waste, microflora were obtained from laboratory air, surfaces, floors, human skin, and sewage sludge. Experiments will also be inoculated with halophilic microorganisms that could be present on dust particles transported by wind from salt lakes and soils proximal to the WIPP site. Abiotic and sterilized controls are run in all experiments.

For those microbial processes that actually occur, batch bioassays will be carried out with cellulosic materials under humid as well as inundated conditions to measure realistic gas production rates. Microbial activity is monitored by analyzing for organic acids, volatile acids, and the gases \(\text{CH}_4, \text{CO}_2, \text{H}_2, \text{H}_2\text{S} \), and \(\text{N}_2 \), as appropriate. Organic acids are analyzed after separation by chromatography (Smith, 1987) and volatile acids by distillation (American Public Health Association, 1985). Gases (except \(\text{H}_2 \)) are analyzed under anoxic conditions using gas-partitioning techniques (Tong et al., 1989). Hydrogen gas is measured by the mercuric-oxide technique of Smith (1987). If measurable amounts of gas are produced or consumed by microbial processes, rates will be calculated.

Short-term (a few months) and long-term (a few years) survival experiments will be conducted to assess whether microorganisms responsible for significant processes will survive for periods long enough to affect repository performance. These experiments are carried out by storing microorganisms in \(\text{H}_2\text{O} \)-saturated air and brine without cellulosic substrate. Survival testing for short-term experiments will be done by inoculating the stored...
microorganisms into favorable aqueous media. After yearly intervals, survival of microorganisms will be determined by adding acetate, cellulosic materials, glucose or lactate. Detection of microbial activity after inoculation or addition of these materials would imply that the microorganisms are still viable.

Studies of the effects of significant microbial processes on radionuclide chemistry will be initiated only if microbial processes occur at rates high enough to affect repository performance. If this investigation is necessary, studies will be carried out at Brookhaven National Laboratory. The potential effects of radionuclide complexing by organic constituents present in the waste, even in the absence of microbial activity, will be examined by Activity S.1.1.5.

Laboratory studies of radiolysis

The objectives for the radiolysis experiments are to (1) determine whether radiolysis of plastics and rubbers significantly enhances their biodegradability, and (2) quantify the radiolytic gas production rate for compacted waste under humid and brine-saturated conditions. The studies will be carried out at Argonne National Laboratory and Stanford University.

The first objective is under investigation. At this time, a detailed test plan is being drawn up to address the second objective. The former experiments are being carried out with brine collected from the WIPP underground workings using irradiated polyethylene and polyvinyl chloride as substrate. Abiotic and unirradiated controls are used in these studies.

Laboratory studies of proposed backfill additives

Laboratory studies of the backfill additives calcium carbonate, calcium oxide, copper sulfate, potassium hydroxide, and sodium hydroxide will be carried out to determine (1) whether these compounds remove gas or prevent its production effectively under conditions in which free brine is or is not present, and (2) quantify their effects on repository chemistry. The studies will be conducted at Sandia National Laboratories.

These studies are carried out with brines from the WIPP underground workings. Prior to the addition of a backfill additive to the brine, atmospheric CO_2 is removed from the test solution and all apparatus headspace by bubbling N_2 through the solution. Solutions or solids containing the backfill additives and mild steel are added to the brine and CO_2 is bubbled through the composite solution. Manometers measure the consumption of CO_2, and probes continuously monitor the pH and temperature of the composite solution. A pipette is inserted to sample the solution at various intervals for chemical analysis. Samples are shipped to United Nuclear Corporation (Grand Junction, CO) and analyzed for pH, specific gravity, total dissolved solids, boron, calcium, potassium, magnesium, sodium, alkalinity, bromine, chlorine, sulfate, and total inorganic carbon.

3. Information Needs Addressed

Source Term (1.2.1.1)
Gas (1.2.1.6)
Activity S.1.1.5
RADIONUCLIDE CHEMISTRY

1. Focus

Predictions of the chemical behavior of radionuclides in WIPP brines are necessary to determine the source term (i.e., the quantities of the important radionuclides in the WIPP inventory that will be mobilized for possible transport to the accessible environment) and the scenario-dependent rates at which these radionuclides will be mobilized. Because most plausible release scenarios involve advective or diffusive transport of radionuclides dissolved or suspended in aqueous fluids, the radionuclide source term ideally comprises (1) the product of the equilibrium or steady-state concentrations of radionuclides in brines that could enter WIPP disposal rooms after they are filled and sealed and the volumes of these brines, and (2) the rates at which these concentrations are attained and these volumes accumulate. Laboratory studies of radionuclide chemistry are discussed further by Brush (1990).

It would be extremely difficult to predict the rates at which radionuclides dissolve or become suspended in WIPP brines, because these rates depend critically on the chemical and physical nature of the solid phases with which each radionuclide is associated. Because TRU waste is complex and difficult to characterize, it would probably be impossible to specify the nature of these phases accurately enough for meaningful kinetic studies. Furthermore, the solubilities of radionuclides in WIPP brines could well be so low that the rates at which solubility equilibria are attained would not affect repository performance even if they could be predicted. It will therefore be assumed that (1) the expected concentrations of radionuclides in brines are attained instantaneously, and (2) measured concentrations in leachate brines from bin-scale tests (Activity S.1.3.3.) represent these concentrations. In spite of this assumption, every reasonable effort will be made to verify that radionuclide concentrations are not increasing with time.

These studies of radionuclide chemistry will determine how processes such as the dissolution and precipitation of radionuclide-bearing solids, the sorption of radionuclides by solids such as bentonite or drum-corrosion products, and formation of metallo-organic ligand complexes distribute radionuclides between brines and solids in the repository, including colloidal-size particles. Transport studies will then determine the mobility of radionuclide-bearing brines and solids.

Radionuclide speciation under variable oxidation states affects the solubilities of radionuclide-bearing solids and the sorption of radionuclides by other solids such as bentonite and iron oxides. These processes in turn determine the concentrations of radionuclides in any available aqueous solutions. The most important radionuclides in TRU waste are isotopes of the actinide elements, especially plutonium, americium, thorium, and uranium. These elements can occur in two, three, or even four oxidation states under natural conditions, and the speciation, solubility, and sorption of an element can differ significantly from one oxidation state to another. These variations are difficult to study experimentally,
because it is difficult to control the Eh of natural systems, especially at the low values (highly reducing conditions) that could be established by microbial activity in WIPP disposal rooms. Actinide chemistry is also sensitive to pH, which is difficult to measure in concentrated brines and may vary widely within the repository. In fact, both the Eh and pH of the repository could vary significantly with time and over distances of several centimeters at any given time because of the heterogeneity of TRU waste. It will thus be necessary to carry out experimental and/or modeling studies of actinide chemistry under a wide range of conditions, unless engineering modifications are sufficient to dominate or buffer repository chemistry.

2. Methodology

Laboratory studies of radionuclide chemistry

The objectives of these studies are to (1) identify and, if possible, quantify the organic and inorganic ligands in TRU waste; (2) obtain stability constants and solubility products for actinide complexes and solids, respectively, in brines; and (3) quantify, if possible, the effects of microbial activity on the concentrations of organic ligands and oxidation states of multivalent actinide elements. Laboratory tests will use simulated waste.

The radionuclide studies will utilize estimates of the organic and inorganic liquids in CH TRU waste based on a detailed survey of waste generators and storage sites (Drez and James-Lipponer, 1989). Experiments to measure the stability constants of organic and inorganic complexes of americium, plutonium, thorium, and uranium (the principal actinides in CH TRU waste) are being conducted using a solvent extraction technique (Caceci and Choppin, 1983; Khalili et al., 1988). Highly saline solutions (5 to 8 M NaCl) are oxylate buffered at a pH of 6 (hydroxylamine buffer) or 8 (hydrazine buffer) and mixed with a benzene solution containing dibenzoylmethane and tributyl phosphate. By varying the concentration of oxylate in the aqueous phase and observing the distribution of americium between aqueous and organic solutions, apparent stability constants for americium(III)-oxylate and americium(OH)⁺² (americium hydroxide) have been determined (Caceci and Choppin, 1983). Similar studies will be designed to study plutonium complexing. After these techniques have been developed, plutonium, americium, thorium, and uranium solubility experiments will be conducted.

At this time, experiments which address the effect of microbial activity on the speciation and solubility of actinide complexes and solids are being planned. These experiments will be initiated only if microbial activity is shown to be a significant process in WIPP storage rooms.

3. Information Needs Addressed
Source Term (1.2.1.1)
Gas (1.2.1.6)
Activity S.1.2.1
BACKFILL-MIX CONSOLIDATION MODEL

1. Focus

A model predicting how nonsalt substances (e.g., granular gas getters, CuSO4) may alter the rate of backfill consolidation will be developed so that the effect of these additives on room closure and the final consolidated state of the room can be estimated. A description of how swelling and swelling pressures in bentonite vary with moisture content is also needed for the analysis of seal performance.

Bentonite or some other water sorber may be added to crushed salt backfill within the disposal rooms where brine inflow is of concern (Activities S.1.1.1, S.1.1.2). Other additives may be introduced to scavenge gases resulting from waste and container degradation. Salt/bentonite mixtures could also be important seal components. Introduction of nonswelling, insoluble substances into the voids during consolidation is expected to have little effect upon predictions with the present constitutive model for moistened, crushed WIPP salt (Sjaardema and Krieg, 1987). However, brine sorption by bentonite causes swelling, which has the effect of increased back pressure or pore pressure within the voids, opposing consolidation. Activity S.1.2.4, the Disposal Room Performance Model, will depend in part on this activity.

2. Methodology

This effort will (1) convert the present constitutive model for consolidation of crushed salt into a model describing the consolidation of mixtures of salt and inert materials, and (2) develop a means for including either swelling or pore pressure resulting from the presence of bentonite in backfill consolidation and sealing predictions.

This activity will be initiated when the nature of the additives (gas getters and sorbents) is better defined.

3. Information Needs Addressed

Backfill (1.2.1.2) Backfill (1.2.4.1)
Disturbed Rock Zone and Fluid-Flow Disturbed Rock Zone and Fluid-Flow
Characteristics (1.2.2.1) Characteristics (1.2.4.3)
Backfill (1.2.3.1)

Revision 0, April 1990 2-104
Activity S.1.2.2
DRUM AND BOX COLLAPSE MODELS

1. Focus

An improved mathematical model of the collapse of CH-TRU waste containers is needed to predict the final void and brine content of the disposal rooms and the rates at which the final state will be obtained.

Because average pressures for compaction will not exceed lithostatic pressure (2,200 psi), they will not be sufficient to collapse the containers to near-theoretical solid density. The collapse model will estimate (1) when backstress from the container collapse process will begin to retard room closure, and (2) whether significant residual void volume will remain within the containers to allow relatively direct communication with an intrusion borehole or internal mixing of intruding brines. This activity directly supports development of the Disposal Room Performance Model (Activity S.1.2.4).

2. Methodology

Drum and box collapse modeling will involve two tasks. First, data from laboratory tests on individual drums and boxes (Activity S.1.1.3) will be used to construct as realistic a mathematical description of their collapse as possible. The variability of the container contents and their location within the disposal room (e.g., whether adjacent to the walls, or within the uppermost layer of containers next to the air gap) will also be considered. Second, the model will be generalized to estimate how the entire assemblage of drums within a room might respond collectively. The completed model will be combined with the backfill-mix consolidation model (Activity S.1.2.1).

3. Information Needs Addressed

Container Response (1.2.1.3)
Systems Interactions (1.2.1.8)
Disposal Room Design (1.2.1.9)
Activity S.1.2.3
BACKFILL-MIX SELECTION ANALYSIS

1. Focus

Backfill-mix selection and configuration analysis will determine the optimum backfill for the disposal rooms. The selection of backfill will be based on comparisons of coupled analyses that consider room closure and waste and backfill compaction. This represents the groundwork for a room performance model (Activity S.1.2.4). It differs from room performance analysis, however, because results from highly detailed, but normally independently functioning, models will be applied to candidate backfill configurations to arrive at a best design. For room performance assessment, one model, fully coupling all important variables in detail commensurate with importance, will be needed.

2. Methodology

Candidate backfills in engineered configurations will be analyzed to determine how brine inflow, waste container collapse, and other factors control the final state of consolidation of the room contents. These best estimate states of consolidation will be examined so that an optimal configuration for waste isolation can be identified.

A series of calculations will model as closely as possible the introduction of brine or gases from one boundary into various configurations of tailored backfill to determine the uniformity of brine (wicking action) and free gases throughout the configuration.

3. Information Needs Addressed

Backfill (1.2.1.2)
Backfill (1.2.3.1)
Backfill (1.2.4.1)
Activity S.1.2.4
DISPOSAL ROOM PERFORMANCE MODEL

1. Focus

A model that fully couples all the important variables of disposal room closure, in detail commensurate with importance, is needed to define the mechanical and physical state of the disposal room at the beginning of the various scenarios for the release of transuranic waste.

Several aspects of room performance must be specified at any given time: (1) how much room closure has occurred (Activities S.3.2.1 and S.3.2.2), (2) the state of consolidation of the backfill (Activity S.1.1.1), (3) how rigid the backfill is, (4) the permeability of various portions of the room, (5) the extent of dispersal of radioactive species from their containers (Activity S.1.1.5), (6) how much water and gas are present at what pressures (Activities S.3.2.4 and S.1.1.4), and (7) their distribution throughout the room.

The level of understanding in each area must be adequate to define room behavior as a function of time to a sufficient level of detail to support code simplification for performance assessment, if appropriate.

2. Methodology

Five steps are necessary in constructing a disposal room performance model: (1) identify critical components, such as the type of waste being stored, rate of room closure, and amount of inflowing brine that will determine the state of the room at any given time, (2) develop a means of mathematically describing these features that reproduces the essential features of the room without requiring excessive computation time, (3) develop and demonstrate a method of analysis, (4) incorporate into the model those features that reflect the backfill selection, as well as the final best estimates of room closure and brine inflow, and (5) complete and document a final version of the model. The ability to perform calculations that examine the combined effects of room closure, brine inflow, gas generation, and other important aspects of disposal room performance is the essence of steps (2) and (3). In model development, Darcy fluid flow analysis will be coupled into a finite-element structural mechanics computer code containing gas-generation source terms to determine room pressurization and resaturation. This analysis will be coordinated with the 2-phase flow simulations of Activity S.3.2.5 to help assess the gas-generation source terms in coupled calculations of room closure. In addition, it will incorporate or generalize the results of more specialized modeling studies of waste and backfill (Activities S.1.1.1, S.1.1.2, S.1.2.1, S.1.1.3, and S.1.2.2).

3. Information Needs Addressed

 Systems Interactions (1.2.1.8)
 Disposal Room Design (1.2.1.9)
Activity S.1.2.5
ENGINEERED ALTERNATIVES

1. Focus

Modifications of the current reference disposal system design are being examined as a contingency, if performance assessment and experimental results have a high degree of uncertainty or are unsatisfactory. For planning, limited modifications, such as waste compaction and addition of gas getters to backfill, are considered here as part of the ongoing program, rather than as part of engineered alternatives. These activities are described elsewhere (e.g., Activities S.1.1.2, S.1.2.3). Activity S.1.2.5 addresses modeling of more extensive modifications.

2. Methodology

Alternatives options will be developed and evaluated for feasibility with respect to availability, state of the technology, cost, worker exposure, and regulatory concerns. An expert panel has initially screened the list of alternatives. Feasible options will be analyzed using a simple design analysis model to determine whether the modifications significantly improve the relative performance of the system. Integrating room-scale and shaft-seal submodels into a simple design analysis model will allow rapid calculations of a relative performance measure for the disposal system with respect to compliance with 40 CFR 191 and 40 CFR 268 (whichever is more restrictive). This design analysis model will be less complex than the large probabilistic models that will be used to demonstrate compliance with the EPA Standard. Sensitivity analyses using the design analysis model will define acceptable ranges for such parameters as initial waste void volume, initial backfill void volume, gas generation rates, and brine inflow rates.

Types of modifications that will be considered, in addition to those now being considered, include waste processing (e.g., vitrification, incineration), modifying the storage room or panel configuration, and modifying the repository design to reduce the probability of human intrusion. Specific alternatives that may be evaluated include waste compaction, incineration of the combustible components of the waste, use of a grout backfill to reduce void volume, replacing drums with rectangular containers, and the design of passive markers.

Engineered alternatives that seem feasible and effective will be modeled using the formal performance assessment process to quantify the improvement in disposal system performance. In parallel with the modeling effort, promising alternatives will be tested in bin-scale tests (Activity 5.1.3.3) and alcove tests (Activity 5.1.3.2) as appropriate.

3. Information Needs Addressed

Disposal Room Design (1.2.1.9)
Activity S.1.2.6
ADDITIONAL DEVELOPMENT OF EQ3/6

1. Focus

EQ3/6 is a set of computer codes and supporting data bases that calculate the speciation of solutes and the solubilities of minerals and other solids in aqueous solutions and predicts the chemical reactions between these solutions and solids, gases, or other solutions. This software package, developed at Lawrence Livermore National Laboratory (LLNL) for use by the commercial nuclear waste repository projects, can now model the chemical behavior of several key radionuclides in solutions with ionic strengths less than or equal to 1 M. Recently, LLNL added the Pitzer activity coefficient model to EQ3/6. The Pitzer model uses empirical ion interaction parameters to calculate activity coefficients for solutes. EQ3/6 then calculates solubilities and simulates chemical reactions. With the Pitzer option and currently available ion interaction parameters, EQ3/6 can now model the chemical behavior of various WIPP brines and evaporite minerals.

EQ3/6 cannot, however, model reactions between these brines and silicate minerals, because there are no ion interaction parameters available for aluminum and silicon. Thus EQ3/6 cannot yet predict reactions between WIPP brines and any bentonite in the backfill, or between brines and the cements used to grout some of the drums and in seals. The University of California at San Diego is now developing ion interaction parameters for aluminum and silicon.

Because ion interaction parameters are also unavailable for the important radionuclides in TRU waste, EQ3/6 cannot yet model the behavior of these radionuclides in brines. It would be difficult or impossible to obtain ion interaction parameters for the actinide elements from previously obtained experimental data, because few data were obtained at ionic strengths greater than or equal to 1 M. Furthermore, the Pitzer approach might not work at all for the actinides, because this model recognizes very few complex aqueous species explicitly, and the actinide elements form organic and inorganic complexes readily.

