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ABSTRACT 

Spatial estimates of transmissivity, which are essential input to a groundwater flow model, are usually developed 
from a limited number of transmissivity measurements and therefore associated with an uncertainty. In an attempt to 
assess the spatial variability of the unmeasured transmissivities within the Culebra Dolomite near the Waste 
Isolation Pilot Plant (WIPP), a multiple realization approach is employed. An innovative aspect of the 
methodology is U1e generation of an ensemble of conditional simulations of the transmissivity field, which preserves 
the statistical moments and spatial correlation structure of the measured transmissivity field and honors the measured 
values at U1eir locations. Each simulation is then calibrated, using an iterative procedure, to match an exhaustive set 
of steady-state and transient pressure data. A completely automated inverse algorithm using pilot points as 
parameters of calibration was employed. The methodology was applied to the transmissivity fields for the Culebra 
Dolomite aquifer, and 70 conditional simulations were produced and calibrated. Based on an analysis of the calibrated 
transmissivity fields, additional data in a region east and north of U1e H-3 borehole would help to more accurately 
characterize the transmissivity of the region and reduce the uncertainty in calculating groundwater travel times. 
Progress in U1ese area<; would, in, tum, reduce the uncertainty in the prediction of concentrations at the accessible 
environment boundary. 

*TI1e work described in this report was performed for Sandia National Laboratories under Contract No. 67-0412. 
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1. INTRODUCTION 

The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is a research and development project of 

the United States Department of Energy (DOE). The WIPP is designed to be the first mined geologic repository to 

demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated by DOE defense programs since 

1970. Before disposing of radioactive waste at t11e WIPP, t11e DOE must have a reasonable expectation tllat the 

WIPP will comply with t11e quantitative requirements of Subpart n of t11e United States Environmental Protection 

Agency's (EPA) Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level 

and Transuranic Radioactive Wastes (40 CFR Part 191, EPA, 1985). Comparing the long-term performance of 

the WIPP disposal system with t11e quantitative requirements of 40 CFR Part 191 will help dete1mine whetller t11e 

disposal system will provide safe disposal of radionuclides. 

Performance m;sessment as defined in the Containment Requirements of Subpart B of 40 CFR Part 191 is an 

analysis that identifies the processes and events that might affect t11e disposal system, examines the effects of these 

processes and events on the performance of t11e disposal system, and estimates the cumulative releases of 

radionuclides, considering the m;sociated unce11ainties, caused by all significant processes and events (191.12(q)). 

Major sources of data for WIPP pe1fonnance assessment calculations result from site-characterization activities, 

which began at the WIPP site in 1976. Since 1983, when full construction of the facility was started, site­

characterization activities have had t11e objectives of updating or refining t11e overall conceptual models of the 

geologic, hydrologic, and structural behavior of the WIPP site and providing data adequate for use in Ille WIPP 

performance assessment (Lappin, 1988). As t11e WIPP Project moves toward a compliance determination, the 

present objective of site-characterization efforts, as described in t11is report, is to reduce uncertainty in Ille conceptual 

models. 

Uncertainty and sensitivity analysis for t11e total disposal system is t11e task of t11e WIPP Perfo1mance 

Assessment (PA) Department at Sandia National Laboratories. Because some uncertainty about t11e parameters 

controlling groundwater flow and transport will always remain, the WIPP PA calculations employ Monte Carlo 

techniques to provide estimates of radionuclide concentrations at the accessible environment boundary (WIPP PA 

Department, 1992, Vol. 2). This approach requires that cumulative distribution functions be selected for numerous 

imprecisely known input parameters. For example, local-scale multiphase codes tliat simulate the interaction of 

waste-generated gas and brine within the repository and t11e Salado Formation require input parameters such as 

residual saturation, tllreshold pressw·e, undisturbed pore pressure, and porosity. Examples of input parameters needed 

to simulate far··field flow and transport tluough the Culebra Dolomite, which is considered to be t11e principal 

pat11way for offsite transport, include transmissivity, dispersivity, and porosity. The reports by Ille WIPP PA 

Department (1992) and the Sandia WIPP Project (1992) describe the input parameters used in the PA calculations, 

Ille codes used during the calculations, and the relationships between the parameters and codes. 

Numerous modeling studies over the last 10 years have focused on characterizing t11c hydrogeology of the 

Culebra Dolomite. In general, t11ese studies have attempted to characterize the Culebra transmissivity field by 

iteratively reducing the differences between the calculated and observed heads wit11in a single groundwater numerical 

model. The head differences have been reduced by modifying the transmis~;ivity field eit11er by intuition or tllrough 
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INTRODUCTION 

the use of numerical algorithms such as kriging. While these studies have improved our understanding of the 

relationship between the transmissivity and the flow fields within the Culebra, they have not provided a metric for 

quantifying the uncertainty within the transmissivity field. This report presents an attempt to quantify this 

uncertainty and assess the spatial variability within the field. 

The theory and subsequent application of a new numerical model, GRASP-INV, which solves the groundwater 

inverse problem, is also presented in this report. The GRASP-INV code has the capability of generating and 

subsequently calibrating conditionally simulated (CS) transmissivity fields. Because each CS field has similar broad 

features but distinctly different small-scale variations, the GRASP-INV code is able to produce numerous, equally 

probable, transmissivity fields calibrated to the observed head data. The unique features present within each calibrated 

field are related to the uncertainty of the transmissivity field. The WIPP PA Department has incorporated this 

uncertainty into the Monte Carlo analysis by partially ordering a set of equally probable transmissivity fields by 

travel time to the accessible environment, and then drawing one field for each system calculation by sampling a 

uniformly distributed index variable. Because a Latin Hypercube Sampling technique is used and the number of 

fields in the set is equal to the number of imprecisely known parameters, each field is drawn once in the PA 

calculations. Although not required for a compliance assessment with 40 CFR 191, Subpart B, travel time is a good 

intermediate performance measure and provides some physical interpretation of the index variable for sensitivity and 

uncertainty analysis. 

2 

The objective of this report is to address the following questions: 

1. What impact did the subjective assignment of pilot-point transmissivities and regionalized approach to 

calibration have upon the results determined in an earlier study (La Venue et al., 1990)? 

2. How can information concerning the spatial variability of the Culebra transmissivity field be gained from 

the information concerning the uncertainty of the Culebra transmissivities? 

3. What is the uncertainty in the groundwater travel time given the uncertainty in the transmissivity field? 

4. What features of the variability within the transmissivity field have the most significant impact upon the 

groundwater travel time? 



2. SITE DESCRIPTION AND REVIEW OF PAST MODELING STUDIES 

2.1 WIPP Site Description 

The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy facility currently being evaluated to 

assess its suitability for the isolation of defense transuranic wastes. The WIPP site lies within the geologic region 

known as the Delaware Basin. The upper seven formations present at or in the vicinity of the WIPP site are, in 

descending order, the Gatufia Formation, the Dockum Group, the Dewey Lake Red Beds, the Rustler Formation, the 

Salado Formation, the Castile Formation, and the Bell Canyon Formation (Figure 2-1). The proposed repository 

horizon lies within the bedded salt of the Salado Formation. 

The Rustler Formation consists of beds of halite, siltstone, anhydrite, and dolomite. It is divided into five 

separate members based on lithology. The Culebra Dolomite, one of these five members, has been identified 

through extensive field site-characterization efforts as the most transmissive, laterally continuous hydrogeologic unit 

above the Salado Formation and is considered to be the principal pathway for offsite radionuclide transport in the 

subsurface, should an accidental breach of the repository occur. Based upon observations of outcrops, core, and 

detailed shaft mapping, the Culebra can be characterized, at least locally, as a fractured medium at the WIPP site. As 

the amount of fracturing and development of secondary porosity increases, the Culebra transmissivity generally 

increases. 

Over the past 12 years, a significant effort has been directed toward field investigations at the WIPP site. These 

investigations have been instrumental in providing estimates of the variability of the hydrogeologic properties 

within the Culebra Dolomite such as transmissivity and storativity. Numerous boreholes in and immediately 

surrounding the WIPP-site area have been drilled and tested within the Culebra in support of these investigations 

(Figure 2-2). TI1e Culebra aquifer, which dips toward the southeast (Figure 2-3), has spatially varying characteristics 

across the WIPP-site area. For instance, an increase in transmissivity and a decrease in formation-fluid density exists 

from east to west (Figures 2-4 and 2-5). There is no apparent trend to the storativity data obtained from the tests 

within the Culebra (Figure 2-6). 

The transmissivity data base for the Culebra Dolomite is derived from numerous hydraulic tests performed at the 

WIPP site. Values have been obtained from drill-stem tests (DSTs), slug tests, and local- and regional-scale 

pumping or interference tests (Beauheim, 1986, 1987a, 1987b, 1987c, 1988, 1989; Mercer, 1983; Saulnier, 1987). 

Transmissivity values interpreted from these tests extend over a range of seven orders of magnitude. The large range 

in the transmissivities results from the variation in the fractured nature of the Culebra and from the removal of halite 

across parts of the site area. 

A contour map of the undisturbed freshwater heads within the Culebra is illustrated in Figure 2-7. The contours 

in the northeastern portion of the model area do not represent accurate heads due to the lack of data in this area to 

guide the contouring algorithm. Generally, though, the freshwater heads reveal a predominantly southerly flow 

direction across the WIPP site. The heads southeast of the WIPP-site area reflect an approximate westerly flow 
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Figure 2-2. Map of WIPP site and surrounding area. 
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Figure 2-5. Fonnation-fluid density values of the Culebra Dolomite (after Cauffman et al., 1990). 
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Figure 2-6. Mean log10 storativity values of the Culebra Dolomite (after Cauffman et al., 1990). 
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SITE DESCRIPTION AND REVIEW OF PAST MODELING STUDIES 

direction. The freshwater heads used in this study were taken from Table 5.5 of La Venue et al. (1990). The head 

estimates at several boreholes (e.g., H-14 and H-18) were increased to account for the residual drawdown still 

affecting the hydrographs as a result of the construction of the shafts. A complete discussion of the increase in the 

initial head estimates may be found in Table 5.4 of La Venue et al. (1990). 

2.2 Previous Modeling Studies 

Since the early 1980s, the Culebra has been a focus of numerical modeling activities. Both regional and local­

scale models have been constructed over the years due to changes in the conceptual model and in the definitions of 

the parameter-value distributions. These changes have occurred as a result of the continuing field investigations and 

the subsequent expansion of the hydrogeologic data base. Table 2-1 lists the modeling studies that have been 

conducted to date. Figure 2-8 illustrates the model boundaries associated with each of these models. A detailed 

review of the modeling efforts prior to 1988 may be found in La Venue et al. (1988). 

In 1990, La Venue et al. calibrated a two-dimensional model to the extensive data set of observed steady-state and 

transient heads within the Culebra. The data base used in this study originated from approximately 10 years of 

regional hydrogeologic site-characterization efforts conducted in the Culebra Dolomite. A summary and evaluation 

of the data base used for this modeling study and complete listing of data sources are presented in Cauffman et al. 

(1990). The data base includes borehole locations, ground-surface and Culebra elevations, Culebra thickness, 

transmissivity, storativity, formation-fluid density, and freshwater heads calculated from depth-to-water and 

downhole-transducer-pressure measurements from the observation-well network. The data base was used in 

conjunction with kriging to assign the initial estimates of Culebra transmissivity, elevation, and fluid density to 

each grid block in the model. 

Table 2-1. Summary of Modeling Investigations of the Rustler Formation or Culebra Dolomite Member 
in the WIPP-Site Region 

Reference Hydrogeologic Unit Modeled Head Calibration 

U.S. DOE ("I 980a,b) Rustler Steady State 

D'Appoloniat (1981) Rustler Steady State 

Cole and Bond (1980) Rustler Steady State 

Barr et al. (1983) Culebra Steady State 

Davies (1989) Culebra Steady State 

Niou and Pietz (1987) Culebra Transient 

Haug et al. ( 1987) Culebra Steady State 

LaVenue et al. (1988) Culebra Steady State 

Bertram-Howery et al. (1990) Culebra Steady State 

LaVenue et al. (1990) Culebra Steady State/Transient 

WIPP PA Division (1991) Culebra Steady State 
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Figure 2-8. Approximate boundaries of groundwater flow models in the WIPP region (after Lappin et al., 1989). 
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The calibration approach used by La Venue et al. employed an adjoint-sensitivity technique to determine flow­

field sensitivity coefficients. The adjoint algorithm was coupled with a kriging algorithm that provided estimates of 

grid-block transmissivity values. This approach, developed by RamaRao and Reeves (1990), is similar in concept to 

one proposed in Marsily, de, et al. (1984). The notable exception in the RamaRao and Reeves approach, relative to 

de Marsily's inverse fonnulation, stems from the optimal identification of locations where modification of the 

model's kriged transmissivity or boundary-pressure values will directly improve the overall fit between measured and 

model-calculated heads at selected wells. At the locations identified as most sensitive to transmissivity changes, 

synthetic transmissivity values, refen-ed to as pilot points, were added to the transmissivity data base and used as 

input for kriging the transmissivity field. The values of the pilot points were assigned by the modeler based upon 

constraints determined by the sun-ounding transmissivity values and any interference test values in the vicinity. 

More details concerning the approach may be found in RamaRao and Reeves (1990). 

