TECHNICAL SUPPORT DOCUMENT FOR

SECTION 194.43: PASSIVE INSTITUTIONAL CONTROLS - IMPLEMENTATION COST ESTIMATE

U. S. ENVIRONMENTAL PROTECTION AGENCY
Office of Radiation and Indoor Air
Center for the Waste Isolation Pilot Plant
401 M. Street, S. W.
Washington, DC 20460

OCTOBER, 1997
Technical Support for this document was provided by TechLaw, Inc. and its subcontractors under EPA Contract 68D50174.
TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

1.0 INTRODUCTION ... 4
 1.1 SCOPE .. 4

2.0 DATA COLLECTION ... 5
 2.1 BERMS .. 5
 2.2 KIOSKS / MARKERS .. 5
 2.3 ARCHIVAL OF PRINTED INFORMATION 5
 2.3.1 Printing and Binding 5
 2.3.2 Archives ... 6

3.0 DATA PRESENTATION ... 7
 3.1 BERMS .. 7
 3.2 KIOSKS / MARKERS ... 8
 3.3 ARCHIVAL OF PRINTED INFORMATION 9
 3.3.1 Printing and Binding 9
 3.3.2 Archives .. 9

4.0 DATA INTERPRETATION .. 12
 4.1 BERMS .. 12
 4.2 KIOSKS / MARKERS ... 12
 4.3 ARCHIVAL OF PRINTED INFORMATION 13
 4.3.1 Printing and Binding 13
 4.3.2 Archives .. 13

5.0 CONCLUSIONS AND RECOMMENDATIONS 14
 5.1 CONCLUSIONS .. 14
 5.2 RECOMMENDATIONS ... 14

Appendices

Appendix A - WIPP Berm Volume Calculations
Appendix B - WIPP Berm Cost Calculations
Appendix C - Proposed Marker Construction & Cost Calculations
Appendix D - Printing Cost Estimate
Appendix E - NARA Bulletin Number 95-7
EXECUTIVE SUMMARY

Research Management Consultants, Inc. (RMCI) has been tasked by A.T. Kearney, Inc. under Contract Number G970-070 to develop a cost estimate, in 1997 dollars, for the implementation of three elements of the Waste Isolation Pilot Project (WIPP) Passive Institutional Controls (PICs). These elements were: construction of a berm which outlines the perimeter of the subsurface storage area, construction of large stone kiosks / markers, and archival of printed information worldwide.

The total volumes calculated for each berm material type were as follows: 1) soil / riprap 129,688 cubic yards (cy); 2) riprap 189,128 cy; 3) caliche 252,892 cy; 4) salt 443,473 cy; and 5) excavated soil 439,747 cy, with the total cost of the 1,325,240 cy berm construction was estimated to be $40,043,031. The total cost of 48 kiosks / markers construction with metal anchors was estimated to be $15,313,723; however, if these same 48 kiosks / markers were constructed with stone interlock the total estimated cost would rise to $28,252,813. Depending on how the documents are bound (saddlestitched or perfect bound) the cost estimate ranges from $80,500 to $90,750, respectively. Shipping of the documents was estimated to be $15,000.

The grand total of the cost estimates were $68,401,595 (1997 dollars). A summary of these data is provided in the following table.

Based on approximately 50 years of construction data collected by the R.S. Means company for both a thirty US city average, and Albuquerque, New Mexico it is anticipated that construction costs will increase by approximately three to four fold during the next century. The following figure presents these historic construction cost data. These data suggest that the construction costs of the PICs in the year 2100 may range from $205,000,000 to $275,000,000.
WIPD-PICS COST ESTIMATE

ESTIMATED COSTS - IMPLEMENTATION OF PIcs
DATE: MARCH 31, 1997

GRANITE MONOLITH MARKERS:

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Number</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIC Monolith Marker Construction</td>
<td>Marker</td>
<td>48</td>
<td>$539,129.00</td>
<td>$25,878,192.00</td>
</tr>
<tr>
<td>PIC Monolith Marker Engraving</td>
<td>Marker</td>
<td>48</td>
<td>$36,282.40</td>
<td>$1,741,555.20</td>
</tr>
<tr>
<td>PIC Monolith Marker Excavation</td>
<td>Cubic Yards</td>
<td>3840</td>
<td>$6.46</td>
<td>$24,806.40</td>
</tr>
<tr>
<td>PIC Monolith Marker Backfill</td>
<td>Cubic Yards</td>
<td>2688</td>
<td>$3.88</td>
<td>$10,429.44</td>
</tr>
<tr>
<td>PIC Monolith Marker Installation</td>
<td>Marker</td>
<td>48</td>
<td>$5,118.50</td>
<td>$245,688.00</td>
</tr>
<tr>
<td>Marker Unloading</td>
<td>Marker</td>
<td>48</td>
<td>$1,086.30</td>
<td>$52,142.40</td>
</tr>
<tr>
<td>Transportation</td>
<td>Marker</td>
<td>48</td>
<td>$6,250.00</td>
<td>$300,000.00</td>
</tr>
</tbody>
</table>

BERM CONSTRUCTION:

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Number</th>
<th>Unit Cost</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear and Grub</td>
<td>Acres</td>
<td>86.9</td>
<td>$2,900.00</td>
<td>$251,981.00</td>
</tr>
<tr>
<td>Grub Stump /Remove</td>
<td>Acres</td>
<td>86.8</td>
<td>$1,300.00</td>
<td>$112,840.00</td>
</tr>
<tr>
<td>Strip soil and stockpile</td>
<td>Cubic Yards</td>
<td>519747</td>
<td>$1.22</td>
<td>$634,091.34</td>
</tr>
<tr>
<td>Salt Core Hauling</td>
<td>Cubic Yards</td>
<td>620862</td>
<td>$4.91</td>
<td>$3,048,432.42</td>
</tr>
<tr>
<td>Backfilling of Salt Core</td>
<td>Cubic Yards</td>
<td>620862</td>
<td>$1.37</td>
<td>$850,580.94</td>
</tr>
<tr>
<td>Compaction of Salt Core</td>
<td>Cubic Yards</td>
<td>620862</td>
<td>$0.41</td>
<td>$254,553.42</td>
</tr>
<tr>
<td>Hauling Caliche</td>
<td>Cubic Yards</td>
<td>354049</td>
<td>$26.00</td>
<td>$9,205,274.00</td>
</tr>
<tr>
<td>Backfilling of Caliche</td>
<td>Cubic Yards</td>
<td>354049</td>
<td>$1.37</td>
<td>$485,047.13</td>
</tr>
<tr>
<td>Compaction of Caliche</td>
<td>Cubic Yards</td>
<td>354049</td>
<td>$0.41</td>
<td>$145,160.09</td>
</tr>
<tr>
<td>Hauling Rip Rap</td>
<td>Cubic Yards</td>
<td>226953</td>
<td>$23.00</td>
<td>$5,219,919.00</td>
</tr>
<tr>
<td>Placing Rip Rap</td>
<td>Square Yards</td>
<td>120744</td>
<td>$61.50</td>
<td>$7,425,756.00</td>
</tr>
<tr>
<td>Backfilling Rip Rap End Sections</td>
<td>Cubic Yards</td>
<td>74533</td>
<td>$1.37</td>
<td>$102,110.21</td>
</tr>
<tr>
<td>Backfilling Existing Soil</td>
<td>Cubic Yards</td>
<td>104346</td>
<td>$1.37</td>
<td>$142,954.02</td>
</tr>
<tr>
<td>Compaction of Existing Soil</td>
<td>Cubic Yards</td>
<td>104346</td>
<td>$0.41</td>
<td>$42,781.86</td>
</tr>
<tr>
<td>Hauling Rip Rap / Soil Cap</td>
<td>Cubic Yards</td>
<td>155626</td>
<td>$23.00</td>
<td>$3,579,398.00</td>
</tr>
<tr>
<td>Placing Rip Rap / Soil Cap</td>
<td>Square Yards</td>
<td>135278</td>
<td>$61.50</td>
<td>$8,319,597.00</td>
</tr>
<tr>
<td>Seeding</td>
<td>Square Feet</td>
<td>4541952</td>
<td>$0.05</td>
<td>$22,555.65</td>
</tr>
</tbody>
</table>