Without a reliable model, it will be impossible to predict the behavior of radionuclides in WIPP disposal rooms under conditions different from those investigated experimentally. It would prove extremely costly and time-consuming to measure radionuclide solubilities under all of the conditions that could occur in the repository.

A critical step in developing confidence in numerical models of radionuclide solubility and behavior will be the comparison and evaluation of laboratory studies (Activity S.1.1.5), brine leachate analyses from bin-scale tests (Activity S.1.3.3), and results of numerical modeling (Activity S.1.2.6).

2. Methodology

A model capable of predicting activity coefficients of radionuclides in brines will be developed and incorporated in the EQ3/6 software package
developed by LLNL. This effort will (1) compile an internally consistent data set (ion sizes and hydration numbers) which, when used in the model, gives activity coefficients that agree with the experimental values for solution of simple composition; (2) evaluate these equations and data in solutions of complex composition; (3) incorporate the equations and data base into the EQ3/6 software package; (4) verify the computational capability of the code; and (5) document the code.

3. Information Needs Addressed

Source Term (1.2.1.1)
Gas (1.2.1.6)
Activity S.1.3.1
SIMULATED TRU TESTING (ROOMS T AND J)

1. Focus

In situ testing under both near reference and severe overtest conditions is in progress to examine drum deformation and backfill interactions with design-basis simulated containers and backfill. Other objectives are to measure backfill material behavior (emplacement, moisture, sorption, consolidation, and backfill applicability) and to provide data for the disposal room performance model (Activity S.1.2.4). These tests involve "near-reference" CH-TRU waste tests in Room T in a heated environment at 40°C (104°F) to accelerate results. Similar tests are also being conducted in Room J, in the presence of a large excess of brine, to accelerate aging and to simulate a "worst-case" repository environment.

2. Methodology

Tests in Room T involve the response of 240 simulated CH-TRU waste drums backfilled with either crushed salt or a tailored backfill consisting of 70 weight percent crushed salt and 30 weight percent bentonite. These drums are instrumented with remotely read pressure gages to measure the effect of closure on drum deformation. The tests have been in operation since March 1987 and will continue for a total of two to three years. Tests in Room J are similar, and have been in operation since June 1986. These experiments will provide preliminary information on rates and products of drum corrosion under brine-inundated, humid, and bentonite-wicking conditions (see Activity S.1.1.5).

3. Information Needs Addressed

Backfill (1.2.1.2)
Container Response (1.2.1.3)
Systems Interaction (1.2.1.8)
Backfill (1.2.3.1)
Activity S.1.3.2
ALCOVE GAS GENERATION AND DEPLETION TESTS

1. Focus

Data on the large-scale production, depletion, and composition of gases resulting from the in situ degradation of TRU wastes are needed to support performance assessment analyses and predictive modeling of long-term repository behavior (Activity S.1.2.4). Repository relevant and representative data on TRU waste degradation rates must be representative of time periods ranging from the operational phase emplacement to the longer term, postoperational phase. Data must be obtained in a controlled research mode, not simply as a monitoring function, to allow interpretation of multiple degradation mechanisms and impacts. Due to potential uncertainties introduced by extrapolating laboratory, small, or even bin-scale results to the full-scale repository configuration, it becomes necessary to validate gas generation models and the predicted impacts and consequences of gas generation by conducting room-scale tests with actual CH-TRU waste in the WIPP facility.

The full spectrum of data needed to address performance assessment concerns and data on RCRA constituents can be obtained and satisfactorily resolved when data from the alcove tests are combined with the parallel laboratory (Activity S.1.1.5) and bin-scale tests (Activity S.1.3.3). The alcove, in situ data will be acquired from some of the first CH-TRU waste to be emplaced in the WIPP, under actual (as-received) and modified conditions.

2. Methodology

The CH-TRU waste to be tested in situ will be both as-received and specially prepared at the generator site, then shipped to the WIPP site. The waste must (room-by-room) include a representative mixture of waste types, waste loadings, and variations thereof. Waste types include high organic/newly generated (both standard and compacted from Rocky Flats Plant); low organic/newly generated (both standard and compacted from Rocky Flats Plant); processed, inorganic sludges; and high organic/old (stored) wastes.

The room-scale tests will involve six sealed, atmospheric controlled test rooms or alcoves. Five of the alcoves will contain test wastes; one will remain empty to serve as a gas baseline alcove. This testing arrangement allows the emplacement of lesser quantities of waste per room, so that more types of test conditions can be accommodated. A test alcove is tentatively defined as about one-third of the length of a full-sized waste room, with about 1,100 drums of test waste per alcove.

Gas data from the alcove tests will be acquired in two phases. Phase 1 will include two alcoves. The first will be empty and will provide gas baseline data; the second will contain as-received waste representative of the short-term, operational phase of the repository. Phase 2 will include four alcoves, specifically tailored to represent long-term, post-operational conditions in the the WIPP repository. Phase 2 tailoring will consist of alcove gas atmosphere control, special preparation of the waste, and brine injection.
Periodic gas samples from each of the test alcoves will be analyzed by gas chromatography-mass spectrometry for bulk composition and possible VOCs. Interpretations of this data will be input into the performance assessment modeling program as soon as available and will also be used to guide and modify further testing. Waste mix compositions, types and quantities of waste drums and backfills, getters, degradation product contaminants, extent of brine moistening, atmosphere control (aerobic/anaerobic, pressures), and instrumentation and control hardware are described in detail in the Test Plan for WIPP Room-Scale CH-TRU Tests (Molecka, 1990b).

3. Information Needs Addressed

Source Term (1.2.1.1)
Gas (1.2.1.6)
Disposal Room Design (1.2.1.9)
Activity S.1.3.3
BIN-SCALE GAS GENERATION AND DEPLETION TESTS

1. Focus

The gases generated by disposed TRU waste and their rates of generation as a function of time may significantly affect the assessment of radioactive releases from the repository by human intrusion. For the confident evaluation of the effect of the gases on potential release scenarios, data that define the appropriate waste degradation reactions and the amount and rates of gases generated are required. Several kinds of data on the potential in situ behavior of CH-TRU waste are needed: gas speciation, generation, and depletion rates as a function of time and several other waste condition parameters; source term definition of leached or mobilized chemical and radiochemical species; systems interactions and synergisms, etc. The impacts of radiolytic, bacterial, and chemical corrosion degradation mechanisms can be adequately analyzed and evaluated in these planned bin-scale tests using actual, radioactive TRU waste. The added degree of test control and the multiple test conditions to be used in these bin-scale tests allow the interpretation of obtained data to be simpler and more straightforward. Attainment of test data must not be simply a monitoring activity; it must be necessary for both analytical and predictive performance assessment modeling calculations and for validation of smaller scale laboratory data on simulated wastes. The full spectrum of required data can be obtained when these bin-scale tests are combined with the in situ room-scale tests (Activity S.1.3.2) and supporting laboratory tests (which use simulated wastes, Activity S.1.1.4). The bin-scale tests are discussed in more detail by Molecke (1990a).

2. Methodology

These bin-scale tests are being designed to provide gas production and radiochemical source term data from actual, CH-TRU waste as a function of several representative types or classifications of waste; aerobic and anaerobic atmosphere conditions, representative of the operational phase and longer term, postoperational phase, respectively, of the repository; impacts of several types and quantities of brine inflow; impacts of waste interactions with salt, container metals, backfill, and gas getter materials - particularly on gas production and consumption; and waste gas production, which includes synergisms between the various degradation modes. The following test conditions must also be incorporated: conduct of the test must be controlled so that personnel safety is maintained; the scope and scale of the test must be adequately large to collect the quantities and types of data needed; the facility must not be contaminated during the course of the tests; facility operations and procedures must be realistically utilized.

The bin-scale test program is planned to take place in three phases. Phase 1 will incorporate test bins for which all components can now be defined. Backfill materials will be salt or salt/bentonite; some bins will receive no backfill. Approximately 48 waste-filled bins of different waste compositions and backfills, including replicates, will be included in Phase 1. Eight other, empty, Phase 1 test bins will be used for a pressure and gas-baseline reference during the test program. Phase 2 tests will
incorporate another 68 waste-containing bins, with more moisture conditions, gas-getter materials, and supercompacted high-organic and low-organic wastes. Initiation of much of Phase 2 would depend on supporting laboratory data, particularly as to the composition of gas getters or other backfill material components, and the availability of supercompacted wastes. Phase 3 of the test program cannot be described in any detail at this time. Phase 3 test bins are required to accommodate potential test contingencies, specifically including any new engineering modifications to waste and backfill.

All test bins will have gas sampling ports, gas flushing ports (to control the initial bin atmosphere), pressure gage and control systems, and internal temperature monitoring instrumentation. Many of these bins will also be equipped with brine injection hardware (with liquids injected at the WIPP), liquid sampling ports, and possibly materials sampling ports. Periodic gas samples from each test bin will be analyzed by gas chromatography-mass spectrometry. Periodic liquid leachate samples from multiple bins will also be radiochemically analyzed for source-term (solution chemistry) data and evaluations.

Further details on the waste-mix compositions, exact types and quantities of wastes, backfill and getter materials, degradation product contaminants, bacterial inoculants, extent of brine moistening, atmosphere control (aerobic/anaerobic, pressures), hardware, and emplacement schedules are available in the Test Plan for WIPP Bin-Scale CH-TRU Waste Tests (Molecke, 1990a).

Pretest waste characterization will determine to what extent test wastes are representative of the CH TRU waste in storage at the generator sites (DOE, 1989a).

3. Information Needs Addressed

Source Term (1.2.1.1)
Gas (1.2.1.6)
2.7.2.2 Sealing System Activities

The sealing system characterization activities contain several laboratory, analytical, and in situ studies for the development of seal designs for WIPP shafts, panel drifts, and boreholes (Stormont, 1985; Stormont, 1988a; Tyler et al., 1988). These studies also develop techniques and models for assessing sealing system behavior and evaluating seal performance, and provide data and analysis techniques for performance assessment of sealing systems.

The activity matrix, Table 2-4, for the sealing system identifies the applications. Laboratory studies provide data that are used in establishing material behavior, materials compatibility (including RCRA constituents), and stability for seals and in evaluating the fluid-flow characteristics of the seal components. Modeling studies develop techniques for understanding and predicting interactions of seal components and the entire system in a host rock and for evaluating fluid-flow rates and paths through or around the sealing system. In situ testing provides data to evaluate performance of materials, establish interaction effects, and provide an understanding of the behavior of intact and disturbed rock surrounding the seals. Some of the tests can be conducted at smaller scales to reduce costs and increase the number of variables tested. The data are used to validate models to the extent possible and assess design concepts and ultimately to complete the WIPP performance assessment.

The sealing activities will evaluate (1) seal materials performance in small-scale seal tests, (2) seal systems performance in full-sized seal tests, and (3) candidate seal materials and their performance in various rock environments. Figure 2-6 indicates the use of the data and information acquired from tests or theoretical studies. These data will be used in designing sealing systems and alternatives and to validate performance models of salt consolidation as a seal component. The product of this effort will be the recommended panel and shaft seal concepts and designs at decommissioning and input to the final performance assessment studies of transport through the sealing system.

The WIPP sealing system has undergone an extensive evaluation (Stormont, 1988a; Tyler et al., 1988). Data have been collected on seal system performance, formation permeabilities, and brine inflow. Data from these studies and the additional data that are being collected will provide a basis for addressing uncertainty about the WIPP seal system. The extensive models and data will be supported by the use of expert judgment to help define the models and data used in the performance assessment.
Table 2-4. Applications of the Sealing System Investigations

<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>Disposal Room and Drift System</th>
<th>Sealing System</th>
<th>Structural and Fluid Flow Behavior, Salado</th>
<th>Hydrology and Nuclide Migration, Non-Salado</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.2.1 Laboratory Studies:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.1.1 Geochemical Stability</td>
<td></td>
<td>Seal Material Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.1.2 Crushed Salt Consolidation</td>
<td>Waste/Backfill/Brine/Room Interactions*</td>
<td>Seal Permeability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.1.3 Cementitious Materials Development</td>
<td>Seal Material Properties*</td>
<td>Seal Material Properties*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.2 Modeling Studies and Design:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.2.1 Crushed Salt Consolidation Modeling</td>
<td>Waste/Backfill/Brine/Room Interactions*</td>
<td>Seal Permeability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.2.2 Seal System Design, Analysis, and Integration</td>
<td></td>
<td>Seal Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.3 In Situ Tests:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.3.1 Small-Scale Seal Performance Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical Concrete Seal</td>
<td></td>
<td>Concrete Seal Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal Concrete Seal</td>
<td></td>
<td>Concrete Seal Performance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Denotes a secondary application
Table 2-4. Applications of the Sealing System Investigations (Concluded)

<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>Disposal Room and Drift System</th>
<th>Sealing System</th>
<th>Structural and Fluid Flow Behavior, Salado</th>
<th>Hydrology and Nuclide Migration, Non-Salado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontally Emplaced Block-Type Seal</td>
<td>Salt and Salt/Bentonite Seal Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertically Emplaced Block-Type Seal</td>
<td>Salt and Salt/Bentonite Seal Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite Shaft Seal Simulation</td>
<td>Composite Seal Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anhydrite Seal Test</td>
<td>Anhydrite Seal Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.3.2 Large-Scale Seal Testing</td>
<td>Seal Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.2.3.3 Borehole Plugging</td>
<td>Seal Material Properties</td>
<td></td>
<td></td>
<td>Borehole Plug Performance*</td>
</tr>
</tbody>
</table>

*Denotes a secondary application
Figure 2-6. Relationship Among Sealing System Activities
Activity S.2.1.1
GEOCHEMICAL STABILITY

1. Focus

The development of chemical models (Tyler et al., 1988) and laboratory studies of chemical reactions that could degrade seal material performance are necessary to provide reasonable assurance of adequate useful life for cementitious materials such as concrete and other component materials. Although reconsolidated salt has been chosen as the primary seal material, other proposed seal materials must function long enough to prevent brine and water inflow from inhibiting reconsolidation of the salt. Reactions of bentonite with WIPP brines, ground waters, cementitious materials, and hazardous waste components must be identified and incorporated into Activity S.2.2.2, Seal System Design, Analysis, and Integration. Laboratory studies have shown that concrete-salt interactions are not likely to be deleterious over the short term.

2. Methodology

Laboratory work will include studies of chemical reactions and dissolution of cementitious materials in brines and ground waters. The aqueous phases are to have the compositions expected in the Salado Formation and overlying formations. Chemical reactions at the interface between concrete and anhydrite will also be studied. Emphasis will be on reactants other than dissolved halite; previous work indicates that halite does not significantly degrade cementitious materials. Evaluations will include, as necessary, the potential for chemical degradation of the seal materials as a result of interaction with the waste, including the hazardous waste components. Chemical models will then be developed to describe dissolution and rates of chemical reactions that may degrade seals. Seal materials will be chosen to maximize stability and meet required performance criteria.

3. Information Needs Addressed

Sealing System (1.2.2.2) Sealing System (1.2.4.2)
Sealing Criteria, Concepts, and Borehole Plugging-Material Behavior
Designs (1.2.2.4) (1.3.4.1)
Activity S.2.1.2
CRUSHED SALT CONSOLIDATION

1. Focus

Because reconsolidated crushed salt is a key material in current seal designs (Activity S.2.2.2), accurate constitutive models, permeability relationships, and mechanistic understanding of crushed salt consolidation are essential. Consolidation is due to host rock creep. Shaft seal analyses have shown that crushed salt emplaced as a seal material will reconsolidate sufficiently to take over the sealing function from the concrete components within 100 years (Nowak and Stormont, 1987). These calculations showed that consolidation to 95 percent of intact-salt density should be complete well within 100 years. The constitutive relationships and permeabilities (10 nanodarcies at 95 percent consolidation) should be verified with further tests and expanded to include brine-saturated crushed salt.

2. Methodology

Laboratory studies have confirmed the rapid reconsolidation of moistened crushed WIPP salt under hydrostatic pressure. Consolidation rates of crushed salt under deviatoric (shear) loading will be determined next. Measurements will then be made on samples completely saturated with brine, to determine how fluid filled pores inhibit compaction. Finally, the extent that reconsolidation is accelerated by moisture will be measured in tests on samples which contain controlled quantities of added brine. The relationship between reconsolidation density and permeability will be determined in all test series. The results from this testing program will provide the information needed to couple consolidation modeling with brine inflow. Micromechanical models for consolidation of crushed salt (effect of particle size, etc.) will also be developed to support the constitutive models.

3. Information Needs Addressed

Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1)	Backfill (1.2.3.1)
Sealing System (1.2.2.2)	Sealing System (1.2.4.2)
Sealing Criteria, Concepts, and Designs (1.2.2.4)	Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)

Revision 0, April 1990
Activity S.2.1.3
CEMENTITIOUS AND EARTHEN MATERIALS DEVELOPMENT

1. Focus

The properties and performance of cementitious materials are extremely variable depending on their mixture, the application method, and the intended use. Present design concepts for sealing the WIPP repository include cementitious materials and bentonite components (Stormont, 1988a). The cementitious materials will function as concretes in the shafts and possibly in drifts, grouts in boreholes, and pressure grouting of potential shaft disturbed zones. Previous development has identified candidate saltwater concrete, saltwater grout, and freshwater grout (Gulich and Wakeley, 1989) for uses in shafts, drifts, and boreholes. Because of peripheral gypsum formation, typical concretes may not be stable in anhydrite, which is found in key shaft seal locations. Development must now focus on anhydrite bonding concretes, pressure grouts, and grouting techniques. Continued testing and characterization of previously developed WIPP specific cementitious materials should continue. This activity will ensure that the best possible cementitious materials are selected for sealing the WIPP repository (Activity S.2.2.2) and that an adequate data base of these properties exists for performance assessment.