The La Venue et al. (1990) modeling study produced the first transmissivity field calibrated to both steady-state 

and transient heads. Figures 2-9 and 2-10 illustrate the initial and calibrated transmissivity fields determined in 

La Venue et al. (1990). The differences between tl1ese two fields are illustrated in Figure 2-11. The major difference 

is the introduction of a high-transmissivity region south of tl1e P-17 borehole, which extends northward passing just 

east of the H-11 and DOE-1 boreholes and tenninating near t11e H-15 borehole. This feature was introduced into the 

transmissivity field in order to match tl1e drawdown that occun-ed in the DOE-I and H-15 boreholes during the H-11 

pumping test (Figure 2-12). One other difference between tl1e initial and calibrated kriged transmissivity fields 

occurs in t11e region between the H-3 and CB-1 boreholes where t11e initial transmissivities are higher than the 

calibrated transmissivities. 

The high-transmissivity feature soutl1 of H-15 and the lower transmissivity region south of H-3 significantly 

affect the velocity field witl1in the Culebra. Figure 2-13 shows the travel path of a non-reactive particle advecting 

tluough the calibrated model velocity field. The starting point is located witl1in the Culebra at a position analogous 

to t11e centroid of the repository. The travel path has a distinct easterly direction tlrnt is a result of the nort11em 

extension of t11e high-transmissivity zone. The calculated travel time from the starting point to the southern WIPP­

site boundary was 14,000 yr assuming a single porosity value of 16%. Processes of dispersion, transport in 

fractures, matrix diffusion, and sorption were not considered in this calculation. The travel time that would be 

detennined by including these processes could be very different from the value presented above. 

2. 3 Incorporating Uncertainty in the Culebra Transmissivity Field to 
Performance Assessment Calculations 

Efforts to incorporate uncertainty in the Culebra transmissivily field into performance assessment (PA) 

calculations have been somewhat evolutionary. In the 1990 PA calculations, t11e Culebra was divided into seven 

zones or regions. A mean transmissivity value and an associated standard deviation was assigned to each zone. By 

sampling from the distributions associated with each zone, multiple realizations of zonal transmissivity values were 

subsequently used as input to tlrn flow and transport calculations. Altl10ugh computationally simple, t11e 

specification of large zones significantly reduces the spatial variability wit11in a given realization because each zone 

is assigned a constant value during each realization. 
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Figure 2-9. Initial kriged log10 transmissivities (after La Venue et al., 1990). 
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Figure 2-10. Transient calibrated log10 transmissivities (after La Venue et al., 1990). 
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Figure 2-11. Difference between initial transmissivity field (Figure 2-9) and calibrated transmissivity field (Figure 
2-10) detennined in La Venue et al. (1990). 
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Figure 2-12. Calculated and observed transient freshwater heads at H-11, H-15, and DOE-1 using transient 
calibrated transmissivity field (after La Venue et al., 1990). 
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Figure 2-13. Particle travel path through the transient calibrated transmissivity field (after La Venue et al., 1990). 
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In an effort to improve the transmissivity field used in the 1991 PA calculations, conditional simulations (CS) 

of Culebra transmissivity fields were produced by conditioning upon the observed transmissivity values and the pilot 

points that were added in the La Venue et al. (1990) model. The CS transmissivity fields were then used in a 

groundwater flow model (WIPP PA Division, 1991). The boundary conditions necessary to reduce the differences 

between the observed and calculated steady-state heads were then iteratively determined. Those realizations that did 

not meet a minimum error criterion were not considered adequate and were discarded. This work resulted in over 60 

conditional simulations that had acceptable fits to the observed steady-state freshwater heads and were subsequently 

used in the flow and mass-transport calculations. The 60 fields were partially ordered by travel time and selected by 

sampling on a uniformly distributed variable assigned to each CS field (WIPP PA Division, 1991). The associated 

groundwater travel times from a point within the Culebra that is coincident with the center of the waste panels to the 

southern WIPP-site boundary are illustrated in Figure 2-14. 

In March of 1991, a geostatistics expert panel (GXG) was convened to provide guidance for adequately 

incorporating the uncertainty of the Culebra transmissivity field into the PA calculations. After reviewing the 

previous work, the GXG had several concerns regarding the approach taken in La Venue et al. (1990). One of the 

principle concerns raised by the GXG panel members related to the subjectivity inherent in the manual calibration 

approach. For example, the model was calibrated in a piecewise fashion by sequentially selecting regions to be 

calibrated instead of calibrating the whole model area at the same time. The model was sequentially calibrated in the 

northwest (upgradient) region, southwest region, southern region, and central region or WIPP-site boundary area. As 

mentioned in the 1990 study, the regions upgradient and downgradient from the WIPP-site area were calibrated prior 

to making any changes within the WIPP-site boundary. This approach was employed in order to reproduce the 

regional hydraulic gradients across the northern and southern WIPP-site boundaries and is analogous to producing a 

regional flow model to provide boundary conditions for a local-scale model. The GXG panel wondered whether there 

would be any major differences in the calibrated transmissivity field had the entire model area been calibrated at the 

same time. 

One of the recommendations proposed by the GXG panel members included repeating the modeling performed 

by LaVenue et al. (1990) numerous times. However, instead of simply kriging the transmissivities as in the 

LaVenue et al. (1990) study, conditional simulations would be generated and subsequently calibrated. The 

conditional simulations would allow for different transmissivity fields to be used as the initial fields for the model. 

These fields would initially be conditioned on the observed transmissivity data only. Subsequent model calibration 

would then condition each of the CS fields to the observed steady-state and transient heads. Since the GXG panel 

also expressed concerns regarding the manual assignment of transmissivities to the pilot points, the approach used in 

La Venue et al. (1990) was also enhanced to include optimization routines to assign transmissivity values to the pilot 

points once their locations were selected. 
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3. METHODOLOGY 

3.1 Uncertainty Analysis: Need and a Strategy 

The groundwater travel time from a point in the Culebra Dolomite above the repository to a delineated 

accessible environment is a diagnostic measure used in the WIPP PA calculations. Groundwater travel time depends 

upon the assumed transmissivity distribution within the Culebra Dolomite. While transmissivities are measured at a 

few locations, those elsewhere are estimated. This estimation necessarily brings about an uncertainty in the 

transmissivities at all the locations where no measurements are made. The uncertainty in the unmeasured 

transmissivities propagates through the groundwater flow model to an uncertainty in travel time computations. The 

uncertainty in travel time, in turn, leads to uncertainty in the prediction of concentrations at the accessible 

environment boundary. 

The present study addresses the uncertainty in the travel time by embedding the problem in a probabilistic 

framework. The "true transmissivity distribution" within the Culebra Dolomite is conceptualized to be one 

realization of a stochastic process. Accordingly, a large number of realizations of this stochastic process, which are 

plausible versions of the "true transmissivity" within the Culebra Dolomite, are generated. This "ensemble" of 

realizations is used with the groundwater flow model to generate an ensemble of the corresponding travel times. The 

distribution of the travel times provides an understanding of the uncertainty. While several statistical measures can 

be used to quantify the uncertainty, a cumulative distribution function (cdf) is commonly used for a graphical display 

of the uncertainty in travel time. 

3.2 Analysis Methodology: An Overview 

The solution methodology involves the application of the GRASP-INV code and the subsequent generation of a 

large number of random transmissivity fields, each of which is in close agreement with all the measured data within 

the Culebra Dolomite. The collected data comprise (1) transmissivity measurements and (2) pressure measurements 

(both steady and transient state). Conformity between a random transmissivity field and the measured data is 

achieved in stages, as described below. Figure 3-1 presents an overview of the methodology used in this study. 

First, unconditional simulations of the Culebra transmissivity field are generated. These are random fields, 

having the same statistical moments (the mean and the variance) and the same spatial correlation structure as 

indicated by the transmissivity measurements. (These fields need not, however, match the measured transmissivities 

at the locations of their measurements.) 

These transmissivity fields are then "conditioned," so that they honor exactly the measured Culebra 

transmissivities at the WIPP borehole locations. The resulting field may be referred to as a "conditional simulation" 

of the Culebra transmissivity field. 
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Figure 3-1. Flowchart illustrating calibration of conditionally simulated transmissivity fields. 
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The conditional simulations of the transmissivity field are then further "conditioned" such that the pressures 

computed by the groundwater flow model (both steady and transient state) agree closely with the "measured 

pressures," in a least-square sense. This phase is known as "calibration" or the solution of the "inverse problem" and 

accounts for a large part of the time and effort in this study. When the calibration is completed, one obtains a 

transmissivity field that is in conformity with all the data within the Culebra Dolomite and may therefore be regarded 

as a plausible version of the true distribution of transmissivity. 

In this study, model calibration is approached indirectly. An objective function is defined as the weighted sum 

of the squared deviations between the model computed pressures and the observed pressures, with the summation 

extended in the spatial and temporal domain where pressure measurements are taken. The classical formulation of the 

calibration then requires the minimization of the objective function, subject to the constraints of the groundwater 

flow equations in the steady and transient state. This approach is implemented by iteratively adjusting the 

transmissivity distribution until the objective function is reduced to a prescribed minimum value. 

A common approach to calibration consists of dividing the model domain into a few zones; in each of these 

zones, the transmissivity is treated as constant. The transmissivities in the different zones constitute the 

"parameters" to be adjusted in the optimization process. Clearly, the delineation of zones is a subjective process that 

affects the results of the calibration. Thus it may become necessary to consider several alternative zonation patterns 

for calibration. Also, in this approach, uniform transmissivities are assigned to each zone. This "representation" 

may be considered inadequate, particularly while addressing the issues of spatial variability (within a zone). 

To avoid the above difficulties of the zonation approach, an approach using pilot points as parameters is adopted 

here. A pilot point is a synthetic transmissivity data point that is added to an existing measured transmissivity data 

set during the course of calibration. A pilot point is defined by its spatial location and by the transmissivity value 

assigned to it. After a pilot point is added to the transmissivity data set, the augmented data set is used to obtain 

kriged or CS transmissivity fields for a subsequent iteration in calibration. With the addition of a pilot point, the 

transmissivity distribution in the neighborhood of the pilot point is modified with dominant modifications being 

closer to the pilot-point location. The modifications in the different grid blocks are determined by kriging weights 

and are not uniform (as in the zonation approach). Conceptually, a pilot point may be viewed as a simple way to 

effect realistic modifications of transmissivity in the region of the model surrounding the pilot-point location. A 

coupled kriging and adjoint sensitivity analysis is used for the location of the pilot point and optimization 

algorithms are used for assigning the transmissivity of a pilot point. Thus the pilot-point approach to calibration 

has been rendered objective. Further, a multi-stage approach has been used in implementing this methodology. 

3.3 Simulated Transmissivities 

In the earlier modeling efforts for the Culebra Dolomite aquifer (Haug et al., 1987; La Venue et al., 1988, 1990), 

kriging was employed to address the issue of spatial variability in transmissivity. In an effort in which only one 

calibrated field is to be produced, kriging becomes an obvious choice. Kriging provides an optimal estimate of the 

transmissivity at a point, i.e., the mean value. In an attempt to reproduce the natural variability of transmissivity 

fields, a simulation of the transmissivity field is conducted. Simulated transmissivity values reproduce the 

fluctuation patterns in transmissivity, which may lead to extreme values in travel times. Thus simulated fields are 
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useful to resolve the residual uncertainty not addressed by kriging. Figure 3-2 taken from .Toumel and Huijbregts 

(1978) provides a relationship between the true, kriged, and simulated fields. 

3.3.1 Unconditional Simulations 

An unconditional simulation of a transmissivity field produces a random field with the same statistical moments 

(mean and variance) and the same spatial correlation structure as indicated by the measured transmissivities in the 

field. An unconditionally simulated transmissivity field is said to be isomorphic with the true field and is 

independent of the true field. The following methods have been used earlier in groundwater hydrology for generating 

unconditional simulations: 

• Nearest neighbor method (Smith and Schwartz, 1981; Smith and Freeze, 1979) 

• Matrix decomposition (Wilson, 1979) 

• Multidimensional spectral analysis (Shinozuka and Jan, 1972; Mejia and Rodriguez-Iturbe, 1974) 

• Turning bands method (Matheron, 1971, 1973; Mantoglou and Wilson, 1982; Zimmerman and Wilson, 1990) 

In this study, the Turning I3ands Method and the TUBA code (Zimmerman and Wilson, 1990) have been used to 

generate log10 transmissivity fields. 

GENERAL METHODOLOGY OF TURNING BANDS METHOD 

A two-dimensional (or a three-dimensional) stochastic process is generated in the Turning Bands Method by the 

summation of a series of elJuivalent one-dimensional processes. Figure 3-3 illustrates this point. The region P 

shows a grid of points at which the two-dimensional field is to be generated. In particular, consider a point N in the 

gtid where the two-dimensional field [Zs ( N)] is to be simulated. Also consider a particular line i, the length along 

which, from the origin 0, is measured by Si. This line is divided into a number of intervals (bands), of Jengtl1 ~~i; 

for each, tllC one-dimensional process Z; is computed. Let N; be tl1e projection of the point N onto tl1e line i. Let 

Z; (Si) be the one-dimensional process in the band containing N;. Then the two-dimensional process, [Zs ( N)], is 

obtained by summing the contributions from the different lines, by the relation 

L 

:Lz;(sNj) 
Zs(N) = i=l ..JI 

where Lis the number of lines selected. Usually Lis between 16 and 20. 
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Figure 3-2. Schematic of real, simulated, and kriged fields. 
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Figure 3-3. Schematic representation of the field and turning bands lines (after Mantoglou and Wilson, 1982). 
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WEINER-LEVY PROCESS 

La Venue et al. (1990) analyzed the Culebra transmissivity data and determined that the spatial structure of the 

two-dimensional transmissivity field could be represented by an isotropic process with an intrinsic random function 

of order zero (IRF-0), and a generalized covariance function (GCF) given by 

(3-2) 

where r is a radial distance, a0 is a constant, and k2 indicates a two-dimensional process. 