ARCHIVE DOCUMENTATION:

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Number</th>
<th>Rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document preparation (printing)</td>
<td>volumes</td>
<td>5000</td>
<td>$18.15</td>
<td>$90,750.00</td>
</tr>
<tr>
<td>Archive Installation / Transportation</td>
<td>volumes</td>
<td>5000</td>
<td>$3.00</td>
<td>$15,000.00</td>
</tr>
</tbody>
</table>

TOTAL COST

$68,401,595.52
Historical Cost Indexes
30 City National and Abq, NM
1.0 INTRODUCTION

The Department of Energy (DOE) has submitted a Title 40 Code of Federal Regulations (CFR) Part 191 Compliance Certification Application (CCA) for the Waste Isolation Pilot Plant (WIPP), which is located near Carlsbad, New Mexico, to the Environmental Protection Agency (EPA) for review. As part of the CCA DOE has proposed passive institutional controls (PICs) which would serve to warn future generations of the dangers imposed by the transuranic wastes which are to be entombed at the WIPP site. These PICs are intended to convey information for a period of approximately 10,000 years and include such items as: large man-made structures (berms), large stone kiosks / markers, and archival of printed information.

1.1 SCOPE

RMCI was tasked by the A.T. Kearney, Inc. under Contract Number G970-070 to develop a cost estimate, in 1997 dollars, for the implementation of three elements of the WIPP PICs. These element were: construction of a berm which outlines the perimeter of the subsurface storage area, construction of large stone kiosks / markers, and archival of printed information worldwide. These efforts were to be performed in accordance with a proposal submitted to A.T. Kearney, Inc. on February 11, 1997.
2.0 DATA COLLECTION

2.1 BERMS

Berm geometry information was provided in Chapter 7, Figure 7-15, page 7-75 of the CCA, as well as CCA Appendix PIC, Figure VIII-2, page 72. These data provided cross-sectional and plan views of the berm, and construction material requirements.

Construction costs related to the berm were derived from the R. S. Means Heavy Construction Cost Data, 11th Annual Edition, 1997. This construction cost estimating guide has been used throughout the construction industry since 1942 and has been established as an industry standard.

2.2 KIOSKS / MARKERS

Kiosk / marker specifications were provided in Chapter 7, Figures 7-12 and 7-13, pages 7-69 and 7-71 of the CCA, as well as CCA Appendix PIC, Figures V-1, V-2, and V-4, pages 48, 49 and 51. These data provided marker specifications, dimensions, engraved message contents and plan views. Specifically, 16 kiosks / markers would be placed at spacing of approximately 600 feet along the perimeter of the berm, and 32 kiosks / markers would be placed at spacing of approximately 2600 feet along the perimeter of the WIPP Site Boundary, for a total of 48 kiosks / markers.

Cold Spring Granite Company of Cold Spring, Minnesota and Keystone Granite Company of Elberton, Georgia were contacted to provide technical information and cost estimates for the construction of the kiosks / markers. Construction costs related to the installation of the markers were derived from the R. S. Means Heavy Construction Cost Data, 11th Annual Edition, 1997. This construction cost estimating guide has been used throughout the construction industry since 1942 and has been established as an industry standard.

2.3 ARCHIVAL OF PRINTED INFORMATION

2.3.1 Printing and Binding

A.B. Hirschfeld Press of Denver, Colorado was contacted to establish costs associated with the printing and binding of the WIPP PIC related documentation. Specifications for paper and ink as set forth in the PIC Design Report Revision 0, Section XIV, Offsite Archival Storage, which references the paper requirements of National Archives and Records Administration (NARA) Bulletin Number 95-7 were provided to A. B. Hirschfeld Press.

These specifications included the following:

- Text and cover of alkaline paper;
• Carbon black ink with a pH greater than 5.5;
• 100 document sets (Title 40 CFR Part 191 Compliance Certification Application, pg. 7-79);
• 50 volumes per set (Guidance for Preparing Cost Estimate and Conducting Review of the 40 CFR 194.43 Passive Institutional Controls, A.T. Kearney fax 12/13/96);
• 100 pages per volume (RMCI assumption);
• Camera-ready copy provided to printer; and
• FOB Denver.

2.3.2 Archives

USA

On February 28, 1997, RMCI met with Joel Barker, Director of the Rocky Mountain Region National Archives (Archives), and select staff members of the Regional Archives and Records Center which is located at the Denver Federal Center.

RMCI requested assistance in obtaining telephone numbers for National Archives in other countries. RMCI was referred to Ms. Nancy Bartlett of the Society of American Archivists (SAA) at the University of Michigan. RMCI was unable to contact Ms. Bartlett of the SAA, as she was out of the country for several weeks. Mr. Bill Wallock, SAA, provided a Web Site address (HTTP://www.lib.uidaho.edu/special-collections/other.repositories.html) which he thought might be helpful in obtaining international archive telephone numbers. A search of the Web Site revealed that there was only limited information obtainable at that address. RMCI successfully contacted the National Archives in Canada, the United Kingdom, and Australia. In an effort to obtain information on archiving information in Mexico RMCI worked in conjunction with Ms. Marsh Wilis, Program Director of the Americas Development Group, who resides on the Board of Directors of the Mexico Cultural Center and North American Trade Dispute Resolution Center, and was the former President of the Colorado Advisory Council on Mexico, and who presently represents the State of Veracruz, Mexico on international development.
3.0 DATA PRESENTATION

3.1 BERMS

The berm cross section was divided into five material types: 1) soil/riprap exterior armor which would be vegetated; 2) riprap armor for the caliche underlayment; 3) caliche cap for the salt core; 4) salt core; and 5) excavated existing soil which would provide a keyway for the construction of the berm (Appendix A). The total volumes calculated for each material type are as follows: 1) soil/riprap 129,688 cubic yards (cy); 2) riprap 189,128 cy; 3) caliche 252,892 cy; 4) salt 443,473 cy; and 5) excavated soil 439.747 cy (Appendix A).

In an effort to simulate the actual construction of the berm, construction activities were divided into 17 distinct efforts:

1) Clear and grub the berm footprint, over-excavation area and five miles of access roads; $251,983
2) Grub stumps and remove the same areas as listed above; $112,840
3) Topsoil stripping and stockpiling same areas as above; $634,091
4) Hauling of salt core material; $3,048,433
5) Backfilling of salt core material; $850,581
6) Compaction of salt core material; $254,553
7) Hauling of screened caliche material; $9,205,269
8) Backfilling caliche material; $485,047
9) Compaction of caliche material; $145,160
10) Hauling of riprap material; $5,219,932
11) Placing riprap material; $7,425,756
12) Backfilling riprap material; $102,110
13) Backfilling excavated soil material; $142,954
14) Compaction of excavated soil; $42,781
15) Hauling soil/riprap armor; $3,579,389
16) Placement of soil/riprap armor; and $8,319,597
17) Seeding berm, overexcavated areas, and access road. $222,555

Total cost of berm construction $40,043,031

Cost data related to the construction of the berm is presented in Appendix B.
3.2 KIOSKS / MARKERS

In an effort to simulate the actual construction of the kiosks / markers, fabrication and construction activities were divided into six distinct efforts:

1) Quarrying and finishing of components for five piece marker using metal anchor technology including delivery of 48 markers to Albuquerque, New Mexico; $12,939,102

1A) Quarrying and finishing of components for five piece marker using no metal with rock interlock technology including delivery of 48 markers to Albuquerque, New Mexico; $25,878,192

2) Sandblast engraving of messages; $1,741,555

3) Transport to the WIPP Site from Albuquerque; $300,000

3) Excavation of marker foundations; $24,806

4) Backfill and compact marker foundations; $10,429

5) Kiosk / marker handling and installation on site; $245,088

6) Kiosk / marker unloading and transport on site; $52,142

Total cost of kiosk / marker construction with metal anchors $15,313,723

Total cost of kiosk / marker construction with stone interlock $28,252,813
3.3 ARCHIVAL OF PRINTED INFORMATION

3.3.1 Printing and Binding

Depending on how the documents are bound (saddlestitched or perfect bound) the cost estimate ranges from $80,500 to $90,750, respectively. Appendix D provides a cost estimate for printing and binding.