Bentonite will be evaluated to determine the as-emplaced properties. Low permeability and swelling upon uptake of water are well known properties of swelling clay materials. The swelling clay is expected to remain stable and effective for well in excess of 100 years. Data are needed to evaluate the stability of the material in the WIPP environment and to provide the basis for tailoring the initial density of the bentonite components to achieve desired swelling pressures without exceeding load restrictions on the formation. Evaluation of bitumen or other candidate materials is expected.

2. Methodology

A series of tests will investigate workability, heat evolution, strength, stiffness, and permeability of possible anhydrite-bonding concrete mixtures. Once a mixture is identified as a candidate, field tests will be conducted (Activity S.2.3.1). Existing pressure grout formulations will be similarly screened, laboratory tested, and field tested. Deformable grouts will be evaluated. Standard laboratory tests will supplement these field tests as well as field tests supporting previously identified candidate mixtures. In addition, tests to evaluate the swelling effects and the stability of the clay minerals will be completed.

3. Information Needs Addressed

Sealing System (1.2.2.2) Sealing System (1.2.4.2)
Closure (1.2.2.3) Borehole Plugging Material Behavior
Sealing Criteria, Concepts, and (1.3.4.1)
Designs (1.2.2.4)
Activity S.2.2.1
CRUSHED SALT CONSOLIDATION MODELING

1. Focus

Reconsolidated, crushed WIPP salt is the key seal material in current seal-system concepts (Activity S.2.2.2). Numerical model calculations will be used to predict the density and permeability of emplaced crushed salt as a function of time after emplacement.

In response to reconsolidation by creep closure, crushed salt can reach permeabilities comparable to that of intact host rock salt within 100 years (Nowak and Stormont, 1987). Tailored seal shapes may be needed to facilitate rapid and uniform reconsolidation of emplaced, crushed salt material. Numerical calculations of consolidation are needed to guide the design of seal shapes. New information on the deviatoric behavior of WIPP crushed salt is a key input to this effort. Therefore, updated calculations are needed as deviatoric behavior is quantified by laboratory tests.

Numerical calculations should be repeated as constitutive relationships for crushed salt are updated from the laboratory test results and the development of a mechanistic model. These calculations will provide the most accurate estimates of seal system permeability and offer the best guidance for seal system design and seal excavation shapes.

2. Methodology

The numerical, crushed salt consolidation model will be updated to include the latest data from laboratory tests (Activities S.2.1.1 and S.2.1.2). New information on deviatoric behavior will be incorporated. The consolidation behavior of brine-saturated crushed salt may also be included. Consolidation calculations will be repeated for cases that are likely to be changed significantly by an updated model. The time required to reach a low permeability is important for evaluating seal performance.

Calculations will be made of crushed salt consolidation in proposed seal excavation shapes to guide the choice of seal shapes for rapid consolidation to high density and low effective permeability.

3. Information Needs Addressed

Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1)	Backfill (1.2.4.1)
Sealing System (1.2.2.2)	Sealing System (1.2.4.2)
Backfill (1.2.3.1)	Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)
Activity S.2.2
SEAL SYSTEM DESIGN, ANALYSIS, AND INTEGRATION

1. Focus

A large number of diverse activities, including modeling and numerical analyses of complex seal systems, must be integrated to complete conceptual seal designs for the WIPP facility.

The structural and flow responses of the seals and the surrounding host rock must be modeled and analyzed to evaluate seal system performance. Coupled processes of brine inflow, consolidation, creep closure, disturbed zone formation, and stress concentration will be included. These analyses will require that outputs from many testing and model development activities (Activities S.2.1.1, S.2.1.2, S.2.1.3, S.2.2.1, S.2.3.1, S.2.3.2, and S.2.3.3) be available for the numerical analyses.

2. Methodology

Models and codes to calculate and analyze the structural and flow performance of seal components will be developed and will include the response of the surrounding host rock, including disturbed zone formation. Numerical analyses of structural and flow processes to evaluate seals and to guide the design of tests or experiments will include coupled processes, such as brine inflow during crushed salt consolidation. Sensitivity analysis of seal system behavior will be conducted. Design criteria will be developed, documented, and updated during the detailed design of the components.

A conceptual design for WIPP plugging and sealing systems will be prepared by an architect/engineering contractor after evaluating seal designs by analyzing the structural and fluid-flow processes that occur. The design will be sufficiently detailed to provide a basis for preparing a WIPP construction design. Emplacement equipment will be identified, and emplacement operations will be documented.

3. Information Needs Addressed

- Sealing System (1.2.2.2)
- Sealing Criteria, Concepts, and Designs (1.2.2.4)
- Sealing System (1.2.4.2)
- Closure (1.2.4.4)
- Sealing Criteria, Concepts, and Designs (1.2.4.5)

- Borehole Plugging Material Behavior (1.3.4.1)
- Borehole Plug Interaction (1.3.4.2)
- Borehole Plugging Criteria, Concepts, and Designs (1.3.4.3)
Activity S.2.3.1
SMALL-SCALE SEAL PERFORMANCE TESTS

1. Focus

Measurement of thermal/structural/fluid flow performance of the shafts, drifts, and panels sealing system will provide data for seal design (Activity S.2.2.2) and long-term performance assessment. Stresses and strains induced in the seal and rock will result from hydration of concrete, and from the interactions of salt creep and the seal material. The stresses and strains are important in assessing the stability of the sealing system and in evaluating the structural/fluid-flow relationships. Both gas and brine permeabilities are important in evaluating the efficacy of the sealing system. Sealing system permeability measurements are needed to provide data on flow rates through the system, identify dominant flow paths, and determine the difference between gas and brine seal system permeability.

To provide the data, tests are required on (1) vertical concrete seals, (2) vertically emplaced salt and bentonite block seals (Stormont, 1988b), (3) a composite shaft seal (Stormont, 1988b), (4) a horizontal concrete seal (Stormont and Howard, 1986), (5) a horizontal seal of salt blocks (Stormont, 1988b), and (6) a seal compatible with anhydrite layers (Stormont, 1984).

2. Methodology

Testing has been initiated to support many of the data needs. Boreholes ranging in size up to 38 in. (96 cm) in diameter, both horizontally and vertically, have been instrumented and are providing data with simulated plugs installed. Gas and brine fluid-flow measurements will determine in situ fluid flow performance of a simulated seal. Rooms will need to be excavated to initiate composite shaft seal tests and to support anhydrite seal tests.

Horizontal concrete seals tests were initiated in 1986. Structural data will continue to be collected and compared with the predicted model response. The concrete/salt rock model, which incorporates elastic as well as inelastic behavior of both concrete and salt, will be used to develop the design and stability of facility level panel and drift seals (Labreche and Van Sambeek, 1988). Fluid-flow/permeability measurements for gas and brine will be continued and will include gas with tracers and brine as the working fluids.

Horizontally-emplaced block seal tests were initiated in the spring of 1986. Structural data will continue to be collected and will be compared with the response predicted using the laboratory-developed, salt consolidation constitutive model. This model will be used for the design of panel and drift seals. There are four instrumented seals: two salt-block seals and two salt/bentonite-block seals. The remaining four uninstrumented seals (two salt and two salt/bentonite) are for permeability or fluid-flow testing. Instrumentation in the four seals will measure deformations and pressures. The present understanding of the consolidation process implies

Revision 0, April 1990
that crushed salt provides little resistance to closure until it is very dense; measurements of deformation of the seal and the pressure buildup at the seal/rock interface should verify or refute this laboratory determination. The magnitudes of the pressures and deformations will aid in assessing the stability of the block-type seals and, when coupled with the fluid-flow measurements, in evaluating the structural/fluid flow interaction. For example, laboratory measurements suggest that the potential for flow should dramatically decrease when the porosity of crushed salt decreases to a range of 5 to 10 percent.

Fluid-flow testing is ongoing. Nitrogen gas is being used as the working fluid for some of the fluid-flow or permeability tests, because gas measurements are faster, easier, and less costly. Gas tests will be less destructive to the sealing systems than brine, particularly to salt-block seals before they have consolidated to relatively low porosities. Brine is being used to test salt/bentonite seals soon after emplacement to assess brine uptake, the physical stability of the salt/bentonite system, swelling pressures, "steady-state" permeability, and erodibility.

Vertical concrete seals testing was initiated in 1985. Structural/thermal data will continue to be collected and compared with the predicted model response (Stormont, 1987). The concrete/salt rock model, which incorporates elastic and inelastic behavior of concrete and salt, will be used to develop the design and stability of concrete shaft seals, which is a key component in the present seal design concept for the Salado Formation (Stormont, 1988a; Van Sambeek and Stormont, 1987).

Emplacement of vertical salt-block seal tests was initiated in November 1987. One uninstrumented seal has been emplaced, one empty borehole has been instrumented with closure gages, and two instrumented seals have been installed. Four more instrumented seals will be installed and structural data will continue to be collected and compared with the response predicted using the laboratory developed, salt-consolidation constitutive model. This model is for the design of shaft seals. There will eventually be eight boreholes, of which seven will contain seals. Three seals are salt blocks; four seals are bentonite blocks. Half of the boreholes are instrumented to measure deformations and pressures. The remaining half are intended for permeability or fluid-flow testing. The current salt consolidation model implies that crushed salt provides little resistance to closure until it becomes very dense (i.e., until seal material properties approach that of the surrounding rock mass). The measurements of seal deformation and pressure buildup at the seal/rock interface and within the seal itself should assess and improve the current salt consolidation modeling. Quantitative measurements of pressure and deformation will aid (1) in assessing the stability of the salt block and bentonite/salt block seals and (2) in evaluating the structural/reconsolidation/fluid flow interaction when coupled with the fluid-flow measurements. For example, laboratory measurements suggest that the potential for flow should dramatically decrease when the porosity of crushed salt decreases to a range of 5 to 10 percent.
Fluid-flow testing will be conducted similarly to the horizontally emplaced block-type seal. Brine will be used to test the seals one to two years after seal emplacement to assess reconsolidation, stability of the sealing system, brine uptake, swelling pressures, erodibility, and the like.

Six composite seals will be emplaced in six 48-ft (15-m) deep, 3.3-ft (1-m) diameter boreholes at the WIPP facility. These simulated shaft seals will consist of approximately 3.3-ft (1-m) thick layers of expansive salt saturated concrete and salt or sand mixed with bentonite clay on either side of a central core of quarried salt blocks. Three of the sealing systems will be instrumented with thermocouples, pressure cells, and displacement gages. The other three seals will be used solely for fluid-flow testing. Short duration tracer gas testing and long duration brine testing is planned. The emplacements may include shapes other than simple cylindrical shapes for the individual seal components.

Six seals will provide in situ data on the efficacy of various candidate seal materials and techniques for sealing anhydrite layers in the shafts and at the disposal horizon. These seals will be emplaced in six 3.3-ft (1-m) diameter boreholes that pass through the 3.3-ft (1-m) thick Marker Bed 139 anhydrite layer. One test will monitor the mechanical performance of an anhydrite-bonding concrete (ABC) seal by means of thermocouples, pressure cells, and strain and displacement gages. The remaining five seals are for fluid-flow testing: (1) ABC plug, (2) ABC plug with adjacent rock grouting, (3) bentonite-based seal confined by ABC, (4) bentonite-based seal confined by crushed salt blocks, and (5) bentonite-based seal confined by ABC with adjacent rock grouting. Short duration, tracer gas testing will be followed by long-term, brine flow testing.

3. Information Needs Addressed

<table>
<thead>
<tr>
<th>Sealing System (1.2.2.2)</th>
<th>Borehole Plugging Material Behavior (1.3.4.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure (1.2.2.3)</td>
<td>Borehole Plug Interaction (1.3.4.2)</td>
</tr>
<tr>
<td>Sealing Criteria, Concepts, and Designs (1.2.2.4)</td>
<td>Borehole Plugging Criteria, Concepts, and Designs (1.3.4.3)</td>
</tr>
<tr>
<td>Sealing System (1.2.4.2)</td>
<td></td>
</tr>
<tr>
<td>Closure (1.2.4.4)</td>
<td></td>
</tr>
</tbody>
</table>
Activity S.2.3.2
LARGE-SCALE SEAL TESTING

1. Focus

The expected performance of shaft and waste panel seals will be based in large part upon laboratory and field data, small-scale in situ tests, and modeling. Small-scale tests do not fully simulate the development of the disturbed zone around larger excavations. Therefore, large-scale testing is needed to evaluate sealing concepts for the shaft and panel seals (Activity S.2.2.2). Previous seal evaluations indicate that the seal/rock interface and rock adjacent to the seals are the most likely hydrologic flow paths. Additionally, the excavation, seal emplacement, and rock creep may result in stresses or deformations that will affect both seal and rock performance.

Current conceptual designs call for seals to be composed of concrete components, quarried salt, salt/bentonite mixtures, or pressed salt blocks (Stormont, 1988a). This design should provide a seal comparable to the intact formation in less than 100 years. This design provides for removal of heavily fractured rock at strategic locations to minimize the potential for seal bypass. The multiple component design also provides some redundancy. An alternative design includes concrete, which could be used in the panel seal design for several reasons: (1) for confinement of salt- or bentonite-based seal components, (2) to reverse formation disturbance by causing stress build-up, (3) as a short-term flow barrier, or (4) as an additional redundant component.

2. Methodology

Tests will be designed to examine salt, bentonite, and concrete seal components. Test geometries and emplacement methods have not yet been determined. It is intended that the test will be designed in a drift mined to approximately 10 x 10 x 50 ft (3 x 3 x 15 m). Salt-block, bentonite, and concrete plugs will be installed and open intervals pressurized (possibly) to determine the effective seal permeabilities as a function of time as salt creep acts upon the system. These tests can provide increased confidence in the use of the emplacement equipment and indications of short-term performance. Detailed planning of these tests will indicate specifics on the orientation of the components to be installed, their sizes, materials, and PA and quality-control specifications and the timing for installation and monitoring.

3. Information Needs Addressed

Sealing System (1.2.2.2) Sealing System (1.2.4.2)
Closure (1.2.2.3) Sealing Criteria, Concepts, and
Sealing Criteria, Concepts, and Designs (1.2.2.4) Designs (1.2.4.5)
1. Focus

The principal fluid-bearing zones above the repository are the Culebra and Magenta Members of the Rustler Formation. To prevent dissolution, these fluid-bearing zones must be sealed from the disposal horizon and from the halites of the Salado and Castile Formations. Plugging boreholes will also enhance confidence that the radiologic consequences have been bounded by further slowing or preventing flow into the boreholes. Sealing concepts should address both the Salado and Castile Formations and the formations above and below them. Grouts and cementitious materials, appropriate to the geology and geochemistry of each formation, should be evaluated for their ability to restrict fluid flow and maintain structural stability. Borehole plugging supports Activity S.2.2.2.

2. Methodology

An evaluation of the borehole-plug-material interaction and the interactions of different plug compositions with each other will be conducted. The borehole plug criteria, concepts, and designs will be performed in parallel to the extent possible. In situ testing and emplacement demonstrations are planned. Finally, an evaluation of borehole plugging performance will be prepared.

3. Information Needs Addressed

Borehole Plugging Material Behavior (1.3.4.1)
Borehole Plugging Criteria, Concepts, and Designs (1.3.4.3)
Borehole Plug Interaction (1.3.4.2)
2.7.2.3 Salado Formation Structural and Fluid-Flow Behavior Activities

This section describes activities related to the structural- and fluid-flow behavior of the Salado Formation (Table 2-5). The activities support, first, the development of the general structural-response predictive technology, including validation of models against in situ data, and second, the evaluation of fluid-flow characteristics (Figures 2-7 and 2-8) of the Salado Formation in the shaft and in the salt surrounding the disposal room.

The predictive technology for understanding the structural behavior consists of three important elements: (1) constitutive model development (Activity S.3.2.1), (2) the numerical or code framework (Activity S.3.2.2), and (3) material properties (Activities S.3.1.1-S.3.1.5). Laboratory material property studies reduce the uncertainty in the properties data base, and hence in performance assessment calculations, for investigating the effect of moisture on the creep rate as it applies to closure. This also relates to an understanding of the role of healing under pressure of salt around seal systems. In addition, a possible source of the discrepancy noted earlier (Morgan et al., 1985; Munson et al., 1986) between measured and predicted in situ response may be the stress generalization (Munson and Fossum, 1986). As a result, an intensive laboratory effort to define the proper stress generalization is being undertaken. Analysis will guide the successful development of the prediction technology by determining the underlying physics and material response of salt as observed in laboratory and in situ. The predictive technology will ultimately be validated to the extent possible by comparing numerical predictions with the results of extensive, large-scale, in situ tests. Gathering suitable, in situ data for validation is a major task (Activity S.3.3.1). Proper Quality Assurance-certified, authenticated data are the result of strictly controlled data reduction to produce an archived data base, which is made available to the scientific and engineering community through data reports (e.g., the Room H report, Munson et al., 1987).

The ability to predict the closure of and brine inflow to rooms and shafts is a fundamental requirement of the WIPP Project and forms the basis for several other programs. The closure and fluid inflow rates and conditions are the principal input to specifying the physical and mechanical condition of the room contents, as required by the system studies of drum condition and backfill recompacktion. The closure rates, and hence the rate of stress buildup on the seals, determines how the seals retain their integrity with time and how salt surrounding the seal returns to the condition required. As a result, nearly all design and performance calculations specifying the state of the seal systems and the formation or specifying the damage and rehealing of salt around the seal systems are based on the structural response predictive technology. Ultimately, structural and fluid inflow calculations for the disposal rooms will be called upon to predict long-term closure and recomconsolidation times.