If k1 (r) is the GCF for an equivalent one-dimensional process, then 

(3-3) 

The Weiner-Levy process is known to be an IRF-0 process and is accordingly used to generate the line process. 

The relevant equations are given below. 

(3-4) 

where W(I;) is the Weiner-Levy Process. 

W(O)=O, (3-5) 

W(I; + til;) = W(I;)+ gU(I;), (3-6) 

(3-7) 

(3-8) 

where U(I;) is a uniformly distributed random variable. 

3.3.2 Conditional Simulations 

An unconditionally simulated transmissivity field that is made to honor exactly the measured transmissivity at 

the locations of the measurements is called a conditionally simulated (CS) transmissivity field. The procedure of 

conditioning is described below. 
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Let Z( x) be the true value (not known) of the field at a point x. One may decompose Z( x) as below: 

Z(x) = Z0 k(x)+ [z(x)- Z0 k(x)], (3-9) 

where Z0 k(x) is the kriged estimate of Z, at x, based on the observed values of Z at the locations of the 

observations. Here, (Z(x)- Z0 k(x)] is a true kriging error and is unknown, since the true value of Z(x) is 

unknown. It is possible to simulate this error. 

Using the unconditionally simulated values (Zuc) at the locations of the observations (not the actual values at 

the observations), a kriged field (Zuk) is generated. One may write, using a similar decomposition as above, 

(3-10) 

where [ Zuc ( x )- Zuk ( x)] is also a kriging error, is known, and may be called a simulated kriging error. This error is 

isomorphic with the true kriging error. More important, this error is independent of the kriged values: 

(3-11) 

Substituting the known simulated kriging error for the true but unknown kriging error, in Equation 3-9, one 

obtains: 

(3-12) 

Equation 3-12 clarifies the conditioning step as one in which simulated kriging errors are added on a kriged field 

using the measured data. This step involves kriging twice, once with the measured transmissivities and another time 

with the unconditionally simulated transmissivities, both at the location of the observations. The superposition of 

the three different transmissivity fields is graphically illustrated in Figure 3-4. 

Because the CS values of transmissivity are meant to be used as input to a finite-difference flow model, the CS 

transmissivity values assigned to the grid block must represent the average value over the area of the grid block. In 

order to accomplish this, each finite-difference grid block is divided by a 2x2 Gauss quadrature grid. All the 

geostatistical computations are conducted at the Gauss grid scale. Once the CS values are obtained, Gauss quadrature 

integration is employed to determine the average CS value assigned to the flow model grid block. 
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Figure 3-4. Relationships between conditional and unconditional simulation. 
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The conditional simulations constitute the most important input to the groundwater flow model. It is useful to 

appreciate the following properties of a conditional simulation: 

1. The CS field honors the measured values exactly at the measurement locations. This 

follows from the fact that kriging is an exact interpolator, so that the simulated kriging error is zero at 

measurement locations and the kriged value from observations, ( Z0 k ), reduces to the measured value for the 

same reason. 

2. The CS field has the same spatial correlation structure as indicated by the measured 

data. This follows from an orthogonality property of the kriging errors (Equation 3-11 ), which states that 

the kriging errors (both true and simulated) are uncorrelated with any kriged values for stationary fields and 

with generalized increments for the intrinsic fields (Delfiner, 1976; Delhomme, 1979). 

3. The average of many CS fields at a location x will approach the kriged estimate at x 

[Zok (x)] as the number of fields becomes statistically significant. 

4. The variance of many CS fields at a location x is given by the kriging variance. 

5. The CS fields reproduce the true variability of the field, in contrast to a smoothed 

field given by kriging. 

6. The conditioning step imposes the features observed within the measured data that are 

not specifically represented in the (unconditionally) simulated field. 

3.3.3 Simulated Fields: Computational Options 

There are several options for the simulated kriging error that can be used in the GRASP-INV code while 

constructing a conditional simulation. For example, the simulated kriging error can be rendered zero at all 

observation points (see Figure 3-4). When a pilot point is added to the observed transmissivity data set, two options 

exist: 
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1. The pilot point may be given the full status of an observed data point. Then the simulated kriging error at 

the pilot point is also rendered zero. In this case, the simulated kriged error field varies from one iteration to 

the other, and needs to be computed at every iteration. 

2. The simulated kriging error is rendered zero only at the observed data point and not at the pilot points. Thus, 

the pilot points are used to obtain the kriged field using the "augmented" data. But the simulated kriged error 

field remains the same as the initial field, through all the iterations. It does not need to be recomputed during 

the various iterations. 
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During t11is study, Option 2 was used. Another set of options exists while obtaining the kriged field using the 

simulated data at tl1e measurement locations. These options are: 

1. Asswne t11at the simulated values (Zuc) have the same errors as tl1e actual measurements. 

2. Asswne that the simulated values (Zuc) have no errors. 

During this study, Option 1 was employed while obtaining the simulated kriged field. 

3.3.4 Validation of Simulations 

To verify tlmt tl1e generated simulations' geostatistical structure is approximately the same as tl1e observed data, 

tl1e mean and variance of the log10 transmissivity are computed and compared witl1 tl1at of tl1e Culebra data for a 

select number of simulations. Also, using t11e code AKRIP, tl1e generalized covariance function (GCF) of tl1e field 

is obtained and is compared with that obtained from mea<;ured data in tl1e Culebra. A close agreement between tl1e 

two provides verification that the generated CS transmissivity field is a plausible version of tl1e reality witl1in tl1e 

Culebra. 

A collection of all the generated CS fields constitutes an ensemble. For any one location in tl1e field, 

transmissivity values across all tl1e fields in tl1e ensemble are studied and tl1eir mean and variance computed. A 

spatial distribution of the ensemble mean and variance should closely agree witl1 tl1e spatial distribution of kriged 

values and kriging variance obtained from the kriging exercise itself (Delhomme, 1979). 

3.4 Automated Calibration 

An overview of t11e automated calibration, the zonation approach, and pilot-point metl1odology has been 

presented in Section 3.2. The computational details of tl1e automated algoritl1m used to guide tl1e calibration are 

given here. 

In an automatic algorithm, it becomes necessary to restrict t11e nwnber of parameters to be identified to a small 

number. This step is referred to as parameterization. The zonation approach and tl1e pilot-point metl1odology can 

botl1 be viewed as two alternative paths for parameterization. As discussed in Section 3.2, the pilot-point approach 

used in GRASP-INV eliminates an inherent subjectivity in the zonation approach. 

3.4.1 Objective Function 

The objective function that is minimized during calibration is a weighted least square error criterion function. It 

comprises two components, a model fit criterion and a plausibility criterion. The model fit criterion is a weighted 

sum of the squared deviations between t11e computed and measured pressures taken over all points in spatial and 

temporal domains, where pressure measurements have been made. The plausibility criterion demands tl1at tl1e 
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calibrated transmissivilies are nol loo far from their prior eslimales. A relative weighl TJ between the plausibilily 

criterion and the model fit criterion has been used. Because of the nature of the pilot-point methodology (Marsily, 

de, et al., 1984), lhe plausibility criterion in this study is disregarded by setting TJ = 0. But the GRASP-INV code 

has the capability lo use TJ t:- 0. (Nole: the "degrees of freedom" of the inverse solution is prescribed by the number 

of pilot points 478used in tl1e pilot-point methodology.) 

Equation 3-13 defines Ille objective function in general terms: 

L 

.T(g) = Lf~ (k)~- 1 (kkp(k) (model fit) 

k=l 

(plausibility), 

where: 

.T(g) weighted least squares (WLS) error criterion function 

~P = {E.(k)- Eob(k)} 

fu = { !! - I± est} 

~ = covaiiance matrix of errors in !!.ob 

U covariance matrix of eITors in g 

g vector of paraineters ( Yp = log 1 o Tp) 

TJ 
k 

f!.(k) 

f!.ob(k) 

T 

TP 

L 

= 

= 
= 
= 

relative weighl of tl1e plausibility criterion to model fit criterion 

time step number 
pressw-es computed 

pressw-es observed 

transpose 
pilot point transmissivity 

number of time steps. 

After optimal estimates of g are obtained, tl1e posterior covariance matrix of the parameters is given by 

Sk = .T acobian Matrix = [ dp( k)], 
=· di 

where P is tl1e posterior covariai1ce matrix of tl1e parameters. 
=uu 

32 

(3-13) 

(3-14) 



METHODOLOGY 

3.4.2 Parameters of Calibration 

The pilot-point transmissivities are the parameters that are adjusted for calibration. However, in the 

mathematical implementation, the logarithms (to base 10) of the transmissivities (and not the transmissivity) are 

treated as parameters. The calibration parameters are given by 

where Tp is the transmissivity at a pilot point (suffix p denotes pilot point). Figure 3-5 illustrates the concepts of 

pilot points presented in Section 3.2. 

3.4.3 Pilot-Point Location 

Pilot points are placed at locations where their potential for reducing the objective function is the highest. This 

potential is quarttified by the sensitivity coefficients (dl/dY) of the objective function J, with respect to Y, the 

logarithm (to ba<;e 10) of pilot-point transmissivity. A large number of candidate pilot points are considered, usually 

the centroids of all the grid blocks in the flow model grid. The selected candidate pilot points are ranked in 

descending order of the magnitude of their absolute sensitivity coefficients, i.e., jdl/dYj. The selected number of 

pilot points chosen to be added during each iteration in the calibration process is selected from the top of the ranked 

list of points. Coupled adjoint sensitivity analysis and kriging is used to compute the required derivatives and the 

procedure is documented in RamaRao and Reeves (1990). It is described briefly in this section. 

KRIGING 

As mentioned in Section 3.3.2, the geostatistical computations are conducted at each Gauss grid center point. 

Integration is then employed to determine the average value assigned to the flow model grid blocks. The kriging 

equations presented below use point estimates for this reason. 

Let P be a pilot point added to a set of N observation points. Let Tp be the transmissivity assigned to pilot 

point P. Kriging is done using Yp, where 

(3-15) 

The kriged estimate ( Y* ) at the centroid of a Gauss grid center point m is given by 

(3-16) 
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where k is the subscript for an observation point, pis the subscript for pilot point, Ym,k is the kriging weight 

between the interpolation point m and data point k, and r m,p is the kriging weight between interpolation point m 

and pilot point p. 

When a pilot-point transmissivity is perturbed, the kriged transmissivities and hence the CS values in all grid 

blocks are altered, causing the objective function J to change. Let r,; represent the CS value assigned to grid block 

m. Using the chaJn rule, 

where M is the total number of grid blocks in the flow model. 

dr,;; _ 
dY =Ym,p 

p 

where y m,p is the average linear weight between a pilot point and the area over a finite-difference grid block. 

dJ M dJ -

dy = :L dY* • y m,p 
p m=l m 

(3-17) 

(3-18) 

(3-19) 

where T* is the CS transmissivity, K is the CS permeability, p is fluid density, µ is fluid viscosity, g is 

acceleration due to gravity, bis grid block thickness, and mis the subscript denoting grid block. 

Combining Equations 3-18 and 3-19 yields 

dJ M_ dJ 
- = ln(lO) L Y m,pKm -­
dYP m=l dKm 

(3-20) 

The sensitivity coefficient, dJ/dKm of the objective function with respect to the permeability in a grid block 

m, is obtained by adjoint sensitivity analysis. 
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ADJOINT SENSITIVITY ANALYSIS 

Adjoint sensitivity analysis provides an extremely efficient algorithm for computing sensitivity coefficients 

between a given objective function J and a large number of parameters (permeabilities in thousands of grid blocks as 

is the case here). 

Let the groundwater flow model be represented by the following matrix equation: 

where for a fully implicit scheme of time integration adopted here: 

vector of gridblock pressures 

f,+!}, 

~/ 1'1.t 
conductance matrix 

storativity matrix 

vector of source terms 

rn - rn-1 

time 

time level (1, 2, 3 ... L) 

maximum time level of the simulation. 

First, an adjoint state vector { /... } is obtained by the solution of the following equation: 

where T denotes the transpose of the matrix. 

(3-21) 

(3-22) 

The equation J =objective function (performance measure) is solved backwards in time, from n = L to n = 1 

with 

(3-23) 

If a.i is a generic sensitivity parameter in the gridblock i, the sensitivity coefficient dl/da.i is evaluated by the 

expression: 
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dJ = d] + .../:: ?:_ nT • [ d~ pn _ df}, pn-1 _ ar l · 
da· da· £... aa· - da· - da· 

I I n=l I I I 

(3-24) 

Here, Equation 3-24 is evaluated with ai = Ki, the permeability in the grid block. 

3.4.4 Pilot-Point Transmissivities: Optimization 

The transmissivities at pilot points are assigned by an unconstrained optimization algorithm and a subsequent 

imposition of constraints. The optimization algorithm chosen here belongs to a class of iterative search algorithms. 

It involves a repeated application of the following equation until convergence is achieved: 

(3-25) 

where i is the iteration index, d:.i is the direction vector, Pi is the step length (a scalar), and .L is the vector of 

parameters to be optimized (i.e., logarithms of pilot-point transmissivities to base 10). 

The steps in the implementation of this algorithm are as follows: 

1. For the selected number of pilot points, choose the initial estimates of the pilot-point log10 transmissivity 

(Yp = log10 Tp). These are taken to be the kriged or the CS values in the gridblocks where pilot points are 

located depending upon the option (Section 3.3.3) chosen. 

2. Compute the direction vector, d:.i, as per one of the three algorithms discussed below (Fletcher-Reeves, 

Broyden's, or Davidon-Fletcher-Powell). The direction vector constitutes a direction in the hyperspace of 

the parameters. By advancing along the direction vector, the new values of the parameters are obtained. 