3.3.2 Archives

USA

The US National Archives confirmed that they would accept the WIPP documents which would be stored in an environmentally controlled area to increase the life expectancy of the documents. Once documents are accepted by the Archives, the Archives has legal custody of the documents. All costs associated with storage, use, and preservation of the documents are borne by the Archives and are not passed on to the originator of the documents.

The Archives provided RMCI with a copy of the National Archives and Records Administration (NARA) Bulletin Number 95-7 which specifies the type of paper to be used for the creation of Federal records (Appendix E). The bulletin concurs with the paper specifications for the WIPP document as set forth in the CCA.

United Kingdom

The national archives for the UK are maintained by the Public Record Office (PRO). The Government Services Department of the PRO indicated that they do not normally accept documents from other nations. The Chief Executive of the PRO will entertain a written request for inclusion of the WIPP document in the archives. Such a request should be directed to:

Mrs. Farah Tyacke, Chief Executive
Public Record Office
Ruskin Avenue
Kew
Surrey
TW9 4DU
Tel. 44 181 392 5200
Canada

The National Archives of Canada do not normally accept documents from other nations. A written request will be taken under consideration. The request should be directed to:

Mr. Eldon Frost
Director, Manuscript Division
National Archives of Canada
395 Wellington Street
Ottawa, Ontario
K1A 0N3
Tel. 613-993-7254

Australia

The Australian Archives will accept only documents which pertain to the Commonwealth. Ms. Dagmar Parer of the Australian Archives indicated that there may be other institutions such as universities and libraries which may accept the WIPP document. Ms. Parer offered her assistance in identifying such repositories and may be contacted at:

Australian Archives
National Office
Mining Industry House
216 Northbourne Avenue
Braddon ACT 2612
Tel: 61 6 209 3633

Mexico

Various organizations were contacted in an effort to establish the proper repository for the WIPP information. The most appropriate site may be with the National Commission for Science and Technology (CONACYT - Mr. Ruben Barocio Ramirez, Engineer, e-mail - cnaap@supernet.com.mx) which is located in Mexico, City. Other options include:

• The National Archive, Ms. Sylvia Lara Cobos, Lic.; however, this facility did not express great interest;
The Secretariat of Ecology, Environment, Natural Resources, Mining and Fisheries (SEMARNIP), most permits for mineral exploration are processed by this agency;

National University, located in Mexico City, Dr. Caspar MacGregor Cruz;

Technology Institute, located in Monterey, Mexico;

The National Statistics and Geographic Institute (INEGI);

National Commission of Nuclear Security and Safeguards (Commission Nacional de Seguridad Nuclear y Salvaguardas),

Engineer (Ing.) Miguel Medina Vaillard, Director General

Dr. Barragan 779, 5o. Piso, Col. Narvarte
03020 Mexico, D.F.
Tel: 011-52-5-590-5182; 590-4181
Fax: 011-52-5-590-6103

Light and Energy Distribution and Commercialization Company (Distribucion y Comercializacion Compania Mexicana de Luz y Fuerza del Centro)

Engineer (Ing.) Juan Eibenschutz Hartman, Subdirector
Tel: 011-52-5-829-2174; 140-029
Auxiliary Contacts: Sra. Marta Cacho; Sra Srta. Beatriz Olvera

PEMEX Industrial Security Systems (Sistemas de Seguridad Industrial PEMEX)

Engineer (Ing.) Rafael Fernandez de la Garza, Director Corporativo
Av. Marina Nacional 329
Torre Ejecutiva, Piso 35
1131, Mexico, D.F.
Tel: 011-52-5-254-4419; 011-52-5-726-1366
Fax: 011-52-5-545-8090
Auxillary Contacts: Sra. Sandra Franco, Secretaria
4.0 DATA INTERPRETATION

4.1 BERMS

The cost estimates presented in Section 3.1 of this document were based on standard construction materials and techniques. A salt core berm which is armored with caliche is not a typical construction effort and as such the cost estimates may vary from actual construction costs. It appears that there may be difficulty in compacting the salt core without the addition of water; however, the salt core is water soluble. Additionally, the compaction of the caliche armor material would also require the addition of water. It seems that if a geotextile were placed over the salt core prior to the placement of the caliche armor this method of construction would both protect the salt core from invasion of water added to the caliche during placement, and allow an adequate amount of water to be added to the caliche which would aid in cementation.

Surface water drainage conduits through the berm were not included in this cost estimate and it is believed that their construction will require great care and possibly increase the berm construction cost by 10% to 20%. Given the 100 year construction method / material testing period set forth in the CCA present construction difficulties would most likely be resolved prior to final construction.

4.2 KIOSKS / MARKERS

According to Mr. Dan Stauty of Cold Spring Granite Company, Cold Spring, Minnesota, and Mr. George Oglesby of Keystone Granite Co. Elberton, Georgia, the trend in the granite quarrying and fabrication industry is towards smaller applications such as granite veneers, granite tiles, and granite facing stones. Because of this trend only a few quarrying operations have the capability of quarrying and fabricating large granite structures. Although the capability to construct large granite monuments is likely to be limited in the future, the supplies of granite are expected to be sufficient. The life span of a typical quarry was reported to be up to 1,000 years.

With current fabrication capabilities it would be difficult to construct granite kiosks as described in the CCA and CCA Appendix PIC. Both of the sources contacted indicated that a two piece monument constructed as specified in the CCA and CCA Appendix PIC while feasible to quarry, could not be engraved and handled using conventional techniques. The size of these markers, if constructed to proposed dimensions and configuration would result in a monument weight of approximately 100 to 120 tons. The longest single granite component that could be quarried, handled and engraved would be approximately 12 feet in length. The information provided by those quarries contacted indicated that under present fabrication capabilities the kiosks / markers would be constructed from up to five pieces of granite and yield the CCA specified dimensions (Appendix C). Additionally the joints between the granite components would be fixed using internal stainless steel anchors. This would allow the proper
amount of monument flexibility for wind and other environmental forces. According to Mr. Dan Stauty of Cold Spring Granite, the construction of a metal free monument would be possible but the cost for the engineering design of interlocking components would approximately double the cost of each kiosk / marker.

If the construction of two piece kiosks / markers as described in the CCA and CCA Appendix PIC were a priority, there would likely be additional costs associated with the development and testing of handling technologies that are not currently available in the granite quarrying industry. Without such investment it is unlikely that the industry would develop such capabilities with the current lack of market demand.

The costs for assembly and installation of the kiosks / markers assumes a fairly rapid assembly schedule with foundation excavation occurring on a schedule that would allow uninterrupted kiosk / marker assembly. It would be reasonable to assume that the kiosk / marker components could be delivered and stockpiled on-site until assembly, This would allow an assembly schedule of one kiosk / marker per day with assembly completion in 48 days. If the assembly schedule was delayed, costs could be expected to rise due to standby time for the assembly crew and equipment.

