

NMED Request for Modeling and Parameter Selection Information May 16, 1997 9:00 a.m. - 12:00 noon

AGENDA

- Regulatory Requirements for 40 CFR Part 264 Subpart X Modeling
- Checklist of Information Needs for RCRA Subpart X Modeling
- NMED Clarification of Request for Additional Information
- Comparison of CCA vs. NMVP

.

۰.

-

- _

Nare

*

Phane #

-691

Susan McMichael	NMED (DEC)	827-2990
Ed Kelley	NMED/WINDD	827-2855
Kaven Day	Westinghouse	234-8720
Bob Kehrman	Westinghouse	234 - 8390
Keyin Donovan	Westinghouse	234 - 8325
Gloria Barnes	Westinghouse	234-8383
Benito I. Carcia	NMED/HRMB	827-1557
Teri Davis	NNED/HRMS	87-1558
Stare Cappa	NMED/HRMB	827-1561
J.R. STROBLE	WESTINGHOUSE	234-8256
CRAIG SNIDER	DOE	234-7452
Pam matthews	Westinghase	988-8804 F.
Gose-A. Mora	DOZ/AL/OCE	845-5169 845
Roopen H. Waym	an DOE-GAO	234-7329
Eric Ames	NME9-06C	827-2982

WIPP File

State of New Mexico ENVIRONMENT DEPARTMENT Hazardous & Radioactive Materials Bureau 2044 Galisteo P.O. Box 26110 Santa Fe, New Mexico 87502 (505) 827-1557 Fax (505) 827-1544

MARK E. WEIDLER SECRETARY

EDGAR T. THORNTON, III DEPUTY SECRETARY

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

April 29, 1997

Mr. Joe Epstein, General Manager Westinghouse Electric Corporation P.O. Box 2078 Carlsbad, New Mexico 88220

P. O. Box 3090 Carlsbad, New Mexico 88221

Dear Messrs. Dials and Epstein:

Mr. George Dials, Manager

Carlsbad Area Office Department of Energy

RE: Request for WIPP modeling and parameter selection information EPA I.D. Number NM4890139088

The New Mexico Environment Department (NMED) Hazardous and Radioactive Materials Bureau (HRMB) is developing a draft permit based upon the RCRA Part B Permit Application (DOE/WIPP 91-005, Revision 6) submitted by the Department of Energy (DOE) and Westinghouse (WID) for the Waste Isolation Pilot Plant (WIPP) on April 12, 1996. Subsequent updates were submitted May 29, 1996, editorial page changes were submitted June 3, 1996, and a revised groundwater monitoring plan was submitted on March 20, 1997. The permit will address the management of transuranic mixed waste in portions of the Waste Handling Building and the adjacent parking lot, and the disposal of this waste into an underground miscellaneous unit.

The WIPP Land Withdrawal Act Amendments (LWAA, Public Law 104-201) exempted under federal law all WIPP-designated transuranic mixed waste from treatment standards and land disposal prohibitions promulgated pursuant to the Solid Waste Disposal Act. Besides rendering the Final No-Migration Variance Petition (DOE/CAO-96-2160) superfluous, the LWAA also adversely impacted HRMB's permitting activities and, as a result, will impact the timeliness of issuing a draft permit. The RCRA Part B permit application was predicated on EPA Office of Solid Waste's (OSW) full and favorable evaluation of the No-Migration Variance Petition. In order to demonstrate compliance with 20 NMAC 4.1, Subpart V, §264.601, the applicants directly relied upon technical data and assumptions which were presumably substantiated in the Petition, but only summarized in the RCRA Part B permit application, such as Chapter E and Appendix E1. Following the exemption, OSW ceased all work on the Petition. However, as our legal staff has discussed with the applicants' legal counsel, NMED does not believe the exemption alleviates the need for DOE/WID to demonstrate "Protection of human health and the environment [including]...prevention of any releases that may have adverse effects on human health and the environment... " as required in §264.601.

As a consequence, HRMB must obtain and evaluate additional supporting technical information to determine whether the application is administratively complete and technically adequate as required by 20 NMAC

GARY E. JOHNSON GOVERNOR Messrs. Dials and Epstein Page 2 April 29, 1997

4.1, Subpart V, §264.601. Pursuant to 20 NMAC 4.1.1103, HRMB and its technical contractor have identified specific documents needed to satisfy this requirement, as indicated in Attachment 1.