The step length p determines the actual advance along this direction. 

3. Determine the optimal step length p, which minimizes the objective function. (Details are given below in 

the section titled "Step Length: Pi"). 

4. Update the parameters: 

Impose the constraints (Section 3.4.5). 

5. Check for convergence (see Section 3.4.6). 
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6. If convergence is achieved, the optimization algorithm is completed and the pilot points are added to the data 

and the execution of the main algorithm continues. 

7. If convergence is not achieved, let i = i + 1 and go to Step 8. 

8. Using the augmented data set, generate a new conditional simulation of transmissivity field, derive the 

corresponding pressure field, and recompute the gradient vector using the already selected pilot point 

locations. (The pilot point selection process will be skipped.) 

9. Go to Step 2. 

DIRECTION VECTOR: fl:.; 

The code includes three options for the computation of the direction vector fl:.; . They are the algorithms due to 

(1) Fletcher-Reeves, (2) Broyden, and (3) Davidon-Fletcher-Powell (Luenberger, 1973; Gill et al., 1981; Carrera and 

Neuman, 1986). 

Fletcher-Reeves Algorithm 

This method generates in successive iterations, a sequence of direction vectors, which are conjugate to each other 

with respect to the Hessian Matrix [ H]. The Hessian Matrix is a matrix of second order partial derivatives of J with 

respect to calibration parameters (e.g., pilot-point transmissivities). 

i!Hd. =0 
-I=-} ' 

(3-26) 

a21 
H··---

'l - aY:Y· . 
I } 

(3-27) 

Initially (for i = 1) the direction vector is taken to be negative gradient. For subsequent iterations, the direction 

vector is calculated as shown. But after every N iterations, N being the number of parameters (pilot points), a pacer 

iteration is introduced, where the direction vector is reset to the negative of the gradient vector: 

d=-g.; 
- -I 

i = 1, n + 1, 2n + 1, •.. , (3-28) 

4.; = -~i + ~i4i-1 • (3-29) 

(scalar). (3-30) 
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Broyden's Algorithm 

Broyden's algorithm belongs to a class of variable metric family of algorithms. It is also called a quasi-Newton 

algorithm. Here a transformation matrix fl is updated at every iteration. The direction vector qi is obtained from !l,, 
as 

(3-31) 

The matrix fl is an approximation to the true inverse Hessian Matrix used in Newton and Gauss-Newton 

methods: 

B.=Uorl; i=l, 
=I = = 

(3-32) 

where ~ is the prior covariance matrix of the parameters, and l is the identity matrix. 

[ 
fl..Q.d1T +qiQ!Jl..l [ 11QTJl..Q1d-if B = B _ -1-1 -1 -1 r: + A.+ - -1- .=::.!...=L. 

=i+l =i if Q I 1-'l if QT d! Q., 
-I - -I - -I -1 

(3-33) 

where 

r=I ifi>2, 

ifQ. r= -1 _, 

Q!B.Q. 
_, =1-1 

if i = 2, 

Davidon-Fletcher-Powell Algorithm 

The Davidon~Fletcher-Powell algorithm is similar to Broyden's algorithm in that the direction is computed by: 

However, the Davidon-Fletcher-Powell algorithm differs from the Broyden algorithm in the way the 

approximation to the true inverse Hessian is constructed. 

(3-34) 

39 



METHODOLOGY 

where 

!li = Ki+l - Ki 

!},i = l or!:£,; i = 0, N + 1, 2N + 1 

qi = ~i+l -~i. 

At each iteration, a check is made to verify that p ! q. > 0. 
-I -I 

STEP LENGTH: ~i 

The step length ~i, (a scalar) is determined by: 

Thus, ~i is obtained by solving 

The first-order Taylor expansion for E(L+ 1) gives: 

ap(Y · 1) 
P(y. )=p(Y·)+ _-1+ eR .. 
- -1+1 - _, a~i t-'1 

(For E, the time level k is suppressed.) 

Also, 

so that 

Using the Equations 3-36, 3-37, and 3-38, one may obtain (k =time level index) 
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[ ~~~ (k )R-l(k )1(k) + ~; !C14; l 
~;=-=--~~~~~~~~~~~~ 

[ ~~T(k)R- 1(k)~(k)+d{!C1 4; l (3-39) 

where 

(3-40) 

The calculation of the sensitivities of £ to 13, o_r Io~ is presented in the next section. 

SENSITIVITIES OF PRESSURES TO STEP LENGTH 

The sensitivity of pressures to step length (o_r I a~) can be obtained by direct differentiation of the steady and 

transient state pressure equations. The pressures may relate to steady state, transient state, or a sequence of steady 

state and transient states. The calculation of the sensitivities for all these cases is given below. 

Steady State 

The steady-state simulation of pressure is represented by: 

A•p =R0 , = -0 -
(3-41) 

where, 4 is the conductance matrix, l!.o is the steady-state pressure, and B.0 is the load vector. (The subscript o 

indicates a steady-state quantity.) 

Differentiatilllg with reference to ~ (iteration suffix is dropped for 13), 

(3-42) 

(3-43) 
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This equation is similar to the pressure equation (Equation 3.41). The coefficient matrix remains the same for 

both, while the load vector differs. The formulas for odfo~ and a Ji0/o~ will be developed below. 

Suppose that there are N pilot points where the transmissivities ~ are being estimated by optimization. 

Consider one particular pilot point p: 

a(rP)i+1 =(d ) 
a~ P i' 

where dp and Yp are the pth elements in the vectors 4 and .[ respectively, and i is the iteration level; 

YP = log10 TP, where Tp is the transmissivity assigned to pilot point p. 

(3-44) 

aA M aA 
-=-=ln(lO) L. -=-•K •y 
oYP m=I oKm m m,p 

(3-45) 

From RamaRao and Reeves, (1990, Eq. 58, p. 26), 

aA M oA -
a~= ln(lO) L a= •Km •Ym,p •dp. 

I-' m=I Km 
(3-46) 

Considering all the pilot points, 

aA N M aA 
a~= ln(IO) L. L. a= •Km •?m,p •dp. 

I-' p=lm=I Km 
(3-47) 

Similarly, 

(3-48) 

where Km is the permeability in grid block m, y m,p is the average kriging weight at grid block m due to pilot 

point p, M is the number of grid blocks, and N is the number of pilot points. 
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Transient State 

The pressures in transient state are obtained from 

(3-49) 

where k is the time level index, ,4 is the conductance matrix, ~ is the storativity matrix, At is the time step 

tk+ 1 - tk, and B.k is a part of the load vector, accounting for prescribed flow/pressure boundary condition. 

This equation can be formulated in terms of 8 E = [ (l+ 1 - l)]. This is accomplished by subtracting, ,4Pk 
from both sides of Equation 3-49: 

(3-50) 

where 

(3-51) 

Now, differentiating with reference to~, 

(3-52) 

Noting that pilot points do not affect the storativity ( a~/a~ = 0 ), 

(3-53) 

(3-54) 

Once again, these sensitivity equations are very similar to the pressure equations, with the coefficient matrix 

remaining the same, but with a different load vector. 

The expressions for a,4/a~ and aB.k /a~ are similar to those already given for steady state and are not given 

separately, except to state that the time index must be carefully noted. Note that if the simulation involves steady 

state, a p ;a~ is evaluated first and then propagated to the transient state, just as pressure would be propagated. If 
-0 

the problem involves only transient state, p is the given initial condition. Then a p ;a~= 0 is the initial 
-0 -0 

condition for a r/a~. 
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3.4.5 Pilot-Point Transmissivities: Constraints 

It is possible that the optimization algorithms may dictate large changes in the transmissivities assigned to pilot 

points and bring about an impressive reduction in the objective function. Such recommended large changes may be 

viewed as undesirable for several reasons. At any point in the field, one can obtain a kriged estimate of 

transmissivity and its variance (kriging variance). One may construct a confidence interval (assuming a normal 

distribution of kriging errors) for the transmissivity. It is reasonable to expect the calibrated value to be within the 

confidence band. A constraint may be imposed to achieve this. 

There also may be situations where the confidence band is large. A large change in a pilot-point transmissivity 

value, even if contained within the confidence band, can cause a large change in the spatial correlation structure of 

the transmissivity field. One objective in calibration can then be to limit the maximum change to a specified value 

so that the geostatistical structure of the transmissivity field is not altered significantly. 

Consider the kth parameter, whose value is Yk (kth element in the vector of parameters, .!:'.). Then, 

AYik · = (rik · 1 - Y:k ·) ,l ,l+ ,l 

= ~j •dk,i (3-55) 

where i is an iteration index. 

Constraint 1: The parameter value should lie within the confidence band. 

(3-56) 

where the subscript o indicates initially kriged value, based on the measured data only. Thus Yk,o gives the initially 

kriged value at the location of k (the pilot point), cr~0 gives the initially computed kriging variance at the same 

location, and mis the multiplier of the standard deviation, which gives the semi width of the confidence band. If a 

normal distribution is assumed for kriging errors, and if 95% confidence levels are desired, then m = 2. 

Constraint 2: The change in any parameters must be limited to AYmax. 

(3-57) 

After the optimization, these constraints are implemented for each parameter. The selection of the constraints is 

input to GRASP-INV by the modeler. If a constraint becomes active (imposed), the optimal step length computed 

is reduced; however, the direction is preserved. 
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3.4.6 Convergence Criteria 

DISTINCTION BETWEEN INNER AND OUTER ITERATIONS 

There are two levels of iteration, designated as inner and outer iterations. An inner iteration relates to the 

iterations needed to optimize the transmissivities of the pilot points. Thus when an inner iteration is repeated, the 

pilot-point locations are fixed as at the beginning of the sequence of inner iterations. When the convergence of an 

inner iteration is achieved, the pilot points are added to the transmissivity data set. This then sets the stage for an 

outer iteration. During the course of outer iteration, optimal location of the next set of pilot points is done using 

coupled kriging and adjoint sensitivity analysis. Subsequently, their transmissivities are optimized by a sequence of 

inner iterations. Figure 3-6 clarifies these points. It may be noted that both inner and outer iterations go through all 

phases of the algorithm, except that inner iterations skip the phase of selecting pilot points from a grid of candidate 

pilot points. 

CONVERGENCE CRITERIA: INNER ITERATIONS 

The following criteria may be used to define convergence when optimizing the transmissivities assigned to a set 

of pilot points. 

1. The performance measure (J) drops below a prescribed minimum value (JMIN): 

J~JMIN. (3-58) 

2. The number of iterations (NITER) equals a prescribed maximum number of iterations, for the inner 

iterations (ITERMXl): 

NITER::?: ITERMXl . (3-59) 

3. The ratio of the norm of the gradient to the initial gradient norm reduces below a prescribed value (GRNR): 

11~11 < GRNR 
11~0 11-(gradient norm ratio) · 

(3-60) 

4. The gradient norm 11~11 is less than a prescribed minimum (GRMIN): 

lld~GRMIN. (3-61) 
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5. The relative change in objective function is defined, as 11.T/.T, where A/ is the change in the objective 

function during one iteration. Iterations are tenninated if this relative change falls below a prescribed value 

(RELCJ): 

M ~RELCJ 
.I 

CONVERGENCE CRITERIA: OUTER ITERATIONS 

Outer iterations are tenninated essentially on criteria (1) and (2) of inner iterations. They are not repeated. 

3.4.7 Computational Experience 

(3-62) 

Before applying the GRASP-INV code to the Culebra Dolomite flow model, several initial runs were conducted 

to gain experience regarding the sensitivity of the calibration to the number of pilot points added during each outer 

iteration. The results of this exercise indicated that adding a large number of pilot points during each outer iteration 

did not decrease the lime necessary to achieve calibration relative lO the lime needed when only one or two pilot 

points were added. The times are similar because a plateau or region of high sensitivities of an objective function to 

changes in model transmissivities usually exists. The pilot points that are added are placed in this region at 

locations that generally have very similar sensitivity values. The optimization routine assigns a Ii Y change if one 

pilot point is added, a Ii Y /2 change at U1e pilot-point locations if two are added, and a Ii Y /3 change if three pilot 

points are added. Thus, the modifications to the transmissivity field are essentially the same. Therefore, only one 

pilot point was added during each outer iteration while perfonning steady-state calibration in this study. Two pilot 

points were added to each outer iteration during transient calibration. 

3.4.8 Earlier Inverse Algorithms: Similarities and Differences 

The inverse algorithm used in GRASP-INV shares some similarities wiU1 earlier inverse algorithms (Marsily, 

de, el al., 1984; Carrera and Neuman, 1986) and maintains essential and substantial differences with them. It is 

useful to appreciate both the similarities and differences. In U1e present algoriUun, if we suspend the automatic pilot­

point selection process in U1e code, and if instead we proceed from given pilot-point locations, the algorithm would 

be very similar to that of Marsily, de, et al. (1984). Considering U1is problem as one of optimizing the magnitudes 

of parameters (pilot-point transmissivities) at the given locations, the algorithm is similar to that of Carrera and 

Neuman (1986). 