Additionally, the kiosk / marker installation cost estimate assumptions include that the assembly can be completed using standard crane equipment, and all excavation and backfilling of foundations can be completed in one mobilization effort excluding standby time.

4.3 ARCHIVAL OF PRINTED INFORMATION

4.3.1 Printing and Binding

Methods of printing and binding consistent with the requirements of the CCA are presently available and should remain so through the period of interest in the CCA.

4.3.2 Archives

Presently, the only national archive which has agreed to hold the WIPP data is the United States National Archive. National archives in other parts of the world appear to be limited to maintaining data generated within their national boarders. Due to the vagary of national and international political structures and policies determination of the willingness of nations, other than the United States, to house these data is unlikely. Of those nations contacted several suggested that universities and professional societies may be more willing to house the WIPP data. Section 3.3.2 of this document provides information for contacting international archives. These archives were not corresponded with because it was felt that these levels of discussion were best left to the agencies which required storage.
5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The total volumes calculated for each berm material type were as follows: 1) soil/riprap 129,688 cubic yards (cy); 2) riprap 189,128 cy; 3) caliche 252,892 cy; 4) salt 443,473 cy; and 5) excavated soil 439,747 cy, with the total cost of the berm construction estimated to be $40,043,031. The total cost of 48 kiosks/markers construction with metal anchors was estimated to be $15,313,723; however, if these same 48 kiosks/markers were constructed with stone interlock the total estimated cost would rise to $28,252,813.

Depending on how the documents are bound (saddlestitched or perfect bound) the cost estimate ranges from $80,500 to $90,750, respectively.

The grand total of the cost estimates were $68,401,595 (1997 dollars).

5.2 RECOMMENDATIONS

It seems that if a geotextile were placed over the salt core of the berm prior to the placement of the caliche armor this method of construction would both protect the salt core from invasion of water added to the caliche during placement, and allow an adequate amount of water to be added to the caliche to aid in cementation.

Under present fabrication capabilities the kiosks/markers would be constructed from up to five pieces of granite to yield the CCA specified dimensions. Additionally the joints between the granite components would be fixed using internal stainless steel anchors. This would allow the proper amount of monument flexibility for wind and other environmental forces.

Of those nations contacted several suggested that universities and professional societies may be willing to house the WIPP data. Section 3.3.2 of this document provides information for contacting international archives. These archives were not corresponded with because it was felt that these levels of discussion were best left to the agencies which required storage.
APPENDIX A
WIPP BERM VOLUME CALCULATIONS
WIPP BERM VOLUME CALCULATIONS

BY: M. WALTERS 912E 2/20/97
PROJECT: A-312-002

BERM GEOMETRY SOURCE: CHAP 7, FIG 7-15, P.7-75
TITLE 40 CFR PART 119 COMPLIANCE CERTIFICATION APPLICATION

SCALE: 1" = 20'

Materials:
1. Soil/Riprap
2. Riprap
3. Caliche
4. Salt

Need to Calculate Areas for Materials 1 through 4
Areas: \[A = \frac{1}{2} \times 3 \times 4 = 6 \text{ ft}^2 \]
\[AG = A = 6 \text{ ft}^2 \]
\[AB = L \times W = 50 \times 3 = 150 \text{ ft}^2 \]
\[AF = AB = 150 \text{ ft}^2 \]
\[AC = \frac{1}{2} \times 1 \times 3 = 1.5 \text{ ft}^2 \]
\[AE = AC = 1.5 \text{ ft}^2 \]
\[AD = (11) \times (3) = 33 \text{ ft}^2 \]

Total Area:
\[3.2 \sqrt{3} \]

Material 1
\[348 \text{ ft}^2 = 6 + 150 + 1.5 + 33 + 1.5 + 150 + 6 \]
Area Material 2 - RipRap

Areas:
- 2A = \((10)(10) = 100 \text{ ft}^2 = 2I\)
- 2B = \(\frac{1}{2}(3)(4) = 6 \text{ ft}^2 = 2H\)
- 2C = \((44.5)(3) = 133.5 \text{ ft}^2 = 2G\)
- 2D = \(\frac{1}{2}(1.5)(3) = 2.25 \text{ ft}^2 = 2F\)
- 2E = \((8)(3) = 24\)

Total Area = 2(10) + 2(6) + 2(133.5) + 2(2.25) + 24

Area Material 3 - Caliche

Areas:
- 3A = \((10)(10) = 100 \text{ ft}^2 = 3I\)
- 3B = \(\frac{1}{2}(3)(9.5) = 14.3 \text{ ft}^2 = 3H\)
- 3C = \((3)(6) = 210 \text{ ft}^2 = 3G\)
- 3D = \(\frac{1}{2}(6)(5) = 9 \text{ ft}^2 = 3F\)
- 3E = \((2)(6) = 12 \text{ ft}^2\)

Total Area = 2(10) + 2(14.3) + 2(210) + 2(9) + 12

Material 2

Material 3
Wipp Berm Volumes 2/26/12 Page 4 of 8

Area Material 4 - Salt

Area 3: 4A = 68 x 10 = 680 ft²
 4B = 1/2(20)(25.5) = 275 ft²
 4C = 5 x 22 = 110 ft²

Total Area = 680 + 275 + 110

Total Area = 1190 ft²

Material 4

Below Grade Excavation Area

Area 8: 5A = 1/2(20)(10) = 100 ft² = 5C
 5B = 28 x 10 = 280 ft²
 5C = 28 x 10 = 280 ft²

Total Area = 1180 ft²

Excavation
WIPP BERM VOLUMES

FORM GEOMETRY SOURCE:
CCA, APPENDIX PIC, P.72, FIG. VIII-2

SCALE: 1" = 400'

[Diagram with measurements and annotations]
WIPP BERT VOLUMES 2/2/97 PAGE 6 of 8

VOLUME CALCULATIONS

MATERIAL 1 - SOIL/RIP.RAP

\[V_1 = A_1 (L_{11} + L_{16}) = 348 \text{ ft}^2 \times \left(2670 + 98 + 2165 + 98 + 2165 + 98 \right) \]

\[V_1 = (348 \text{ ft}^2) (10062 \text{ ft}) = 3501576 \text{ ft}^3 = 129688 \text{ yd}^3 \]

MEANS HEAVY COST DATA REQUIRES RIP RAP PLACEMENT CALCULATIONS IN SQUARE YARDS P.59, 022 700 SCOPE/EROSION CONTROL - 7/12 0200

MATERIAL 1 - SURFACE AREA

\[SA_1 = (54 + 13 + 54)(10062) = 1217502 \text{ ft}^2 \]

\[SA_1 = 135,278 \text{ yd}^2 \]

MATERIAL 2 - RIP.RAP

\[V_2 = A_2 (L_{11} + .. + L_{16}) = (507.5 \text{ ft}^2) (10062') = 5106465 \text{ ft}^3 \]

\[V_2 = 189,128 \text{ yd}^3 \]

\[SA_2 = (49 + 10 + 49)(10062) = 1086696 \text{ ft}^2 \]

\[SA_2 = 120,744 \text{ yd}^2 \]

MATERIAL 3 - CALiche

\[V_3 = A_3 (L_{11} + .. + L_{16}) = (678.6 \text{ ft}^2) (10062') = 6828073 \text{ ft}^3 \]

\[V_3 = 252,892 \text{ yd}^3 \]
Material 4 - Salt

\[V_4 = A_4 (L_{at} + L_{cg}) = (190 \text{ft}^2)(10062 \text{ft}) = 1,973,780 \text{ ft}^3 \]
\[= 443,473 \text{ yd}^3 \]

Material 5 - Excavation

Excavated Volume = \((A_5A + A_5B + A_5C)(L_{at} + L_{cg})\)

Excavated Volume = \((1180 \text{ft}^2)(10062 \text{ft})\)
\[= 11,873,600 \text{ ft}^3 \]
\[= 439,747 \text{ yd}^3 \]

Backfilled Non-Berm Volume = \((A_5A + A_5C)(L_{at} + L_{cg})\)

= \((280 \text{ft}^2)(10062 \text{ft})\)
\[= 2,012,400 \text{ ft}^3 \]
\[= 74,533 \text{ yd}^3 \]
APPENDIX B
WIPP BERM COST CALCULATIONS
Wipp Berm Costs

By: M. Watermire

Project: AS12-002

Action 1 - Clear & Grub Area

Means P. 41, 021 10 & 0010 Clear & Grub, Tress to G'dia
$ 29,000/ac.