Some activities will evaluate the fluid flow characteristics and behavior of (1) brine and gas inflow and permeability in the far-field domain, (2) brine and gas flow within the near-field or disturbed rock zone, and (3) geophysical properties of the rock formations in the shaft and underground, with emphasis on the disturbed rock zone. The flow diagram (Figure 2-8) indicates the manner in which the fluid flow activities support the development of models that will be used in the WIPP performance assessment.
Table 2-5. Applications of the Salado Formation Structural and Fluid-Flow Behavior Investigations

<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>Disposal Room and Drift System</th>
<th>Sealing System</th>
<th>Structural and Fluid Flow Behavior, Salado</th>
<th>Hydrology and Nuclide Migration, Non-Salado</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.3.1 Laboratory Studies:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.3.1.1 Stress Generalization; Verification of the Creep Flow Surface</td>
<td>Waste/Backfill/Brine Room Interactions*</td>
<td>Seal/Rock Interaction</td>
<td>Room Closure</td>
<td></td>
</tr>
<tr>
<td>S.3.1.2 Transient Strain Limit Determination</td>
<td>Waste/Backfill/Brine/Room Interactions*</td>
<td>Seal/Rock Interaction</td>
<td>Room Closure</td>
<td></td>
</tr>
<tr>
<td>S.3.1.3 Pressure Effect on Fracture Rehealing</td>
<td>Waste/Backfill/Brine/Room Interactions*</td>
<td>Seal/Rock Interaction</td>
<td>Room Closure, Fracture Healing</td>
<td></td>
</tr>
<tr>
<td>S.3.1.4 Moisture Effect on Creep Rate</td>
<td>Waste/Backfill/Brine/Room Interactions*</td>
<td>Seal/Rock Interaction</td>
<td>Room Closure</td>
<td></td>
</tr>
<tr>
<td>S.3.1.5 Stress, Strain/Brine Transport</td>
<td>Salt Permeability*</td>
<td>Seal/Rock Interaction</td>
<td>Room Closure</td>
<td>Salt Permeability</td>
</tr>
<tr>
<td>S.3.2 Modeling Studies:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.3.2.1 Constitutive Model Development</td>
<td>Waste/Backfill/Brine/Room Interactions*</td>
<td>Seal/Rock Interaction</td>
<td>Room Closure</td>
<td></td>
</tr>
<tr>
<td>S.3.2.2 Numerical Code Development</td>
<td>Waste/Backfill/Brine/Room Interactions*</td>
<td>Seal/Rock Interaction</td>
<td>Room Closure</td>
<td></td>
</tr>
</tbody>
</table>

*Denotes a secondary application
Table 2-5. Applications of the Salado Formation Structural and Fluid-Flow Behavior Investigations (Continued)

<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>Disposal Room and Drift System</th>
<th>Sealing System</th>
<th>Structural and Fluid Flow Behavior, Salado</th>
<th>Hydrology and Nuclide Migration, Non-Salado</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.3.2.3 Code Verification and Validation</td>
<td>Waste/Backfill/Brine/Room Interactions*</td>
<td>Seal/Rock Interaction*</td>
<td>Room Closure</td>
<td></td>
</tr>
<tr>
<td>S.3.2.4 Brine Inflow Model</td>
<td>Brine Inflow*</td>
<td></td>
<td>Brine Inflow</td>
<td></td>
</tr>
<tr>
<td>S.3.2.5 3-D Mechanistic Hydrological Transport Model of Facility</td>
<td>Brine Inflow*</td>
<td></td>
<td>Brine Inflow</td>
<td>Ground-Water Flow, Radionuclide Transport*</td>
</tr>
<tr>
<td>S.3.2.6 Integrated Mechanical Model, Disturbed Rock Zone (DRZ) and Excavation Effects</td>
<td>Brine Inflow*</td>
<td>Seal Permeability, Seal Performance*</td>
<td>DRZ Properties, DRZ Behavior</td>
<td></td>
</tr>
</tbody>
</table>

S.3.3 In Situ Tests:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Disposal Room and Drift System</th>
<th>Sealing System</th>
<th>Structural and Fluid Flow Behavior, Salado</th>
<th>Hydrology and Nuclide Migration, Non-Salado</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.3.3.1 Air Intake Shaft Performance</td>
<td></td>
<td>Shaft Closure, Seal/Rock Interaction*</td>
<td>Shaft Closure</td>
<td></td>
</tr>
<tr>
<td>S.3.3.2 Intermediate-Scale Borehole Test (Room C1)</td>
<td>Room Closure*</td>
<td>Seal/Rock Interaction*</td>
<td>Room Closure</td>
<td></td>
</tr>
<tr>
<td>S.3.3.3 Panel Structural-Response Test</td>
<td>Panel Response*</td>
<td></td>
<td>Panel Response</td>
<td></td>
</tr>
<tr>
<td>S.3.3.4 Gas Flow/Permeability</td>
<td>Salt Permeability</td>
<td>Seal Performance, DRZ Properties*</td>
<td>Salt Permeability, DRZ Properties*</td>
<td></td>
</tr>
<tr>
<td>S.3.3.5 Near-Field Flow Characterization</td>
<td>Salt Permeability*</td>
<td>Seal Performance, DRZ Properties*</td>
<td>Salt Permeability, DRZ Properties</td>
<td></td>
</tr>
</tbody>
</table>

*Denotes a secondary application
<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>S.3.3.6 Brine Inflow Scale and Stratum Effects</th>
<th>S.3.3.7 Pore Pressure for Brine Inflow</th>
<th>S.3.3.8 Brine Inflow to Excavated Rooms</th>
<th>S.3.3.9 Brine Permeability Testing of the Disposal Horizon</th>
<th>S.3.3.10 Air Intake Shaft Brine Permeability Testing</th>
<th>S.3.3.11 Shalt Geophysics</th>
<th>S.3.3.12 Underground Geophysics</th>
<th>S.3.3.13 Brine Sampling and Evaluation Program</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phenomena/Parameters Being Addressed</td>
</tr>
<tr>
<td></td>
<td>Disposal Room and Drill System</td>
<td>Sealing System</td>
<td>Structural and Fluid Flow Behavior, Salado</td>
<td>Hydrology and Nuclide Migration, Non-Salado</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brine Inflow</td>
<td>Brine Inflow*</td>
<td>Brine Inflow*</td>
<td>Brine Inflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brine Inflow</td>
<td>Brine Inflow*</td>
<td>Brine Inflow*</td>
<td>Brine Inflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brine Inflow, Salt Permeability</td>
<td>DRZ Properties, Salt Permeability*</td>
<td>Salt Permeability, Brine Inflow</td>
<td>DRZ Properties, Lower Rustler Hydrologic Properties, Ground-Water Flow, Radionuclide Transport*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRZ Properties, Salt Permeability, Seal Performance, Fracture Healing*</td>
<td>DRZ Properties, Salt Permeability*</td>
<td>DRZ Properties, Fracture Healing</td>
<td>DRZ Properties, Fracture Healing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRZ Properties, Salt Permeability*</td>
<td>DRZ Properties, Salt Permeability*</td>
<td>DRZ Properties, Fracture Healing</td>
<td>DRZ Properties, Fracture Healing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brine Inflow, Brine Distribution*</td>
<td>Brine Inflow*</td>
<td>Brine Inflow, Brine Distribution*</td>
<td>Brine Inflow, Brine Distribution*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Denotes a secondary application
Figure 2-7. Relationship Among Salado Formation Structural Behavior Activities
Figure 2-8. Relationship Among Salado Formation Fluid-Flow Behavior Activities
Activity S.3.1.1
STRESS GENERALIZATION; VERIFICATION
OF THE CREEP FLOW SURFACE

1. Focus

Most compliance arguments strongly depend upon the time at which the waste is encapsulated. As a result, uncertainties in the numerical calculations of the time for room or shaft closure must be reduced. These tests focus on identifying which of two probable stress generalizations (von Mises or Tresca) should be used in calculating creep rate and, therefore, room closure. Significant differences in creep rate exist depending on which stress generalization more accurately reflects the conditions at WIPP. The results of this activity will be incorporated into the numerical prediction codes for salt creep (Activity S.3.2.2).

2. Methodology

The three-dimensional creep flow surface for pure salt will be determined by (1) testing large thin-walled cylinders of salt under pure shear, and (2) testing of thick-walled cylinders under controlled, known stress gradients. The proper form of the stress generalization can then be developed and incorporated into numerical solution techniques. Finally, verification of the form of the stress generalization for the range of WIPP salt and evaluation of the influence of the intermediate principal stress on salt creep will be completed.

3. Information Needs Addressed

<table>
<thead>
<tr>
<th>Container Response (1.2.1.3)</th>
<th>Closure (1.2.2.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure (1.2.1.4)</td>
<td>Closure (1.2.3.3)</td>
</tr>
<tr>
<td>Disposal Room Design (1.2.1.9)</td>
<td>Closure (1.2.4.4)</td>
</tr>
</tbody>
</table>
Activity S.3.1.2
TRANSIENT STRAIN LIMIT DETERMINATION

1. Focus

Transient-strain parameters of the constitutive models (Activity S.3.2.1) are important in resolving the discrepancy between calculated and measured room closure (Munson and Dawson, 1982).

This parameter appears to control the magnitude of the calculated strain, somewhat independently of the strain rate. While, theoretically, the evaluation of the transient strain limit (a measure of the total transient strain) should be apparent from the conventional creep data, it has actually proven difficult to quantify. The difficulty arises from the nature of the conventional creep test and from the prestrain condition of the salt being tested. Standard creep tests measure the strain at constant stress as a function of time; as a result, strain that occurs within the sample during loading before the value of constant stress has been reached is "zeroed out." Therefore, this loading strain never appears in the material parameters or calculations within the constitutive model that is determined from the laboratory creep data, and thus, any calculation of actual room deformation excludes an important component of transient strain (Munson and Fossum, 1986). Loading strain will be included in the material parameter data base and incorporated into the constitutive models. Additional testing will be performed on the ERDA-9 deep borehole salt, which forms the principal data base for the constitutive modeling, to evaluate the loading strains and transient creep behavior of this material.

Laboratory measurements of creep strains also exclude strains accumulated in the specimen before it reaches the laboratory for testing. Although testing of natural salt is similar to metals testing, it differs in that the initial condition of the salt is not well controlled and rarely defined. This problem becomes significant for salt, because natural salt specimens may have a strain history that differs according to how and when they were cored from the parent salt body. This history may change the appearance and magnitude of the transient strain measured in laboratory creep tests. These small prestrains are especially important in predicting underground room closure, because the strains are comparable to those experienced in the salt surrounding the rooms. This prestrain influences the transient strains observed in the two major WIPP creep data bases, the ERDA-9 deep borehole data base, and the WIPP-D facility horizon data base. As a result, observed transient creep strains in these two data bases differ because the histories differ. Specifically, the WIPP-D facility specimens are thought to contain more prestrain than the ERDA-9 borehole specimens. It is essential to quantify the effects of these prestrain histories on transient creep and then to correct the data bases back to the undisturbed state of the in situ salt.

Revision 0, April 1990
2. Methodology

This activity consists of three major tasks:

a. Creep testing of core from the ERDA-9 deep borehole to establish loading strains and any other testing strains not in the current data base. This testing program contains only three ERDA-9 borehole specimens from the same material layer as the WIPP-D specimens. Thus, the transient strain data can be compared directly (with the exception of differences in prestrain history) between identical material. The specimens used for the previous or existing ERDA-9 creep tests all came from a horizon well above the facility horizon.

b. Continued determination of the free dislocation density for ERDA-9 and WIPP-D salt to establish quantitative comparisons. A more detailed study will be made of WIPP-D salt to obtain the dislocation density as a function of distance from the room opening for comparison with the known displacement values measured in salt surrounding the room. This study will quantify the dislocation density with the measured displacements.

c. An annealing study of WIPP-D specimens to intentionally reduce the free-dislocation density will be continued, first to determine the annealing conditions needed to achieve the desired densities, and second to generate the WIPP-D data base by creep-testing annealed specimens at conditions comparable to those used in previous tests of unannealed specimens.

Minor routine testing will be used to decrease uncertainty in the creep parameters, as necessary.

3. Information Needs Addressed

Container Response (1.2.1.3) Closure (1.2.2.3)
Closure (1.2.1.4) Closure (1.2.3.3)
Disposal Room Design (2.1.1.9) Closure (1.2.4.4)
Activity S.3.1.3
PRESSURE EFFECT ON FRACTURE REHEALING

1. Focus

The integrity of seals emplaced in the repository includes the salt around the seal, because of increased permeability of the host rock caused by the excavation. Laboratory study of the amount of fracturing developed by strain under confining conditions and the fracture behavior dependence on time and pressure will quantify fracture rehealing. This activity also supports constitutive model development (Activity S.3.2.1). Laboratory evidence from nonspecific tests suggests that existing fractures will heal under the pressure state as it developed in the salt around the seal (Sutherland and Cave, 1978; Costin and Wawersik, 1980). However, confirming this will require experiments specifically designed to quantify the healing process.

2. Methodology

An ultrasonic technique for identifying fracturing in salt laboratory specimens will be calibrated for the WIPP salt. Then the ability to quantify the generation of fractures as a function of creep or strain will be possible. The time-dependent relationships between pressure and the decrease of fractures will be established to obtain healing kinetics.

3. Information Needs Addressed

Closure (1.2.1.4) Disturbed Rock Zone (1.2.3.2)
Disturbed Rock Zone (1.2.1.7) Closure (1.2.3.3)
Disposal Room Design (1.2.1.9) Closure (1.2.4.4)
Closure (1.2.2.3)
Activity S.3.1.4
MOISTURE EFFECT ON CREEP RATE

1. Focus

The potential influence of brine within the repository or in the salt surrounding the repository as it affects room closure has been studied (Hunche, 1984; Borns, 1987). There are two schools of thought on the effect of the brine moisture: (1) moisture increases the creep rate of salt, or (2) moisture has no effect on the creep rate. No specific mechanism or model consistent with both extremes has been constructed. Most interpretations suggest that the phenomenon is related to changes in the bulk creep property of the salt even though, theoretically, it seems unlikely. If it is hypothesized that the location or influence of moisture accelerates the growth of fractures that result from dilatant deformation, it appears most of the previous unreconcilable results could be explained. This experiment would test the hypothesis and support the constitutive model development (Activity S.3.2.1).

2. Methodology

Experimental equipment and test procedures for moisture testing and specimen preparation must be developed. Then, the extent of fractures as a function of creep strain and confining pressures will be determined. Also a determination of the response of the creep rate to moisture conditions will be made. To complete the process, the reversibility of the effect of moisture on salt creep will be assessed.

3. Information Needs Addressed

Container Response (1.2.1.3) Closure (1.2.2.3)
Closure (1.2.1.4) Closure (1.2.3.3)
Disposal Room Design (1.2.1.9) Closure (1.2.4.4)
Activity S.3.1.5
STRESS, STRAIN/BRINE TRANSPORT

1. Focus

Host rock permeability is critical for predicting brine inflow to the rooms and shafts using the existing brine transport model (Activities S.3.2.4 and S.3.2.5). The current model (McTigue and Nowak, 1987) treats the host rock as a poroelastic medium; however, the halite exhibits plastic behavior. Plastic effects could cause changes in the salt permeability that are not accounted for in the elastic model. Such mechanisms are likely to be significant only during early times after excavation and then to decrease in importance. However, strain induced brine flow changes should be included in the model to quantify their potential for long-term contribution to inflow.

2. Methodology

This activity will be initiated if the data gathered by Activities S.3.2.4 through S.3.3.10 demonstrate the importance of creep-closure-initiated brine inflow or if data are insufficient to demonstrate its importance.

The first step will be to derive the relationship between strain resulting from creep closure of the excavations and the effective permeability of the host rock. A mechanistic understanding of damage, dilatation, or other restructuring that occurs with the creep during excavation closure could then be developed. Strain induced changes in the host rock must be related to brine inflow models. Finally, computer models of quarried salt blocks must be derived to facilitate predictions of seal component behavior and interaction with the host rock.

3. Information Needs Addressed

- Brine Inflow and Room Resaturation (1.2.1.5)
- Disturbed Rock Zone (1.2.3.2)
- Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)
- Disturbed Rock Zone (1.2.1.7)
- Disposal Room Design (1.2.1.9)
- Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1)
Activity S.3.2.1
CONSTITUTIVE MODEL DEVELOPMENT

1. Focus

Two distinct efforts are involved in the creep constitutive modeling: (1) reassessment or reevaluation of parameters and incorporation of secondary effect functions and (2) development of a fracture model. A consistent set of parameters will be developed for each of the relevant constitutive models of salt creep. Those secondary functions (now required) will be added to the constitutive models to replace constants currently in the models. The fracture model development effort will center on a fracture mechanism map related to the actual observation of fracture modes in the repository horizon. These functions will be formulated and incorporated into the appropriate numerical codes (Activity S.3.2.2).

2. Methodology

All relevant laboratory data from the ERDA-9 borehole and WIPP-D (Room D) data bases will be assembled. The data bases will be evaluated in a consistent manner for the specific constitutive creep models relevant for use in performance assessment activities. The necessary secondary functions will be formulated and the data base parameters evaluated to construct a fracture mechanism map. The appropriate fracture models from the mechanism map and the observed underground fracture modes will be formulated. The fracture parameters for the models will be evaluated for existing laboratory and underground data.

3. Information Needs Addressed

<table>
<thead>
<tr>
<th>Container Response (1.2.1.3)</th>
<th>Closure (1.2.2.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure (1.2.1.4)</td>
<td>Disturbed Rock Zone (1.2.3.2)</td>
</tr>
<tr>
<td>Disturbed Rock Zone (1.2.1.7)</td>
<td>Closure (1.2.3.3)</td>
</tr>
<tr>
<td>Disposal Room Design (1.2.1.9)</td>
<td>Closure (1.2.4.4)</td>
</tr>
</tbody>
</table>
Activity S.3.2.2
NUMERICAL CODE DEVELOPMENT

1. Focus

This activity consists of five major development efforts. Three of the efforts are two-dimensional code development for (1) incorporating alternative stress generalizations into the codes, (2) incorporating the effects of a layered media into the codes, and (3) modifying codes to permit progressive fracturing and to incorporate fracture models. The remaining two efforts involve three-dimensional code development and will (4) improve the material models and stratigraphy descriptions permitted in the codes and (5) improve the input generation and output graphics of the codes.

2. Methodology

The Tresca stress generalization criterion will be developed and installed in a large strain/deformation code. The proper formulation for the clay seam and bedded material representation will be investigated. A "true" fracture physics for progressive fracture development during the calculation including stress redistribution will be developed. The codes will incorporate the appropriate fracture models for the observed modes of underground fractures. Methods and equipment for input and output for the three-dimensional code solutions will be improved also. This activity will be coordinated with the development of the integrated mechanical model of the disturbed rock zone (Activity 3.2.6) and with the assessment of the potential for fracture generation or propagation associated with waste-generated gas (Activity S.3.2.5).