Please submit this information to HRMB as soon as possible. Furthermore, submit any other information that you determine as necessary for the administrative record prior to the issuance of the draft permit. For each item of additional information, clearly indicate whether the information "clarifies, modifies, or supplements previously submitted material," and if so, the corresponding location of the previously submitted material in the permit application. Under 20 NMAC 4.1.1103, the application is complete so long as the additional information is necessary to "clarify, modify or supplement previously submitted material." If the additional information renders the application incomplete, HRMB will rescind the June 27, 1996, completeness determination while the new information is being reviewed for technical adequacy. Following HRMB's administrative and technical review, a new completeness determination will be issued.

Please provide HRMB with three hardcopies and an electronic copy (in WordPerfect 5.2 format) of all submitted information. After receipt, HRMB will need time to review and evaluate the adequacy of the information for completeness <u>and</u> technical adequacy prior to issuance of the draft permit. The direct result of submitting new and additional technical information is to create a potential delay in the issuance of the draft permit for public comment. To avoid further delay, HRMB urges you to submit the requested information as soon as possible. You may coordinate shipment of the hardcopies to our office and that of our technical contractor with Mr. Steve Zappe of my staff.

Thank you for your cooperation in this permitting process. If you have any questions, please contact Mr. Zappe at (505) 827-1561.

Sincerely,

undone Benito J. Garcia, Chief Hazardous and Radioactive Materials Bureau

Attachment

cc: Ed Kelley, NMED Stu Dinwiddie, HRMB Steve Zappe, HRMB Susan McMichael, NMED OGC David Neleigh, EPA Region 6 Matt Hale, EPA OSW Frank Marcinowski, EPA ORIA Connie Walker, A.T. Kearney File: Red WIPP '97 Track: WIPP, 4/18/97, Dials, Garcia, RE: Attachment 1

Modeling and Parameter Selection Information/Documents

DOE/WID must provide the following documents, and additional information not contained in those documents, for inclusion in the administrative record.

DOCUMENTS

From the Final No-Migration Variance Petition (DOE/CAO-96-2160):

Chapter 8

From the Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (DOE/CAO-1996-2184):

- Chapter 4
- Chapter 6 (primarily Section 6.4)
- Chapter 8
- Appendix BIR
- Appendix BRAGFLO
- Appendix MASS, Attachment 8-2 •
- Appendix PAR
- Appendix SEAL
- Appendix WCA

References from the CCA on the BSEP program and the effects of brine injection:

- Deal and Case, 1987 (Ref. # 166) .
- Deal et. al., 1989 (Ref. # 167) •
- Deal and Roggenthen, 1989 (Ref. # 168) Deal et. al., 1989a (Ref. # 169) Deal et. al., 1991a (Ref. # 170) •
- •
- •
- Deal et. al., 1991b (Ref. # 171) .
- Deal et. al., 1993 (Ref. # 172) •
- DOE, 1995 (Ref. # 197) .
- Stoezel and O'Brien, 1996 (Ref. # 611)

DOE's response to EPA ORIA Completeness Comments:

- Submission No. 3, dated February 7, 1997 Submission No. 4, dated February 14, 1997

INFORMATION

- 1. Clarify whether gas generation rate assumptions in Appendix E1, Table E1-1, assume the presence of MgO in the repository.
- 2. Provide references to specific experimental data that support the assumption of assigning a value of 1.0 to the Anoxic Corrosion Stoichiometric Factor, as indicated Appendix E1, Table E1-1.
- DOE/WID asserts in Appendix E1, page E1-1, lines 28 30, that they 3. are "... seeking to demonstrate, to a reasonable degree of certainty, that there will be no migration of hazardous waste or hazardous constituents via groundwater for as long as the waste remains hazardous." In Appendix E1, Tables E1-3 and E1-4, Note "a" indicates that median values for Salado formation halite and anhydrite parameters were used in modeling calculations, based upon the data and parameter distributions contained in Appendix D16, Section D16-6. However, 20 NMAC 4.1, Section V, §264.90(b)(4) states that, "In order to provide an adequate margin of safety in the prediction of potential migration of liquid, the owner or operator must base any predictions made under this paragraph on assumptions that maximize the rate of liquid migration." It is not clear how the use of median values maximize the rate of liquid migration, and it appears that worst- case assumptions have not been modeled in a single realization. Section 8.1.1 of the CCA identifies Salado anhydrite interbeds as a potential pathway to the facility boundary, and demonstrates that nine out of 300 realizations indicate releases are possible. Justify how the use of median values maximize the rate of liquid migration in modeling calculations. Alternately, submit modeling results based on worst-case assumptions that maximize the rate of liquid migration.
- 4. Appendix E1, Figure E1-12, and text on page E1-33, lines 35-43, shows that average pressure in the waste disposal region increases with time. Comparison of the threshold values for each shaft seal component with the anticipated gas generation values indicates that approximately 50 years after shaft seal emplacement, the repository pressure will exceed the threshold pressure for seal components. Provide additional information that discusses the effects of pressure build-up in the subsurface relative to the individual and cumulative effect of shaft seals, and how this might influence contaminant migration.