Area to be Cleared = 1 Grubbed

Berm Footprint + 20' each side overexcavation

\[
A = 2(240' \times 140') + 2(2630' \times 140') = 1408960 \text{ ft}^2
\]

\[
\text{Cost} = (32.3 \text{ ac})(2900/ac) = $ 93,801
\]

Assume 5 miles of haul road to be cleared at 30' wide

\[
A = 5(5280' \times 30') = 237600 \text{ ft}^2
\]

\[
\text{Cost} = (54.5 \text{ ac})(2900/ac) = $ 153182
\]

Total Cost Action 1 = $ 251,983

Action 2 - Grub Stumps and Remove

Means P. 41, 021 10 & 0150 @ $ 1,200/ac

\[
\text{Cost} = (A_{\text{Berm}} + A_{\text{Road}})(\text{Cost/\text{ac})}
\]

\[
\text{Cost} = (32.3 \text{ ac} + 54.5 \text{ ac})(1300/ac)
\]

\[
\text{Cost} = $ 11,2840
\]
Action 3 - Stripping Topsoil & Stockpiling, Sandy Loam Means P. 42, 02/1. 44 01/00 C $1.22/CY

200 HP Dozer, Adverse Conditions

Berry Excavation: 439,747 YD³

Cost = (439,747 YD³) (1.22/YD³)
 = $539,491

Assume 1' of Road Mail is Also Stripped

Road Volume = (1 ft) (2,376,000 ft³)
 = 2,376,000 ft³
 = 88,000 YD³

Cost = (88,000 YD³) (1.22/YD³)
 = $107,600

Total Cost Action 3 = $634,091

Action 4 - Hauling Material 4-Salt

Means P. 54, 022 2LC 500 C $4.91/YD³
4 mi Round Trip (RT) 12 YD³ Dump

Assume 1.4 Builing Factor

Cost = 1/4 (1.4) (Cost/YD³)
 = (443,473 YD³) (1.4) (4.91/YD³)
 = $304,849.33

Action 5 - Backfilling Material 4-Salt

Means P. 41, 022 208 5420 C $1.37/YD³
300 Haul, Clay w/ 300 HP Dozer or Front End Loader

Assume 1.4 Building Factor

Cost = (443,473 YD³) (1.4) (1.37/YD³)
 Cost = $840,581
WIPP BERM COST

Action 6 - Compacting Material 4 - Salt
- Means P.48, 022 22c 5720 @ $0.41/yr
- Sheep's Foot, 12" Lifts, 4 Passes
- Assume: Bulking Factor 1.4
- Cost = (443,473 yr$) (1.4) ($0.41 yr$)
- Cost = $254,553

Action 7 - Hauling Screened Material B - Caiche
- Means P.152, 041 000 9.32 0250 @ $26 yr$.
- Screened & Washed Sand W/ 10 Mile Haul
- Assume: As per P.47 if PIC - 30%-40% of Caiche
 Should Pass Through A Number 200 Sieve
 Also 1.4 Bulking Factor
- Cost = (252,892 yr$) (1.4) ($26 yr$)
- Cost = $9,209,926

Action 8 - Backfilling Material 3 - Caiche
- Means P.47, 002 208 5420 O 1.37 yr$.
- 300' Haul, Clay W/ 300 HP Digger of Front End Loader
- Assume: 1.4 Bulking Factor
- Cost = (252,892 yr$) (1.4) (1.37 yr$)
- Cost = $48,504

Action 9 - Compacting Material 3 - Caiche
- See Action 6 C $0.41/yr$.
- Cost = (252,892 yr$) (1.4) ($0.41 yr$)
- Cost = $145,160

Action 10 - Hauling Material 2 - RP, Rap
- Means P.54, 022 22c 260 0560 @ $23 yr$
- 12 yr$ Dump Truck, 20 Mile Round Trip
- Assume: Bulking Factor 1.2
- Cost = (189,128 yr$) (1.2) ($23 yr$)
- Cost = $5,219,932
WISP Bern Cost 16/97 PAGE 4 OF 5

Action 11 - Placing Material 2 - Rip Rap
Means P.59, 0.22 700 7.12 0.200 c $61.50/yd^2
18" Min thickness, Not Grouted

Cost = (120,744 yd^2)($61.50/yd^2)
Cost = $7,433,756

Action 12 - Backfilling Material 2 - Rip Rap (End Sections)
See Action 5 @ $1.37/yd^3
Volume = [(10')(10'+10')(10)'] [10062']
\(\frac{V}{3} = 2,012,400 \text{ ft}^3
\(V = 74,533 \text{ yd}^3

Cost = (74,533 yd^3)($1.37/yd^3)
Cost = $102,710

Action 13 - Backfill Material 5 - Existing Soil (End Section)
See Action 5 @ $1.37/yd^3
Assume: 1.4 bulking factor
Cost = (74,533 yd^3)(1.4)($1.37/yd^3)
Cost = $142,954

Action 14 - Compacting Material 5 - Existing Soil
See Action 6 @ $0.41/yd^3
Cost = (74,533)($0.41) = $42,781

Action 15 - Haul Material 1 - Soil/Rip Rap
See Action 10 @ $2.23/yd^3
Assume: Bulking Factor 1.2
Cost = (129,688 yd^3)(1.2)($2.23/yd^3)
Cost = $3,579,389

Action 16 - Place Material 1 - Soil/Rip Rap
See Action 11 @ $61.50/yd^2
Cost = (133,728 yd^2)($61.50/yd^2)
Cost = $8,319,597
Action 17 - Seeding Berm & Adjacent Disturbed Areas

Means P.I.61, 029 300 308 5400 C $4.91/MSF (this assumes hydro or air seeding, w/mulch and fertilizer)

Berm Foot Print + Haul Road = 1,408,960 ft² + 2,374,000 ft² = 3,782,960 ft²

Assume: 1.2 times the intended disturbed area required

\[
\text{Cost} = (3,782,960 \text{ ft}²)(1.2)(\$0.049/\text{ft}²)
\]

\[
\text{Cost} = \$222,255
\]