The essential difference, however, is Urnt the choice of (location of) parameters, subjectively done in the above­

cited references, is rendered totally objective here, Urns eliminating the need to consider alternative choices of 

zonation in CaiTera and Neuman (1986) and the alternative choice of U1e pilot-point configuration in Marsily, de, et 

al. (1984). This objectivity is a desirable additional feature, raising U1e algoriUun to a new level of sophistication. 
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Another distinguishing feature of the present algorithm is the multi-stage-approach used for the location of pilot 

points. For example, if the final calibration includes 30 pilot points, only one or two pilot points are identified in 

stage 1. Then starting from the CS transmissivity field, resulting from the inclusion of the pilot points determined 

in stage I, another set of pilot points is obtained in stage 2. This process is repeated for several stages till 

satisfactory calibration is secured. One should notice the similarity of this approach to the well-known multi-stage 

optimization procedure, the dynamic programming method (Bellman, 1957). The present procedure of sequential­

optimization stands in contrast to the earlier approaches that adopt a single-stage approach. They select all the 

parameters subjectively in one sequence and optimize their magnitudes. The present approach may be expected to 

provide a calibrated transmissivity field, generated from an optimal choice of calibration parameters. To achieve this 

optimality in the earlier algorithms, one must repeat the calibration exercise by considering several alternative 

choices of parameters (i.e., zonation patterns, pilot-point configurations). 

Another important feature of the GRASP-INV code is the strategy and philosophy used in the inverse algorithm. 

Here, optimization of transmissivities is not carried on to the full extent mathematically. As an example, in the 

first outer iteration one or two pilot points are selected, and only one or two inner iterations are used to obtain the 

optimal transmissivity. The transmissivity changes at the pilot points are limited by user choice, such that the 

resulting field is not too different from the initial field, yet still giving substantial reductions in the objective 

function. Reductions in the objective function have become possible because the pilot point is placed at the most 

sensitive location, such that small changes in transmissivity can yield reasonable reductions in the objective 

function. When the parameters are subjectively selected, they are in most cases not optimal and require large changes 

in parameters to minimize the objective function. The resulting field may exhibit a different spatial structure. We 

believe that the objective selection of parameters, in a sequence, constitutes a particularly important highlight of the 

GRASP-INV code. Further, conceptually and mathematically, the sequential selection of parameters introduces an 

elegance in the methodology. 

Because addressing the issues of spatial variability is the main focus of the present study, the zonation approach 

may not be adequate since it treats transmissivities in a zone as constant. In the pilot-point methodology, the 

modifications to the transmissivities in different grid blocks are determined by kriging and are not constant as in the 

zonation approach. In view of this, the pilot-point approach to calibration can be expected to mimic spatial 

variability more adequately than the zonation approach. 

3.5 Code Development and Organization 

A comprehensive code package has been assembled using many of the codes already developed and frequently 

used in groundwater flow simulations; they are listed below. For details of the theory and application of these codes, 

the references cited may be consulted. 

• TUBA, unconditional simulation of transmissivity field (Zimmerman and Wilson, 1990) 

• AKRIP, kriging with generalized covariances (Kafritsas and Bras, 1981) 

• SWIFT II, modeling pressures (steady and transient state) (Reeves et al., 1986a,b,c) 
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• GRASP II, adjoint sensitivity analysis (steady and transient state) (Wilson et al., 1986; RamaRao and Reeves, 

1990) 

• STI..INE, gmundwater travel time and travel paths (INfERA, Inc., 1989) 

In addition to using the above codes, the following new codes have been developed in the present task. The 

details of the new codes will be given later. 

• MAIN--drives the different modules 

• CONSIM--generates conditional simulations of transmissivity from the unconditional simulations of 

transmissivity 

• PILOTI..-locates the pilot points based on sensitivity analysis 

• PAREST--assigns the pilot-point transmissivities by minimization of a least square objective function. 

Figure 3-7 gives the code organization. Table 3-1 gives the important subroutines and their functions. 
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Table 3-1. Subroutines and Their Functions 

Purpose 

Driver program for this code package. 

Simulation of pressures. 

Sensitivity derivatives of performance measure with reference to model 

parameters. 

Unconditional simulation of transmissivities. 

Conditional simulation of transmissivities. 

Kriging with general covariance functions. 

Evaluates pilot-point transmissivities by optimization. 

Selects the pilot-point locations based on sensitivity analysis. 

Initializes pilot-point transmissivities and their covariance matrix for the first 

iteration in calibration. 

Reads input related to pilot-point transmissivity optimization. 

Compute weighted least squares objective function 

Computes gradients of objective function to pilot-point transmissivities. 

Computes directions in search algorithm. 

Computes step length in search algorithm. 

Updates the pilot-point transmissivities at the end of an iteration. 

Sorts absolute gradients in descending order. 

Computes direction per Broyden algorithm. 

Computes direction per Fletcher-Reeves (conjugate gradients) algorithm. 
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Name of 

Subroutine 

INIHES 

STEPCON 

STEPPRS 

ALAMDIR 

RHSDPDB 

STEPLMT 

CONVCKI 

CONVCKO 

Table 3-1. Subroutines and Their Functions (Concluded) 

Purpose 

Computes initial approximate inverse Hessian matrix. 

Computes transmissivities-dependent constant in step-length formula. 

Computes pressure-dependent expressions in step-length formula. 

Computes expressions involving Kriging weights and directions (to be used 

for solving sensitivity of pressure to step-length). 

Computes right-hand column vector for solving the equation for sensitivity of 

pressure to step-length. 

Implements constraints on step length after optimization. 

Checks convergence of inner iterations. 

Checks convergence of outer iterations. 



4. APPLICATION 

4.1 Application to 1990 Model Grid 

In an attempt to determine the effect the subjectivity inherent in the manual calibration had upon the results 

determined in the 1990 study, the GRASP-INV code was used to produce a kriged transmissivity field calibrated to 

the Culebra steady-state and transient pressure data. The entire model area was initially calibrated to the steady-state 

data using the GRASP-INV code. During the calibration, a global objective function was employed that consisted of 

the differences between the calculated and observed pressures at each of the WIPP-site boreholes. The global 

objective function eliminated the subjectivity of regionalizing the calibration areas within the model. That is, the 

areas with the largest head differences were calibrated during each calibration step in contrast to the manual approach 

in which the upgradient and downgradient areas were calibrated first. 

Once the global steady-state objective function was reduced to 3.0 x 109 Pa2 (a selected calibration target that is 

equivalent to an average head difference of 1.0 m), the model was subsequently calibrated to the pressures from the 

transient events .. Table 4-1 lists the events used during transient calibration. These are the same events simulated in 

the 1990 study. The calibration to the transient events was conducted chronologically because earlier tests impact 

the initial conditions of subsequent tests. 

Figure 4-1 and Table 4-2 depict the GRASP-INV calibrated field (GICF) and the associated steady-state head 

differences. The features of the general trends in the transmissivities are very similar to the calibrated field from the 

1990 study (LaVenue et al., 1990). A high-transmissivity region extends northward from P-17 to the H-15 

borehole. In addition, the steady-state head differences are very similar to those determined in the 1990 study. 

The transient heads calculated from the GICF are illustrated in Figures 4-2 (Well H-1, Hydropad H-6, and Well 

DOE-2) and 4-3 (Hydropad H-11, Well DOE-1, and Hydropad H-15). The transient heads agree reasonably well with 

the observed heads. The main differences occur at the H-1 borehole, where the calculated heads are lower than the 

observed, and the H-15 and DOE-1 boreholes, where the calculated responses to the H-11 pumping test could use 

some improvement. 

Figure 4-4 is an enlargement of Figure 4-1 in the vicinity of the southern WIPP-site boundary. The northern 

extension of the high-transmissivity zone is clearly depicted. The magnitudes of the transmissivities within this 

region fall between -5.0 and -4.0 log10 (m2/s), which is slightly lower than the magnitudes within the high­

transmissivity zone of the 1990 study (-5.0 to -3.5). A lower transmissivity region (-7 .0 to -6.0 log10 T [m2/s]) 

extends across the central WIPP-site area, which causes the differences observed in the transient heads at the H-1 

borehole. This lower transmissivity region was split into two distinct regions in the 1990 calibrated field (Figure 2-

10): one section surrounded the P-15 and H-14 boreholes in the southwest region of the WIPP site area, and the 

other section extended northeastward from the WIPP-21 borehole in the central WIPP-site area. 

The differences between the GRASP-INV and 1990 calibrated fields are illustrated in Figure 4-5. The GICF has 

significantly lower transmissivities in the shaded regions with the exception of the region south of the H-3 borehole, 
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Table 4-1. Events Used during Transient Calibration 

Time Period Well/Shaft Event 

08/07/81 - 12/06/81 C&SH Construction* 

12/06/81 - 10/01 /83 C&SH Lined and Grouted* 

01/30/82 - 02/01/84 WHS Construction* 

10/24/82 - 10/14/84 H-4 Pumping for Tracer Test 

10/05/83 - 01/10/84 EXS Construction* 

10/13/83 - 10/16/83 H-2 Pumping 

11/08/83 - 11/17/83 H-2 Pumping 

01/10/84 - 10/15/84 EXS Enlarged dia. to 4.3 m* 

02/01/84 - 04/05/84 WHS Enlarged dia. to 6.5 m* 

04/05/84 - 08/20/84 WHS Lined and Grouted* 

04/23/84 - 06/13/84 H-3 Pumping for Tracer Test 

06/07/84 - 07/02/84 H-2 Bailing at H-2 

07/17/84 - 08/02/84 H-2 Pumping 

10/15/84 - 12/04/84 EXS Liner on Culebra* 

06/20/85 - 07/10/85 H-3 Pumping (Step Drawdown)* 

1 0/15/85 - 12/16/85 H-3 Pumping (Multipad Test)* 

04/04/86 - 04/21/86 H-2 Pumping 

01/12/87 - 02/17/87 WIPP-13 Pumping (Multipad Test)* 

06/01/87 - 06/01/89 C&SH Grouted* 

07/23/87 - 08/12/87 H-2 Pumping (Water Qual. Samp) 

08/07/87 - 08/24/87 H-3 Pumping (Water Qual. Samp) 

11/01/87 - 06/01/89 WHS Grouted* 

01/01/88 - 11/01/88 AIS Construction* 

05/05/88 - 07/07/88 H-11 Pumping (Multipad Test)* 

11/01/88 - 06/01/89 AIS Steel Liner Emplaced* 

02/13/89 - 03/02/89 H-3 Pumping (Water Qual. Samp) 

02/14/89 - 02/17/89 P-14 Pumping 

*Considered a major event. 
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Figure 4-1. Transient calibrated kriged transmissivity field determined using GRASP-INV 
and the 1990 model grid. (Note: Aspect ratio of figure is not [1:1].) 
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Table 4-2. Difference Between Calculated and Observed Freshwater Heads for GRASP-INV Calibrated 
Field using the 1990 Model Grid 

Difference Between 
Calculated and 

Well Location Observed Freshwater Heads 
m 

H-1 -0.88 

H-2 1.50 

H-3 -1.74 

H-4 -1.08 

H-5 -1.25 

H-6 0.04 

H-7 -2.02 

H-9 0.60 

H-10 -1.96 

H-11 1.37 

H-12 0.18 

H-14 0.89 

H-15 1.68 

H-17 3.01 

H-18 -0.31 

P-14 0.23 

P-15 -0.64 

P-17 -0.14 

WIPP-12 0.83 

WIPP-13 -0.83 

WIPP-18 0.54 

WIPP-25 0.60 

WIPP-26 -0.25 

WIPP-27 0.47 

WIPP-28 1.50 

WIPP-30 -0.29 

CB-1 -0.42 

DOE-1 1.08 

DOE-2 -0.60 

D-268 1.52 

USGS-1 0.02 
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Transient heads calculated using the GRASP-INV transient calibrated model: 
Well H-1, Hydropad H-6, and Well DOE-2. 
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Figure 4-3. Transient heads calculated using the GRASP-INV transient calibrated model: 
Hydropad H-11, Well DOE-I, and Hydropad H-15. 
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Figure 4-4. Enlargement of transmissivity field in the vicinity of the southern WIPP-site boundary. 
(Note: Aspect ratio of figure is not [1:1].) 
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Figure 4-5. Differences between the GRASP-INV calibrated transmissivity field and the manually 
calibrated field of La Venue et al., 1990. (Note: Aspect ratio of figure is not [1:1).) 
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adjacent to the CB-1 and P-17 boreholes. Here the GICF transmissivities are higher by about 0.5 to 1.5 

log 10 (m2/s). The region immediately north of the H-3 borehole is -1.5 to -0.5 log10 (m2/s) lower in the GICF field 

relative to the 1990 study. 

Figure 4-6 contains the travel paths determined in the 1990 study and from the GICF. Both the travel paths and 

the travel times to the southern WIPP-site boundary for these two trajectories differ significantly. The travel time 

determined in the 1990 study was approximately 14,000 yr. The travel time associated with the GRASP-INV code 

is approximate]y 30,000 yr, a factor of 2 higher. The higher travel time may be largely attributed to the lower 

transmissivity region north of the H-3 borehole (i.e., in the particle drop point region). If the differences in the 

calculated and observed heads at the H-1 borehole were reduced (Figure 4-2), the transmissivities would be increased 

north of H-3, which would ultimately reduce the travel time of 30,000 yr. However, the automated calibration was 

restricted to adding only 44 pilot points, approximately the same as were added in the 1990 study. This was done to 

evaluate the robustness of the GRASP-INV code. The constraint imposed on the assignment of the pilot-point 

transmissivities was also more restrictive (±3cr) than the manual assignment of transmissivity in the 1990 study. 

Therefore, the same number of pilot points does not adequately modify the transmissivity field to fully calibrate the 

model to the transient heads. If additional pilot points had been added to produce an equivalent "goodness-of-fit" to 

the 1990 study, the travel times would be closer. 

