Monzeglio, Hope, NMENV

From:

Jim Lieb [Jim.Lieb@wnr.com]

Sent:

Tuesday, March 11, 2008 7:57 AM

To:

Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD

Cc:

Ed Riege; Cheryl Johnson; Allen Hains; Ann Allen; Mark Turri

Subject:

Western Refining - Gallup Refinery Laboratory Analytical for Well GWM-2

Attachments: GWM-2 WaterHEALtestdata.pdf

Western Refining – Gallup Refinery found water in GWM-2 during a quarterly inspection that was performed on February 18, 2008. Although recharge was limited, Western was able to obtain enough water sample on February 28, 2008 to conduct analysis for GRO, DRO, MRO and VOCs (8260B) including BTEX and MTBE. GRO, DRO, MRO, and BTEX were not detected in the sample. However, some MTBE was detected (28 ug/l). I have attached the Hall Environmental Analysis Laboratory report to this email.

Western will perform the quarterly inspection and resample the well (if there is sufficient water present in the well) at some point during the first two weeks of the next quarter (April). In the meantime, I will provide you on Friday with a summary of the daily GWM-2 water level measurements from this week.

If you have any questions, please contact me at (505) 722-0227.

Regards,

Jim Lieb

Environmental Engineer Western Refining, Inc. Gallup Refinery I-40, Exit 39 Jamestown, NM 87347 (505) 722-0227 fax (505) 722-0210 jim.lieb@wnr.com

This inbound email has been scanned by the MessageLabs Email Security System.

COVER LETTER

Thursday, March 06, 2008

Jim Lieb Western Refining Southwest, Gallup Rt. 3 Box 7 Gallup, NM 87301

TEL: (505) 722-3833 FAX (505) 722-0210

RE: GWM-2 Water Sample 22808

Dear Jim Lieb:

Order No.: 0802357

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 2/29/2008 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Basiness Manager Nancy McDuffie, Laboratory Manager

NM Lab # NM9425 AZ license # AZ0682 ORELAP Lab # NM100001

Hall Environmental Analysis Laboratory, Inc.

Date: 06-Mar-08

CLIENT:

Western Refining Southwest, Gallup

Lab Order:

0802357

GWM-2 Water Sample 22808

Project: Lab ID:

0802357-01

Client Sample ID: GWM-2

Collection Date: 2/28/2008 2:30:00 PM

Date Received: 2/29/2008

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	3E				Analyst: SCC
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	3/4/2008 5:33:21 PM
Motor Oil Range Organics (MRO)	· ND	5.0	mg/L	1	3/4/2008 5:33:21 PM
Surr: DNOP	118	58-140	%REC	1	3/4/2008 5:33:21 PM
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	3/5/2008 5:54:49 PM
Surr: BFB	104	79.2-121	%REC	1	3/5/2008 5:54:49 PM
EPA METHOD 8260B: VOLATILES					Analyst: SMF
Benzene	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
Toluene	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
Ethylbenzene	. ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Methyl tert-butyl ether (MTBE)	28	1.0	µg/∟	1	3/3/2008 11:58:17 PM
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Naphthalene	ND	2.0	μg/L	1	3/3/2008 11:58:17 PM
1-Methylnaphthalene	ND	4.0	μg/L	1	3/3/2008 11:58:17 PM
2-Methylnaphthalene	ND	4.0	μg/L	1	3/3/2008 11:58:17 PM
Acetone	ND	10	µg/L	1	3/3/2008 11:58:17 PM
Bromobenzene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Bromodichloromethane	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Bromoform	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
Bromomethane	ND	1.0	μg/L	1 ,	3/3/2008 11:58:17 PM
2-Butanone	ND	10	µg/L	1	3/3/2008 11:58:17 PM
Carbon disulfide	ND	10	μg/L	1	3/3/2008 11:58:17 PM
Carbon Tetrachloride	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Chlorobenzene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Chloroethane	ND	2.0	μg/L	1	3/3/2008 11:58:17 PM
Chloroform	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Chloromethane	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
2-Chlorotoluene	ND	1.0	µg/∟	1	3/3/2008 11:58:17 PM
4-Chlorotoluene	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
cis-1,2-DCE	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/3/2008 11:58:17 PM
Dibromochloromethane	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Dibromomethane	ND ·	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 1 of 2

Hall Environmental Analysis Laboratory, Inc.