3. Information Needs Addressed

<table>
<thead>
<tr>
<th>Container Response (1.2.1.3)</th>
<th>Disturbed Rock Zone (1.2.3.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure (1.2.1.4)</td>
<td>Closure (1.2.3.3)</td>
</tr>
<tr>
<td>Disturbed Rock Zone (1.2.1.7)</td>
<td>Closure (1.2.4.4)</td>
</tr>
<tr>
<td>Disposal Room Design (1.2.1.9)</td>
<td>Salado Formation (1.3.2.1)</td>
</tr>
<tr>
<td>Closure (1.2.2.3)</td>
<td></td>
</tr>
</tbody>
</table>
Activity S.3.2.3
CODE VERIFICATION AND VALIDATION

1. Focus

There must be a continuous effort to assure that numerical codes are, in fact, producing physically correct calculations independent of the structural model involved or the details of the constitutive equations. Code confirmation, verification, and validation will continue as each new generation of code becomes available (Activity S.3.2.2) and as significant advances are made in constitutive modeling. Among the new two-dimensional codes that must be advanced through this system are the large strain/deformation codes with more sophisticated constitutive models and alternative stress generalizations.

The benchmarking process for two-dimensional codes is relatively well defined. The increasing use of new three-dimensional codes means that a method for code verification is a critical element in the development of a three-dimensional calculational capability, however. Many thermal/structural interaction problems related to WIPP configurations are three-dimensional, and a two-dimensional analysis will not produce acceptable results. These problems must be analyzed with codes capable of handling exact three-dimensional configurations. JAC-3D is a recently developed code using the conjugate gradient iterative technique for the quasistatic analysis of three-dimensional, nonlinear solids. Although this code has been evaluated, and in some sense benchmarked, throughout its development, it has not been benchmarked specifically to the WIPP class of nonlinear problems, a step that must be accomplished to establish the necessary degree of confidence for WIPP calculations. The final stage in developing code prediction techniques is the formal validation process of showing acceptable prediction of in situ results for a range of conditions, configurations, and uncertainties in input parameters. The initial validation must establish code readiness in time for performance-assessment calculations for EPA compliance, and the formal process must be completed and documented prior to the acceptance of the WIPP facility as a repository. All relevant two- and three-dimensional codes used for these calculations must be validated, if possible, and made available for use by the Project.

2. Methodology

Typically codes are evaluated against simple analytic solutions, which leaves the bigger and more significant problem of verification as a major activity. Verification is not straightforward, because of the nonlinearity of the problems being solved. As a consequence, no analytic solutions are available against which the codes can be verified. The approach taken is to "benchmark" several codes against the same well-defined boundary value problems; comparable code solutions indicate that the codes are solving the physics correctly, even though the benchmark exercise does not guarantee that the calculations produce the correct answer (Matalucci et al., 1981; Morgan et al., 1981; Munson and Morgan, 1986). Since the correct answer cannot be assured by verification exercises alone, the codes require validation against actual in situ data, whenever possible, to assure correctness of the solutions.
The two major tasks within this activity are verification by benchmarking and validation by comparing calculations to in situ results. Continued verification of new two-dimensional codes through established benchmarking methods will produce acceptable codes for performance assessment and operational safety questions. Because so few three-dimensional codes are available, a somewhat new approach will be developed for verifying three-dimensional codes. To this end, JAC-3D will be benchmarked initially by using it three-dimensionally to compute solutions to simple two-dimensional boundary value or creep problems that have been previously analyzed with two-dimensional codes. Any discrepancies will be resolved. The next step in benchmarking will consist of three-dimensionally solving a more realistic, two-dimensional configuration, such as the configurations of the Benchmark II and Parallel Calculation exercises. When all discrepancies of these nonlinear problems have been resolved, the final step will be to benchmark the JAC-3D code to another three-dimensional code in a direct code-to-code comparison for a complex, but controlled, problem.

Validation will be the culmination of the analysis of the in situ data. It will summarize the current status of the codes, uncertainties, and accuracy of the prediction of the in situ results. The task will establish the formal documentation of the validation process against the in situ data for the most appropriate two- and three-dimensional codes.

3. Information Needs Addressed

<table>
<thead>
<tr>
<th>Closure (1.2.1.4)</th>
<th>Closure (1.2.3.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposal Room Design (1.2.1.9)</td>
<td>Closure (1.2.4.4)</td>
</tr>
<tr>
<td>Closure (1.2.2.3)</td>
<td>Salado Formation (1.3.2.1)</td>
</tr>
</tbody>
</table>
Activity S.3.2.4
BRINE INFLOW MODEL

1. Focus

Any scale-up of brine inflow test data to large excavations and extrapolation of those data to long times for performance assessment requires a model (Activity S.3.2.5). A brine-inflow model, based on mechanistic understanding, will be developed from the results of in situ brine-inflow, pore-pressure, flow-characterization, and permeability studies (Nowak and McTigue, 1987) (Activities S.3.3.6, S.3.3.8, S.3.3.13). The brine-inflow rate from the host rock is a key input to models for the consolidation of emplaced crushed salt in seal structures and for waste room response to creep closure.

2. Methodology

Numerical techniques will be developed to expand the existing brine-inflow model to include spatially and temporarily variable permeability. Permeability will be allowed to vary as a function of stress and/or strain in the host rock. Heterogeneities in the host rock, strain induced changes in host rock flow characteristics, and multiple brine flow mechanisms will be assessed as potential contributors to the total flow. The potential impact of waste-generated gas on brine inflow will be assessed in coordination with the two-phase simulations in Activity S.3.2.5.

Mechanistic submodels (based on both in situ and laboratory test data designed to test and elucidate brine-inflow mechanisms) will be developed to provide the fundamental relationships in the numerical model. Simplified geometries may be used to maximize the efficiency of this effort, and emphasis will be given to modeling and matching the experimental results.

Numerical models will be modified to include new mechanisms that may contribute significantly to brine inflow. The mechanistic, experimental, and numerical modeling efforts must be closely coupled for that reason.

3. Information Needs Addressed

| Brine Inflow and Room Resaturation (1.2.1.5) | Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3) |
| Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1) | Salado Formation (1.3.2.1) |
Activity S.3.2.5
THREE-DIMENSIONAL MECHANISTIC HYDROLOGICAL TRANSPORT MODEL OF FACILITY

1. Focus

Detailed models describing mechanisms of flow and radionuclide transport will provide a framework for assimilating field and laboratory data into a characterization of hydrologic conditions at and near the WIPP facility.

2. Methodology

A documented data base from past and ongoing field testing programs will be developed. The data base will continue to evolve from ongoing near- and far-field permeability testing in the facility and shafts (e.g., Activities S.3.3.4, S.3.3.5, S.3.3.6, S.3.3.9, S.3.3.10).

The models will analyze flow and transport mechanisms near the WIPP facility and will provide a predictive capability for simulating flow and transport under a variety of physical conditions.

The models will include the underground facility, shafts, and surrounding rock mass (including both the disturbed zone and intact rock). Modeling will emphasize (1) flow and transport mechanisms at and near the shafts and facility horizon under both undisturbed and disturbed (high-pressure-breach) conditions; (2) the impact of stratigraphic heterogeneities and excavation-related stresses on flow and transport; (3) the hydrologic relationships between the Salado Formation and adjacent units; and (4) the impact of waste-generated gas on fluid flow and transport. The upper portion of this model (Rustler Formation to land surface) will provide a three-dimensional interface for climate related modeling in Activity S.4.2.1. The approach taken in determining the controlling transport mechanisms will be an outgrowth of that taken by Reeves et al. (1987) in considering the Culebra Dolomite Member under undisturbed conditions and transport within the Culebra under brine-reservoir-breach conditions (Activity S.4.2.2). This method evaluates parameter sensitivity and importance based on the development of dimensionless type curves for solute breakthrough under single-porosity and dual-porosity (fracture) conditions.

Two-phase fluid-flow modeling that incorporates the impact of waste-generated gas will be coordinated with the coupled room closure and fluid flow simulations in Activity S.1.2.4 to assess the impact of room closure on room repressurization. If the experimental assessment of gas generation rates (Activities S.1.1.4, S.1.1.5, S.1.3.2, and S.1.3.3) and preliminary two-phase simulations suggest that gas pressures will be high enough to generate or propagate fractures, then gas-induced fracture modeling will be carried out in coordination with Activities S.3.2.2 and S.3.2.6.

SWIFT II will be used for numerical modeling of single-phase flow and transport studies because of (1) its capabilities in handling both flow and transport in dual-porosity and variable fluid density environments, (2) its ongoing use in Culebra flow and transport studies (Activities S.4.2.1, S.4.2.2), and (3) its complete public documentation and Quality Assurance status (e.g., Reeves et al., 1986a; 1986b). SWIFT II will be modified for coupling with an appropriate mechanical deformation code, if preliminary
analyses show this capability to be important for simulating flow in the immediate vicinity of the excavations.

ECLIPSS 100 will be used initially for numerical modeling of 2-phase (brine and gas) flow because of (1) its well tested multiphase capability; (2) its dual-porosity capabilities for simulating flow in the fractured rock in the disturbed rock zone; and (3) its borehole simulation capabilities for simulation of human intrusion scenarios.

3. Information Needs Addressed

<table>
<thead>
<tr>
<th>Disturbed Rock Zone (1.2.1.7)</th>
<th>Salado Formation (1.3.2.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1)</td>
<td>Rustler/Salado Formation (1.3.2.3)</td>
</tr>
<tr>
<td>Disturbed Rock Zone (1.2.3.2)</td>
<td>Rustler/Dewey Lake Red Beds (1.3.2.6)</td>
</tr>
<tr>
<td>Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)</td>
<td>Boreholes Plugging Criteria, Concepts, and Designs (1.3.4.3)</td>
</tr>
</tbody>
</table>
Activity S.3.2.6
INTEGRATED MECHANICAL MODEL, DISTURBED ROCK ZONE,
AND EXCAVATION EFFECTS

1. Focus

The design and emplacement of drift, panel, and shaft seals require a description of the disturbed rock zone, which forms in response to excavation. Evolution of the disturbed rock zone through time and in response to emplacement of and closure around the seals will be predicted.

The primary objective of this activity is to compile and update the geologic or conceptual model of the disturbed rock zone. To the extent possible, however, the applicability of available numerical modeling techniques to the mechanical behavior of the disturbed rock zone will also be evaluated, in conjunction with Activity S.3.2.5.

2. Methodology

This task will integrate visual observations during mining and geophysical data around the underground openings at the WIPP facility (Activities S.3.3.11 and S.3.3.12) into a conceptual mechanical model of the disturbed rock zone. This model will be an outgrowth of the preliminary conceptual model (Borns and Stormont, 1988) and will incorporate the results of ongoing studies, such as the seismic tomography studies (Skokan et al., 1988). Some predictive capability for modeling fracture development will be acquired. This and other activities, such as Activities S.3.3.1 - S.3.3.13, will provide a data base that ensures consistency of the three-dimensional mechanistic flow and transport model (Activity S.3.2.5).

3. Information Needs Addressed

Closure (1.2.1.4)	Disturbed Rock Zone (1.2.3.2)
Brine Inflow and Room Resaturation (1.2.1.5)	Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)
Disturbed Rock Zone (1.2.1.7)	Closure (1.2.4.4)
Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1)	Salado Formation (1.3.2.1)
Closure (1.2.2.3)	Sealing Criteria, Concepts, and Designs (1.2.2.4)
Activity S.3.3.1
AIR INTAKE SHAFT PERFORMANCE

1. Focus

Detailed shaft closure data will form the basis for validating shaft-closure models to determine the time for reconsolidation of shaft fill material and stress configurations around seals (Activity S.3.2.3). The microfracture/permeability correlation will be used for evaluations of effective seal conditions. The structural investigation of the shaft will determine its closure rates as a function of depth. Additional tests will correlate the ultrasonic signal attenuation with strain and microfracturing-induced permeability increases in the shaft wall.

2. Methodology

The complete closure history of the shaft wall can be determined from early time data onward as a function of time and location within the shaft. Instrumentation consisting of extensometers, thermocouples, and closure measurement points will be installed at five elevations in the shaft. Several sets of paired holes were drilled on opposite walls of the shaft immediately after that section of the shaft was bored to provide early-time data on shaft closure. The time dependent changes within the host rock as a function of distance into the salt will be determined by ultrasonic signals. The changes in ultrasonic velocities in the shaft wall may then be correlated with strain displacement and permeability. Finally, the effects of seasonal temperature variations on the salt will be measured and analyzed in conjunction with the structural behavior of the shaft.

3. Information Needs Addressed

Closure (1.2.4.4)
Sealing Criteria, Concepts, and Designs (1.2.4.5)
Borehole-Plug Interaction (1.3.4.2)
Activity S.3.3.2
INTERMEDIATE-SCALE BOREHOLE TEST (ROOM C1)

1. Focus

The test will resolve whether a scale effect can be observed in salt to better resolve the difference between laboratory and field data used in predicting room closure rates. Although salt lacks the joint sets that account for scale effects in hard rock, it does contain interbeds that could account for a scale effect.

2. Methodology

A test will be initiated to drill and instrument a pilot hole and other boreholes through the pillar in Room C1. The pilot hole will be overcored with a 36-in. (91-cm) diameter hole while monitoring the three-dimensional array of extensometers and closure gages surrounding it. Data from the instrumentation will be acquired for two to three years to evaluate the scale effect and then correlated with data from other structural tests and calculations.

3. Information Needs Addressed

Closure (1.2.4.4)
Sealing Criteria, Concepts, and Designs (1.2.4.5)
Borehole-Plug Interaction (1.3.4.2)
Activity S.3.3.3
PANEL STRUCTURAL-RESPONSE TESTS

1. Focus

The closure rates of the disposal rooms and the overall structural response of a seven-room panel has been based on data from the Site and Preliminary Design Validation rooms and access drifts (Bechtel, 1986a; 1986b). Other information about creep response has resulted from in situ tests supporting other experiments (Tyler et al., 1988). Data from a full-scale seven room panel would provide increased confidence and reduced uncertainty (Activity S.3.2.3) in the long-term structural behavior of a panel.

2. Methodology

A full-sized seven-room panel was excavated (Panel 1) and geomechanical gages immediately installed in the pillars and roof to measure creep rates and convergence over time. Remotely read instruments are connected to a data acquisition system. Both remotely and manually-read instruments will contribute to a five-year data base. The data will be evaluated and analyzed, then correlated with other data to reduce uncertainties in the structural response of the panel.

3. Information Needs Addressed

Closure (1.2.4.4)
Sealing Criteria, Concepts, and Designs (1.2.4.5)
Borehole Plug Interaction (1.3.4.2)
Activity S.3.3.4
GAS FLOW/PERMEABILITY

1. Focus

Gas flow measurements help to define the extent of the disturbed rock zone surrounding a mined opening (Activity S.3.2.6). The measurements indicate relative permeability of the host rock to gas as a function of distance from the opening. The data are important to seal design and evaluation because flow through the total seal system depends in part on the rock in which the seals are placed. The gas flow tests may also provide information for evaluating the buildup and dissipation of natural and waste-generated gas.

2. Methodology

Portions of boreholes will be isolated using a packer system. Nitrogen will be injected in the test interval, then either a flow rate at constant pressure or pressure decay will be measured. The data will be used to estimate gas dissipation rates, determine gas permeability variations, and better understand the creation and nature of the disturbed rock zones. These data will be input to models of permeability strain and permeability stress coupling.

3. Information Needs Addressed

| Brine Inflow and Room Resaturation (1.2.1.5) | Sealing Criteria, Concepts, and Designs (1.2.2.4) |
| Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1) | |

Revision 0, April 1990 2-153
Activity S.3.3.5
NEAR-FIELD FLOW CHARACTERIZATION

1. Focus

Near-field flow characterization is part of the effort to better understand the ability of the host rock to transmit fluids (Activity S.3.2.6). This is important to brine inflow estimates, seal design, gas dissipation, and overall facility performance. Fundamental assumptions used when calculating permeability from single hole tests will be assessed based on characterization of near-field flow. Interpretations of previous single hole injected flow and inflow measurements have not considered instantaneous, near-field, excavation-induced changes. These changes may dominate flow characteristics of the rock surrounding the drift.

2. Methodology

A test will be initiated in which dye is injected into boreholes that will then be overcored. The dye in the fractures will delineate flow paths in the near field. Another test will be an array containing pressurized gas and brine, which will be monitored during the drilling of an adjacent large-diameter hole. The brine-hole response will provide data to be directly related to the poroelastic model used to predict brine inflow. The gas-hole response will be compared with the brine response and previous gas-flow measurements. These data will assist in estimating the amount and significance of deformation concurrent with excavation.

3. Information Needs Addressed

Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1)
Sealing Criteria, Concepts, and Designs (1.2.2.4)
Activity S.3.3.6
BRINE INFLOW SCALE AND STRATUM EFFECTS

1. Focus

It is necessary to measure the effect of excavation scale and age and stratigraphy on brine inflow as a further test of the current brine inflow model (Nowak and McTigue, 1987). The scale effect is predicted by the current model. A scale effect is a consequence of the predominant brine transport mechanism, and a model is necessary to quantify that effect (Activities S.3.2.4 and S.3.2.5). A complete model of brine inflow will include the potential for brine-inflow heterogeneity from different strata and from excavations of different ages. Brine inflow to horizontal boreholes in the host rock as well as vertical boreholes above and below the facility horizon can be measured by collecting and weighing the brine. Brine inflow rates as a function of borehole size for comparison with predicted scale effects must be measured. The difference in brine inflow rates among identifiably different strata in the disposal horizon must be measured to assess the magnitude of the effect of host rock heterogeneity. In addition, the effect of excavation age must be measured.

2. Methodology

Existing and new boreholes will be monitored to measure and compare brine inflow rates and trends. The boreholes range in diameter from 4 to 36 in. (10 to 91 cm) and penetrate various strata. The measured versus predicted scale effects on brine inflow will be compared to assess the consistency of the model with in situ conditions. Compositions of brine sampled will be determined.