4.2 Description of the 1992 Culebra Model 

4.2.1 Model Grid and Boundary Conditions 

The finite-difference grid used in this modeling study to generate 70 CS fields was selected to facilitate the 

successful reproduction of both steady-state and transient heads. The grid consists of 50x 57x 1 (x,y,z) grid blocks 

and has a finer grid occurring in the central portion of the model in the vicinity of H-3, H-11, WIPP-13, and the 

shafts (Figure 4-7). Grid-block dimensions range from 50 m near the center of the site to approximately 2800 mat 

the model boundary. The vertical dimension of the grid is taken from the thickness of the Culebra Dolomite in the 

WIPP area. The mean thickness of 7.7 m was calculated from the available data and wa<; assumed suitable for the 

vertical model dimension in this study. 

The grid was rotated 38° east (Figure 4-8) relative to the 1990 model grid to facilitate the introduction of 

climatic variations during the 1992 PA calculations (Section 7.2.2 of WIPP PA Department., 1992, Vol. 2). The 

model boundaries and orientation are the same as used by Beyeler in the 1991 PA Culebra calculations. The 

locations of the boundaries of the model were chosen to maximize the ability to use Nash Draw as a groundwater 

divide and to minimize the effect that the boundaries may have on the transient modeling results for the long-term 

pumping tests at the H-3, WIPP-13, and H-11 locations. Table 4-3 lists the prescribed-pressure boundaries that were 

applied to the southeastern, southwestern, northeastern, and nort11western boundaries (Figure 4-8). One section of 

the northwestern boundary was considered a no-flow boundary due to the groundwater divide along Nash Draw. 
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Figure 4-6. Particle travel paths from the 1990 and 1992 kriged transmissivity fields. 
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Figure 4-8. Comparison of 1990 and 1992 model areas. 
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Northwestern 

Northeastern 

Table 4-3. Prescribed Pressure Boundaries. 

Model Indices 
(l,J) 

1,2 
1,50 
1,52 
1,54 
1,56 
1,49 
1,51 
1,53 
1,55 
1,57 

2,57 
3,57 
4,57 
5,57 
6,57 
7,57 
8,57 
9,57 
10,57 
11,57 
12,57 
13,57 
14,57 
15,57 
16,57 
17,57 
18,57 
19,57 
20,57 
21,57 
22,57 
23,57 
24,57 
25,57 
26,57 
27,57 
28,57 
29,57 
30,57 
31,57 
32,57 
33,57 
34,57 
35,57 
36,57 
37,57 
38,57 
39,57 
40,57 
41,57 
42,57 
43,57 
44,57 

Elevation of Head 
m 

905.52 
937.53 
938.00 
938.47 
938.75 
937.29 
937.72 
938.26 
938.79 
941.02 

942.01 
942.00 
941.86 
941.65 
941.47 
941.20 
940.95 
940.82 
940.59 
940.42 
940.19 
940.04 
939.83 
939.56 
939.42 
939.16 
938.95 
938.82 
938.65 
938.37 
938.20 
937.97 
937.85 
937.60 
937.42 
937.18 
937.00 
936.70 
936.51 
936.23 
936.00 
935.87 
935.83 
935.67 
935.64 
935.49 
935.34 
935.27 
935.23 
935.07 
934.94 
934.89 
934.79 
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Table 4-3. Prescribed Pressure Boundaries (Continued). 

Boundary 

(Northeastern) 

Southeastern 

66 

Model Indices 
(l,J) 

45,57 
46,57 

50,2 
50,3 
50,4 
50,5 
50,6 
50,7 
50,8 
50,9 
50,10 
50,11 
50,12 
50,13 
50,14 
50,15 
50,16 
50,17 
50,18 
50,19 
50,20 
50,21 
50,22 
50,23 
50,24 
50,25 
50,26 
50,27 
50,28 
50,29 
50,30 
50,31 
50,32 
50,33 
50,34 
50,35 
50,36 
50,37 
50,38 
50,39 
50,40 
50,41 
50,42 
50,43 
50,44 
50,45 
50,46 
50,47 
50,48 
50,49 
50,50 

Elevation of Head 
(m) 

934.57 
934.41 

950.30 
938.01 
955.59 
980.20 
997.61 
1038.44 
1067.32 
985.20 
999.29 
1008.10 
1018.84 
1032.20 
1047.88 
1 C.71.01 
1104.73 
982.63 
1007.38 
1016.58 
1034.33 
1032.22 
1053.31 
1082.89 
1108.83 
1001.00 
1015.55 
1025.21 
1043.19 
1057.01 
1069.37 
1080.87 
1108.27 
1013.46 
1011.01 
1017.05 
1032.92 
1046.08 
1067.07 
1074.44 
1106.30 
1037.52 
1007.12 
1011.56 
1022.06 
1034.68 
1049.14 
1053.92 
1081.50 
1044.60 
1005.70 



Table 4-3. Prescribed Pressure Boundaries (Concluded). 

Boundary 

(Southeastern) 

Southwestern 

Model Indices 
(l,J) 

50,51 
50,52 
50,53 
50,54 
50,55 
50,56 

1, 1 
2, 1 
3, 1 
4, 1 
5, 1 
6, 1 
7, 1 
8, 1 
9, 1 

10, 1 
11, 1 
12, 1 
13, 1 
14, 1 
15, 1 
16, 1 
17, 1 
18, 1 
19, 1 
20,1 
21, 1 
22,1 
23,1 
24,1 
25,1 
26,1 
27,1 
28,1 
29,1 
30,1 
31, 1 
32,1 
33,1 
34,1 
35,1 
36,1 
37,1 
38,1 
39,1 
40, 1 
41, 1 
42, 1 
43,1 
44, 1 
45, 1 
46,1 
47,1 
48,1 
49,1 
50,1 

Elevation of Head 
m 

1008.32 
1010.70 
1006.69 
993.89 
970.08 
963.09 

905.29 
904.37 
908.14 
908.83 
905.86 
902.74 
898.18 
892.09 
886.34 
879.84 
875.75 
875.45 
876.41 
878.27 
882.59 
888.41 
891.85 
893.42 
893.86 
893.99 
893.82 
893.52 
893.11 
892.44 
891.71 
890.76 
890.15 
890.32 
891.73 
893.96 
896.83 
900.19 
902.57 
904.10 
905.28 
905.14 
904.47 
904.54 
905.29 
904.86 
903.28 
902.78 
904.44 
907.84 
912.35 
917.67 
926.39 
941.73 
955.63 
965.73 
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The Culebra is considered confined above and below by low-permeability beds of anhydrite, halite, and siltstone. 

Vertical flux is not considered in the model because of the existence of these low-permeability anhydrites. The 

conceptual model used in this study therefore assumes a two-dimensional flow system although this assumption has 

not been validated. Currently, a three-dimensional modeling effort is being conducted by Sandia Department 6119 to 

determine the validity of assuming the Culebra is a completely confined aquifer. 

4.2.2 Model Initial Kriged-Transmissivity Field and Its Uncertainty 

As in the 1990 study, uncertainties were assigned to the observed transmissivity data. For example, in order to 

account for the difference in the uncertainty associated with transmissivities derived from DSTs and slug tests and 

those derived from pumping tests, standard deviations (o) of the log10 transmissivity values were assumed and 

assigned values based on the type of test used to obtain the value. A minimum standard deviation o = 0. 25 for 

log10 T, Tin m2/s, was assumed for pumping-test results, and a standard deviation o = 0.5 was considered to be 

appropriate for transmissivity values interpreted from the results of DSTs or slug tests. These assigned standard 

deviations are meant to represent the difference in uncertainties of the results of these tests on a scale of tens of 

meters. 

Before a conditional simulation of the transmissivity field can be produced, the determination of a theoretical 

generalized covariance function (GCF) consistent with the logarithms of the Culebra transmissivity data must be 

performed. The GCF is the theoretical model which is used to estimate the transmissivities with kriging and to 

generate the unconditional transmissivity field for the conditional simulation. In the AKRIP code, the coefficients of 

the GCF are determined by an automatic iterative procedure in which the GCF is fitted to local neighborhoods 

defined by subsets of the observed transmissivity data. As in the 1990 study, the neighborhood used in this study is 

defined by the ten nearest observed data points surrounding a particular grid block in the model area. 

LaVenue et al. (1990) determined that a zero-order GCF best fit the observed Culebra transmissivity data 

according to the following relation: 

K(s)=-2.3xI0-4 isl, (4-1) 

where K(s) is the generalized covariance ands is the average distance between an observed data point and the center 

of the estimation area. More details concerning the selection of this GCF may be found in La Venue et al. (1990). 

The initial kriged grid-block log10-transmissivity estimates (i.e., the average over the specific area of each block 

as determined using a 2x 2 Gauss-point grid within each grid block) and the corresponding kriging estimation errors 

calculated using the above GCF are shown in Figures 4-9 and 4-10, respectively. The kriged field illustrated in 

Figure 4-9 is the same initial kriged field used in each of the conditional simulations produced in this study. As 

mentioned in Chapter 3, the differences in the CS transmissivity fields are due to the difference in random seeds used 

in TUBA while generating the unconditional transmissivity simulation. Consistent with the 1990 study, Figure 4-9 

depicts higher transmissivity values in the western part (log10 transmissivity from -3.0 to -3.5) of the model region 

and lower values (log10 transmissivity from -6.0 to -8.0) in the east. The lowest values of transmissivity occur in 
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Figure 4-9. Initial kriged grid-block log10 transmissivity estimates (i.e., the average over the specific area of each 
block as determined using a 2 X 2 Gauss-point grid within each grid block). 
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Figure 4-10. Estimation errors of the initial kriged field. 

70 



APPLICATION 

the eastern region and reflect the projection of the underlying local trends determined by AKRIP. A local 

transmissivity high occurs in the grid blocks within the vicinity of the H-11 and DOE-1 boreholes where fracturing 

is known to exist. 

The estimation errors (as defined by one standard deviation) within the model region are highest in the northeast 

model region due to the lack of data in that area (Figure 4-10). Here the errors have values from 1.0 to 2.5 log10 T, 

Tin m2/s. Within the central portion of the model area, the errors of the estimate are between 0.5 and 0.75 for 

log10 T, T in m2/s. As previously mentioned, during the optimization procedure in which the optimum 

transmissivity value is assigned to one or two pilot points, the range of transmissivity values considered plausible 

occurs within ±3cr of the initial CS value. 

4.2.3 Model Transient Time Steps 

Over eight years of transient events were simulated in this study. In an attempt to reduce the computational 

time necessary to calibrate to the transient pressure data, only the major transient events, listed in Table 4-1, were 

considered in tllle 1992 model. The number of time steps was therefore reduced from approximately 380 in the 1990 

model to 190 in the 1992 model. 

4.3 Discussion of the Calibration of a Single Realization 

In this section, the calibration of one of the seventy CS transmissivity fields is discussed in detail to illustrate 

the process used in GRASP-INV. As discussed in Chapter 3 and illustrated in Figure 3-1, the first step toward 

calibrating the CS fields to the steady-state and transient data involves the simulation step required to produce the 

initial conditional simulations. The grid used to produce the conditional simulations is finer than the finite­

difference grid and, as discussed in Section 3.3.2, is referred to as the Gauss grid. The Gauss grid is generated by 

dividing each finite-difference grid block into four sections. Each section is considered to contain homogeneous and 

isotropic properties. All of the calculations required to produce a conditional simulation are conducted at the Gauss 

grid scale. Once the conditional simulation is generated, the four Gauss grid blocks within each finite-difference grid 

block are integrated using Gauss quadrature techniques to determine the single homogeneous, isotropic value assigned 

to each finite-difference grid block. The Gauss grid was necessary because the TIJBA code used in this study did not 

currently have the capability of generating an IRF-k field of block-averaged values. 

Prior to producing the initial conditional simulations of the log10 transmissivity field, a verification exercise 

was conducted to determine whether TIJBA produced an unconditional (UC) field with a GCF as specified. The zero­

order GCF previously discussed was used in this exercise, which required simulating a UC field and then sampling 

from the field and redetermining the GCF from the sampled data. After several fields were simulated and 

subsequently sampled, it was determined that while the coefficient of the GCF may vary slightly, the order and form 

of the GCF remained consistent with the GCF input to TIJBA. 

Figure 4-11 depicts the unconditional simulation (UCS) of a log10 transmissivity field on the Gauss grid with 

the GCF mentioned above. The UCS field has a high degree of spatial variability while containing the same broad 
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trends in transmissivity observed in the WIPP data. However, the actual locations of the higher and lower 

transmissivity regions do not coincide with those observed at the WIPP site. This is expected because the field has 

not yet been conditioned to the WIPP data. As discussed in Chapter 3, the second step in the process of producing a 

conditional simulation requires the UCS to be sampled (i.e., values noted) in the same locations as the observed data 

and used as input to the kriging processor to determine the simulated kriged (SK) field. The simulated kriged field is 

determined by using the UC sampled values as input and subsequently kriging to obtain estimates at the Gauss grid­

block centers. Figure 4-12 illustrates the kriged field using the UC sampled data as input. While reproducing the 

average nature of the UC transmissivity field over the model domain, the kriged estimates do not reproduce the 

spatial variability or underlying reality of the UC field. 

The differences between the UCS field and the SK field are shown in Figure 4-13. It is these differences that are 

added to the initial kriged field mentioned in Section 4.2.2 to produce the conditional simulation. The differences 

represent the spatial variability that is lost when kriging is employed to estimate a parameter field because of the 

smoothing effect of the kriging algorithm and because the sample set is relatively small. Since kriging honors 

values at measurement locations, the differences between the UCS and SK fields are very small at the sample 

locations. (Note: In the absence of measurement error at the observed locations, the differences at these locations 

will be zero.) Away from measurement locations, the differences increase with values of up to+/- 3.0 log10 T. 

Negative differences indicate that the UCS field has lower log 10 T values than the SK field whereas positive 

differences indicate higher log10 T values in the UCS field than in the SK field. 