Date: 06-Mar-08

CLIENT:

Western Refining Southwest, Gallup

Lab Order:

0802357

Client Sample ID: GWM-2

Collection Date: 2/28/2008 2:30:00 PM

Project:

GWM-2 Water Sample 22808

Date Received: 2/29/2008

Lab ID:

0802357-01

Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES			70 TO 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyst: SMP
Dichlorodifluoromethane	ND	1.0	µg/ί₋	1	3/3/2008 11:58:17 PM
1,1-Dichloroethane	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,1-Dichloroethene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,2-Dichloropropane	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,3-Dichloropropane	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
2,2-Dichloropropane	ND	2.0	μg/L	1	3/3/2008 11:58:17 PM
1,1-Dichloropropene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Hexachlorobutadiene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
2-Hexanone	ND	10	µg/∟	1	3/3/2008 11:58:17 PM
Isopropylbenzene	ND	1.0	μg/L	· 1	3/3/2008 11:58:17 PM
4-Isopropyltoluene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
4-Methyl-2-pentanone	ND	10	μg/L	1	3/3/2008 11:58:17 PM
Methylene Chloride	ND	3.0	μg/L	1	3/3/2008 11:58:17 PM
n-Butylbenzene	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
n-Propylbenzene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
sec-Butylbenzene	ND	1.0	μg/L	• 1	3/3/2008 11:58:17 PM
Styrene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
tert-Butylbenzene	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
1,1,1,2-Tetrachloroethane	ND.	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/3/2008 11:58:17 PM
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
trans-1,2-DCE	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
Trichloroethene (TCE)	ND	1.0	µg/L	1	3/3/2008 11:58:17 PM
Trichlorofluoromethane	ND	1.0	μg/L	1	3/3/2008 11:58:17 PM
1,2,3-Trichloropropane	ND	2.0	µg/L	1	3/3/2008 11:58:17 PM
Vinyl chloride	NĐ	1.0	μg/L	1	3/3/2008 11:58:17 PM
Xylenes, Total	ND	1.5	µg/L	1	3/3/2008 11:58:17 PM
Surr: 1,2-Dichloroethane-d4	99.2	68.1-123	%REC	1	3/3/2008 11:58:17 PM
Surr: 4-Bromofluorobenzene	106	53.2-145	%REC	. 1	3/3/2008 11:58:17 PM
Surr: Dibromofluoromethane	97.1	68.5-119	%REC	1	3/3/2008 11:58:17 PM
Surr: Toluene-d8	101	64-131	%REC	1	3/3/2008 11:58:17 PM

Qual	lifiers:
------	----------

Value exceeds Maximum Contaminant Level

E Value above quantitation range

Analyte detected below quantitation limits

Not Detected at the Reporting Limit ND

Spike recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

Reporting Limit

Date: 06-Mar-08

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Gallup

Project:

GWM-2 Water Sample 22808

Work Order:

0802357

Analyte	Result	Units	PQL	%Rec	LowLimit HighLimit	%RPD RPD	Limit Qual
Method: EPA Method 8015B: D Sample ID: MB-15278	iesel Range	MBLK			Batch ID: 15278	Analysis Date:	3/4/2008 10:01:21 AN
Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Sample ID: LCS-15278	ND ND	mg/L mg/L <i>LC</i> S	1.0 5.0		Batch ID: 15278	Analysis Date:	3/4/2008 10:36:21 AN
Diesel Range Organics (DRO) Sample ID: LCSD-15278	5.326	mg/L LCSD	1.0	107	74 157 Batch ID. 15278	Analysis Date:	3/4/2008 11:10:50 AN
Diesel Range Organics (DRO)	4.843	mg/L	1.0	96.9	74 157	9.50 23	
Method: EPA Method 8015B: G Sample ID: 5ML RB	asoline Ran	ige MBLK			Batch ID: R27590	Analysis Date:	3/5/2008 8:17:54 AN
Gasoline Range Organics (GRO) Sample ID: 2.5UG GRO LCS	ND	mg/L LCS	0.050		Batch ID: R27590	Analysis Date:	3/5/2008 8:25:57 PM
Gasoline Range Organics (GRO) Sample ID: 2.5UG GRO LCSD	0.4604	mg/L LCSD	0.050	92.1	80 115 Batch ID: R27590	Analysis Date:	3/5/2008 8:56:12 PM
Gasoline Range Organics (GRO)	0.4618	mg/L	0.050	92.4	80 115	0.304 8.3	9