Information Need	Addressed in Chapter-Section			
Facility Description				
Name of facility and address of facility	Part A			
Name of owner/operator	Part A			
Anticipated period of operation	B-Introduction			
Location map	Figure B-18			
Detailed site plan	Figures B-2 and B-6			
Aerial surveys	Figure B-1			
Advantages/disadvantages of location	B-3, Appendix D1 and D6			
Evaluation of disposal unit				
Design description	D-9, Appendix D2			
Design performance projection	D-9, Appendix D2			
Materials specifications	D-9a(1), Appendix D1			
Detailed drawings and specifications	Appendix D3			
Documentation of unit construction	Appendix D3			
Documentation of unit operation	D-10			
Closure plans	I, Appendix I1 and I2			
Post-closure plans	I, Appendix I1 and I2			
Design QA/QC demonstration (testing and inspection)	Appendix D6			
Facility operation QA/QC demonstration	D-10			
Waste Characte	eristics			
Waste type by name	C-1b			
Processes that produced the waste	C-1b			
Hazardous properties	C-2			
Physical and chemical characteristics	C-2			
Constituents and percentages of constituents	C-2			
Analytical methods and results	C-4a			
Projection of waste volume to be disposed	Part A			
Frequency of disposal	D-10			
Period of time waste has been and will be disposed	D-10			

.

:

Information Need	Addressed in Chapter-Section	
Handling procedures	D-10a(3)	
Liquid phase mobility information	C-1b	
Gas/particulate mobility	C-1b	
Solid phase mobility	C-1b	
Dust generation potential	C-1b	
Gas-liquid phase interactions	C-1b	
Persistence/degradation potential in unit and environment	D-9, Appendix D11	
QA/QC demonstration	C-1b, C-4	
Waste/waste compatibility, interaction, reaction products	Appendix C1	
Assessment of biodegradation potential	Appendix D11	
Site Characterization		
Surficial geology and soils	Appendix D6 Section D6-1c(10)	
Bedrock geology		
Stratigraphy and lithology	Appendix D6 Section D6-1c	
Seismic activity of area	Appendix D6 Section D6-4	
Assessment of ground motion potential and degree	Appendix D6 Section D6-4	
Geologic cross-sections	Appendix D6 Section D6-1c	
Degree of bedrock faulting and fracturing	Appendix D6 Section D6-1e	
Rock characterization	Appendix D6 Section D6-5	
Groundwater hydrology		
Water table map	Appendix D6 Section D6-2a	
Seasonal variations in the water table	Appendix D6 Section D6-2a ^a	
Identification of all aquifers and aquitards	E, Appendix D6 Section D6-2a	
Characterization of all aquifers	E, Appendix D6 Section D6-2a	
Vertical and horizontal hydraulic conductivity	Appendix D6 Section D6-2a	
Aquifer interconnection	Appendix D6 Section D6-2a	
Description of groundwater monitoring program	D-10d, Appendix D18	
Monitoring QA/QC documentation	Appendix D6 and D18	