Total Cost All Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Cost</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>251,983</td>
<td>Clear & Grub</td>
</tr>
<tr>
<td>2</td>
<td>112,840</td>
<td>Grub Stumps</td>
</tr>
<tr>
<td>3</td>
<td>634,091</td>
<td>Strip & Stockpile Soil</td>
</tr>
<tr>
<td>4</td>
<td>3,048,433</td>
<td>Haul Salt</td>
</tr>
<tr>
<td>5</td>
<td>850,581</td>
<td>Backfill Salt</td>
</tr>
<tr>
<td>6</td>
<td>254,553</td>
<td>Compact Salt</td>
</tr>
<tr>
<td>7</td>
<td>9,205,269</td>
<td>Haul Screened Caliche</td>
</tr>
<tr>
<td>8</td>
<td>485,047</td>
<td>Backfill Caliche</td>
</tr>
<tr>
<td>9</td>
<td>145,160</td>
<td>Compact Caliche</td>
</tr>
<tr>
<td>10</td>
<td>5,219,932</td>
<td>Haul Rip Rap</td>
</tr>
<tr>
<td>11</td>
<td>7,425,756</td>
<td>Place Rip Rap</td>
</tr>
<tr>
<td>12</td>
<td>102,110</td>
<td>Backfill Rip Rip End Sections</td>
</tr>
<tr>
<td>13</td>
<td>142,954</td>
<td>Backfill Existing Soil</td>
</tr>
<tr>
<td>14</td>
<td>42,781</td>
<td>Compact Existing Soil</td>
</tr>
<tr>
<td>15</td>
<td>3,579,389</td>
<td>Haul Soil/Rip Rap</td>
</tr>
<tr>
<td>16</td>
<td>8,319,597</td>
<td>Place Soil/Rip Rap</td>
</tr>
<tr>
<td>17</td>
<td>222,255</td>
<td>Re Seed</td>
</tr>
<tr>
<td></td>
<td>401,043,103</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C
PROPOSED MARKER CONSTRUCTION
&
COST CALCULATIONS
COLD SPRING GRANITE
PROPOSAL & CONTRACT (Material Supply Only)

DATE: 03-11-1997
ATTN: Paul Wharry
COMPANY: RESEARCH MANAGEMENT CONSULTANTS
1746 Cole, Suite 300
Golden, CO 80401
FAX: 303-277-0055 303-277-0066

COLD SPRING GRANITE COMPANY (Hereinafter "Seller") of Cold Spring, MN, proposes to furnish materials as described below.

The following bid documents, drawings & specifications will be referred to as Contract Documents and shall apply, insofar as these documents do not conflict with the terms and conditions of this contract.

COLD SPRING GRANITE COMPANY to supply a cubic monument, a total of 5 pieces, per RMCJ's four page fax dated 3-6-97 and attached sketch, Exhibit "A", dated 3-11-97. Finish will have wire movement, no grinding, thermal finish applied to ease wire marks and help eliminate future rust problems. Finished piece size dimensions could be +/- 1/4" or better.

Unit Pricing:
- 1 1/2" high sandblast incised & hilited letters $3.85 each
- 1 1/2" high tooled V-cut & hilited letters $7.00 each

Attached Terms & Conditions are part of this proposal.

TYPE OF MATERIAL: Rockville White
FINISH: Thermal

The Contract Documents, so far as they relate to material listed herein, are made a part of this Contract. Notwithstanding anything to the contrary in the Contract Documents, Seller will provide only materials ready to set and will not provide shelf angles, caulking, testing, engineering, support steel, mockups or setting.

Seller's Standard Anchors are Included: YES NO

Seller's Shop Drawings are Included: YES NO

Price: $255,359.00
Tax: $14,205.62
Total Amount: $269,564.62

Materials to be delivered F.O.B. Albuquerque, NM

NOTE: Change of delivery address may affect applicable tax rate.

Above price(s) INCLUDE all applicable State & Local Taxes at a combined rate of 5.563%.

Above price(s) DO NOT include applicable State or Local Taxes. However, all State & Local Taxes are to be added to the price shown to establish Contract price unless an appropriate exemption, direct pay, or resale certificate is provided.

PAYMENT TERMS: Paid as fabricated, net 30 days, no retainer.

SHOP DRAWINGS: 2-3 SHOP TICKETS: (Weeks for initial submission.)

DELIVERY: Start delivery 6 mo. weeks after receipt of approved shop drawings or cutting lists with all necessary cutting information & returned signed Contract. Balance of delivery per mutually agreed upon schedules for shop drawing submissions, approvals, and fabrication time.

THIS PROPOSAL & CONTRACT FOR MATERIAL INCORPORATES ALL OF THE TERMS & CONDITIONS PRINTED ON THE FRONT & BACK HEREOF INCLUDING ANY ATTACHMENTS.

Buyer hereby accepts Seller's offer to sell & agrees to perform in accordance with all terms & conditions. Buyer, by acceptance of the first delivery of material, will be deemed to have accepted all terms & conditions contained herein regardless of whether this document has been executed by Buyer.

ACCEPTED BY BUYER:
RESEARCH MANAGEMENT CONSULTANTS

ACCEPTED BY: Gary Theisen, Asst. Treasurer

DATE: 7/7

PLEASE SIGN & RETURN ALL COPIES
1. DELIVERY, SHIPPING & LIMITATION OF LIABILITY: Buyer agrees to inspect all granite before unloading, and in case of damage, will substantiate claim against carrier by noting all damage (labels and marks on the damaged pieces) on the freight receipt before removal from trucks or cars. If Buyer, at any time thereafter, give warranty to the Buyer in excess of that herein provided, Buyer's limitation of liability is hereby extended to the extent of the additional warranty.

2. WARRANTIES, LIMITATIONS & INDEMNIFICATION: Seller warrants to Buyer that the materials provided by it will conform to these terms and conditions and to approved shop drawings and will be free of defects in materials, except as provided in Paragraph 3 and workmanship. Seller specifically disclaims responsibility for design and engineering. This warranty shall not extend more than one year after delivery of the specific materials involved. The sole and exclusive remedies for breach of this warranty shall be, at the Seller's discretion, correction of the defects, replacement of the materials, F.O.B. point of shipment, refund of the amount by which the value of the materials is diminished by the breach of warranty, or any combination of these alternatives; provided the nonconformity or defects is due to Seller's fault and is not the result of abuse, misuse, mishandling, accident or other event outside Seller's control and provided that Buyer gives written notice of nonconformity or defect within thirty (30) days after the specific materials involved are delivered, whichever is earlier. Buyer accepts the above conditions as reasonable limitations on any right of recovery. In the event of breach of this contract by Seller, Buyer shall not be entitled to recover consequential or liquidated damages. Seller expressly limits indemnification of other parties and/or direct damages caused solely by the negligence of seller. The warranty provided in this paragraph is in lieu of all other remedies against Seller for consequential, incidental or other damages, notwithstanding anything to the contrary in the contract documents. THERE ARE NO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE MADE IN CONNECTION WITH THE SALE OF MATERIALS UNDER THIS AGREEMENT.

4. SEXY CHARGES: Buyer agrees that it will not have the right of offset against the contract price or fee to right back the contract unless Buyer has given prompt written notice and Seller has given written consent.

5. LIEN WAIVERS: Seller will furnish interim partial lien waivers for payment received. Seller will sign the first release of lien upon receipt of final payment. Seller will sign lien notices if appropriate.

6. BUNDLING: Bundling will be per Seller's standard bundling procedures.

7. GRANITE FABRICATION: Seller's fabrication will be in accordance with National Building Granite Qualities Association, Inc. Specifications. Orders for dimensional stone include joint and layout coverage. Not shipped footage may not equal gross estimated footage.

8. GRANITE THICKNESS: 3/4" nominal = 3/8"+1/8" 1/2" nominal = 3/8"+1/4" 3/8" nominal = 3/8"+1/16" 1/4" nominal = 1/4"+1/16" Exposed edges shall be gauged at minimum thickness or less.

9. FIELD MEASUREMENTS: Seller shall not be responsible for making, verifying, or ensuring the accuracy of field measurements for the materials and heerardes nor for any loss or damage arising as a result of inaccurate field measurements or discrepancies between information supplied by Buyer and actual field dimensions.