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

Date: 06-Mar-08

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Gallup

Project:

GWM-2 Water Sample 22808

Work Order:

0802357

ES MBLK µg/L µg/L	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0		Batch ID:	R27552	Analysis [Date:	3/3/20	008 6:03:36 AM
µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1.0 1.0 1.0 1.0 1.0 1.0 1.0		Batch ID:	R27552	Analysis [Date:	3/3/20	008 6:03:36 Al
µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1.0 1.0 1.0 1.0 1.0 1.0 1.0							
µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1.0 1.0 1.0 1.0 1.0 1.0 1.0							
µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1.0 1.0 1.0 1.0 1.0 1.0							
µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1.0 1.0 1.0 1.0 1.0 2.0			•				
µg/L µg/L µg/L µg/L µg/L µg/L µg/L	1.0 1.0 1.0 1.0 2.0							
µg/L µg/L µg/L µg/L µg/L µg/L	1.0 1.0 1.0 2.0							
µg/L µg/L µg/L µg/L µg/L	1.0 1.0 2.0							
µg/L µg/L µg/L µg/L	1.0 2.0							
µg/L µg/L µg/L µg/L	2.0							
μg/L μg/L μg/L								•
μg/L μg/L								
µg/L	4.0							
	10							
	1.0							
μg/L	1.0							
µg/L	1.0							
µg/L	1.0							
μg/L	10							
µg/L	10							
µg/L	1.0							
μg/L	1.0							•
μg/L	2.0							
µg/L	1.0							
µg/L	1.0							•
µg/L	1.0							
µg/L	1.0							
µg/L	1.0							
µg/L	1.0							
μg/L	2.0				•			
μg/L	1.0							
μg/L	1.0							
μg/L μg/L	1.0							
μg/L μg/L	1.0							
μg/L	1.0							
µg/L	1.0							
µg/L	1.0							
μg/L	1.0							
11/1/1								
	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	μg/L 1.0 μg/L 1.0 μg/L 2.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 10 μg/L 1.0	μg/L 1.0 μg/L 1.0 μg/L 2.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 10 μg/L 10	μg/L 1.0 μg/L 1.0 μg/L 2.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 10 μg/L 1.0	μg/L 1.0 μg/L 1.0 μg/L 2.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 10 μg/L 1.0	μg/L 1.0 μg/L 1.0 μg/L 2.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0	μg/L 1.0 μg/L 1.0 μg/L 2.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0	μg/L 1.0 μg/L 1.0 μg/L 2.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0 μg/L 1.0

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 06-Mar-08

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Gallup

Project:

GWM-2 Water Sample 22808

Work Order:

0802357

Analyte	Result	Units	PQL	%Rec	LowLimit F	lighLimit	%RPD F	RPDLimit Qual
Method: EPA Method 8260B:	VOLATILES							
Sample ID: 5ml rb		MBLK			Batch ID	: R27552	Analysis Date	: 3/3/2008 6:03:36 AM
4-Methyl-2-pentanone	ND	μg/L	10					
Methylene Chloride	ND	μg/L	3.0					
n-Butylbenzene	ND	μg/L	1.0					
n-Propylbenzene	ND	µg/L	1.0					
sec-Butylbenzene	ND	μ g/L	1.0					
Styrene	ND	μg/L	1.0					•
tert-Butylbenzene	ND	µg/L	1.0					
1,1,1,2-Tetrachloroethane	ND	μg/L	1.0					
1,1,2,2-Tetrachloroethane	ND	µg/L	2.0					
Tetrachloroethene (PCE)	ND	µg/L	1.0					
trans-1,2-DCE	ND	μg/L	1.0					
trans-1,3-Dichloropropene	ND	μg/L	1.0					
1,2,3-Trichlorobenzene	ND	µg/L	1.0					
1,2,4-Trichlorobenzene	ND	μg/L	1.0					
1,1,1-Trichloroethane	ND	μ g/ L	1.0					
1,1,2-Trichloroethane	ND	μg/L	1.0					
Trichloroethene (TCE)	ND	μg/L	1.0					
Trichlorofluoromethane	ND	μg/L	1.0					
1,2,3-Trichloropropane	ND	µg/L	2.0					
Vinyl chloride	ND	μg/L	1.0			,		
Xylenes, Total	ND	µg/L	1.5					
Sample ID: 100ng ics		LCS			Batch ID	: R27552	Analysis Date	e: 3/3/2008 7:13:13 AM
Benzene	21.40	μg/L	1.0	107	72.4	126		•
Toluene	22.20	μg/L	1.0	111	79.2	115		
Chlorobenzene	21.71	μg/L	1.0	109	83.1	111		
1,1-Dichloroethene	25.82	μg/L	1.0	129	81.4	122		8
Trichloroethene (TCE)	20.10	μg/L	1.0	100	64.4	118		

_		
Qua	HI	ers

E Value above quantitation range

Page 2

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

Sample Receipt Checklist

	Campio		o.p. o	COMICE					
Client Name WESTERN REFINING GALLU				Date Receive	ed:		2/29/2008		
Work Order Number 0802357				Received by	y: AT		1		
Chaptelint completed by			_	Sample ID I	abels checked I	• • •	AT		
Checklist completed by: Signature			Date	129/0	γ		nitiāls		
Matrix	Carrier name	Clier	nt dro p-of	f					
				-					
Shipping container/cooler in good condition?		Yes	\checkmark	No 🗌	Not Present				
Custody seals intact on shipping container/coole	er?	Yes		No 🗌	Not Present		Not Shipped	V	
Custody seals intact on sample bottles?		Yes		No 🔲	N/A	\checkmark			
Chain of custody present?		Yes	✓	No 🗌					
Chain of custody signed when relinquished and	received?	Yes	\checkmark	No 🗆					
Chain of custody agrees with sample labels?		Yes	V	No 🗀					
Samples in proper container/bottle?		Yes	\checkmark	No 🗌					
Sample containers intact?		Yes	\checkmark	No 🗌					
Sufficient sample volume for indicated test?		Yes	V	No 🗔					
All samples received within holding time?		Yes	✓	No 🗀					
Water - VOA vials have zero headspace?	No VOA vials subm	nitted		Yes 🗹	No 🗌				
Water - Preservation labels on bottle and cap ma	atch?	Yes		No 🗔	N/A 🗹				
Water - pH acceptable upon receipt?		Yes		No 🗌	N/A 🗹				
Container/Temp Blank temperature?			5°	<6° C Acceptab	le				
COMMENTS:			-	lf given sufficient					
	<u></u>								
							- 		
Client contacted	Date contacted:			Pers	on contacted		*******		
Contacted by:	Recarding								-
Comments:									-
John Merits.				· · · · · · · · · · · · · · · · · · ·	·				_
									-
			-						_
	*****			· · · · · · · · · · · · · · · · · · ·					-
						·			_
Corrective Action		·	···				•		
									_