3. Information Needs Addressed

Brine Inflow and Room Resaturation (1.2.1.5)
Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)
Salado Formation (1.3.2.1)
Activity S.3.3.7
PORE PRESSURE FOR BRINE INFLOW

1. Focus

Pore-pressure gradients near excavations and in the far-field are essential data for testing our concepts of the brine-inflow mechanism (Nowak and McTigue, 1987; McTigue and Nowak, 1987) (Activities 3.2.4, 3.2.5).

The current Darcy-like flow model for brine inflow can be used to predict near-field pore-pressure gradients for comparison with data. Far-field pore-pressure values may gauge the extent to which brine-flow paths in the WIPP host rock are interconnected. Because pore-pressure measurements require brine inflow to a test zone, data on brine-inflow rate versus rock pressure are also obtainable. Permeability values and relationships between inflow rate and pore-pressure difference can also be inferred from these data. Pore pressures and inferred permeabilities measured at different depths and locations may indicate any significant heterogeneity in the host rock and any potentially preferred brine-transport paths.

2. Methodology

This effort will concentrate on obtaining an integrated set of data for the brine-inflow excavated room (Activity S.3.3.8). Pore pressure (including the test-interval pressure rise) will be measured in 4-in. (10-cm) diameter test boreholes using tools designed and manufactured specifically for that purpose. The tools measure borehole closure and pressure simultaneously in the test intervals. All vertical and some horizontal boreholes will contain single-completion instruments. The end of the borehole will be sealed with a double packer to create the test interval. The volume between the packers serves as a guard zone to detect leakage past the primary packer. The pressure rise will be measured with a transducer. Several horizontal boreholes will contain multiple-completion instruments, in which multiple test zones are created in a single borehole within a uniform stratum.

Test intervals will be 3 ft to 65 ft (1 m to 20 m) from WIPP excavation walls. Test zones are planned to include measurements in, above, and below the disposal horizon. Anhydrite beds (e.g., Marker Bed 139) and clay beds (or seams) will be included among the test intervals.

The first set of data will be obtained while the circular-cross-section brine room is bored and passes by the pore-pressure test locations. Pore-pressure data will also be obtained during the brine-inflow test in the circular room and after the room is enlarged to a rectangle in Phase 2 of the brine-inflow room test.

3. Information Needs Addressed

Brine Inflow and Room Resaturation (1.2.1.5)
Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)
Salado Formation (1.3.2.1)

Revision 0, April 1990 2-156
Activity S.3.3.3
BRINE INFLOW TO EXCAVATED ROOMS

1. Focus

It is important to test the scale-up capability of the brine-inflow model from small (4- to 36-in. [10- to 91-cm] diameter) boreholes to excavations having diameters of several feet and intercepting most of the proposed waste disposal horizon (Nowak and McTigue, 1987). Experimental excavations with a characteristic size of several feet are needed to test scale-up with the model and to sample a representative portion of host rock salt.

Data from this brine flow test will be used to test the current brine inflow model with regard to scale-up from boreholes to room size excavations. The results may be useful in differentiating among potential mechanisms and corresponding models for brine flow (Activities S.3.2.4 and S.3.2.5). Data obtained will characterize the excavation induced disturbed zone without including the complexities of Marker Bed 139, an anhydrite interbed several feet below the proposed waste disposal horizon. Possible effects of Marker Bed 139 on brine inflow and on the disturbed zone may be measured separately in a second phase of testing.

A room with a circular cross section is expected to maximize the fraction of incoming brine that can be collected in instrumented containers and measured directly without the need to infer brine volumes. In this way, the circular cross section addresses the possibility that inaccuracies in brine inflow measurements to test rooms could result from the accumulation of brine in fractures surrounding the room, particularly in the underlying Marker Bed 139 and overlying seams. This curved cross section may also minimize the disturbed zone on the surrounding host rock, further minimizing occurrences of undetected incoming brine.

2. Methodology

As a circular brine-inflow room is bored, instrumentation will measure the pore-pressure response of the host rock. After the room is excavated and sealed, remotely read instrumentation will collect data on humidity, closure, pore pressure vs. distance from the wall, and other variables. The disturbed zone will be characterized using methods such as electrical conductivity and acoustic measurements. Liquid brine inflow will be collected from troughs and shallow sumps to be weighed, measured, and analyzed. Salt samples will also be analyzed for brine content. Finally, posttest studies will be conducted including analyses of core samples and measurements in exploratory boreholes. The data will then be interpreted in terms of brine transport mechanisms.

3. Information Needs Addressed

Brine Inflow and Room Resaturation
(1.2.1.5)
Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)
Salado Formation (1.3.2.1)
Activity S.3.3.9
BRINE PERMEABILITY TESTING OF THE DISPOSAL HORIZON

1. Focus

This testing will reduce the uncertainty in permeability values for the far-field domain of the Salado Formation and will support seal and backfill design. The rate of brine seepage into the facility, although influenced by near-field transient effects, will be, in the long term, controlled by the far-field permeability. The degree and rate of backfill consolidation will be influenced by brine inflow. Activities S.3.2.4, S.3.2.6, S.3.3.4, S.3.3.5, S.3.3.6, S.3.3.8, S.3.3.9, S.3.3.10, S.3.3.11, S.3.3.12, and S.3.3.13 combine into an overall approach to the hydrologic behavior and characterization of the disposal horizon. The testing in this activity delineates the extent of the hydrologically disturbed zone by comparing results with those obtained in near-field activities. Data on the permeability of different zones in the Salado Formation when undisturbed by the presence of the excavation will be obtained.

2. Methodology

Ten to fifteen locations will be identified to drill an array of five holes, including vertical (up and down), subhorizontal, and inclined holes. Permeability tests will be conducted at various intervals from 10 to 50 ft (3 to 15.2 m) from the facility in the halites, polyhalites, anhydrites, and clay interbeds. The data will resolve the above mentioned uncertainties and will be used in the mechanistic modeling (Activity S.3.2.5).

3. Information Needs Addressed

Brine Inflow and Room Resaturation (1.2.1.5)	Disturbed Rock Zone (1.2.3.2)
Disturbed Rock Zone (1.2.1.7)	Salado Formation (1.3.2.1)
Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.2.1)	Rustler/Salado Formation (1.3.2.3)
Activity S.3.3.10
AIR INTAKE SHAFT BRINE PERMEABILITY TESTING

1. Focus

Pressure changes measured in the Rustler Formation behind the shaft liner are either due to changes in leakage rates into the shaft or to hydrologic testing being conducted around the site (Activity S.4.3.2, Beauheim, 1987a; Haug et al., 1987). These pressure changes could affect the successful sealing of the shaft if fluid bypasses the seals in a zone of higher permeability. The Rustler and Salado Formations around the shaft must be characterized with respect to their ability to provide fluids to the shafts. Long-term pressure data are also required to evaluate changes in the hydrologic regime around the shaft. Data and interpretations appropriate for use in shaft seal design (Activity S.2.2.2) and three-dimensional mechanistic modeling (Activity S.3.2.5) are required.

2. Methodology

Three subhorizontal holes will be drilled and tested at each of eleven levels in the Air Intake Shaft. The levels include six water-bearing horizons above the Salado Formation and five horizons in the Salado. The holes will extend about 50 ft (15.2 m) outward, and permeability testing of at least three intervals will be conducted. At least one borehole in each horizon will be completed for long-term pressure and borehole closure monitoring. One to two years after completion of the testing, selected holes will be retested to assess whether any changes in the disturbed zone have occurred.

3. Information Needs Addressed

Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)
Sealing Criteria, Concepts, and Design (1.2.4.5)
Salado Formation (1.3.2.1)
Rustler/Salado Formation (1.3.2.3)
Rustler Formation (1.3.2.4)
Rustler/Dewey Lake Red Beds
Borehole Plug Interactions (1.3.4.2)
Activity S.3.3.11
SHAFT GEOPHYSICS

1. Focus

Variations in seismic velocity and electrical resistivity can be used to monitor the development of fractures and changes in porosity and permeability around a shaft for input into the disturbed rock zone model (Activity S.3.2.6). Geophysical methods can investigate the first 3 to 6 ft (1 to 2 m) of the wall rock to delineate the disturbed rock zone and stratigraphic variations in water content and porosity. This will provide data on the nature of the rock at the proposed seal locations. These methods could monitor changes in resistivity and seismic velocity around large-scale seal tests to provide a performance measure for seal design.

2. Methodology

The design for the electromagnetic and refraction studies must be completed; then refraction stations will be installed in the Air Intake Shaft. An initial electromagnetic survey will be conducted in the Salado Formation in the shaft. Periodic resurveys in the shaft would then be conducted with both refraction and electromagnetic methods.

3. Information Needs Addressed

Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)
Salado Formation (1.3.2.1)
Activity S.3.3.12
UNDERGROUND GEOPHYSICS

1. Focus

The geophysical techniques previously described (Activity S.3.3.11) can also be used to investigate back-filled rooms, the facility host rock, and proposed seal locations. Electrical and seismic methods can be used to remotely measure changes in density, void volume, and moisture. Variations in permeabilities relative to depth and position in the facility will provide indications where additional detailed testing might be conducted.

2. Methodology

Experimental high-resolution refraction surveys will be conducted, and an experimental remotely-monitored electromagnetic system will be initiated. These systems can be refined if needed and provide support tools for other performance assessment activities.

3. Information Needs Addressed

<table>
<thead>
<tr>
<th>Backfill (1.2.1.2)</th>
<th>Disturbed Rock Zone (1.2.1.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container Response (1.2.1.3)</td>
<td>Disturbed Rock Zone (1.2.3.2)</td>
</tr>
<tr>
<td>Closure (1.2.1.4)</td>
<td>Salado Formation (1.3.2.1)</td>
</tr>
</tbody>
</table>
1. Focus

The Brine Sampling and Evaluation Program characterizes the extent and composition of visually identified brine inflow. This will assist in evaluating brine sources, areal extent and volume of existing and potential brine, relationships between brine and gas occurrences, and the long-term behavior of known occurrences. This activity supports the modeling of brine inflow to the facility (Activities S.3.2.4 and S.3.2.5).

2. Methodology

Photographic documentation of brine weeps as well as observation and measurements of brine accumulations in drill holes has been ongoing for over five years and will be continued. The existing data document the variation in moisture content that occurs stratigraphically, laterally, and with time since the areas were mined. Salt efflorescences will be dried and weighed to determine the quantity of brine that evaporated to form the deposits. Visual and geophysical logging of boreholes will assist in delineating specific zones of higher moisture content. Brine samples will be collected periodically and the chemical composition analyzed.

3. Information Needs Addressed

Brine Inflow and Room
Resaturation (1.2.1.5)
Salado Formation (1.3.2.1)
2.7.2.4 Non-Salado Formation Hydrology and Nuclide Migration Activities

This section describes the activities involving non-Salado hydrology and nuclide migration (Table 2-6). Figure 2-9 illustrates the manner in which this technical area provides input necessary for performance assessment. Transport of radionuclides to the accessible environment is the ultimate concern of WIPP performance assessment. The Rustler Formation contains the first laterally continuous water-bearing zone above the WIPP repository horizon, the Culebra Dolomite Member. For this reason, evaluation of the Rustler Formation, and especially the Culebra Dolomite Member, has been a major focus of WIPP site characterization (Lappin, 1988). The final stages of testing, interpretation, and numerical modeling of the physical hydrology, radionuclide transport, and geochemical behavior of the Rustler Formation form the major focus of this area. Some data will be collected from the interval between the WIPP repository horizon and the Rustler Formation.

One group of activities in this section will collect data and report them for the final numerical model describing the present day hydrology of the Culebra Dolomite at and near the WIPP site. This model will directly support regional-scale performance assessment calculations. The major activities include a multipad interference test at the H-11 hydropad and monitoring of the Rustler Formation's response to installation of the WIPP Air Intake Shaft; both activities are ongoing.

A second group of activities will determine the relevant radionuclide-transport mechanisms that must be considered by performance assessment in modeling transport between the WIPP repository horizon and the accessible environment through the Rustler Formation. Regional scale calculations have already been completed for transport through the Culebra Dolomite Member under undisturbed conditions (Reeves et al., 1987). Major Rustler Formation field and modeling activities remaining to be completed include the conservative-tracer test at the H-11 hydropad, final reporting of all conservative-tracer testing completed to date, and completion of regional scale Culebra transport calculations under disturbed conditions, analogous to calculations contained in Reeves et al. (1987). Laboratory activities will provide updated data and an understanding of the reliability of radionuclide retention mechanisms within the Rustler Formation.

The third group of activities directly supports the required consideration of a 10,000-year time frame in regional scale radionuclide transport. Major focuses include geochemical and geophysical studies, in addition to limited hydrologic studies of units above and below the Rustler Formation. The studies are largely an outgrowth of completed studies indicating the transient nature of WIPP hydrology (e.g., Lambert, 1987; Lambert and Harvey, 1987). Because the studies address how the hydrologic and geochemical settings of the Rustler Formation have changed over about the past 10,000 years, the results can be used to indicate defensible boundary conditions for modeling studies addressing hydrology and nuclide migration over the next 10,000 years.
Table 2-6. Applications of the Non-Salado Formation Hydrology and Nuclide Migration Investigations

<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>Phenomena/Parameters Being Addressed</th>
<th>Hydrology and Nuclide Migration, Non-Salado</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.4.1 Laboratory Studies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.4.1.1 Batch K₄ Measurements</td>
<td>Backfill Performance, Radionuclide Retardation*</td>
<td>Radionuclide Retardation</td>
</tr>
<tr>
<td>S.4.1.2 Mechanistic Studies of Sorption</td>
<td>Backfill Performance, Getter Effectiveness</td>
<td>Radionuclide Retardation</td>
</tr>
<tr>
<td>S.4.1.3 Solute Column Transport</td>
<td>Radionuclide Transport*</td>
<td>Radionuclide Retardation</td>
</tr>
<tr>
<td>S.4.1.4 Rustler Radiocarbon</td>
<td></td>
<td>Ground-Water Flow, Rustler Hydrologic Properties</td>
</tr>
<tr>
<td>S.4.1.5 Mineralogical and Hydrochemical Studies in Support of Sorption Experiments</td>
<td></td>
<td>Radionuclide Retardation, Rustler Chemical Properties</td>
</tr>
</tbody>
</table>

4.2 Modeling Studies:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S.4.2.1 Final 2-D Culebra Modeling</td>
<td></td>
<td>Ground-Water Flow, Radionuclide Transport, Hydrologic Properties</td>
</tr>
<tr>
<td>S.4.2.2 Solute Transport - Brine Reservoir Breach into the Culebra</td>
<td></td>
<td>Ground-Water Flow, Radionuclide Transport, Hydrologic Properties</td>
</tr>
</tbody>
</table>

*Denotes a secondary application
<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>Phenomena/Parameters Being Addressed</th>
<th>Hydrology and Nuclide Migration, Non-Salado</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.4.2.3 Far-Field Hydrologic Flow and Boundary Conditions</td>
<td>Structural and Fluid Flow Behavior, Salado</td>
<td>Ground-Water Flow, Radionuclide Transport, Culebra Hydrologic Properties</td>
</tr>
<tr>
<td>S.4.2.4 Far-Field Culebra Transport Mechanisms Under Disturbed and Undisturbed Conditions</td>
<td>Ground-Water Flow, Radionuclide Transport, Culebra Hydrologic Properties</td>
<td></td>
</tr>
<tr>
<td>S.4.3 In Situ Tests:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.4.3.1 H-11 Multipad/Tracer Test</td>
<td>Seal Performance*</td>
<td></td>
</tr>
<tr>
<td>S.4.3.2 Rustler Response to Air Intake Shaft</td>
<td>Ground-Water Flow, Radionuclide Transport, Culebra Hydrologic Properties</td>
<td></td>
</tr>
<tr>
<td>S.4.3.3 Single-Hole Hydraulic Tests of the Rustler Formation</td>
<td>Ground-Water Flow, Hydrologic Properties</td>
<td></td>
</tr>
<tr>
<td>S.4.3.4 Single-Pad Interference Tests of the Culebra Dolomite</td>
<td>Ground-Water Flow, Hydrologic Properties</td>
<td></td>
</tr>
</tbody>
</table>

*Denotes a secondary application
Table 2-6. Applications of the Non-Salado Formation Hydrology and Nuclide Migration Investigations (Concluded)

<table>
<thead>
<tr>
<th>Program-Area Activity</th>
<th>Phenomena/Parameters Being Addressed</th>
<th>Hydrology and Nuclide Migration, Non-Salado</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.4.3.5 Conceptual Hydrogeologic Model of the Rustler Formation</td>
<td>Structural and Fluid Flow Behavior, Salado</td>
<td>Hydrologic Properties, Rock Properties</td>
</tr>
<tr>
<td>S.4.3.6 Bell Canyon Hydrologic Information</td>
<td></td>
<td>Hydrologic Properties</td>
</tr>
<tr>
<td>S.4.3.7 Dewey Lake Red Beds Hydrology</td>
<td>Seal Performance*</td>
<td>Hydrologic Properties</td>
</tr>
<tr>
<td>S.4.3.8 Surface Geophysics</td>
<td></td>
<td>Rustler Rock Properties</td>
</tr>
<tr>
<td>S.4.3.9 Regional Geochemical Studies: Solute Chemistry and Mineralogy</td>
<td></td>
<td>Rustler Rock Properties</td>
</tr>
<tr>
<td>S.4.3.10 Regional Geochemical Studies: Dissolution</td>
<td></td>
<td>Rustler Rock Properties</td>
</tr>
<tr>
<td>S.4.3.11 Regional Geochemical Studies: Paleoclimate</td>
<td></td>
<td>Climate Properties</td>
</tr>
</tbody>
</table>

*Denotes a secondary application
Figure 2-9. Relationship Among Non-Salado Formation Hydrology and Nuclide Migration Activities
Activity S.4.1.1
BATCH Kd MEASUREMENTS

1. Focus

Broad-based semiempirical data on radionuclide retention within the Rustler Formation are needed for radionuclide release scenarios. Batch Kd measurements will be conducted for specific Culebra ground water/rock combinations relevant to the WIPP performance assessment. Along with basic models and data developed in S.4.1.2, measured Kd values will be extrapolated to natural conditions of release.