10. DRAWINGS: If prepared by Seller, shop drawings will be submitted to Buyer for approval prior to fabrication. Shop drawings will show stone and immediate assembly only. Details of other support systems components is excluded. If prepared by Buyer, shop drawings will be forwarded to Seller marked "APPROVED FOR FABRICATION" before fabrication will commence. If shop drawings are not required, sizes listed in scope of work are approved for fabrication and no shop drawings will be sent.

11. ANCHORS: If approved by Seller, Seller's standard anchors and appropriate cutting/tapping shall be included in contract price. Standard anchors are of the type 302 or 304 stainless steel, and are considered to be those anchors penetrations the stone.

12. ENGINEERING & DESIGN: Engineering calculations are performed by Seller in accordance with the project requirements. If required, engineering calculations shall be performed by Buyer.
Kiosk / Marker Implementation Costs

Marker fabrication as per cost estimate provided. Five piece construction with metal anchors and delivery to Albuquerque NM. 269,564.62 Each x (16+32 markers) = $12,939,102

Marker fabrication five piece construction with engineering for interlock connection and no internal metal with delivery to Albuquerque NM. $539,129 Each x (16+32 markers) = $25,878,192

Engraving 1170 characters plus 8 for figures on eight sides. 1178 characters x 8 sides x $3.85 per character x (16+32 markers) = $1,741,555

Excavation of foundations 17 feet deep by 8 feet by 8 feet x 2 = 2176 cubic feet = 80 cubic yards

Excavation costs, common earth, page 346 Means cost data guide, site work & landscape

$6.46 per cubic yard x $6.46 per cy x 80 cy x (16+32 markers) = $24,806

Backfill costs, common earth, page 356 Means cost data guide, site work & landscape

$3.88 per cubic yard estimate that only 2/3 the excavated volume will need to be backfilled because the remainder is occupied with the stone marker.

(80 cy x 70%) x (16+32 markers) x $3.88 per cy = $10,429

Marker installation and handling on site,

Assume crew C-24 or equivalent, page 404 Means cost data guide, heavy construction 2 foremen, 6 workers, 2 equipment operators, 1 truck crane, 136 ton. $5,080.60 daily plus $1,200 mobilization cost. Assume work to be completed at one marker per day for a total of 48 days.

$5,081 per day x 48 days + $1,200 mob = $245,088

Marker Unloading and transport on site
Means cost data guide, heavy construction

One truck for hauling monument sections
$4,800 per month 2.5 month rental = $12,000
plus 1 truck driver at $170.40 per day x 48 days = $8,179

Plus 1 crane for 2.5 months at $11,100 per month = 2.5 months x $11,100 per month = $27,750
plus one operator at $16,320 for 48 days plus one crane hookup helper at $10,213 for 48 days
plus $1200 mobilization and demob

$4,800 + $8,179 + $27,750 + $16,320 + $10,213 + $1,200 = $52,142

Transport to site, truck compny cost estimate, OMNI Transportation Services transport for one stone at 20 tons from Albuquerque to Carlsbad $1,250

$1,250 per piece x 5 pieces per marker x (16+32 markers) = $300,000
APPENDIX D
PRINTING COST ESTIMATE
March 5, 1997

Ladd Hastings
RMCI
1746 Cole Blvd., Suite 300
Golden, CO 80401

I am pleased to confirm your specifications and pricing for the following:

Estimate Ref: PH - ARM3111
Description: Books, perfect bound or saddlestitched
Quantity: 100 sets of 50 volumes, each volume consisting of 100 pages text and a 4-page cover
Trim Size: 8½ x 11
No. of Pages: 500,000 total text pages; 20,000 total cover pages
Paper: Text: 70# Archiva Starwhite Vicksburg wove book
 Cover: 80# Archiva Starwhite Vicksburg wove cover
Preparation: Client provides camera-ready copy; ABP provides film and bluelines.
Printing: Text: K/K Cover: K/0
 Text and cover both printed with carbon black ink with pH in excess of 5.5
Finishing: Perfect bind or saddlestitch; carton pack 100 sets of 50 volumes each.
Distribution: FOB Denver
Production: Schedule to be determined.
Price: Perfect Bound: $90,750 Saddlestitch: $80,500
Taxes: Plus applicable sales taxes

NOTE: This quotation is based on production in 1997 and is subject to credit and schedule approval and availability of manufacturing time. Paper is quoted at current mill prices in effect at time of quotation and is subject to availability. Paper prices will be adjusted to reflect current market costs at time paper is manufactured. Any additional units of work required by the Customer or changes in conditions which are not specifically covered in this quotation will be priced prior to work being performed and upon approval from the Customer will be invoiced accordingly. Customer's alterations, if required, will be billed additionally.

I look forward to working with you.

Submitted by: Perry Hobert
 Sales Representative

Accepted: ____________________________
 Date: ____________________________

A.B. Hirschfeld Press, Inc.
6200 Smith Road, Denver, CO 80216
Phone (303) 328-8500

Helping People See their Best Impressions.
APPENDIX E
NARA BULLETIN NUMBER 95-7
NATIONAL ARCHIVES AND RECORDS ADMINISTRATION
WASHINGTON, DC 20408

NARA BULLETIN

NO. 95-7

September 8, 1995

TO: Heads of Federal agencies

SUBJECT: Procurement of writing, copying, and printing papers for Federal records

1. Purpose. This bulletin advises agencies to procure permanent and alkaline paper grades routinely to create all Federal records. This recommendation complies with Public Law (Pub.L.) 101-423, Executive Order (E.O.) 12873, and Environmental Protection Agency (EPA) guidance. Information on cost and availability of paper grades is also provided.

2. Expiration. This bulletin expires September 30, 1997.

3. Background.

a. Papers used for most documents and publications since the mid-nineteenth century were highly acidic. The acid in these papers greatly accelerates their deterioration and is a principal threat to our documentary heritage. In the past, the cost of acid-free papers was generally prohibitive. In recent years, the pursuit of inexpensive papermaking techniques has resulted in an increasing replacement of acidic pulps with more economical alkaline pulps. Fortunately, the alkaline process also extends paper life by many decades.

b. Public Law 101-423, A Joint Resolution to Establish a National Policy on Permanent Papers, establishes as the policy of the United States that Federal records, books, and publications of enduring value be produced on acid-free permanent papers. The Joint Resolution further recommends that Federal agencies require the use of acid-free permanent paper for publications of enduring value produced by the Government Printing Office or by Federal grant or contract, using the specifications for such paper established by the Joint Committee on Printing; and that agencies require the use of archival quality acid-free papers for permanently valuable Federal records and confer with NARA on the requirements for paper quality.

c. Executive Order 12873, "Federal Recycling, Acquisition, and Use of Environmentally Preferable Products and Services," section 504, and EPA's Recovered Materials Advisory Notice (60FR21386) establishes minimum percentages for recovered waste and post-consumer waste for printing and writing papers. Although many permanent and alkaline papers contain a significant percentage of recycled material, most do not meet the percentages specified by the E.O. and EPA's guidance. However, sections 502(2) and 504(1) of the E.O. authorize agencies to select papers that do not meet content percentages when available items fail to meet reasonable performance standards.

4. Definitions.

a. Alkaline paper. Paper that will last for at least one-hundred years under normal use and storage conditions. Alkaline paper grades are groundwood-free with a minimum pH of 7 and an alkaline reserve of 2% or more.
b. Generic paper. Paper without a specified pH or alkaline reserve. Longevity of generic paper varies and is uncertain. Many last for 50 to 100 years.

c. Permanent paper. Paper that will last for several hundred years without significant deterioration under normal use and storage conditions. Permanent paper grades are groundwood-free with a pH of 7.5 or above, an alkaline reserve of 2% or more, and other strength or performance properties that guarantee the use and retention of records generated on this paper for a maximum period of time.