Cli	HAI	N-OF	CUSTO tern	DDY RECORD Refining - Box 7 M 87301	Other:	Std 🗖		evel 4 l							49 All Te	NA 301 l buqu 1. 50	LYS Hawk erqu 5.34	SIS kins le, N I5.3	LA NE, ew N	Suite Mexic	PA e D co 87 ex 50	NTA 105 109 15.34)7	
Ād	ldress:	Ron	te 3 1	Sox 7	Project #:			•							AN	ZAL	YSI	S A	E,	UE	37				
	5	alle	p NI	4 87301							(ĄĮ														
_					Project Manager:		Li mil	b	, 	+ TMB's (8021)	BTEX + MTBE + TPH (Gasoline Only)	TPH Method 8015B (Gas/Diesel)	1)	1)		_		Anions (F, Cl, NO ₃ , NO ₂ , PO ₄ , SO ₄)	CB's (8082)						Air Bubbles or Headspace (Y or N)
Fa	x#:	<u> </u>	5 7 Z	23833 20210	Sample Temperate		ugr	ve 5		3E + T	1 + 1	8015E	1418.	d 504.	18021	r PAH)	SE	NO3,	des / P		VOA)				r Head
_	Date	Time	Matrix	Sample I.D. No.	Number/Volume	Pn HgCl ₂	eservati	ive	on ice HEALNO. 0802357	BTEX + MTBE	BTEX + MTE	TPH Method	TPH (Method 418.1)	EDB (Method 504.1)	EDC (Method 8021)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F, Cl,	8081 Pesticides / PCB's (8082)	8260B (VOA)	8270 (Semi-VOA)				Air Bubbles o
-2	8-8	1430	H20	GWM-Z	6				-1			X								X					
	• · ···														_										
						 						_							. <u></u>						
_												_					_					\vdash	+	+	
						<u> </u>							\dashv										\perp	_	
_																							-	-	1
_												1												-	+
_								-																1	
-									• •																
																								_	
, Da	ate:	Time:	Relinquishe	d By: (Signa t ure).	Received	B√: (Si	gpeture	e)	1	Rem	arks:														
2/29	80	Time: 3.52		Jul Jul		<u>l</u>	and		In-		ימי ויטי														
, Da	ate:	Time:	Relinquish	d By: (Signature)	Received	By: (Si	gnature	e)	129/07																

Monzeglio, Hope, NMENV

From:

Jim Lieb [Jim.Lieb@wnr.com]

Sent:

Thursday, March 06, 2008 4:00 PM

To:

Monzeglio, Hope, NMENV

Cc:

Ed Riege; Cheryl Johnson; Chavez, Carl J, EMNRD

Subject:

RE: GWM-2 at Western Refining - Gallup

Attachments: _0306144127_001.pdf; GWM-2WaterLevels.xls; _0306155807_001.pdf

Hope:

I am providing the report for GWM-2 now. We have measured water levels over the week. The initial sample date we found water in the well was on 2/18/08. I prepared a table summarizing the well measurements of GWM-2 to date. Steve Morris was able to obtain a sample for analysis on 2/28/08 which has been delivered to HEAL in Albuquerque for TPH and VOCs (8260B) analysis. Not enough water was present in the well to provide sufficient sample for additional analysis. I have not yet received the lab results but will forward them to you when I receive them. Steve measured the riser and his report including some additional well data is attached.

GWM-2 is at the far northwestern side of aeration lagoon adjacent to evap. pond 1. GWM-2 is located close to GWM-1. I attached a section of one of Kingsley's maps showing the location of GWM-2. This is from Figure 3 in the 2006 GW Report.

We will continue taking water level measurements until you tell us to stop.

If you need additional info or have a question please contact me at 505-722-0227 or reply email.

Regards, Jim Lieb

From: Monzeglio, Hope, NMENV [mailto:hope.monzeglio@state.nm.us]

Sent: Thursday, February 28, 2008 8:34 AM

To: Jim Lieb; Price, Wayne, EMNRD; Chavez, Carl J, EMNRD; Ed Riege

Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV

Subject: GWM-2

GWM-2 update

Western Gallup found ~5 inches or less of water in GWM-2. There is not enough water for a sample. NMED is having Western bail down the 5 inches of water as much as possible and will check the water levels daily. Jim will send an email update on March 7th. Jim is also going to inquire about the well cap being sealed prior to the water level measurement. Jim mentioned that they have had a lot of snow and rain fall this winter and rain over the weekend (Feb 23). Jim is also going to find out the length of the riser above ground.

Jim in your message you said GWM-2 was between Aeration lagoon (AL) 1 and AL-2. The map shows GWM-2 between AL-2 and Evaporation Pond 1. Please clarify the location for me. What day was the water level measured?

Thanks Hope

Hope Monzeglio
Environmental Specialist
New Mexico Environment Department
Hazardous Waste Bureau
2905 Rodeo Park Drive East, BLDG 1
Santa Fe NM 87505

Phone: (505) 476-6045; Main No.: (505)-476-6000

Fax: (505)-476-6060

hope.monzeglio@state.nm.us

3/6/2008

Websites:
New Mexico Environment Department
Hazardous Waste Bureau

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

This inbound email has been scanned by the MessageLabs Email Security System.