Data are insufficient to determine whether Kds obtained during previous batch studies were due to sorption or other chemical processes occurring during the experiment. New experiments must be carefully designed to ensure that potentially important speciation effects are not overlooked. Batch sorption data will be obtained for plutonium, lead, and uranium under a range of experimental conditions with natural materials.

2. Methodology

The available literature describing sorption of radionuclides on rocks from the WIPP site and generic clays, sulfates, and carbonates in saline waters or in the presence of organic ligands (complexing agents) will be reviewed. The batch Kd experiments will be designed to avoid the problems identified by the literature review. An experimental factorial matrix will be designed to examine effects of mineral composition, brine composition, and radionuclides concentration.

Radionuclide sorption will also be qualitatively studied by contacting rock slabs with radionuclide-doped solutions and examining the locations of fission tracks or fogging of photographic film laid on top of the sample. The purpose will be to identify sites of radionuclide uptake on whole rock samples for a large number of combinations of radionuclides, organics, major solutes, and well-characterized rocks.

3. Information Needs Addressed

Culebra Dolomite Member (1.3.2.2)
Activity S.4.1.2
MECHANISTIC STUDIES OF SORPTION

1. Focus

Extrapolation of K_d measurements (Activity S.4.1.1) and the conduct and interpretation of fracture flow or column experiments (Activity S.4.1.3) must be done on a defensible basis. K_d values are valid only for the specific conditions of the experiment. Therefore, it is necessary to obtain a defensible theoretical understanding of the mechanisms of radionuclide/rock interactions for several simple systems relevant to WIPP. The information will be used to design batch K_d experiments and column studies to ensure that potentially important speciation or complexation effects are not overlooked in the performance assessment calculations.

2. Methodology

Techniques to measure the site-binding capacity of carbonates, sulfates, and clays in WIPP waters as a function of pH, redox ionic strength, and other solution chemistry variables must be developed. Stability constants for potentially important complexes of plutonium, uranium, and lead in WIPP ground waters must be obtained, and sites of uptake radionuclides and heavy metals such as lead must be identified for clays, sulfates, and carbonates. Studies of rates of sorption, coprecipitation, and matrix diffusion important to radionuclide retardation must be implemented. These studies will all increase confidence in the ability to make long-term predictions of radionuclide and heavy metal transport at the WIPP facility (Activity S.4.2.4).

3. Information Needs Addressed

Backfill (1.2.1.2)
Culebra Dolomite Member (1.3.2.2)
Activity S.4.1.3
SOLUTE COLUMN TRANSPORT

1. Focus

Batch K_d experiment data and column transport data will provide radionuclide sorption values for use in predictions of radionuclide transport through water-bearing units at the WIPP site (Activity S.4.2.4).

Available K_d and column data are inadequate for the needs of performance assessment. There are few data from column experiments on WIPP materials, the available data are not for radionuclides of interest, and the solutions used in the experiments contained no organic complexants. Additional column-experiment data will support performance assessment; new experiments must be carefully designed to ensure that potentially important speciation effects within the fluid are not overlooked. The column experiments will form the final experimental evaluation of the transport behavior within the Culebra Dolomite.

2. Methodology

Wafer and column transport experiments for a small number of radionuclide/organic/rock/water combinations will be guided by information obtained from Activities S.4.1.1 and S.4.1.2. The studies will differ from previous column studies in that more relevant experimental material will be used. In addition, greater care will be taken to (1) account for the fate of all of the radionuclides introduced in the experiments (mass balance), (2) characterize the solids involved in sorption, (3) avoid supersaturation or complexation by agents not expected in waters at WIPP, and (4) design and bound flow conditions to ensure that matrix diffusion can be accounted for in the final data interpretation. The theoretical calculations of radionuclide transport in the columns will be applicable to chemical systems typical of the WIPP site and facility.

A coupled chemical reaction/transport code to model the results of column experiments is required. Such a code is currently under development at Oak Ridge National Laboratory with partial support from Sandia National Laboratories. The code will be adapted for this project and will be used to calculate theoretical elution curves for the columns using basic thermodynamic and kinetic data.

3. Information Needs Addressed

Backfill (1.2.1.2)
Culebra Dolomite Member (1.3.2.2)
Activity S.4.1.4
RUSTLER RADIOCARBON

1. Focus

Data resulting from this activity may better establish the magnitudes of uncertainties in radiocarbon activity measurements arising from (1) natural variability of less heavily organic contaminated sampling localities with time, (2) transient variability of moderately to heavily organic contaminated sampling localities as a function of degree of purging, and (3) variability among different modes of sample preservation and sample storage times.

The primary use of radiocarbon analysis of Rustler ground waters (Lambert, 1987) has been in the attempt to determine ground-water residence times at the WIPP site. The results to date (Lambert and Harvey, 1987; Lambert and Carter, 1987) are consistent with the interpretation that the overall hydrologic setting of the WIPP site is transient (Activity S.4.2.3).

2. Methodology

Water samples will be collected and analyzed from six wells chosen to represent a spectrum of degrees of organic contamination based on experience from WIPP water sampling programs. Samples collected will address questions on organic contamination, precision of sampling, preservation methods, and sample shelf life. Eighteen archived radiocarbon samples will be analyzed for comparison. Finally the integrity of samples stored for over three years before being analyzed will be verified.

3. Information Needs Addressed

Recharge (1.3.1.6)
Culebra Dolomite Member (1.3.2.2)
Activity S.4.1.5
MINERALOGICAL AND HYDROCHEMICAL STUDIES IN SUPPORT OF SORPTION EXPERIMENTS

1. Focus

Results of laboratory studies of radionuclide transport (Activities S.4.1.1 - S.4.1.3) may be difficult to extrapolate to the complex environments at the WIPP and to the long time periods considered by the EPA Standard. Natural analogs of nuclide behavior in the solute systems present at the WIPP can provide valuable data for the validation of models of the long-term behavior of radionuclides under natural conditions.

Laboratory studies of radionuclide sorption and transport (Activities S.4.1.1 - S.4.1.3) can be applied to predictions of performance of the WIPP facility only if the data have been collected under the physicochemical conditions relevant to the natural system. Important characteristics of the ground water and minerals that would react with radionuclides released from the facility are uncertain. Important solution parameters include the saturation state of the waters with respect to the dominant carbonate and sulfate minerals; pH; pCO$_2$; and redox equilibria. Previous studies of Rustler Formation mineralogy have focused on detailed aspects of clays in a few well documented intact cores. Sampling bias inherent in such a focus is present because principal water-bearing zones, commonly a fraction of the whole thickness of the Culebra Dolomite Member, are likely to have been reduced to rubble by partial dissolution and hence were poorly represented in core recovery. Additional rock samples containing surfaces previously in contact with ground waters will be obtained.

2. Methodology

The component tasks in this effort are (1) collecting shaft samples or core fragments likely to have been exposed to natural occurrences of fluid for use in sorption experiments, (2) mineralogical determinations on the core, including petrographic examination, analyses of organic carbon, X-ray diffraction, and electron optics studies, (3) measuring total CO$_2$ content and improving estimates of the pH and carbonate mineral/water equilibria of Culebra waters, (4) evaluating the nature of redox disequilibria of the Culebra, (5) formulating a natural analog model to understand the behavior of naturally occurring uranium in the Rustler Formation to complement theoretical and experimental studies of uranium sorption and speciation at the WIPP site, and (6) completing Rb/Sr dating studies of clay minerals in the Salado Formation to determine the last episode of pervasive fluid movement through Salado rocks that resulted in mineral alteration.

3. Information Needs Addressed

Culebra Dolomite Member (1.3.2.2)
Activity S.4.2.1
FINAL TWO-DIMENSIONAL CULEBRA MODELING

1. Focus

A numerical ground-water model that demonstrates quantitative understanding of the present day Culebra flow regime and investigates the sensitivity of model results to data uncertainties is necessary to understanding radionuclide transport in the Culebra Dolomite Member. This model must also demonstrate a quantitative understanding of possible long-term changes in the flow system associated with climatic change or with other transient changes in boundary conditions (Activity S.4.2.3).

This model will be used as the mechanistic hydrologic model for the Culebra Dolomite Member at and near the WIPP site (Activities PA.3 and PA.4) and will be the basis for regional scale transport calculations.

The Culebra Dolomite is the most transmissive laterally continuous hydrogeologic unit above the WIPP facility. It is considered to be the major potential off-site pathway for radionuclide transport in the subsurface, should a breach of the facility occur. Past modeling studies have focused on developing a calibrated model of the flow regime for approximately steady-state head conditions and for simulating two multipad-scale interference tests.

2. Methodology

Continuing work extends model calibration to include the transient hydraulic stresses caused by Air Intake Shaft construction and the H-ll multipad/tracer test (Activity S.4.3.1) and other new data from other single well and single-pad hydrologic tests. Model calibration will use an adjoint-sensitivity approach that provides feedback on the sensitivity of simulated heads at observation wells as a function of variations in the transmissivity distribution. This feedback will significantly enhance the calibration process.

Uncertainties in the final calibrated model of the present day flow regime, including travel time uncertainty between the WIPP site center and southern boundary, will be quantitatively estimated.

After the model has been calibrated and the present-day flow regime can be simulated satisfactorily, the model will be extended to simulate possible long-term changes in the Culebra flow system associated with climatic change. These simulations will be implemented by coupling the Culebra model with the regional-scale Culebra model and with the upper portion of the three-dimensional model being constructed as part of Activity S.3.2.5. This coupling will allow the examination of the hydrologic impact including travel time of various climate-related scenarios over 10,000 years.
3. Information Needs Addressed

Recharge (1.3.1.6) Rustler Formation (1.3.2.4)
Culebra Dolomite Member (1.3.2.2) Rustler/Dewey Lake Red Beds (1.3.2.6)
Rustler/Salado Formations (1.3.2.3)
Activity S.4.2.2
SOLUTE TRANSPORT-BRINE RESERVOIR BREACH INTO THE CULEBRA

1. Focus

One group of WIPP scenarios includes breach of the repository by drilling into an underlying pressurized brine occurrence in the Castile Formation. This activity supports calculations needed to evaluate flow and transport in the Culebra Dolomite Member following such a breach and calculations of releases resulting from these breach scenarios.

Breaches of the WIPP repository that involve injection of contaminated fluids into the Culebra Dolomite Member and their subsequent transport to the accessible environment can be bounded by two pressure conditions at the injection point: low-pressure injection that does not disturb the natural hydraulic gradients within the Culebra Dolomite Member, and high-pressure injection that substantially alters the hydraulic gradients. An example of a high-pressure injection would be a connection between the Culebra and a Castile pressurized brine occurrence. Reeves et al. (1987) evaluated the relative importance of the parameters governing solute transport through double-porosity portions of the Culebra under a low-pressure injection scenario. They showed that under the gradients naturally occurring within the Culebra, diffusion of solutes from the fractures to the rock matrix may lead to an overall regional-scale transport behavior similar to that of a simple porous medium. Whether this same conclusion applies in the case of a high-pressure injection scenario is unknown and must be resolved. This activity will provide information on transport mechanisms and approaches for far-field modeling of disturbed conditions.

2. Methodology

The areal, steady-state ground-water flow field of the Culebra Dolomite Member derived from modeling will be used as the initial condition for simulating ground-water flow and solute transport for a high-pressure injection scenario. An internal boundary condition in the model will dynamically link a well connecting a Castile pressurized brine occurrence to the Culebra Dolomite at a point above the disposal panels. Transient simulations will be used to define the resulting time-dependent changes in the flow field. Based on hydraulic testing of existing pressurized brine occurrences, a range of parameter values governing brine-reservoir behavior will be used.

To examine solute transport under high hydraulic gradients, a number of flow paths from the breach point to the accessible environment will be selected for further study. Dual-porosity transport will be examined under a variety of conditions. Free-water diffusivity, matrix tortuosity, matrix-block length, matrix porosity, fracture porosity, fracture dispersivity, fracture flux, and sorption will be varied systematically over their ranges of uncertainty to establish their relative importance in affecting solute travel times. Comparisons will be made to solute transport through a simple porous medium under the same hydraulic conditions. If the results of the numerical modeling indicate that transport through the Culebra Dolomite Member in the event of a brine-reservoir breach is of
concern, then it will be necessary to compile and assess available data on the composition of Castile brines.

3. Information Needs Addressed

- Culebra Dolomite Member (1.3.2.2)
- Castile Formation Brines (1.3.2.7)
- Pressurized Brine Hydrofracturing and Transport (1.3.2.8)
Activity S.4.2.3
FAR-FIELD HYDROLOGIC FLOW AND BOUNDARY CONDITIONS

1. Focus

Site characterization activities which have emphasized the Rustler Formation and shallower units indicate that the geohydrologic setting of the WIPP site is transient on the 10,000-year time scale of regulatory interest. For performance assessment calculations, the extent of time-dependent variations in hydrologic flow and boundary conditions for all water-bearing units of interest over 10,000 years must be estimated. The units of interest extend from the surface downward through the Bell Canyon Formation.

2. Methodology

This activity will compile and examine recommendations on time-dependent boundary conditions and flow behaviors for individual stratigraphic units and develop an internally consistent description of the overall time-dependent hydrologic behavior of the WIPP region for input directly into Performance Assessment. The modeling of the hydrology of the Rustler Formation will be completed. The Bell Canyon, Salado, and Dewey Lake Red Beds hydrologic information will be correlated with paleoclimate information and its estimated effects within the Rustler Formation.

3. Information Needs Addressed

Recharge (1.3.1.6) Dewey Lake Red Beds (1.3.2.5)
Extent of Dissolution (1.3.1.7) Rustler/Dewey Lake Red Beds (1.3.2.6)
Culebra Dolomite Member (1.3.2.2) Pressurized Brine Hydrofracturing
Rustler/Salado Formation (1.3.2.3) and Transport (1.3.2.8)
Rustler Formation (1.3.2.4) Bell Canyon (1.3.2.9)
Activity S.4.2.4
FAR-FIELD CULEBRA TRANSPORT MECHANISMS UNDER DISTURBED AND UNDISTURBED CONDITIONS

1. Focus

Testing with conservative tracers at the borehole hydropads has demonstrated the important role of fractures in controlling the transport of conservative "contaminants" on at least the 164 to 492 ft (50 to 100 m) scale in fractured portions of the Culebra Dolomite Member. To reduce uncertainty in transport modeling, it is necessary to determine whether such fracturing also plays a significant role in transport to the accessible environment through fractured portions of the Culebra Dolomite, under both undisturbed and brine-reservoir-breached conditions.

2. Methodology

This activity examines the importance of various mechanisms for radionuclide transport through the Culebra Dolomite from a point above the WIPP waste-emplacement panels to the accessible environment. Final interpretations of conservative-tracer tests at the three hydropads will be completed. These interpretations will estimate effective block sizes and effective fracture porosities within fractured portions of the Culebra Dolomite. Completed calculations investigating the role of fractures under undisturbed conditions (Reeves et al., 1987) use a preliminary transmissivity distribution within the Culebra Dolomite (Haug et al., 1987) and preliminary estimates of fracture spacings and porosities (Kelley and Pickens, 1986). The conclusions of Reeves et al. (1987), namely that fracturing effects need not be included in numerical modeling of transport to the accessible environment within the Culebra Dolomite under undisturbed conditions, will be examined in light of the final estimated transmissivity distribution (Activity S.4.2.1) and effective block sizes and fracture porosities.

Ongoing calculations are examining the potential effects of fracturing on transport within the Culebra Dolomite following a brine-reservoir breach of the WIPP repository (Activity S.4.2.2). Conclusions based on these calculations, which use the Culebra Dolomite transmissivity distribution estimated by LaVenue et al. (1988), will be examined in light of the final estimated Culebra Dolomite transmissivity distribution, fracture spacings, and fracture porosities provided by Activity S.4.2.1. The result will be a final estimate of the importance of various transport mechanisms within fractured portions of the Culebra Dolomite under both undisturbed and brine-reservoir-breached conditions, with emphasis on determining whether transport through fractures plays any significant role on the regional scale.

3. Information Needs Addressed

Culebra Dolomite Member (1.3.2.2) Pressurized Brine Hydrofracturing
Castile Formation Brines (1.3.2.7) and Transport (1.3.2.8)
Activity S.4.3.1
H-11 MULTIPAD/TRACER TEST

1. Focus

Large-scale testing at the H-11 hydropad, similar to multipad pump and tracer tests performed elsewhere at WIPP (Beauheim, 1987a, 1987b), will better define the extent and properties of the relatively higher permeability zone within the Culebra Dolomite in the southeastern part of the WIPP site. Numerical modeling of ground-water flow in the Culebra Dolomite (LaVenue et al., 1988) shows that water above WIPP generally flows southward. This flow is controlled by a high-permeability zone. Because transport of solutes through this zone is of concern (Reeves et al., 1987), tracer tests should address this sensitive portion of the site. Computer analysis of the data will estimate fracture porosity and other factors for use in solute-transport modeling. The distribution of transmissivities and storativities resulting from the analysis will guide the two-dimensional numerical modeling of Culebra Dolomite flow (Activity S.4.2.1).

2. Methodology

A combination multipad pumping and tracer test was performed at the H-11 hydropad. Different tracers were injected into the three other wells on the hydropad and their breakthroughs to the pumped well were monitored to allow characterization of the flow paths. Water levels were also monitored in surrounding observation wells to define the water recovery trends. Analysis of these data will be input to the modeling activities to better define the high-permeability zone in the Culebra Dolomite.

3. Information Needs Addressed

Culebra Dolomite Member (1.3.2.2)
Activity S.4.3.2
RUSTLER RESPONSE TO AIR INTAKE SHAFT

1. Focus

Monitoring and interpretations of the hydrologic response to the installation and grouting of the Air Intake Shaft are necessary to develop the final Culebra model (Activity S.4.2.1) and to support the near-field, mechanistic, flow and transport model (Activity S.3.2.5). The drawdown cone caused by leakage from the Culebra into the shafts extends at least 2 mi (3.2 km) outward (Haug et al., 1987). Field data will be interpreted and simulated using computer models to estimate transmissivity and storativity for Rustler members at the WIPP facility. These data will allow calculation of potential leakage rates to the shafts, better design of shaft seals, and more defensible undisturbed performance calculations.