5. Agency action.

a. Agency heads should direct records officers and officials who administer procurement, printing, and supply distribution to jointly develop policy and procedures to procure and use permanent and alkaline papers for both permanent and temporary Federal records. Copies of this bulletin are being distributed to agency records, printing, and procurement officials.

b. Because it is difficult to distinguish between permanent, alkaline, and generic papers, or to determine at the moment of creation how long a document will be maintained, agencies may choose to stock only one type of paper grade in individual office units (or agency-wide) for routine use in photocopiers, laser printers, telefacsimile equipment, etc.

 (1) Permanent paper is recommended for routine use in office units that create and file a high proportion of long-term and permanent records.

 (2) Alkaline paper is recommended for routine use throughout agencies for all documents.

c. Publications intended for long-term use in a paper format by many recipients, such as those that are placed in multiple Federal, State, and local government depositories' core collections in libraries and offices, should be created on permanent or alkaline paper. Generic paper is suitable for mass publications such as press releases and telephone directories; however, if the record set of a publication has long-term value, a file copy should be created by (1) photocopying onto alkaline or permanent paper, (2) maintaining an electronic version, or (3) creating a microform version from the paper or from Computer Output Microform (COM).

d. NARA also suggests the following techniques to reduce paper consumption and/or waste:

 (1) Employ electronic systems to create, distribute, and maintain documents in accordance with 36 CFR part 1234.

 (2) When paper is the selected format for Federal records:

 - Make two-sided copies.
 - Use letter-size instead of legal-size paper.
 - Use envelopes without plastic windows and self-adhesive glue. Adhesives and plastics cannot readily be recycled with paper.

a. In recent years, the cost of permanent paper was two to four times more than generic paper and the cost of alkaline paper was one-third more than generic paper. However, a recent survey showed only a 5% difference between comparable permanent, alkaline, and generic xerographic paper grades with the permanent
paper grade costing the least. Agencies should, on a continuing basis, check and compare prices. If, at a given time, there is a significant cost difference between permanent, alkaline, and generic paper grades, NARA will work with agencies to identify specific series of permanently valuable records that can be created on permanent paper without excessive cost.

D. Unless authorized by the Joint Committee on Printing (JCP), Federal departments, establishments and services in the District of Columbia must procure blank paper, including writing, copying, and printing papers through GPO in accordance with 44 U.S.C. 1121. Locations outside of the Washington metropolitan area should procure paper through normal supply channels such as the Government Printing Office (GPO) and the Federal Supply Service of the General Services Administration (GSA) in accordance with the Federal Information Resources Management Regulation (FIRMR) bulletin B-4.

C. Attached is a complete list of all JCP specified alkaline and permanent paper grades, including GSA National Stock Numbers (NSN) when available. The JCP standard specifications are available in the "Government Paper Specification Standards, No. 10" on a subscription basis through the Superintendent of Documents. For purchases and further information, customers may contact GPO's Chief, Paper and Materials Control Section at 202-512-0208, FAX 202-512-1569 and GSA's Procurement and Contracting Office at 212-264-3252, FAX 212-264-4920.

7. NARA assistance. Records officers are encouraged to contact their designated NARA appraisal archivists for assistance in selecting the appropriate paper for agency records series. Questions may also be directed to the NARA Office of Records Administration, Agency Services Division at 301-713-6677, FAX 301-713-6850, TDD 301-713-6760.

JOHN W. CARLIN
Archivist of the United States

Attachment

LIST OF PAPERS FOR FEDERAL RECORDS

Following is the complete list of all permanent and alkaline paper grades specified by the Joint Committee on Printing (JCP) which are available from the Government Printing Office (GPO). Compatible General Services Administration (GSA) National Stock Numbers (NSN) are also listed.

The list begins with permanent and alkaline papers especially well-suited for routine use in laser printers and high speed xerographic copiers since most Federal records result from these processes. Annotations helpful to the average user are offered.

For prices and further information, customers may contact: GPO's Chief, Paper and Materials Control Section at 202-512-0208, FAX 202-512-1569 and GSA's Procurement and Contracting Office at 212-264-3252, FAX 212-264-4920.

LASER AND XEROGRAPHIC PAPERS

Permanent:

1. GSA NSN 7530-01-398-2656 25% Bond, White, 20 lb., 8-1/2"x11"

2. GSA NSN 7530-01-398-2654 Plain Copier, Xerographic, White,
3. GSA NSN 7530-01-398-2655: Plain Copier, Xerographic, White, 20 lb., 8-1/2"x14" (meets JCP O60)

4. JCP G40-Option A, 25# Bond, White and Colored. For stationery, forms, legal documents, ledgers, etc. which are used in high speed photocopiers, laser printers, plain paper telefacsimile machines, and impact-type computer printers and with pen or pencil. Above average performance for two-sided copying and erasing quality. Watermarked with U.S. seal, year, and recycled symbol.

6. JCP O60-Option A, Plain Copier, Xerographic, White, Natural, and Colored. For high speed photocopiers, laser printers, and plain paper telefacsimile machines.

* Meets recovered and postconsumer materials percentages cited in Executive Order 12873, Federal Recycling, Acquisition, and Use of Environmentally Preferable Products and Services

Alkaline:

7.* GSA NSN 7530-01-398-2652 Recycled Plain Copier, Xerographic, White, 20 lb., 8-1/2"x11" (meets JCP O65)

8.* GSA NSN 7530-01-398-2653 Recycled Plain Copier, Xerographic, White, 20 lb., 8-1/2"x14" (meets JCP O65)

9. JCP O65, Recycled Plain Copier, Xerographic (when ordering from GPO, request special alkaline modification). For high speed photocopiers, laser printers, and plain paper telefacsimile machines.

* Meets recovered and postconsumer materials percentages cited in Executive Order 12873, Federal Recycling, Acquisition, and Use of Environmentally Preferable Products and Services

ADDITIONAL PAPERS COMMONLY USED IN OFFICES

Permanent Papers:

10. JCP A270 Uncoated Permanent Book, White and Cream White. For two-sided offset printing of books, pamphlets, maps, etc.

11. JCP H30-Option A, Imitation Parchment, Laser-Finish, White and Colored. Suitable for line illustrations and embossing. The 24 pound weight can be used in photocopiers and laser printers.

Alkaline Papers:

12. JCP A60-Option A, Offset Book (w/postconsumer material content). For two-sided printing of books, catalogs, folders, etc. The 80 pound weight is suitable for posters. Contains a minimum of 20% postconsumer material.

14. JCP A75-Option A, Light Weight Offset Book (Bible Paper).

15. JCP A80-Option A, Opaque Offset Book.

17. JCP A180-Option A, Litho (Gloss) Coated Book. For high quality offset printing of books, periodicals, maps, etc.

18. JCP A240-Option A, Matte Coated Offset Book.

19. JCP A260-Option A, Dull Coated Offset Book. For high quality reproduction of satellites and high-altitude imagery as well as offset printing of books, maps, etc.

20. JCP F10-Option A, Manifold, White and Colored. For one-sided offset printing of multicopy forms and correspondence that are used in typewriters and with pen or pencil.

21. JCP J10-Option A, Ledger, White and Colored. For two-sided offset printing of forms, ledgers, notices, posters, etc.

22. JCP K10-Option A, Index, White and Colored. For two-sided printing of cards, forms, notices, posters, covers, etc. that are used in typewriters and with pen or pencil.

23. JCP L10-Option A, Litho (Gloss) Coated Cover, White and India Tint. Uses same as A180, but as a cover paper.

25. JCP L23-Option A, Offset Cover.

26. JCP L50-Option A, Matte Coated Cover.

27. JCP L60-Option A, Dull Coated Cover.