After the addition of the differences illustrated in Figure 4-13 to the initial kriged field (Figure 4-9), the initial 

CS field is obtained (Figure 4-14). As previously mentioned, the addition is conducted at each of the Gauss grid­

block centers. While the general trends are the same between the initial CS and initial kriged fields, the initial CS 

field has a much higher degree of spatial variability than the initial kriged field. The broad continuous features 

observed in the kriged transmissivity field are much narrower and discontinuous in the initial CS field. The high­

transmissivity region in the vicinity of the H-11 and DOE- I boreholes is significantly larger in the initial CS field 

due to the addition of the positive differences south of H-3. After integrating the Gauss grid values using Gauss 

quadrature techniques, the finite-difference grid block values were obtained. The integration over the Gauss grid 

slightly reduced the spatial variability represented in Figure 4-14 due to the larger areas each finite-difference grid 

block represents (Figure 4-15). 

The initial steady-state groundwater flow simulation wa<; tl1en conducted using the boundary conditions listed in 

Table 4-3 and the initial CS transmissivities illustrated in Figure 4-15. Figure 4-16 contains a contour map of the 

differences between the calculated and observed freshwater heads. The northwest region of the WIPP site (i.e., the 

W-25, P-14 and H-18 boreholes) contains the highest head differences (-16 to -18 m) implying a significant need for 

additional groundwater flux to this area. 
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Figure 4-11. Unconditional simulation of a log 10 transmissivity field on the Gauss grid. 
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Figure 4-12. Kriged field using the unconditional sampled data as input. 
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Figure 4-14. Initial conditionally simulated (CS) field of the example realization on the Gauss grid. 
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Figure 4-15. Initial conditionally simulated (CS) field of the example realization on the finite-difference grid. 
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Figure 4-16. Contour map of the differences between the calculated and observed freshwater heads. 
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As discussed in Chapter 3, the steady-state perfonnance measure used during calibration consisted of the sum of 

the squared deviations of calculated and observed heads. The nonnalized sensitivities of the perfonnance measure to 

an increase in model transmissivities are shown in Figure 4-17. The sensitivity values are calculated at potential 

pilot-point locations (i.e., at the grid-block centers) and indicate the change in the perfonnance measure for a unit 

increase in the transmissivity assigned to a pilot point. The highest sensitivity region has a negative sign and occurs 

in the northwest model area. The negative sign indicates that the perfonnance measure and the selected system 

parameter are inversely proportional. Thus, an increase in the transmissivity field in the high negative sensitivity 

region will increase groundwater flux to the northwest model region and subsequently decrease the perfonnance 

measure (i.e., reduce the head differences). 

One pilot point was automatically located by GRASP-INV in the grid block with the highest sensitivity value. 

The value assigned to this pilot point was selected through optimization routines. The initial value at the pilot point 

location was -4.39 log10 T m2/s. The value initially assigned by the optimization routines was outside the 

plausibility criteria (±3cr) at the pilot-point location. Therefore, GRASP-INV readjusted the assigned value to fall 

just within the ±3cr range and assigned the log10 T uncertainty value to the pilot point. The pilot point was then 

added to the transmissivity data set used to generate a conditional simulation. Figure 4-I8 depicts the CS field 

during the second step of the steady-state calibration. The transmissivities in the northwest region were increased 

(Figure 4-19), and the perfonnance measure was subsequently reduced from the initial value of 2.64 x 1011 Pa2 to 

9.36 x 101° Pa2. As the flow chart shown in Figure 3-I illustrates, the process of iteratively assigning pilot points 

in areas of high sensitivity and regenerating the conditional simulation continues until either the minimum steady­

state perfonnance measure is achieved or until the maximum number of pilot points is added. (In this study, 50 were 

added for steady-state calibration.) 

Transient calibration is conducted in much the same fashion as steady-state calibration. The main difference 

between the two is the specification of a time window over which the transient pressure deviations between the 

observed and calculated data are detennined. As previously mentioned, the major transient tests were simulated in 

chronological order. Calibration to these tests was therefore also conducted chronologically. To illustrate the 

transient calibration process, an example is taken from the pumping test conducted at the H- I I borehole in 1988. 

Figure 4-20 illustrates the DOE-I and H-I5 transient hydrographs and their response to pumping at the H-11 

borehole prior to transient calibration. The calculated pressure data illustrate the need for additional calibration in 

order to reproduce the observed drawdowns. A perfonnance measure was selected consisting of the sum of the squared 

deviations between the calculated and observed pressures at the H-I5 and DOE-I boreholes. The time window was 

specified over the period of the H-1 I pumping test (Figure 4-20). The sensitivity of the perfonnance measure to the 

increase in model transmissivities identified a high-sensitivity region just south of the H-I5 borehole. GRASP-INV 

assigned two pilot points in this region, which subsequently increased the transmissivities between the H-I 1 and 

H-15 boreholes. After two additional calibration steps, in which four more pilot points were added by GRASP-INV, 

the differences between the calculated and observed pressures at the DOE-I and H-I5 boreholes were acceptable. 

Figure 4-21 shows the calibrated CS transmissivity field for the realization discussed in this section. The 

differences between the initial CS and the calibrated CS fields, shown in Figure 4-22, include the introduction of a 
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Figure 4-17. Sensitivities of the initial steady-state perfonnance measure to an increase in model transmissivities. 
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Figure 4-18. The conditionally simulated (CS) field during the second step of the steady-state calibration. 
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Figure 4-19. Increase in transmissivities after a pilot point was added during steady-state calibration. 
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Figure 4-20. DOE-I and H-15 transient hydrographs and their response to pumping at the H-11 borehole. 
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Figure 4-21. Calibrated conditionally simulated (CS) transmissivity field. 
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Figure 4-22. Differences between initial and calibrated condiLionally simulated (CS) transmissivity fields. 
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narrow high-transmissivity zone south of H-15. The calibrated CS field has a much more tortuous high­

transmissivity zone relative to the results determined in the 1990 study. The travel path through the CS field is 

illustrated in Figure 4-23. The travel time to the southern WIPP-site boundary is approximately 21,500 yr, 7000 yr 

longer than the 1990 travel time value. The increase is due to a longer travel distance through lower transmissivities 

in the vicinity of H-1 to the point at which the groundwater enters the extension of the high-transmissivity zone. 

4.4.1 

4.4 Discussion of the Ensemble of Calibrated 
Conditionally Simulated Transmissivity Fields 

Ensemble Mean Transmissivities 

The example described in Section 4.3 illustrates the procedure used in this study to calibrate 70 CS 

transmissivity fields. Each CS field was composed of an underlying kliged field to which a conditional random error 

field was added. The en-or field varied for each of the 70 realizations due to the rcmdom seeds input to the Turning 

Bands algothrim. Thus, each of the calibrated CS transmissivily fields has a different spatial distribution of 

transmissivities. In some cases, the high-transmissivity zone is a broad feature that extends from the DOE-I 

borehole in the east WIPP-site area to U1e H-14 borehole west of H-3. In other cases, U1e high-transmissivity zone 

has a narrow, tortuous and in some instances, discontinuous nature. 

In an attempt to compare U1e mean transmissivity field detennined in this study to the transmissivity field of the 

1990 study, an ensemble mean calculation was performed across the realizations to determine the average 

transmissivity value at each grid block. The resulting ensemble transmissivity field (Figures 4-24 and 4-25) has 

features which are very similar to the 1990 k.I·iged transmissivily field (Figure 4-26). Outside of the WIPP-site area, 

the re-entry of high transmissivities from U1e Nash Draw ru·ea occurs south of the WIPP site near the H-7 borehole in 

both the 1990 results and in the ensemble mean field. The high-transmissivity zone within the WIPP-site boundary, 

as represented in the ensemble mean field (Figure 4-25), extends norU1wru·d from U1e P-17 borehole where it nwowly 

lies between the P-17 and H-17 boreholes. Once crossing the southern WIPP-site boundmy, U1e high-transmissivity 

zone widens significantly extending westwru·d to the II-3 borehole and eastwru·d beyond the H-11 and DOE-1 

boreholes. 

4.4.2 Ensemble Steady-State Head Differences 

A root-mean squared error (RMSE) between calculated and observed steady-state heads was calculated in order to 

summarize the fit of each realization to U1e steady-stale data. The RMSE values at each of U1e boreholes that had 

steady-state observed head data were summed within each simulation to obtain ru1 average RMSE. A histogram of 

the average RMSE value for each of the 70 simulations (Figure 4-27) depicts a mean RMSE value within the 

simulations between 1.5 and 2.5 m. The simulation with the worst steady-stale head fit is shown to have an average 

RMSE value between 6.5 and 7.5 m. This particulru· realization illustrates a situation in which U1e difference field 

(added to the kriged field during the CS process) significantly reduced U1e ability of U1e GRASP-INV code to calibrate 

the field to steady-state conditions within 50 calibration steps. This situation occurs when the initial CS field 
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Figure 4-23. Groundwater travel path through calibrated conditionally simulated (CS) field. 
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Figure 4-24. Ensemble transmissivity field resulting from a mean calculation performed across the realizations. 
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Figure 4-25. Ensemble transmissivity field in the vicinity of the southern WIPP-site boundary. 
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generated has features tlrnt produce significantly high initial-head differences. The GRASP-INV code then has to add 

more pilot points to modify the CS field to bring the head field into agreement with the observed data than may be 

necessary for an initial CS field which produces initial head differences that are low. Because a fixed number of pilot 

points were specified for calibrating to tlie steady-state data, some fields had smaller RMSE values tlian others. 

RMSE values were also calculated to detennine average head differences over the ensemble of realizations at each 

borehole location (Table 4-4). Figure 4-28 shows a contour surface of the RMSE values over tlle model domain. 

The maximum average difference between tlie calculated mid observed data occurs at the H-7 borehole where tlle 

RMSE value is -4.3 m. (Note: The sign of tlle RMSE wm; assigned after evaluating the ensemble differences.) The 

head differences in tlle soutllern model and central WIPP-site area also have negative signs witll average values 

ranging between -0.7 m mid -2.8 m. The regions that have positive head differences occur in the m·ea immediately 

east of tlle H-11 borehole and in tlle area between tlie P-14 and WIPP-26 boreholes. The average head differences in 

tllese regions are greater tllan 2.0 m. The difference at the II-17 borehole is the highest with a positive value of 

3.4 m. 
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Table 4-4. Average Root-Mean Squared Error (RMSE) Values for the Ensemble 
Differences between Calculated and Observed Heads. 

Well Location 

H-1 
H-2 
H-3 
H-4 
H-5 
H-6 
H-7 
H-9 

H-10 
H-11 
H-12 
H-14 
H-15 
H-17 
H-18 
P-14 
P-15 
P-17 

WIPP-12 
WIPP-13 
WIPP-18 
WIPP-25 
WIPP-26 
WIPP-28 
WIPP-30 

CB-1 
DOE-1 
DOE-2 
D-268 

USGS-1 

Head Difference (m) 

-1.90 
-1.31 
-1.02 
-0.99 
+ 1 .11 
+0.91 
-4.27 
+2.17 
+1.34 
+1.48 
+1.22 
-0.96 
+2.22 
+3.44 
-2.63 
+2.61 
-2.00 
+0.73 
+0.67 
-0.78 
-0.93 
+2.94 
+2.19 
+1.45 
+1.30 
-0.69 
+1.27 
+0.69 
+1.74 
-2.84 
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Figure 4-28. Contour surface of the root-mean squared enur (RMSE) values over the model domain. 
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The average head differences at the H-7, WIPP-25, WIPP-26, mid P-14 boreholes, illustrated in Figure 4-28, 

indicate that the boundary conditions specified along the southern and western boundm·ies are not consistent with the 

observed heads. Several iterations were made to the boundm·y conditions prior to beginning the calibration exercise. 

The iterations were necessary due to the difficulty in matching the H-7, USGS-1, and H-9 observed heads while 

properly fitting the heads in the rest of the model domain. The difficulty ~u·iscs from the existence of the no-flow 

region along the Nash Draw axis and the extremely flat hydraulic gradients in the southern area. If the specified 

heads are increased along the soutl1ern boundary to fit II-7 and USGS-1, the southern boundary converts from a 

discharge boundary to a recharge boundary. Recently, discussions on the Culebra have led toward considering this 

possibility. One problem, however, stems from tl1e fact that the Pecos River, and the Malaga Bend region in 

particular, has been hypothesized to behave as a discharge region for regional tlux from the Rustler (Mercer, 1983). 

While no absolute conclusions may be made yet concerning the direction of groundwater flow in the region south of 

the WIPP site, the results determined in tl1is study have indicated that there is an inconsistency between the 

assumption that groundwater flows soutl1ward tl1roughout the model domain and the observed heads in this area. 

Thus, a compromise between the fits at the soutl1ern boreholes and the rest of the model area was necessarily 

implemented through tl1e boundary conditions. 

4.4.3 Ensemble Groundwater Travel Times 

The groundwater travel time from a point within tl1e Culebra coincident wiU1 the centroid of the waste panels to 

the southern WIPP-site boundary was calculated for each of the calibrated CS fields. A common technique of 

expressing travel-time distributions is through a cumulative distribution function (cdf), which represents the 

probability of various trnvel times occun'ing. For instance, tl1e travel time cdf determined from the calibrated fields 

(Figure 4-29) indicates that 90% of tl1e u·avel times were longer tl1an 12,000 yr, 50% of the travel times were longer 

than 18,000 yr, and 10% of tl1e u·avel times were longer than 27,000 yr. The histogrmn shown in Figure 4-30 also 

conveys the distribution of groundwater travel times. 