Jim Lieb

From: Sent:

Stephen Morris [smorris@trihydro.com]

To:

Friday, February 29, 2008 9:12 AM Jim Lieb

o: Subject:

GWM-2 2-28-2008

Jim,

Alvin and I checked and sampled GWM-2 on Feb. 28, 2008:

Depth to water - 18.55 feet.

Sampled well using new plastic bailer for 8260 and 8015 GRO/DRO at 1430 hrs.

There was not enough water to sample well for General Chemistry.

Depth to water after sampling - 18.78 feet.

Total well depth measured - 18.98 feet.

Top of casing measured to concrete well pad (stick up) - 2.646 feet.

Top of casing measured to ground at well (stick up) - 2.812 feet.

Thanks, Steve

			ODY REGORD Cofining - Rox 7 M 8 7801	Other:	Std 🗖	l L	eckage: evel 4 (49 Al Te	901 buqi l. 50	Haw Jerqu 15.34	SIS /kins ue, N 45.3	NE, Jew l	Suit Vexion Fa	DR.A ce D co 8 ax 50	NTA 3TO 37109 05,34	RY 3	107		
Address:	<u>0.66.</u>	<u>.0</u> F 5		Project #:					21 4 - 6552	l distribute	one September			AR	IAL	YS	S I	:IEC	UE	ST					
and the second s	71.3-63. 	$\frac{\mathcal{H}}{2}$	1552 (M & 7201	1						(y															7
Action to	2.5	· · · · · · · · · · · · · · · · · · ·		Project Manager:					21)	+ TPH (Gasoline Only)	(sel)						504)	82						N t	7 .IO
				Sampler:	 L: 7	Za	- - 2 E	j som	TMB's (8021)	(Gasoli	sas/Die						, PO,	1,2 (80)						2	n age
			?			14	grain.		+ TME	臣士	15B (C	18.1)	04.1)	021)	AHI), NO	s/PCE		A				- uden	denah
Fax #:	50	572	20210	Sample Temperat	ure:				+ MTBE -	+ MTBE +	08 por	hod 4	Shod 5	hod 8	IA or P	1etals	CI, NC	ticides	(AO)	mi-V0				1 2	- I
Date	Time	Matrix	Sample I.D. No.	Number/Volume		reserva HNO ₃	Т	HEAL No.	BTEX + N	BTEX + N	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	EDB (Method 504.1)	EDC (Method 8021)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F, Cl, NO ₃ , NO ₂ , PO ₄ , SO ₄)	8081 Pesticides / PCB's (8082)	8260B (VOA)	8270 (Semi-V0A)				Air Buthlor or Hoadrahan (V on NI)	All: Duouic
274	143:	Hal	6-4M-Z	6							X								X						
									<u></u>																
							ļ		<u> </u>		ļ														_
																								+	-
					ļ			:															\vdash		-
									-	İ							 					H		-	-(
··········														-											-
<u> </u>																									
																									_
<u> </u>		Delfer 11			D (0	<u> </u>	<u></u>		_	<u></u>							<u></u>				<u></u>				
Date:	Time: 3 52.	<i>M</i>	ed By: (Signature)	Received	j	2	1		Rem	iarks:															
Date:	Time:	Relinquish	ed By: (Signature)	Received	By: (Si	ignatur	re)	ji Marikan																	

GWM-2 Inspections Western Refining - Gallup Refinery

Date	Time	Depth to Water (feet)	Sampler
2/18/2008	2:12 PM	18.38	CJ
2/28/2008*	2:30 PM	18.55	SM
3/4/2008	1:00 PM	18.68	CJ
3/5/2008	9:00 AM	18.68	CJ
3/6/2008	8:45 AM	18.68	CJ

^{*} The well water was sampled and delievered to HEAL for TPH and VOCs analysis
The well depth is before the sample was taken.
Note: Depth to well bottom = 18.98 feet measured 2-28-08 by Steve Morris

NOTE: CLOSED = ABANDONED

re3

(Oo+ ook)