•

Information Need	Addressed in Chapter-Section	
Surface-water hydrology		
Location of all watersheds	Appendix D6 Section D6-2b	
Map of drainage patterns	Appendix D6 Section D6-2b	
Meteorology/climatology		
Wind rose	Figure D-13	
Wind Data	Appendix D10	
Monitoring	Plan	
Media to be monitored	D-10d(1), Appendix D5, D18, and D20	
Type of monitoring to be conducted at the unit	D-10d(1), Appendix D5, D18, and D20	
Location of monitoring stations	D-10d(1), Appendix D5, D18, and D20	
Frequency of monitoring at each station	D-10d(1), Appendix D5, D18, and D20	
Specific hazardous chemicals to be monitored	D-10d(1), Appendix D5, D18, and D20	
Implementation schedule for the monitoring program	D-10d(1), Appendix D5, D18, and D20	
Equipment used at the monitoring stations	D-10d(1), Appendix D5, D18, and D20	
Sampling and analytical techniques employed	D-10d(1), Appendix D5, D18, and D20	
Data recording/reporting procedures	D-10d(1), Appendix D5, D18, and D20	
Waste Mob	ility	
Unsaturated zone soils ^c		
Soil samplings	Appendix D6 and D16	
Soil testing	Appendix D6 and D16	
Unsaturated zone physical properties ^c		
Volumetric water content	D-9b(1)(b)(I), Appendix D1 and D6	
Degree of water saturation	D-9b(1)(b)(I), Appendix D1 and D6	
Bulk density	D-9b(1)(b)(I), Appendix D1 and D6	
Pressure potential	D-9b(1)(b)(I), Appendix D1, D6, and D16	
Relative permeability	D-9b(1)(b)(I), Appendix D1, D6, and D16	
Unsaturated hydraulic conductivity	D-9b(1)(b)(I), Appendix D1, D6, and D16	
Water capacity	Appendix D16 ^b	

.

...

Information Need	Addressed in Chapter-Section		
Leachate characteristics affecting mobility			
Leachate characterization	D-9b(1)(c)°		
Evaluation of transport mechanisms	D-9b(1)(c)°		
Evaluation of fate of contaminants in unsaturated zone	D-9b(1)(c)°		
Vapor concentration of constituents at the source	D-9b(4), Appendix D9		
Vapor pressure of constituents	D-9b(4), Appendix D9		
Solubility data for constituents	D-9b(1)(c)°		
Activity coefficients	D-9b(1)(c) ^c		
Henry's Law constant	D-9b(1)(c) ^c		
Background measurements for air	Appendix D15 and D21		
Assessment of volatilization potential	Appendix D9 and D12		
Modeling Evaluation			
Model accounts for all transport mechanisms	D-9b		
Model appropriate for waste	D-9b		
Data input accurate and verified	D-9b, Appendix D10 and D16		
Model tested under field conditions ⁱ	D-9b, Appendix D10 and D16		
Limitations of model	D-9b(1)(c)		
Model inputs adequately documented	Appendix D10 and D16		
Model outputs appropriate and reasonable	D-9b, Appendix D10 and E1		
Assessment of Environmental Risk			
Identification of all exposure pathways and routes	D-9b		
Identification /Assessment of potential receptors	D-9b(1)(c)(I)		
Uncertainty Analysis			
Natural events			
Climatic fluctuations	Appendix D1 and D6		
Glaciation	Appendix D1 and D6		
Stream erosion	Appendix D1 and D6		
Magmatic activity	Appendix D1 and D6		

. •

٠

•

Information Need	Addressed in Chapter-Section	
Epeirogenic displacement	Appendix D1 and D6	
Orogenic diastrophism	Appendix D1 and D6	
Diagenesis	Appendix D1 and D6	
Static fracturing	Appendix D1 and D6	
Dissolution	Appendix D1 and D6	
Sedimentation	Appendix D1 and D6	
Flooding	Appendix D1 and D6	
Undetected features (i.e., faults, lava tubes)	Appendix D1 and D6	
Meteorites	Appendix D1 and D6	
Fires	Appendix D1 and D6	
Hurricanes	Appendix D1 and D6 ^d	
Tornadoes	Appendix D1, D2, and D6	
Earthquakes	Appendix D1, D2, and D6	
Ground motion	Appendix D1, D2, and D6	
Waste-induced or facility-induced events		
Chemical effects	Appendix C1	
Mechanical effects	D-9b	
Modification of hydrologic regime	D-9b°	
Human-induced events		
Intrusions	I-2a(1), Appendix I4	
Perturbation of groundwater system	I-2a(1), Appendix I4	

^a During the operational phase and post-closure care period, the WIPP facility will not be affected by seasonal variations in water table.

^b Water (or field) capacity is addressed indirectly in the modeling: two-phase flow properties (e.g., residual brine saturation) and effective porosities used in the model are related to the field capacity of porous media.

^c Modeling shows that insufficient brine is available to form leachate.

^d The region in which the WIPP facility is located has no history of hurricanes.

^e Discussion is limited to the disturbed rock zone (DRZ) in the underground.