The travel paths tl1at coffespond to tl1e u·avel times contained in the cdf m·e illustrated in Figure 4-31. Most of 

the travel paths follow a soutl1easterly direction until reaching the DOE-1 vicinity at which point tl1e paths travel 

directly south to the WIPP-site boundary. A few paths travel directly south from the starting point while several 

others have a east-soutl1easterly direction prior to moving soutl1 toward the WIPP-site boundary. 

Assuming the numerical model used to simulate a system properly accounts for tl1e physics and scale of the 

problem of interest, tl1e uncertainty of model results should decrease as the data set to which the model is conditioned 

increases. Conditioning a transmissivity field used in a model to observed steady-state pressure data reduces 

uncertainty in the transmissivity estimates away from the observed locations. Conditioning to transient-pressure 

data further reduces uncertainty in the u·m1smissivity estimates between pressure-measurement locations due to the 

increase in information regarding tl1e transmissive properties between these two locations. The reduction in the 

uncertainty of the travel time due to the conditioning or the Culchra model to the u·m1sient pressure data base is 

illustrated in Figure 4-32 where tl1e cdf of travel times determined from the u·ansient-calibrated model (referred to 

herein as the TCDF) and the cdf determined from tl1e steady-state calibrated model (refeITed to herein as tile SCDF) are 

shown. The cdf of tl1e steady-state model was calculated hy removing all tl1e pilot points added during transient 

calibration from tile input data sets of each of tl1e realizations. 
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Figure 4-29. Travel time cumulative distribution function (cdf) determined from the 70 calibrated fields. 
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Figure 4-30. Histogram of travel times from ensemble of transient calibrated fields. 
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Figure 4-32. Cumulative distribution function (cdt) of travel times determined from the transient-calibrated fields 
(fCDF) and the cdf determined from the steady-state calibrated fields (SCDF). 

98 



APPLICATION 

As illustrated in Figure 4-32, the SCDF has a broader range of travel times than the TCDF. The minimum 

values between the two are approximately the same; however, the median and maximum travel times are quite 

different. As mentioned above, 50% of the travel times in the TCDF were greater than 18,000 yr and 10% were 

greater than 27,000 yr. In the SCDF, 50% of the travel times are greater than 25,000 yr and 10% are greater than 

37,500 yr. The maximum travel times for the steady-state m1d transient-calibrated fields are 57,000 yr and 33,000 yr, 

respectively. The histogram of travel times using only the steady-state calculated models also illustrates this point 

(Figure 4-33). 

Thus, the calibration to the transient-pressure data has significmllly reduced the range of observed travel times. 

The extension of the high-transmissivity zone toward the H-15 borehole m1d the subsequent effect the extension has 

upon the reduction in travel distance from the starting point (i.e., a point coincident with tl1e centroid of the waste 

panels in the Culebra) to a region of higher transmissivitics has reduced the uncertainty in tl1e travel times. The 

reduction in uncertainty occurs, as stated above, because of tl1e modifications to tl1e CS transmissivity fields in the 

southeastern region of the WIPP site, which are necessary to match the observed transient pressures in tl1is region. 

For comparison purposes, the travel paths that correspond lo the travel times contained in the SCDF are 

illustrated in Figure 4-34. Like the travel paths shown in Figure 4-31, most of the travel patl1s follow a 

southeasterly direction until reaching tl1e DOE-I vicinity at which time the paths travel directly south to the WIPP­

site boundary. A few more paths travel directly south from the starting point while several otl1ers have a east­

southeasterly direction ptior to moving south towm·d the WIPP-site boundary. In general though, the distribution of 

paths seems very similar to tlrnt illustrated in Figure 4-31. 
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Figure 4-33. Histogram of travel times from ensemble of fields calibrated only to steady-state head data. 
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Figure 4-34. Travel paths associated with ensemble of transmissivity fields calibrated only to steady-state head data. 
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5. DISCUSSION 

In the 1990 study, calibrating the transmissivity field to the transient pressures observed at the H-15 borehole 

from the H-11 pumping test reduced the travel time determined in the steady-state calibrated model by 30% and 

significantly altered the travel path due to the northern extension of the high-transmissivity zone toward the H-15 

borehole. In this study, the fit to the H-15 response did not have as great an effect upon the travel time as noted in 

the 1990 study. Figure 5-1 illustrates this point. Each realization's goodness-of-fit to the H-15 drawdown (as 

expressed by the sum of the squared deviations of the calculated and observed pressures over the time of the H-11 

pumping test) is plotted against its associated travel time. The travel times for the realizations that have low 

squared-deviation values (i.e., less than 1x1013 Pa2) range from approximately 10,000 yr to 27,000 yr. Figure 5-1 

also illustrates that although the fit to H-15's response may be poor, the travel time may be relatively short (e.g., 

9500 yr). 

Upon inspection, the primary factor that affects travel times is the distance that the particle must travel within a 

low-transmissivity region between the drop point and the southern WIPP-site boundary. In some realizations, the CS 

field has a low-transmissivity region (log10 T of -6.0 to -7.0) which extends southward from the WIPP-19, WIPP-

21, and WIPP-22 boreholes to the H-1 borehole. The width and length of this low-transmissivity feature vary 

widely. In other realizations, this lower transmissivity feature is confined to the immediate vicinity of the WIPP 

wells and the transmissivities in the vicinity of the H-1 borehole lie between -5.0 and -6.0 log10 T. In these 

realizations, the travel times are smaller. 

The secondary factor affecting the travel time is whether the particle intersects higher transmissivities (-4.0 to 

-5.0 log10 T) before exiting the southern WIPP-site boundary. In most of the realizations, the particles do 

eventually intersect a region of higher transmissivities. In some cases, the high-transmissivity region may begin 

adjacent to the H-3 borehole while, in others, the high-transmissivity region begins in the vicinity of the H-11 and 

DOE- I boreholes. 

Understanding the effect these two factors have on the value of the travel time helps to explain the lack of 

correlation observed in Figure 5-1. The fit to the H-15 response in and of itself is only of secondary importance. As 

described in Section 4.3, the transmissivities illustrated in Figure 4-23 depict an example of a realization in which 

the southern extension of low transmissivities (-6.0 to -7 .0 log 10 T) from the WIPP boreholes retard the 

groundwater from reaching the northern extension of the high-transmissivity zone. The particle must also travel 

through a region of transmissivities which range between -5.0 and -6.0 log 10 T before entering higher 

transmissivities.. A large percentage of the 21,500-yr travel time is associated with the first thousand meters 

traveled. 

Figure 5-2 shows a transmissivity field that has an excellent fit to the steady-state and transient pressures. 

Although the southern extension of low transmissivities also exists, the distance between the lower transmissivities 

and the northern extension of the high-transmissivity zone is much smaller than in Figure 4-23. The reduced 

distance traveled before entering the higher transmissivities has reduced the travel time from 21,500 yr to 15,700 yr. 

To illustrate an extreme case, the travel time associated with the transmissivity field shown in Figure 5-3 is 
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Figure 5-1. Scatterplot of goodness-of-fit of H-15 drawdown to travel times. 
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Figure 5-2.. A transmissivity field that has an excellent fit to the steady-state and transient pressures and an 
associated groundwater travel time of 15,700 yr. 
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Figure 5-3. A transmissivity field that has a fair fit to the transient pressures and an associated groundwater travel 
time of 9900 yr. 
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approximately 9900 yr. While the fit to the transient data is considered fair, the fit to the H-15 drawdown is poor. 

However, it is worth noting the lack of a low-transmissivity (-7.0 to -6.0 log10 m2/s) region in the vicinity of the 

drop point. The u·ansmissivities between the drop point and the southern WIPP-site boundary range from -4.0 to 

-6.0 log10 T. If the differences between the calculated and observed drawdown at the H-15 borehole were reduced, the 

transmissivities would likely increase between H-1 and the southern WIPP-site boundary and the travel time would 

be further reduced. 

An attempt to clarify the impact of the low-transmissivity region in the vicinity of the H-1 borehole on travel time 

is presented in Figures 5-4 and 5-5. Figure 5-4 contains a histogram of the distances traveled by each of the 70 

particles to the southern WIPP-site boundary. Most of the travel distances are between 3000 and 4000 m. If the 

harmonic mean of a transmissivity field is calculated over the first 2000 m of the travel path and plotted against its 

associated travel time, a general inverse correlation between the two is observed (Figure 5-5). 

Because lower transmissivities have a greater effect upon the harmonic mean value than higher transmissivities, the 

fields with lower transmissivities in the H-1 area should generally produce lower harmonic mean values and longer 

travel times. Scatterplots similar to that illustrated in Figure 5-5 were also produced for travel distances of 500 m 

and 1000 m. In these figures, however, a trend was less easily observed than the trend seen in Figure 5-5. The 

difference is due to the fact that at 2000 m, the particle has traveled far enough to exit the low-transmissivity region 

and potentially enter the high-transmissivity zone. As mentioned above, the low-transmissivity region has the 

primary effect upon travel time; the transmissivities encountered by the particle once it has exited the low­

transmissivity region are of secondary importance. 

From this study, the importance of understanding the location of the lower transmissivity region in the vicinity of 

the H-1 area is clear. The uncertainty of the transmissivities in this region has been shown to affect the overall 

travel time distribution significantly. In addition, if the high-transmissivity region exists in reality as a fracture zone 

with significantly higher transmissivities than represented in the CS field, the lower transmissivities would have the 

controlling effect upon the actual travel time to the southern WIPP-site boundary. 
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Figure 5-4. Histogram of groundwater particle distance traveled to southern WIPP-site boundary for the ensemble of 
calibrated fields. 
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6. CONCLUSIONS 

In this study, an automated approach to solving the inverse problem was utilized to calibrate 70 transmissivity 

fields to the exhaustive data base of measured heads taken within the Culebra Dolomite Member. The GRASP-INV 

code, employed during this study, produced conditionally simulated (CS) transmissivity fields and subsequently 

calibrated them using the pilot-point technique. Pilot points are calibration points within the model domain that are 

assigned synthetic transmissivity values. The pilot-point location and value are determined through adjoint 

sensitivity and optimization techniques, respectively. 

In an earlier study (La Venue et al., 1990), a wide high-transmissivity zone was assigned to match the observed 

pressures at H-15 during the H-11 pumping test. This high-transmissivity feature, which was not unique in 

orientation, width, or transmissivity magnitude, extended northward from P-17 to H-15. Given the uncertainty in 

the high-transmissivity feature, a large number of different representations of the high-transmissivity zone could be 

possible, and thus, the actual transmissivity zone could be significantly different from the representation in the 1990 

model domain. 

An attempt was made in this study to assess the plausible variations in the high-transmissivity zone. The 

uncertainty associated with the Culebra transmissivity field, as expressed tluough the kriging estimate's (µ) standard 

error ( C1 ), provided one way to assess the possible spatial variability in this region tluough the analysis of numerous 

realizations. The distribution of possible values at a given point within which a CS value should lie is expressed by 

µ ±3 C1 • This distribution was narrower near measured transmissivity locations and wider away from transmissivity 

observations. By generating and subsequently calibrating numerous transmissivity fields with values within the 

µ ±3 C1 distribution, the range of plausible fields and the spatial variability associated with these fields was 

determined. 

Once the calibrated fields were produced, groundwater travel times from a point within the Culebra, coincident 

with the center of the waste panels, to the southern WIPP-site boundary were calculated. From this distribution of 

travel times, the most important spatial features controlling groundwater flow were determined to be 

1. The southern and eastern extension of lower transmissivities from t11e vicinity of tl1e H-1 and WIPP-21 

boreholes toward the H-3 borehole. 

2. The northern and western extension of the high-transmissivity zone from the vicinity of the H-11 and 

DOE-1 boreholes toward the H-15 and H-3 boreholes. 

These results indicate that additional data in the region east and north of the H-3 borehole could benefit future 

modeling studies by reducing some of the questions concerning the spatial variability within this region. 
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NOMENCLATURE 

b = thickness of the grid block 

B = 1rransfonnation matrix 
-
c = conductance matrix -
d = direction vector 

~ = {J;l(k) - Pob(K)} 

~u = {y - !!estl 

f = vector of source tenns 

g = acceleration due to gravity 

g = gradient vector 

J = weighted least squares (WLS) error criterion function 

k = time step number 

K = penneability 

K* = estimated penneability 

kt(r) = generalized covariance function for a line (IRF-0) process 

k1(r) = generalized covariance function for a two dimensional (IRF-0) process 

L = maximum time level of the simulation 

L = number of lines used in Turning Bands Method 

L = total number of time steps 

m = suffix denoting grid block 

M = number of grid blocks 

n = time level (1,2,3 ... L) 

N = number of pilot points 
p = posterior covariance matrix of errors in parameters 

Pob(k) = pressures observed 

p(k) = pressures computed 

R -· Cov. matrix of errors in £ob 
-
s -· storativity matrix 

s = Jacobian Matrix (of sensitivities) 

-- time 

T - transmissivity 

T* -- estimated transmissivity 

Tp -- pilot-point transmissivity 

!! -- vector of parameters (Y p = Log 10 T p) 
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NOMENCLATURE 

u = Cov. matrix of errors in.!! 

w = Weiner-Levy Process 

Yp = LogJOTp 

z = a true (but unknown) field 

Zok = kriged field using the 'measured' data 

Zuc = unconditional simulated field 

Zuk = kriged field using simulated data at the measurement 

Tl = relative weight of the plausibility criterion to model fit criterion 

p density of fluid 

µ == viscosity of fluid 

2. = adjoint state-vector 

~ step length 

y kriging weight 

O' = standard deviation 

~ spatial coordinate along a turning band line 

~t = tn - tn-1 
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