2. Methodology

Because the storativity and transmissivity within the Rustler can only be clarified by long-term testing, a specific borehole (H-16) was drilled and instrumented to monitor the hydrologic regime, both during construction and after construction of the Air Intake Shaft. Pressures in all five Rustler members were monitored, and water level measurements in nearby observation wells were monitored (Beauheim, 1987c). These data will provide support in developing the final Culebra model.

3. Information Needs Addressed

<table>
<thead>
<tr>
<th>Disturbed Rock Zone and Fluid-Flow Characteristics (1.2.4.3)</th>
<th>Rustler Formation (1.3.2.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culebra Dolomite Member (1.3.2.2)</td>
<td>Rustler/Dewey Lake Red Beds (1.3.2.6)</td>
</tr>
</tbody>
</table>
Activity S.4.3.3
SINGLE-HOLE HYDRAULIC TESTS OF THE RUSTLER FORMATION

1. Focus

Additional single-hole hydrologic data on the Rustler Formation are needed to reduce uncertainties in the hydrologic data bases. A reliable numerical model of ground water flow and mass transport through the Culebra Dolomite must be completed. Previous tests and modeling have identified areas where Culebra Dolomite observation wells would be useful (LaVenue et al., 1988).

2. Methodology

Seven boreholes located in response to previous tests and modeling have been drilled and tested (Beauheim, 1987c). The data from these tests will be interpreted from pump tests or slug tests and transmissivity in high-uncertainty locations in the Culebra Dolomite will be estimated. Data will be incorporated into the appropriate Culebra Dolomite models (Activity S.4.2.1). If unacceptable areas of uncertainty still exist, additional boreholes may be required. It is likely that a new Culebra-depth hole south of the WIPP facility and a shallow hole into the Dewey Lake Red Beds will be required.

3. Information Needs Addressed

Culebra Dolomite Member (1.3.2.2)
Rustler Formation (1.3.2.4)
Rustler/Dewey Lake Red Beds (1.3.2.6)
Activity S.4.3.4
SINGLE-PAD INTERFERENCE TESTS OF THE CULEBRA DOLOMITE

1. Focus

A reliable and defensible numerical model of ground-water flow and transport through the Culebra Dolomite is required for final interpretation of the local variability of fracturing effects and storativity on ground-water flow. Results to date identify the existence of fracturing in several boreholes and demonstrate the complex relationship between fracturing and transmissivity (Beauheim, 1987a; Saulnier, 1987). Test results were previously interpreted assuming the Culebra Dolomite acts hydraulically as a single-porosity medium. However, recent interpretations show it acts as a double-porosity medium over much of the WIPP site (Beauheim, 1987a, 1987b, 1987c). Hydraulic interference tests are the only source of information on storativity of the Culebra Dolomite. Storativity is a key parameter governing the response of a water-bearing unit to transient stresses and is needed as input to the two-dimensional Culebra Dolomite model (Activity S.4.2.1).

2. Methodology

To provide the required information, existing data from appropriate boreholes will be reinterpreted using analytical techniques incorporating both single and double-porosity formulations. Determinations of which borehole locations in the Culebra Dolomite behave as a single-porosity medium and which behave as a double-porosity medium will be made. These data will be input to the model to support regional scale interpretations.

3. Information Needs Addressed

Culebra Dolomite Member (1.3.2.2)
Activity S.4.3.5
CONCEPTUAL HYDROGEOLOGIC MODEL OF THE RUSTLER FORMATION

1. Focus

A conceptual hydrogeologic model is needed to estimate hydrogeologic properties where point data are not available. Models have relied on hydraulic property measurements made at discrete points, but this fails to consider nonnumerical information (LaVenue et al., 1988). Because transmissivity of the Culebra Dolomite is closely related to fracturing in a geologic model, explaining the origin of the fractures and predicting their geographic occurrence is desirable. Establishing a relationship between geology, fractures, and geophysical measurements would enhance the model.

2. Methodology

Cores from the Rustler Formation, the geology of the Air Intake Shaft, nearby outcrops of the Rustler, and geophysical data will be examined to define factors that correlate with transmissivity and define causal relationships. A conceptual model will be developed integrating geologic, hydrologic, and geophysical data to allow predictions of Rustler hydraulic properties or potential for vertical flow paths.

3. Information Needs Addressed

Culebra Dolomite Member (1.3.2.2)	Rustler Formation (1.3.2.4)
Rustler/Salado Formation (1.3.2.3)	Rustler/Dewey Lake Red Beds
(1.3.2.6)	
Activity S.4.3.6
BELL CANYON HYDROLOGIC INFORMATION

1. Focus

Accurate information on Bell Canyon hydrologic properties is needed to define scenarios involving connection of the Bell Canyon with other water-bearing units (Activity S.4.2.3). Some scenarios postulate connecting the Rustler with the Bell Canyon by a drillhole through the repository. Evaluation of the flow and transport properties of the Bell Canyon is needed. The formation has been tested in five boreholes in the past. However, early interpretations, particularly hydraulic gradients, are inconsistent with the two most recent test interpretations (Beauheim et al., 1983; Beauheim, 1986).

2. Methodology

The data from the three early interpretations will be reevaluated to obtain new estimates of transmissivity and hydraulic head in the Bell Canyon. If the data from all five boreholes and the subsequent numerical modeling indicate that transport through the Bell Canyon is a concern in the event of human intrusion, it will be necessary to compile and assess data on the composition of Bell Canyon brines.

3. Information Needs Addressed

Rustler/Salado Formation (1.3.2.3)
Bell Canyon Flow and Geochemistry (1.3.2.9)
Activity S.4.3.7
DEWEY LAKE RED BEDS HYDROLOGY

1. Focus

In the event of any breach involving upward fluid flow from the WIPP facility, contaminated brine might be injected into either saturated or unsaturated portions of the Dewey Lake Red Beds. This activity also supports limited evaluation of Dewey Lake Red Beds hydrology and transport behavior (Activity S.4.2.3). No continuous zone of saturation has been evident in holes drilled at the site. However, there are permeable zones as evidenced by loss of drilling fluid in some holes. A locally significant freshwater aquifer is present along the southern boundary of the WIPP site (Mercer, 1983). Therefore the Dewey Lake Red Beds could, under certain breach scenarios, provide a path to the accessible environment.

2. Methodology

Three phases will be implemented to resolve this concern:

a. All drilling records and borehole histories from WIPP boreholes will be reviewed and assessed for pertinent Dewey Lake Red Beds hydrologic information.

b. A Dewey Lake Red Beds well will be installed to evaluate the nature and properties of the Dewey Lake Red Beds aquifer along the southern WIPP boundary.

c. A brine injection test will be performed at a well that has a known fracture zone in the Dewey Lake Red Beds to assess the transport properties.

3. Information Needs Addressed

Rustler/Salado Formation (1.3.2.3) Pressurized Brine Hydrofracturing and Transport (1.3.2.8)
Dewey Lake Red Beds (1.3.2.5)
Rustler/Dewey Lake Red Beds (1.3.2.6)

Revision 0, April 1990 2-185
Activity S.4.3.8
SURFACE GEOPHYSICS

1. Focus

Delineation and interpretation of lateral variation in the Rustler Formation as observed in the changes in apparent resistivity across the WIPP site will help determine the flow field and interrelationship of the spatially separated boreholes for use in the two dimensional Culebra Dolomite model (Activity S.4.2.1). Geophysical methods can also assess the effectiveness of borehole plugs and determine the effects of shafts on the Rustler Formation hydrology.

2. Methodology

Geophysical methods proposed are primarily electric or electromagnetic and will measure subsurface resistivities, which is the geophysical property most sensitive to changes in the hydrologic system. Small-scale controlled source audio-magnetotelluric surveys will be conducted as needed. A remotely monitored high-resolution transient electromagnetic array will be designed and installed to monitor the site and large-scale tests.

3. Information Needs Addressed

Culebra Dolomite Member (1.3.2.2) Pressurized Brine Hydrofracturing
Dewey Lake Red Beds (1.3.2.5) and Transport (1.3.2.8)
Activity S.4.3.9
REGIONAL GEOCHEMICAL STUDIES: SOLUTE CHEMISTRY AND MINERALOGY

1. Focus

Recent interpretation of the geochemical and hydrologic setting of the WIPP site has emphasized that the overall behavior is transient (Siegel et al., 1988). Evidence suggests a major recharge regime about 10,000 to 20,000 years ago that differs notably from the modern one (Hunter, 1985). Available models are based on a few reliable analyses of the isotopic, chemical, and mineralogic character of the Ochoan system. Reliable predictions of the fate of radionuclides emplaced in the WIPP repository require a better understanding of the histories of rocks and ground water. The resolution of differences among various conceptual models of the evolution of the ground-water system is necessary (e.g., Haug et al., 1987; LaVenue et al., 1988; Chapman, 1988; Lambert, 1988; Siegel et al., 1988). Also, previous studies of Rustler mineralogy have focused on intact core, which tends to bias the sampling. Sampling of less cohesive core is required to characterize mineralogies actually in contact with water recovered during pump tests.

2. Methodology

a. The mineralogical aspect of this activity will be covered by a review of core descriptions to compare with hydrologic test results. Then mineral assemblages that are probably related to solutes in the fluids will be compiled. Finally, trace-isotope and trace-element studies of key mineral constituents will be performed.

b. Laboratory analyses of water samples from the Water Quality Sampling Program will be continued to support the solute chemistry program. Additional solutes will be quantified if needed. Data bases on solutes and isotopes will be expanded.

3. Information Needs Addressed

Recharge (1.3.1.6)
Extent of Dissolution (1.3.1.7)
Culebra Dolomite Member (1.3.2.2)
Activity S.4.3.10
REGIONAL GEOCHEMICAL STUDIES: DISSOLUTION

1. Focus

Additional petrographic and isotopic measurements are needed to confidently estimate rock/water ratios and determine the origin of water that interacted with the minerals. The degree and timing of rock/water interactions resulting in evaporate dissolution govern the changes in permeability of water-bearing brittle interbeds in the evaporate section. Therefore, the degree of vertical and lateral water movement within the Rustler and Dewey Lake Red Beds zones that are now carrying or have carried water must be determined. This will allow areas to be identified in which permeabilities may have changed as a result of postdepositional rock/water interactions and evaporite dissolution. It may also determine the time scale over which dissolution has occurred and the mechanisms and pathways of ground water movement that have resulted in changes in rock properties and major and minor solute distribution.

2. Methodology

Ongoing laboratory studies related to evaporate dissolution will be completed. Concurrently, the characterization of gypsiferous rocks in the Ochoan evaporates at and near the WIPP site with emphasis on characterizing the last major fluids in contact with these rocks will be completed. The rock/water interactions that took place in the Rustler Formation and Dewey Lake Red Beds at the WIPP site and the upper Salado Formation in Nash Draw will be described.

3. Information Needs Addressed

Extent of Dissolution (1.3.1.7)
Culebra Dolomite Member (1.3.2.2)
Activity S.4.3.11
REGIONAL GEOCHEMICAL STUDIES: PALEOCLIMATE

1. Focus

Recent interpretation of the geochemical and hydrologic setting of the WIPP repository has emphasized that the overall behavior is transient. There is evidence of a major recharge regime 10,000 to 20,000 years ago that is notably different from the modern one. The timing and magnitude of extremes in transient behavior of the hydrologic system probably correlate with magnitude and periodicity of geologic events such as climatic fluctuations. To support scenario screening and long-term performance calculations, information on the paleoclimate is needed.

2. Methodology

A bibliography of the paleoclimate has been compiled (Bachman, 1989). Based on mineralogical and element analysis, an estimate of the annual precipitation to the Ochoan/Triassic/Cenozoic hydrologic system during the late Pleistocene in southeastern New Mexico will be determined. Paleoflow patterns in the Dewey Lake Red Beds and Rustler Formation associated with the Pleistocene will be obtained by analyzing faunal remains from Pleistocene deposits and cellulosic material from old trees. Finally, the water budget calculations will be revised and flow models made consistent with wetter climatic conditions for a 10,000-year simulation of WIPP performance under such hydrologic conditions.

3. Information Needs Addressed

Recharge (1.3.1.6)
Extent of Dissolution (1.3.1.7)
Culebra Dolomite Member (1.3.2.2)
2.8 ACTIVITY SCHEDULES

A series of schedules containing key milestones and reports for the performance assessment activities and supporting activities appears on Figures 2-10 through 2-14. These schedules identify the data and models necessary to support the final consequence analysis. The approach to performing the performance assessment analysis is iterative. Available data, and estimates where data are unavailable, will be used to perform a preliminary consequence analysis every six months, with annual reports to be issued until the Draft EPA (40 CFR 191) Compliance Report is completed in late CY 1993. The final analysis will use the best models and data reasonably achievable at that time. The Final EPA (40 CFR 191) Compliance Report is scheduled to be issued in late CY 1994.
<table>
<thead>
<tr>
<th>Activities</th>
<th>FY 89</th>
<th>FY 90</th>
<th>FY 91</th>
<th>FY 92</th>
<th>FY 93</th>
<th>FY 94</th>
<th>FY 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 89</td>
<td>CY 89</td>
<td>CY 90</td>
<td>CY 91</td>
<td>CY 92</td>
<td>CY 93</td>
<td>CY 94</td>
<td>CY 95</td>
</tr>
<tr>
<td>Scenario Development, Screening, and Probability Assignment (PA.1, PA.2)</td>
<td>Complete Events and Processes Report</td>
<td>Complete Scenario Screening</td>
<td>Complete Probability Assignments</td>
<td>Complete Final Summary Report</td>
<td>Complete Final Summary Report</td>
<td>Final Ground Water Modeling Input to PA</td>
<td></td>
</tr>
<tr>
<td>Transport Modeling (PA.5)</td>
<td>Complete Hydrology/Transport Sensitivity Analysis</td>
<td>Complete Final Summary Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Pathways/Human Dosimetry and Effects (PA.6)</td>
<td>Complete Biological Pathways/Human Dosimetry Update and Report</td>
<td>Complete Final Biological Pathways/Human Dosimetry Report</td>
<td>Final Modeling Input to PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repository/Shaft Systems Modeling (PA.7)</td>
<td>Complete Preliminary Repository/Shaft System Model</td>
<td>Complete Final Repository/Shaft System Model and Summary Report</td>
<td>Sensitivity Analysis of Engineered Alternatives (from Preliminary Alternatives list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-10. Schedule for Performance Assessment Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>FY 89</th>
<th>FY 90</th>
<th>FY 91</th>
<th>FY 92</th>
<th>FY 93</th>
<th>FY 94</th>
<th>FY 95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CY 89</td>
<td>CY 90</td>
<td>CY 91</td>
<td>CY 92</td>
<td>CY 93</td>
<td>CY 94</td>
<td>CY 95</td>
</tr>
</tbody>
</table>

Consequence Analysis (PA.8, PA.10)

- Complete Forecast and Demonstration Reports
- Complete Annual Preliminary Comparison to the Standard (1)
- Complete Assembly of Final Models
- Complete Final Consequence Analysis
- Complete Draft Comparison to the Standard
- Complete Comparison to the Standard

Primary Data Base (PA.11)

- Complete Systems Analysis for Transport and Dose
- Briefings on Data Base
- Data continuously provided to PA analysis
- Draft Data Base for Comparison to the Standard
- Update Data Base for Comparison to the Standard

(1) Annual reports will contain sensitivity analyses, consequence analyses, and updates to the data base and each will be a revision of the preceding report. The CY90 report will revise the Forecast report.

(2) Dashed line indicates these dates will potentially be affected by the initial receipt of waste at WIPP.

Figure 2-10. Schedule for Performance Assessment Activities (concluded)
Figure 2-11. Schedule for Disposal Room and Drift System Activities
Figure 2-11. Schedule for Disposal Room and Drift System Activities (continued)
Figure 2-11. Schedule for Disposal Room and Drift System Activities (concluded)
Figure 2-12. Schedule for Sealing System Activities
Figure 2-13. Schedule for Salado Formation Structural and Fluid-Flow Behavior Activities
<table>
<thead>
<tr>
<th>Activities</th>
<th>FY 89</th>
<th>FY 90</th>
<th>FY 91</th>
<th>FY 92</th>
<th>FY 93</th>
<th>FY 94</th>
<th>FY 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY 89</td>
<td>CY 90</td>
<td>CY 91</td>
<td>CY 92</td>
<td>CY 93</td>
<td>CY 94</td>
<td>CY 95</td>
<td></td>
</tr>
<tr>
<td>Laboratory Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S.4.1.1 - S.4.1.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determine Estimates of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundary K<sub>g</sub> Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop Chemical Evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model - Culebra Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods to Characterize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Properties of Natural Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in Brine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminate Experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop Computer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code to Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision to Acquire More Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determine K<sub>g</sub> Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in Culebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S.4.2.1 - S.4.2.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Final 2-D Culebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Sensitivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Modeling of Culebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibrate 2-D Culebra Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Summary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Culebra Hydrology Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Further Response to Air Intake</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaft Activities Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Tracer Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Bell Canyon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinterpretation Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Situ Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S.4.3.1 - S.4.3.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Multiplex Test Reports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bibliography of Paleoclimate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characterize Gypsum Rocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in Ochoan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Ochoan Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Rock/Fluid Interactions Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-14. Schedule for Non-Salado Formation Hydrology and Nuclide Migration Activities
REFERENCES

Bachman, G. O., 1989, Annotated Bibliography of Paleoclimate Studies Relevant to the Waste Isolation Pilot Plant, Southeastern New Mexico, SAND89-7087; Sandia National Laboratories, Albuquerque, NM.

Revision 0, April 1990 R-1

Chapman, J.B., 1988. Chemical and Radiochemical Characteristics of Ground Water in the Culebra Dolomite, Southeastern New Mexico, EEG-39; New Mexico Environmental Evaluation Group, Santa Fe, NM.

Christensen, C.L., and E.W. Peterson, 1981. The Bell Canyon Test Summary Report, SAND80-1375; Sandia National Laboratories, Albuquerque, NM.

Revision 0, April 1990 R-2

Molecke, M.A., 1990b. Test Plan: WIPP In Situ Room-Scale CH TRU Waste Tests; Sandia National Laboratories, Albuquerque, NM.

